Chapter 1

THE THEORY OF THE ASPIRATION METHOD
UNDER IDEAL CONDITIONS

§1. AIR IONS

The fundamental views on the mechanism of electrical conductivity of
air were established at the beginning of our century, mainly by Giese
/ Giese, 1882/ and J.J. Thomson / Thomson, J.J., Rutherford, 1896/. An
extensive review of the earlier work may be found in the well-known
monograph by Wiedemann /[Wiedemann, 1885/,

The electrical conductivity of air is associated with the presence of
charged particles capable of moving in an electric field, Elementary
ionization events create positively charged ions and free electrons.
However, the lifetime of free electrons and of monomolecular ions in air
at atmospheric pressure is very short. Free electrons and monomolecular
ions play an appreciable role only in very fast processes, for the investiga-
tion of which the aspiration method is not suitable for various reasons,
Neutral molecules attach themselves to the initially charged particles and
a bond is formed by electrical and molecular forces. The relatively stable
particles formed in this way are called light air ions. Little is known about
the internal structure of the light air ions /Israél, 1957b/. Segal /Segal,
1962/ tried to calculate theoretically the probability of formation of light
air ionsg with different structures.

Light air ions are essential in the conductivity mechanism of atmospheric
air,

Soon after the establishment of the ionic theory of air conductivity, the exist-
ence of larger charge carriers wasdiscovered / Townsend, 1898; Lenard, 1900;
Langevin, 1905a, 1905b/; these were called heavy air ions. Heavy air ions
are formed as a result of the attachment of light air ions to aerosol particles
contained in air. By their nature, heavy air ions are not ions in the usual
gense, but solid or liquid charged particles suspended in air which remain
stable even after losing their charge,

In atmospheric electric phenomena the heavy air ions act as spaced
charge carriers.

Light and heavy air ions move with different velocities in an electric
field. For the study of electric currents in air, the different nature of the
charge carriers has no significance and it suffices to characterize the air
ions in terms of their mobility only. It is therefore advisable to describe
the light and the heavy air ions from a common point of view, using the
general term air ions.

In the field of atmospheric electricity one usually uses the term
atmospheric ions, which has the same significance and may be

considered as synonymous to the term air ions. However, to denote
charged particles formed in laboratory or industry the term air ions

is more suitable. .
The mean velocity of an air ion in an electric field is proportional to the

>
field strength E:

;:kE (1.1)

For the lightest air ions, relation (1.1) is applicable only at field
strengths up to 10kV/cm /Mitchell, Riedler, 1934; Balog, 1944/.

The mobility ¢ of an air ion is by definition positive for positively charged
and negative for negatively charged air ions. Usually, the absolute value of
k is taken as the mobility of air ions, To simplify notation we shall adopt
the following convention, If some quantity x has a subdot, then

lxl=x. (1.2)

Thus the letter k (without the subdot) stands for the mobility of air ions
in the usual sense. The use of dotted letters for polar quantities is

-
analogous to the vector notation: |x|=x.

The largest particles that can be considered air ions are those for which
gravity and inertia forces are still negligible. A sufficient condition for
this is evidently

m{ﬁqﬁ::’_7 (1.3)
e+

where m is the mass of the particle, g is the gravitational acceleration,
and g is the absolute value of the particle charge.

This description of an air ion is satisfactory if the chemical nature and
the mass of the charge carriers have no gignificance, as when considering
processes in air. In many cases, however, the chemical nature and the
massg of the particles cannot be neglected, but such problems are of
secondary significance in our analysis.

The usual measuring methods give only the macroscopic parameters of
jonized air. Charges of individual ions are undetectable., It is therefore
advisable to characterize ionized air in terms of parameters which are
independent of the air-ion charges,

lonized air is characterized by the differential mobility distribution
function of charge density, or by the differential mobility spectrum

o(k) =3¢, (1.4)

where dy is the charge density due to air ions with mobilities between &k and
k+dk. )

The distribution function ¢(k) is positive for positive £ and negative for
negative k. One often uses the spectrum g¢(k), which is the absolute values
of ¢(k) as defined by (1.2), e(k) describes only the spectrum of air ions of



one polarity. To describe spectra of air ions of both polarities one has to
introduce the two functions Q+(k) and o_(%). The mobility spectrum of air
ions of both polarities is denoted by ¢, (¥). If air ions of only one polarity
are considered, and the polarity is of no significance, the subscript + may
be omitted.

The charge density in the interval (&, &) is determined by the integral
over the distribution function

ks

@k, k) =J e(k)dk. (1.5)

Similarly one finds the density of the negative charge ¢-=g¢(— ,0), the
density of the positive charge e,=¢(0,00) and the total charge density
0=0p(—o0,0 )

The current density spectrum (or distribution function) in still air is
expressed in terms of ¢(k) as follows.

J(ky=1vq(k)=ko (k) E=A(K)E. (1.6)

We shall call A{k) =ke(k) the conductivity spectrum, Integration of A(k)
gives the conductivity in the interval (&, &;) '

Ay
Alks, ) =‘{u{e)d{e, (1.7)

When taken between appropriate limits, this integral gives the negative
conductivity A-=A(—ee, 0), the positive conductivity A+=4(0,) and the
conductivity A =Ai(—e0,),

Neither the conductivity spectrum nor the integrated conductivity (for
& <k;) can be negative, The interchange of the variables k, and k, reverses
the sign of the charge density g(k, k) and of the conductivity A(k, ).

In the system of absolute values the charge density and tﬁe.cc.:nductivity
are positive if %k <k; and negative otherwise, Here k, and &, should
represent mobilities of the same polarity. To describe the spectrum of
air ions of both polarities, we should consider two complete sets of
parameters: g.(k, &) and e-(ky, B2), Av(ky, k) and A-(k, k). The conductivity
spectrum also becomes double valued: A.(k) and A-(k)., As in the case of
e(k), the subscript + or — may be omitted sometimes, or written in the
form 1. Only when denoting polar charge densities ¢4 and polar conduc-
tivities A,, is the omission of the subscript admissible.

' ’I‘_he use of the function A(k) facilitates the graphical presentation of the
air-ion spectrum in large mobility intervals. The function g(k) is unsuitable
to this end since it usually has large values in the region of small
mobilities, and vice versa. Particular attention should be given to the
graphical presentation of the conductivity spectrum on a logarithmic mobility
scale. The area under the A(k) curve in this case is proportional to the
charge density. This is explained by the relation

J'uk)d(m )= jo(k)dk. (1.8)

The arbitrary constant mobility %, in (1.8) is required in order to ensure
correct dimensions.

Sometimes, the mobility distribution of air ions is characterized by
the partial charge densities of hypothetical discrete groups. In the theory
of measurement methods this approach is unjustified. The actual air-ion
velocity distribution in any experimental arrangement is never strictly
discrete (because of air-ion diffusion, to mention the most obvious factor).
Even if the air-ion spectrum should turn out to be discrete, one must start
with the assumption of a continuous distribution when setting up and
evaluating observations, in order to prove discreteness. This is the best
way to bring out the objective information. A discrete distribution can be
considered as a particular case of a continuous one. To effect a mathema-
tical transformation from a continuous to a discrete distribution, the
function ¢(4) should be written as a sum

e(k) = Zond(keka), (1.9)

where g, are the specific densities of the air ions with mobilities k,. Owing
to the property of the delta function [f(k)d(k — ki) =[(k,) all integral
expressions transform into sums which are characteristic of a discrete
distribution.

In practice one often attempts to calculate the number density ni(k. k) of
air ions. If the charge of all air ions equals one elementary charge, then

k. k2)
nt(k,,kg) :Qi (‘.x : (1.10)

where ¢ is the elementary charge.

Unfortunately the assumption ¢ = e holds only for light air ions. Heavy
air ions and the even heavier, artificially created, charged aerosol
particles may carry a larger charge. When this is the case, formula (1.10)
does not give the actual number density but only some relative quantity,

If the true mean charge of the air ions is unknown, then it would be more
correct to speak of the charge densgity expressed in elementary charges per
unit volume instead of the number density. For singly charged air ions the
last quantity coincides with the number density of air ions.

§2. VELOCITY FIELD OF AIR IONS

Consider a laminar air flow and suppose that the motion of air ions is
determined only by the fluid velocity and the action of the electric field.
The velocity of the air ions is then

> o
o=tk ET (2.1)
N .
where u is the fluid velocity. Equation (2.1) defines the flow lines of air

ions with mobility k. In the case of steady flow the ion flow lines coincide
with the trajectories of the air ions.



We now calculate the density distribution of the flow of air ions passing
through some imaginary surface S,

Through a surface element dS there is a flux of charge given by

di (k) =g(/;c)?d’§=?(lg) dD+ kadN), (2.2)

where 4@ :Zd;‘ is the volume rate of air flow through a surface element

— —_
dS and dN = Ed3 is the electric flux through dS. The density distribution
of the flow through the surface § is

1) = [[ ot8) (@ + kay) =0T @ + &), (2.3)

s

where o(k) is some mean value of e(k) on the surface S, @ is the air flow
rate and N is the electric flux through this surface.

From formula (2.3) follow two conclusions of practical importance
/Tammet, 1964b/;

1. For any flow surface of air ions with mobility * we have

O AN =0, (2.4)

gince /(k) through the surface of the flow always equals zero.
2. For a homogeneous distribution of air ions over gome surface the
density distribution of the flow through this surface is expressed by

I(k) = (D + kNYg(k), (2.5)

Consider now the behavior of the spectrum e¢(#) in the velocity field of the
air ions /Cagniard, 1943, 1944; Tammet, 1960/, Further, let us assume
that the air is incompressible and neglect the recombination and generation
of air ions as well as processes in which the air-ion velocity varies. On
the basis of these assumptions and the law of charge conservation, the law
of conservation of the charge density spectrum follows, and is given by

de(k) -
£ = —divj(k). - (2.8)

-
Since ';'(Ig) =uvg(k), expression (2.6) becomes

ao(k
28 o g(k)divo— Dgradg(k). (2.7)

The variation of g(k) in a point moving along the trajectory of an air ion

=
with velocity v is characterized by the total differential do(k). This is
connected with the partial derivative via the expression

d (k)

dok)) | >
——dt-—:% + vgradg(k), (2.8)

from which we obtain

>
288 — o(erdive (2.9)

>
Since div u= 0 and div _E> =470, we obtain

180 — —4moh (k). (2.10)
This expression describes the phenomenon known as electrostatic
dissipation /Townsend, 1898; Wolodkewitsch, 1933a, 1933b; Forster 1959;
Dunskii, Kitaev, 1960; Whitby, McFarland, 1961; Kitaev, 1962/, Electro-
static dissipation is due to the mutual repulsion or attraction of air ions.
In many cases one may neglect the electric field of the space charge and
—

assume that div £ =0, Then
2@ _, C (2.11)

This formula is a supplement to Liouville's well-known theorem on the
motion of air ions. Formula (2.11) leads to a conclusion which is of great
importance in the theory of the aspiration method: if one neglects generation,
recombination, variation of mobility, diffusion and electrostatic interaction
of air ions, then, in a laminar incompressible air flow (%) is constant along
the trajectory of an air ion of corresponding mobility.

A similar result first appeared in a work of Becker /Becker, 1910/,

The same result was obtained and applied in a little-known work

/Cagniard, 1943/ on the theory of an aspiration counter for the case of adiscrete
air-ion spectrum, For charged aerosols a similar result was obtained by Levin
/Levin, 1957, 1959/,

When studying the motion of air ions it is sometimes advantageous to
utilize the methods of the theory of similarity. To ensure similarity
between the flow lines of air ions in two separate systemsg, then in addition
to the condition of hydrodynamic and electrostatic similarity, we also
require agreement between the values given by the special criterion

KE _RU
K =—=r. (2.12)
In this expression E denotes the characteristic field strength, u the
characteristic flow velocity, U the characteristic voltage, x the character-
istic dimension and % the mobility of the air ions under consideration.

§3. ARRANGEMENT OF AN ASPIRATION COUNTER
AND THE PRINCIPLE OF MEASUREMENT OF THE
AIR-ION SPECTRUM

The aspiration counter comprises a measuring capacitor and arrange-
ments for drawing air through the capacitor, for supplying voltage to the



capacitor and for measuring the currents generated. One usually measures
only the current through one capacitor plate, called the collector plate.

For the case of steady-state operation of the counter and a stationary
spectrum ¢(k), the current through the plates is determined by conduction
of the air ions.

The current flowing through the capacitor is either grounded directly
or otherwise via the voltage supply or current meter. The total current
flowing through the measuring capacitor may differ from zero if the mean
charge densities of the air entering and leaving the capacitor are not equal
to one another.

In most cases when using the aspiration counter one may assume that
the motion of air ions in the capacitor is independent of the presence of
other air ions in the air sample. Then the densgity distribuiion of the
current /(k) through the collector plate is proportional to the corresponding
value g(l.é).. This can be expressed in the form

1(kR)=Go(k). (3.1)

The quantity G is here a constant depending on the structural and operational
parameters of the measuring capacitor.
In what follows we shall assume that G does not depend on ¢(#) except in
special cases where the interaction of air ions in the capacitor is allowed.
The current through the collector plate generated by the incoming air
ions is expressed by the integral

+@
1= [ Gokyar.

(3.2)

This current can be directly measured, thus enabling the experimental
determination of the dependence of the current /on the operational
parameters of the counter. The function /(y), where ¥ is an arbitrarily
chosen variable operational parameter, is called the characteristic of the
agpiration counter. Usually a volt-ampere characteristic is used, whereby
¥y denotes the voltage across the capacitor plates. Each type of counter
design #s characterized by a particular form of the function G(y, £), which
is the Green's function for the air-ion current through the collector plate.
Expression (3.2) can be regarded as an integral equation with respect to

e(k):
+a

I = [ 6. kekar;

—®

if for one polarity G = 0, then (3.3)
(]
1(y) = faw, K)o (k)de.
[

The physical significance of the function G (¢, %) is explained as follows.
Suppose that the air sample contains air ions of mobility ¢ only. In this
case p(k)=|ed(k—#k;) and equation (3.3) yields G(y, &) =1I{y)/e . Consequently,
G (. k) may be regarded as the counter characteristic (reduced to unit charge
density) in the presence of air ions of mobility % only.

Considering counters of a given type we have to find the actual form of
the function G and the method for solving equation (3.3). The solution of
the integral equation (3.3) in the general case is possible only with the aid
of numerical analysis, which is rather laborious.

The solution is simplified only when certain design requirements of the
capacitor are fulfilled, ensuring a special form of the kernel of equation G.
These requirements, common for all aspiration counters, are listed

below:

1, The measuring capacitor should possess axial symmetry.

2. There should be two openings in the outer plate of the capacitor.
Thesge openings are called the entrance and exit opening, respectively,
depending on the flow direction,

The surface of the opening is defined as the imaginary surface covering
the opening. The surface of the entrance opening should be such that £ =0

on it and the flow velocity % is directed into the measuring capacitor.

3. In the internal capacitor plates there should be no openings through
which part of the air can flow.

4, All the requirements stated in the preceding paragraph should be
satisfied inside the capacitor. OQutside the capacitor (k) should be
homogeneous.,

Instead of an axially symmetric capacitor, the capacitor may have the
form of a sector. One often uses a paraljel-plate capacitor which is a
limiting case of an axially symmetric capacitor of infinite radius. In a
parallel-plate capacitor a homogeneous distribution of velocities of the air
flow in the longitudinal section must be ensured.

In the general theory of aspiration counters we assume the above
mentioned requirements are satisfied, The effect of deviations from these
requirements on the measuring results is dealt with in the second chapter,

§4. INTEGRAL COUNTER

The measuring capacitor of an integral counter comprises two plates.
For the collector plate one usually chooses the inner plate /McClelland,
Kennedy, 1912; Nolan, J.J., Nolan, P.J., 1930; Weger, 1953a; Siksna,
1961a/, The collector plate is connected to the current meter. A voltage
U is applied across the collector and repulsing plates. The air sample is
drawn into the capacitor at a volume flow rate @.

The integral counter is the most widely used version of the aspiration
counter due to its simple design and high sensitivity. One reason for the
wide use of integral counters is the simplicity of measuring integral
quantities. Apart from measuring devices for ion concentration and
conductivity, the integral method is applied in aerosol detectors /Sekiyama,
1959; Rich, 1959; Hasenclever, Siegmann, 1960; Siksna, 1961b/.

To determine the G-function of the integral counter, let us consider the
behavior of air ions with a given mobility % in the measuring capacitor
having an inner collector plate (Figure 4.1). When Uk>0, the air ions
are repelled by the inner plate and ¢ =0, When Uk< 0, the air ions will
settle on the plate, The flow lines for air ions terminating on the inner
plate enclose part of the space between the capacitor plates. This spatial



portion is limited by the flow surface which we shall call the boundary
surface. The boundary surface comes into contact with the rear edge of
the inner plate.

When the mobility % is sufficiently small the boundary surface does not
intersect the outer plate, as shown in Figure 4.1. The electric flux through
the boundary surface is then N =4aCU, where C is the active capacitance
of the measuring capacitor. The active capacitance is the capacitance of
the measuring capacitor proper and differs from the capacitance of the
insulated counter system, which includes the electrometer capacitance and
the parasitic capacitance of the connections. Methods for determining the
active capacitance are treated in §33. According to (2.4) the air-flow rate
through the boundary surface equals

@' = 4 CUk. (4.1)

The flow of air ions which enter the capacitor through that portion of the
entrance surface bounded by the boundary surface is @’ (2.5)., Since all
the air ions passing through this region settle on the inner plate, /=@’ and
G=®' =41 CUk, This result was obtained for certain restricted initial
conditions as early as 1903 /Riecke, 1903/. For less restricted initial
conditions the problem is treated in studies carried out by Swann /Swann,
1914a, b, d/.

FIGURE 4.1, Flow lines in the measuring capacitor:

------ flow lines;— —— —— boundary surface; - - - - - flow
lines on which g(k)=0; —+ — + — « — entrance surface,

It should be noted that in the derivation of the expression
I =4nCUkg (4.2)

no assumptions were made on the symmetry of the measuring capacitor.
Therefore expression (4.2) is also valid in the case of an asymmetric system
of any geometrical configuration. Such an approach was first outlined for
somewhat different conditions in the work /Kohlrausch, 1906/,

More mobile ions with a mobility 4, will have a boundary surface that
intersects the entrance surface at the outer plate. In this case O’'=0.

The corresponding mobility £ is called the limiting mobility. From
formula (4.1) we obtain for &' =0

PR
0= &xCO’
and considering the polarity (4.3)
b= @
G Yo/}

when k, <k, all air ions passing through the entrance surface settle and
G=0.

On the basis of the above results we may write for the air ions attracted
to the collector plate

4nCUR  for kel ko
G= 4.4
{ @ for  ky<k. (4.4)

Similar consgiderations for a capacitor with an outer collector plate lead
to results expressed by formulas (4.3) and (4.4).

From the above it follows that the basic formulas describing an integral
counter are valid independently of the geometry of the measuring capacitor
and the flow velocity distribution only whenthe capacitor is axially symmetric.
The latter applies only to axially symmetric steady flows. Air turbulence
in the capacitor is inadmissible in the general case.

The guestion concerning the permissible capacitor geometry and flow
velocity distribution has been a matter of controversy for a long time,
although the above conclusion could be reached from known results /Swann,
1914b; Cagniard, 1943, 1944; Levin, 1953/. The reason for misunder-
standings lay in that the basic formulas for the integral counter were
derived from the calculation of air-ion trajectories, which involved gerious
difficulties due to the occurrence of radial components of the flow velocity.
To simplify the calculations certain agsumptions on the capacitor geometry
and distribution of the air-flow velocities were made. Corresponding
requirements were set up with regard to counter design. Such superfluous
requirements may lead to appreciable limitations when designing counters.
Consider as an example Becker's well-known counter /Becker, 1909/,
whereby special measures were taken to ensure a homogeneous electric field
at the capacitor entrance. This, however, only complicated the design
without producing any advantages /Scholz, 1931b/. Recent works propose
a uniform distribution of air-flow velocities [Misaki, 1960; Paltridge, 1965/
or the absence of radial components /Hoegl, 1963b/. When choosing the
capacitor dimengions, large deviations from a cylindrical geometry are
considered to be inadmissible /Komarov, Seredkin, 1960/.

It should be pointed out that the calculation of air-ion trajectories is
complicated and at times requires computer-programmed numerical
calculations /Kraemer, Johnstone, 1955/. The solution of many basically
simple problems when reduced to formulas describing the integral counter
appears to be complicated when calculating trajectories /Shimizu, 1956,
1957, 1960/,



§5. SOLUTION OF THE EQUATION OF THE

INTEGRAL COUNTER

Apart from depending on the mobility,

the G-function of the integral

counter depends on the three parameters C, U and ®, When determining

the characteristics of a counter/one of the parameters is varied while the
remaining ones are kept constant. Usually the voltage is varied and, less
frequently, the air-flow rate /Nolan, P.J., Kenny, 1952/, The reason is
that variation of the air-flow rate may have an adverse effect on the g(k)
of the air sample.

To solve equation (3.3) it should be transformed by applying a suitable
operator into a form in which the desired quantities can be eliminated by
algebraic operations. In the case of the integral counter this can be
achieved by a single and double differentiation with respect to y and the
operator h,

m=1_¢3"$. (5.1)

The operator hy is often used for the evaluation of measurements, since a
convenient method— "the tangent method' — exists for determining hy/ /Israél
1931, 1957b; Gerasimova, 1939; Imyanitov, 1957/ (see Figure 5.1).

! IW)
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FIGURE 5.1, Determipation of &,/ by the tangent method,

In the integrand of equation (3.3) the differential operator or hy acts only
upon the function G. Below we list the transformations of G(y, &) which will
be used later:

,‘E—{ 4xCk  for k< ko (5.2)

U} o for ko <k,

G 0 for k< ky

= : 5.3

o0 { 1 for ko< k, (6.3)
0 for EZk

hyG= o (5.4)

u@ { ©  for ke<k,

4nCUk for k< ky
- 5.5
hoG_{ 0 for k<t (5.5)
G ®2
578 = fng Ok — ko, (5.6)
326G 1
5 =~ gmcy Sk k. (6.7)

Using expressions (5.2)—(5.7) we can readily derive formulas for
calculating different parameters of ionized air in accordance with the
well-known function /(U)or /(®). The results are

olke)=— 4L & (5.8)

0 (ko) = —4nCU %’ (5.9)
ol by =20 M) (5.10)
o(ky, k)= 20 2R, (5.11)
My, k)= i [ 24080 — 2H0A ], (5.12)
Mk k)= e [ e f20] (5.13)

The use of the §-function for the derivation of formulas (5.8) and (5.9)
is not obligatory. Instead, the integral in equation (3.3) may be written as
the sum of two integrals corresponding to the ranges k<lk, and k <k,
respectively. Differentiating with respect to the limits of the integrals, we
obtain the same results /Langevin, 1905a; lara&l, 1957b/.

1t is possible to derive a more general and concise notation for the
solutions of the integral-counter equation [Siksna, 1950; Israél, 1957b/.
In this case we take for the starting function

P (k) =12 (5.14)

The quantity P (k) has the dimension of charge density and will be called the
conventional charge density for the limiting mobility k. In simplified
calculations the value of P, expressed in elementary charges per unit
volume, is often represented as the concentration of air ions. Thus the
calculated concentration is actually a conventional quantity, since it does
not correspond to any definite mobility interval. In practice, however,

one often encounters conditions in which the actual character of the mobility
spectrum enables us to assume

0 (ko,2) = P (ko). (5.15)

12



This expression is used very often to calculate the concentration of light
air ions.
Starting with the function P(k), we transform equation (3.3) into

©
P(ko)= [ Snb) o 1) g, (5.16)
0

Since

G (ko, k) ={ kiky for Bk, (5.17)

@ 1 for kol k,

equation (5.16) has only one independent operation parameter. For
convenience, we take as the variable parameter the reciprocal limiting
mobility o =1/k.

In similar fashion we obtain the formulas

elko)=—a® I%, (5.18)
QUks, k2)=ho P (k) — P (k). (5.19)
A e e (5.20)

In the method of varying the air-flow rate, formulas (5.18)— (5.20) are
inconvenient., Here it is better to start with the function

_ 1%
Alky)= ), (5.21)

which has the dimension of conductivity and will be called the conventional
conductivity at the limiting mobility k. The kernel of the integral equation
is

¢ _J & for ke k,
4"2‘1—{ ky for kyslk. (5.22)

Calculations similar to those carried out above yield

a2A
o (k) =— m, (5.23)
_ OA(k) aA(k
olky ky)= 3R] 220 (5.24)
Mk, ko) = hy, A(ka)— by, A(ky). (5.25)

The integral counter is often used for measuring the polar charge density
e, and the polar conductivity 4. This is possible only under specific
conditions. To measure ¢, it is necessary that e(k) =0 in the range k <k, .

For the range in which ¢(k)=0 an arbitrary function may be taken for G
without affecting the results. Setting G equal to ® everywhere, we obtain

1
+
e, =P, =7 (5.26)

1, denotes current at the respective polarity.

" To verify formua (5.26) k, must be chosen sufficiently small in order
that ¢(k) = 0 for £ < ky. The condition is satisfied if upon increasing the
voltage, the current | remains unaltered and upon decreasing the air-flow
rate / decreases proportionally.

To measure the polar conductivity k must be chosen sufficiently large
in order to satisfy the condition ¢(k#) =0 in the range k< k. Then for all
mobilities one may take G=4xCUk, which yields

I
+
Ay ;Ai‘:‘—-—ucﬂ (5.27)

L]

For the experimental verification of this formula it is necessary that the
current / remains constant when increaging the air-flow rate and is
proportional to the voltage when decreasing the voltage.

§6. VARIOUS INTEGRAL COUNTER TYPES

Some variants of the aspiration method possess integral characteristics.
The most widespread is the method of the precondenser ascribed to Mache
/Mache, 1903/, but actually proposed by McClelland /McClelland, 1898/,

The arrangement of the counter with a precondenser is shown in
Figure 6.1.

When plotting the characteristics of the counter the voltage of the
precondenser is varied and the current /:=/:(U)) through the collector plate
is measured. The voltage of the main capacitor remainsg unaltered,

D —-—M%—-—Ej}
1
Y, A I

I

FIGURE 6,1. Counter with a precondenser:

a-precondenser; b—main capacitor; U —voltage supply; /— ammeter,



The limiting mobilities are determined as follows:

by =— Eg_u" (6.1)
. ’-‘1=""4n0U.' (6.2)
If k/k2 <O, then
Gg=0;
K 0 < klba<<1, then
0 for kiki << —kfky
—4n(CiU Gk for —kfbs <k <0
Gr= § —4nCyUsk for 0. biky L U —kiky
@ +4nC Uik forl — k/ks << bk < 1 (6.3)
0 for 1< k/k
If | =< k/ks then
0 for kb 1
Go= O —4xCilU ik for — 1< kfk, =<0
T | @+ 4nCilik for Ottt |1
0 for 1< k/k,

The counter with a precondenser is used, as a rule, for the study of air
ions with mobilities 14 &/k2. In the range 0 < k/k the function G, of the
counter with a precondenser equals the difference of the fixed parameter
® and the function G of the standard integral counter. The value of G, for
1< k/k, does not depend on the polarity of the voltage U,, This is shown in
Figure 6,2, which gives a plot of the function G for a counter with a
precondenser and for a standard integral counter,

6

FIGURE 6.2. The G-function:

1—for a counter with a precondenser; 2—for a
standard integral counter,

If in the range O < k/k2 < 1 the condition ¢(k) =0 is satisfied, then all
calculations for a counter with a precondenser differ from those for a
standard counter only in the sign before the derivative and the operator hy.
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In the opposite case the situation is somewhat more complicated. When

the polarities of the voltage across the preliminary capacitor and the main
capacitor are the same, partial conductivities of the type (0, %) cannot be
measured. It is thus recommended to plot the characteristics for opposite
voltage polarities, In this case the partial conductivities are connected with
the derivatives 9/,/0U, as in the case of the standard integral counter,

Some of the problems connected with the precondenser counter are
treated in detail in the works /Kohlrausch, 1914; Israsl, 1931; Polovko,
Nichkevich, 1937; Nolan, P.J., O'Connor, 1955/.

The method of the condensation nucleus counter is closely related to the
methods of the precondenser /[Nolan, P.J., Deignan, 1948/, Since in the
former the nonelectric quantity (concentration of condensation nuclei) is
recorded, the method of the condensation nucleus counter with a precondenser
will not be discussed in detail here.

A 5%
2 _ I
3] ‘———;*"‘"'1“

‘ - v

FIGURE 6.3.4 Counter in which air is blown
through grids:

l—insulator; 2—collector grid; 3—repulsing
grid,

We shall now briefly describe the method of blowing air through grids
which may be used as an integral or differential method., This method was
proposed in the work /Zeleny, 1898b/.

The method of blowing air through grids is not widespread /Kiahler, 1903;
Aselmann, 1906/, although it certainly is of interest because of the possibility
of decreasing the dimensions of the measuring capacitor. The application
of this method is apparently restricted to large limiting mobilities, for
which it is advisable to congider a large air-flow rate with a relatively small
active capacitance of the measuring capacitor,

A schematic diagram of the measuring capacitor with grids is shown in
Figure 6. 3,

The limiting mobility can be calculated from formula (4.3). However,
more explicit is the expression

ko= %, (6.4)
where u is the flow velocity, and E the electric field strength between the
grids, The function G is given by (4. 4).

The method of blowing air through grids deviates from the requirements

mentioned in §3. These requirements are replaced by the condition of a



uniform electric field and air flow and the condition of total screening of

the electric field by the collector grid. In the case of a wide-mesh grid

the last condition is not satisfied /Loeb, 1923; Kaden, 1950, Izergin, 1958/,
which should be taken into account when designing the counter. At the same
time attention should be given to the adsorption of air ions, which is of
particular gignificance in the above described method.

§7. DIFFERENTIAL COUNTERS OF THE
FIRST ORDER

There are two types of differential counters of the first order: one has a
divided electrode and the other employs a divided air flow. The method of
the divided electrode was proposed by Zeleny /Zeleny 1901/. The theory
of the air-ion spectrum was developed later /Blackwood, 1920; Hogg, 1939;
Misaki, 1950; Tammet, 1960; Whipple, 1960; Hoppel, Kraakevik, 1965/.
This method ig the most widely used version of the aspiration method.

The counter with a divided electrode differs from the integral counter in
that one electrode of the measuring capacitor is divided into two mutually
insulated parts. During aspiration the second part serves as a collector
plate, while the first part, called the forward electrode, is maintained at
the same potential as the collector plate. The repulsing plate is standard.
The design of such a capacitor is schematically shown in Figure 7,1, Here
the inner plate is divided. As in the integral counter with an outer collector
plate one can divide the outer plate, the rear part of which then becomes
the collector plate, The inner part is not divided and is standard., The
differential counter of the first order with a divided electrode is similar
in design to an integral counter with a precondenser, but differs in its
operation and the ratio of the plate capacitances.

|

FIGURE 7.1. Differential counter of the first order with a divided
electrode,

Let us now define the function G for a counter with a divided electrode.
The sum of the currents through the forward and collector plates equals
the current in the corresponding integral counter, the active capacitance
of which is C,+ C;, where (, is the mutual capacitance (the absolute value
of the coefficient of electrostatic induction) between the forward plate and
the main plate, and C, is the mutual capacitance between the collector
plate and the main plate.
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The current through the forward plate equals the current in the integral
counter with an active capacitance C;. The current through the collector
plate equals the difference of the total current and the current through the
forward plate, Consequently, the G-function for the differential counter
with a divided electrode corresponds to the difference of the G-function of
the integral counter with an active capacitance C;+C; and the G.-f.unction of
an integral counter with an active capacitance C.. When describing
differential counters it suffices to consider air ions of one polarity only,
as in §§ 4—5. Denoting the corresponding limiting mobilities by £, and 4,
respectively, we obtain

=P 7.1
kn—4"(cl+cz)u' ( )
- P 7.2
ko= gz (7.2)
4nC Uk for k< k,
G=1 O—4nC Uk for k. <k <<k (7.3)
0 for ky<k.
The behavior of the G-function is shown in Figure 7.2.
(1
k%
FIGURE 7.2. The G-function of a differential
counter with 2 divided electrode,
The G-function (7.3) has the following properties:
0 for kLl k,
hyG = [\ for k,<k<Zks (7.4)
0 for kv <k
0 for k< ky
26 _ 1 for ko <k<ky (7.5)
0 for ky<k.

These properties enable the use of the differential counter of the first
order with a divided electrode for measuring the partial charge density.
It can be readily shown that

Qka k)= 2L, (7.6)
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Qe k0)= o3 (1.7)

where J is the absolute value of the current through the collector plate.

1f the interval (k. k) is sufficiently narrow, the spectrum can be
approximately defined, Using the theorem of the mean integral value, we
obtain

olh)=AGA Gy (7.8)
o(f)=EElC L o (1.9)

In this interval the mobility % has the mean value

F= G CRO
k= 4ﬂCnl(Cl-!:C:)U (7.10)
and the relative half-width
C.
&= m (7.11)

The smaller the ratio Cy/C,, the smaller is the quantity &, and, consequent-
ly, the better the resolution of the method.

When the ratio C,/C, is small, the partial conductivities can also be
calculated. This follows immediately from the form of the G-function and
we can write

Y | 1 I
A(klykz)—m U_z,_UL, . (7.12)

The mobilities £, and k; are defined by formulas (7.10) and (7.11) for the
voltages U, and U,, respectively.

The method of Misaki /Misaki, 1950/, not treated here, differs from
that described above and is an independent version of the differential method
with a divided electrode.

We shall now consider the differential counter of the first order in which
the air flow is divided. This method is not widespread /Nolan, J.J., 1919;
Nolan, J.J., Harris, 1922/. The quantitative theory is given in the work
/Tammet, 1960/,

The measuring capacitor of this counter has two plates and differs from
the capacitor of the integral counter only in that the capacitor inlet is
divided into two parts (a circular inner and outer opening, respectively) by
a coaxial tube (Figure 7.3). If the inner plate is the collector then the air
sample is drawn into the capacitor at a volume flow rate @, through the outer
opening. If the outer plate is the collector, the air is drawn through the
inner opening. An additional flow of specially deionized air with a flow
rate @, is drawn in through another opening. If the additional air flow @, were
not deionized then the G-function would equal the G-function of a standard
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integral counter with an air-flow rate ®,+®,. Assuming that the air flow
@,is deionized, the G-function equals the G-function of an integral counter
with an air-flow rate®, The G-function for a differential counter with a
divided air flow corresponds to the difference of the G-functions for the
above stated cases, Consequently,

4nCUk— @, for kassk<he (7.13)

0 for k= ky
G=
@, for k< k,
where

D
ke =17y (7.14)

_ 0,40
ky = ;ncuz (7.15)

7z, oy /2%9, - __$

FIGURE 7.8, Differential counter of the first order with a divided air
flow.

In a counter with a divided air flow one usually applies only the method of
varying the voltage. Calculations similar to those for the method of the
divided electrode yield

Mkarks) = o o5+ (7.16)

The spectrum A(k)is calculated from

ME) =g 95 (7.17)

where £ lies in the interval of mean mobility

< 0+ D2
k== (7.18)
and relative half-width
-0
0,._20'_‘_’02. (7.19)
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The partial charge density is calculated from the two current values
Uy and 5(Uy):

olk, k) =150 (7.20)

where %, and k; are determined by (7.18) and (7.19) for the voltage U, and
U, respectively.

The differential version of the method in which air is blown through grids
| Zeleny, 1898; Altberg, 1912; Griffiths, Awberry, 1929/ may be considered
as a differential counter of the first order. The measuring capacitor of such
a counter is similar to that of the integral grid counter (Figure 6.3). The
difference is that in the differential method the air drawn through the net
is deionized and the air ions are generated directly in the space between
the grids. To generate air ions, radiation from a radioactive source or
some other ionizing agency is used. This, of course, limits the application

of the differential method employing grids to the laboratory.
In the theory of the differential counter with grids one should start,

instead of with the function (), with the spectrum of the flow of air ions
regenerated in the space between the grids. The current through the
collector grid is

Izjl(k)a'k. (7.21)

The limiting mobility %, is given, as in the case of the integral method,
by (6.5) or (4.3). Expression (7.21) is similar to the equation of the counter
having a G-function of the form

0 for k< ko
G= { for ko<k. (1.22)
The solution of equation (7.21) is
I(ko) = 47 55 (7.23)

where U is the voltage between the collector grid and the rear grid and d is
the distance between the two grids.
When comparing the differential methods of the first order with the

integral method, we note that in the differential method (k) is calculated

in terms of the first derivative of the current instead of the secondderivative

as in the integral method. A single differentiation is actually carried out

in the experimental arrangement since either the measuring capacitor or the
"~ air flow is divided. When studying the air-ion spectrum, the differential

method of the first order has appreciable advantages over the integral

method. Differential counters also possess certain advantages when

measuring partial charge densities, To determine the partial charge density

in a given mobility interval by means of the integral method, four values of

the current /(U) should be known (see §29). The differential counter of the

first order requires the knowledge of only two /(U)-values. When measuring
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o(ky, k) , it is advisable to use the divided-electrode method with a
relatively large C,/Cy ratio. When measuring g(ko00), the divided air-flow
counter is recommended, which requires only one I/(U)-value.

§8. DIFFERENTIAL COUNTER OF THE
SECOND ORDER

The differential counter of the second order is the most perfected version
of the aspiration method for the study of air-ion spectra. This method was
first discussed in the works /Erikson 1921, 1922, 1924, 1929; Zeleny,
1929; Val'ta, 1929/. The quantitative theory was given by the author
| Tammet, 1960/, who used a differential form of the aspiration-counter
equation, which is not treated in the present book.

The measuring capacitor of a differential counter of the second order
igs similar to that of the differential counter of the first order with a divided
electrode, However, the air is drawn in as in the case of a divided air-flow
counter, The G -function for the differential counter of the second order
corresponds to the difference between the G-function of the first-order
differential counter with a divided electrode and air-flow rate @, ®, and
the G-function for the same counter with an air-flow rate ®,. We denote the
limiting mobilities as follows:

- = R AT (8.1)

kas =ﬁ%}, (8.2)
kpa = ;:%’7, (8.3)
kop = q:;‘glg’ . (8.4)

In the case ®,/®, << Cy/C,, we have k,,,, ke, and

for k < kaa
4n(Cy + Cz) Uk — @, fOI‘ kaa <kl (8.5)
= l: =< k < kba
O, D, —4nC Uk for koo < k< ko
0 for ke <k
In the case C)/C; << ®,/®,, We have k;, < k,y, and
4n(C +(,9)Uk for P S ke
n(Cy 2 — @, for ki <<k<k
6= 42C,Uk for kya < k < ke (8.6)
¢:+‘D2—4ﬂCIUk for ka <k << ke
for kbb <k

To determine the spectrum the theorem of the mean integral value is
applied to the counter equation (3.3). Since in both expressions (8.5) and
(8.8) integration of the G-function yields the same result, namely

o

_ C0:(D, + D:/2)
j Gak= T CU (8.7)
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we obtain
By = AnG(Ci+CU
e(k) = ¢, @, F o (8.8)

k lies in the interval defined by the mean mobility

2 _ G+ C) (D + D)) — CD
k= B (CF C)T (8.9)

and the relative half-width

— G+ C) (D) + @2) — GO
b = (Ci+ Co) (D1 + By) + C0¢ (8.10)

Introducing the notation

vc=£n:_c=, (8.11)
*°=W- (8.12)

the above expressions can be written more clearly in the form

z Y+ Yo L+ Yo Yo
k) = — [ = =
R = e Foum, | = 2Go tonE (8.13)

2 (8.14)

- o
T an(C+ C)U(1+ 8,

_ Yc+ Yo
4= . (8.15)

From expression (8.13) it follows that for certain values of the mean

limiting mobility and mean air-flow rate ®,4 ®,/2 the current / depends on

the counter parameters only via the product Ycy,. It is readily seen that
when the quantity ycy, is not varied, the parameter §, has a minimum if

Yc =7Yo,. Consequently, the condition of best resolution for constant current
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®,_C,

oﬁ =z (8.16)
This expression was derived in a less strict way in the work /Tammet,
1960/.

The condition (8.16) is close to that of optimum operation, but it does
not exactly coincide with the latter. The reason is that the counter
sensitivity, apart from depending on the ratio //gp(k), depends also on the
capacitance C,. For optimum operation conditions, C,/C, << @,/®, .

Besides the above application of the differential counter of the second
order, the possibility of measuring the partial charge density or partial
conductivity is of interest. This is borne out by the occurrence of the
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segment G =@, or G = 4nC,Uk in the mobility interval between k&, and &s,.
Choosing the counter parameters in such a way that @/®;<€Cy/C, or C/C; <&
< ®,/®,, one can obtain the G-function in the form shown in Figure 8.1,
We shall divide the integral in equation (3.3) into terms corresponding to
the linear intervals of the G-function. Most important is the integral in
the interval (k.. k), which directly gives the partial charge density or the
partial conductivity, To reduce the two remaining integrals to the form

of partial charge density or partial conductivity, we employ the theorem
according to which in the interval (a, &) there always exists a §, such that

1] £ .
[iwa = [awat (8.17)

only if in the whole interval the condition

0 g_é—((% <1 (8.18)
is satisfied.
In the case @./®, < Cy/C, we obtain
el b =, (8.19)
ol

where k; and k lie in intervals with mean mobilities

z_ @ +Oz}2
h=ncTeu: (8.20)
= % (8.21)
¢ G
hog ko ko ke k ko koo 8 ket hop &
a

FIGURE 8.1. G-function of the second-order differential counter:

a—when @y/@, & €,/Ci; b—when C5/C, < ©,/D,.
The relative half-width of the (%, %) interval is expressed by (7.19).
In the case C,/C, < ®,/®;, we obtain

My ko) = 4_n2‘,U’ (8.22)
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where E and % lie in intervals, the mean mobilities of which are given by

b — (C) + Co/2) D,y

k’_4nc,(c,+c,)u': (8.23)
%, = LG+ Co/2) (O + Dy)

L Y N (e A 1T (8.24)

The relative half-width ofthe interval is given by formula (7.11).

The advantage of this new method for measuringQ(k,, k) and A(k, k) over
other variants of the aspiration method is that it suffices to measure directly
only one value of the current through the collector plate in order to obtain
one value of the desired parameter. It should be mentioned that in the
integral method the measuring of four and in the first-order differential
method the measuring of two current values is required to obtain the same
result.

§9. COUNTERS WITH SEVERAL COLLECTOR
PLATES

In the following we consider counters in which the current through several
plates is measured. Counters with reversible plates, for example, that are
described in the work /Ortner, El Nadi, 1955/ do not belong to this group.
There are many possible designs of a measuring capacitor with several
collector plates. A general treatment of the problem is very involved and
beyond the scope of this book. We shall therefore confine ourselves to
some practical examples.

The simplest counter with two collector plates is an integral counter
measuring the current through both plates. It enables the simultaneous
recording of air ions of both polarities, but does not present any new
possibilities of measurement.

Consider the behavior of air ions in the measuring capacitor under more
general conditions., Suppose the capacitor consists of many plates to which
different voltages are applied, and consider the expression for the total
current through some group of plates, which we shall call the collector
group. This expression is similar to that for the current in an integral
counter, However, two conditions must be satisfied.

1. Air ions of one polarity only settle on the collector group and if the
conductivity is sufficiently large, all air ions of this polarity will settle.

2. The boundary surface of the air ions that are being collected (the
current of which is unsaturated) should separate the collector group from
all the other plates, so that the electric flux through the boundary surface
will correspond to the sum of the charges on the plates of the collector
group.

These conditions will be called the normal conditions.

The limiting mobility of the collector group is given by

1]

ko= — — (9.1)
. 4n ZQ,.

ns=l
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where Q, corresponds to the charges on the plates of the collector-group
plates. This is defined by the sums IECM U..., where C,,, and U, are
respectively the mutual capacitance and the voltage between the plates

with indices n and /.
The question whether the normal conditions are satisfied is complex

and can be answered only in special cases.

h J

FIGURE 9,1, Example of a measuring capacitor in which the normal conditions are not
satisfied.

—————— boundary surface for a certain mobility,

An example of a measuring capacitor in which the normal conditions are
not satisfied is shown in Figure 9.1. The normal conditions are fully
satisfied in the trivial case in which the potentials of all plates are equal
to one another. This occurs in the differential counter with an electrode
divided into several collecting plates /Isra&l, 1931/. '

The current through the first plate of this counter is calculated in the
same way as in the case of an integral counter, and the current through
the remaining plates as in the case of a first-order differential counter
with a divided electrode. Suppose the current is measured through the
plate with index / #1 and the plate with index m>>/ in a capacitor designed
such that C, = C,. The currents /, and /, are expressed by the integral (3.3)

=1
and G by equations (7.1)— (7.3), where C,=(,=C, and C|=n§‘C,. for G, and
Cy =u§C,, for G,. The difference I,—I, is also expressed by the integral
n=1

(3.3), where G=G,— G,. The expression

m 0 for 3 = kmn
4 C,Uk— @ Rna k k
nﬂf} for Sk R (9.2)
G={ 4n C,Ukl+l for kme < k< kg,
® —4n ElC,.Uk for ko, <k<<k
0 for ky <k,

where kna Ems ke and kp are the limiting mobilities corresponding to the
m m—1 1 =1

capacitances X C, X C, ZC,and ElC,.. The G-function (9.2) has the same
n=1 n=1 n=1 n=

form as the G-function of the second-order differential counter (9.6). We
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can therefore apply the same method of calculation, which yields

L b — Il_lrn
Ak, ko) = m,
where &, and &, lie in the intervals with mean velocities

m—1

@ ( X, +C,/2)
n=1

7(] = me1 m ’
4n U Z Cn Z Cn
f=1 A=}
—1
- o ( Z Cn+cl/2)
ko= a=]
=1 7 .
v Y ¢, Y,
a=1 =]

The relative half-widths of the intervals are respectively

_ ¢
by, = m—l’ ’
2 ¥ c,+¢
=1
c
== 1
O, = =1
2y C,+¢

a=l

When studying the spectrum e¢(k) it is advisable to measure the currents

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)

through adjacent plates, the capacities of which are equal to one another.

Agsuming m=1[/-+1, we can arrive at the results obtained above.
as in the case of the second-order differential counter, we obtain

=1 1 1+1
dn U Z Cn Z (o Z Ca
) n=1 n=1 e |
e(k) = e “ (I — ).
k lies in the interval with mean mobility
1
°Yc,
5 =\ @
k= [ B Y S T
wmU Y C, YC, 4UY C,
=1 =] =1
and relative half-width
C
0 =
Y e,

In formulas (9.3) and (9.8) the difference between the currents
both plates appears,
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Similarly,

(9.9)

(9.10)

through

Therefore, in the case of the above-described counter, it is useful to
employ one differential electrometer instead of two electrometers /Imyanitov,
1952; Zachek, 1964/, This enables us to obtain directly a count which is
proportional to the desired quantity.

An interesting new counter version with two collector plates was
recently proposed [Imyanitov, 1963; Imyanitov, Pavlyuchenkov, 1964;
Schmeer, 1966/ for integral measurements,

L =

FIGURE 9.2, The counter of Imyanitov. A/ is the differential electrometer,

A schematic diagram of the counter is given in Figure 9.2. The
measuring capacitor consists of two collector plates with equal capacitances
and equal voltages U. The difference A/=1I —/, of the currents through
the first and second collector plate is measured with the aid of the differen-
tial electrometer. 1t is readily shown that for A/ the function G, has the

form

0 for k<< kof2
Gp= (2k/ko— 1)D for ko2 <k <<ho (9.11)
(i3] for ko<k

where k& is calculated from the active capacitance C of one inner plate.
The trend of the function G, is shown in Figure 9.3.

%]

054, ko k

FIGURE 9.3. The G-function for the counter of
Imyanitov.
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Starting with expression (9.11) we can readily derive a formula useful
for practical calculations:

ol (0.75 - 0.25) kg, 0] = & (9.12)

To obtain one value of Q(E,oo), one count will suffice.

The differential counter of Misaki /Misaki, 1950/ may also be considered
as a counter with several plates.

Let us finally consider a problem indirectly related to the present section.
It appears that the normal conditions are fulfilled for the integral counter
shown in Figure 9.4. The special feature of this counter is that the active
capacitance of the measuring capacitor is accurately given by the formula
for the capacitance of an ideal cylindrical capacitor, in spite of the fact
that the electric field is of a rather complex form. Charges induced by the
voltage between the forward plate and the collector plate mutually compensate
one another. The normal conditions are satisfied in all capacitor designs
in which some symmetrical component is connected in front of the collector
plate to the outer plate. This enables the use of an annular entrance opening
which is of interest in counters with a divided air flow as well as in certain
specific designs of the integral counter /Reinet, 1958, 1959a/.

FIGURE 9.4. Measuring capacitor, the active capacitance of which can be accurately cal-
culated from the geometrical length of the collector plate.,

§10. COUNTERS WITH INTERPLATE AIR MIXING

Counters are known in which provision is made for mixing the air flow
between the two inner plates of the measuring capacitor. This presents
new measuring possibilities, as proposed in the works /Israél, 1949; Israél,
Schultz, 1933; Gerasimova, 194lb/.

Interplate mixing of the air flow is effected by an arrangement in which
the flow is first rendered turbulent and then laminar again. The mixing is
facilitated by dividing the current into two branches /Israél, 1931/,
Complete mixing is obtained when two measuring capacitors having plates
are connected in series and separated by a grid-like screen.

Mixing of the air is unavoidably accompanied by a loss of air ions due to
increased adsorption. Distortions may also arise in the case of incomplete
mixing. These phenomena, which are neglected in the present chapter,
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considerably reduce the practical importance. of methods in which interplate
air mixing is employed. :

Consider a measuring capacitor with two inner plates, between which
the air flow is mixed. The density spectrum of the flow of air ions passing
through the first part of the capacitor is defined as the difference of the
density spectrum of the incoming flow and the density spectrum of the flow

of settling air ions.
I'(k) = (© — G, — Gy elk), . (10.1)

where G, and G, are respectively the G-functions for the inner and outer
plate of the first part of the capacitor. After mixing the spectrum is
given by

’ e G, + G
oty =18 = (1— 2252 o (k). (10.2)
The second part of the measuring capacitor corresponds to a standard

integral counter. The function G, for the current through the second inner
plate is calculated by multiplying the G-function of a standard integra% N
counter by the multiplicative factor of formula (10.2). Denoting the limiting
mobility of the first part of the capacitor by k, and the limiting mobility of
the second part by k:, we obtain for the condition & < &

- p SR\
Gy = {‘pE(l‘HE) for CloREsky : (10.3)

o for k= k _

For the condition k=< Ky

qni@—%) for k< k.

- (10.4)
G=1 ol—z) for h<k<h
0 for k< &
In the latter case we have
0 for k<k2
ho, Go= | @(1— 5} for b<h<h (10.5)
: 0 for k) .._<;k.
Applying the theorem of the mean integral value we can derive
By = 2y 10.6
o(k) = m(k.’—k,)'!k"' Iy, . ( )
where % lies in the interval with mean mobility
R ath (10.7)
and relative half-width
op =k (10.8)
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It should be pointed out that in the described method the condition &, <4,
must be satisfied.

When the air flow is divided into two branches (after it has passed
through the first part of the measuring capacitor), the latter are led through
two respective counters with different limiting mobilities.

This enables us to determine ¢(%) from two simultaneous measurements.
A detailed description of this method may be found in the works [Israél,
1931; Israél, Shultz, 1933; Isra&l, 1957b/.

A comparison of the above method with the usual differential methods
does not reveal any advantages. On the contrary, the method of interplate
air mixing is undoubtedly less accurate and less sensitive, which can be
easily seen from formulas (10,6) and (7.8).

Therefore, the above method can hardly be expected to be of any
practical use.

Interplate air mixing can also be effected in a standard integral counter
with a precondenser, If the second capacitor operates under saturation
conditions, no deviation from the usual operating conditiong will occur. In
the opposite case certain complications arise. A detailed treatment of this
problem may be found in the works /Israél, 1931, 1957b/. Compared with
the usual method of the precondenser, the method of interplate air mixing
offers no advantages. .

Gerasimova [Gerasimova, 1941b/ proposed a method which on first sight
seemed very promising. Here.the partial charge density ¢(0, &) of heavy
and super-heavy ions is measured, whereby an integral counter is employed
in conjunctian \yith a precondenser and interplate air mixing. The measuring
capacitors can have a relatively high limiting mobility and a simple design.

The method of Gerasimova requires that the condition &, < &, be satisfied.
The current through the inner plate is expressed by equation (3.3), where
thelG -function has the form given by (10.3). Differentiation of this equation
yields

. Ry
0l [11]
= mjkﬂq(k)dk, (10.9)
[ .
® ky . ,
hudy= G qu(k)dk. ; (10.10)
0 . .

Let us now introduce the mean square mobility of the air ions and write
the integrals inthe form

LA

| Botkyar =0, ko0, k), (10.11)

0
A

[Retkyae =F(0. k)0, ). 10.12)
Q
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Forming the ratio (hy, lz)Z/g—lU”, we obtain

_ G ROk (hyld)?
(0, &) =%C0 Tro, ki;P T (10.13)

The expression k2 (0, kl)/[E(O, k)P cannot be determined from the measure-
ment results, which is a serious drawback of the method., Formula (10.13)
can be applied only in the case when the parameter £2(0, k)/{E(0, ) can be
estimated on the basis of previously known results. Gerasimova
/Gerasimova, 1941b/ assumed #2(0, &) =[k(0,4)], which leads to erroneous
conclugions,

§11., MEASUREMENT OF THE SPACE CHARGE
DENSITY

Many methods based on various principles are available for measuring
the charge density. Those not related to aspiration methods are the Thomson
method /Thomson, W,, 1882, Daunderer, 1909/, the three-collector method
/Daunderer, 1907/ and the Imyanitov method (related to the Thomson
method) /Imyanitov, 1951; In'kov, 1958, 1965; Kitaev, 1962/, and finally
the Miihleisen-Holl method /Mihleisen, Holl, 1952/ and the indirect method
of calculating the charge density from the spatial distribution of the electric
field and the conductivity /Hansen, 1935; Mecklenburg, Lautner, 1940/. A
survey of the various methods can be found in the book /1sraél, 1961/.

The aspiration device for measuring the charge density should satisfy
the condition G =@ for any mobility. Since this is impossible, we must be
satisfied with the approximate fulfillment of this condition in the practical
range of mobilities. In the integral counter the condition G =@ can be
fulfilled for mobilities of one polarity only. The limiting mobility should
be less than the mobility of heaviest ions still contributing to the charge
density. When measuring charge densities, the polar densities are recorded
separately and then added. The accuracy of this method is not very high
and the relative error often exceeds the relative errors of the initial
measurements, Nevertheless, this method is sometimes applied in practice
| Gockel, 1917; Reinet, 1958/. The simultaneous counting of air ions of both
polarities can be effected by means of devices with a filter, through which
the air is drawn. Here the current which flows through the filter to the
ground is measured.

The operation of a fiber filter is based on air-ion adsorption. The
application of the method was first described in the work | Zeleny, 1898a/.
This method is considered to be one of the best methods for measuring the
charge density /Mihleisen, 1957a/. The measuring filter of the device is
filled with cotton wool /Becker, 1910; Obolensky, 1925/, with glass wool
| Zeleny, 1898a; McClelland, 1898/, with metal shavings / Aselmann, 1906;
Brown, 1930/, or with metallic grids /Krasnogorskaya, Seredkin, 1964/,

The theory of the fiber-filter method /Fuks, Stechnika, 1962/ has been
little studied. To verify the effectiveness of the filter the air flow is drawn
through two filters arranged in series. The filter is considered effective if
the current through the second filter is sufficiently small compared to the
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current through the first filter. The filter in question can be connected in
series with the standard integral counter /Paltridge, 1967/. The charge
density is given by an elementary formula
o= % (11.1)

The disadvantage of fiber filters lies in their relatively large resistance
tothe air flow. Accordingly, the electrostatic filter suggested by Gunn /Gunn,
1953/ is more efficient. The Gunn method is a combination of the integral- ‘
counter method and the filter method. This device is schematically shown in
Figure 11.1. The G-function for such a filter has the form shown '%n ‘
Figure 11.2. TFor a sufficiently small limiting mobility the approximation
G =0 is permissible and does not depend on the mobility.

B

o

g
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FIGURE 11,1, Gunn filter,

k

FIGURE 11,2, The G-function for the Gunn filter,

The Gunn filter usually consists of plane-parallel plates. The maximum
allowable voltage between the plates should be chosen on the basis of
reliability considerations, Since breakdown of the capacitor occurs at a
certain value of the electric field strength E, the latter should be chosen
before designing the filter. The formula for the limiting mobility (4.3)
now becomes "

ko= 7y, (11.2)

where d is the distance between the plates, and V is the filter volume.

§12. MODULATED COUNTERS

In the usual aspiration counters one measures a fairly weak direct
current through the collector plate. Amplification and recording of such
a weak direct current constitutes a difficult technical problem. For the
measurement of the very weak direct current in more recent instruments
it is preferable to transform the incoming signal into an alternating one,
since amplification of an alternating current is much simpler.

The possibility of transforming the output signal of the measuring
capacitor by introducing certain changes in the counter design was proposed
quite recently /Junod, Sanger, Thams, 1962/. Apart from the outlined
advantage, this method opens the way to same other new possibilities of
major importance. In modulated counters it appears.possible to suppress
various distorting effects which often cause ‘séridus trouble in usual counters,
Thig problem will be discussed in the following chapters.

The main advantage of the modulated counters lies in the possibility of
differentiating by means of modulation techiiques. This was the main reason
underlying the development of modhlatéd maasu.rmgx:apamtors /Junod, Sanger,
Thams, 1962/,

Modulated counters record the amplitude of the alternatmg component
of the current through the collector plate,

The modulation frequency is very low (of the order of several Hz or
lower) so that the use of amplifiers is required, For simplicity, we assume
that the modulation period is sufficiently large compared to the time constant
of the current generated by the air ions flowing toward the collector plate
of the capacitor. This enables us to forego allowance for transient
processes which considerably complicate the calculation procedure.

The amplitude of the alternatmg current through the collector plate is
given by

["':T(]max—lmin»)- (12'1)

/_can be correlated with the spectrum (k) via an integral transformation
similar to formula (3.3). The kernel of the integral will be denoted by G..

Let us briefly consider the specific possibilities of counters with
modulated measuring and modulated precondenser, For simplicity, we
assume the modulating signal is rectangular everywhere. Rectangular
modulation is in most cases the most appropriate.

1. Modulation by the means of the gas flow rate. Suppose the measuring
capacitor is similar to the measuring capacitor of a usual integral counter.
Denote the gas flow rate during the first half-period by ®,, and during the
second half-period by ®.. Assume further that @, < ®, and denote the
respective limiting mobilities by & and k.’ The function G _is then given by

) 0~ for  ksghk
'26.= { nCUR—D for kk<h oo (12.2)
D:— @ - for kisshk T :
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This expression is similar to (7.13), which represents the G -function of a
first-order differential countér with a divided air current. Analysis of
formula (12.2) leads correspondingly to results obtained in § 7 and expressed
by formulas (7.16) and (7.20). ;

It may be noted that for the case @, = 2(1), the functlon G . assumes the
same form as the function G. of the Imyanitov counter (9.11), so that the
described counter possesses the same properties as this counter.

For the case @, =0 the function G. corresponds to the function G of an
ordinary integral counter. :

Two antiphase-modulated measuring capac1tors may be fed by one fan.
The gas flow rate through the fan will then be constant.

A dlsadvantage of gas flow rate modulation is the tendency of pulsatmg
flows to become:turbulent and the necesgity of mecbanwal' commutator
arrangements in‘gas flow ‘rate modutation, '

2. Modulation’ of the measuyring capacitor. voltage. . Let us denote the
voltage in succesgive half-periods by ¢/, and U;, respectively, and assume
U, < U;. In accordance with formula (4,3) #2<Ck,. ‘The function G.then
becomes N v . i

' 4xC(Us— Uk for ksh
2G. =1 D—4AnCUk . for hysch b . (12,3)
0 for k< R

When U, =0, expresgion (12, 3) corresponds to the G-function of a usual
integral counter. Junod, Singer and Thams/1962/ developed a method of double
differentiation by means of a complex modulating voltage.. A typical
modulating voltage ensuring double differentiation: is shown in Figure 12,1,
Here the difference between the amplitudes of the variable high-frequency
compeonent ‘is recorded for different half-periods-of the low-frequency
component, :

The double dlfferentlatxon method is very sens;\twe to fluctuations in
the relative charge density. : :

FIGURE 12:1. ModuIatmg voltage ﬂgnal ensurlng
- double dxfferemiation

A serious dlsadvantage of thls method is the necessity to accurately
compensate the induced current which exceeds the méasured current by
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several orders of magnitude. The compensation of the induced current is
effected by a bridge circuit /Junod, Sanger, Thams, 1962/, which will be
deseribed in §31,

3. Counter with a modulated precondenser. The measuring capacitor
is schematically shown in Figure 12.2, The intermediate shorted screening
capacitor is not necessary in principle, and merely serves to decrease the
total length and to prevent a widening of the air flow after it has passed
through the precondenser. Widening of the flow may cause turbulence. The
auxiliary RC circuit serves to separate the alternating and direct current.

—
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FIGURE 12,2. Counter with a modulated precondenser,

Thig counter has none of the shortcomings connected with the aerodynamic
instability of the pulsating flow and induced current.

Counters employing a modulated precondenser offer many additional
possibilities for work under various operating conditions. The function G.
is calculated as the difference of two expressions of the type (6.3). Since
the general form of this function is of current interest, we shall consider
only one example, Suppose the active capacitances of the preliminary and
main capacitors are C, and C; respectively, and the voltage of the
preliminary capacitor is 0 in the first half-period and U, in the second
half-period, Further, we assume that the voltage of the main capacitor
is constant and equals U;. We choose the voltage U;, such that U,C, = U)C,.
Denoting the limiting mobility of the ions in the main capacitor by ky, we
obtain

0 for k << 0,5k, i
2G.=1 (2k/ko—1)® for 0.5k < k<ko (12.4)
i3] for ko <k

This expression corresponds to (9.11), Consequently, the counter under
consideration has properties analogous to those of the Imyanitov counter.

Choosing U,C,=—U,C,, we can obtain a G-function of the type (4. 4).

4. Differential counter with an auxiliary modulating capacitor. According
to Figure 12, 3 the auxiliary capacitor is located at the center of the first
inner plate of the measuring capacitor. The auxiliary capacitor can be
placed directly in front of the differential measuring capacitor but this would
lead to complications because of the deviation from normal conditions and
because of the appearance of an edge effect at the boundary between the
auxiliary to the measuring capacitor.
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FIGURE 12,8, Differential counter with an auxiliary modulated capacitor:

1—modulated plate; 2—equipotential clongation of the inner plate inte:ded to improve
the aerodynamic properties of the measuring capacitor.

Suppose the mutual capacitance between the first inner and the entire
outer plate (including the modulated plaie) is C,, the capacitance between
the first inner and the modulated plate is C., the active capacitance of the
second inner plate is C;. Denoting the constant voltage by U and the
amplitude of the alternating modulating voltage by U., we obtain the four
limiting mobilities:

ket = T QITC T (12.4)i
ba-= TGS T (12.5)
kot = 35(—6'.#.0» (12.6)
b= U (12.7)

When k.- < k,., the function G. is expressed by

0 k< ko
4n[(C1+C2)U+C U.lk—@ for ko << k << by (12.8)
-= -U. for ke < k << kys
®—41(CU C.U.)k for ky. <<k << ky-
for ky- < k.
In the case of strong modulation k<< k.-, so that
for k<< ko
4“[(CI+C2)U+C U. ]k—@forka+<k<k+ (12.9)
2G. = 4nC,Uk or < k<< ko
O —4n(CU—C.U.- )k forka-gksk
0 for k,- << k.

*  [Both this and the previous formula are denoted as (12,4) in the Russian text.,]
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The two last expressions are similar to formula (8.6), which describes
the second-order differential counter under conditions whereby C,/C,<C ©,/D,.
Without further calculations it may be stated that, in principle, the above
method offers the same possibilities as the second-order differential method
for the conditions stated above.

When measuring the spectrum, it is advisable to choose the ratio U. /U
equal or slightly larger than the ratio Cy/2C..

The voltage of the modulated plate need not necessarily have only an
alternating component, as the alternating component can itself be modulated
by a lower frequency component.

In the above-described method modulation by differentiation replaces the
technically rather inconvenient separation of the air flow.

The possibilities of the method of modulating the precondenser are not
confined to the examples considered above, Since the method is relatively
new, it is difficult to indicate the practical significance of the different
variants. The general theoretical calculations pertaining to the different
counter variants are standard, and we shall forego any further treatment
of additional variants of the method.

The theory of modulation counters must be further refined because of
the need to calculate or estimate the transient processes. This problem
will not be considered in the present book.
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