
Tartu University
Faculty of Mathematics and Computer Science

Institute of Computer Science

Fault tolerance method for MPI FORTRAN

programs

Master’s Thesis

Oleg Batrashev

Supervisor: Meelis Roos

Tartu 2007

Contents

Introduction 5

1 Overview of fault tolerant systems 7

1.1 High-level classification . 7

1.1.1 Forward fault tolerance 7

1.1.2 Backward fault tolerance 8

1.2 Other classifications . 8

2 Classification by checkpointing mechanism 10

2.1 System-level checkpointing . 11

2.1.1 Issues with SLC . 11

2.1.2 Kernel mode solutions 12

2.1.3 User mode solutions 13

2.2 Application-level checkpointing 14

2.2.1 Issues with ALC . 14

2.2.2 Manual ALC . 15

2.2.3 Code preprocessing method 15

2.2.4 Compiler-assisted method 16

2.3 Mixed-level checkpointing . 16

3 Classification by checkpointing protocol 17

2

3.1 Introduction to concepts . 17

3.1.1 Model of distributed system 18

3.1.2 Global time and state 19

3.1.3 Consistent global states 20

3.1.4 Late and early messages 21

3.1.5 Piecewise determinism 22

3.1.6 Domino effect . 22

3.1.7 Piggybacking . 23

3.2 Checkpoint based . 23

3.2.1 Uncoordinated checkpointing 23

3.2.2 Coordinated checkpointing 24

3.2.3 Communication-induced checkpointing 25

3.3 Log-based . 25

3.3.1 Pessimistic logging . 26

3.3.2 Optimistic logging . 26

3.3.3 Causal logging . 26

4 Solution for FORTRAN 90 and MPI 27

4.1 Choice of the techniques . 27

4.1.1 Requirements . 27

4.1.2 Checkpointing mechanism 28

4.1.3 Checkpointing protocol 30

4.1.4 Summary . 30

4.2 Algorithm description . 30

4.2.1 Saving process state 32

4.2.2 Saving MPI state . 36

4.3 Implementation details . 43

4.3.1 FORTRAN parser . 43

3

4.3.2 Coordination layer . 43

4.4 Performance tests . 44

4.4.1 Test algorithm . 44

4.4.2 Test setup . 44

4.4.3 Test results . 45

5 Conclusion and future plans 47

5.1 Conclusions for AALC effort 47

5.2 General ideas learned . 48

5.2.1 Efficiency vs. abstraction 48

5.3 Further development plans . 49

Resümee 50

A CD contents 55

4

Introduction

Fault tolerance is a feature of a software or hardware system that allows it to
avoid failures or restore system state after an error has occurred. There are
many different kinds of systems that require such a feature and all require
different approaches to the problem. One distinct area that is constantly
considered for the fault tolerance is distributed scientific computing.

In scientific computing applications may run for many hours using com-
putational power of thousands of processors. The probability of some node
failing is higher than usual and the cost of restarting application from the
start in case of a single failure is unacceptable.

Over the past fifty years there has been a constant evolution of hardware
and software systems. Over last two decades there has been explosion in
the number of systems available on the market with a clear shift toward dis-
tributed systems. There is a stack of different layers in the system: network,
operating system, system libraries, application, all of which are susceptible
to a failure. Every new implementation of a software system requires fault
tolerance features to be redesigned and reimplemented.

For a long time scientific computing has been done on supercomputers
or private clusters which had specific fault tolerance mechanisms and local
programmers were aware of those. Nowadays, GRID computing is spread-
ing, offering everyone the computational power provided by large number of
institutions. The multiplicity of the available systems is overwhelming, and
each of them is providing different mechanism to fault tolerance.

The main goal of this work was to add fault tolerance feature to DOUG
package[1] — parallel iterative linear solver with domain decomposition.
DOUG is written in FORTRAN 90 and use MPI (Message Passing Inter-
face) for communication. It is portable and may be run on many provided
clusters and it was highly desired to keep that portability after adding fault
tolerance.

5

At the beginning of the search for an appropriate solution there was no
expertise available locally to narrow the set of possible solutions. During
the search many available publications were studied and the whole area of
fault tolerance techniques was explored. Finally, appropriate solution was
found and an attempt was made to implement it. Although no real results
for DOUG has been achieved the solution showed to be appropriate for the
task.

First three chapters of this paper shortly summarize general classification
of fault tolerance systems provided by other articles and surveys. Then the
selected solution written in FORTRAN 90 is presented using many concepts
from the earlier chapters.

The structure of this paper is as follows. The first chapter describes
the high-level classification and general terms. The second and third chap-
ters further explore classification specifically focusing attention on the basic
concepts of such systems. The fourth chapter presents an application-level
checkpointing approach and the last, fifth chapter discusses gained experience
and general ideas about checkpointing in distributed computing.

6

Chapter 1

Overview of fault tolerant

systems

This chapter introduces high-level classification of fault tolerant systems.
The first section presents two strategies for fault tolerance systems, namely
forward and backward fault tolerance. The second section gives brief overview
of classification from other perspectives.

1.1 High-level classification

From a high perspective there exist two different approaches to fault tol-
erance: forward and backward. The former anticipates errors and tries to
tolerate them without any time-consuming actions while the latter invokes a
recovery mechanism after a fault has occurred.

1.1.1 Forward fault tolerance

Forward fault tolerance uses additional resources to tolerate a failure in ad-
vance and does not allow it to defect execution. This kind of solution is
needed in critical (nuclear plant, airplane software, Mars rover) or real-time
(important public servers) systems.

This is mainly achieved by duplicating hardware and software compo-
nents. It is assumed that in case of a one component instance failure its
clones are still functional and respond correctly to requests. For example,

7

some electronic part of a Mars rover may have three identical chips and
an integration circuit which gives answer provided by at least two compo-
nents so failure of a one of three chips does not affect the system. There
exist software systems which run multiple instances of the same application
or databases where writes are performed simultaneously to all of them and
reads are compared for identity.

This approach requires several times more resources than needed by a
single instance of the application and is considered too expensive for scientific
applications.

1.1.2 Backward fault tolerance

Backward fault tolerance, in contrast, does not use duplication but invokes
some recovery mechanism to tolerate a failure when it occurs. This may take
substantial time. Therefore, it is only acceptable for systems that are not
time or life critical.

Systems using this approach store some additional information during
execution of the process. When an error occurs, they rollback the process
to some earlier saved state and sometimes recover it further to the state
just before the error. This approach is called rollback-recovery and the saved
snapshot of a process state is referred to as checkpoint.

This is the typical approach to fault tolerance in scientific applications
because it just slightly affects performance of the computation.

1.2 Other classifications

The checkpointing mechanism defines how a local snapshot of the application
is taken. It can be accomplished on many levels: by specific hardware,
operating system, linked library or by application itself. The functionality
available and presentation of an application data that goes into snapshot
vary for different levels.

The checkpointing protocol defines how to make global snapshot of a dis-
tributed application. It solves the problem of combining checkpoints of sepa-
rate processes and communication channels into one meaningful global check-
point. The solution for this problem is not trivial because there is no shared
clock to take snapshots simultaneously.

8

Pessimistic Optimistic Causal

Log-based

Backward FT Forward FT

Checkpoint based

Uncoordinated Coordinated Comm. induced

Blocking Non-blocking

Figure 1.1: Classification of fault tolerance techniques

Diagram 1.1 shows basic classifications of fault tolerance techniques with
filled oval of technique used by the algorithm which is presented in chapter
4.

9

Chapter 2

Classification by checkpointing

mechanism

This section discusses approaches to saving the state of a single process. It
is not obvious which data should be considered as process state and it is
usually dictated by the requirements to the system under consideration. For
example, should the state of the libraries be considered as part of the state of
the process or whether the ID number of the process must be preserved. If we
proceed to a distributed environment then opened sockets and the number of
sent and received messages can also be viewed as a part of the process state.

The most common data sections that are considered for checkpointing
are process stack, global variables and process heap. Even with these basic
sections there is no standard way to inspect and handle them.

Some libraries allow a user to create objects inside the library and an
application to hold only object handles that are used to manipulate the
objects. The application does not have access to the internals of the library
or at least does not have enough knowledge to decide how its state should be
saved. It is the library that should be aware of checkpointing functionality
and provide means to accomplish that.

Two main approaches exist to above problems: system- and application-
level checkpointing. System-level checkpointing (SLC) saves the states of the
whole sections of application without knowledge of internal data structures
or algorithms. Application-level checkpointing (ALC), on the contrary, can
use information about the algorithm and can usually change the code of
application to add checkpointing functionality.

10

2.1 System-level checkpointing

System-level checkpointing operates on the level of system library or oper-
ating system itself. It uses OS specific mechanisms and knowledge to take a
snapshot of the application state. These approaches can be divided into two
groups: user mode and kernel mode mechanisms. The first one operates on
the level of all other libraries and applications and usually does not need any
changes in the operating system, whereas the second one lives in operating
system kernel and operates on the level of hardware and software drivers.

There is a survey [2] on this topic which discusses requirements and exist-
ing SLC implementations. Most of implementations use user mode because
of the complexity of a conventional operating system code and design, but
they satisfy less requirements because they are unable to properly handle OS
specific data like process credentials, signal handlers and sockets.

Many of the developed solutions were aimed for process migration in the
first place which is similar to checkpointing. Snapshots of registers, stack and
heap are taken, copied to another node and process state is reconstructed
there. As pointed out in [2] there exists a large difference between check-
pointing and process migration — the latter may assume that there are no
failures during the run of an application. This assumption may result in
much simpler algorithms. For example, there is no need to remember writes
to the file or files themselves because there will be no need to rollback them,
although this feature is considered one of the toughest to implement.

2.1.1 Issues with SLC

Here we describe most common problems to the checkpointing mechanism
and their solutions in user and kernel mode.

The most obvious requirement is to save the program state including the
current location and the program data. Kernel mode solutions use operating
system internal structures like task struct in Linux to save program registers
and vm area struct to find and save the process address space. User mode
solutions have to use special system library functions (setjmp/longjmp) to
save registers and must have platform specific knowledge about process stack
location. In Linux solutions the special proc file system is often used to locate
process memory regions.

Some implementations, those running in kernel mode, save process cre-

11

dentials (PID, GID), especially those which are considered for process mi-
gration. The BProc system[3] uses process ID masquerading when copying a
process to a slave node — its PID is mapped to the PID on the slave node and
the old PID is still returned to the migrated application. The process group
identifier (PGID) is also considered for storing, because scripts and pipes
are common in Unix environment. Pending, running and blocked signals
are handled by most kernel mode implementations. There are lots of other
process information that should be stored and recovered: file descriptors,
resource usage limits, process priority.

Storing and recovering files is almost not covered topic in existing imple-
mentations. The reason for this is, probably, that file data checkpointing or
file operation logging is considered too expensive and superfluous. Systems
aimed for process migration usually use remote file IO calls or any kind of
distributed file system. They also limit checkpoint information with file open
attributes and seek pointer value which works only with fail-free execution.
Even the latest implementation of BLCR [4] does not support this feature
and it is not planned.

System-level kernel mode checkpointing does not have any knowledge
about application specific behavior and has to save all data in the application.
Despite this, there exist a number of optimizations that prove to be very
useful. Not all data need to be saved when second checkpoint is taken, only
data changed between two sequential checkpoints needs to be identified and
stored. Platform specific tricks (e.g. dirty pages) can be used to identify
changed sections of the data to be checkpointed. Another optimization also
uses platform specific feature to avoid delay that arises from the need to stop
application execution for the time the checkpoint is taken. The need to stop
execution is necessary, otherwise the snapshot will not be consistent. Many
systems use fork and copy-on-write mechanisms to allow the application to
continue its execution while the checkpoint is taken.

2.1.2 Kernel mode solutions

CRAK [5] and VMADump (part of BProc [3]) are extensions to the Linux
kernel via kernel module mechanism to support process migration in a cluster
environment. Both seem to be abandoned or at least not active for the last
several years.

BLCR [4] is based VMADump and is the most promising project which
is still active. A new version 0.5.2 was released recently. BLCR is a Linux

12

kernel module and supports x86 and x86 64 architectures for the old 2.4
and most the recent 2.6 kernel versions. BLCR is aimed more toward High
Performance Computing (HPC) than other solutions. Even socket migration
is not planned because this problem is assumed to be solved by higher levels
like MPI.

Another attempt is an extension [6] to the Mach operating system. This
solution is interesting because Mach has micro-kernel architecture and shows
whether adding checkpointing functionality to this kind of system is simpler
than to monolithic kernels. It was necessary to add some extensions to several
Mach interfaces and in general extending modularized kernel is not simpler.
This is because checkpointing functionality is orthogonal to the whole system,
i.e. it requires small changes to many modules.

2.1.3 User mode solutions

One of the first user mode solutions to the checkpointing was libckpt [7] which
used setjmp/longjmp, fork, copy-on-write and other common techniques. It
is referenced in many later articles, but the implementation itself was not
developed further. It is an overall tendency that system-level checkpointers
running in user mode are not in research in recent years. The problem is
that they are still as highly platform dependent as kernel mode solutions,
but much more limited in functionality.

Another solution which gets attention is libckp[8] because it adds file
content checkpoint functionality. Unfortunately, no source code of this im-
plementation was found and further research of file data checkpointing is not
very active.

Condor[9] is a load balancing system for the high-throughput comput-
ing. It supports checkpointing and process migration [10] by using very the
same techniques as other user mode checkpointers. Comparing to other at-
tempts this project is a fully functioning system with recent new stable and
development releases.

Table 2.1 gives shortened and fixed summary acquired from [2]. None of
the programs supports the full feature list, but Condor and BLCR are two
correspondingly user and kernel mode implementations that are still evolving
and extending their functionality.

13

Name Mode
File

Data

Creden-

tials
Signals

File

Descrip-

tors

Address

Space
Registers

libckp user ◦ - - ◦ ◦ •

libckpt user - - - ◦ ◦ •

Condor user - - • ◦ ◦ •

CRAK kern - ◦ • ◦ ◦ •

BPRoc kern - △ • - ◦ •

BLCR kern - • • ◦ ◦ •

- — none, △ — weak, ◦ — good, • — complete

Table 2.1: Summary of SLC implementations

2.2 Application-level checkpointing

Application-level checkpointing does not use operating system mechanisms to
save process state. Special code within the application itself is responsible for
this functionality. The code is written by a programmer, generated by some
tool or inserted by a compiler. Considering the last variants, we distinguish
three methods of ALC: manual, code preprocessing and compiler-assisted.

ALC has more control over application state, but does not have access to
the internals of operating system or used libraries and is thus very limited.
For example, it cannot manage sockets in the MPI subsystem, so there must
exist some other way to deal with it.

2.2.1 Issues with ALC

Saving application state with ALC is not simple, although it may seem that
having more control over application code must lead to the opposite. Most
programming languages do not give control over global variables and getting
a snapshot of the stack is something not present in any widely used language.
The reason for such limitations is that conventional algorithms do not require
mentioned features and programming languages, following common patterns,
provide means to separate and hide state of different components within
application. To clear this point — there is no need to get access to the whole
stack state until you start implementing checkpointing mechanism.

There are two known techniques to save the stack by programming lan-
guage means. First, as shown in [11], the application saves pointers and
lengths of local variables every time a function is entered and forgets them
upon exiting the function. If the program wants to make a checkpoint it
iterates over all saved pointers and saves corresponding memory areas. This
approach must ensure that virtual address of the stack is the same upon

14

restart of application. Alternative approach is shown in [12] where the ap-
plication starts the checkpointing procedure by sequentially returning from
function calls and saving values of local variables until it reaches the main
function. Then it proceeds in opposite direction by restoring stack state until
it reaches start location. During an usual run of the application there are
much less steps that must be done and therefore this way is expected to be
more efficient.

Catching the state of heap variables is no more easier than the ones on the
stack. Pointers in the C language do not contain information about the type
or size of the memory area it points to. Also, there is no heap interface that
provides any knowledge or means by which allocated memory areas can be
located and extracted. One possible solution is to redefine memory allocation
and deallocation routines and to track this information using additional data
structures.

Arguably the most difficult problem is to save the states of libraries and
other used subsystems like MPI. Here there are also two common approaches,
either the subsystem provides an interface to save its state or the programmer
may build a layer on top of the subsystem and save/replay corresponding
steps whenever needed.

2.2.2 Manual ALC

This method of application checkpointing is straightforward and easy to com-
prehend. The programmer himself is responsible for managing application
state and it uses ordinary programming techniques. The programmer decides
what data must be saved and the best location in the program to activate
the checkpointing mechanism. That way, he can choose the location where
the data amount is the smallest and there are no in-flight messages in case of
a parallel application. The problem here is that it requires new analysis and
implementation for every new application and it may be substantial effort
for complex algorithms. Because this approach is so application dependent,
there are no remarkable works that describe this in detail.

2.2.3 Code preprocessing method

Considering the effort it takes to write and maintain code for application
fault tolerance there exists another approach — analyze and instrument
the code with a special source-to-source compiler. This is called automated

15

application-level checkpointing (AALC) and is implemented in the C3 [13]
precompiler. This approach provides fault tolerance with much less effort
than changing the source code manually, but still encounters all issues re-
lated to ALC.

2.2.4 Compiler-assisted method

A little different approach than using source-to-source compiler is to ana-
lyze and instrument the code within the compiler itself. This was used in
CATCH [14] which extends GNU C compiler (GCC) version 1.34 to generate
additional code during compilation.

2.3 Mixed-level checkpointing

There is a new approach under research mentioned in [15] which uses combi-
nation of ALC and SLC or even different SLC techniques for different parts
of the same system.

For example, one may wish to use ALC for his application data, but SLC
to store the internal state of the libraries. Another example is handling the
result of the gettime() function. Depending on the invocation semantics, it
may desirable to return the pre-failure result or, on the contrary, reinvoke
the call and return the new result.

16

Chapter 3

Classification by checkpointing

protocol

Classification of fault tolerance methods by checkpointing mechanism pre-
sented in 2 is valid for local as well as distributed applications. Orthogonal
to the checkpointing mechanism there exists a classification by checkpointing
protocol which studies methods and algorithms to synchronize local states of
processes in a distributed application. This topic is actually researched more
frequently because it allows theoretical approach as opposed to technical
issues that arise with checkpointing mechanism.

There exists a comprehensive survey of rollback-recovery protocols[16]
which classifies and examines different techniques. All techniques are divided
into checkpoint based which rely solely on checkpoints and log-based which in
addition use message logging to track global state of application.

The survey and many other papers use the idea of consistent global states
in distributed application and often refer to the domino effect. First subsec-
tion introduces these and other concepts, then overview of the two mentioned
rollback-recovery techniques is given.

3.1 Introduction to concepts

Paper [17] by Chandy and Lamport introduces concept of consistent global
states and algorithm to capture one of these states. Next we present brief
description of the model and results from this paper, algorithm description
is partly covered later. We give a little extended description of the model to

17

help later explaining the difference between checkpoint based and log-based
rollback-recovery.

3.1.1 Model of distributed system

The presented model of distributed system consists of the number of processes
and two-ended channels which are used to pass messages between processes.
Every process is independent from other processes in the way that it does
not share clocks or memory. Process can be in one of the known states
and sequence of process states defines progression of calculation within the
process. Channels are assumed to be unidirectional, sequential, error-free and
have infinite buffers. Every process adds messages to its outgoing channels
and takes messages from its incoming channels. Delivery of a message takes
arbitrary but finite time. State of a channel is a sequence of all messages
that are sent to this channel but not yet received.

p1 p2

p3

c1

c2

c3c4

Figure 3.1: Processes and channels

Event in this model designates change of the state of exactly one process
and at most one channel incident on the process. Events may be logically
divided between processes and partially ordered by local physical time, so
every process p has sequence of events Ep = (ep

i |i >= 1) that occur within
it whereas sequences are pairwise different Epi

⋂
Epj = ∅ and union of all

sequences
⋃

p Ep = E is set of all events in the system.

As an example, figure 3.2 shows the execution lines of 3 processes with the
time axis along vertical direction. Event e

p2

1 changes state of process p2 from
state s

p2

1 to state s
p2

2 and receives message m1 from process p1. Messages m1

and m2 are passed through some unidirectional channels which is not shown
on the picture.

Event can be written as the tuple e = (p, s, s′, c, m) where p is a process
where state change occurs, s and s′ are correspondingly states before and

18

p
ro

ce
ss

p
1

p
ro

ce
ss

p
2

p
ro

ce
ss

p
3

e
p1

1

e
p1

2

e
p1

3

e
p2

1

e
p2

2

e
p3

1

m1

m2

s
p2

1

s
p2

2

s
p2

3

s
p3

1

s
p3

2

S ′

Figure 3.2: Events, process states and messages

after the event, m is a message sent to or received from channel c. Message
and channel may have a special value null meaning no message is sent or
received in the event. Event is legal if it is defined by the algorithm of the
running process.

Chandy in his article [17] does not discuss whether more than one event
is legal from the same state as his algorithm is used in checkpoint based
rollback-recovery and his proofs are correct in both cases. Transitions to
different states mean that data or code position of the process differ after the
event which may result from gettime() system call, incoming channel polling
or any other non-deterministic event. We assume that there may exist several
legal transitions from the same process state, but for the simplicity we can
ignore this issue until the discussion of early messages (3.1.4).

3.1.2 Global time and state

Processes do not share global clock and there is no unique way to order events
of all processes. There are two rules that must be obeyed:

1. events within single process p have fixed ordering Ep

2. if event es is message m′ send and event er is this message m′ receive
at another process then es must occur earlier in the ordering than er.

In this sense (see figure 3.2) events e
p2

1 and e
p2

2 happen after event e
p1

1 but
before e

p1

3 , the order of e
p1

2 , e
p2

1 is undefined. These two rules create partial
ordering of all events in the system.

19

Further ordering of the events is artificial and all reorderings of the events
that follow above rules are equivalent. All such reorderings can be explained
by variations in processor speeds and delays in message delivery. Imaginary
physical global clock or logical clock from [18] can be used to define order

of all events in the system Eg = (e
π(i)
i). The latter may be useful in the

algorithms like distributed shared mutex handling, but we use the former
one further as more natural from human perspective.

Global state Si is a set of the states of all processes and all channels in
the system at some fixed time point i defined by a global clock. Global state
S ′ on figure 3.2 consists of process states s

p1

3 , s
p2

3 , s
p3

1 and one channel state
(m2) (other channels are empty).

Using Eg, the definition of sequence of the global states (Si|i >= 1) is
straightforward. One such sequence (Si) is shown on figure 3.3 which was
defined by the event sequence (ep1

1 , e
p2

1 , e
p3

1 , e
p1

2 , e
p2

2 , e
p1

3).

p
1

p
2

p
3

e
p1

1

e
p1

2

e
p1

3

e
p2

1

e
p2

2

e
p3

1m1

m2

s
p2

1

s
p2

2

s
p2

3

s
p3

1

s
p3

2

S1

S2

S3

S4

S5

S6

S7

Figure 3.3: Global states

3.1.3 Consistent global states

Note that global state S ′ from figure 3.2 does not appear within mentioned
sequence, although the global computation is the same except event e

p3

1 ap-
pears at different global time. If process p3 starts saving its local state later
than other two processes then S ′ may be saved as a global checkpoint.

Similarly, if sender’s local state is saved later than receiver’s (see figure
3.4) then all six messages sent between those actions must be saved as the
channel state, although there were at maximum two messages on the channel
at a time. We can justify that state by assuming that message delivery takes

20

longer than in the original computation, so message receipts will be shifted
up the time axis.

p
1

p
2

e
p1

1

e
p1

2

e
p1

3

e
p1

4

e
p1

5

e
p1

6

e
p2

1

e
p2

2

e
p2

3

e
p2

4

e
p2

5

e
p2

6

m1

m2

m3

m4

m5

m6S

Figure 3.4: Channel state

Any global state that is potentially possible in the computation is mean-
ingful and such states are called consistent.

3.1.4 Late and early messages

The messages that in global state appear as sent but not received (see figure
3.5a) are called late, and sometimes referred to as in-flight messages. Such
situation is legal and messages are saved as channel state.

The messages that marked as not sent but received (see figure 3.5b) are
called early. Such global state is not possible in normal execution and early
messages are sometimes called inconsistent.

a) b)

p
1

p
2

e
p1

1

e
p2

1
mlate

p
1

p
2

e
p1

1

e
p2

1

mearlynon-det

Figure 3.5: Late and early messages

The question arises if early messages can be saved as already received and
then suppressed on the sender side after state recovery. This way it would

21

be possible to store and replay inconsistent global states. If an early message
is not resent after recovery because non-deterministic events in the sender
(see figure 3.5b, non-det section) behave differently than before taking the
checkpoint then the whole application state becomes illegal. Therefore, to
use global checkpoint with early messages it must be assured that all early
messages saved with the checkpoint are resent after recovery.

3.1.5 Piecewise determinism

Piecewise determinism (PWD) divides a process into deterministic execution
sections with non-deterministic events between them. By logging and re-
playing these events, deterministic execution section can be extended. This
allows to exactly predict execution of the algorithm from the start to the end
of the section.

The very important feature of such section is that its output to the ex-
ternal world (console, other processes, network) is fully determined by the
starting state. In the previous section we showed that this feature is needed
to introduce early messages into consistent global state.

3.1.6 Domino effect

On figure 3.6 two processes are shown each having taken 3 local checkpoints
with x

pi

0 being initial state. If processes do not rely on the piecewise deter-
minism then as shown before early messages must not exist in the system.
Now, if process p1 fails and must be rolled back to the checkpoint x

p1

2 , mes-
sage m5 is unsent and p2 must be rolled back to the checkpoint x

p2

2 . This
in turn causes message m4 to be unsent and now process p1 must be rolled
back further to the checkpoint x

p1

1 . This is called rollback propagation and
continues until there are no early messages in the system (here both pro-
cesses reach their initial state). The phenomenon is most often referred to
as domino effect in literature.

Set of all process and channel states where rollback propagation stops is
called recovery line.

22

p1

p2

m1

m2
m3

m4
m5

x
p1

0 x
p1

1 x
p1

2

x
p2

0 x
p2

1 x
p2

2

Figure 3.6: Domino effect

3.1.7 Piggybacking

Many algorithms add information to outgoing messages which is read and
interpreted by the receiver of the message. This technique is called piggy-
backing. The information may contain logical clock value, information about
sender state or even information updating some distributed data structure.

If communication channels are reliable and preserve order of messages,
piggybacking may be replaced by the second message which is sent just before
or after the original message.

3.2 Checkpoint based

Checkpoint based rollback-recovery relies only on checkpoints of processes
and channels and does not use assumptions about PWD.

Different techniques of checkpoint based rollback-recovery differ in the
way they solve rollback propagation problem. Uncoordinated checkpointing
does not make any steps to avoid it, coordinated checkpointing ensures that
every global snapshot is consistent and communication-induced checkpointing
ensures that recovery line progresses with local checkpoints.

3.2.1 Uncoordinated checkpointing

With uncoordinated checkpointing every process decides when to take local
checkpoint independently from the others. This allows to avoid any synchro-
nization steps and also to minimize the size of a local checkpoint by taking
it when program data set is minimal. The disadvantage of such approach is

23

the possibility of the domino effect. Another problem is determining recovery
line which must be done during rollback-recovery. In addition several check-
points must be maintained for each process because it is not known which of
them belongs to recovery line. Periodic algorithm should be used to update
recovery line and reclaim unneeded checkpoints.

This approach is not very useful, especially for the algorithms with in-
tensive inter-process communication, because probability of early messages is
high. It becomes more valuable with addition of message logging in log-based
checkpointing (see section 3.3).

3.2.2 Coordinated checkpointing

With coordinated checkpointing all processes synchronize their activity to
take one consistent global checkpoint.

It can be further divided into blocking and non-blocking coordinated check-
pointing. The blocking approach stops all communications and ensures that
all channels are empty then saves local checkpoints of every process. By do-
ing that it ensures that there are no early or late messages in the system and
the set of local checkpoints is complete. The non-blocking approach takes
global checkpoint while at the same allowing application to run.

Blocking algorithm is often implemented in MPI libraries and supercom-
puters because it is the simplest approach to coordinate local checkpoints.

Chandy-Lamport algorithm One of the most referred non-blocking al-
gorithm is presented next. Chandy-Lamport algorithm uses model presented
in 3.1.1 and is a classical checkpoint based rollback-recovery algorithm. It
uses one additional message type — marker message — that can be distin-
guished from application messages. Special control channels between pro-
cesses may be used for the instruction to start checkpointing.

State saving activity starts by initiator process or by external instruction
to one or more processes. It is necessary to deliver initiating instruction
through control channels to any process which by some reason avoids normal
communication.

After a process takes local checkpoint, it:

• sends a marker message to all outgoing channels before sending any
other messages;

24

• starts recording messages of all incoming channels as corresponding
channel state.

When a process receives a marker message from any channel:

• if process state is not saved then takes local checkpoint (with mentioned
additional actions) and finishes saving state from the channel where
marker was observed (saves this channel state as empty);

• if process state is already saved then stops recording this channel’s
messages (saves all messages recorded from this channel as channel
state).

After all process and channel states are saved they compose one consistent
global checkpoint. Consistency is achieved by ensuring that local process
state is saved before receiving any further messages after the marker message.

During recovery, saved channel messages are resent or gathered at the
receiver side and ready to be processed. This changes the delivery time of
the saved messages and due to non-deterministic events may cause different
result of the application after recovery. Nevertheless, recovered state is still
legal because message delivery times and processor speeds are not fixed in
the model and can be adjusted to justify new state.

3.2.3 Communication-induced checkpointing

Communication-induced approach is a trade-off between coordinated and un-
coordinated checkpointing. Additional checkpoint dependency information is
exchanged between processes by piggybacking it on the messages and some
dependency graph may be constructed, tracked and analyzed. As the re-
sult taking of local checkpoints may be forced to ensure that recovery line
progresses with the new checkpoints.

3.3 Log-based

Log-based rollback-recovery relies on PWD in addition to checkpoints to han-
dle early messages. During normal run all non-deterministic events are logged
and then replayed during recovery of the process. Three approaches exist that
differ in how strictly they ensure that current computation state is achievable

25

during recovery. Pessimistic logging commits every non-deterministic event
log before allowing it to affect the computation, optimistic logging commits
log asynchronously and rolls back state if latest events are not recoverable,
causal logging uses quite sophisticated logging algorithm to ensure recover-
ability of the current state.

The main advantage of the log-based rollback-recovery is possibility to
recover failed processes without touching other processes. The drawback is
the overhead related to non-deterministic event logging.

3.3.1 Pessimistic logging

Pessimistic logging assumes that failure may occur after every non-deterministic
event (pessimistic assumption) and therefore considers event and log write
as an atomic action. Such synchronization of every event with the log may
result in poor performance, but the system is fully recoverable at any time.

3.3.2 Optimistic logging

Optimistic logging stores recent logs in the volatile memory and periodically
flushes them to stable storage. This results in better performance but may
require more processes to rollback because of lost logs.

3.3.3 Causal logging

This is trade-off between reliability of the pessimistic logging and synchro-
nization free execution of optimistic logging. For more detailed description
of this and other algorithms the survey [16] of the rollback-recovery protocols
can be explored.

26

Chapter 4

Solution for FORTRAN 90 and

MPI

This chapter introduces one approach to implement fault tolerance feature
for parallel programs written in FORTRAN 90 programming language and
using MPI system for communication. First section describes motivation and
requirements, second section proceeds with the description of the algorithm
and third section brings out implementation problems and details.

4.1 Choice of the techniques

One of the motivations for this work was need to add fault tolerance feature
to the DOUG package [1]. DOUG is a parallel iterative linear solver with
two-level preconditioners based on geometric and aggregation methods. First
version of this project written in FORTRAN 77 was started at University of
Bath [19] and a new version is developed in cowork with University of Tartu.
The new version of DOUG is written in FORTRAN 90 and uses MPI library
for communication. It is tested with several FORTRAN compilers and MPI
implementations.

4.1.1 Requirements

DOUG is not intended for one particular cluster or supercomputer but should
run on any available installation in GRID environment. Because of that most

27

requirements to the fault tolerant DOUG are there to keep it’s portability.
Here we give list of the requirements to the system:

• has impact on application performance

• compiles with any FORTRAN 90 compiler (anycomp)

• works with many MPI implementations (anympi)

• is OS/system independent (anysys)

• does not require special extensions to the standard installations (kernel
modules, extended systems) (noext)

• is transparent to the user (transp)

• does not need the source code (nosource).

The results of previous attempts to the fault tolerance for scientific com-
puting show that any carefully designed backward fault tolerant implemen-
tation gives no more than ten percent drop in application speed, although
SLC gives some better performance during run-time than ALC. So we ignore
the performance impact and use other requirements to select the technique.

4.1.2 Checkpointing mechanism

Checkpointing mechanism defines how checkpoints are taken and as the vari-
ety of available systems is tremendous with each having different versions and
extensions, good choice of checkpointing mechanism is of high importance.

Here we consider following candidates:

• SLC in kernel mode (SLCk)

• SLC in user mode (SLCu)

• ALC with manually inserted code (ALCm)

• automated ALC with compiler inserted code (AALCc)

• automated ALC with precompiler generated code (AALCg).

28

Any SLC technique is compiler independent because it manipulates sys-
tem library calls or kernel internals. Within ALC techniques only compiler
driven fault tolerance is not acceptable, others should work with any com-
piler.

MPI lies between application and system holding all the information
about messages and their delivery status. MPI layer should track all late
and early messages and decide when local checkpoints must be taken. Mak-
ing fault tolerance MPI implementation independent without extending MPI
interface is arguably the most difficult problem.

MPI implementations usually support one particular SLC solution to
make checkpoint of the library and application at once. They also often
provide callback for the application to handle ALC based checkpoints. Be-
cause none of the SLC implementations support socket checkpointing there is
no truly independent solution. But there exists an ALC solution [13] which
builds a layer on top of MPI and tracks any sent or received messages. As
most widely used MPI implementations gradually extend list of supported
SLCs and implementing a coordination layer is quite complicated we do not
favor any of these solutions.

SLCk is always built into particular operating system, SLCu solutions
largely use OS dependent mechanisms, all ALC solutions are mostly OS
independent.

SLCk requires special modules or even patch to the operating system,
SLCu may be statically linked into application but often needs special ex-
tensions for MPI to work. ALC does not rely on any extensions during
run-time, although this makes ALC solutions more complicated.

All solutions except ALCm are transparent to the user, although all of
them limit what user can use in the program. SLCk requires no original code,
SLCu may require object files to link it’s library, all ALC solutions require
source code of the application. The last requirement is one of the reasons
why there is more effort toward SLC than ALC.

Table 4.1 lists all requirements and possible techniques with evaluation
and importance for the DOUG project. Despite that evaluation and impor-
tance values are quite artificial, it nevertheless shows that AALCg may be
the best solution for DOUG.

29

SLCk SLCu ALC AALCc AALCg importance (0-3)
anycomp + + + - + 3

anympi 3
anysys - - + + + 2
noext - - . . . 2

transp + + - + + 3
nosource + . - - - 0

2 2 2 2 8

Table 4.1: Evaluation of checkpointing mechanisms

4.1.3 Checkpointing protocol

When choosing checkpointing protocols we primarily consider DOUG re-
quirements. DOUG as a parallel iterative solver has quite intensive commu-
nication between processes during the whole computation. Considering this
any log-based protocol may cause too large overhead when saving application
messages. As it also supposed to be run on tenths or hundreds of nodes any
blocking feature is undesirable.

Any version of non-blocking checkpoint based protocol is a good solution
for the fault tolerance feature of DOUG. But as was mentioned in the previous
section ALC based solutions that do not rely on special MPI implementations
may have major problems with coordinating local checkpoints, so we let
existing solutions of checkpointing mechanism to dictate on the choice of
checkpointing protocol.

4.1.4 Summary

Having evaluated all possible techniques AALC with source code generation
and a variant of non-blocking coordinated checkpointing protocol were cho-
sen. This should give enough portability to run on almost any available
cluster.

4.2 Algorithm description

The algorithm is presented using FORTRAN 90 language terms and syntax,
but the same ideas have been applied for other languages [13] in the past.

30

Fault tolerance is achieved by inserting special code sections around a
number of subroutine calls and modules. Insertions are done by the source-
to-source compiler (precompiler) which reads original source code, finds lo-
cations where the code must be inserted and generates new source files with
fault tolerance functionality woven into them. These new source files are then
compiled and run as usual, except checkpointing library must be additionally
linked to them.

Programmer of the application decides where local checkpoints should be
taken and places annotations (special comments) into those locations. The
command to start checkpointing may come from several sources: by signal,
received from control channel or triggered by a piggybacked information of
the message from another processor. Wherever that command is received
checkpoint of the local state may only be taken at the annotated locations, so
the process continues execution until reaching potential checkpoint location.

As this is a coordinated checkpoint based algorithm all processes cooper-
ate to take one global consistent checkpoint. The whole execution is divided
into epochs with new epoch starting after local checkpoint is taken. Epochs
are sequentially numbered starting at 1 and epoch numbers of two processes
may not differ more than 1 (see figure 4.1). Dashed ellipse marks the pro-
cedure of saving global state which is described in more detail in 4.2.2. The
transitions of the processes to the epoch 2 happen by saving their local check-
points (xp1

1 , x
p2

1 , x
p3

1) and transitions to a new epoch may not start until global
state is saved.

p1

p2

p3

x
p1

0 x
p1

1 x
p1

2

x
p2

0 x
p2

1 x
p2

2

x
p3

0 x
p3

1 x
p3

2

epoch 1 epoch 2 epoch 3

Figure 4.1: Epochs

The current epoch number cpr epoch and other information about the

31

progress of the checkpointing is stored in additional FORTRAN module
cpr m.

The next two sections describe procedures of saving local state and coor-
dination algorithm to save consistent global checkpoint.

4.2.1 Saving process state

Saving of process state is started at one of annotated locations marked by
FORTRAN comment !!CPR potentialcheckpoint. This location is found
by source-to-source compiler and instrumented with the conditional checking
for the need of starting new checkpoint.

As there is no simple way to save stack in FORTRAN, algorithm uses one
of two known techniques — it first collapses the stack by gradually exiting
from subroutines and has a chance to save all local variables then it restores
the original stack back by entering exactly the same subroutines. These two
phases are called correspondingly save and restore, the third phase called
recover being almost identical to the restore phase is used when process is
rolled back because of a failure and restored from the latest saved checkpoint.

The following FORTRAN code is inserted after every potential checkpoint
location and the last if block is inserted after every subroutine call that may
be involved in stack collapse/extend procedure.

!!CPR potentialcheckpoint

1 if(cpr_state==CPRS_RESTORE .OR. cpr_state==CPRS_RECOVER) then

call cpr_setState(CPRS_NORMAL)

end if

if(cpr_state==CPRS_NORMAL .AND. cpr_docheckpoint) then

cpr_docheckpoint = .FALSE.

call cpr_setState(CPRS_SAVE)

end if

! Save state and exit from the call

if(cpr_state==CPRS_SAVE) then

call cpr_saveLabel(1)

call cpr_save(r)

call cpr_save(rho)

...

call cpr_save(alpha)

32

return

end if

The first if block finishes and the second if block starts saving the local state.
The third if block saves local variables and exits function call (i.e. stack
collapse).

Variable cpr state tracks the phase of collapsing (CPRS SAVE) or ex-
tending (CPRS RESTORE or CPRS RECOVER) stack and has the value
CPRS NORMAL during normal execution. When an external command to
take new checkpoint comes the cpr docheckpoint logical variable is set to
true.

Application position

When exiting subroutine call the exact location must be remembered, so
it can be restored during restore/recovery phase. This is done by placing
unique label before the call and saves this label after returning from the call
if the stack is collapsing.

3 par_x = Kaasgradientide_meetod(par_A,par_y,eps,it)

! is stack collapsing

if(cpr_state==CPRS_SAVE) then

call cpr_saveLabel(3)

...

return

endif

When entering subroutine containing above code and stack is extending
then the saved label must be inspected and execution transferred directly
to the saved location. The following code fragment is inserted just in the
beginning of a subroutine.

! is stack extending

if(cpr_state==CPRS_RESTORE.or.cpr_state==CPRS_RECOVER) then

...

call cpr_restoreLabel(lcpr_label)

select case (lcpr_label)

case(1); goto 1

case(2); goto 2

33

case(3); goto 3

end select

end if

This continues until the original !!CPR potentialcheckpoint is reached.

Loop constructs Special care must be taken when jumping into loop con-
structs (while, for), because due to compiler optimizations it may cause in-
correct execution. This problem may be avoided by jumping to the loop
construct, entering the loop and jumping further to the desired location.

Application data

Local variables are saved and restored exactly at the same locations as the
labels: saved (i) after an annotation and (ii) after a subroutine call, restored
(iii) at the beginning of a subroutine. Variables are not saved by their name
but in fixed order, so they must be restored in reverse order.

Subroutine parameters in FORTRAN have in, out or inout attributes
attached to them meaning correspondingly that the value of the parameter
is passed to the subroutine, returned from the subroutine or both. By the
semantics it is necessary to save out and inout parameters, but because
many FORTRAN compilers pass parameters by reference it is often possible
to ignore parameters at all.

Global and module variables are saved when stack is fully collapsed and
main function is reached. They are restored only when the process state is
recovered because of the failure, otherwise they are not touched.

Pointers Saving and restoring pointers may be tricky in any language. In
addition FORTRAN also has allocatable variables which is some analogue of
a pointer but dynamic memory of an allocatable variable must be freed as
soon as execution exits the subroutine where the variable is declared. As
a simplification our code only tracks pointers that hold references to the
allocated dynamic memory regions, in other words it does not handle case
when pointer is assigned to an already existing memory location.

When pointer to an array is saved, lower and upper bounds of the array
must be saved. If the pointer is not associated with dynamic memory 1 and
-1 are saved as array bounds.

34

if(associated(so_reg)) then

call cpr_save(so_reg)

call cpr_save(lbound(so_reg))

call cpr_save(ubound(so_reg))

else

call cpr_save(1)

call cpr_save(-1)

endif

To restore a dynamically allocated array referenced by pointer its upper
and lower bounds are read and the size of the array says if the pointer was
associated during checkpointing.

call cpr_restore(lcpr_ubound)

call cpr_restore(lcpr_lbound)

lcpr_size = lcpr_ubound+1-lcpr_lbound

if(lcpr_size>=0) then

if(cpr_state==CPRS_RECOVER) allocate(so_reg(lcpr_lbound:lcpr_ubound))

call cpr_restore(so_reg)

else

nullify(so_reg)

endif

Derived types For every user defined type a special procedure is generated
that goes through all its elements and saves them as usual. Here is the
example of saving par sparse m derived type.

subroutine cpr_save_par_sparse_mD0(t)

use cpr_m

integer :: lcpr_label, lcpr_size, lcpr_lbound, lcpr_ubound

type(par_sparse_m),intent(in) :: t

call cpr_save(t%siseyhendusi)

call cpr_save(t%variyhendusi)

call cpr_save(t%sise_mat)

call cpr_save(t%vari_mat)

end subroutine cpr_save_par_sparse_mD0

35

4.2.2 Saving MPI state

This section describes how MPI state is tracked and checkpointed, presented
algorithm closely follows the ideas from [20]. A special coordination layer
is inserted between application and MPI library (see figure 4.2) which in-
tercepts all MPI calls. This is done by the same source-to-source compiler
which replaces original MPI calls with the delegating method calls. The co-
ordination layer recognizes different MPI calls and takes specific actions to
track logical state of MPI library.

MPI layer

Coordination layer

Application

MPI layer

Coordination layer

Application

Figure 4.2: Layer stack

High level description of the algorithm

This algorithm is a variation of the Chandy-Lamport algorithm described
in 3.2.2. There are 3 modes for each process during global state check-
pointing (see figure 4.3): normal, non-deterministic logging (non-det) and
late-message capture (late-capture).

Tuple (tag, comm, source, target) consisting of MPI tag, MPI communi-
cator, sender and receiver identities defines a separate channel between two
processes. By the Chandy-Lamport, to capture state of the channel we need
to send special marker message to every channel and reception on the other
side marks where the channel state ends. Unfortunately, it is not a very good
solution for MPI: (i) tag is an integer value which makes number of possible
channels very large, (ii) recognizing special message on the channel can be
an unresolvable problem in MPI, at least there is no obvious solution. It
is possible to use piggybacking on every message to overcome this problem
— we add epoch number from which message was sent. For example, on

36

figure 4.3 the message mlate has number n piggybacked on it which tells re-
ceiver that it is a late message. Late messages must be locally saved into the
late-message-registry within checkpoint as the corresponding channel state.

p1

p2

p3

x
p1

n+1

x
p2

n+1

x
p3

n+1

mlate

mearly

mlate2 mintra2

mintra

mintra3

mintra4

normal non − det late − capture

epoch n epoch n + 1

Figure 4.3: Allowed messages

Handling early messages One substantial difference between SLC and
ALC is that we cannot force checkpoint in ALC, it can only be taken at
predefined code locations. This means that early message (mearly) must
be received without first taking local checkpoint as expected by Chandy-
Lamport algorithm. This makes early messages possible and we must rely
on PWD and save non-deterministic events. This mode is showed as non-det
on the figure 4.3 and must continue until all processes save their local state
and this information reaches a process. This transition is shown by a triangle
on the figure.

In addition to any application internal non-deterministic event source
there are 2 more sources related to MPI:

• MPI Recv subroutine call with ANY SOURCE or ANY TAG parameters

• MPI Test subroutine call (message polling).

In the first case process saves actual source and tag of the received mes-
sage into nondet-event-registry and then substitutes these values during re-
covery before looking into late-message-registry (for mlate) or calling actual
MPI Recv (for mintra). In the second case the process must save how many

37

times MPI Test call has been invoked and what values were returned in each
call, and then replay it during recovery.

The receiver of an early message must save its identity in early-message-
registry and during recovery the sender should use this information to sup-
press the message. The identity may be the message channel and a sequence
number of the message sent to that channel in that epoch. It is, actually,
sufficient to hold the number of messages that must be suppressed for every
channel.

This mode completes when all processes save their local state because
it makes new early messages impossible. Every process informs the master
process when it saves local state. When the master knows that every process
has finished saving local state it broadcasts that information through the
control channel.

There is another subtle problem here, note that the only disallowed mes-
sage is the one sent from late-capture mode and received in non-det mode.
Such message would be sent from non-deterministic region and received in
deterministic one. It may occur that after a recovery the message is not
resent and deterministic region will not receive the message its further de-
termined execution relies on. The mode may be piggybacked on the message
and if the sender has stopped logging non-deterministic events the receiver
must do the same. This is intuitive as it means that sender knows every
process has taken local checkpoint and it is now made known to the receiver.

Capturing late messages To finish checkpoint a process must capture
all late messages (we assume that every sent message will be received), then
it can save the checkpoint and leave late-capture mode. The process keeps
count of messages sent to and received from every process in current epoch
and the number of early messages received from every process. Number of
early messages must be added to the next epoch receive count.

When a process takes local checkpoint it informs other processes about
the number of sent messages during the previous epoch. The difference of
sent and receive counts is the number of late messages to receive.

Recovery mode When process is recovered from a checkpoint it uses early-
message-registry to suppress sending early messages, nondet-event-registry to
replay non-deterministic events, including MPI Recv calls with ANY TAG or
ANY SOURCE values, and late-message-registry to get data of the late messages.

38

When all three registries are empty a process may proceed to normal
mode.

Point to point communication

Here is pseudo code of how MPI wrappers for point to point communication
should look like. It follows the rules given in previous sections. First, check-
ControlChannel() checks if any control messages have arrived that inform
about the need to start taking checkpoint or the end of non-det mode.

The wrapper subroutine (see 4.1) CPR MPI Send only has to track early
messages in recovery mode that must be suppressed. If another sent message
makes all 3 registries empty then recovery mode finishes.

Code 4.1 MPI Send wrapper

CPR_MPI_Send(data,comm,tag,target)

! check control channel for state transitions

checkControlChannel()

source = me

channel = (tag,comm,source,target)

! supress early messages

if(mode==recover)

if(early-message-registry[channel]>0)

early-message-registry[channel]--

if(registries are empty)

mode=normal

return MPI_SUCCESS

MPI_Send() with piggybacked (epoch,mode)

sent-count[target]++

The CPR MPI Recv wrapper (see 4.2) in recovery mode must replay non-
deterministic receive events and grab messages from the saved input channel
until it is empty. If all three registries are empty then recovery mode is over.
When a new message is received and it appears to be late or early message
then corresponding registry must be updated. The last condition ensures

39

that if the message says that sender has stopped logging non-deterministic
events then receiver must also stop this.

It is also possible to extend above algorithm to use non-blocking and
collective MPI communications as described in [20].

Collective communication

Collective MPI operations may cross recovery line as shown on the figure
4.4. Consider situation given for MPI Allgather collective operation: process
p1 takes local checkpoint before MPI Allgather call while processes p2 and
p3 do the opposite. This is possible not only because collective operation
does not have to be blocking but taking local checkpoint is also non-blocking
operation.

The problem is that unlike others, process p1 invokes collective operation
after recovery which leads to incorrect state. The process p1 should save
gathered data into checkpoint and return it without calling actual collec-
tive operation during recovery. For better understanding, collective opera-
tion may be viewed as sendreceive operation on a separate channel (comm,
COLLECTIVE TAG). This requires process p1 to save/substitute late data from
other processes and remember/suppress early data to other processes.

p1

p2

p3MPI Allgather

normal non − det late − capture

Figure 4.4: Collective communication

Notice that transition line from non-det mode to late-capture mode must
not be crossed by collective communication exactly for the same reason as
early messages. So they must inform others if some of them stopped logging
non-deterministic events. It may be more tricky to piggyback that data

40

Code 4.2 MPI Recv wrapper

CPR_MPI_Recv(data,comm,source)

! check control for state transitions

checkControlChannel()

! determine channel (i.e. replay this non-det event)

if(mode==recover)

if(tag or comm are undefined)

tag,comm = next(nondet-event-registry[

(INDETERMINATE-CHANNEL, me)])

if(registries are empty)

mode=normal

target = me

channel = (tag,comm,source,target)

! substitute late message

if(mode==recover)

if(late-message-registry[channel] not empty)

data = next(late-message-registry[channel])

if(registries are empty)

mode=normal

return data

MPI_Recv() read piggybacked (r_epoch,r_mode)

isEarly = r_epoch>epoch

isLate = r_epoch<epoch

if(isEarly)

early-received-count[source]++

early-message-registry[channel]++

elseif(isLate)

late-received-count[source]++

add message to late-message-registry[channel]

if(late-received-count==expected-late-count)

mode=normal

else

received-count[source]++

if(mode==nondet and r_mode!=nondet)

mode=normal

41

on collective operation, so before every collective operation all concerning
processes exchange their epochs and modes by executing MPI Allgather with
these values.

Non-blocking communication

Non-blocking send and receive operations are shown on figure 4.5. The ques-
tion is if operation ISend or Wait should be considered as message send
event. The process must not access the buffer passed to ISend until Wait
returns nor knows it anything about the message during this period, so the
message is considered in-flight after MPI ISend returns. We may look at it
from the other point — any data that gets passed into the message must be
defined before the MPI ISend call and following non-deterministic events or
just calculations do not affect the message.

The behavior of MPI IRecv is the opposite — message gets only known
to the process when MPI Wait returns, so data in the message may not
influence application execution before the MPI Wait call.

p1

p2
ISend

Recv

m1

Wait Send

WaitIRecv

m2

Figure 4.5: Non-blocking communication

If non-blocking operation initiation appears in one epoch and MPI Wait
in the next epoch then special care must be taken of requests’ information,
because MPI state is not checkpointed and these requests will be unknown
to the MPI layer after recovery. For every created request, all its information
necessary to restore it after a recovery is duplicated in coordination layer and
saved with the checkpoint.

There exists a problem with non-blocking communication and stack col-
lapsing. Some memory may be temporary deallocated during this process
which may occur to be a communication buffer.

42

MPI objects

MPI datatypes, communication channels and groups may be handled by
remembering all the operations on them during original execution and then
replaying it on recovery. This way coordination layer holds copy of all created
datatypes, channels and groups within itself, saves them into checkpoint and
then recreates them after reading the checkpoint.

4.3 Implementation details

The project is written mostly in Java programming language with some C
and FORTRAN code.

4.3.1 FORTRAN parser

For FORTRAN 90 parser and code generator ANTLR[21] tool was used to-
gether with FORTRAN 90 grammar taken from Eclipse PTP[22] subproject.
At the time of writing ANTLR project was in beta version and PTP FOR-
TRAN parser only handled recognition of language tokens.

Application extends given versions of frameworks by building partial syn-
tax tree and some analysis of FORTRAN source code. Then original source
files are modified with the StringTemplate engine[23] by inserting checkpoint-
ing code into calculated locations.

Because ANTLR was not ready and PTP FORTRAN parser was in a
very early stage it has occurred that application supports quite limited set of
FORTRAN syntax. It does not handle FORTRAN labels and some specific
constructs.

4.3.2 Coordination layer

Implementing a fully featured coordination layer appeared to be a hard task.
To save time and achieve the results, only MPI features needed for the “proof
of concept” and performance tests were implemented in the coordination
layer. This does not include most of the collective routines, communicators,
groups and derived types.

43

4.4 Performance tests

For the tests, a FORTRAN 90 implementation of CG (conjugate gradient)
algorithm was used. The CG method is a simple iterative parallel solver for
linear equations and it has the same behavior and communication pattern as
DOUG.

4.4.1 Test algorithm

The main part of the algorithm consists of the iterations with varying point
to point and collective communication calls. During point to point com-
munication every process sends messages (several kilobytes each) to about
three other processes. The collective communication sums one floating point
value of every process and delivers the result to all processes (MPI Allreduce).
The starting snippet of the CG iteration code was instrumented with !!CPR

potentialcheckpoint comment and new set of source files were generated.

The Laplacian matrix with 90000 unknowns was generated for the algo-
rithm containing about 450000 non-zero values. Total number of iterations
was over 1000 to solve the problem with 10−11 precision.

4.4.2 Test setup

The application was developed on a single machine with gfortran 4.1.2 com-
piler and OpenMPI 1.1 implementation of MPI. Later, the performance tests
were run on a cluster consisting of eight 1000MHz Dual Core AMD Opteron
processors. The cluster runs GNU/Linux operating system, has Intel For-
tran 9.1 compiler and LAM/MPI 7.1.2 implementation of MPI installed. No
source changes to the application were needed to run with different com-
piler and MPI library. All checkpoints were saved to and restored from the
mounted NFS tree.

The CG algorithm was run in six modes

1. original CG (Original)

2. generated CG with only application data checkpointing code, MPI calls
were left unchanged (+Data)

44

3. generated CG with only application data checkpointing code and in-
strumented MPI point to point communication calls (MPI Send, MPI Recv,
MPI ISend, MPI IRecv, MPI Wait), MPI collective communication calls
were left unchanged (+Point to point)

4. generated CG with all functionality but without taking checkpoints
(+Collectives)

5. generated CG with all functionality and taking single checkpoint (+Check-
point)

6. restoring from the saved checkpoint (Restore).

All modes were run with 1, 4, 9 and 16 processors 5 times and run times
of the algorithm were recorded. The highest and lowest times were ignored
and mean of 3 other values was taken. The recovery mode does not have
timings recorded because they are meaningless — gettime() function call was
not instrumented and the resulting run time was generally the time between
two executions of the algorithm. All modes worked without errors and gave
correct answers.

4.4.3 Test results

Table 4.2 presents mean values of run times given in seconds and ratio coeffi-
cients to the original code execution time. The time intervals were measured
by MPI Wtime calls and synchronized with MPI Barrier calls, so they do not
include start up time of CG application and MPI environment. The total
size of the saved global checkpoint for each case is given in the last row.

The results show that there is no substantial difference until collective
communication is wrapped by the the coordination layer. The problem is that
it requires additional MPI Allgather call for every collective MPI operation
to collect remote epoch numbers. This approach is very inefficient when
number of processors gets high.

The overhead from saving the program state is noticeable although not
large. Two major factors may affect the result:

• process is stalled when taking local checkpoint (copy-on-write helps
with SLC solutions)

45

mode/processors 1 4 9 16

Original 13.42 5.62 4.01 4.45

1 1 1 1

+Data 13.2 5.33 4.41 4.76

0.98 0.95 1.1 1.07

+Point to point 12.31 5.16 4.51 4.76

0.91 0.92 1.12 1.07

+Collectives 12.26 5.54 4.97 10.25

0.93 0.99 1.24 2.3

+Checkpoint 12.99 5.36 6.55 10.91

0.97 0.95 1.63 2.45

Restore OK OK OK OK

Size 21M
1x12.4M+
3x3.2M

1x10.7M+
8x1.6M

1x10M+
15x1.08M

Table 4.2: Performance test results

• simultaneous checkpoint transfers over the network may overload it,
so both state capture speed and basic algorithm communications are
affected.

Tests with larger input data, more processors and longer run time should
clear if the overhead resulting from checkpoint data transfer is noticeable.

46

Chapter 5

Conclusion and future plans

Using the overview given in the first three chapters of this work we found that
automated application-level checkpointing could be the best fault tolerance
solution for scientific applications with available source code. As a result we
have implemented and tested a proof of concept solution for FORTRAN 90
programs that use MPI.

This chapter summarizes fault tolerance techniques and the effort made
toward automated application-level checkpointing. It also presents some
ideas of why it is difficult to implement fault tolerance and what can be
done to improve the situation.

5.1 Conclusions for AALC effort

Implementing AALC with a layer over MPI is a challenging task which re-
quires much effort in designing and tuning the coordination layer and has
many hidden obstacles. The performance issues must be taken seriously and
possible solutions in the coordination layer must be carefully evaluated.

Nevertheless, the proposed solution may altogether take less effort than
SLC. This is because it uses MPI standard and does not require any changes
once implemented. With the SLC the situation may be different [24]:

By far the most challenging aspect of implementing BLCR was
to keep it working as the Linux kernel continued to evolve.

We have showed that when such solution is implemented, adding check-

47

pointing functionality to the scientific application becomes easy. The result-
ing code is fully portable running on potentially any hardware and software
platform that has FORTRAN compiler and MPI implementation.

5.2 General ideas learned

While investigating the existing solutions and implementing one of them,
more general ideas about the implementation problems of fault tolerance
feature and their sources has been revealed to the author.

In forward fault tolerance the requirement of sustaining failures is highly
important and is built into the design of the system. With backward fault tol-
erance this requirement, usually, does not fit into algorithm definition nor the
specification of the subsystem where the application runs. The specification
of a protocol or a programming language is strictly narrowed to accomplish
tasks that are most desired at the moment of writing. This is reasonable
attitude because considering all potential uses during design is not feasible.
But as a result, developers have to overcome given limitations by digging
into and extending the implementation or building unnatural constructs on
top of the system.

5.2.1 Efficiency vs. abstraction

Many problems can be solved by abstracting data and operations as done
in high level languages. Efficiency is often the obstacle that keeps us from
extending the language or the system. This requirement exists with high
priority in HPC world. Nevertheless, we give some possible abstractions that
can make implementing fault tolerance much easier.

Neither of the proposed ALC techniques to save application stack is natu-
ral. If the programming language would consider stack as a first-class object
it could make state manipulation easy. With this object, saving the applica-
tion state would be much easier.

In many systems it is difficult to piggyback data on the messages. By im-
plementing unnatural solutions it causes drastic slowdown to MPI collective
communication when the application is run on many nodes. If the message
data passed to MPI would be abstracted with an object it could make pig-
gybacking much easier. This problem exists not only with MPI system but
also on other layers of communication stack [25].

48

5.3 Further development plans

No other AALC solutions for the FORTRAN language are known to the
author. As the solution promises to give highly portable fault tolerance
feature to the scientific applications it is worth developing it further. Next
steps can be taken in order to

• solve efficiency problems with MPI collective communication;

• complete FORTRAN parser or better move to the PTP project [22]
implementation if possible;

• solve problem with stack collapse causing memory given to the asyn-
chronous communication to be temporary freed;

• complete implementation by wrapping all MPI features.

The last step can be different considering there is original implementation
of the coordination layer in development[11]. It is being written for the
C language and it may reasonable to adapt FORTRAN 90 checkpointing
functionality to their implementation.

49

Resümee

Tõrketaluvus on tarkvara omadus üle elada tekkinud vead riistvaras või
suhtluskanalites. Üks informaatika valdkond, kus selline omadus on väga
tähtis, on suure jõudlusega arvutused (High Performance Computing).

Tüüpiline teadusprogramm jookseb mitu tundi, päeva või isegi nädalat.
Sellise programmi töö käigus tekkinud viga, mis põhjustab hetkeseisu tule-
muste kaotamist ja arvutuste taaskäivitamist, on väga ebameeldiv. Need
programmid töötavad tavaliselt mitme tuhande proetsessoriga superarvu-
til või arvutite klastril. Viimastel aastatel protsessorite arv superarvutites
ja klastrites järjest suureneb. See olukord teeb vea tekkimise tõenäosuse
väga suureks ja sunnib arendajaid lisada oma programmidele tõrketaluvuse
omadust.

Tänapäeval teevad GRID projektid paljude instituutide teadusarvuteid
ja arvutiklastreid avalikult kättesaadavaks. Enamus nendest süsteemidest
kasutab oma spetsiifilist tõrketaluvuse mehhanismi või üldse ei paku sellist
võimalust. Standartse tõrketaluvuse vahendi puudumine paneb arendajat
iga klaastri võimalusi uurida ja lisama vastavat koodi oma programmile.

Selle töö eesmärgiks oli uurida ja lisada DOUG[1] paketile tõrketaluvuse
omadust. DOUG on paralleelne, iteratiivne lineaarvõrrandisüsteemide la-
hendaja, mis kasutab määramispiirkonna jagamise meetodit. See pakett on
Bathi Ülikooli ja Tartu Ülikooli koostööprojekt, mis on kirjutatud FOR-
TRAN 90 programmeerimiskeeles ja kasutab MPI suhtlusteeki. Kuna DOUG
jookseb potentsiaalselt igal arvutiklastril, kuhu on installeeritud FORTRAN
90 kompilaator ja suvaline MPI teegi implementatsioon, siis oli üheks peamiseks
nõudeks säilitada porditavust.

Töö käigus sai uuritud tervet tõrkekindla tarkvara meetodite valdkonda
ja leiti sobilik lahendus probleemile. Kolmes esimeses peatükis esitatakse er-
inevatest allikatest kokku pandud tõrkekindluse pakkuvate lahenduste klassi-
fikatsioon ja nende lahenduste omadused ja töö põhiprintsiibid. Järgnevates

50

peatükides põhjustatake ühe lahenduse valik ja kirjeldatakse selle algoritmi,
implementatsiooni ja testimist. Kokkuvõttes näidati, et vajadusele vastav la-
hendus leidub, kuigi selle juures eksisteerib mitu raskesti lahendatavat prob-
leemi, mis mõjuvad halvasti programmi jõudlusele.

Selle lähenemise edasiarendusel on mõtet, kui see lahendab loetletud
probleemid. Lisaks pole esitatud lahenduse implementatsioon täiuslik —
implementeeritud FORTRAN 90 parser saab ainult osast keelesüntaksist aru
ja lahendus ei käsitle osa MPI teegi funktsionaalsusest.

51

Bibliography

[1] DOUG: Domain decomposition on unstructured grids. project home
page. http://www.dougdevel.org/. 2007-05-06.

[2] R Roman. A survey of checkpoint/restart implementations. Technical
Report LBNL-54942, Lawrence Berkeley National Laboratory, 2003.

[3] BProc: Beowulf distributed process space home page. http://bproc.

sourceforge.net/. 2007-03-31.

[4] Berkeley lab checkpoint/restart (BLCR) home page. http://ftg.lbl.
gov/CheckpointRestart/CheckpointRestart.shtml. 2007-03-31.

[5] CRAK: Linux checkpoint/restart as a kernel module. http://www.ncl.
cs.columbia.edu/research/migrate/crak.html. 2007-05-11.

[6] Arthur Goldberg, Ajei Gopal, Kong Li, Rob Strom, and David F. Bacon.
Transparent Recovery of Mach Applications. In Usenix Mach Workshop,
pages 169–183, 1990.

[7] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt:
Transparent Checkpointing under Unix. In Proceedings of USENIX
Winter1995 Technical Conference, pages 213–224, New Orleans,
Louisiana/U.S.A., January 1995.

[8] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung, and
Chandra M. R. Kintala. Checkpointing and its applications. In Sympo-
sium on Fault-Tolerant Computing, pages 22–31, 1995.

[9] Condor: High throughput computing. project home page. http://www.
cs.wisc.edu/condor/. 2007-05-01.

[10] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny.
Checkpoint and migration of UNIX processes in the Condor distributed

52

processing system. Technical Report UW-CS-TR-1346, University of
Wisconsin - Madison Computer Sciences Department, April 1997.

[11] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
application-level checkpointing of mpi programs, 2003.

[12] B. Ramkumar and V. Strumpen. Portable checkpointing for heteroge-
neous architectures. In Fault-Tolerant Computing, 1997. FTCS-27. Di-
gest of Papers., Twenty-Seventh Annual International Symposium on,
pages 58–67, Seattle, WA, USA, June 1997.

[13] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill.
C3: A System for automating Application-Level checkpointing of MPI
programs. In Languages and Compilers for Parallel Computing, volume
Volume 2958/2004, pages 357–373. Springer Berlin / Heidelberg, 2004.

[14] Chung-Chi Jim Li and W. K. Fuchs. CATCH - compiler-assisted tech-
niques for checkpointing. June 1995.

[15] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill.
Recent advances in checkpoint/recovery systems. In Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International,
April 2006.

[16] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing
systems. ACM Comput. Surv., 34(3):375–408, 2002.

[17] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determin-
ing global states of distributed systems. ACM Trans. Comput. Syst.,
3(1):63–75, 1985.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[19] M.J. Hagger. Automatic domain decomposition on unstructured grids
(DOUG). Advances in Computational Mathematics, 9(3-4):281–310,
November 1998.

[20] Martin Schulz, Greg Bronevetsky, Rohit Fernandes, Daniel Marques,
Keshav Pingali, and Paul Stodghill. Implementation and evaluation of a
scalable application-level checkpoint-recovery scheme for mpi programs.
sc, 00:38, 2004.

53

[21] ANTLR: Another tool for language recognition. home page. http://

antlr.org. 2007-05-09.

[22] PTP: Parallel tool platform. home page. http://www.eclipse.org/

ptp/. 2007-05-09.

[23] Stringtemplate engine. home page. http://www.stringtemplate.

org/. 2007-05-09.

[24] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart
(BLCR) for linux clusters. Technical Report LBNL-60520, Lawrence
Berkeley National Laboratory, 2006.

[25] Christopher Krgel and Thomas Toth. An efficient, ip based solution to
the ’logical timestamp wrapping’ problem.

54

Appendix A

CD contents

Contents of the CD are following:

• FortranCPR — source-to-source compiler that instruments FORTRAN
90 source code

– antlr-3.0b4.patch — fixes to the ANTLR 3.0b4 parser genera-
tor

– ptp-fortran.patch — patch to PTP project FORTRAN syntax
written fpr ANTLR (checkout on 15th of January 2007)

• examples — original and FortranCPR generated source files

– qsort — qsort algorithm used in FORTRAN checkpointer tests

– pcg — conjugate gradient algorithm implementation used in the
coordination layer tests

• thesis — source and PDF of this paper

55

