
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Computer Science speciality

Martin Vels

Software Tool for Validation of
Analytical HPLC Procedures

Master Thesis (30 EAP)

Supervisor: Prof. Marlon Dumas, PhD
Supervisor: Koit Herodes, PhD

Author: ... “.....” May 2013

Supervisor: ... “.....” May 2013

Supervisor: ... “.....” May 2013

Allowed to defense
Professor: ... “.....” May 2013

TARTU 2013

Abstract

There is a steady demand, both from academia and industry, for efficient and reliable
procedures to analyze various substances by means of High-Performance Liquid Chro-
matography (HPLC) equipment. To make sure these procedures are fit for the purpose
they were designed for and also as reliable and widely usable as possible, they have to
be validated against relevant validation guidelines. This validation process can be time
consuming and tedious work, which contains many steps including reading lengthy and
often general guidelines, deciding which parts of the guideline are relevant, measuring
certain characteristics, performing certain statistical calculations on the gathered data
and finally generating a validation report. As this work is done manually, it wastes a
lot of valuable time and money which could be spent on improving the actual analytical
procedure.

To alleviate the current situation a working prototype of a software tool was created
during this Master’s thesis which allows end-users to reduce time and effort needed
for analytical procedure validation. The prototype implements one specific valida-
tion guideline (The International Conference of Harmonization Harmonized Tripartite
Guideline), and allows users to create validations, enter correct values for the specific
characteristics, perform statistical calculations on the entered data and generate report
based on the previously entered data and calculations. The tool has been designed with
extensibility in mind. Specifically, additional guidelines can be added via configura-
tion files while additional input validation and report generation components can be
plugged into the tool in order to cope with additional requirements.

Extensibility is to large extent achieved by borrowing ideas from dynamic forms
specification models, which allow field visibility and form completion conditions to be
defined by at the level of individual fields or groups of fields.

As there is an actual need for the software tool that was created during this thesis, it
will be developed further by adding new validation guidelines, implementing additional
functionality and improving the overall usability of the software.

2

Contents

Acknowledgements 5

Introduction 6

1 Background and Problem Domain 8
1.1 Liquid Chromatography . 8
1.2 Validation of Analytical Procedures . 9

1.2.1 Specificity . 10
1.2.2 Accuracy . 10
1.2.3 Precision . 11
1.2.4 Detection Limit . 11
1.2.5 Quantitation Limit . 11
1.2.6 Linearity . 11
1.2.7 Range . 11
1.2.8 Robustness . 12

1.3 Scope and Requirements . 12
1.4 Roundup . 13

2 Related Work 14
2.1 Existing solutions . 14
2.2 Dynamic form generation . 14
2.3 XForms . 15

2.3.1 Document containing XForms elements 15
2.3.2 Output fields . 16
2.3.3 Required fields . 17
2.3.4 Repeated fields . 17
2.3.5 Rendering of XForms . 18

2.4 Dynamic Questionnaire Systems . 18
2.5 Roundup . 19

3 Forms and Report Definition 20
3.1 Model for defining the dynamic forms for procedure validation 20

3.1.1 Validation Type Configuration 21
3.1.2 Analytical Procedure Type Configuration 22
3.1.3 Characteristic Type Configuration 24
3.1.4 Input Field Type Configuration 25
3.1.5 Output Field Type Configuration 27

3.2 Model for defining reports . 28
3.3 Roundup . 29

3

4 Implementation 30
4.1 Software Stack . 30

4.1.1 Framework for Back-End . 30
4.1.2 Framework for Front-End . 31
4.1.3 Development Tools . 31

4.2 Architecture . 32
4.2.1 MVC . 32
4.2.2 Bundles . 33
4.2.3 ValidationController . 33
4.2.4 ShareController . 34
4.2.5 ReportController . 35

4.3 Form Generator . 35
4.3.1 Form generation . 35
4.3.2 View rendering . 36
4.3.3 Data Validation . 36
4.3.4 Data Persisting . 37

4.4 Report Generator . 37
4.5 Unit Testing . 37
4.6 User Interface . 38

4.6.1 User registration and login . 38
4.6.2 Profile modification . 38
4.6.3 Validation creation . 39
4.6.4 Characteristic data entry . 41
4.6.5 Report creation . 42

4.7 Roundup . 44

5 Conclusion and Future Work 45

Summary (in Estonian) 47

Appendix A 51
Resources . 51

Appendix B 52
Required Software . 52
Installation . 53

4

Acknowledgements

First, I would like to thank my professor, Marlon Dumas, for suggesting the idea as
well as giving me all the pointers on what direction to move. Next, I would like to
thank Koit Herodes, Karin Kipper, Riin Rebane and Anneli Kruve from Institute of
Chemistry for helping me to understand the problem domain and testing the software
tool. And last, but definitely not the least, I would like to thank my employer, Siim
Vips and my family for giving me the opportunity to work on this thesis by being
flexible and understanding.

The supervisor and domain experts involved in this Masters project have been
supported by the EU Regional Development Funds via the Estonian ICT Program.

5

Introduction

There a many different fields in industry and academia where there is a need to perform
some kind of chemical analyses. It may be analysis that tries to determine if there are
some substances present in the urine or blood of an athlete, or some analysis that
tries to measure the active substance in a drug. To be able to successfully perform
such analyses, there is a need for a certain protocol, that determines what conditions
need to be met and what steps have to be followed. This protocol is called analytical
procedure. To make such analytical procedure as widely usable and reliable as possible
it has to be validated. The aim of validation is to ascertain that the procedure is fit for
purpose, i.e. it will measure what it is meant to measure. To validate some analytical
procedure there are special guidelines available.

Many of these analyses can be done using chromatography and more precisely high-
performance liquid chromatographs (HPLC). Now, imagine a chemistry laboratory with
very expensive and high-tech equipment. In particular one with the HPLC. As you
would expect, these machines are controlled by the computers. Humans are interacting
with the equipment via some specialized software. Now that all this has been taken
care of, still a lot of manual and tedious work needs to be done by humans when it
comes to validating some analytical procedure.

First, a lengthy validation guideline has to be read to get a general idea on how
some analytical procedure has to be validated, next there is a need to measure and log
certain characteristics during the validation procedure, then there is a need to perform
certain calculations with the previously collected data to determine if some criteria
are met. And finally there is a need to produce a report, that could be attached to a
analytical procedure description, to show that it really is fit for a given purpose.

Unfortunately, all this work needs to be done manually, meaning that instead of
spending their valuable time to improve the analytical procedure itself, chemists are
doing a lot of manual labor to read the guidelines, finding what are the right character-
istics that they need to measure, log that data, perform some calculations on that data
and finally create a report by copying the previously gathered data, again manually,
to some document. If something needs to be adjusted or changed, it means that a lot
of repeated work occurs and possibility to make a mistake grows.

Solution to these problems is of course to implement a software tool that would help
chemists to reduce the amount of such manual work. The idea of the software tool was
initially posed by University of Tartu’s Institute of Chemistry (Koit Herodes). Based
on an initial vision and interviews with domain experts in this institute, an initial
high-level architecture was defined, based on two main components: one for data entry
management and one for calculations and report generation. This architecture was
later refined by specifying concrete models for dynamic form specification (for data
entry) and report generation, which are described in this thesis.

The objective for this thesis was to create a working prototype of a software tool

6

that would make the validation process of analytical procedure less time consuming
and help end-users, who might not be experts on the validation guidelines, still being
able to successfully perform such a validation task by helping the software to guide
them. This prototype is designed and built from scratch in the PHP programming lan-
guage and Symfony web-framework. Initial prototype only supports The International
Conference of Harmonization (ICH) Harmonized Tripartite Guideline [1], but is built
so that adding new guidelines will be relatively easy and every part of the application
would be extensible as easily as possible.

This thesis is divided into 5 chapters. In first chapter I give a short overview
of the problem domain and background of the analytical procedure validation. In
second chapter I will introduce an existing commercial software for analytical procedure
validation and some of the existing ideas about what has been done in the field of
dynamic form generation and dynamic questionnaires. Next, in chapter three I will
describe my models for form definitions and report generation. In chapter four, the
actual implementation of the software tool is described. Thesis is finished with the
chapter five, where conclusive thoughts are presented together with the ideas for future
work.

7

Chapter 1

Background and Problem Domain

In this chapter I will introduce the problem domain. I will give a short overview of
liquid chromatography and validation of analytical procedures.

1.1 Liquid Chromatography
Chromatography is a process that makes it possible to separate components of mixtures
from each other. This is based on the distribution of components under inspection
between two immiscible phases. These phases are called stationary phase that lies in
the column and mobile phase that is pushed through stationary phase. The components
of the sample have different affinity for the phases, thus their differential migration
causes the separation of components [5].

In liquid chromatography the mobile phase is liquid. Silica gel is used as stationary
phase support. In reversed phase liquid chromatography stationary phase is non-polar
and mobile phase is polar, usually mixture of organic solvent (e.g. methanol) with
water [5].

Columns are usually 3-25 cm in length and with internal diameter of 4.6 mm or
less. Column with small diameter reduces significantly the amount of mobile phase
used for elution and also increases the resolution and sensitivity as the diffusion inside
the column is as small as possible. Column thermostat improves the reproducibility and
allows using temperature as additional parameter for resolution optimization. Smaller
columns and smaller amount of mobile phase exiting the column allows combining
liquid chromatography with mass spectrometer [5].

Nowadays the stationary phases consist of spherical shaped micro-particles or porous
monolithic material to improve selectivity and resolution. The efficiency of chromato-
graphic process is inversely-proportional to the size of the particle of stationary phase.
The main obstacle for not using even smaller particles in the stationary phase is the
pressure needed to achieve the constant flow of mobile phase through tightly packed
column. The pressure in the system depends on the flow rate, viscosity of the mobile
phase and the particle size of the stationary phase. HPLC (High Performance Liquid
Chromatography) systems available are using maximum pressure of 400 bar, UHLPC
(Ultra-HPLC) systems allow one order of magnitude higher pressure to be used [5].

In HPLC, the main principles and separation mechanisms remain the same, but
the speed, sensitivity and resolutions are improved. The main advantage is significant
reduction of time and amount of solvent used for analysis. Also the amount of time
needed for method development experiments, balancing of the column, stabilization of

8

the gradient elution of the column and method validation is reduced significantly [5].
A conceptual diagram of the liquid chromatography is shown in figure 1.1.

Figure 1.1: Conceptual diagram of liquid chromatography

1.2 Validation of Analytical Procedures
The term analytical procedure refers to the way of performing the analysis. It should
describe in detail the steps necessary to perform each analytical test [1].

Validation is a process for determining if the given analytical procedure is fit for
purpose, i.e. suitable for the analysis that it is intended for. The fitness for purpose
is determined by the parameters characterizing the goodness of the analysis procedure
[6].

There are four most common types of analytical procedures:

1. Identification tests;

2. Quantitative tests for impurities’ content;

3. Limit tests for the control of impurities;

4. Quantitative tests for the active moiety in samples of drug substance or drug
product or other selected component(s) in the drug product.

Identification tests are intended to ensure the identity of an analyte1 in a sample.
Testing for impurities can be either a quantitative test or a limit test for the impurity
in a sample. Assay procedures are intended to measure the analyte present in a given
sample [1].

1analyte - a substance or chemical constituent that is of interest in an analytical procedure

9

There are several characteristics (validation parameters) that characterize an ana-
lytical procedure:

1. Accuracy;

2. Precision;

(a) Repeatability;

(b) Intermediate Precision;

3. Specificity;

4. Detection Limit;

5. Quantitation Limit;

6. Linearity;

7. Range;

8. Robustness;

Often the validation only determines some of the aforementioned characteristics. The
main purpose of the validation is not to determine all these characteristics but to get
confirmation that the given analytical procedure is performing as expected. And if the
procedure is not performing as expected, to get information about how the procedure
needs to be modified to make it perform as expected [1, 6].

Next I will give a brief description of the characteristics to get better idea what
kind of info needs to be determined.

1.2.1 Specificity

The specificity of an analytical procedure characterizes how well the procedure is ca-
pable of determining the analyte in the sample without other components interfering.
Specificity is probably the most important characteristic that characterizes the analyt-
ical procedure. In chromatography the specificity is expressed via resolution criterion
Rs[6]. It can be calculated from retention time and peak width at half-height, using
following formula: Rs =

1.18(t2−t1)
W0.5,1+W0.5,2

[5], where t1is retention time of the first peak, t2
is the retention time of the second peak and W0.5,1 and W0.5,2 are peak widths at half
height of the first and second peak respectively. Rsis used to express how well is the
analyte peak separated from a peak of (possibly) interfering compound.

1.2.2 Accuracy

The accuracy of an analytical procedure expresses the agreement between the value
which is accepted either as a conventional true value or an accepted reference value
and the value found [1].

10

1.2.3 Precision

The precision of an analytical procedure expresses the agreement between a series of
measurements obtained from multiple sampling of the same homogeneous sample under
the prescribed conditions. Precision is usually expressed as the variance, standard
deviation or coefficient of variation of a series of measurements [1]. Precision may be
considered in three levels:

1. Repeatability - expresses precision under the same operating conditions over a
short interval of time;

2. Intermediate precision - expresses within-laboratories variations: different days,
different analysts, different equipment, etc.;

3. Reproducibility - expresses the precision between laboratories;

1.2.4 Detection Limit

The detection limit of an analytical procedure expresses the minimum amount of ana-
lyte in the sample that can be reliably detected and identified by the given analytical
procedure [6]. Detection limit is related to both the signal and the noise of the system
and usually is defined as a peak whose signal-to-noise ratio is at least 3:1 [5].

1.2.5 Quantitation Limit

The quantitation limit of an analytical procedure expresses the lowest amount of ana-
lyte in the sample that can be quantitatively measured by the given analytical proce-
dure [6]. Similarly to detection limit, the quantitation limit is also related to the signal
and the noise of the system and is usually detected as a peak whose signal-to-noise
ratio is at least 10:1 [5].

1.2.6 Linearity

The linearity of an analytical procedure is its ability to obtain test results which are
directly proportional to the concentration of analyte in the sample [1]. The linearity
of a method is a measure of how well a calibration plot of response vs. concentration
approximates a straight line, or how well the data fits to the linear equation: y = mx+b
where y is the response, x the concentration, m the slope, and b the intercept of a line
fit to the data. Ideally, a linear relationship (b ≈ 0) is preferred because it is more
precise, easier for calculations and can be defined with fewer standards [5].

1.2.7 Range

The range of an analytical procedure is the interval between the upper and lower
concentration of analyte in the sample for which it has been demonstrated that the
analytical procedure has a suitable level of precision, accuracy and linearity [1].

11

1.2.8 Robustness

The robustness of an analytical procedure is a measure of its capacity to remain un-
affected by small, but deliberate variations in method parameters and provides an
indication of its reliability during normal use [1].

1.3 Scope and Requirements
Validation of an analytical procedure is usually done manually where user picks up the
guideline document which are usually written in quite general form and determines
which characteristics need to be measured according to the type of the analytical
procedure. Then he needs to plan and carry out experiments according to the validation
guidelines, e.g. analyze material which contains analyte at foreseen concentration level.
Next he needs to make some calculations with the obtained data according to the
description in the guideline. Using these calculations, user can determine if some
needed criteria are met and thus understand if the analytical procedure in question is
fit for the purpose it was meant and whether the procedure is actually validated.

Finally based on the results user needs to manually create a validation report where
all the needed characteristic data is shown together with the calculations and criteria.
As can be seen this process is not very user-friendly and in case of some adjustments
are needed in the analytical process, a lot of work related to calculations and report
creations need to be redone. The main purpose of the software that was created, is
to reduce the work the user has to do during analytical procedure validation and thus
concentrate more on the actual analytical procedure itself. Here are the main goals
that the software had to achieve:

1. Reduce the time user needs to spend to get familiar with the exact validation
guideline and describe all the needed criteria in the software so that user only
needs to choose what type of procedure he has and choose characteristics that
needs to be measured.

2. Guide user in regard of what data needs to be entered exactly and in what form
(text, numbers, diagrams etc.).

3. Make all the calculations needed for a given characteristic, based on the input
data and give user idea whether needed criteria are met or not.

4. Create validation reports automatically based on the pre-defined templates and
sections user can freely choose from.

5. Make it possible for several users to access the same procedure validation and
thus divide workload between several users or make it possible for supervisors to
access the work of the students/employees without waiting for the final report to
be ready.

Also it was important to make the software as dynamic as possible from the point of
view of a developer, so that it would be possible to easily add new validation guideline
descriptions, create new report templates and expand the overall functionality if such
need arises.

12

1.4 Roundup
In this chapter I gave an overview of the background of the field of chromatography
and analytical procedure validation. Short description of the main characteristics used
during validation were also presented. Finally, the scope of the software was described
with general requirements.

13

Chapter 2

Related Work

In this chapter I will give an overview of the only software tool that I could find
that is currently available for the exact task of analytical procedure validation. I will
also discuss the solutions that are available for dynamic form generation and decision
making.

2.1 Existing solutions
As the target audience who are dealing with the analytical procedure validation is
not too wide and consists mainly of people who have different kind of expertise than
creating software to solve their problems, it was not surprising that there were not a
lot of such existing software available.

I was able to find one commercial software product, called VALIDAT1. This soft-
ware product is developed by a company called ICD and they have several specialized
software tools available for the different chemical laboratory related tasks. VALIDAT
is for analytical method validation. It supports several guidelines, has many character-
istics available, also contains diagram and report generation. It runs on the Microsoft
Windows platform and on Microsoft SQL Server or Oracle SQL Server [3].

The main advantages of the new software that was created during this theses,
compared to the existing commercial solution, were following: being able to run it on
the web-browser thus making it available on virtually all operating systems, not only
limiting to Microsoft Windows. Build it with open-source tools and to make it open-
source, so everyone interested could extend it further. Design it the way it would be
easily expandable, thus making it possible to add new validation guidelines and reports
later by only describing new guidelines in special configuration files.

2.2 Dynamic form generation
As one of the main parts of the software tool that I was implementing consists of
dynamic form generation for various characteristic fields, I was looking for a solutions
that were already present. Usually forms are generated manually by the software
developer using a web-framework. This makes it more convenient for the developer to
both generate form elements as well as validate the data entered by the end-user and
finally retrieve the data and persist it in database. However, this approach still means

1https://www.icd.eu/produkte/methodenvalidierung-software.html

14

https://www.icd.eu/produkte/methodenvalidierung-software.html

that form generated are fairly static in the sense that developer needs to describe in the
code what fields need to be present in the given form. Depending on the programming
language and framework used, changes in such forms could take significant amount of
developer’s time as well as introduce a risk of creating an error in the program code
while making a change. One idea on how to solve this issue would be using some
domain specific language (DSL) that would describe the form elements and all the
related meta-data about the form fields. One of the examples of such a solution is
XForms that I will introduce in next section.

As the fields that should be shown on the dynamic forms may depend on the
previous decisions that user makes during validation creation and setup phase, it is
important to specify which exact fields are present in which dynamically generated
forms. In [35] the idea of pre-conditions was introduced. The idea is to use precondi-
tions which determine if some user interface element (widget) should be visible or not.
Preconditions are presented as boolean expressions which can have true (widget visible)
or false (widget not visible) values. There is a global Current State Blackboard (CSB)
present in the system where predicate manager will be writing messages if any of the
predicates will become true and remove these messages when predicate becomes false.
Next, the widget manager will read the CSB during the view rendering and determine
whether the fields that should be present in that view satisfy the boolean conditions
of the predicates and show only these fields to end-user. I will be using similar idea
in my application, where depending on the decisions user will make during validation
configuration step, certain fields will be shown (or not shown) in later steps, where
user starts to enter data for certain analytical procedure characteristic.

2.3 XForms
XForms is an XML application that was designed to supersede the existing HTML-
forms. XForms is intended to be integrated into other markup languages as XHTML,
ODF or SVG. The main idea behind XForms is to separate the concerns using widely-
known design pattern called Model-View-Controller (MVC). There is a model, that
contains formulas for data calculations and constraints, data type and property decla-
rations and data submission parameters. Next, the view layer contains the actual form
controls that end-user interacts with. And finally, the controller binds the view and
model together, orchestrating all the interactions between view and model as well as
data submissions [14].

Next I will give a simple example of a document containing XForms components and
introduce some of the concepts of XForms, that were helpful when I started creating
the software tool for analytical procedure validation.

2.3.1 Document containing XForms elements

A simple XHTML document containing XForms components would look as following:
1 <html
2 xmlns="http :// www.w3.org /1999/ xhtml"
3 xmlns:xf="http ://www.w3.org /2002/ xforms"
4 xmlns:ev="http ://www.w3.org /2001/xml -events"
5 xmlns:d="http :// www.mydata.com/xmlns/data">
6 <head >
7 <title/>

15

8 <xf:model >
9 <xf:instance id=" user_profiles">
10 <d:user >
11 <d:firstname >Homer </d:firstname >
12 <d:middleinitial >J</d:middleinitial >
13 <d:lastname >Simpson </d:lastname >
14 </d:user >
15 </xf:instance >
16 <xf:submission action ="http :// example.com/submit" method ="post

"/>
17 </xf:model >
18 </head >
19 <body >
20 <xf:input ref="d:firstname">
21 <xf:label >First Name: </xf:label >
22 </xf:input >
23 <xf:input ref="d:middleinitial">
24 <xf:label >Middle initial: </xf:label >
25 </xf:input >
26 <xf:input ref="d:lastname">
27 <xf:label >Last name: </xf:label >
28 </xf:input >
29 <xf:submit >
30 </body >
31 </html >

Model can be seen in the head-tag of the document (lines 8-17). It consists of an
instance of user with it’s own namespace “d” (lines 10-14). In the body of the document
the actual form-controls are defined (lines 20-28) which are referring to model. So the
ref=”d:firstname” points to the firstname tag in the model user-instance. This is an
abbreviated XPath reference, relative to the default context. It would be equivalent to
following xml-snippet:
<xf:input ref="/d:user/d:firstname">

<xf:label >First Name: </xf:label >
</xf:input >

If there would be multiple models present, it is possible to explicitly specify the
model as well:
<xf:input ref="/d:user/d:firstname" model =" user_profiles">

<xf:label >First Name: </xf:label >
</xf:input >

Finally there is a submit-control (line 29) that performs the actual form submission
to the url that was defined in the model (line 16) [16].

2.3.2 Output fields

In addition to input fields that user can interact with by entering some data into them
or choosing some value from the given list of values, there is also a concept of output
fields present in XForms. These fields are non-editable components that can reflect
the value of a given item in the data-model (using the ref-attribute) or show a result
of some calculation (using XPath notation) and using the value attribute. A simple
example on how this would look like in XForms syntax is following [17, 18]:
<xf:model >

<xf:instance >

16

<d:data a="5" b="6"/>
</xf:instance >

</xf:model >
<xf:input ref="@a"/> + <xf:input ref="@b"/> =
<xf:output value="@a + @b"/>

2.3.3 Required fields

XForms introduces a special mean to specify that some of the model properties are
required before the instance data is submitted. This is achieved by associating a
required property with a certain element (“lastname” in given example) [18]:
<xf:instance id=" user_profiles">

<d:user >
<d:firstname >Homer </d:firstname >
<d:middleinitial >J</d:middleinitial >
<d:lastname >Simpson </d:lastname >

</d:user >
</xf:instance >
<bind nodeset ="/d:user/d:lastname" required ="true()"/>

2.3.4 Repeated fields

Another useful concept that XForms provides is the possibility to define repeated struc-
tures. This means that it is possible to make a single field or a collection of fields to be
easily repeated in the document. E.g. in case of shopping cart, this allows end-user to
dynamically add new rows to his shopping cart or remove existing ones. An example,
which is not too trivial and also contains the concept of nested repeats is following [17]:

1 <xf:repeat nodeset =" instance(’dataStore ’)/d:record">
2 <fieldset >
3 <legend ><xf:output value =" concat(d:identity/d:surname ,
4 ’, ’,d:identity/d:firstname)"/></legend >
5 <xf:repeat nodeset ="d:identity">
6 <h3>Identity </h3 >
7 <xf:input ref="d:firstname">
8 <xf:label >First Name: </xf:label >
9 </xf:input >
10 <xf:input ref="d:middleinitial">
11 <xf:label >Middle Initial: </xf:label >
12 </xf:input >
13 <xf:input ref="d:surname">
14 <xf:label >Surname: </xf:label >
15 </xf:input >
16 </xf:repeat >
17 <xf:repeat nodeset ="d:address">
18 <h3>Address </h3 >
19 <xf:input ref="d:street">
20 <xf:label >Street: </xf:label >
21 </xf:input >
22 <xf:input ref="d:city">
23 <xf:label >City: </xf:label >
24 </xf:input >
25 <xf:input ref="d:region">
26 <xf:label >Region: </xf:label >
27 </xf:input >

17

28 <xf:input ref="d:country">
29 <xf:label >Country: </xf:label >
30 </xf:input >
31 </xf:repeat >
32 </fieldset >
33 </xf:repeat >

It can be seen that there are two repeats (line 5-16 and 17-31) nested inside another
repeat (lines 1-33).

2.3.5 Rendering of XForms

Unfortunately none of the contemporary browsers like Firefox, Chrome, Internet Ex-
plorer or Safari support XForms directly, thus some special renderers are needed. There
are in principle two kinds of XForms renderers:

• browser plugins that can parse and render the given document containing XForms
elements;

• specific external libraries that transform given XForms elements into according
HTML-form elements and Javascript that would provide needed functionality.
These special libraries in turn can be divided into client-side and server-side
libraries.

Regarding the browser plugins, there aren’t any of them available any more for current
browsers. E.g. last working plugin for Mozilla was for the version 3.6 [22]. Author of
the Mozilla XForms extension comes to a conclusion that XForms as browser plugin is
dead and predicts that the future of web forms is HTML5 together with its surrounding
technologies [21].

An alternative solution to browser plugin would be some transforming library on
client side or server side, that would transform the XForms into HTML and JavasScript
to achieve the same functionality as browser plugin would. According to a survey done
in [23] these libraries are not very actively developed or supported any more.

There is a commercial product available for server-side XForms handling, called
Orbeon Forms2 which is actively developed at the moment and has reached version
4. It has nice graphical form builder available as well. However, there seems to be
one important shortcoming in latest Orbeon Forms version 4.2 regarding the repeated
elements. In particular, it doesn’t support nested repeats [25].

2.4 Dynamic Questionnaire Systems
In addition to dynamic form generation with some pre-defined fields there is also a
need to specify if some of these fields should not be shown to end-users in case user
made some preliminary selection between choices given. E.g. in case of analytical
procedure validation, values that user needs to enter for a specific characteristic may
vary depending on what kind of decision user made previously while specifying the
existing data sources he has.

There has been a lot of research done in the field of variability management. Vari-
ability of an information system can be captured as a collection of parameters, features

2http://www.orbeon.com/

18

http://www.orbeon.com/

or choices. These choices determine the actions that should be performed to derive an
individualized model or system from the generic one. In case of configuration of busi-
ness process models, such actions may correspond to removing a fragment of a process
model [24]. E.g. in case of payment system, when user has choices on how to pay for
a purchase, after he makes a certain choice to pay only after the goods are delivered,
he will not be presented with the payment details like credit-card choices or internet
bank links.

In [24] the configuration model contains questions that capture the way how the
variability of a generic system is resolved at configuration time. Each question contains
facts that can be answered true or false. These facts encode the variability of the
system. Based on the answers given to these facts, certain actions can be performed
on the generic system to derive a specific system. An overview of such a framework
can be see on figure 2.1.

Figure 2.1: Configuration framework overview [24]

2.5 Roundup
In this chapter I gave an overview of existing software solution that is currently com-
mercially available for procedure validation. Next, I introduced XForms as an example
of how dynamic forms can be described. And finally I introduced a research done in
the field of dynamic questionnaire systems.

19

Chapter 3

Forms and Report Definition

In this chapter I will introduce the model for defining dynamic forms for procedure
validation and also the model for defining reports.

3.1 Model for defining the dynamic forms for proce-
dure validation

To be able to perform analytical procedure validation, there is a need to gather certain
characteristic parameters and perform certain calculations on them. This means, that
there is a need for data entry form where end-user can enter needed data. As the data
needed for every characteristic is different, this means that the forms containing the
data fields are also different. It is not reasonable to describe these forms in the program
code itself, but rather use an external definitions that are used by the software tool to
render correct fields in correct characteristic forms. Based on the ideas from XForm I
created my own model for defining these forms. The class diagram of the model can
be seen on figure 3.1.

Figure 3.1: Procedure Validation Model Class Diagram

20

The model for defining dynamic forms for procedure validation consists of following
parts:

1. Validation definition, which describes a particular validation guideline and con-
tains arbitrary amount of analytical procedures;

2. Analytical procedure definitions, each of which describe characteristics relevant
to that particular analytical procedure;

3. Characteristic definitions, each of which describe which particular data-fields are
relevant to that certain characteristic;

4. Input and output data-field definitions, where the exact data fields are defined
together with all the needed meta-data for validation rules, data types, etc.

All the definitions of the meta-data that is used to generate forms are stored into
configuration files written in Javascript Object Notation (JSON) format. JSON is a
lightweight data-interchange format. It is both, easy to read by humans as well as easy
to parse and generate by computers [12]. Actual data that is entered by the end-user
during data entry is stored in the database. Configuration files are organized into
following structure:

1. Validation type configuration;

2. Procedure type configuration;

3. Characteristic type configuration;

This structure is hierarchical, meaning that the top level is Validation Type Configura-
tion, which may contain many Procedure Type Configurations and any of which may
contain many Characteristic Type Configurations. In following subsections I will give
an overview of these configuration files.

3.1.1 Validation Type Configuration

Validation type configuration acts as the main entry point to the whole validation
procedure configuration. A sample validation type configuration file looks as following:

1 {
2 "name": "ich",
3 "label": "ICH Validation",
4 "procedure_types ": [
5 {
6 "include ": "/ procedure_types/assay/procedure.json"
7 },
8 {
9 "include ": "/ procedure_types/identification/procedure.json"

10 },
11 {
12 "include ": "/ procedure_types/impurity_quantitation/procedure.

json"
13 },
14 {
15 "include ": "/ procedure_types/impurity_limit/procedure.json"
16 }
17]
18 }

21

There is a name of the current validation type (line 1), which needs to be unique.
There is a label (line 3), that can be anything and is only used inside the application to
show to end-users. And then there is an array of procedure types (lines 4-17). These
procedure types are included as paths (lines 6, 9, 12 and 15) to specific procedure type
configuration files.

3.1.2 Analytical Procedure Type Configuration

Analytical procedure type configuration contains the definition of a specific analytical
procedure and acts as a container for specific characteristics relevant to that analytical
procedure.

A fragment of a sample Procedure Type configuration file looks as following:
1 {
2 "name": "assay",
3 "label": "Assay",
4 "description ": "Longer description for the assay procedure",
5 "characteristics ": [
6 {
7 "filter ": [
8 {
9 "name": "filter_1",

10 "label": "Visual Evaluation"
11 },
12 {
13 "name": "filter_2",
14 "label": "Based on signal -to-noise"
15 },
16 {
17 "name": "filter_3",
18 "label": "Standard deviation of the response and the slope",
19 "filter ": [
20 {
21 "name": "filter_3_1",
22 "label": "Using blank"
23 },
24 {
25 "name": "filter_3_2",
26 "label": "Based on the calibration curve",
27 "filter ": [
28 {
29 "name": "filter_3_2_1",
30 "label": "Using residual standard deviation of a

regression line"
31 },
32 {
33 "name": "filter_3_2_2",
34 "label": "Using y-intercepts of refression lines"
35 }
36]
37 }
38]
39 }
40],
41 "include ": "/ procedure_types/assay/characteristic_types/

detection_limit.json",
42 "optional ": true

22

43 }
44]
45 }

Similarly to Validation Type configuration the Procedure Type configuration also
contains name (line 2) and label (line 3) elements. In addition there is also a description
(line 4) element, that can contain arbitrary text that could be shown to end-user during
the data entry.

Most important part of this configuration is of course the array of characteristic
types (lines 5-44). There are include-elements, that contain path to specific character-
istic configuration (line 41). There is also a boolean "optional" element (line 42) that
is used to guide end-users during configuration part and indicates if this particular
characteristic is usually needed for this particular procedure type or not.

Finally, there is the "filter" element (lines 7-40), which has recursive structure with
"name", "label" and "filter" elements. The idea behind the filter is to enable end-user
to make decisions about the validation procedure before he starts entering data. This
acts as a decision tree, where user can choose one particular branch of the tree. As can
be seen on the sample configuration, these are questions about a certain characteristic.

Based on selections that user makes with these filters he will only see a subset of
all the possible data fields in data entry form that need to be filled. In other words,
when a filter is applied, certain fields in the form are made invisible (because they are
irrelevant given the data the user has entered so far). This is akin to XForms where a
field or group of fields is visible (called "relevant" in XForms) if a certain condition is
true.

Filter names need to be unique inside one analytical procedure configuration as
these are used later to identify which exact fields should be shown to end-user. In next
subsection I will describe field definitions in more detail, but the main concept of the
set of fields and how filters are applied to them is shown in figure 3.2 . It can be seen,
that there can be a lot of fields present in a certain characteristic, but only a subset
of them is shown depending on what filter was selected by the end-user during the
validation configuration process.

23

Figure 3.2: Concept of a set of fields and filters

3.1.3 Characteristic Type Configuration

Finally, there are characteristic type configuration files which contain actual data-field
definitions that will be used to generate forms dynamically. A fragment of such a file
is shown next:

1 {
2 "name": "linearity",
3 "label": "Linearity",
4 "description ": "Analysis of substances with known concentrations",
5 "fields" : [
6 {
7 ...
8 }
9],
10 "output_fields" : [
11 {
12 ...
13 }
14]
15 }

Similarly to validation type and procedure type configuration files, also this file
contains "name" (line 2) and "label" (line 3) elements. Also there is a "description"
element (line 4) for longer description that would be shown to end-user to guide him
through data entry process.

Next, there is a "fields" element (lines 5-9) array which contains definitions of data
fields that will be shown to end-user. And lastly there is an “output_fields” (lines
10-14) array, that contains fields that can not be entered by users, but can be shown to

24

end-users and contain data that is calculated based on the data entered in the fields. I
will give more detailed description of input and output fields in next two subsections.

3.1.4 Input Field Type Configuration

A sample input field definition is following:
1 {
2 "name": "signal",
3 "label": "Signal",
4 "type": "number",
5 "required ": true ,
6 "min_count ": 1,
7 "help": "Signal",
8 "unit_type ": "signal",
9 "filters ": [" filter_1"],
10 "options ": [
11 {"name": "precision", "value": 4}
12],
13 "constraints ": [
14 {
15 "class": "NotBlank"
16 },
17 {
18 "class": "Range",
19 "options ": [
20 {"name": "min", "value ": 0},
21 {"name": "max", "value ": 999}
22]
23 }
24]
25 }

There are again “name” (line 2) and “label” (line 3) elements present, next the “type”
(line 4) element determines what type of the field it is. There a many different types
available, I will introduce these types that are relevant in the context of the software
tool for validation:

• number - used for entering numerical data (e.g. retention time, signal strength,
peak widths, etc.);

• text - used for textual data;

• textarea - used for longer textual data, possibly on multiple lines;

• file - used for uploading files from end-user computer, in the context of the soft-
ware tool for validation, these will be mainly images of various diagrams;

Next there is an element “required” (line 5) that is used to inform end-user that this
particular field is mandatory. Element “min_count” (line 6) is used for specifying what
is the minimum amount of these fields that user needs to fill. In case this value is larger
than one, end-user will be presented with additional buttons next to these fields that
allow him to add more fields or remove existing ones dynamically. I will introduce the
user interface more precisely in the next chapter.

This "min_count" constraint is akin to the "minoccurs" qualifier in XML Schema,
which allows one to specify that a given element type should appear at least a certain

25

amount of times in the form. During discussions with the domain experts, we did
not find the need to define a constraint of type "max_count" (i.e. maximum possible
number of elements).

Next, there is a “help” element (line 7) that is used to show a special tooltip next
to a field. Following element “unit_type” (line 8) indicates what type of units should
be entered to this particular field. This is important, as there a many different unit
types available in different characteristics. End-user can specify the exact units for the
particular validation during validation configuration.

Next, there is a “filters” element (line 9) that is an array of filters. The concept of
filters was described in previous subsection and on figure 3.2. It is important to notice
that one field can have many filters assigned to it, which means that depending on
what choice end-user has made during configuration phase, this field will be shown in
the particular characteristic form or not.

“Options” element (lines 10-12) can contain an array of objects which are used to
specify certain properties of a field. E.g. in case of a number type-field, it is possible
to specify what is the precision of that field i.e. how many digits after comma should
be shown and stored in database.

Final element is “constraints” (lines 13-24) which can contain many different sub-
constraints. Constraints are used to validate a field, this means that the data entered
into field will be checked against the rules specified in the constraints array and only if
the constraints are satisfied, the data will be stored in the database. This is akin to the
"constraint" property in XForms, which allows one to specify a predicate that needs to
be satisfied for the instance data associated with a field or group of fields in the form
to be considered valid. Otherwise, an error will be shown to user next to the particular
field and no data is stored. It is possible to create additional constraint classes if there
will be need in the future, currently the existing constraint-classes that were provided
by the web-framework Symfony that was used for implementing this software, were
sufficient.

There is one more important concept present in input-fields, that is the concept
of “multi_fields”, which is the equivalent of a "group" in XForms. A multi_field is
a container of fields, this means that it is possible to create a block of fields that are
grouped together and can be accessed as one in various calculators and report renderers.
A sample of a multi_field configuration is following:

1 {
2 "name": "chromatograms",
3 "label": "Insert representative chromatograms",
4 "help": "Insert representative chromatograms with appropriately

labelled individual components",
5 "type": "multi_field",
6 "collection ": true ,
7 "min_count ": 1,
8 "fields ": [
9 {

10 "name": "chromatogram",
11 "label": "Chromatogram",
12 "type": "file",
13 "help": "Chromatogram image",
14 "constraints ": [
15 {
16 "class": "Image"
17 }

26

18]
19 },
20 {
21 "name": "description",
22 "label": "Description",
23 "type": "text"
24 }
25]
26 }

In the “type” element (line 5) there is a special field type called “multi_field”, also
there is a “collection” (line 6) element present that indicates that this field should be
repeated. This is a way to explicitly tell the form builder that this field needs to be
repeated, this is useful when the minimum amount of such fields is 1 as in current
example. If the “min_count”-element is larger than one, then the “collection” element
is not necessary to be specified as the form builder assumes that itself.

Finally there is a “fields” array (lines 8-25) in this sample configuration that contains
definitions of input fields. This kind of nesting of fields was important for the validation
software tool, as there are many cases where user needs to enter certain data in blocks,
e.g. chromatogram images together with the description of that image, or retention
time together with the peak width at half-height. Now that these fields can be grouped
together it will be both easier for the end-user to replicate these fields during data-entry
as well as use the data from these fields later for calculations by the software itself.

3.1.5 Output Field Type Configuration

In addition to input fields there are also special output-fields. These fields are only there
for displaying some info and can not be entered by the end-user (i.e. read-only). The
values shown in these output-fields are calculated based on values that were entered in
the other fields. This is akin to the "calculate" property in XForms, which allows one
to specify that the value of a certain field is calculated based on that of other fields.

A sample output-field element is following:
1 {
2 "name": "residual_squared_sum",
3 "label": "Residual sum of squared",
4 "filters ": [" filter_1"],
5 "calculator ": "LinearityCalculator :: getResidualSumSquared",
6 "input": [
7 "assay.linearity.substances_signal"
8]
9 }

First there is a “name” (line 2) and “label” (line 3) elements just like in input-field,
next there is the “filters” (line 4) element, which acts similarly as in case of input fields.
Next there is a “calculator” element (line 5), which points to a specific Class::method
pair, that should be used to produce this particular output. And finally there is a
“input” element (lines 6-8), which is an array of input and/or output fields. The name
of the input-field has three parts: analytical procedure name, characteristic name and
field name. As was mentioned earlier, all these names need to be unique in the context
of a particular block. This way it is possible to uniquely identify any field present in
the current validation.

27

3.2 Model for defining reports
In addition to dynamic form generation that was described in previous section, there
is also a need for defining reports for a particular validation guideline. The idea is that
each validation can have many reports bound to it. Each report entity has a specific
report template assigned to it. This report template contains all the meta-data needed
for generating a report. The overview of the report model is shown on figure 3.3.

Figure 3.3: Report Model Class Diagram

A sample report template configuration file is following:
1 {
2 "name": "unique_report_name",
3 "label": "Report Name",
4 "renderer ": "Dummy",
5 "input": [
6],
7 "sections ": [
8 {
9 "name": "section_accuracy",

10 "label": "Accuracy",
11 "renderer ": "Dummy",
12 "input": "Accuracy for Assay",
13 "sections ": [
14 {
15 "name": "section_accuracy_results",
16 "label": "Results",
17 "renderer ": "AccuracyTable",
18 "input": {
19 "head": {
20 "concentration_level ": "Concentration Level",
21 "result ": "Result",
22 "average ": "Average",
23 "percent_recovery ": "Percent Recovery"
24 },

28

25 "body": {
26 "calculator ": "AccuracyCalculator",
27 "input" : "assay.accuracy.current_results"
28 }
29 },
30 {
31 "name": "percent_recovery",
32 "label": "Average Percent Recovery",
33 "renderer ": "Recovery",
34 "input": "assay.accuracy.current_results"
35 }
36 }
37]
38 }
39 }

First there is a “name” (line 2) and “label” (line 3) elements present in the configu-
ration file. The name is there to uniquely identify a certain report and/or section, label
is for showing to end-user. In addition to name and label elements there are some more
important concepts present in this short fragment of a report template configuration
file. First it can be seen that the configuration is recursive, meaning that there can
be as many nested sections (lines 7-38) inside each sections as needed. Next thing
to notice is the "renderer" element (lines 4, 11, 17 and 34), which holds the actual
renderer class name that should be used to render this section of the report. Input key
can hold a scalar as well as array with values and it will be used by the renderer. The
way how input is handled is dependent on what exact renderer class is used. There are
several renderers available like Dummy-renderer, which simply displays the value that
was given in input element. There is a special renderer for showing images, renderer
for showing data as table. There are also specific renderers that are used for specific
characteristic to display the data for them.

Each report template can contain many sections, which are also instances of Re-
portTemplate class. Each of these sections can also contain many sections in a recursive
manner. To be able to actually generate a report, each of these sections have a renderer
class specified. Renderer classes are implementing ReportRendererInterface. There is
one method, called "render" that takes in an instance of ReportTemplate and an in-
stance of a Report. There can be arbitrary number of concrete renderer classes, in
figure 3.3 there are only some of them shown like Number, Text, Image and Table ren-
derers. The idea is that it will be very easy to add new renderer classes later when need
arises. Each concrete renderer can in turn use as many external classes as needed to
accomplish the result. E.g. number renderer uses CalculatorInterface, which can have
as many concrete calculators as needed. In the diagram there are ResolutionCalcula-
tor and RecoveryCalculator classes present, which are doing some specific calculations
needed to transform some input data into the form that is needed for some particular
report section.

3.3 Roundup
In this chapter the conceptual overview of the the dynamic forms specification model
and the report specification model. Both were described based on UML diagrams and
sample instances.

29

Chapter 4

Implementation

In this chapter I will describe the architecture and implementation details of the ap-
plication. First an overview of the used software stack is given followed by the general
overview of the application architecture. Finally an overview of the main components
of the user interface will be given.

4.1 Software Stack
In this section I will introduce the software that was used to develop the application
for analytical procedure validation.

4.1.1 Framework for Back-End

As with any application there is a question, what tools to use to build it. As one of the
requirements for application was that it has to be web-based it was natural choice to
choose a framework for web projects. As I am familiar with the PHP-language it was
natural choice to choose a framework written in PHP. I have been developing various
web-applications for many years and have been using mainly commercial in-house built
platforms which were not suitable for this project as one of the requirements was, that
it needed to be built with open-source tools. After some comparison of numerous PHP
frameworks I finally chose one called Symfony21.

Symfony is a PHP framework for web projects. It has been developed since year
2005 and reached version 2.2.1 as of this moment. It is a mature framework, meaning
that it is well-written, well-tested and has an excellent documentation as well as large
community behind it. All the code is open-source and freely available. It is very easy
to install using dependency manager called Composer2.

Symfony itself uses many other external software building blocks like the "Doc-
trine" Object-Relational Mapping (ORM) framework for persistence, Swiftmailer for
sending out e-mails, Monolog for writing log into various targets, etc. Using the Com-
poser, it is very easy to add new building blocks to your application and instantly gain
new functionality. There is a huge database of available software packages hosted in
Packagist3 website. This is the central repository for all the various software packages
that can be installed using Composer dependency manager.

1http://symfony.com/
2http://getcomposer.org/
3https://packagist.org/

30

http://symfony.com/
http://getcomposer.org/
https://packagist.org/

4.1.2 Framework for Front-End

In addition to the PHP framework that was used for back-end side of the application,
I also needed a way to manage the user interface. Again, there are many different solu-
tions available, but after testing several of them I finally chose a front-end framework
called Twitter Bootstrap4 that is built by the developers behind one of the largest social
networks Twitter. As the slogan of the Twitter Bootstrap says: "By nerds, for nerds"
it is meant for developers who want to create solutions quickly and don’t want to spend
a lot of time tuning various HTML and CSS parameters. All of this has been done
very convenient for the developers and all the components needed to create a modern
and nice looking user interface are present. There is also very well written documenta-
tion that demonstrates possibilities of the framework together with examples how the
end-result would look like [7].

Even though the Twitter Bootstrap contains many necessary building blocks for
creating a user interface, there are some things that are not included or that are
just not good enough. So I discovered an extended version of the Twitter Bootstrap
framework developed by Jasny.net5. It has a lot of additional functionality added on
top of Twitter Bootstrap, like possibility to make the whole table row to be a link,
nicer looking file upload interface, more convenient way to display alerts, etc. [8].

4.1.3 Development Tools

In addition to software packages used to build the application itself, there are several
other tools that were invaluable to help building software for the web. These tools
include naturally an Integrated Development Environment (IDE). There are many
different IDE-s available, both freeware and commercial. I was using a commercial IDE
built by the company JetBrains and it is called PHPStorm6. It has Symfony framework
support built in as well as the support for writing HTML, CSS and JavaScript.

In addition to IDE, I also used version control software (VCS) called git7. Git is
free and open source distributed version control system, meaning that there really is
no need for one central repository as other widely-used VCS-s like SVN. I used git both
for version control as well as for simple deployment tool [28].

And finally, I was using a special tool for building a development environment
where the application could be run during development. This tool is called Vagrant8
and the idea behind this tool is that it helps a developer to create a virtual machine,
that runs the operating system with all the needed additional software installed. It is
easy to package such a virtual machine and to deliver it to other developers so they
can simply download it, and run it in their own machine. This way there is no need
for every developer to build their own development environment, but just use already
existing virtual machine with all the needed packaged installed. Just run it and only
concentrate on development [10]. Application can run on any platform that supports
PHP, so it can run on Linux, Windows and Mac OS X. However, I have only really
tested it on Linux Ubuntu 12.04 operating system with Apache 2 web server, PHP
5.3/5.4 and MySQL 5 database. In reality there should be no difference what database

4http://twitter.github.io/bootstrap/
5http://jasny.github.io/bootstrap/
6http://www.jetbrains.com/phpstorm/
7http://git-scm.com/
8http://www.vagrantup.com/

31

http://twitter.github.io/bootstrap/
http://jasny.github.io/bootstrap/
http://www.jetbrains.com/phpstorm/
http://git-scm.com/
http://www.vagrantup.com/

to use, as the Doctrine object relational mapper (ORM) supports many different SQL-
servers in addition to MySQL. It is only a matter of changing the configuration of the
application and install needed SQL-server to start using it.

4.2 Architecture
In this section I will introduce the architecture of the application.

4.2.1 MVC

As with many web-frameworks that are used today, Symfony also uses the model-view-
controller (MVC) design pattern. The main idea behind MVC is the separation of the
domain objects that model the particular domain and the presentation objects that
are the GUI elements shown to end-user. Domain objects should be self contained
and work without the reference to the presentation. In MVC these domain objects are
called models. Models have no knowledge of the user interface. The presentation part
in MVC contains two parts: view and controller. The controller acts as the middleman
between view and model. Its task is to take user input from the view and decide what
to do with it. View is simply the interface that end-user sees and interacts with [27].
The general model of the MVC-pattern can be see on figure 4.1.

Figure 4.1: MVC design pattern

Here controller accesses the data from the model and updates view according to
it. User can see the data presented in the view and interact with the application via
view. Controller handles user interaction coming from the view and updates model
accordingly.

Even though the author of the Symfony web-framework calls the framework a
“HTTP framework” instead of MVC framework, it actually contains all the compo-
nents that help developer to organize his code following the well-known Model-View-
Controller (MVC) design pattern [26]. Models are called entities in the Doctrine object-
relation-mapper (ORM) implementation and are responsible for data persistence. Con-
trollers of the application are extending the Controller class of the Symfony Framework
bundle and views are handled by the Twig9 templating-engine that comes with the base
Symfony package.

9http://twig.sensiolabs.org/

32

http://twig.sensiolabs.org/

4.2.2 Bundles

Symfony2 web-framework organizes the code into bundles. Bundle is simply a directory
that contains everything related to a specific feature, including PHP classes, configura-
tion, also styleshseets, Javascript files and html templates. Bundle is similar to plugin
in other software. The main difference is that everything in Symfony2 is a bundle,
meaning that all the framework core functionality as well as the software written for
an application are organized in bundles. Using bundles, makes it very easy to add new
packages into the application. All that is needed, is to include new bundle location into
Composer configuration, install it and make it available in the application by including
new bundle name in the application configuration [11].

The main functionality of the application is located inside the ValidatorBundle. In
addition there is also UserBundle, which expands a special bundle called FOSUserBun-
dle10 and contains all the functionality that is needed for registering, authenticating
and authorizing users to access the application as well as user profile management.

ValidatorBundle contains three controllers:

• ValidationController

• ShareController

• ReportController

In following subsections I will give more detailed overview about each of these con-
trollers.

4.2.3 ValidationController

The responsibility of the ValidationController is to control how end-user can create,
read, update and delete his validation related data entities. The class diagram of the
data entity classes can be seen on figure 4.2.

Figure 4.2: Validation class diagram

The main idea behind the data entities is that each Validation entity can contain
many AnalyticalProcedure entities. AnalyticalProcedure entities can contain many
Characteristic entities and Characteristic entities can contain many FieldData entities.
FieldData entities are the actual data containers. These entities store the data that

10https://github.com/FriendsOfSymfony/FOSUserBundle

33

https://github.com/FriendsOfSymfony/FOSUserBundle

is entered by the end-user. All the calculations and report generation is done based
on the data stored in FieldData entities. When end-user creates and configures a new
validation process, a new Validation entity together with AnalyticalProcedure and
Characteristic entities are created and stored in the database. FieldData entities are
created and stored in the database only after end-user actually enters some data to
any of the characteristic form.

Actual data persisting is handled by the Doctrine ORM, which has many conve-
nience features like automatic cascade persist and remove as well as orphan removal.
These features help developer to achieve consistency of the data model as it automat-
ically persists and removes entities that are related to given instance of entity class.
Also, when some of the related entities are removed, Doctrine ORM takes care of or-
phan entities removal without developer needing to create a lot of boilerplate code to
handle such cases [13].

Each validation entity contains the configuration data that user specifies during
the creation of the validation entity. In this configuration data, user can choose which
analytical procedures he wants to work with, which characteristics should be present
in each of the analytical procedures and finally choose specific filter values for each
characteristic, which are shown to end-user as a decision tree, where he can choose
only one certain branch that determines which fields will be present in the form that
will be later generated during data entry.

4.2.4 ShareController

The responsibility of the ShareController is to control how end-user can manage sharing
his validations with other end-users. The idea on how the entities are organized to
achieved the sharing of a validation between users is shown on the figure 4.3.

Figure 4.3: Validation Sharing Class Diagram

ShareController interacts with the system users that are managed by the UserBun-
dle. There can be many ValidationUser class instances that each know about the User
and Validation entities that should be bound together. In addition, there is a Permis-
sionType entities, that determine what an user is allowed to do with the Validation.
There are three permission types available:

1. PERMISSION_TYPE_ALL - this is only assigned to the user who created a
particular validation;

34

2. PERMISSION_TYPE_READ - this allows user to only read the validation and
not make any changes to it;

3. PERMISSION_TYPE_UPDATE - this allows user to both read and update a
particular validation entity.

4.2.5 ReportController

The responsibility of the ReportController is to control how end-user can configure
reports to some specific validation and also handles the coordination of how any of the
reports gets rendered based on the report configuration and data entered by end-user
during validation process. Each user can create many reports for any given validation.
The overall class diagram for report generation was shown on figure 3.3 and described
in more detail in section 3.2.

4.3 Form Generator
As I described in section 3.1 there was a need for a dynamic form generator in this soft-
ware tool. My implementation is based on the form component11 available in Symfony
web-framework.

4.3.1 Form generation

In [29] the author of the form component describes following key aspects that was used
while creating this component:

• Abstraction - ability to take any part of the form and put it into a reusable data
structure;

• Extensibility - contains two main concepts: specialization, which means that it
is possible to extend any given data structure and mixins, which allow attaching
functionality to existing object without specializing them;

• Compositionality - by using Composite pattern [30], it makes it possible to nest
data structures into themselves, as there is no difference between fields and forms
in Form component, this makes it possible to build as complex forms as needed;

• Separation of Concerns - data transformation, HTML generation (the view),
validation and data mapping are all decoupled components;

• Model Binding - the form component reuses existing metadata from the model
and also reads default values from the domain object and writes values back to
object;

• Dynamic Behavior - this allows adding and removing field to form dynamically,
allowing to create repeated form elements

11https://github.com/symfony/Form

35

https://github.com/symfony/Form

By default this form component is used to map existing data entity fields to a certain
form elements and all this is done in the code. As this would have meant that all the
characteristics have to be described in the program itself, making the expanding of the
software extremely difficult. I came up with the idea, where I described the forms and
fields present on them in external configuration files and built a special configuration
parser. This parser creates a hierarchy of configuration objects and injects this hierar-
chy into special form builder class instance. Form builder dynamically creates a form
for a certain characteristic based on the meta-data that comes from configuration and
also the configuration data that user made previously while creating and configuring
the actual validation record. This includes the filters specification which allows the
form builder to create a form that only has the fields available that have certain filter
assigned to them.

4.3.2 View rendering

Forms are rendered by the Twig templating engine. Together with the form component,
the actual form rendering is made really simple. There is no need to specify the actual
fields in the form but instead the compositionality aspect takes care of the automatic
form rendering. As all the forms and form elements are nested in other forms and form
elements, it is sufficient to only pass the top-level form element to the view and view
can recursively render all the parts. So the actual code needed to render the whole
form in the view is just one line as following:
{{ form_widget(form) }}

There is one important idea in the Twig form rendering, and that is the idea that
it is possible to override every aspect how any of the form element types are visually
rendered. Each form element is rendered by some widget. It can be number_widget,
file_widget, text_widget, etc. By specifying how exactly we want to show any partic-
ular form element, we are describing that in the template file and next the rendering
engine will use that info. If we are satisfied with the default looks of the elements,
we really don’t have to do anything, but in case we want to apply some styling or
additional formatting to any of the elements, we are free to do that by modifying these
widgets. E.g. if we want to apply certain CSS-class to form fields that will show
numeric values, we can do following in our Twig-template:
{% block number_widget %}

{{ form_widget(form , { ’attr ’: {’class ’: ’input -small ’} }) }}
{% endblock %}

Here we redefine the block number_widget and assign class-attribute with value
“input-small”. Similarly we can redefine every aspect of how form elements should
be rendered without the need to actually explicitly assign any of these customization
parameters to specific form elements, but only apply them to the generic form field
types instead.

4.3.3 Data Validation

In addition to form generation and rendering in views that end-user can see and interact
with, there is also a need to actually validate the data that user enters to make sure that
we are going to save only correct values. This is achieved by applying the validation
constraints to form fields. These validation constrains are described in characteristic

36

configuration files for each of the input fields as described in section 3.1.4. After
these validation constrains are specified while forms are generated, they will be applied
automatically after user submits the form. In case of any of the validations fail, data
is not persisted into database and user will be notified about what fields need to be
corrected.

4.3.4 Data Persisting

Final step in form data handling is the actual data persistence. This is achieved by
Doctrine ORM component. Again, I did not want to create any characteristic-specific
data entities, that would make the software very inflexible, instead there is a general
FieldData entity that stores the actual data as serialized representation of the actual
value, which can be any kind of data, like array, textual values, numeric values, path
to certain uploaded file, etc.

4.4 Report Generator
After end-user has entered data into characteristic forms, it is important that the
entered data and data calculated and generated based on the entered data could be
shown in a specific report. For that purpose a report generator was implemented.
After end-user has created a new report instance for a specific validation entity, he
will be presented with the possibility to choose which sections will be present in the
final report. These sections are recursive as was described in section 3.2 and allow
end-user to choose which exact parts he want to show in final report. General class
diagram of how report generation works was shown in 3.3. Reports are built based on
the pre-defined templates. Each of the templates contains sections which can contain
sub-sections recursively. Report generator parses the template configuration file and
creates instances of particular renderer classes. These instances will use the given input
data whether this is a data field value, or some calculated value. After the renderer
has produced the output this output will be returned to report generator and finally
passed to Twig-template engine which will produce the final report.

4.5 Unit Testing
There is a widely used unit testing framework available for PHP language, called PH-
PUnit12. PHPUnit belongs to a XUnit family together with the JUnit for Java, Cp-
pUnit for C++, NUnit for .NET and many other. The XUnit family started with
the with the SUnit for Smaltalk. In [31] the idea of the unit testing framework was
introduced. The philosophy of the unit testing is to create a special unit test class for
each one of the classes you want to test. Framework gives developer convenient way of
writing such test-classes and run these tests regularly. This helps developer to cover the
important parts of the application with unit tests and thus make the changing of the
application much more secure. If some change has made to a class that is covered by
unit tests, developer can run the pre-defined test cases and see if there was a regression
or not.

12http://www.phpunit.de/

37

http://www.phpunit.de/

In current software tool, I covered all the calculator classes with unit tests, that
perform calculations on user-entered data and produce a result of some statistical
computation.

4.6 User Interface
In this section I will introduce the user interface of the software tool for analytical pro-
cedure validation. User interface is built using Twitter Bootstrap library that contains
many ready-made components to conveniently and quickly produce nice-looking and
functional user interfaces.

4.6.1 User registration and login

Before user can start using the application, he has to register as the user of the appli-
cation. After registration user will be able to log in. Both registration and login views
are shown on figure 4.4.

(a) User registration (b) Login

Figure 4.4: User registration and login views

4.6.2 Profile modification

After user successfully logs in, he can manage his profile. He can specify the full name
and also change password of his account. Sample views can be seen in figure 4.5.

38

(a) User profile update (b) Password change

Figure 4.5: User profile and password change views

4.6.3 Validation creation

First step in starting an actual analytical procedure validation is to create new valida-
tion entity as shown in figure 4.6.

Figure 4.6: Validation entity creation

There are several important parameters here that user needs to choose. First, the

39

type of the validation, which indicates what validation guideline should be followed for
current validation. Current prototype only has one type “ICH” available, but additional
validation guidelines can be added later.

Next, the “name” and “description” parameters are there so user could identify his
validations from the list of many validations. And finally there are several measurement
unit selections that user can choose from. Each one of these selections represents one
specific unit type. E.g. user can choose what should be the time units for all the fields
storing time-related data throughout the current validation. These selected unit types
will be shown next to fields during the data entry in characteristic forms and guide
user so he knows which unit is expected at any particular field.

After validation entity is created, user will be redirected to configuration view,
where he can start specifying which exact analytical procedures he wants to validate
and which characteristics are needed there. A sample view of such configuration tree
fragment is shown in figure 4.7.

Figure 4.7: Validation configuration view

The configuration view is shown as one decision tree, where on top level there are
validation procedures (“Assay”), next there are characteristics (“Accuracy”, “Precision
Repeatability”, “Specificity”, etc.) and for each characteristic there are configuration

40

choices, which are actually filters that will help to show only subset of all possible fields
in any particular characteristic data entry form. User can choose many characteristics
using check-boxes, but only choose one of the branches for every characteristic. For
this purpose radio-buttons are used. E.g. in current example shown in figure 4.7 user
can only choose one of the values under “Precision Repeatability”, it can be “Multiple
Concentration Level” or “100% Test Concentration Level”.

4.6.4 Characteristic data entry

After user has configured the characteristics that he wants to enter data for, he can
head to actual data entry part of the application. Based on the previously made choices
he will be shown only relevant characteristics as shown on figure 4.8.

Figure 4.8: Characteristics available for data entry

After clicking on one of the “Enter Data” buttons, user will be headed to actual data
entry form that is dynamically generated based on the configuration data as shown on
figure 4.9.

Figure 4.9: Data entry form for linearity

There are several important ideas present in this figure, first there is the concept
of multi-field present in the form of two fields “Concentration” and “Signal” grouped

41

together. Next, the repeated field idea is present, which can be seen from the fact
that more than one block of same fields are present. The trashcan button next to field
is for user to remove that particular field if needed. Also, it can be seen that units
are shown next to field, these are the actual units that user selected during validation
entity configuration. Small icons with the “i” on them are used to indicate that there
is a tooltip present for that field, which can be seen after user moves his mouse cursor
over the icon.

The concept of data field constraints in action can be seen from the first “Concen-
tration” field, which is shown with red color and special error-message next to field,
which indicates that given field should not be left blank.

And finally there is the concept of output fields present in figure 4.9. As described
in section 3.1.5, these are special fields that use other fields, both input and output, to
perform some calculations and return a value or array of result values. In current exam-
ple it can be seen, that many statistical calculations were made on the concentration
and signal values, like correlation coefficient, y-intercept and slope of the regression
line, and many other. All these calculated results are important for the end-user to
see right next to data entry form, as he will get the idea on how well his analytical
procedure is suited for a particular need from the validation point of view.

4.6.5 Report creation

First step in creating a report for a validation is to add new report entity. As shown
on 4.10 user needs to specify a name for a report together with the template. After
creating a report entity, user will be presented with the available sections in that par-
ticular template. User can choose as many sections as needed. Sections are organized
hierarchically in tree-like structure, which allows user to see which sub-sections belong
to which parent section.

42

Figure 4.10: Validation report creation

After the report entity is created and output sections are configured, an actual
report can be generated. A fragment from a sample report could look as shown on
4.11.

43

Figure 4.11: A fragment of a sample report

There can be any kind of data present in a report, it may contain simple values,
calculated values based on the data entered, tables, images, diagrams created based on
the data entered, etc.

E.g. calibration curve diagram is shown on 4.11. For generating charts dynamically
I am using the Highcharts JS library13.

4.7 Roundup
In this chapter I gave an overview of the implementation of the software tool for
analytical procedure validation. First an architecture of the software was overviewed,
followed by the more detailed description of some of the important components like
form generator and report builder. Final section of the chapter introduces the user
interface of the software tool via sample screen shots.

13http://www.highcharts.com/

44

http://www.highcharts.com/

Chapter 5

Conclusion and Future Work

The aim of this thesis was to implement a working prototype of a software tool for
analytical procedure validation. This prototype was built based on one certain valida-
tion guideline [1]. All the possible characteristic types that were present in mentioned
validation guideline were described in special configuration files. It is now possible to
add new configurations for similar validation guidelines, based on the given solution,
to extend the application functionality. In addition to validation guideline description,
also the needed calculated fields were described in configurations together with the
calculator classes that are capable of producing the results based on the entered data.

In addition to describing the validation guideline related characteristics, also simple
report template was described together with the classes capable of rendering these
reports. Reports can contain the values entered by users, as well as computed results
and charts generated based on the entered data. Different renderers allow showing data
in various forms, like simple numbers and text, as tables, images with descriptions or
diagrams.

The software tool built, contains two major parts: dynamic form builder and dy-
namic report builder. Both of these parts are built in modular fashion, meaning that
they can be easily extended to add new functionality.

Current software tool, that was built, describes all the needed configuration data for
specific validation guidelines in special JSON-format configuration files. It is not very
easy for domain experts to describe such configurations themselves without learning
JSON-format. This means that one of the most important feature needed in the future
is a special configuration management tool, that would help domain experts to describe
the validation guidelines themselves without the help of a developer. We foresee that
the configuration tool could take the form of a simple visual forms builder allowing
domain experts to create and drag-and-drop fields and groups of fields and to add
filters, constraints and other properties as defined in the forms specification language.
The report generation could similarly take the form of a visual tool allowing the domain
experts to drag-and-drop fields defined in the forms corresponding to a given validation
procedure. This configuration tool could use current configuration files as data storage,
or save the configuration into database.

In addition to configuration management tool, there is a need to create libraries
that would help importing data from the files exported from the software controlling
the actual HPLC equipment. At the moment all the data is entered manually by the
end-users, after such libraries are created, it would be possible to simply import data
from data files.

45

It would be important to add context-sensitive help-system to the program, so that
end-user would be able to get as much support from the program as possible. The idea
would be generating an index of terminology used in procedure validation and make it
possible for user to access that index from the program.

Finally, a conversion tool would be needed, that would help users to convert a
validation of one specific guideline into validation of some other validation guideline.
Such a conversion tool would help an analyst to validate his analytical procedure against
many different validation guidelines without the need to enter the same data more than
once. As there are overlaps of the data needed in many of the validation guidelines, it
would be possible to create some conversion rules from one guideline to other.

46

Tarkvara analüütiliste HPLC
protseduuride valideerimiseks

Paljude tööstus- ja teadusasutuste igapäevatöö hõlmab regulaarset keemiliste analüü-
side läbiviimist. Vajadus analüüside järele on erinev, see võib olla kas vajadus määrata
sportlaste uriinis või veres keelatud ainete sisaldust või hoopis vajadus mõõta toimeainete
sisaldust ravimis. Selleks, et sarnaseid analüüse usaldusväärselt läbi viia ning saavu-
tada usaldusväärsed tulemused, tuleb jälgida kindlat reeglistikku, mis määrab, et kind-
lad tingimused on täidetud ja kindlad sammud analüüsi protsessis on läbitud. Sell-
ist reeglistikku nimetatakse analüütiliseks protseduuriks ehk analüütiliseks meetodiks.
Selleks, et analüütiline meetod oleks nii usaldusväärne ja laialdaselt kasutatav kui või-
malik, tuleb see valideerida. Selleks, et mingit analüütilist meetodit valideerida, tuleb
järgida valideerimise juhendit, et kindlaks teha, kas konkreetne metoodika on tegelikult
sobiv selleks, mille jaoks ta kavandati.

Paljudel juhtudel saab keemilisi analüüse sooritada kromatograafia abil, täpse-
malt kasutades kõrgsurve vedelikkromatograafi. Kujutades ette keemialaborit kalli ja
tehnika viimase sõna järgi sisustatud seadmetega, siis on loomulik, et neid seadmeid
juhitakse ja nendega suheldakse arvuti abil. Hoolimata selles, et seadmetega suhtlemine
ja nende kontrollimine käib arvutite abil, tuleb analüütilise meetodi valideerimist endis-
elt sooritada käsitsi. Esmalt tuleb kasutajal ennast kurssi viia konkreetsete valideerim-
isjuhenditega, mis võivad olla ühtaegu mahukad kui ka kaunis üldised. Järgmisena tuleb
valideerimise käigus mõõta ja üles märkida kindlad karakteristikute väärtused. Edasi
tuleb nende talletatud mõõtmistulemuste väärtustega sooritada erinevaid arvutusi ja
saadud tulemuste põhjal otsustada, kas kindlad kriteeriumid on täidetud või mitte.
Viimaks tuleb saadud tulemuste põhjal luua detailne valideerimisraport, mida oleks
võimalik analüütilise protseduuri juhendile kaasa panna, et näidata vastava metoodika
sobivust ettenähtud eesmärgi täitmiseks.

Kõike seda vaevarikast tööd peab kasutaja sooritama käsitsi, kulutades suure hulga
oma tööajast rutiinsele valideerimistegevusele, samas kui selle asemel võiks parendada
analüüsi metoodikat ennast.

Loomuliku lahendusena eelkirjeldatud probleemile oli luua tarkvara, mis aitaks
keemikuid vähendada sellise käsitsi tehtava töö hulka. Käesoleva magistritöö eesmärgiks
oligi luua tarkvara, mille ülesandeks on aidata kasutajal valideerida kindlat analüütilist
protseduuri, juhendades teda, milliseid konkreetseid karakteristikuid tuleb mingil juhul
sisestada, arvutab vajalikud väärtused etteantud karakteristikute põhjal ning genereerib
lõpuks raporti, mis sisaldab nii sisestatud andmeid kui arvutuste tulemusi.

Kuigi loodud tarkvara loomisel lähtuti ühest konkreetsed valideerimise juhendist,
täpsemalt ICH Harmonized Tripartite Guideline-st, on tarkvara ehitatud viisil, mis
võimaldab lisada lihtsalt uusi juhendeid ja laiendada vajadusel tarkvara funktsionaal-
sust.

47

Bibliography

[1] Text on Validation of Analytical Procedures. ICH Harmonised Tripar-
tite Guideline. October 1994.

[2] Documentation for Symfony2 framework. Published online http://
symfony.com/doc/current/index.html. Last visited April, 2013.

[3] VALIDAT - The Leading Solution for Method Validation. Published
online https://www.icd.eu/produkte/methodenvalidierung.html.
Last visited April, 2013.

[4] Kromatograafia loenguslaidid. Published online http://tera.chem.
ut.ee/~ivo/Chrom/chrom.pdf. Last visited April, 2013.

[5] Lloyd R. Snyder, Joseph. J. Kirkland, Joseph L. Glajch. Practical
HPLC Method Development. 1997.

[6] Ivo Leito. Analüüsimetoodikate valideerimine. Lecture slides. February
4, 2013.

[7] Documentation for Twitter Bootstrap framework. Published online
http://twitter.github.io/bootstrap/getting-started.html.
Last visited April, 2013.

[8] Documentations for Jasny Twitter Bootstrap extension package.
Published online http://jasny.github.io/bootstrap/. Last visited
April, 2013.

[9] Documentation for PHPStats Statistical Library. Published online
http://mcordingley.github.io/PHPStats/index.html. Last visited
April, 2013.

[10] Documentation for Vagrant software. Published online http://docs.
vagrantup.com/v2/getting-started/index.html. Last visited April,
2013.

[11] The Bundle System. Symfony documentation. Published online
http://symfony.com/doc/current/book/page_creation.html#
page-creation-bundles. Last visited April, 2013.

[12] Introduction to JSON. Published online http://www.json.org/. Last
visited April, 2013.

48

http://symfony.com/doc/current/index.html
http://symfony.com/doc/current/index.html
https://www.icd.eu/produkte/methodenvalidierung.html
http://tera.chem.ut.ee/~ivo/Chrom/chrom.pdf
http://tera.chem.ut.ee/~ivo/Chrom/chrom.pdf
http://twitter.github.io/bootstrap/getting-started.html
http://jasny.github.io/bootstrap/
http://mcordingley.github.io/PHPStats/index.html
http://docs.vagrantup.com/v2/getting-started/index.html
http://docs.vagrantup.com/v2/getting-started/index.html
http://symfony.com/doc/current/book/page_creation.html#page-creation-bundles
http://symfony.com/doc/current/book/page_creation.html#page-creation-bundles
http://www.json.org/

[13] Working with Associations. Doctrine ORM documenta-
tion. Published online http://docs.doctrine-project.
org/projects/doctrine-orm/en/latest/reference/
working-with-associations.html. Last visited April, 2013.

[14] XForms W3C recommendation. Published online http://www.w3.org/
TR/xforms/ Last visited May, 2013.

[15] Kurt Cagle. Why XForms Matter, Revisited. Published on-
line http://www.oreillynet.com/xml/blog/2006/03/why_xforms_
matter_revisited.html. Last visited May, 2013.

[16] Kurt Cagle. Understanding XForms: The Model. Published online
http://www.oreillynet.com/xml/blog/2006/03/understanding_
xforms_the_model.html Last visited May, 2013.

[17] Kurt Cagle. Understanding XForms: Components. Published online
http://www.oreillynet.com/xml/blog/2006/06/understanding_
xforms_component.html Last visited May, 2013.

[18] XForms W3C Recommendation. 6.1.3. The required Property. Pub-
lished online http://www.w3.org/TR/xforms/#model-prop-required
Last visited May, 2013.

[19] XForms W3C Recommendation. 8.1.5. The output Element. Published
online http://www.w3.org/TR/xforms/#ui-output Last visited May,
2013.

[20] XForms W3C Recommendation. 9.3. The XForms Repeat Module. Pub-
lished online http://www.w3.org/TR/xforms/#ui-repeat-module
Last visited May, 2013.

[21] Philipp Wagner. The Future of Mozilla XForms. Published
online http://www.philipp-wagner.com/blog/2011/07/
the-future-of-mozilla-xforms/ Last visited May, 2013.

[22] XForms in Mozilla developer network. Published online https://
developer.mozilla.org/en-US/docs/XForms Last visited May, 2013.

[23] Rein Raudjärv. Dynamic Schema-Based Web Forms Generation in Java.
Master Thesis, University of Tartu, 2010.

[24] Marcello La Rosa, Wil M.P. van der Aalst, Marlon Dumas, Arthur
H.M. ter Hofstede. Questionnaire-based Variability Modeling for Sys-
tem Configuration. 2008.

[25] Orbeon Wiki. Repeated Content. Published online http:
//wiki.orbeon.com/forms/projects/form-runner-builder/
repeated-content Last visited May, 2013.

[26] Fabien Potencier. What is Symfony2? Published online http://
fabien.potencier.org/article/49/what-is-symfony2 Last visited
May, 2013.

49

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/working-with-associations.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/working-with-associations.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/working-with-associations.html
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.oreillynet.com/xml/blog/2006/03/why_xforms_matter_revisited.html
http://www.oreillynet.com/xml/blog/2006/03/why_xforms_matter_revisited.html
http://www.oreillynet.com/xml/blog/2006/03/understanding_xforms_the_model.html
http://www.oreillynet.com/xml/blog/2006/03/understanding_xforms_the_model.html
http://www.oreillynet.com/xml/blog/2006/06/understanding_xforms_component.html
http://www.oreillynet.com/xml/blog/2006/06/understanding_xforms_component.html
http://www.w3.org/TR/xforms/#model-prop-required
http://www.w3.org/TR/xforms/#ui-output
http://www.w3.org/TR/xforms/#ui-repeat-module
http://www.philipp-wagner.com/blog/2011/07/the-future-of-mozilla-xforms/
http://www.philipp-wagner.com/blog/2011/07/the-future-of-mozilla-xforms/
https://developer.mozilla.org/en-US/docs/XForms
https://developer.mozilla.org/en-US/docs/XForms
http://wiki.orbeon.com/forms/projects/form-runner-builder/repeated-content
http://wiki.orbeon.com/forms/projects/form-runner-builder/repeated-content
http://wiki.orbeon.com/forms/projects/form-runner-builder/repeated-content
http://fabien.potencier.org/article/49/what-is-symfony2
http://fabien.potencier.org/article/49/what-is-symfony2

[27] Martin Fowler. GUI Architectures. Model View Controller. Pub-
lished online http://martinfowler.com/eaaDev/uiArchs.html#
ModelViewController Last visited May, 2013.

[28] Abhijit Menon-Sen. Using Git to manage a web site. Published online
http://toroid.org/ams/git-website-howto Last visited May, 2013.

[29] Bernhard Schussek. Symfony2 Form Architecture. Pub-
lished online http://webmozarts.com/2012/03/06/
symfony2-form-architecture/ Last visited May, 2013.

[30] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Ele-
ments of Reusable Object-Oriented Software. 1994.

[31] Kent Beck. Simple Smalltalk Testing: With Patterns. Published on-
line http://www.xprogramming.com/testfram.htm Last visited May,
2013.

[32] Requirements for running Symfony2. Published online http://
symfony.com/doc/current/reference/requirements.html Last vis-
ited May, 2013.

[33] Installing and Configuring Symfony. Published online http://
symfony.com/doc/current/book/installation.html Last visited
May, 2013.

[34] Databases and Doctrine. Symfony documentation. Published online
http://symfony.com/doc/current/book/doctrine.html Last vis-
ited May, 2013.

[35] Daniel F. Gieskens, James D. Foley: Controlling User Interface Objects
Through Pre- and Postconditions. In Proceedings of the International
Conference on Human Factors in Computing Systems (CHI), Monterey,
CA, USA, May 1992, pp. 189-194

50

http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController
http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController
http://toroid.org/ams/git-website-howto
http://webmozarts.com/2012/03/06/symfony2-form-architecture/
http://webmozarts.com/2012/03/06/symfony2-form-architecture/
http://www.xprogramming.com/testfram.htm
http://symfony.com/doc/current/reference/requirements.html
http://symfony.com/doc/current/reference/requirements.html
http://symfony.com/doc/current/book/installation.html
http://symfony.com/doc/current/book/installation.html
http://symfony.com/doc/current/book/doctrine.html

Appendix A

Resources
The source code of the software tool for analytical procedure validation is available on
the CD attached to this thesis.

51

Appendix B

Required Software
As the software tool is built on top of Symfony2 web-framework, it relies on the system
requirements of Symfony2 [32]:

Required

• PHP needs to be a minimum version of PHP 5.3.3

• JSON needs to be enabled

• ctype needs to be enabled

• Your PHP.ini needs to have the date.timezone setting

Optional

• You need to have the PHP-XML module installed

• You need to have at least version 2.6.21 of libxml

• PHP tokenizer needs to be enabled

• mbstring functions need to be enabled

• iconv needs to be enabled

• POSIX needs to be enabled (only on *nix)

• Intl needs to be installed with ICU 4+

• APC 3.0.17+ (or another opcode cache needs to be installed)

• PHP.ini recommended settings

– short_open_tag = Off

– magic_quotes_gpc = Off

– register_globals = Off

– session.auto_start = Off

52

Doctrine

If you want to use Doctrine, you will need to have PDO installed. Additionally, you
need to have the PDO driver installed for the database server you want to use.

Installation
Actual installation of the application together with the Symfony2 framework and other
used bundles is simple when there is a Composer dependency manager installed:
curl -s https :// getcomposer.org/installer | php

After composer is available on the system the source code needs to be copied to
the folder where the software will be hosted in the server and next following command
needs to be run to retrieve all the needed packages:
php composer.phar install

After all the software packages are downloaded, it is needed to set correct file
permissions. There are several possibilities for setting these permissions depending on
the filesystem and ACL support availability on particular system. In case of ACL is
supported, permissions can be set using following commands:
$ rm -rf app/cache/*
$ rm -rf app/logs/*

$ sudo chmod +a "www -data allow delete ,write ,append ,file_inherit ,
directory_inherit" app/cache app/logs

$ sudo chmod +a "‘whoami ‘ allow delete ,write ,append ,file_inherit ,
directory_inherit" app/cache app/logs

Other possibilities are listed in [33].
After the permissions are correctly set, there is only one more thing to do, it is

configuring database and creating the schema. This is done by editing the app/con-
fig/parameters.yml file, where correct database accessing requisites have to be specified
[34]:
app/config/parameters.yml
parameters:

database_driver: pdo_mysql
database_host: localhost
database_name: test_project
database_user: root
database_password: password

Creating the database is done using following command:
$ php app/console doctrine:database:create

And finally to create the schema, following command has to be run:
$ php app/console doctrine:schema:update --force

After that application should be ready and can be accessed from the address where
the application was installed in a particular server.

53

Non-exclusive license to reproduce
thesis and make thesis public

I, Martin Vels (born 26.09.1976),

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

(a) reproduce, for the purpose of preservation and making available to the pub-
lic, including for addition to the DSpace digital archives until expiry of the
term of validity of the copyright, and

(b) make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright, my master thesis “Software Tool for Validation of
Analytical HPLC Procedures”, supervised by prof. Marlon Dumas.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2013

54

	Acknowledgements
	Introduction
	Background and Problem Domain
	Liquid Chromatography
	Validation of Analytical Procedures
	Specificity
	Accuracy
	Precision
	Detection Limit
	Quantitation Limit
	Linearity
	Range
	Robustness

	Scope and Requirements
	Roundup

	Related Work
	Existing solutions
	Dynamic form generation
	XForms
	Document containing XForms elements
	Output fields
	Required fields
	Repeated fields
	Rendering of XForms

	Dynamic Questionnaire Systems
	Roundup

	Forms and Report Definition
	Model for defining the dynamic forms for procedure validation
	Validation Type Configuration
	Analytical Procedure Type Configuration
	Characteristic Type Configuration
	Input Field Type Configuration
	Output Field Type Configuration

	Model for defining reports
	Roundup

	Implementation
	Software Stack
	Framework for Back-End
	Framework for Front-End
	Development Tools

	Architecture
	MVC
	Bundles
	ValidationController
	ShareController
	ReportController

	Form Generator
	Form generation
	View rendering
	Data Validation
	Data Persisting

	Report Generator
	Unit Testing
	User Interface
	User registration and login
	Profile modification
	Validation creation
	Characteristic data entry
	Report creation

	Roundup

	Conclusion and Future Work
	Summary (in Estonian)
	Appendix A
	Resources

	Appendix B
	Required Software
	Installation

