Positsioonilised arvusüsteemid

 
Autorid: Mirjam Paales (mirjam.paales@ut.ee) ja Anne Villems (anne.villems@ut.ee), 2011
 

Käesolev õpiobjekt sisaldab kolme teemat. Esimene teema - arvusüsteemid - kirjeldab positsiooniliste arvusüsteemide olemust. Teine suurem teema - kahendsüsteem - on pühendunud kahendsüsteemi arvudele ja teisendustele kümnendsüsteemist kahendsüsteemi ja tagasi. Samuti tulevad teises osas lähemale vaatlusele erinevad kahendsüsteemi liigid ja tehted kahendarvudega. Kolmas osa on silmaringi laiendav osa, kus selgitatakse kaheksand- ja kuueteistkümnendsüsteemi olemus.

Esimesed kaks teemat on jagatud kolmele tasemele. Esimene tase sisaldab põhiteadmisi vastava teema kohta, teisel tasemel vaadeldakse teemat sügavamalt ning kolmas tase on pigem meelelahutusliku iseloomuga lisalugemine. Õpiobjekti on võimalik läbida lineaarselt teemade ja tasemete kaupa või igas teemas vahele jätta teine, mahukam, tase. Iga osa sisaldab endas selgitavat teksti, üldist teooriat, illustreerivaid näiteid ja ülesandeid iseseisvaks harjutamiseks.

Sisupaketi läbimiseks kulub ligikaudu viis tundi.

Sihtrühma kirjeldus

Õpiobjekt on loodud pidades silmas kõrgharidust andvate õppeasutuste reaalharu bakalaureuse taseme tudengite vajadusi ja eelteadmisi. Lisaks võib sisu sobida reaal- või matemaatika kallakuga keskkooli õpilastele.

Õpieesmärgid

Anda põhiteadmised positsiooniliste arvusüsteemide olemusest. Tutvustada enimkasutatud arvusüsteeme arvutiteaduses.

Õpiväljundid

Õpiobjekti läbinud õppija:

  1. kirjeldab oma sõnadega positsioonilise arvusüsteemi erinevust mitte-positsioonilisest ning toob mõlema kohta näiteid;
  2. esitab kümnendsüsteemi arve ... kujul;
  3. teisendab iseseisvalt arve kümnendsüsteemi, binaarari, kaheksandsüsteemi ja kuueteistkümnendsüsteemi vahel;
  4. sooritab lihtsaid liitmis- ja lahutamistehteid binaararvudega;
  5. nimetab rakendusi erinevatele arvusüsteemidele.