
UNIVERSITY OF TARTU

Institute of Computer Science
Computer Science Curriculum

Madis-Karli Koppel

Using SQL-based Scripting Languages in
Hadoop Ecosystem for Data Analytics

Bachelor’s Thesis (9 ECTS)

Supervisor: Pelle Jakovits, MSc

Tartu 2016

SQL-il tuginevate skriptimiskeelte kasutamine andmeanalüü-
tikaks Hadoopi ökosüsteemis

Lühikokkuvõte: Selle lõputöö eesmärk on andmeanalüütika algoritmide rakenda-
mine, et võrrelda erinevaid SQL-il põhinevaid skriptimiskeeli Hadoopi ökosüstee-
mis. Lõputöö võrdleb erinevate raamistike efektiivsust ja algoritmide implementee-
rimise lihtsust kasutajal, kellel pole varasemat hajusarvutuse kogemust. Eesmärgi
täitmiseks implementeeriti kolm algoritmi: Pearsoni korrelatsioon, lihtne lineaar-
ne regressioon ja naiivne Bayesi klassifikaator. Algoritmid implementeerti kahes
SQL-il põhinevas raamistikus: Spark SQL-s ja HiveQL-s, samuti implementeeriti
samade algoritmide Spark MLlibi versioon. Algoritme testiti klastris erinevate si-
sendfaili suurustega, samuti muudeti kasutatavate tuumade arvu. Selles lõputöös
uuriti ka Spark SQLi ja Spark MLlibi algoritmide skaleeruvust. Algoritmide jook-
sutamise tulemusel selgus, et Pearsoni korrelatsioon oli HiveQL’is veidi kiirem kui
teistes uuritud raamistikes. Lineaarse regressiooni tulemused näitavad, et Spark
SQL ja Spark MLlib olid selle algoritmiga sama kiired, HiveQL oli umbes 30%
aeglasem. Kahe esimese algoritmiga skaleerusid Spark SQL ja Spark MLlibist pä-
rit algoritm hästi. Naiivse Bayesi klasifikaatoriga tehtud testid näitasid, et Spark
SQL on selle algoritmiga kiirem kui HiveQL, hoolimata sellest, et ta ei skalleru-
nud hästi. Spark MLlibi tulemused selle algoritmiga ei olnud piisavad järelduste
tegemiseks. Korrelatsiooni ja lineaarse regressiooni implementatsioonid HiveCon-
textis ja SQLContextis andsid sama tulemuse. Selle lõputöö käigus leiti, et SQL-il
põhinevaid raamistikke on kerge kasutada: HiveQL oli kõige lihtsam samas kui
Spark SQL nõudis veidi hajusarvutuse tundma õppimist. Spark MLlibi algoritmi-
de implementeerimine oli raskem kui oodatud kuna nõudis algoritmi sisemise töö
mõistmist, samuti osutusid vajalikuks teadmised hajusarvutusest.

Võtmesõnad:Spark SQL, HiveQL, Spark MLlib, Hadoop, MapReduce,
SQL, andmeanalüütika, SQL-il põhinev, skriptimiskeel, Pearsoni korre-
latsioon, lineaarne regressioon, Bayesi klassifitseerija

CERCS: T120, Süsteemitehnoloogia, arvutitehnoloogia

Using SQL-based Scripting Languages in Hadoop Ecosystem
for Data Analytics

Abstract:
The goal of this thesis is to compare different SQL-based scripting languages

in Hadoop ecosystem by implementing data analytics algorithms. The thesis com-

2

pared framework efficiencies and easiness of implementing algorithms with no pre-
vious experience in distributed computing. To fulfill this goal three algorithms were
implemented: Pearson’s correlation, simple linear regression and naive Bayes clas-
sifier. The algorithms were implemented in two SQL-based frameworks on Hadoop
ecosystem: Spark SQL and HiveQL, algorithms were also implemented from Spark
MLlib. SQLContext and HiveContext were also compared in Spark SQL. Algo-
rithms were tested in a cluster with different dataset sizes and different number of
executors. Scaling of Spark SQL and Spark MLlib’s algorithm was also measured.
Results obtained in this thesis show that in the implementation of Pearson’s cor-
relation HiveQL is slightly faster than other two frameworks. Linear regression
results show that Spark SQL and Spark MLlib are with similar run times, both
about 30% faster than HiveQL. Spark SQL and Spark MLlib algorithms scaled
well with these two algorithms. In the implementation of naive Bayes classifier
Spark SQL did not scale well but was still faster than HiveQL. Results for Spark
MLlib in multinomial naive Bayes proved to be inconclusive. With correlation
and regression no difference between SQLContext and HiveContext was found.
The thesis found SQL-based frameworks easy to use: HiveQL was the easiest
while Spark SQL required some additional investigation into distributed comput-
ing. Implementing algorithms from Spark MLlib was more difficulty as there it
was necessary to understand the internal workings of the algorithm, knowledge of
distributed computing was also necessary.

Keywords:Spark SQL, HiveQL, Spark MLlib, Hive, Hadoop, MapRe-
duce, SQL, data analytics, SQL-based, scripting language, Pearson’s
correlation, linear regression, naive Bayes classifier

CERCS: T120, Systems engineering, computer technology

3

Contents
Acronyms 6

1 Introduction 7
1.1 Motivation and Limitations . 8
1.2 Outline . 9

2 Hadoop Ecosystem 10
2.1 Apache Hadoop and Yarn . 10
2.2 MapReduce . 12
2.3 Directed Acyclic Graphs . 13
2.4 SQL-like Frameworks in Hadoop . 14
2.5 Non SQL-like Frameworks in Hadoop 18
2.6 Benefits of SQL-like Solutions . 20
2.7 Spark MLlib . 20
2.8 Hadoop Use Cases . 22

3 Algorithms 24
3.1 Pearson’s Correlation . 24

3.1.1 Pearson’s Correlation in Spark MLlib 24
3.1.2 Pearson’s Correlation in Spark SQL 25
3.1.3 Pearson’s Correlation in HiveQL 25

3.2 Simple Linear Regression . 26
3.2.1 Simple Linear Regression in Spark MLlib 26
3.2.2 Simple Linear Regression in Spark SQL 27
3.2.3 Simple Linear Regression in HiveQL 28

3.3 Multinomial Naive Bayes Classifier 28
3.3.1 Multinomial Naive Bayes in Spark MLlib 30
3.3.2 Multinomial Naive Bayes in Spark SQL 30
3.3.3 Multinomial Naive Bayes in HiveQL 31

4 Evaluation 32
4.1 Cluster and Input Data . 32
4.2 Pearson’s Correlation Results . 33

4.2.1 Pearson’s Correlation in Spark MLlib 33
4.2.2 Pearson’s Correlation in Spark SQL 34
4.2.3 Pearson’s Correlation in HiveQL 36

4.3 Simple Linear Regression Results 36
4.3.1 Simple Linear Regression in Spark MLlib 37
4.3.2 Simple Linear Regression in Spark SQL 38

4

4.3.3 Simple Linear Regression in HiveQL 39
4.4 Multinomial Naive Bayes Classifier Results 40

4.4.1 Naive Bayes Classifier in Spark MLlib 40
4.4.2 Naive Bayes Classifier in Spark SQL 41
4.4.3 Naive Bayes Classifier in HiveQL 42

4.5 Discussion . 43

5 Conclusion 44

References 49

6 Appendices 50

A Source code 50

Licence 51

5

Abbreviations
API Application Programming Interface

CDH Cloudera Distribution Including Apache Hadoop

CPU Central Processing Unit

DAG Directed Acyclic Graph

GB Gigabyte

HDFS Hadoop Distributed File System

MLlib Machine Learning library

MPP Massively Parallel Processing

MR MapReduce

RAM Random Access Memory

RDD Resilient Distributed Database

SGD Stochastic Gradient Descent

SQL Structured Query Language

TB Terabyte

UCI University of California Irvine

UDF User Defined Function

YARN Yet Another Resource Negotiator

6

1 Introduction
As the Information Age continues, more and more data is being created and

stored. This has brought with itself new challenges regarding moving, processing
and storing data. The current solution is to store data in big server parks, move it
physically and the main answer to process huge amounts of data has become the
Hadoop ecosystem.

Open source Hadoop ecosystem is used by industry leading companies in the
fields of social networking, content streaming and online retail. Some of these com-
panies have created their own frameworks to fit their needs and problems. Now,
programmers who want to work with data analytics using the Hadoop ecosystem
have to first pick a suitable framework, pick a programming language where to
implement it and then learn it. The Hadoop Ecosystem Table [1] lists more than
130 Hadoop related projects. As the ecosystem is still developing, new frameworks
are created every year and existing ones are changed.

For a programmer who has not worked with data analytics in Hadoop, choos-
ing a framework to work with is complicated. The programmer has to choose
between many different programming languages and frameworks, each framework
with its own API. Frameworks change and develop and the one that has the best
performance today, may not be the best next year. Performance of frameworks
also depends on size of data and algorithms used, meaning that for the best per-
formance, a programmer has to master many different APIs. This can overwhelm
the programmer who wants to start with data analytics in Hadoop or who needs
to develop prototype solutions in the same field.

A solution to this problem is to use SQL-based scripting languages. SQL-based
scripting languages are scripting languages that use SQL keywords or behave like
SQL languages. In Hadoop ecosystem they are compiled into lower level frame-
works, this means that programmer does not have to take care of many paral-
lelization aspects. Using SQL-based scripting languages could potentially simplify
writing distributed data processing and querying applications. Most programmers
have prior knowledge of SQL and therefore using SQL-based scripting languages
could also simplify writing data analytics applications as they only have to learn
minor differences in the scripting language. This does not solve the problem of pick-
ing the correct framework or programming language but programmers can work
with something familiar. SQL-based scripting languages are compiled into lower
level frameworks and by that they automatically take care of many paralleliza-
tion aspects. By using SQL-based scripting languages, another question arises:
are SQL-based scripting languages in Hadoop optimized enough to compete with
other frameworks?

7

1.1 Motivation and Limitations

The goal of this thesis is to compare different SQL-based scripting languages
by comparing HiveQL and Spark SQL using Java to find out if it is feasible for
a programmer who has no prior knowledge of distributed computing to write dis-
tributed computing applications using SQL-like languages without major losses
in performance in Hadoop ecosystem. Comparison is done by implementing algo-
rithms in frameworks and running them. Performance of algorithms from Spark
MLlib is used as comparison, algorithms in Spark SQL and Hive are compared
directly as both use similar SQL and calculate results using same formulas.

Java was picked as it is currently the most popular programming language ac-
cording to TIOBE [2] and therefore the programmer is most likely already familiar
with it. Java is also the most used programming language in Hadoop ecosystem
but Python, Ruby, PHP and others can also be used. Spark and Spark SQL were
picked as Spark already has a great machine learning library - Spark MLlib and
therefore it is possible to implement an algorithm in Spark SQL and compare
it directly to the same algorithm from Spark MLlib without taking into account
framework specifics. HiveQL was chosen as it was one of the first SQL scripting
language in Hadoop Ecosystem. It differs from Spark by writing all intermedi-
ate results to the disk when Spark keeps them in memory and therefore offers
a comparison of frameworks with different logic on where to keep intermediate
results.

First thing that was considered when selecting algorithms to implement was
whether or not they are available in MLlib [3]. The reason for this was to com-
pare performance of SQL-like solutions to native Spark, currently one of the most
popular frameworks running on YARN. The thesis will not look into iterative al-
gorithms with dynamic number of iterations. This restriction was set because
Hive does not support stored procedures [4], a requirement for algorithms with
dynamic number of iterations. Also, Spark SQL does not support "UPDATE <ta-
ble> SET" command [5], necessary for algorithms like k-means. Algorithms that
cannot be implemented in SQL-based frameworks because they do not work on
data that is expressed in table format were not considered. First implemented algo-
rithm is Pearson’s correlation. Pearson’s correlation is an easy to understand and
implement algorithm and provides a great introduction to data analytics. Sec-
ond implemented algorithm is simple linear regression. Simple linear regression
was selected as it offers testing results which in turn requires more calculations
and shows differences between frameworks when more calculations are performed.
With Pearson’s correlation and linear regression a programmer can focus on under-
standing what is done and why without spending time on learning the algorithm.
Implementation of these two algorithms in SQL-based frameworks does not require
creation of tables. Third implemented algorithm is multinomial Naive Bayes classi-

8

fier. It is more complicated and will demonstrate performance differences between
three selected frameworks when tables must be created in SQL-based frameworks
to store intermediate results.

1.2 Outline

Chapter 2 gives an overview of the Hadoop Ecosystem, SQL-like frameworks
that run on it, the programming models used for distributed big-data processing
and companies that use Hadoop.

In Chapter 3 Pearson’s correlation, simple linear regression and multinomial
naive Bayes classifier are described. How each algorithm was implemented in each
of the three frameworks is also described.

Chapter 4 focuses on results of running the algorithms in a cluster. Clus-
ter, input data and how algorithms were implemented is described. Spark SQL,
HiveQL and algorithms from Spark MLlib are compared to each other and differ-
ences between algorithms are analyzed. Chapter 4 also features discussion about
each framework.

Conclusions are presented in chapter 5.

9

2 Hadoop Ecosystem
This chapter provides an overview of the Hadoop Ecosystem. In describes

YARN, MapReduce programming model, Directed Acyclic Graph model and SQL-
like frameworks on YARN are described. Spark Machine learning library is intro-
duced. Use cases form the real world are described in the form of companies that
use Hadoop.

2.1 Apache Hadoop and Yarn

Apache Hadoop [6] is an open-source software framework designed for dis-
tributed big-data processing and storage across a cluster of computers. For storing
data Hadoop uses Java based HDFS - Hadoop Distributed File System - that dis-
tributes data between machines in a cluster in a replicated manner. As Hadoop is
used over huge number of machines it is more used for data processing than mod-
ifying the data in the cluster. Changing the data is difficulty - for example SQL’s
”ORDER BY” in a big cluster is very costly as data has to be moved between nodes
multiple times. Another issue is data consistency - when data is changed program-
mer cannot guarantee that all replicas of the data are also instantly changed.

YARN platform, also known as Hadoop 2.0 or version 2.0, is a job scheduling
and cluster resource management technology developed for Hadoop. The main
idea behind YARN, compared to the previous version, is to split the JobTracker
into separate daemons: resource management and job scheduling/monitoring [7].
Other difference between YARN and the previous version is that YARN does not
force applications to follow the MapReduce model [1]. It acts as a middle-man
between HDFS and frameworks developed to use it.

HDFS architecture is described in HDFS Architecture Guide [8] and a visual
representation is presented in figure 1. As a master/slave architecture HDFS
consists of a single NameNode - master server that regulates file system namespace
and access to files by clients and DataNodes. A file is split into one or several blocks
that are stored in a set of DataNodes. The NameNode executes system namespace
operations - opening, closing, renaming etc and determines the mapping of blocks
to DataNodes. DataNodes handle read and write requests from file system clients
and also take requests from NameNode for creation, deletion and replication of
blocks. HDFS is built in Java, and therefore any machine that is able to run
Java is also able to run HDFS. Standard deployment has one machine that runs
only NameNode software and each of the other machines in the cluster runs one
instance of DataNode software [8]. When processing data Hadoop moves it as
little as possible and moves workers to data not vice versa [9]. Figure 1 describes
HDFS architecture.

The main advantage of YARN is that it allows multiple access engines to work

10

Figure 1: HDFS Architecture [8]

Figure 2: Example of YARN running on top of HDFS and example projects that
use YARN [10]

11

on the same data, for example Apache Hive and Apache Spark can work on the
same data in HDFS without any changes to HDFS data structure. Figure 2 shows
YARN running on top of HDFS. Output of one framework can be used as input
to another. YARN is highly scalable and can run on hundreds or thousands of
machines, great example here would be Yahoo who has a cluster with more than
4500 nodes running Hadoop [11]. This has allowed Hadoop to become the standard
for big data processing.

2.2 MapReduce

Figure 3: Vizualisation of MapReduce [12]

At first, most applications written in Hadoop were created following MapRe-
duce programming model, other programming models were introduced later. "MapRe-
duce is a programming model and an associated implementation for processing and
generating large data sets." [13]. MapReduce splits the job into a single or a se-
ries of Map and Reduce procedures shown in figure 3. Maps are used to filter and
group the data whose output - key, value pair - is divided by keys between multiple

12

Reducers that then perform summary operations. As such it is scalable and can
work on large sets of data. Figure 3 illustrates how MapReduce works.

It is not an easy task to go from writing non-parallel code to writing MapRe-
duce applications for users who don’t have experience with parallel programming.
When working with MapReduce the user has to implement both Map and Re-
duce functions for which correct inputs, outputs and writables must be specified.
MapReduce is also difficult to optimize as there are tens of even hundreds of con-
figuration options that can be changed to customize the MapReduce execution -
ranging from data block size to sorting buffer sizes to number of reduce tasks per
core. Even though MR model allows only defining map and reduce and leaving ev-
erything else to the execution environment, there are sometimes performance gains
when also defining partition and combine. Partition and combine are explained
on slide 15 in [12]. Partition "divides up key space for parallel reduce operations"
and combine is a mini reducer after map phase that runs in memory and is used to
reduce network traffic by sending less data between maps and reducers. Working
with SQL-like solutions on YARN removes these issues - for example Hive and Pig
queries are compiled into MapReduce or DAG without user having to think about
it.

Example of MapReduce in Apache MapReduce is presented in 2.5.

2.3 Directed Acyclic Graphs

As Hadoop 2.0 does not force users to follow the MapReduce programming
model [1] new solutions have been created, one of them being directed-acyclic-
graphs - DAG - model. Two frameworks that use DAG are Spark and Tez.

Figure 4: Vizual comparison of MapReduce and Tez [14]

13

Apahe Tez is a framework that allows complex DAGs of tasks for processing
data. It was created to overcome limitations imposed by MapReduce and just
like MapReduce, Tez is a middle man between filesystem and frameworks working
on it. MapReduce forces the writing of mappers and reducers and also keeps a
big overhead for storing temporary data between multiple MapReduce jobs. Data
processing in Tez is modeled as a data flow graph where the vertices represent
application logic and edges stand for movement of data [15]. DAG model matches
with query plans of Hive and Pig [15]. Just as MapReduce, Tez is scalable and is
built for working with large sets of data. Vizual comparison of MapReduce and
Tez is presented in figure 4

2.4 SQL-like Frameworks in Hadoop

The aim of this section is to give an overview of SQL-like frameworks in Hadoop
to be later compared with non-SQL-like frameworks.

Thanks to Apache Hadoop being open-sourced and to the companies that are
releasing their in-house developments instead of keeping it for themselves, YARN
has a large selection of frameworks developed by the likes of Yahoo (Apache
Zookeeper, Yahoo Gridmix3, S4 Yahoo), Facebook (Apache Hive, Facebook Presto,
Facebook Corona, Facebook Scribe, Apache Cassandra, Apache Thrift) and many
others.

There are many SQL-based frameworks in YARN. SQL-based scripting lan-
guages are scripting languages that use SQL-like syntax (for example keywords
”SELECT”, ’GROUP BY”, etc) and where data that is being worked on is kept
in tables or table-like structures - for example a csv file or RDD in Spark, de-
scribed below. In Hadoop ecosystem SQL-based scripting languages are compiled
into lower level frameworks which means that programmer does not have to take
care of many parallelization aspects. Benefits of using SQL-like frameworks are
described in 2.6.

The following examples are to give an overview and later compare them to
non-SQL-like frameworks in Hadoop in subsection 2.5. These examples show SQL
"SELECT AVG(name) FROM Person WHERE age > 21". They also show cre-
ating tables, populating tables with data and displaying the result.

Name Age Country
John 20 Estonia
Mary 22 Latvia
Jane 22 Lithuania
Bob 23 Latvia

Table 1: Table against which example queries are made

14

Apache Hive [16] is a data warehouse infrastructure built for Hadoop. When
querying data with Hive, the minimal run time of the query is about 15 seconds.
One cause for this is the usage of MapReduce and its scheduler jobs that make
sure all the work is evenly distributed between mappers and reducers. Other
reason behind the high latency is that Hive writes query results to the disk before
starting to process it. When running multiple iterations Hive writes data to disk
every time. It also has a big user base who have created many UDFs (user defined
functions) for others to use [17].

Apache Hive uses its own SQL-like language: HiveQL.
CREATE TABLE Person (name s t r i ng , age int , country s t r i n g)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’ , ’
LINES TERMINATED BY ’ \n ’
STORED AS TEXTFILE;

LOAD DATA INPATH ’ /data/Person . txt ’ OVERWRITE INTO TABLE Person ;

SELECT country , AVG(age) FROM Person WHERE age > 21 GROUP BY country ;

Apache Spark [18] is a data analytics cluster computing framework that can be
run on YARN. Apache Spark has low latency thanks to keeping all the processed
data in memory instead of disk drive and execution engine that follows the DAG
model. Spark webpage [18] claims that this allows Spark to be up to 100 times
faster than Hadoop MapReduce when running queries on data that can fit into
memory. However, S. Laada [19] found that when it comes to data classification
it is not 10 or 100 times faster than Hadoop MapReduce. In 2014 Spark sorted
100 TB of data in 1406 seconds, three times faster than Hadoop in 2013 and won
Daytona GraySort Benchmark [20]. Spark uses RDDs [21] - resilient distributed
databases - to store intermediate results, the structure of which is not displayed
to the end user. Each query/modification performed on the data creates a new
RDD which has logs where this data came from that are used to restore data in
case a machine fails. By default nothing is written to the disk, even when running
multiple iterations. Data is written to disk when specified by the user or it does not
fit to memory [21]. Schema for Spark is less strict than the one in Hive allowing
the programmer more freedom. Spark is used for machine learning, streaming
analytics, and distributed graph processing.

For SQL, Spark has Spark SQL [22]. Spark SQL is a successor of Shark [23],
previous solution for SQL-like queries on Spark. Spark SQL does not completely
follow SQL-92 but supports a subset of SQL-92 language [5]. Spark SQL offers
HiveContext and SQLContext to run SQL-like queries in Spark. Differences be-
tween HiveContext and SQLContext are described in Spark SQL programming
guide [24]. HiveContext is a superset of SQLContext and it offers access to addi-

15

tional features but by doing so has more dependencies. One feature SQLContext
does not offer is the functionality to create tables. Both Contexts lack the func-
tionality of SQL "UPDATE <table> SET" and "CREATE PROCEDURE" [5].
Another keyword of Spark SQL is DataFrame. "A DataFrame is a distributed
collection of data organized into named columns. It is conceptually equivalent
to a table in a relational database or a data frame in R/Python, but with richer
optimizations under the hood" [24]. All SQL queries and other data operations in
Spark SQL are done on DataFrames.

Apache Spark SQL example from [24] showing reading data from json and using
SQLContext. When using json format, programmer only has to define file name.
SparkConf sparkConf = new SparkConf () . setAppName("Example") ;
JavaSparkContext j s c = new JavaSparkContext (sparkConf) ;
SQLContext sc = new org . apache . spark . s q l . SQLContext (sc) ;

DataFrame df = sc . read () . j son ("data/Person . j son ") ;
df . f i l t e r (df . c o l ("age") . gt (21)) . groupBy (" country ") . avg ("age") . show () ;

Apache Spark SQL - example with reading data from text file and using Hive-
Context. For every table from input file programmer has to define schemaString
and JavaRDD.
SparkConf conf = new SparkConf () . setAppName("Example") ;
JavaSparkContext j s c = new JavaSparkContext (conf) ;
HiveContext hc = new HiveContext (j s c . sc ()) ;

JavaRDD<Str ing> f i l e = sc . t e x tF i l e ("data/Person . txt ") ;
S t r ing schemaString = "name age country " ;

L i s t<StructF ie ld > f i e l d s = new ArrayList<Struc tF ie ld >() ;
f o r (S t r ing f ie ldName : schemaString . s p l i t (" ")) {

f i e l d s . add (DataTypes . c r e a t eS t r u c tF i e l d (fieldName , DataTypes .
StringType , t rue)) ;

}
StructType schema = DataTypes . createStructType (f i e l d s) ;
JavaRDD<Row> rowRDD = po int s .map(

new Function<Str ing , Row>(){
pub l i c Row c a l l (S t r ing record) throws Exception {

St r ing [] f i e l d s = record . s p l i t (" , ") ;
r e turn RowFactory . c r e a t e (f i e l d s [0] , f i e l d s [1] , f i e l d s [2]) ;

}
}) ;

DataFrame person = hc . createDataFrame (rowRDD, schema) ;
person . registerTempTable ("Person") ;

DataFrame a = hc . s q l ("SELECT country , AVG(age) FROM Person WHERE age
> 21 GROUP BY country ")

a . show () ;

16

Apache Flink [25] is a streaming dataflow engine that is optimized for cyclic
or iterative processes. It does not use Hadoop’s MapReduce but instead uses its
own runtime [26], in that field it is similar to Spark. But what makes Flink stand
out is that it is a pure stream-processing engine. This makes it more usable in
applications where low latency is required. Event Time semantics take care of
computing over streams where events arrive out of order or even delayed [27].
Batch processing applications in Flink use the same runtime as data streaming
applications [25].

Apache Flink features a Table API that uses SQL-like expressions. Example is
taken from [28] and modified.
ExecutionEnvironment env = ExecutionEnvironment .

getExecutionEnvironment () ;
DataSet<Str ing> person = env . readTextFi l e (" f i l e : /// data/Person . txt ") ;

TableEnvironment tableEnv = new TableEnvironment () ;

Table t ab l e = tableEnv . fromDataSet (person) . as ("name , age , country ") ;

Table t1 = tab l e . f i l t e r ("age > 21") . groupBy (" country ") . s e l e c t ("
country , age . avg") ;

tableEnv . toDataSet (t1 , Row. c l a s s) . p r i n t () ;

Cloudera Impala [29] is an analytic massively parallel processing (MPP) database.
When comparing Impala with batch processing frameworks, it delivers better low
latency, high concurrency analytic queries [30]. Low latency is achieved by cir-
cumventing MapReduce by accessing the data directly through a specialized dis-
tributed query engine [31]. SQL performance of Impala, Spark SQL and Shark
was benchmarked by Armbrust et al [32]. Authors found Spark SQL to be faster
than Shark and on the same level with Impala.

Clouder Impala: SQL query engine for Hadoop.
> crea t e t ab l e Person (name s t r i ng , age int , country s t r i n g) row

format de l im i t ed f i e l d s terminated by ’ , ’ ;
> load data inpath ’ /data/Person . txt ’ i n to t ab l e Person ;
> SELECT country , AVG(age) FROM Person WHERE age > 21 GROUP BY

country ;
TODO{group by}

There is also Pig [33], a high-level language that is used for analyzing large sets
of data. Pig is amendable to parallelization which enables it to handle large data
sets. Both Pig and Hive are compiled into a MapReduce or Tez frameworks that
run on YARN [33] [15].

17

Apache Pig: uses Pig that’s less similar to SQL than HiveQL and Spark SQL.
Example using csv file as input.
> A = LOAD ’ /data/Person . csv ’ USING PigStorage (’ , ’) as (name , age ,

country) ;
> B = FILTER A BY name > 21 ;
> C = GROUP B by country ;
> D = FOREACH C GENERATE country , AVG(age) ;
> DUMP C;

In this thesis Spark SQL and HiveQL are compared. HiveQL was selected as
it is compiled into MapReduce engine for it’s queries. HiveQL was also one of
the first SQL-like frameworks in the Hadoop ecosystem and should be the most
optimized over the years. Spark SQL is a newer solution and it was picked as it’s
queries are compiled into DAG. Spark also differs from HiveQL as it does not write
intermediate results to disk but keeps them in memory. Spark SQL and HiveQL
use similar SQL but under the hood they are very different.

2.5 Non SQL-like Frameworks in Hadoop

YARN also has frameworks that don’t use SQL-like syntax but work with
table-like data structures. This subsection looks at two non SQL-like frameworks
in YARN: Netflix PigPen and Apache MapReduce to be compared to SQL-like
solutions.

Netflix PigPen: uses Clojure that is a dialect of Lisp
(defn avg- o ld e r -than- 2 1 []

(->>
(pig / load "data/Person . csv ")
(p ig / f i l t e r (fn [{ : keys [b] }]

(-> b 21)) (f o l d /avg))
(p ig /group by : c)
(p ig /map (fn [[a b c]]

{ : name c })))))

(p ig /dump (o lder than 2 1))

The previous example is a bit harder to understand than the SQL-based examples
in previous section as it is far from SQL or languages like Java or Python. This also
means a longer learning curve when programmer starts working in this framework
as more has to be learned. What simplifies learning PigPen is that there is no
lower level optimization required. Also the length of example in lines of code is
comparable to examples of SQL-like frameworks.

Many frameworks do not have query like functions and have a programmatic
solution for performing data analytics. The following example is Apache MapRe-
duce in Java7, most MapReduce-based frameworks follow the same model.

18

. . .
pub l i c s t a t i c c l a s s TokenizerMapper extends Mapper<Object , Text , Text

, IntWritable >{
pub l i c void map(Object key , Text value , Context context) throws

IOException , Inter ruptedExcept ion {
Str ingToken ize r i t r = new Str ingToken ize r (va lue . t oS t r i ng ()) ;
S t r ing [] va lue s = value . t oS t r i ng (" , ") ;
i n t age = In t eg e r . pa r s e In t (va lue s [2]) ;
S t r ing country = va lues [3] ;
i f (I n t eg e r . pa r s e In t (age) > 21) {

context . wr i t e (new Text (country) , new IntWritab le (age)) ;
}

}
}
pub l i c s t a t i c c l a s s IntSumReducer extends Reducer<Text , IntWritable ,

Text , Text>{
pub l i c void reduce (Text key , I t e r ab l e <IntWritable> values , Context

context) throws IOException , Inter ruptedExcept ion {
p r i va t e IntWritab le r e s u l t = new IntWritab le () ;
i n t sum = 0 ;
f o r (IntWritab le va l : va lue s) {

sum += val . get () ;
}
r e s u l t . s e t (sum / va l s . s i z e ()) ;
context . wr i t e (key , r e s u l t) ;

}
}
pub l i c s t a t i c void main (S t r ing [] a rgs) throws Exception {

Conf igurat ion conf = new Conf igurat ion ()
Job job = new Job (conf , ’ ’ Average age f o r persons over 21 per

country ’ ’) ;
job . setJarByClass (AverageAge . c l a s s) ;
job . setMapperClass (TokenizerMapper . c l a s s) ;
job . setCombinerClass (IntSumReducer . c l a s s) ;
job . setReducerClass (IntSumReducer . c l a s s) ;
job . setOutputKeyClass (Text . c l a s s) ;
job . setOutputValueClass (IntWritab le . c l a s s) ;
Fi leInputFormat . addInputPath (job , new Path (’ ’ /data ’ ’) ;
FileOutputFormat . setOutputPath (job , new Path (’ ’ / r e s u l t s ’ ’) ;

}
. . .

If programmer has knowledge in Java the example above is more understandable
than Netflix PigPen example. It is visible that it takes a lot more code than the
SQL-like examples described in previous chapters and contains much lower level
programming. For a programmer who has never worked with this learning curve

19

is slightly lowered by the fact that it is written in Java but learning curve is still
high because it requires lower level programming. However, it is worth noting that
map and reduce require less lines of code in functional languages like Scala and it
also requires less code in Java8.

2.6 Benefits of SQL-like Solutions

SQL-like solutions are easier to learn when the user has prior knowledge of
SQL. The learning curve is smaller when the language is closer to SQL, as can be
seen when comparing Pig and Hive - Pig is more different from SQL and therefore
takes more time to learn. More SQL-like solutions require less trial and error.
With SQL-like solutions on Yarn the programmer can select from a wide variety
of programming languages including Java, Python and R to find the one where
they feel most comfortable in.

Other benefit of using SQL-like solutions compared to Apache MapReduce
is that data is kept in tabel-like structures. This will help programmers who are
familiar with SQL when they are implementing algorithms. They can think of data
being in tables and moving between tables, something they are already familiar
with. With MapReduce programmer has to think about what is mapped and what
is reduced and that is a different way of thinking that requires some getting used
to.

SQL-like solutions are also easier as they are higher level programming inter-
faces. In MapReduce programmer has to work with an lower level framework
and this means the programmer has to do more optimizing. Leaving more op-
timization to the programmer will yield better results if one is an expert in the
field but in novice hands it may result in much worse performance than higher
level frameworks offer. In their paper[34] C.Olston et al. described how PigLatin
makes writing data analysis applications faster than MapReduce as it requires less
low-level programming and optimizing.

2.7 Spark MLlib

As all the frameworks described here are open source, they have libraries where
developers can submit their algorithms which are published for everyone to use.
One of them is the Spark MLlib - the Spark machine learning library developed
with the goal "to make practical machine learning scalable and easy." [3] The
library "consists of common learning algorithms and utilities, including classifi-
cation, regression, clustering, collaborative filtering, dimensionality reduction, as
well as lower-level optimization primitives and higher-level pipeline APIs" [3] all
needed for machine learning. MLlib is divided into two packages [3]:

20

• spark.mllib that contains an API developed on top of RDDs and

• spark.ml that provides higher-level API developed on top of DataFrames for
constructing machine learning pipelines.

With algorithms available in Spark MLlib or any other framework’s library the
framework becomes easier to use. When it is only needed to implement algorithms
that are available from frameworks library the learning curve for implementing
said algorithms is decreased by a lot. Programmer still has to learn how to get
input to algorithm and how to get the output. Most of the times it is still necessary
to learn how the algorithm is implemented to achieve needed results. Programmer
also has to look into framework specifics when they are dealing with exceptions -
for example input data is slightly different than the algorithm’s default.

Some available methods in MLlib from Machine Learning Library Guide [3]:

• basic statistics - simpler statistics that are necessary for other machine learn-
ing algorithms or that describe data such as:

– lower level statistics like sum, mean, variance

– Pearson and Spearman correlation

– random data generation, hypothesis testing and stratified sampling

• classification and regression - methods to classify data or to find relationship
among variables such as:

– linear, logistic and isotonic regression

– naive Bayes

– decision trees

– random forests and gradient-boosted trees

• collaborative filtering - used in recommender systems to predict what user
might like based on ratings already given such as:

– alternating least squares algorithm

• clustering - unsupervised machine learning methods that group data into
similar subsets such as:

– k-means

– gaussian mixture model

– power iteration clustering

21

– latent Dirichlet allocation

– bisecting and streaming k-means

• dimensionality reduction - noise reduction methods that reduce the number
of variables under consideration such as:

– singular value decomposition

– principal component analysis

• feature extraction and transformation - methods that derive and/or modify
values form initial dataset to be then used by more advanced algorithms

– term frequency-inverse document frequency such as:

– Word2Vec

– StandardScaler

– normalizer

– ChiSQSelector

– ElementwiseProduct

– PCA

• frequent pattern mining - methods to mine frequent items, itemsets, subse-
quences etc. from dataset such as:

– frequent pattern growth

– association rules algorithm

– prefix span algorithm

The algorithms used in this thesis are already implemented in Spark MLlib.
MLlib’s algorithms are used to compare the effectiveness of SQL-like frameworks
to Spark MLlib.

2.8 Hadoop Use Cases

According to Hadoop wiki [11] big companies that use Hadoop include Face-
book, Amazon, Adobe, Ebay and Yahoo.

Facebook developed Hadoop Hive. They use Hadoop to store copies of internal
log and dimension data sources, as a source for reporting/analytics and machine
learning. Facebook uses both streaming and Java APIs - for that they developed
what is now known as Apache Hive. They have two clusters, one with 1,100
machines and 12 PB of storage, other with 300 machines and 3PB of storage.

22

Amazon uses Hadoop in A9.com for analytics and product search indices. They
use Java and streaming APIs for processing many sessions for analytics every
day. For product search indices they use the streaming API and C++, Perl and
Python tools. Adobe uses Apache Hadoop and Apache HBase from social sevices
to structured data storage and processing. They have about 30 nodes running
HDFS, Hadoop and Hbase in clusters of 5 to 14 node. Adobe is planning start a
80 node cluster. Ebay has 5.3PB of data and they use Java MapReduce, Apache
Pig, Apache Hive and Apache HBase for search optimization and research.

Yahoo has several clusters running Hadoop with more than 100 000 CPUs and
40 000 computers in total. Apache Pig, Apache Zookeeper, Yahoo Gridmix3 and
S4 Yahoo for Hadoop were developed by the company. More than 60% of their
Hadoop jobs are Pig jobs. Yahoo mostly uses Hadoop for Ad Systems and Web
Search but they are also researching and developing new solutions to make Hadoop
faster. The company has a specific Hadoop blog where they describe their other
use cases and benchmarking results. Blog articles range from using Hadoop for
spam filtering to next best result in a benchmarking contest.

23

3 Algorithms
Chapter 3 describes the implementation of Pearson’s correlation, Simple Linear

regression and Naive Bayes classifier algorithms. These algorithms will be then
used to evaluate the performance of SQL-like frameworks on Hadoop ecosystem
and to illustrate the differences of these frameworks. Each section starts with
a description of algorithm and how it is used to predict values or classify data
followed by implementation of the algorithm in every selected framework. This
chapter will also highlight differences between frameworks in implementing the
algorithms.

3.1 Pearson’s Correlation

Pearson’s correlation coefficient shows scale-free measure of linear association
between two variables X and Y[35]. Correlation coefficient is a value between -1
and 1 where positive correlation shows positive linear relationship, negative corre-
lation shows negative linear relationship and correlation of 0 shows that variables
are linearly independent. General formula for calculating Pearson’s correlation
coefficient as described by Zaiontz [35] is as follows:

ρX,Y =
cov(X, Y)

σXσY

where σX is the standard deviation of X and cov(X,Y) is covariance between X
values and Y values and shows linear association between them. Formula [36] for
calculating Pearson’s correlation in a sample:

r = rxy =
n
∑

(xiyi)−
∑
xi

∑
yi√

n
∑
x2i −

∑
x2i
√
n
∑
y2i − (

∑
yi)2

3.1.1 Pearson’s Correlation in Spark MLlib

Implementing MLLib algorithms in Spark can be divided into two parts:

• map phase where data is loaded and parsed

• processing the data by using methods from Spark MLLib

In map phase Pearson’s correlation from Spark MLlib [37] maps two values
used for correlation values as key-value pair. Keys and values are then extracted
to both their own RDD which are passed to Spark MLib method that calculates
the correlation between these two RDDs.

24

3.1.2 Pearson’s Correlation in Spark SQL

Pearson’s correlation does not require creation of new tables. This means both
HiveContext and SQLContext can be used for this algorithm. After Context is
selected, implementing algorithms in Spark SQL can be divided into three parts:

• specify the schema

• map data and create DataFrame and table from schema and map output

• run SQL commands on created DataFrame

Implementation of Pearson’s Correlation in Spark SQL is relatively easy - first
schema is specified to contain columns from which correlation is being calculated,
then an RDD is mapped from input data. After this a new DataFrame is created
from schema and RDD followed by table registration. When DataFrame is ready,
SQL queries can be executed on it, for this algorithm the SQL is
SELECT
(COUNT(∗) ∗ SUM(x ∗ y) - SUM(x) ∗ SUM(y)) /
(SQRT(COUNT(∗) ∗ SUM(x ∗ x) - SUM(x) ∗ SUM(x)) ∗ SQRT(COUNT(∗) ∗

SUM(y ∗ y) - SUM(y) ∗ SUM(y))
FROM Data

3.1.3 Pearson’s Correlation in HiveQL

Implementing algorithms in HiveQL has two steps:

• create input table and load data to table using HiveQL

• run SQL queries on created table

Implementing Pearson’s correlation coefficient algorithm in HiveQL is to first
create input table using SQL-like ”CREATE TABLE” command, the command is
also used to specify how fields and rows are delimited in input file. Next, input
data is loaded to table using ”LOAD DATA INPATH” and then exactly the same
SQL as in Spark SQL is run on created table.

One difference between Spark SQL and HiveQL in current case is that in Spark
SQL it is possible to create the initial DataFrame/table with only necessary data
but in HiveQL initial table must match described schema and contain all the same
data as is in input file.

The following code example shows how input table is created in HiveQL:

25

CREATE EXTERNAL TABLE cr_data (id s t r i ng , durat ion int , b i t r a t e t o t a l
int , b i t r a t e v i d e o int , x int , y int , f ramerate int , f r amera t e e s t int ,
codec s t r i ng , category s t r i ng , u r l s t r i n g)

ROW FORMAT DELIMITED
FIELDS TERMINATED BY "\ t "
LINES TERMINATED BY "\n"
LOCATION ’ / user / l abus e r /KoppelBachelor /backup/ ytv ideo s ’ ;

3.2 Simple Linear Regression

Simple linear regression is used to calculate a line function to describe input
data. The algorithm assumes that data can be described with a straight line - this
means that when X values increase (decrease) Y values also increase (decrease).
Simple linear regression looks at the connection of one X and one Y and predicts
value of y given x:

y = f(x) = a+ x ∗ b

where a and b are constants. Constant a is also called intercept - value of y when
x is zero and b is slope of the line - change in y when x changes by one. Formulas
used in this thesis in SQL-like frameworks to calculate slope and intercept [38]:

slope =
n
∑

(xy)−
∑
x
∑
y

n
∑
x2 − (

∑
x)2

intercept =
y − n ∗

∑
(xy)−

∑
x
∑
y

n
∑
x2 − (

∑
x)2x

Once slope and intercept are calculated, the values for Y-s that are not in the
data can be calculated:

unknownY = intercept+ slope ∗ x.

3.2.1 Simple Linear Regression in Spark MLlib

Implementation of linear regression from Spark MLlib [39] follows the same
steps as were described in 3.1.1. In mapping phase a new RDD is created that
contains necessary data. The RDD is then split into two for calculation of regres-
sion line and testing the outcome. The ratio was chosen to be 80% for training and
20% testing. In processing part mapped data is used to create a linear regression
model. One additional step in this algorithm is evaluation where model is used
to predict values that are then used to calculate mean squared error - how much
predicted values differ from actual values.

26

Linear regression in Spark is calculated using Stochastic Gradient Descent
(SGD). In optimization phase it was decided to only set intercept calculation to
true, set number of iterations to 100 and leave everything else to be optimized by
Spark. The decision was made to get a more accurate result so it can be compared
to SQL results on same data. Without setting intercept and number of iterations,
Spark predicted values that were far from SQL predictions. Figure 5 illustrates
how precision of predicted line increases with number of iterations. Number of it-
erations is not always 100 as the algorithm stops automatically once corrections to
slope and intercept are very small. It is worth noting that here optimization does
not mean to achieve faster execution time but to get more accurate result. SGD
optimization and other possible options are described in detail in [40]. Another
thing to note is that SGD works best with small numbers. Therefore it was needed
to normalize the data for MLlib regression function by dividing both width and
height by 500 and take this into account when calculating values. 500 was selected
as it produced the best result with initial data. Different number were tried and it
was found 500 provided the best fit with low resolution and high resolution videos.

Figure 5: Converging of results in Spark MLlib linear regression by number of
iterations

3.2.2 Simple Linear Regression in Spark SQL

Simple linear regression in Spark SQL does not require creation of new tables
and therefore both HiveContext and SQLContext can be used here. Algorithm
follows the same steps as described in 3.1.2.

In the first step of implementing simple linear regression in Spark SQL table
schema is specified. Then an RDD is mapped from input data for columns that

27

hold this data. The RDD is then split into two: 80% for the calculation of regres-
sion line and 20% for testing the outcome. Next step is to register a DataFrame
and create a table for line calculation. For simple linear regression the SQL for
calculating linear regression line is [38]:
SELECT ((COUNT(∗) ∗ SUM(x∗y)) - (SUM(x) ∗ SUM(y))) / ((COUNT(∗) ∗ SUM(

POW(x , 2)))- POW(SUM(x) , 2)) as i n t e r c ep t ,
AVG(y) - ((COUNT(∗) ∗ SUM(x∗y)) - (SUM(x) ∗ SUM(y))) / ((COUNT(∗) ∗

SUM(POW(x , 2))) - POW(SUM(x) ,2)) ∗ AVG(x) as s l ope
from Data

Final step that was not present in 3.1.2 is the testing part where values from test
tables are compared to values predicted by linear regression model and mean error
is calculated.

3.2.3 Simple Linear Regression in HiveQL

Implementing simple linear regression in HiveQL follows the step mentioned
in 3.1.3. In the first step tables for training and test data are created, then input
data is loaded to tables and finally exactly the same SQL query as in Spark SQL
is run on created tables. Implementation of HiveQL differs from Spark SQL’s
implementation as in HiveQL it is not possible to easily achieve the 80-20 input
file split. The framework offers functions to partition table into buckets but this
does not achieve 80-20 split in a reasonable number of queries. HiveQL also has
a function to select a percentage of table but it is hard to make sure that two
selections by percentage do not contain common rows. For HiveQL the input files
were split beforehand to allow HiveQL’s query to be the same as in Spark SQL in
order to keep run times for the two SQL-like frameworks comparable.

3.3 Multinomial Naive Bayes Classifier

Multinomial naive Bayes classifier is a multiclass classifier that assumes con-
ditional independence between features - all features are independent from each
other and can be looked at separately [41]. It is used to divide data into classes
by comparing bayesian probabilities of features given class.

In the hearth of naive Bayes classifier is the Bayes theorem which uses prior
events to calculate conditional probability of event under review: First thing in
understanding Bayes theorem is conditional probability. To calculate probability
of event Y = yi given event X = xk is true [?]:

P (X = xk|Y = yi) =
P (X = xk & Y = yi)

P (Y = yi)

28

Bayes theorem [42]:

P (Y = yi|X = xk) =
P (X = xk|Y = Yi)P (Y = yi)∑
y P (X = xk|Y = yj)P (Y = yj)

Naive Bayes classifier assumes that all features are conditionally independent.
Conditional independence is when given that event Z occurs then if Y occurs
or not does not provide any information on the likelihood of X occurring [43].
Mathematically [42]:

(∀i, j, k)P (X = xi|Y = yj, Z = zk) = P (X = xi|Z = zk)

Math behind Naive Bayes classifier is explained by T.Mithcell [42]. Naive Bayes
classifier assumes that features are conditionally independent and by that greatly
simplifies the representation and calculation of probabilities. Naive Bayes classifier
assumes that in P(Y|X) where X = {x1, x2...xn} every xi is conditionally indepen-
dent of every other xk given Y and also independent of every other subset of xk
given Y. When X = {x1, x2} [42]:

P (X|Y) = P (x1, x2|Y) = P (x1|x2, Y)P (x2|Y) = P (x1|Y)P (x2|Y)

When X contains n attributes that are conditionally independent [42]:

P (x1...xn|Y) =
n∏

i=1

P (xi|Y)

Bayes classifier uses the following formula to look for the most probable class
C using conditionally independent features x1, x2, ..., xn [42]:

C = argmax(
P (Y = Ck)

∏
i P (xi|Y = Ck)∑

j P (Y = Cj)
∏

i P (xi|Y = Cj)
)

as the denominator does not depend on Ck the formula can be simplified to the
following

C = argmax(P (Y = Ck)
∏
i

P (xi|Y = Ck))

When working with small probabilities logarithm of probability will provide an-
swers that can be more easily compared. Logarithm of probability also turns
product into sum: log (x ∗ y) = log x + log y . Sum is less CPU intensive than
product and therefore accelerates calculating probabilities. Naive Bayes classifier
expressed in logarithmic space:

C = argmax(logP (Y = Ck) +
∑
i=1

logP (xi|Y = Ck))

29

3.3.1 Multinomial Naive Bayes in Spark MLlib

First steps in implementing multinomial naive Bayes classifier from Spark ML-
lib [41] are the same as described in 3.1.1. In mapping phase a new RDD is
created that contains class and its features. The RDD is split in two for training
and testing following the 80-20 split also used in linear regression. The training
RDD is then used to train a Naive Bayes model which can be used to classify data
according to features. Final step is the evaluation of data where model is used to
predict classes in test RDD. Accuracy of model is calculated by comparing what
was class predicted classes to what was the actual class.

3.3.2 Multinomial Naive Bayes in Spark SQL

Multinomial naive Bayes requires creation of many tables and therefore only
HiveContext can be used here. In general it follows the same steps that were
described in 3.1.2 with the addition of testing. In mapping phase features and
classes are extracted from input file and schema is specified. This is followed by
creation of RDD that is split 80-20 for training and testing. Next an SQL query
is ran to create a table which holds data about features and classes. After this
model is created by calculating the probabilities for every feature and class present
in training data. Last step here is testing where model is used to predict classes
on test data and accuracy of model is calculated.

SQL used for multinomial naive Bayes:
CREATE TABLE f c o e f s AS

SELECT feature1 , c l a s s , l og ((f ea tu r e count +0.5) / c l a s s c oun t) AS
f1 coe f , l og ((c l a s s c oun t +0.5) / t o t a l) AS c co e f
FROM

(SELECT feature1 , c l a s s , va lue AS featurecount , SUM(value) OVER
(PARTITION BY c l a s s) AS c la s s count , SUM(value) over () t o t a l

FROM
(SELECT feature1 , SUM(1) AS value , c l a s s FROM data GROUP BY

feature1 , c l a s s) a)b

CREATE TABLE f 2 c o e f s AS
SELECT feature2 , c l a s s , l og ((f ea tu r e count +0.5) / c l a s s c oun t) AS

f 2 c o e f
FROM

(SELECT feature2 , c l a s s , va lue AS featurecount ,SUM(value) over
(PARTITION BY c l a s s) AS c l a s s c oun t

FROM
(SELECT feature2 , SUM(1) AS value , c l a s s FROM data GROUP BY

feature2 , c l a s s) a)b

CREATE TABLE t e s t s c o r e s AS

30

SELECT uid , t . f ea ture1 , t . f ea ture2 , t . c l a s s AS actual , a . c l a s s AS
pred i c t i on , f 1 c o e f+cco e f+f 2 c o e f AS sco r e
FROM tes tda ta t

INNER JOIN
(SELECT feature1 , c l a s s , f 1 co e f , c c o e f from f c o e f s) a ON t .

f e a tu r e1 = a . f e a tu r e1
INNER JOIN

(SELECT feature2 , c l a s s , f 2 c o e f FROM f 2 c o e f s)b
ON

t . f e a tu r e2 = b . f e a tu r e2 AND a . c l a s s = b . c l a s s

SELECT co r r e c t /COUNT(∗) AS accuracy FROM te s tda ta
LEFT JOIN

(SELECT SUM(IF (ac tua l = pred i c t i on , 1 , 0)) c o r r e c t
FROM

(SELECT actual , p r ed i c t i on , score , MAX(sco r e) OVER (PARTITION
BY uid) AS maxscore FROM t e s t s c o r e s) a WHERE sco r e = maxscore) b

ON 1=1
GROUP BY co r r e c t

3.3.3 Multinomial Naive Bayes in HiveQL

Implementing multinomial naive Bayes classifier in HiveQL follows the step
mentioned in 3.1.3 . In the first step tables for training and test data are created,
then input data is loaded into tables and finally exactly the same SQL query as
in Spark SQL is run on created tables. Multinomial naive Bayes implementation
also requires splitting input file to test and training data but to keep Spark SQL
and HiveQL comparable the data was split beforehand.

31

4 Evaluation
In this chapter results of running the algorithms in Spark, Spark SQL and

HiveQL are described. Algorithms were run using data sets of different sizes and
number of executors was also modified. This thesis will also look at how well
algorithms in Spark SQL and Spark MLlib scale, scaling of HiveQL is not looked
into as it will always use as much resources as depending on how much is necessary
and how much is given. It is possible to check how well Hive works depending on
different number of CPU cores given to it but this requires reconfiguration of
cluster between tests and it is too costly. Scaling of other two frameworks can be
easily compared because number of CPU cores can be specified during execution

4.1 Cluster and Input Data

Algorithms were run in University of Tartu Mobile & Cloud Laboratory’s
Cloudera Distribution Including Apache Hadoop - CDH 5.6.0 - cluster. It is a
two machine cluster that is made up of two HP ProLiant DL180 G6 servers. Both
servers have the same specifications:

• 2 CPUs: 4 core Xeon E5606

• RAM: 32 GB

• storage: 2 * 2 TB hard disks

• operating system: Ubuntu 12.04.1 LTS 64 bit

CPUs run on hyper threading - operation system assigns two addresses for each
physical processor. This improves parallelization and means that operating system
can use eight cores per processor when it has four physical cores.

CDH is running on four virtual machines: one master and three workers. Every
machine shares the same configuration:

• CPU: 4 virtual CPUs acting as Intel T770 @ 2.40GHz

• RAM: 12 GB

• storage: 36 GB root disk + 200 GB storage disk

In total Cloudera has 16 CPU cores but only 8 can be used for YARN clusters:
master is used for YARN, Cloudera uses one core per worker and YARN uses one
core for driver.

Initial data for algorithms was downloaded from UCI Machine Learning Repos-
itory [44] and bigger datasets were generated using limits identified from initial

32

dataset. Results obtained by running the algorithms on initial dataset is also
described. Bigger data sets were generated to see how frameworks handle differ-
ent amounts of data. Number of executors was also modified to see how scalable
execution of algorithms is and how well parallelization is handled. Number of ex-
ecutors (YARN clusters) was set to 1, 2, 4 and 8. With every generated dataset
and number of worker nodes three tests were run, average run time from three
tests is shown as run time.

Spark and Spark SQL were run in CDH using command line arguments. A
script was used to start every algorithm with every dataset size and every number
of executors three times. Results were taken from CDH Spark history server that
displays run time when algorithm finishes execution. Using results from running
the algorithms on biggest dataset parallel efficiency was also calculated [45]:

E(p) =
T (n, 1)

p ∗ T (n, p)
where T(n,1) is algorithm run time with one executor, T(n,p) is algorithm run
time with p executors and p is the number of executors.

HiveQL was run in Cloudera Hue web application that allows access to CDH.
Hue behaved differently than CDH using command line arguments. When execut-
ing multiple SQL-s together Hue stopped between two queries for 7 - 15 minutes.
That does not affect correlation results but when calculating run time for linear
regression and naive Bayes classifier this was not taken into account. Results dis-
played in this chapter for linear regression and naive Bayes classifier in HiveQL
are sums jobs executed with the query. Hue did not present table creation times,
these are not present in results.

4.2 Pearson’s Correlation Results

Initial data for running Pearson’s Correlation was downloaded from UCI Ma-
chine Learning Repository[44]. Data set chosen for this algorithm was the Online
Video Characteristics and Transcoding Time Dataset [46]. Original data set is a
tsv file that contains 168 280 rows and 11 columns. Using this data set limits for
new columns were identified and bigger datasets generated with 1, 3, 5 and 10 mil-
lion rows to better understand how algorithms scale and handle bigger datasets.
For correlation it was decided to use columns that contain video width and height
to find if there is a correlation between these two values. With initial data all
algorithms found the correlation to be 0.92 that shows strong linear correlation.

4.2.1 Pearson’s Correlation in Spark MLlib

Results of running Pearson’s correlation in Spark are shown in the table 2.

33

1 executor 2 executors 4 executors 8 executors
168 280 rows 25,0 s 23,0 s 23,3 s 32,3 s
1 000 000 rows 60,0 s 47,7 s 33,7 s 35,3 s
3 000 000 rows 142,3 s 83,0 s 55,0 s 50,0 s
5 000 000 rows 229,0 s 124,3 s 76,0 s 61,7 s
10 000 000 rows 439,3 s 237,7 s 136,0 s 99,0 s

Table 2: Pearson’s Correlation in Spark MLlib

From the table it can be seen that run time grows as input data size grows. It
also shows that with additional executors execution time decreases. With original
dataset and 1 000 000 row dataset 8 executors is slightly slower that 4 executors
but with bigger datasets more executors gives better performance. This means
that the implementation of Pearson’s correlation in Spark MLlib is scalable and
adding additional executors decreases run time. Parallel efficiency with 10 000 000
rows going from one executor to eight was 55,51%.

Implementation of Pearson’s correlation from Spark MLlib was straightforward
and did not require any optimization. Only thing to do for a programmer in
implementing the algorithm is to map data from input file to RDD and then split
the RDD. This means that a programmer not familiar with Spark still has to learn
what are RDD-s and how to use the map function.

4.2.2 Pearson’s Correlation in Spark SQL

Results of running Pearson’s Correlation in Spark SQL using HiveContext are
shown in table 3 and results when using SQLContext are shown in 4.

1 executor 2 executors 4 executors 8 executors
168 280 rows 38,7 s 36,0 s 31,0 s 39,0 s
1 000 000 rows 53,3 s 39,0 s 33,3 s 36,0 s
3 000 000 rows 112,0 s 69,0 s 49,3 s 46,3 s
5 000 000 rows 170,3 s 99,3 s 64,7 s 56,0 s
10 000 000 rows 319,0 s 172,3 s 106 s 85,3 s

Table 3: Pearson’s correlation in Spark SQL HiveContext

Both tables show similar numbers and from this it can be concluded that in
implementing Pearson’s correlation it does not matter which Context to use. The
results here also show that with initial data Spark SQL was slightly slower when
compared to Spark MLlib’s implementation. However, starting from 1 000 000
rows Spark SQL’s run time started performing better with 2 executors and was

34

1 executor 2 executors 4 executors 8 executors
168 280 rows 38,0 s 35,0 s 30,7 s 38,3 s
1 000 000 rows 53,0 s 33,7 s 33,0 s 35,3 s
3 000 000 rows 113,3 s 68,3 s 48,0 s 48,7 s
5 000 000 rows 169,3 s 98,3 s 63,3 s 55,7 s
10 000 000 rows 320,0 s 171,7 s 103,7 s 87,3 s

Table 4: Pearson’s correlation in Spark SQL SQLContext

2.4 times faster with 5 000 000 input rows and 2 executors. There aren’t many
differences with 8 executors, excluding 5 000 000 rows input file where Spark SQL
was 1.7 times faster. Parallel efficiency with 10 000 000 rows going from one
executor to 8 was 46,75% for HiveContext and 45,82% for SQLContext.

Figure 6 shows the how additional executors decrease run time. Table also
shows how similar SQLContext and HiveContext run times were - their lines are
almost the same.

Figure 6: Framework Speed Up Comparison in Pearson’s Correlation using 10 000
000 row dataset

Implementation of Pearson’s correlation in Spark SQL required only selecting
data from table and then performing calculations on selected data. This could
be done by any programmer familiar with SQL. The obvious difficulties here are
reading data from input file that is not in json format as then programmer has
to manually specify table schema and map data from file to RDD. Event though
Spark SQL is SQL-like it still requires some low level programming that is not

35

present when only working with SQL. Running SQLs on DataFrame can be done
by any programmer familiar with SQL and requires no knowledge or lower level
programming.

4.2.3 Pearson’s Correlation in HiveQL

Results of running Pearson’s correlation in HiveQL are shown in table 5:

time
168 280 rows 31,7 s
1 000 000 rows 32,3 s
3 000 000 rows 38,7 s
5 000 000 rows 50,3 s
10 000 000 rows 70,3 s

Table 5: Pearson’s correlation in HiveQL

The most interesting thing to note here is that HiveQL performed on par with
Spark SQL and outperformed algorithm from Spark MLlib. Input table creation
times are not present in HiveQL results but for largest dataset it was 1.4 seconds,
faster than 29 seconds - difference between HiveQL and Spark MLlib using biggest
dataset and maximum number of executors.

Implementation of Pearson’s correlation in HiveQL requires only knowledge of
SQL. Input data is read from file using SQL and then SQL query is ran on created
table. There is no need to map data from file or perform optimizations that were
present in Spark MLlib. One issue when implementing this algorithm was that
HiveQL does not support the function MEAN() but as it is just a different name
for AVG() this did not stop the implementation.

4.3 Simple Linear Regression Results

Initial data for running simple linear regression is the same Online Video Char-
acteristics and Transcoding Time Dataset used with correlation. Bigger generated
datasets with 1, 3 and 5 million rows that were used with Pearson’s correlation
algorithm are also used here.

Results of running linear regression algorithm on original data is visualized
are figure 7. HiveQL and Spark SQL produced exactly the same result, result
from Spark MLlib algorithm is slightly different. The difference comes from how
algorithms calculate the result - SQL frameworks used a well-defined formula that
produced one result each time it was run. Spark MLlib algorithm used SGD and
therefore the results varied between runs but only by 10−13 for both slope and
intercept.

36

Figure 7: Vizualization of linearregression results

4.3.1 Simple Linear Regression in Spark MLlib

Results of running simple linear regression in Spark are shown in the table 6.

1 executor 2 executors 4 executors 8 executors
168 280 rows 56,0 s 48,3 s 47,7 s 58,3 s
1 000 000 rows 94,0 s 71,3 s 62,7 s 66,0 s
3 000 000 rows 199,3 s 127,0 s 91,0 s 83,7 s
5 000 000 rows 331,0 s 178,3 s 119,7 s 99,3 s

Table 6: Spark Linear Regression

From the table it can be seen that run time grows as input data size grows.
It also shows that with additional executors execution time decreases with one
exception. Adding additional executors to original dataset actually increased run
time. Difference in run time between different number of executors in 1, 3 and 5
million row datasets show that with bigger datasets this algorithm is scalable. For
5 000 000 row dataset the scaling efficiency between 1 executor and 8 executors
was 41,6%.

As linear regression is already implemented in Spark MLlib then implementing
this is relatively easy. However, the algorithm does not calculate the line in a
straight forward way but required some optimization. For accurate results number
of iterations had to be set and it was also necessary to divide values by 500. This
was required because the algorithm used SGDs that are optimized for working
with small numbers. This highlights the issue that Spark MLlib’s linear regression
requires knowledge about the internal workings of the implementation.

37

4.3.2 Simple Linear Regression in Spark SQL

Results of running linear regression are shown in the two tables below. Results
when using HiveContext are shown in table 7 and results using SQLContext are
shown in table 8.

1 executor 2 executors 4 executors 8 executors
168 280 rows 67,3 s 59,3 s 52,0 s 62,7 s
1 000 000 rows 101,7 s 66,0 s 50,0 s 49,3 s
3 000 000 rows 250,0 s 143,0 87,7 s 73,0 s
5 000 000 rows 397,3 216,3 s 125,3 s 95,3 s

Table 7: Linear Regression in Spark SQL using HiveContext

1 executor 2 executors 4 executors 8 executors
168 280 rows 68,0 s 61,3 s 52,3 s 62,0 s
1 000 000 rows 102,7 s 66,0 s 50,7 s 50,3 s
3 000 000 rows 250,3 s 140,0 s 91,0 s 74,0 s
5 000 000 rows 394,7 215,3 s 126,3 s 96,7s

Table 8: Linear Regression in Spark SQL using SQLContext

Both tables show similar numbers and from this it can be concluded that in
simple linear regression’s implementation in Spark SQL it does not matter which
Context to use for SQL. The tables also show that with 1 and 2 executors Spark
SQL was slower than Spark, execution times were similar with 4 executors and
8 executors. This combined with the fact that run times decrease faster with
every additional executor shows that with this algorithm Spark SQL scales better
than Spark MLlib’s implementation, this is illustrated in figure 8. For 5 million row
input file the scaling efficiency was 51,0% for HiveContext and 52,1% SQLContext.

Implementation of linear regression in Spark SQL only required selecting data
from table. Writing the SQL is doable for a programmer that has knowledge about
SQL. The additional step here, when compared with implementation of Pearon’s
correlation, was testing where created model was compared to test data and this
required splitting up input data for test and training data. This, combined with
the fact that reading data from text file requires the specification of schema and
mapping the data to schema, means that programmer also has to learn what are
RDDs and how to map data from input file. When this is done, everything else
is done by using SQL. One issue encountered here is that in Spark SQL variables
cannot be saved using SQL. The algorithm had to do some calculations twice and
one calculation - count(*) - four times, saving result to a variable could help here.

38

Figure 8: Framework Speed Up Comparison in Simple Linear Regression using 3
000 000 row dataset

The thesis did not check the internal workings of Spark SQL to see how well it is
optimized. Future work is needed here to investigate how this is handled to see if
using variables could help speed up the process.

4.3.3 Simple Linear Regression in HiveQL

Results of running simple linear regression in HiveQL are shown in the table
9.

time
168 280 rows 107,7 s
1 000 000 rows 109,0 s
3 000 000 rows 122,3 s
5 000 000 rows 132,3 s

Table 9: Linear regression in HiveQL

From the table it can be seen that even though size of dataset increased more
than five times run times remained relatively the same. Run times are slower than
run times in Spark SQL and Spark MLlib with 8 executors for every input size.

HiveQL required the processing of files beforehand while Spark MLlib version
and Spark SQL version were able to split input file into test and train easily. It
was decided to split files beforehand with a Python script as HiveQL lacked the

39

function to split file randomly using sizes in percentages. There was the option
to split files into buckets and then select data from only several buckets but that
does not allow the 80-20 split that is possible in Spark SQL and Spark. Hive also
had the option to randomly select 80% and 20% of data but there was no way to
make sure that these two splits didn’t share common data.

Implementation of linear regression in HiveQL was only using SQL. There was
no need for additional lower level programming and therefore every programmer
who has knowledge about SQL can implement this algorithms. All the issues
encountered with this algorithm were related to Hue but there were no issues with
writing SQL. HiveQL does also not support storing variables. This thesis did not
look into the inner workings of HiveQL and future work is required here to see
how well HiveQL optimizes queries where same SQL calculations are used many
times.

4.4 Multinomial Naive Bayes Classifier Results

Initial data used for multinomial naive Bayes is Covertype Data Set [47] from
UCI Machine Learning Repository [44]. Covertype Data Set contains 581 012 rows
and 13 attributes. For multinomial naive Bayes it was decided to use two features
to classify cover type. The features selected were elevation and aspect. From
intintal dataset bigger datasets were generated that contain 1, 3 and 5 million
rows.

The output of every algorithm was precision of classification. Here Spark SQL
and HiveQL achieved far greater precision than Spark MLlib’s implementation
using initial data as Spark’s precision was 17% compared to 67% in Spark SQL
and HiveQL. Neither Spark MLlib’s optimization guide[40] nor MLlib page for the
algorithm[41] gave any information on how to achieve better precision. It could’ve
been caused by overtraining as train did take 80% of the input file but that did
not affect classifiers in Spark SQL and HiveQL.

4.4.1 Naive Bayes Classifier in Spark MLlib

Results of running naive Bayes classifier in Spark MLlib are shown in table 11.

1 executor 2 executors 4 executors 8 executors
581 012 rows 26,7 s 23,0 s 23,7 s 28,0 s
1 000 000 rows 28,3 s 25,0 s 21,0 s 29,0 s
3 000 000 rows 40,0 s 29,0 s 25,3 s 29,7 s
5 000 000 rows 54,0 s 37,0 s 30,3 s 33,0 s

Table 10: Naive Bayes classifier in Spark MLlib

40

The table shows that with these input data sizes Spark was fast. The data does
not give great overview as much of this result is Spark’s overhead and the results
do not provide good insight into how well Spark scales. It does however show that
the algorithm handles presented amounts of data easily. Parallel efficiency with 5
000 000 rows going from one executor to 8 was 20,45%.

Spark MLlib’s implementation using initialal data set gave lower percision than
the one in Spark SQL and HiveQL. Neither Spark MLlib’s optimization guide[40]
nor MLlib page for the algorithm[41] gave any information on how to achieve
better precision. It could’ve been caused by overtraining as train did take 80%
of the input file but that did not affect classifier in Spark SQL and HiveQL. The
thesis focused more on performance and investigating lower accuracy is not in the
context but this could be looked into in future work. Algorithm’s MLlib page does
say that the algorithm is used mostly for document classification while naive Bayes
formula does not set any restrictions on what to use it for.

Implementation of naive Bayes from Spark MLlib proves how programmer has
to know the internal workings of algorithms. The accuracy of this algorithm could
be increased by altering test and training data sizes or by changing the settings of
the algorithm. There are possibilities to specify thresholds for predicting each class
and to change smoothing of probabilities but this thesis did not find a combination
of these two parameters that gave better precision and left them to default values.
Future work is needed here to see how to increase the precision. It is worth noting
here that the algorithm also gave low precision when using only elevation as feature
but this was increased to 60% by adding one additional feature that was always
”1”.

4.4.2 Naive Bayes Classifier in Spark SQL

Naive Bayes classifier requires creation of tables to hold intermediate data and
therefore only HiveContext was used here. Run times of naive Bayes classifier
implementation in Spark SQL are shown in table 11.

1 executor 2 executors 4 executors 8 executors
581 012 rows 161,3 s 136,7 s 140,0 s 166,7 s
1 000 000 rows 182,3 s 152,0 s 141,6 s 178,3 s
3 000 000 rows 258,7 s 193,0 s 172,0 s 202,3 s
5 000 000 rows 347,7 s 247,3 s 204,7 s 232 s

Table 11: Naive Bayes classifier in Spark SQL

From the table it can be seen that run time grows as input data size grows. It
also shows that in general additional executors decrease run time. However, with
first three inputs additional executors slowed run time when comparing 4 and 8

41

executors. The algorithm scales well when switching from 1 to 2 or 4 executors but
does not scale that well when going from 4 executors to 8 executors. The thesis
focused more on performance and investigating why algorithm does not scale going
from 4 to 8 executors is not in the context but this could be looked into in future
work. Parallel efficiency with 5 000 000 rows going from one executor to eight was
18,7%.

Implementation of naive Bayes classifier in Spark SQL required creating new
tables. This means SQLContext was not used here as it currently does not support
creating tables. Tables in SQLContext can be created using the programmatic
approach but this was not used here, instead it was decided to keep everything
in SQL. The SQL part in implementation of this algorithm is doable for any
programmer with previous knowledge of SQL and no issues were encountered.
During the implementation it was found that run time can be lowered by creating
less tables and using ”PARTITION BY” instead of ”GROUP BY”. The run times of
Spark SQL and algorithm from Spark MLlib cannot be directly compared here as
they produced different results and use different methods to calculate the result.
Future work is needed here to see how well Spark SQL compares to the same
algorithm directly implemented in Spark.

4.4.3 Naive Bayes Classifier in HiveQL

Run times of naive Bayes classifier implementation in HiveQL are shown in
table 12.

time
581 012 rows 254,7 s
1 000 000 rows 276,7 s
3 000 000 rows 327,7 s
5 000 000 rows 395,7 s

Table 12: Naive Bayes Classifier in HiveQL

From the table it can be seen that with this algorithm HiveQL performed slower
than Spark SQL. This was most likely caused by the way how both algorithms store
intermediate results and where data is kept. HiveQL prefers writing intermediate
results to disk while Spark SQL keeps it in memory. With increase in input data
sizes algorithm run time also increased but slower than the multiplier that data
size grew by.

HiveQL required the processing of files beforehand to split them into train and
test files using a Python script. HiveQL was slower than Spark SQL with this
algorithm, splitting file using SQL would only increase the gap between them.
Rest of the implementation of naive Bayes classifier in HiveQL was only using

42

SQL. There was no need for additional lower level programming and therefore
every programmer who has knowledge about SQL can implement this algorithms.

4.5 Discussion

Every framework used in this thesis had it’s own issues. The least issues were
with HiveQL. There, most of the issues were related to Hue that was really buggy.
For example the default behavior of Hue, according to documentation, is to run
all submitted SQL-s in a row. This did not happen, instead it required input from
user and returned ”ERROR 500” almost as often as it worked on query history
page. Because of it tests whose jobs took about 300 seconds in total took tens of
minutes. However, these were not HiveQL issues and could’ve been easily avoided
by using command line arguments. The only actual HiveQL issue encountered was
not even a real issue - it did not have ”MEAN()” function, instead ”AVG()” had
to be used while Spark SQL had both. HiveQL as a framework was the easiest to
use.

Spark SQL had more issues. First thing was the difference between HiveCon-
text and SQLContext. Most of the examples and documentation shows SQLCon-
text but as it has less features it is not good to use. SQLContext was faster than
HiveContext on PC but with tests done in cluster they had nearly identical run
times. Spark SQL is a young framework and it is still developing, this was illus-
trated by tests done in cluster where it turned out that Spark 1.5 did not have
some functions present in 1.6. One of the strangest issues encountered was a bug
where Spark SQL showed all tables to be empty. Workaround for this was to
delete local files for metastore but over the course of time this stopped happening.
However, Spark SQL was still relatively easy to use as most programs follow the
same template.

Getting algorithms from Spark MLlib to run is relatively easy. What is hard
is getting it to display correct result. That aside, the first actual algorithm imple-
mented while researching this thesis was k-means from Spark MLlib that did take
less than 10 minutes. However, after realizing that it’s not doable/requires a lot
of workarounds in other frameworks it was abandoned.

43

5 Conclusion
In the scope of this thesis three algorithms were implemented in Spark SQL,

HiveQL and Spark MLlib: Pearson’s correlation, simple linear regression and naive
Bayes classifier. The main goal of this thesis was to see if it is feasible to use SQL-
based languages in Hadoop ecosystem for data analytics for a programmer that
has no prior knowledge of distributed computing.

The result of this thesis shows how three algorithms were implemented and
compared by running them in University of Tartu cluster. Tests were carried out
with real datasets and bigger datasets were generated to see how well algorithms
handle greater amounts of data. Initial data sets were 160 000 rows and 560 000
rows, generated data sets contained 1 000 000, 3 000 000, 5 000 000 and 10 000
000. To see how well algorithms scale tests were run with different number of
executors between 1 and 8.

Results received show that when calculating Pearson’s correlation all frame-
works had nearly identical run times. With simple linear regression Spark SQL
and algorithm from Spark MLlib had similar runtime with 4 and 8 executors.
Spark MLlib was faster with lower number of executors. In simple linear regres-
sion HiveQL was slower than other two frameworks. In Naive Bayes classifier
Spark SQL outperformed HiveQL. With this algorithm Spark MLlib’s run time
was faster but also produced a result that was 3 times less accurate than SQL-
based frameworks.

The main goal of this thesis was to see if it is feasible to use SQL-based lan-
guages in Hadoop ecosysem for data analytics. This goal was partially fulfilled
as it showed that the selected algorithms can be implemented in HiveQL by us-
ing only SQL-like syntax. However, the results also showed that with Spark SQL
some knowledge of distributed computing is required in mapping input files or per-
forming actions with RDDs. The thesis also showed that with more complicated
algorithms performance of HiveQL was slower when compared to Spark SQL.

Spark SQL’s HiveContext and SQLContext were also compared. According
to tests run on Pearson’s correlation and simple linear regression there was no
difference in run times for the two. The thesis found that it is better to use
HiveContext as SQLContext lacks functionality, for example creating tables, that
is present in HiveContext. Differences between the two meant it was not possible
to implement naive Bayes classifier in SQLContext.

The thesis also showed that HiveQL is the easiest for implementing algorithms
for someone not knowledgeable in distributed computing. It required nothing else
than specifying input file and SQL queries. While other frameworks tested here
were faster, HiveQL was the easiest to use. When end goal is not to achieve best
performance then HiveQL is the best of the three frameworks, if used in a good
execution environment.

44

Future work is still required here to compare Spark SQL and HiveQL to algo-
rithms directly implemented in Spark. Spark MLlib uses its own method to cal-
culate simple linear regression and Spark MLlib’s implementation of naive Bayes
calculated 3 times worse accuracy than HiveQL and Spark SQL. Future work is
also needed to see what exactly causes different run times. For that CDH’s Spark
History server gives detailed overview about which piece of code takes how much
time to execute that can be used to see what exactly takes time in Spark applica-
tions. Difference in run time can also be investigated by studying Spark MLlib’s
implementation of the algorithm and find out how exactly results are calculated.
Why naive Bayes classifier in Spark SQL did not scale from 4 to 8 and even had a
bigger run time with 8 executors is also left for future work. Here, CDH’s Spark
history server can provide great insight into what takes time and is this caused by
issues with the algorithm, it’s implementation or is it something to do with Spark.
Future work is also needed to see how well HiveQL and Spark SQL optimize code
where some calculations are done multiple times.

45

References
[1] “The Hadoop Ecosystem Tablel.” https://hadoopecosystemtable.github.

io/. accessed: 05.04.2016, under Apache MapReduce.

[2] T. software BV, “TIOBE Index.” http://www.tiobe.com/tiobe_index. ac-
cessed: 05.04.2016.

[3] “Machine Learning Library (MLlib) Guide.” http://spark.apache.org/
docs/latest/mllib-guide.html. accessed: 05.04.2016.

[4] “Hive LanguageManual.” https://cwiki.apache.org/confluence/
display/Hive/LanguageManual. accessed: 05.04.2016.

[5] “Supported syntax of Spark SQL.” https://docs.datastax.
com/en/datastax_enterprise/4.6/datastax_enterprise/spark/
sparkSqlSupportedSyntax.html. accessed: 05.04.2016.

[6] “Apache Hadoop.” http://hadoop.apache.org/. accessed: 05.04.2016.

[7] “MapReduce NextGen aka YARN aka MRv2.” https://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html. ac-
cessed: 05.04.2016.

[8] “HDFS Architecture Guide.” https://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html. accessed: 05.04.2016.

[9] “MapReduce Tutorial.” http://hadoop.apache.org/docs/r2.7.
2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html. accessed: 05.04.2016.

[10] HortonWorks, “What YARN Does.” http://hortonworks.com/hadoop/
yarn/. accessed: 05.04.2016.

[11] “Hadoop Wiki - PoweredBy.” https://wiki.apache.org/hadoop/
PoweredBy. accessed: 05.04.2016.

[12] S. N. Srirama, “Introduction to MapReduce.” https://courses.cs.ut.
ee/MTAT.08.027/2016_spring/uploads/Main/L4_MapReduce2016.pdf. ac-
cessed: 05.04.2016.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-
ing on Large Clusters.” http://static.googleusercontent.com/media/
research.google.com/et//archive/mapreduce-osdi04.pdf, 2004.

46

https://hadoopecosystemtable.github.io/
https://hadoopecosystemtable.github.io/
http://www.tiobe.com/tiobe_index
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
https://docs.datastax.com/en/datastax_enterprise/4.6/datastax_enterprise/spark/sparkSqlSupportedSyntax.html
https://docs.datastax.com/en/datastax_enterprise/4.6/datastax_enterprise/spark/sparkSqlSupportedSyntax.html
https://docs.datastax.com/en/datastax_enterprise/4.6/datastax_enterprise/spark/sparkSqlSupportedSyntax.html
http://hadoop.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hortonworks.com/hadoop/yarn/
http://hortonworks.com/hadoop/yarn/
https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy
https://courses.cs.ut.ee/MTAT.08.027/2016_spring/uploads/Main/L4_MapReduce2016.pdf
https://courses.cs.ut.ee/MTAT.08.027/2016_spring/uploads/Main/L4_MapReduce2016.pdf
http://static.googleusercontent.com/media/research.google.com/et//archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/et//archive/mapreduce-osdi04.pdf

[14] “Apache Tez - Introduction.” https://tez.apache.org/. accessed:
05.04.2016.

[15] “How Tez Works.” http://hortonworks.com/hadoop/tez. accessed:
05.04.2016.

[16] “Apache Hive.” https://hive.apache.org/. accessed: 05.04.2016.

[17] “Hive LanguageManual UDF.” https://cwiki.apache.org/confluence/
display/Hive/LanguageManual+UDF. accessed: 05.04.2016.

[18] “Apache Spark.” http://spark.apache.org/. accessed: 05.04.2016.

[19] S. Laada, “Suitability of the Spark framework for data clas-
sification.” https://comserv.cs.ut.ee/home/files/sergei_
laada_informaatika_2014.pdf?study=ATILoputoo&reference=
6BAAC2BE511A728361A225FF6464CF715DB8B9F1, 2014.

[20] “Daytona Benchmark.” http://sortbenchmark.org/. accessed: 05.04.2016.

[21] “Spark FAQ.” http://spark.apache.org/faq.html. accessed: 05.04.2016.

[22] “Spark SQL.” http://spark.apache.org/sql/. accessed: 05.04.2016.

[23] “Apache Shark.” http://shark.cs.berkeley.edu/. accessed: 05.04.2016.

[24] “Spark SQL, DataFrames and Datasets Guide.” http://spark.apache.org/
docs/latest/sql-programming-guide.html. accessed: 05.04.2016.

[25] “Flink Overview.” https://flink.apache.org/. accessed: 05.04.2016.

[26] “Flink FAQ.” https://flink.apache.org/faq.html. accessed: 05.04.2016.

[27] “Flink Features.” https://flink.apache.org/features.html. accessed:
05.04.2016.

[28] “Apache Flink Training, Table API.” http://www.slideshare.net/
dataArtisans/flink-table. slides 7 and 11, accessed: 05.04.2016.

[29] “Cloudera Impala.” https://www.cloudera.com/products/
apache-hadoop/impala.html. accessed: 05.04.2016.

[30] D. R. Devadutta Ghat and D. Kumar, “New SQL Bench-
marks: Apache Impala (incubating) Uniquely Delivers Analytic
Database Performance.” http://blog.cloudera.com/blog/2016/02/
new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/,
January 2016. accessed: 05.04.2016.

47

https://tez.apache.org/
http://hortonworks.com/hadoop/tez
https://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
http://spark.apache.org/
https://comserv.cs.ut.ee/home/files/sergei_laada_informaatika_2014.pdf?study=ATILoputoo&reference=6BAAC2BE511A728361A225FF6464CF715DB8B9F1
https://comserv.cs.ut.ee/home/files/sergei_laada_informaatika_2014.pdf?study=ATILoputoo&reference=6BAAC2BE511A728361A225FF6464CF715DB8B9F1
https://comserv.cs.ut.ee/home/files/sergei_laada_informaatika_2014.pdf?study=ATILoputoo&reference=6BAAC2BE511A728361A225FF6464CF715DB8B9F1
http://sortbenchmark.org/
http://spark.apache.org/faq.html
http://spark.apache.org/sql/
http://shark.cs.berkeley.edu/
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
https://flink.apache.org/
https://flink.apache.org/faq.html
https://flink.apache.org/features.html
http://www.slideshare.net/dataArtisans/flink-table
http://www.slideshare.net/dataArtisans/flink-table
https://www.cloudera.com/products/apache-hadoop/impala.html
https://www.cloudera.com/products/apache-hadoop/impala.html
http://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/
http://blog.cloudera.com/blog/2016/02/new-sql-benchmarks-apache-impala-incubating-2-3-uniquely-delivers-analytic-database-performance/

[31] M. Kornacker and J. Erickson, “Cloudera Impala: Real-Time Queries in
Apache Hadoop, For Real.” http://blog.cloudera.com/blog/2012/10/
cloudera-impala-real-time-queries-in-apache-hadoop-for-real/,
October 2012. accessed: 05.04.2016.

[32] C. L. Y. H. D. L. J. K. B. X. M. T. K. M. J. F. A. G. M. Z. Michael Armbrust,
Reynold S. Xin, “Spark sql: Relational data processing in spark,” Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
pp. 1383–1394, 2015.

[33] “Apache Pig.” https://pig.apache.org/. accessed: 05.04.2016.

[34] U. S. R. K. A. T. Christopher Olston, Benjamin Reed, “Pig Latin: A Not-
So-Foreign Language for Data Processing.” http://infolab.stanford.edu/
~olston/publications/sigmod08.pdf. accessed: 30.04.2016.

[35] C. Zaiontz, “Basic Concepts of Correlation.” http://www.real-statistics.
com/correlation/basic-concepts-correlation/. accessed: 30.04.2016.

[36] J. McCallister, “Pearson Correlation Coefficient: Formula, Ex-
ample & Significance.” http://study.com/academy/lesson/
pearson-correlation-coefficient-formula-example-significance.
html. accessed: 06.05.2016.

[37] “Basic Statistics - spark.mllib.” http://spark.apache.org/docs/latest/
mllib-statistics.html. accessed: 07.06.2016.

[38] A. Shammout, “T-SQL Linear Regression Function.” https://
ayadshammout.com/2013/11/30/t-sql-linear-regression-function/.
accessed: 30.04.2016.

[39] “Linear Methods - spark.mllib.” http://spark.apache.org/docs/latest/
mllib-linear-methods.html. accessed: 07.06.2016.

[40] “Optimization - spark.mllib.” http://spark.apache.org/docs/latest/
mllib-optimization.html. accessed: 30.04.2016.

[41] J. Bentz, “Parallel Computing..” http://mathworld.wolfram.com/
ParallelComputing.html. accessed: 10.05.2016.

[42] T. M. Mitchel, “GENERATIVE AND DISCRIMINATIVE CLASSIFIERS:
NAIVE BAYES AND LOGISTIC REGRESSION.” https://www.cs.cmu.
edu/~tom/mlbook/NBayesLogReg.pdf. accessed: 07.06.2016.

48

http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
https://pig.apache.org/
http://infolab.stanford.edu/~olston/publications/sigmod08.pdf
http://infolab.stanford.edu/~olston/publications/sigmod08.pdf
http://www.real-statistics.com/correlation/basic-concepts-correlation/
http://www.real-statistics.com/correlation/basic-concepts-correlation/
http://study.com/academy/lesson/pearson-correlation-coefficient-formula-example-significance.html
http://study.com/academy/lesson/pearson-correlation-coefficient-formula-example-significance.html
http://study.com/academy/lesson/pearson-correlation-coefficient-formula-example-significance.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-statistics.html
https://ayadshammout.com/2013/11/30/t-sql-linear-regression-function/
https://ayadshammout.com/2013/11/30/t-sql-linear-regression-function/
http://spark.apache.org/docs/latest/mllib-linear-methods.html
http://spark.apache.org/docs/latest/mllib-linear-methods.html
http://spark.apache.org/docs/latest/mllib-optimization.html
http://spark.apache.org/docs/latest/mllib-optimization.html
http://mathworld.wolfram.com/ParallelComputing.html
http://mathworld.wolfram.com/ParallelComputing.html
https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf
https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

[43] “Conditional independence.” https://en.wikipedia.org/wiki/
Conditional_independence. accessed: 07.06.2016.

[44] M. Lichman", “"UCI machine learning repository",” "2013". accessed:
15.04.2016.

[45] “Naive Bayes - spark.mllib.” http://spark.apache.org/docs/latest/
mllib-naive-bayes.html. accessed: 30.04.2016.

[46] T. Deneke, “Online Video Characteristics and Transcoding Time Dataset
Data Set .” http://archive.ics.uci.edu/ml/datasets/Online+Video+
Characteristics+and+Transcoding+Time+Dataset. accessed: 30.04.2016.

[47] J. A. Blackard, “Covertype Data Set.” https://archive.ics.uci.edu/ml/
datasets/Covertype. accessed: 07.06.2016.

49

https://en.wikipedia.org/wiki/Conditional_independence
https://en.wikipedia.org/wiki/Conditional_independence
http://spark.apache.org/docs/latest/mllib-naive-bayes.html
http://spark.apache.org/docs/latest/mllib-naive-bayes.html
http://archive.ics.uci.edu/ml/datasets/Online+Video+Characteristics+and+Transcoding+Time+Dataset
http://archive.ics.uci.edu/ml/datasets/Online+Video+Characteristics+and+Transcoding+Time+Dataset
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype

6 Appendices

A Source code
Source codes for algorithms from Spark MLlib and Spark SQL are located in

github in folder ”Spark/src”
Queries for HiveQL are in folder ”Spark/HiveQLqueries”
https://github.com/MadisKarli/Spark

50

https://github.com/MadisKarli/Spark

Non-exclusive licence to reproduce thesis and make thesis public

I, Madis-Karli Koppel (date of birth: 15th of November 2015),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Using SQL-based Scripting Languages in Hadoop Ecosystem for Data Analytics

supervised by Pelle Jakovits

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2016

51

	Acronyms
	Introduction
	Motivation and Limitations
	Outline

	Hadoop Ecosystem
	Apache Hadoop and Yarn
	MapReduce
	Directed Acyclic Graphs
	SQL-like Frameworks in Hadoop
	Non SQL-like Frameworks in Hadoop
	Benefits of SQL-like Solutions
	Spark MLlib
	Hadoop Use Cases

	Algorithms
	Pearson's Correlation
	Pearson's Correlation in Spark MLlib
	Pearson's Correlation in Spark SQL
	Pearson's Correlation in HiveQL

	Simple Linear Regression
	Simple Linear Regression in Spark MLlib
	Simple Linear Regression in Spark SQL
	Simple Linear Regression in HiveQL

	Multinomial Naive Bayes Classifier
	Multinomial Naive Bayes in Spark MLlib
	Multinomial Naive Bayes in Spark SQL
	Multinomial Naive Bayes in HiveQL

	Evaluation
	Cluster and Input Data
	Pearson's Correlation Results
	Pearson's Correlation in Spark MLlib
	Pearson's Correlation in Spark SQL
	Pearson's Correlation in HiveQL

	Simple Linear Regression Results
	Simple Linear Regression in Spark MLlib
	Simple Linear Regression in Spark SQL
	Simple Linear Regression in HiveQL

	Multinomial Naive Bayes Classifier Results
	Naive Bayes Classifier in Spark MLlib
	Naive Bayes Classifier in Spark SQL
	Naive Bayes Classifier in HiveQL

	Discussion

	Conclusion
	References
	Appendices
	Source code
	Licence

