Über den Verbleib des Morphins im tierischen Organismus.

Inaugural-Dissertation
zur Erlangung des Grades eines Magisters der Pharmacie

verfasst und mit Bewilligung Einer Hochverordneten Medicinischen Facultät der Kaiserlichen Universität zu Jurjew
zur öffentlichen Vertheidigung bestimmt

von Eduard Marquis.

Ordentliche Opponenten:
Priv.-Doc. Mag. N. Kromer. — Prof. Dr. W. v. Tschisch. — Prof. Dr. R. Kober.

Jurjew (Dorpat).
Druck von H. Lackmann's Buch- und Steindruckerei.
1896.
Meinen lieben Eltern
Beim Scheiden von der alma mater ist es mir eine angenehme Pflicht meinen hochverehrten Lehrern der physiko-mathem. Fakultät für die mir zu Teil gewordene wissenschaftliche Ausbildung meinen Dank abzustatten.

Herrn Prof. Dr. R. Köbert, dem ich das Thema meiner vorliegenden Arbeit verdanke und der in liebenswürdigem Entgegenkommen mich bei derselben mit Rat wesentlich unterstützt hat, sage ich meinen herzlichen Dank; ebenso auch Herrn Prof. Dr. G. Dragnetoff unter dem ich als Assistent im pharmaceutischen Institut meine Ausbildung erhalten habe.
Einleitung.

Das Alkaloid Morphin C_{17} H_{21} NO_{1} hat in der Chemie hauptsächlich auf zwei Gebieten zahlreiche, jedoch noch nicht abgeschlossene Arbeiten veranlasst. Erstens ist es das Studium der Abscheidung und Wiedererkennung des Morphins nach Einführen desselben in den Organismus von Menschen und Tieren, zweitens das der Constitution des genannten Alkaloids.

Auf die Bitte um ein Thema zur Dissertation schlug mir Herr Prof. Kobert vor die erste oben gestellte Frage: «über den Verbleib des Morphins im Organismus» experimentell näher zu behandeln.

den anorganischen Substanzen, so unter den organischen das Morphin die meisten Vergiftungen verursacht hat, sei es als solches, in Form von Opium, oder von dessen Präparaten. Es ist demnach begreiflich, dass die Frage nach dem physiologisch-chemischen Verhalten des Morphins ein Gegenstand vielfacher Forschung war und noch ist, da die einschlägige Literatur angefangen von Lassaigne (1824) bis zur Jetztzeit uns keine genügende Antwort auf dieselbe gibt. Auch ich bestrebte mich durch Untersuchungen der Lösung dieser Morphinfrage näher zu treten; in wie weit ich das vermochte, möge aus dem Folgenden sich erweisen.

I. Morphin-Abscheidungsmethoden neuerer Zeit.

Dragendorff's Methode, die Kauzmann 43) anwendete:

Gehirn, Nervenmasse, Leber, auch dickflüssigen Magen- und Darminhalt, ebenfalls Faecalsubstanzen lässt Dragendorf im Mörser gleichmässig zerkleinern und dann wie Blut (siehe dasselbst) behandeln.

Marmé 38) empfiehlt für Leber, Lungen, Nieren, Gehirn folgendes Verfahren: das betreffende, mit Salzsäure angesäuerte, fein zerhackte Object wird warm extrahirt, colirt, ausgepresst; die Colaturen werden wie Harn (siehe daselbst) weiter behandelt, jedoch mit dem Unterschiede, dass der von Spiritus befreite saure wässerige Rückstand vor der Filtration mit einer Mischung von gleich Raumteilen Aether und Chloroform geschüttelt werden muss.

1. Für Blut.

Landsberg 39) gebraucht um Morphin aus Blut zu isoliren dieselbe Methode, die er beim Harn anwendet (siehe daselbst).

2. Für Speichel.

Um aus Speichel oder Magensaft Morphin zu erhalten, ver- setzt M a r m é 83) dieselben gewöhnlich erst mit dem vielfachen Vol. Spiritus, filtrirt und behandelt weiter wie bei Harn (siehe daselbst).

3. Für Faeces.

M a r m é 83): Zur Untersuchung der Faeces von Tieren und Menschen, sind die Dejectionen im Luftbade rasch zu trocknen, sie werden dann gepulvert, mit salzsäurehaltigem Spiritus warm extrahirt, filtrirt und der Filtrrückstand ausgewaschen. Es wird der Spiritus hierauf unter Wasserzusatz verdunstet, der wässerige Rückstand nach völliger Abkühlung filtrirt, das saure Filtrat zu- erst mit der Mischung aus gleichen Teilen Aether und Chloroform und dann mit Amylalkohol weiter behandelt (siehe Harn).

N e u m a n n's 84) Methode ist teils die, welche T a u b e r zur Abscheidung des Morphins aus Faeces benutzte. Ebendaselbst sind auch einige Ergänzungen N e u m a n n's angeführt.

L a n d s b e r g 85) benutzte zur Morphinabscheidung aus den Faeces den Weg, welchen er für den Harn angegeben hat.

4. Für Harn.

D r a g e n d o r f f schüttelt mehrmals die Harnmengen erst aus saurer Lösung (Schwefelsäure), dann aus alkalischer (Ammoniak) mit Amylalkohol aus. Letztere Aussüge werden weiterer (pag. 9) schon angegebener Behandlung unterzogen.

Der D r a g e n d o r f f'schen Methode schlossen sich K a u f m a n n und S c h n i d e r 86) an. B o r n t r ä g e r 87) und V o g t 88) benutzten den O t t o - D r a g e n d o r f f'schen Weg. S t o l n i k o w 89) benutzte gleichfalls D r a g e n d o r f f's Gang, jedoch wählte er statt der Schwefelsäure die Salzsäure und digerirte die damit angesäuerte Harnmenge mehrere Stunden lang. W o r m l e y 90) legte den auch mit Salzsäure angesäuerten Harn auf ein kleines Volum ein, folgte aber dann dem D r a g e n d o r f f'schen Weg.

L a n d s b e r g 85) säuert den Harn mit Essigsäure an, ebenso W i s l i c e n u s 91) und E l i a s s o w 92); B u r k a r t 93) gebrauchte zum Ansäubern Schwefelsäure, M a r m é und D o n a t h 94), auch T a u b e r und N e u m a n n die Salzsäure; alle diese Autoren dampfen den Harn bis etwa Syrupconsistenz ein, ausser M a r m é, der denselben vor- sichtiger auf 1/10—1/50 Vol. und D o n a t h, der auf ca. 1/10 Vol. einengen.

Den Verdampfungsrückstand zieht L a n d s b e r g mit starkem Alkohol aus. Nach Verjagen desselben wird der Rückstand in

Eliasow verfährt nach der angegebenen Wislicenus'schen Methode, zum Schluss gebräuchet er nur zum Ausziehen des Morphins statt des ammoniak. Amylalkohols den Essigaether, ebenso schüttelt er nach saurer Amylalkoholbehandlung noch drei Mal mit saurem Essigaether aus.

Notta und Lugan setzten zu Harn Bleiessig hinzu filtriren den Niederslag, entfernen im Filtrate das Blei mit Schwefelsäure (1:10), filtriren nochmals, tügen überschüssiges Ammoniak hinzu und schütteln mit heissem Amylalkohol aus. Hierauf führen sie das Alkaloid durch Schütteln in schwefelsäurehaltiges Wasser über und aus diesem nach Ammoniakzusatz wieder in neuen Amylalkohol.

Zum Schluss sei hier nur noch eine in jüngester Zeit von Kippenberger empfohlene Methode erwähnt, die für die Isolirung mancher Alkaloiide aus fettreichen Organen und tierischen Körperteilen bestimmt ist. Die Methode gründet sich darauf, dass

Bei meinen Arbeiten habe ich letztere Methode weiter nicht berücksichtigen können.

b. Einige Bemerkungen über die Abscheidungs(methoden.

... dern auch zur quantitativen Bestimmung sehr gut verwertet werden kann.

Dieses beschriebene Verfahren würde nicht nur für Morphin, sondern auch für andere Alkaloide und nicht so oft bei forensischen Vergiftungsfällen als vielmehr bei Tiervergiftungsver suchen die erwähnten Dienste leisten, da ja im letzteren Fall uns stets frische Organe zu Gebote stehen können.

Meine weiteren jetzt zu beschreibenden Trennungsmanipulationen beziehen sich nur auf frische und kurze Zeit (ca. 5 Minuten) er hitzte Organe. Der Trennungsweg für fäulnde Objekte, der sehr ähnlich sich verhält, ist am Ende dieses Abschnittes angegeben.

Nach Neutralisation der Säure nun mit Ammoniak wird, wie schon erwähnt, die Flüssigkeit durch Flanell colirt. Kauzm an giebt allerdings an, dass er seine Säure (Schwefelsäure) neutralisierte; da Kauzm an jedoch seine angesäuerte Flüssigkeit ca. 12 bis 24 Stunden bei einer Temperatur von 60°—80° C. digerirt hatte, konnte das Abtumpen der Schwefelsäure nur dieses erreichen, dass nämlich beim Eindampfen der Flüssigkeit die Schwefelsäure nicht auf das Alkaloid zersetzend einwirke.
Die neutral reagirenden Colaturen werden nun mit Ausnahme der von Leber (siehe p. 27) fast bis zur Trockne eingedampft und das Alkaloid mit absolutem Alkohol ausgezogen. Die Alkoholmengen werden hierauf im Gegensatz zu den andern Methoden, die ein Stieren derselben bis selbst 24 Stunden (Kauzmann) vorschreiben, sofort durch ein Papierfilter filtrirt; das Filtrat wird bei ca. 50° bis zur Trockne eingedunstet, der Rückstand zweimal mit reichlichen Wassermengen angerührt und letztere jedes Mal für sich wieder auf dem Dampfbade verdampft.

Was nun die für Morphin bekannten Aufnahmeflüssigkeiten betrifft, so kann ich mich wie auch schon andere Autoren vor mir (z. B. Eliassow), nur für Essistaetheranwendung aussprechen, da letzteres Ausschwenkungsmittel meinen Versuchen nach, nicht nur eine für den Nachweis genügende Menge Morphin aufnimmt, sondern auch für Krystallerzeugung sehr geeignete Isolierungsstücke erzielen lässt.
Chloroform ist hauptsächlich wegen seines zu langsamen vor sich gehenden Aufnahmevermögens von Morphin, schon von Kauzmann, Dragendorff und anderen Autoren als nicht geeignet befunden worden. Ich schliesse mich deren Ansicht an; besonders dürfte Chloroform da nicht zur Anwendung kommen, wo es sich in einem zu untersuchenden Organe um geringe (weniger als ein Milligrm.) Morphinnengen handelt.

Was 'den Amylalkohol anlangt, so dient er ja als ein anerkanntes überaus schätzbares Mittel mannfache organische Substanzen (darunter Ptomaine) aus Flüssigkeiten tierischer Organe in grossem Masse in sich aufzunehmen. Er zeigt jedoch eine so grosse Neigung zu den genannten Substanzen, dass nach wiederholtem Ausschwenken mit stets neuen Amylalkoholmen gen immer noch solche von ihm aufgenommen werden. Dieses beweist der nach dem Verdunsten des Amylalkohols auf dem Uhr glase verbleibende harzige Rückstand, welcher auch nach stund langerem Erhitzen bei 100° nicht viel reiner wird. Es ist erklärlich, dass hierbei die Empfindlichkeit in der Farbenreaction auf Mor phin, ebenfalls letzteres in Krystalle überzuführen, sehr herab gesetzt wird. Der genannte nichtflüchtige harzige Rück stand stammt offenbar zum Teil vom Amylalkohol selbst, der unter Mitwirkung von Luft und der in ihm enthaltenen oben bemerkten Substanzen beim Verdunsten einen Modifikationsprozess erleidet. Dragendorff macht schon auf diesen Vorgang aufmerksam. Als mindere Übelstände des Amylalkohols seien nur noch dessen hoher Siedepunkt (ca. 132°) und die beim Verdunsten die Respirationorgane angreifenden Dämpfe erwähnt.

Hierbei anschliessend, möchte ich noch einige für einzelne Untersuchungsobjekte nicht erwähnte Manipulationen folgen lassen.

Bei L e b e r hielt ich es für notwendig zum Ausziehen des Morphins eine zweimalige Behandlung mit Alkoholmengen vorzunehmen (cf. p. 27).

Um am zweckmässigsten meiner Meinung nach das Morphin aus Harn zu isoliren, schwenke man ihn nach schwachem An säuer, zuerst ohne ihn einzuengen, zweimal mit Amylalkohol aus und dunste vorsichtig dann den Harn unter wiederholten Amylalkoholausschwenkungen (cf. MARMÉ) bei ca. 50° C. auf '/10 des ursprünglichen Vol. ein. Es folgen Essigaether-, Natronbicarbonat-
Zusatz etc. Der Verdunstungsrückstand weist noch Harnsäure und Harnstoffkrystalle auf. Um einen Rückstand jedoch zu erhalten, der auch zur quantitativen Bestimmung gut verwertet werden kann, hielt ich es für unbedingt notwendig noch einmal den Prozess des Ausschwenkens vorzunehmen. Der Rückstand wird zu dem Zweck mit angesäuertem Wasser auf 2—5 ccm. Flüssigkeit (je nach vorhandener Morphinmenge) gebracht und im Reagensglase zuerst mit Amylalkohol zweimal ausgeschwenkt, dann neutralisiert etc.

Ich wende mich nun zu meinem systematisch angegebenen Gang.

C. Gang der Untersuchung für frische Organe.

A. Das möglichst feinzerstoßene und zerrriebene Untersuchungsobjekt wird mit ca. 300—400 ccm. destilliertem Wasser angerührt; dem Gemisch setzt man ca. 7 Tropfen offic. Salzsäure (Acid. hydrochlor. dilut. sp. Gew. 1,061) hinzu und erhitzt dasselbe unter Umrühren in einer Porcellanschale auf dem Dampfbade bis höchstens 5 Minuten. Die Säure wird hierauf mit Ammoniakflüssigkeit möglichst abgestumpft, wobei sich ein Bodensatz von der nun fast farblos darüber stehenden Flüssigkeit abscheidet. Letztere wird durch vorher angefeuchteten Flanell colirt, der Rückstand auf demselben 2 Mal mit heissem Wasser ausgewaschen, abgepresst und die vereinigten Colaturen dampft man nun bei 100° fast bis zur Trockne ein.

B. Den schwach feuchten, hierbei erzielten Rückstand übergiesst man mit genügender Menge absoluten Alkohols und verreibet die sich dabei ausscheidenden organischen Substanzen mit einem flach zugehenden Glasstab zu einem feinen gleichmässigen Schlamm. Es folgt eine Filtration der Auszüge mittelst eines vorher mit Alkohol getränkten Papierfilters, ein Verdunsten des Alkohols bei ca. 50° und zweimalige Aufnahme des Rückstandes in Wasser, wobei jedes Mal letzteres unter stetem Rühren auf dem Dampfbade wieder verdampft wird. Der Rückstand — an dieser Stelle muss das gepaarte Morphin zerlegt wer-
Die Leber wird nach Zerstampfen und feinem Verreiben mit Wasser ab 3 Liter Flüssigkeit gebracht, mit ca. 15 Tropfen Salzsäure angesäuert, 10 Minuten lang erhitzt, mit Ammoniak neutralisiert, colirt, eingedampft jedoch nur bis zum dünnen Syrup, und mit absolutem Alkohol versetzt. Hierauf wird durch entfettete Watte der Alkohol filtrirt, mit neuen Alkoholmengen nachgewaschen, das Filtrat verdunstet, der Verdunstungsrückstand noch einmal mit absolutem Alkohol aufgenommen und hierauf weiter nach B behandelt.

Um aus Speichel das Morphin zu gewinnen, dunstet man ihn erst ein, digerirt den Rückstand mit weinsäurehaltigem absoluten Alkohol und folgt dem Gang von B, ab.

Was das Blut betrifft, so wird die ganze Blutmenge, oder nur Serum allein sehr allmählich und unter Umgehen zu einer 20 Mal größeren Wassermenge, als das zu untersuchende Object ausmacht, zugesetzt. Das Wasser muss stets Siedetemperatur haben. Hierauf wird ca. 1 Tropfen Essigsäure hinzugesetzt; erfolgt hiernach keine vollständige Coagulation der Eiweisskörper, so füge man etwas Chlornatrium- oder Natriumsulfatlösung bei. Die über dem Coagulum abstehende, fast wasserhelle, klare Flüssigkeit wird durch Flanell colirt, der Rückstand ausgepresst. Die Colaturen dampft man gemeinsam fast bis zur Trockene ein und verfährt weiter nach B.

Es sei an dieser Stelle noch bemerkt, dass die Zerlegung des gegepaarten Morphins im Harn (cf. pag. 66) am zweckmässigsten erst nach dessen vollständiger Isolierung mit ammoniak. Essigaether geschieht.

II. Zwei neue Reagentien.

Um mich späterhin nicht zu wiederholen, sei hier bemerkt, dass ich bei allen meinen Tiervergiftungs-Versuchen Morphin ausschliesslich nur mit diesem meinem Formalin-Rgs. nachzuweisen versuchte.

in den andern, für das Formalin-Rgs. angegebenen Eigenschaften verhält sich das Oxyethylsulfonsäure-Rgs. dem ersteren analog.

Ziehe ich einen Vergleich zwischen den schon genannten Reagentien, nämlich Froehde's, Husemann's u. meinen eigenen, dem Formalin- und Oxyethylsulfonsäure-Rgs., bezüglich der Empfindlichkeit isolirtes Morphin erkennen zu lassen, so muss ich meinen Reagentien den Vorzug vor den beiden andern geben.

Husemann's-Rgs. steht in der Empfindlichkeit dem Froehde'schen nach; es lässt (nach Dragendorff) nur noch 1 Centimilligramm Morphin erkennen.

Was mein Formalin Rgs. und auch das Oxyethylsulfonsäure-Rgs. betrifft, so lassen sie ebenso wie Froehde's Rgs. ein millontal Gramm reines Morphin hydrochlor. erkennen, jedoch erhält man hier haltbare Farben; dem Rgs. selbst zukommende secundäre Farben erschienen gar nicht. Es können somit auch die ge ringsten Mengen abgeschiedenen Morphins mit diesen Reagentien nachgewiesen werden.

Die Körper, die ohne ein † angeführt, sind von mir mit dem Formalin-Rgs., die mit einem * bezeichnet, sowohl mit dem Formalin-, als auch mit dem Oxyethylsulfonsäure Rgs. geprüft worden.

Farben-Reactionen.

<table>
<thead>
<tr>
<th>Mit meinem Reagenz</th>
<th>Mit concentr. H₂SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Morphin 1:1000000</td>
<td>aus purpurrot rasch violettrot, rotviolett; sehr allmählich bläulichviolett, violettblau, grünlichblau, verdunstet, nach mehreren Stunden hellbräunlich.</td>
</tr>
<tr>
<td>*Morphinaetherschweifelsäure</td>
<td>verhält sich in der Reaction, wie Morphin.</td>
</tr>
<tr>
<td>*Apomorphin 1:1000000</td>
<td>bräunlichschwarz, allmählich grünlich dunkelgrün.</td>
</tr>
<tr>
<td>Oxydimorphin</td>
<td>himbeerrot.</td>
</tr>
<tr>
<td>*Codein mür. 1:000000</td>
<td>aus rötlichdunkelviolett, rasch dunkelviolett; violettblau, nach mehreren Stunden schmutzig violett.</td>
</tr>
<tr>
<td>*Apocodein 1:1000000</td>
<td>violettenschwarz, dunkelviolet.</td>
</tr>
<tr>
<td>*Cotarnin</td>
<td>die Krystalle lösen sich gelbbrann.</td>
</tr>
<tr>
<td>*Hydrocotarnin 1:1000000</td>
<td>violet mit gelben Streifen allmählich violettbräun mit einem gelben Ring, brann, gelb.</td>
</tr>
<tr>
<td>*Laudanin pur. 1:1000000</td>
<td>brann, bronzenfarben.</td>
</tr>
<tr>
<td>*Laudanosin</td>
<td>die Krystalle lösen sich sehr allmählich schwach rosenrot.</td>
</tr>
<tr>
<td>*Cryptopin 1:1000000</td>
<td>blau mit einem Ton ins Grünliche, blaugrün.</td>
</tr>
<tr>
<td>Mit mein. Reagens.</td>
<td>Mit conc. H₂SO₄</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>*Narcein</td>
<td>gelb, orangroth, gelbbräun.</td>
</tr>
<tr>
<td>*Narkotin</td>
<td>aus violet sehr rasch gelbgrün, gelbe Missfarbe.</td>
</tr>
<tr>
<td>*Papaverin</td>
<td>violetrot, nach mehreren Stunden bordeauxfarben.</td>
</tr>
<tr>
<td>*Protopin</td>
<td>graugrün, nach längerer Zeit gelbgrün.</td>
</tr>
<tr>
<td>*Thebain</td>
<td>gelbbräun, braunrot.</td>
</tr>
<tr>
<td>*Tritopin</td>
<td>die Kristalle gelblich, gelbbräun, braun, rötlichbraun.</td>
</tr>
<tr>
<td>Opian</td>
<td>gelblichgrün, allmög vgelb.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mit mein. Reagens.</th>
<th>Mit conc. H₂SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylamido-salol</td>
<td>rosenrot.</td>
</tr>
<tr>
<td>Alizarin</td>
<td>aus himbeerrot sehr rasch blutfarben.</td>
</tr>
<tr>
<td>Amarin</td>
<td>braun.</td>
</tr>
<tr>
<td>*Anilin</td>
<td>purpurviolett, am Rande blutrot, nach 1 – 2 Stunden kirschrot.</td>
</tr>
<tr>
<td>Anisol</td>
<td>rosenrot.</td>
</tr>
<tr>
<td>Anthracen</td>
<td>grünlich, bräunlichgrau.</td>
</tr>
<tr>
<td>Arbutin</td>
<td>nach einiger Zeit schwach gelb.</td>
</tr>
<tr>
<td>Atropin</td>
<td>dunkelrosorot, nachdunkelnd.</td>
</tr>
<tr>
<td>Azolithmin</td>
<td>schwach grau.</td>
</tr>
<tr>
<td>Benzidin</td>
<td>rötlichbraun, nachdunkelnd, allmäß einen violetten Ton annehmend.</td>
</tr>
<tr>
<td>Benzophenid</td>
<td>grünlich.</td>
</tr>
<tr>
<td>Benzenophenol</td>
<td>gelb, braungelb, gelbbräun.</td>
</tr>
<tr>
<td>Borneol</td>
<td>sehr allmäß braun.</td>
</tr>
<tr>
<td>Brasilin</td>
<td>kirschrotviolett, nachdunkelnd. gelbgrün werdend.</td>
</tr>
<tr>
<td>Brenzcatechin</td>
<td>allmäßisch schmutzig dunkelgrün.</td>
</tr>
<tr>
<td>Bulbocapnin</td>
<td>allmäß braun.</td>
</tr>
<tr>
<td>Carbazol</td>
<td>gelb, grüngeb, bräunlichgelb, dunkelgelbbräun.</td>
</tr>
<tr>
<td>Caryophyllin</td>
<td>gelb, grüngelb, bräunlichgelb, dunkelgelbraun.</td>
</tr>
<tr>
<td>Catechin</td>
<td>braun.</td>
</tr>
<tr>
<td>Cetrarin</td>
<td>braun.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mit mein. Reagens.</th>
<th>Mit conc. H₂SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamalen</td>
<td>rötlichbraun, am Rande rosa</td>
</tr>
<tr>
<td>Chinon</td>
<td>sehr allmäßig schwach missfarben, braunlich.</td>
</tr>
<tr>
<td>Cornutin</td>
<td>missfarben grünbraun.</td>
</tr>
<tr>
<td>Corydalin</td>
<td>gelbwerdend, missfarben gelbgrün, allmäß violett einen Ton ins rötliche</td>
</tr>
<tr>
<td>Cyclamidein</td>
<td>gelb, sehr allmäßig grüngrün</td>
</tr>
<tr>
<td>Dibromanthracencen</td>
<td>missfarben hellgelgrün sehr allmäßig gelbbraun</td>
</tr>
<tr>
<td>Dichlorotoluol</td>
<td>braun</td>
</tr>
<tr>
<td>*Digitalein</td>
<td>braunrot</td>
</tr>
<tr>
<td>Dimethylhydrochlon</td>
<td>grüngrün</td>
</tr>
<tr>
<td>α-Dinitronaphthalin</td>
<td>allmäßig grüngrün</td>
</tr>
<tr>
<td>Diphenyl</td>
<td>granulat</td>
</tr>
<tr>
<td>Diphenylantipyrrin</td>
<td>dunkelbläutrot, dunkelbraunrot</td>
</tr>
<tr>
<td>Diphenylglycerin</td>
<td>Die Kristalle färben sich himbeerrot</td>
</tr>
<tr>
<td>Diphenylacettesigester</td>
<td>grünlichgelb, allmäßig grünlichgrau, zuletz missfarben dunkelgrün</td>
</tr>
<tr>
<td>Elaterin</td>
<td>missfarben grünlichgelb werdend, allmäß nach dunkelnd</td>
</tr>
<tr>
<td>Ergotin</td>
<td>missfarben violettschwärzlich, bläulichviolett</td>
</tr>
<tr>
<td>Erythrin</td>
<td>orange</td>
</tr>
<tr>
<td>Haematoxylin</td>
<td>himbeerrot, bronzefarben</td>
</tr>
<tr>
<td>Harmalin</td>
<td>braun</td>
</tr>
<tr>
<td>Helenin</td>
<td>gelbbraun</td>
</tr>
<tr>
<td>Hexamethylbenzol</td>
<td>rötlich dunkelbraun</td>
</tr>
<tr>
<td>Hydrastin</td>
<td>sehr allmäßig gelb, isabellenfarben, einen Ton ins gelbliche</td>
</tr>
<tr>
<td>Hydroberberin</td>
<td>nach circa 10 Min. aus gelbgrün allmäß isabellenfarben werdend</td>
</tr>
<tr>
<td>Hydrochinon</td>
<td>grünbraun</td>
</tr>
<tr>
<td>Hydrozimmt.säure</td>
<td>orangebraun, dunkelbraun</td>
</tr>
<tr>
<td>Kafrin</td>
<td>schwach rosenrot</td>
</tr>
<tr>
<td>p. Kresol</td>
<td>allmäßig dunkelbraun einen Ton ins violette</td>
</tr>
<tr>
<td>Kresotinsäure</td>
<td>rosenrot</td>
</tr>
<tr>
<td>Mandelsäure</td>
<td>braunlich, braun</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Melanthin</td>
<td>braunlichgelb, hellgelbbraun</td>
</tr>
<tr>
<td>Menthol</td>
<td>gelblich, gelb, hellerorange</td>
</tr>
<tr>
<td>Mesitylen</td>
<td>braun, Ausscheidungen, braunrosa,</td>
</tr>
<tr>
<td></td>
<td>am Rande rosa</td>
</tr>
<tr>
<td>Metanitrophenol</td>
<td>hellgelb, allmäglich weirrot</td>
</tr>
<tr>
<td>Naphthalin</td>
<td>himbeerrot, brownfarben ein Ton ins</td>
</tr>
<tr>
<td></td>
<td>violett</td>
</tr>
<tr>
<td>α Naphthalin</td>
<td>graugrün</td>
</tr>
<tr>
<td>aminosulfat</td>
<td>sehr allmäglich sehr schwach grünfl.</td>
</tr>
<tr>
<td>β Naphthalindisulfonsaures Kali</td>
<td>ein Ton in's Grünliches</td>
</tr>
<tr>
<td>α Naphthalinmonosulfonsaures Kali</td>
<td>von schwach grünlichgelb rasch grün</td>
</tr>
<tr>
<td></td>
<td>sehr schwach gelb.</td>
</tr>
<tr>
<td>β Naphthalinmonosulfonsaures Kali</td>
<td>orangegelb</td>
</tr>
<tr>
<td>Naphthalinsulfonsaures Ammon</td>
<td>gelb, orangefarben</td>
</tr>
<tr>
<td>Naphthionsäure</td>
<td>sehr schwach rosa</td>
</tr>
<tr>
<td>(α ν) Naphthylamin</td>
<td>ans braunrot schnell dunkelbraun,</td>
</tr>
<tr>
<td></td>
<td>tiefgrün grünblau, blau</td>
</tr>
<tr>
<td>β Naphthylamin</td>
<td>lasureinblau ein Ton in's Grünliche</td>
</tr>
<tr>
<td>Nitronaphthalin</td>
<td>von schwach grünlichgelb rasch grün</td>
</tr>
<tr>
<td></td>
<td>schwarz grünlichgelb orangegelb</td>
</tr>
<tr>
<td>Orcin</td>
<td>gelb, orangefarben</td>
</tr>
<tr>
<td>Orsellinsäure</td>
<td>gelb, orangegelb, gelbbraun</td>
</tr>
<tr>
<td>Ortho- nitrophenol</td>
<td>sehr schwach orange</td>
</tr>
<tr>
<td>Orthotoluylsäure</td>
<td>braun, dunkelbraunrot</td>
</tr>
<tr>
<td>Orthoxyphenol</td>
<td>grünlich, sehr</td>
</tr>
<tr>
<td>α Oxyanaphthoe säure</td>
<td>schmutzig dunkelgrü, nach 1/2 Stunde</td>
</tr>
<tr>
<td></td>
<td>braun, dunkelbraunrot</td>
</tr>
<tr>
<td>β Oxyanaphthoe säure</td>
<td>von schmutzig grün rasch in violett</td>
</tr>
<tr>
<td></td>
<td>braun, dunkelbraunrot</td>
</tr>
<tr>
<td>Paranitrophenol</td>
<td>gelb ein Ton ins grünliche, dabei</td>
</tr>
<tr>
<td>Paucin hydrochlor</td>
<td>Ausscheidungen</td>
</tr>
<tr>
<td></td>
<td>rötlich violett</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelletierin</td>
<td>violette grünlichgelb Streifen, all-</td>
</tr>
<tr>
<td></td>
<td>mäglich die Flüssigkeit gelbbraun,</td>
</tr>
<tr>
<td></td>
<td>nachdunkelnd</td>
</tr>
<tr>
<td>Pentamethylbenzal</td>
<td>aus himbeerrot schnell tiefbraun</td>
</tr>
<tr>
<td>Peucedanin</td>
<td>gelb, grünlichgelb, gelbrün, nach-</td>
</tr>
<tr>
<td></td>
<td>dunkelnd</td>
</tr>
<tr>
<td>Phaeoretin</td>
<td>himbeerrot, nachdunkelnd</td>
</tr>
<tr>
<td>Phenol</td>
<td>rosearot</td>
</tr>
<tr>
<td>Phenol</td>
<td>schwach violettrosenrot</td>
</tr>
<tr>
<td>*Phenol</td>
<td>scharlachrot</td>
</tr>
<tr>
<td>*salzsaures Phenoxazethylanin</td>
<td>dunkelkirschrot</td>
</tr>
<tr>
<td>Phenolschwefelsaures Kali</td>
<td>sehr schwach grünlichgelb</td>
</tr>
<tr>
<td>Phenylestigäure</td>
<td>braungelb</td>
</tr>
<tr>
<td>Phenylhydrizin</td>
<td>die Krystalle sehr schwach violett,</td>
</tr>
<tr>
<td></td>
<td>die Flüssigkeit gelblich, goldgelb,</td>
</tr>
<tr>
<td></td>
<td>gelb, orange</td>
</tr>
<tr>
<td>Phenylhydrasin-salicylid</td>
<td>hellbraunlichgelb, gelbbraun, allmäg-</td>
</tr>
<tr>
<td></td>
<td>lurchersetzt von rosenroten Streifen,</td>
</tr>
<tr>
<td></td>
<td>die das Uebergewicht gewinnen</td>
</tr>
<tr>
<td>Phlorhizin</td>
<td>sehr schwach rosa</td>
</tr>
<tr>
<td>Phloroglucin</td>
<td>schwach grünlichgelb</td>
</tr>
<tr>
<td>Physostigmin</td>
<td>hellgrünlich</td>
</tr>
<tr>
<td>salicyl</td>
<td>orangegelb</td>
</tr>
<tr>
<td>Pikrotoxin</td>
<td>orangegelb, orange</td>
</tr>
<tr>
<td>Protocatechusäure</td>
<td>allmäglich grünlichdigrau</td>
</tr>
<tr>
<td>Pyren</td>
<td>blutrot, rotenbraun</td>
</tr>
<tr>
<td>Pyrogallin</td>
<td>blutrot, rotenbraun</td>
</tr>
<tr>
<td>Pyrogallol</td>
<td>orangrot</td>
</tr>
<tr>
<td>Resorcin</td>
<td>dunkelbraun rot, allmäglich dunkel-</td>
</tr>
<tr>
<td></td>
<td>violettbraun</td>
</tr>
<tr>
<td>Sabadinan</td>
<td>braunrot rot, Ausscheidungen</td>
</tr>
<tr>
<td></td>
<td>allmäglich rotenbraun</td>
</tr>
<tr>
<td></td>
<td>graugrün, allmäglich schwarze Ab-</td>
</tr>
<tr>
<td></td>
<td>ausscheidungen</td>
</tr>
<tr>
<td>Salicin</td>
<td>allmäglich braunrot, allmäglich dunk-</td>
</tr>
<tr>
<td>Salicylässäure</td>
<td>elbraunrot</td>
</tr>
<tr>
<td>Salicylässäurer</td>
<td>nach längerer Zeit rotenrot rot,</td>
</tr>
<tr>
<td>Naphthylather</td>
<td>sofort rotenbraun, nachdunkelnd</td>
</tr>
<tr>
<td>Salipyrin</td>
<td>nach längerem Stehen braunlichross,</td>
</tr>
<tr>
<td>Salol</td>
<td>gelbrün</td>
</tr>
<tr>
<td>Saponin</td>
<td>allmäglich braunrot, allmäglich dunk-</td>
</tr>
<tr>
<td>Scoparin</td>
<td>elbraunrot</td>
</tr>
<tr>
<td>Smilacin</td>
<td>nach längerem Stehen braunlichross,</td>
</tr>
<tr>
<td>Solanin</td>
<td>gelbrün</td>
</tr>
<tr>
<td></td>
<td>nach längerem Stehen braunlichross,</td>
</tr>
<tr>
<td></td>
<td>schwach grünlichgelb</td>
</tr>
<tr>
<td></td>
<td>grünlichgelb</td>
</tr>
<tr>
<td></td>
<td>schwach rosa</td>
</tr>
<tr>
<td></td>
<td>braunlichgelb</td>
</tr>
</tbody>
</table>
Keine Farbenreaktionen.

<table>
<thead>
<tr>
<th>Abrin</th>
<th>Baptisia</th>
<th>Chelidonin</th>
<th>Cotoin</th>
<th>Cotoneaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetoloid</td>
<td>Belladonna</td>
<td>Chelidonstreu</td>
<td>Creosine</td>
<td>Creosinester</td>
</tr>
<tr>
<td>Acridin</td>
<td>Benzamid</td>
<td>Chloracetamid</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Aegipesia</td>
<td>Bernin</td>
<td>Chinin muriat. sulfur.</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Acoulin</td>
<td>Benzoësia</td>
<td>Chinolin</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Agaritinsäure</td>
<td>Berberin</td>
<td>Chinovasüre</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Amidozeinesäure</td>
<td>Bernsteinäure</td>
<td>Chrysanthesia</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Anemonin</td>
<td>Betalin</td>
<td>Chrysanthemus</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Antifetin</td>
<td>Bintrotolol</td>
<td>Chryseaanthemus</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Antipyrin</td>
<td>Bintrotolol</td>
<td>Chryseaanthemus</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Antrinachinon</td>
<td>Bintrotolol</td>
<td>Chryseaanthemus</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Antispamin</td>
<td>Bristin</td>
<td>Cinchona</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Aporein</td>
<td>Bryonia</td>
<td>Cibotin</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Arabianure</td>
<td>Canadina</td>
<td>Cisbina</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Arbutin</td>
<td>Cannabis</td>
<td>Cistercensia</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Asparagus</td>
<td>Cazaria</td>
<td>Coniféria</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Aspidospermin</td>
<td>Catechinsäure</td>
<td>Convallaria</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Asarin</td>
<td>Catechinsäure</td>
<td>Convulina</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Atherspermin</td>
<td>Cerafin</td>
<td>Convulina</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
<tr>
<td>Xylool</td>
<td>Rotlichtbraun</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
<td>Cyanidin</td>
</tr>
</tbody>
</table>

III. Krystallisationsverhältnisse und quantitativer Nachweis.

a. Krystallisationsverhältnisse.

Die Identifizierung des abgeschiedenen Morphins versuchte man bisher abgesehen von Farbenreaktionen auch auf einem zweiten Wege zu bewerkstelligen, nämlich auf dem der Krystallisation. Zum besagten Zweck kam oft in Anwendung die Salzsäureverbindung, welche in Nadelform auskrystallisiert. Man wandte ferner Ammoniak oder Natriumcarbonat an, die bei Einwirkung auf Morphinhaltige Lösungen das Alkaloid in freier Form abscheiden; das abgeschiedene Morphin wurde nun als solches entweder aus wässriger oder alkoholischer Lösung der Krystallisation überlassen. Auf einen der angegebenen Arten vermochten Kreysig (26) bei einem Vergiftungsfall aus Erbrochenem, Krouss (25) bei einem andern Fall (pag. 48) aus Magen das Morphin in nadelförmigen...

In der ersten Zeit hatte auch ich um Morphin in charakteristischer Krystallform zu erhalten, vielfache Versuche mit den bisher bemerkten Agentien angestellt. Bei der Morphinmenge (0,06 Grm) jedoch, die ich bei meinen Vergiftungsversuchen anwandte, konnte ich wie Kauzmann niemals charakteristische Morphin-krystalle erhalten.

Das Kalium-Cadmiumjodid Rgs. (10 T. Cd Js + 20 T. JK + 70 T. H2O) fand ich für den Gebrauch bei meinen iso-

b. Quantitativier Nachweis.

Mit einigem Erfolg wird meiner Meinung nach man vermittelt Ammoniak und Natronbicarbonat nur da operiren können, wo grössere Mengen (einzige Centigramm) und zwar reinen Morphins sich vorfinden.

Für die quantitative Bestimmung des Morphins mit jodsaurem Natron gilt gleichfalls als Vorbedingung: Reinheit des abgeschiedenen zu bestimmenden Alkaloides. A l t t) konnte diese Bedingung bei quantitativem Nachweis des Morphins aus Magen gösstenteils (Amyllalkohol?) erfüllen. Bei Isolierungsrückständen von faulenden tierischen Organen dürfte die Ptoamine und ähnlicher Substanzen wegen die Bestimmung mit jodsaurem Natron nicht sehr geeignet sein, da durch dieselbe das genannte Salz leicht zersetzt werden kann (Jodabscheidung, siehe G r ä b n e r 97).

Die oben erwähnte Trübung wird bedingt offenbar durch Substanzen, die cf. p. 19 als Albumoslen und peptonartige Körper bezeichnet wurden und entweder zum geringen Teil als solche schon im Harn vorhanden, oder beim Stehen desselben an Zahl zugenommen bei meinen Versuchen in den Essigaether, und höchst wahrscheinlich auch bei Kauzmann in den Amyllalkohol übergingen. Eine von mir vorgenommene zweimalige Proce-
IV. Die bisherigen Ergebnisse der Autoren über das im Organismus unverändert gebliebene Morphin.

So weit mir die Literatur zugänglich war, will ich in Kürze die Ergebnisse anführen, beginnend mit dem Harn, der bei Morphinvergiftungsversuchen am meisten Veranlassung zu seiner Untersuchung gegeben hat. Im Anschluss an Harn folgen die Daten über Magen, hierauf Darm und dann die einzelnen anderen Organe mit Berücksichtigung von Speichel und Blut.

Harn.

Positive Resultate.

Im Jahre 1827 gibt Baruel\(^3\) an, eine grössere Quantität Morphin im Harn eines Menschen gefunden zu haben, der 45,0 Grm. Laudanum (Opiumtinktur) zu sich genommen hatte.

Orfila\(^6\) (1839) wies Morphin in den innerhalb ca. 30 Stunden gesammelten und vereinigten Harnmengen von 6 grossen Hunden nach, die subcutan je 1—2 grm. Opiummixturen erhalten hatten; zu demselben positiven Resultat gelangte er, als 2 Hunden Morphin per os appliziert war. (Abscheidungsweg: Lassaigne's Meth.)

Bouchardat\(^6\) (1861) will Morphin im Harn einer Person gefunden haben, welche 0,05 grm. Tinct. Opii eingenommen hatte (Nachweis: Jod-Jodkalium); Lefort\(^6\) glaubt den Nachweis durch Jodsäure geliefert zu haben (?).

Erdmann\(^13\) (1862) erhält aus Urin von Kaninchen nach subcutaner Application von 0,1—0,3 Morphin hydrochlor. nur geringe Spuren, von dem letzten.

Kauzmann\(^23\) (1868) weist an Tieren und Menschen das Morphin nach Eingabe einer Dosis heruntergehend bis selbst 0,01 grm. stets im Harn nach.

Hilger\(^36\) (1869) findet jedes Mal im Harn von Kaninchen Morphin wieder, nachdem er das Alkaloid in die vena jugularis eingeführt hatte.

1882 liefert Burkart\(^9\) insofern einen positiven Beweis, als er aus 24 stündigem Harnquantum vom Morphinisten die 1,3 bis 1,6 grm. Morphin hydrochlor. pro die gebrauchten, eine Substanz isolieren konnte, deren subcutane Anwendung bei Hunden und Kaninchen schwere Vergiftungerscheinungen mit dem Charakter acuter Morphinvergiftung veranlasste.

In denselben Jahren führt Eliassow\(^43\) in seiner Diss. an, dass bei angestellten Versuchen an Morphinisten und verschiedenen Tieren er nach Verabreichung grosser Dosen, Morphin immer mit Sicherheit im Harn wiedererkennen konnte. Nach Einverleibung von kleinen Dosen (einige Centigrm.) gelang es ihm jedoch nicht das Alkaloid unverändert wiederzufinden (pag. 55).

Stolnikow\(^43\) (1883) erhält aus dem Harn eines Hundes Morphinreaktionen, nachdem letzterem per os 2 grm. Morphin hydrochlor. zusammen mit dem Futter eingegeben waren; ebenfalls zu einem positiven Resultat kommt er bei der Harnuntersuchung eines anderen Hundes, den er mit 2 grm. Morphin acet. subcutan vergiftet hatte.

1883 behauptet Marmée\(^80\), gestützt auf zahlreiche Versuche, dass Morphin, wenn es in einer Dosis von 0,01—0,05 grm. Katzen und Kaninchen, ebenso von 0,1 grm. und mehr, Menschen innerlich oder subcutan einverleibt war, sich stets im Harn nachweisens lasse.

Schneider\(^41\) (1884), der Menschen und Tieren 0,01 bis 0,03 grm. Morphin hydrochlor. injizierte, kommt immer zu positiven Resultaten.

Notta und Lugan\(^80\) (1885) erklären, dass Morphin sich stets als solches nachweisen lasse, wenn nur die täglich absorbirte Alkaloidmenge wenigstens 10 Centigrm. beträgt und vorangegangen ist, dass die Funktionierung der Nieren normal ist.

Jusswitsch\(^31\) (1886) will bei einem einzigen angestellten Versuche an einem Kaninchen Morphin im Harn erkannt haben. Die Injection von 0,1 grm. Morphin fand dabei subcutan statt. (Otto'sche Isolirungs-Meth.)
Wormley (1891) bemerkt, dass er nach Versuchen an Hunden und Menschen, nach subcutaner, wie per os erfolgter Application von Morphin, dasselbe fast immer auch im Urin nachzuleiten vermochte.

Taubert (1892) konnte nach Einverleibung grosser Dosen, Morphin nur in qualitativ nachweisbaren Spuren im Urin entdecken.

Neumann (1893) erhielt ein positives Resultat im Harn von Kaninchen, die er sowohl subcutan, wie auch per os mit ca. 0,15 Morphin vergiftet hatte.

Heger (1894) führte an, dass er im Harn einer Person, die täglich (10 Jahre lang) ca. 70 centigramm Morphin subcutan einverleiben ließ, nur «kleine Mengen (unter 10 centigramm, pro die)» wiederfunden hat.

Lamal (1889) nimmt an, dass Morphin im Organismus durch Oxydation umgewandelt wird. Ist letztere unvollkommen — sagt er — so kann ein Teil des Morphins als unzersetztes M. im Harn nachgewiesen werden.

Zu einem zweifelhaften Resultat gelangte Bornträger (1880). Er erhielt bei Personen, die täglich 0,5—1,0 grm. Morphin subcutan zu sich nahmen, in einem Viertel des gelassenen Harnes negative Resultate, dagegen bei Personen, die täglich 0,02 grm. erhielten, oft positive Resultate.

Negative Resultate.

Kreyssig (1856) konnte bei einer mit essigs. Morphin erfolgten Vergiftung im Harn auch nicht «Spuren» des Alkaloides wiederfinden.

Taylor (1862) kommt bei seinen Untersuchungen aus Harnmengen zu einem negativen Resultat.

Cloetta (1866) vermochte im Harn einer Patientin nach subcutaner Eingabe von 0,36 bis 0,42 grm. Morphin, nicht das Alkaloid nachzuweisen.

Zu einem vollständig negativen Resultat gelangt auch Buchner (1857) bei seinen Untersuchungen.

Gleichfalls zu einem negativen Resultat, kann man sagen, belangte Landsberg (1881). Unter 9 Versuchen an Hunden und Kaninchen vermochte er nach subcutanen Morphinjektionen das Alkaloid nur ein Mal im Harn nachzuweisen.

Donath (1886) endlich konnte niemals Morphin im Harn wiederfinden, selbst nicht nach Eingabe von 1,5 grm. des Alkaloides.

Magen.

Lassaigne (1824) gelang es Morphin in den erbrochenen Massen eines Hundes, dem es per os beigebracht war, nachzuweisen, gleichfalls auch im Mageninhalt einer mit 0,3 grm. Morphin. Acet. vergifteten Katze.

Orefila (1839) erhielt ein positives Resultat aus dem Magen zweier Hunde, die 4—6 grm. Opiumextract in Waser ge-geßen hatten.

Christison (1831) vermochte im Mageninhalt einer Frau, die sich mit zwei Unzen Laudanum liquidum vergiftet hatte, nur den Geruch und den bitteren Geschmack des Opiums wahrzunehmen; bei einer zweiten, ähnlichen Vergiftung kam er zu demselben negativen Resultat.

Kreyssig (1856) hatte bei einem Vergiftungsfalle Morphin im Magen nachweisen können.

Ernmann (1862) fand bei Kaninchen nach subcut. Einnahme von 0,1—0,3 grm. Morphin hydrochlor., das Alkaloid in kleinen Mengen im Magen wieder.

K a u z m a n n (1868) erwähnt einen Vergiftungsfall (Adamson), bei dem der Tod ca. 6½ Stunden nach Einnahme einer grossen Menge Morphin eingetreten war. K a u z m a n n gelang es aus dem Magen noch 0,5 grm. Morphin wiederzugewinnen.

K r o u s s (1883) wies bei einer Vergiftung einer 82-jährigen Frau mit Morphin und Kaffee, das Alkaloid in der Magenflüssigkeit nach.

In den selben Jahren konnte M a r m é nach subcutaner Darreichung eine Ausscheidung des Morphins durch die Magenschleimhaut in den Magen constatiren. Sein Schüler L e i n e - w e b e r wies gleichfalls in denselben Jahren nach subcut. Injection von Dosen 0,6 bis mehr als 1 grm. das Morphin im Magen nach. Letzterer hatte die Versuche an Hunden angestellt.

A l t e r (1889) findet nach subcutaner Injection des Morphins an Menschen und Tieren stets einen grossen Teil desselben in den Magenausscheidungsfüssigkeiten wieder.

W o r m l e y (1891) vermochte nach subcutaner Morphin- Injection, dasselbe im Mageninhalt nachzuweisen. R o s e n t h a l (1891) gelangt zu denselben positiven Resultat (Magenausscheidungsfüssigkeiten).

H a m b u r g e r 41) (1894) beobachtete bei einer Opiumvergiftung eines Chinesen, dem der Magen mehrfach ausgespült war, ein Ausscheiden des Morphins aus dem Blute durch den Magensaft.

B o n g e r s 9) (1895) gelang es bei einem Hunde nach Vergiftung mit 0,1 grm. Morphin hydrochlor. (subcutan), dasselbe in der Ausscheidungsfüssigkeit (dessen Magen entzogen nach 45 Minuten, ge- rechnet von der letzten Einspritzung) durch eine wenig aus- sprochene Violettfärbung mit Froehde`s Rgs. wahrzunehmen, nach 15 Minuten gab die Ausscheidungsfüssigkeit ein negatives Resultat.

B i n e t 9) (1895) behauptet, gestützt auf Versuche, die er an zahlreichen Tieren ausführte hatte, dass subcutan beige- brachtes Morphin in den Magen sehr spärlich übergehe, so dass eine deutliche Reaction oft ausbleibe.

D a r m u n d F a e c e s.

L a s s a i g n e (1824), der eine Katze mit 0,3 grm. Morphin vergiftet hatte, fand im Darm keine Spur von dem ge- nannten Alkaloid; ebenfalls konnte auch B u c h n e r nach einer Vergiftung eines fünfjährigen Knaben mit 0,36 grm. Morphin acetyl, letzteres im Darm nicht nachweisen. Der Tod war in kurzer Zeit erfolgt.

E r d m a n n: Experiment 1. Im Dünn darm einer Katze, die in 2 Tagen 0,35 grm. Morphin sulf. erhalten hatte und nach weiteren 3 Tagen strangulirt wurde, fand sich kein Morphin vor; im Dickdarm liess sich dasselbe sehr deutlich nachweisen.

Exper. 2. Bei einer Katze, die subcutan 0,132 Morph. sulf. erhielt, war es nach ca. 5 Stunden Vergiftungsdauer nicht möglich das Alkaloid im Darm zu constatieren.

Exper. 3. Nach Einführung von 0,183 grm. Morph. sulf. in den Magen einer Katze, die innerhalb eines halben Tages nach der Injektion verendet, konnte K a u z m a n n im oberen Dünn darm eine noch deutliche positive Reaction erkennen, im unteren Dünn darm nur spurenhaft und zwar durch F r o e h d e`s Rgs., während H u s e m a n n`s Rgs. einen im Stich liess; im Dickdarm und in den Fæces fand er kein Morphin vor.

Exper. 6. Ein grosser Hund; es wurde ca. 0,9 grm. Mor- phium sulf. mit der Nahrung eingegeben. Im Dünn darm zeigte sich eine sehr geringe, aber noch deutliche, im Kot eine deut- liche Morphinreaction. Der Dickdarm selbst wies keine React- ion auf.
Exper. 8. Eine Hundin erhielt 0,31 Grm. M. sulf. in den Magen; die innerhalb 2½ Tagen gesammelten Faeces wiesen Morphin auf.

Beim einem Vergiftungsfall (Adamson cf. pag. 48.) gelang es Kauzmann aus Darm mit Froehde's und Hausemanns Rgs. Reactionen zu erhalten, jedoch nicht mit Eisenchlorid, da die vorhandene Morphinmenge, wie er bemerkt, eine sehr geringe war.

Vogt (1895) wollte in den Faeces einer Patientin Morphin in quantitativ bestimmmbaren Mengen (cf. pag. 39.) aufgefunden haben. (f)

Landsberg (1881) gelang es nur nach Darreichung sehr grosser Dosen, Morphin im Kot wieder nachzuweisen.

Marmé berichtet, dass er in den Darmentleerungen von Morphinisten das Alkaloid gefunden habe.

Tauber glaubte nach Experimenten an Hunden, die innerhalb einiger Tage subcutan im Ganzen 1,632 Grm. Morphin hydrochloric. erhalten hatten, in den Faeces ca. 50% Morphin wiedergefunden zu haben (f) (pag. 39).

Neumann aplicirte einigen Kaninchen innerhalb 6 Tagen subcutan 1,08 Grm. Morphin; bei einem anderen Versuch erhielten vier Kaninchen 10 Grm. Opium (entsprech ca. 0,8 Grm. Morphin) und zwar per os. Bei jedem der beiden Versuche war in den gesammelten Faeces Morphin jedoch nur in qualitativer Menge nachzuweisen.

Blut.

Orfila gelang es ebenfalls bei Vergiftungsversuchen nur bis zu einer kurzen Zeit Morphin im Blute nachzuweisen.

Kreyssig hat bei einem durch Morphin herbeigeführten Vergiftungsfall keine Spur von dem Alkaloid im Blut aufinden können.

Erman vermochte im Blut von Kaninchen, die subcutan 0,1–0,3 Gramm M. erhalten hatten und nach dreistündiger Vergiftungsdauer entblutet wurden, sehr wenig Morphin nachzuweisen.

Kauzmann: Exper. 1. Dieselbe Katze (pag. 49); Blut, Lungen und Herz zusammen untersucht, wiesen kein Morphin auf.

Exper. 2. Dieselbe Katze (p. 49). Das Blut, die Lungen, und das Herz ebenfalls gemeinsam untersucht = negatives Resultat.

Exper. 3. Eine Katze (p. 49); Blut, Lungen und Herz zusammen = negatives Resultat.

Exper. 5. Eine kleine Katze erhält subcutan 0,03 Grm. sulf.; nach 2 Stunden wird sie strangulirt; in den ca. 60% entzogenen Blutes liessen sich auch nicht die geringsten Spuren Morphin wahrnehmen.

Exper. 10. Eine Katze; durch die Schlundsonde werden 0,31 Grm. M. sulf. in den Magen eingeführt; die Katze verendet nach ca. 2 Stunden. Das Blut zeigte eine deutliche Reaction auf Morphin (cf. p. 61).

4°
Landsberg gelang es nur nach Verabreichung von sehr grossen Dosen das Morphin wieder im Blute nachzuweisen.

Marmé konnte bei Dosen von 0,1 Grm. Morphin, subcutan beigebracht, positive Resultate im Blute von Hunden, Katzen und Kaninchen erhalten.

Jussewitsch berichtet, dass er bei Kaninchen das Morphin (subcut. injic.) aus Serum quantitativ bestimmen konnte (nach Otto). Im Blutkuchen fand er kein M.

Wormley giebt an, M. bei Tierversuchen sowohl nach subcutan als auch per os erfolgter Application im Blute wieder gefunden zu haben.

Heger sagt, dass er noch nach 3 Stunden, von der Einspritzung an gerechnet, im Blute von Tieren das Morphin nachweisen konnte.

Leber.

Schon Orfila will bei einigen mit Morphin vergifteten Hunden das Alkaloid aus der Leber isolirt und erkannt haben.

Exper. 2. Leber und Galle geben keine Reaction auf Morphin. Die Leberisolirungsrückstände von Exper. 3, ebenso Exper. 6 und 12 weisen sehr deutliche Morphinreactionen auf.

Marmé kommt bei Leberuntersuchungen, nach Vergiftung verschiedener Tiere mit geringen M.-Gaben — subcutan oder per os —, stets zu einem positiven Resultat.

Heger konnte bei seinen Versuchstieren das M. in der Leber mit grosser Deutlichkeit nachweisen.

Milz, Herz, Lungen, Galle, Speichel, Muskeln, Gehirn und Rückenmark.

jedes Mal das Alkaloid und zwar in quantitativ (?) bestimmmbaren Mengen gefunden haben. Heger giebt an, dass er im Mark (la mulle) der mit Morphin vergifteten Tiere das Alkaloid immer auffinden konnte.

Anschauung über die Umwandlung des Morphins im Organismus.

Bis zum Jahre 1882 sind keine auf chemischem Wege nachweisbar sicheren Anhaltspunkte bekannt, die für eine vor sich gegangene Umwandlung sprechen könnten, obgleich alle, die sich mit dem Morphinnachweis aus Organen beschäftigten, einer Ansicht waren, dass nämlich incorporirtes Morphin sich im Organismus zersetzen müsse.

Führe ich die bis zu dem genannten Jahre ausgesprochenen Ansichten über eine vor sich gehende Umwandlung an, so ist schon Lassaigne (1824) zu erwähnen, der bei Tierversuchen 10 Minuten nach Einführen von grossen Dosen Morphin, selbiges im entzogenen Blut nur in «Spuren» wiedergewinnen, dagegen aus künstlicher Mischung von Blut und Morphin, letzteres leicht nachweisen konnte. Er zieht den Schluss, dass dieses Alkaloid in dem Blute sich zersetzen müsste, oder dass es aus demselben sehr bald ausgeschieden wird.

Taylor (1862), ebenfalls Cloëtta (1866) behaupten, dass Morphin im Organismus sich zersetzt, oder seine Eigenschaften verändert. Fresenius und Neubauer (8) (1873) schliessen sich im Grossen und Ganzen den beiden Vorgängern an; sie hatten in Leichenteilen kein Morphin nachweisen können und kommen zum Schluss, dass ein chemischer Nachweis von Pflanzengiften resp. Morphin unter Umständen (geringe Gaben) unmöglich wird.

Kauzmann (1868) ist der erste, der aus einer grossen Zahl von Organen bei seinen Tierversuchen, nach Vergiftung allerdings mit hohen Dosen, Morphin wiederfinden konnte. Er lieferte den Beweis, dass bei Morphinvergiftungsfällen der Nachweis nicht so ungünstig zu führen sei, und dass das Morphin nicht so leicht sich im Organismus, wie man es bisher mehr oder weniger annahm, zersetze.

Landsberg (1881) sagt: «Wird Morphin in das subcutane Gewebe eingespritzt, so gelangt es allmählich in die Blutbahn. Hier wird es zum grössten Teil zerlegt, entweder durch ein Ferment oder in Folge der Alkalescenz des Blutes oder durch dessen Gase. Das Alkaloid ist nur dann nachweisbar, wenn es in grösserer Quantität incorporirt wird, als das Blut fähig ist zu zersetzen.»

Bei seinen Tierversuchen Morphin aus dem Harn abzuscheiden, bemerkt Burka rt (1882), findet ein Übergang des unveränderten Alkaloides in den Harn in vielen Fällen gar nicht, in andern nur spurenweise statt; die gesamte übrige Menge wird zwar nicht verbrannt, aber sie erleidet offenbar vor dem Übergang in den Harn eine Modifikation, eine Art von Synthese, welche ihrerseits zwar den Charakter, nicht aber die Intensität der giftigen Wirkung des Morphins beibehält. Diese Modifikation, sagt er, entzieht sich unseren bisherigen Nachweisungs-methoden.

Erst Eliassow (1882) weist auf ein wahrscheinliches Umwandlungsprodukt hin, welches er aus Harn isoliren konnte. Letzterer Autor sagt: «1) nach grossen Dosen Morphin lässt sich dasselbe mit Sicherheit im Harn nachweisen; 2) nach kleineren Dosen (einen Centigrm. bis ein Dicigrm.) gelingt es nicht Morphin unverändert im Harn zu finden. Dafür erscheint in demselben eine Substanz (wahrscheinlich ein Umwandlungsprodukt des Mor-

3) Bei gleichzeitiger Herabsetzung der Oxydationsprozesse im Körper durch Curare oder Chinin, gelingt es ebenfalls nicht den Übergang von kleinen Mengen Morphin in den Harn nachzuweisen. 4) Bei Verabfolgung grosser Dosen konnte eine geringe Zunahme der gebundenen Schwefelsäure und eine nicht unerhebliche Ammoniakabscheidung beobachtet werden.

Stolnikow: «Eine Ausscheidung des Morphins in den Harn in Form von Morphinaetherschwefelsäure findet aus den vieler angestellten Versuchen selbst in geringsten Spuren nicht statt. Es kann die Vermehrung der Aetherschwefelsäure nicht direct durch Morphin, aber durch andere Körper hervorgerufen werden, welche wahrscheinlich Umwandlungsprodukte des Morphins darstellen; es ist hierdurch erklärlich, dass das Morphin in den Harn in unbedeutenden Spuren übergeht. Zieht man die Untersuchungen Baumann's in Betracht, welche lehrten, dass fast alle Phenole in den Organen zu Aetherschwefelsäuren umgewandelt werden und ferner, dass Morphin ein phänologischer Körper ist, so ist das beschriebene Verhalten des Morphins im Organismus leicht zu deuten.»

Schneider (1884) wendet sich gegen die von mehreren Autoren gemachte Annahme, dass die eingenommene Morphinmenge sich sofort in zwei Portionen teilt, von denen die grössere eine Zersetzung erleidet, die andere den Körper passirt. Da er stets bei seinen Tierversuchen (p. 45) Morphin sehr deutlich aus Harn nachweisen konnte, nimmt er an, dass die grössste Menge des Morphins unverändert durch die Nieren ausgeschieden wird.

Donath (1886) behauptet: «1) das Morphin im Organismus verschwindet vollständig und wird zu keinem andern Alkaloid umgewandelt 2) Oxydimorphin konnte niemals im Morphinistenharn nachgewiesen werden. 3) Aus der Abwesenheit des Morphins im Harn ist jedoch kein Schluss auf die nicht gehabte Aufnahme zu ziehen.»

Roger 38) (1887): «Die Leber wandelt Alkaloid wie z. B. das Morphin und andere Körper in eine für dieses Organ spezifische Modification um. Letztere entsteht nicht, wenn die Leber kein Glykogen enthält; enthält diese dagegen Glykogen, so kann consequent die Modification beobachtet werden.» Seine Untersuchungen waren jedoch nur physiologischer Art, insofern, als er eine Abschwächung der giftigen Wirkung des Morphins beim Durchgang durch die Leber constatiren konnte.

Lamal (1889) bemerkt: «das Morphin wandelt sich bei der Circulation im Blute und in den Geweben in Oxymorphin (= Oxydimorphin) um. 2) Dieses Oxymorphin wird durch den Harn entfernt. 3) Die Oxydation ist bald vollständig, bald unvollkommen; in letzterem Fall findet sich ein Teil des Morphins im Harn. 4) Bei toxischologischem Nachweis des Morphins wird man neben diesem Alkaloid sein erstes Oxydationsprodukt, das Oxymorphin im Blute, im Harn und in den Gefässen aufzusuchen haben.»

Letzterer Autor sagt: «da das Morphin eine der am meisten zur Zersetzung geneigten Pflanzenbasen ist, so war eine partielle Zersetzung im Körper zu erwarten. Wir wissen jetzt, dass der grössere Teil in das unwirksame Pseudomorphin (Oxydimorphin, Dehydromorphin) umgewandelt wird.»

Überschauen wir den in den beiden letzten Kapiteln in kurzen Umris sen entworfenen gegenwärtigen Stand der Morphinfrage, so sehen wir bei Berücksichtigung der wentsentlichen Punkte ei nerseits die Widersprüche bezüglich des Vorkommens des Alkaloides im Blute und in den setzten zur Untersuchung gelangten Organen: Milz, Gehirn, Rückenmark, andererseits die eigentlich nur auf Hypothesen beruhende Anschauung über die Umwandlung des Morphins in Oxydimorphin.

V. Meine diesbezüglichen Ergebnisse.

Im Hinblick auf die in der Litteratur enthaltenen Lücken (s. oben) bestrebte ich mich dieselben durch eigene Versuche zu klären, deren Hauptergebnis darin besteht, dass im Organismus drei einander sich verschieden verhaltende Morphinmengen scharf auseinander gehalten werden müssen, 1) unverändertes, 2) gepaartes und 3) umgewandeltes Morphin.

1. Der unveränderte Teil des eingespritzten Morphins.
Das in den Organen, unverändert gebliebene Morphin wies ich in allen meinen Untersuchungen an Katzen mit meinem Formalin-Rgs. (pag. 30) nach. Ich konnte ferner das unveränderte Morphin vermittelt Kalium-Cadmiumjodid (pag. 38) stets als Doppelsalz in eine typische Kristallform überführen. Das unveränderte Morphin kommt im Blute (Serum) nur bis etwa zur 15. Minute nach der letzten Einspritzung vor; ferner findet es sich in Leber, Nieren, Harn, Magen, Darm, Faece, Lungen, Speichel, niemals dagegen im Blute nach 15 Minuten, niemals im Gehirn, auch nicht im Rückenmark, ebensowenig in der Milz.

2. Der gepaarte Teil des eingespritzten Morphins.

Übertragen wir den Umstand der Zerlegung auf die bisher in Anwendung gekommenen Abscheidungsmethoden, so erweist sich Folgendes: wird die angesäuerte Flüssigkeit, die das Ausziehen des Morphins aus den einzelnen Organen, in diesem Fall Gehirn, Blut resp. Serum (nach 15 Min.), Rückenmark, Milz bewerkstelligt, neutralisiert und zwar vor ihrem Eindampfen, somit auch vor der Aufnahme in Alkohol — Dragendorff-Kauzmann'scher Abscheidungswege — so bleibt das „gepaarte“ Morphin bei weiterem Verlauf der Abscheidung als solches bestehen und bei Zusatz der beiden Reagentien erscheint weder eine Farbenreaktion noch die typische Krystallform. Digieren wir dagegen die angesäuerte wässrige Untersuchungsflüssigkeit ohne sie zu neutralisiren, längere Zeit auf dem Wasserbade, wie es alle anderen Ausscheidungsmethoden vorschreiben — so wird das gepaarte M. in seine Bestandteile zerlegt und wir erhalten die Reaktion auf unzersetztes Morphin.

Kauzmann gelang es z. B. nicht bei fünf Tiervergiftungversuchen aus Blut (siehe daselbst) das Morphin nachzuweisen; er hatte seine Schwefelsäure vorschriftsmässig neutralisirt; bei seinen letzten Versuchen 10 und 12, in denen er, wie er besonders bemerkt, schwefelsärehaltiges Wasser auf das blut län gere Zeit bei Dampfwärme hatte einwirken lassen, erhielt er mit aller Deutlichkeit Morphinreaktionen. Kauzmann berichtet diesen Umstand bio als Factum, ohne jedoch ihn einen beson deren Wert beizulegen. Wir haben hier ein eklantisches Beispiel dafür, dass es sich in seinen ersten 3 Versuchen um „gepaartes“ Morphin handelte, welches durch die Neutralisation der Schwefelsäure nicht zerlegt und somit mit Fröhdes G. nicht erkannt werden konnte, dagegen in den beiden letzten Versuchen wohl erkannt werden musste, da ja durch die lange Einwirkung der Schwefelsäure unverändertes Morphin wieder abgespalten wurde.

Einen weiteren Fall für die unzweideutige Gegenwart des gepaarten Morphins sehen wir in dem Ergebnis von Stolnikow. Letzterer führte Morphin-Vergiftungsversuche an Hunden (p. 45) aus. Der Harn jedes Hundes wurde für sich besonders aufgefangen und in zwei Hälften geteilt. Die eine Hälfte säuernd Stol-
nikow mit Essigsäure an und verfuhr weiter nach der Dra- gendorff'schen Methode, die andere Hälfte der Harnportion erhitzte er dagegen erst ca. sechs Stunden auf dem Dampfbade; als Ansäuерungsmittel nahm er in letzterem Fall Salzsäure. Nach der Isolirung des Morphins aus den beiden Harnportionen erhielt er nun, wie er besonders bemerkt, aus der mit Salzsäure längere Zeit erhitzten Hälfte stets eine intensivere Farbenreaktion als aus der mit Essigsäure angeseuerten.

3. Der umgewandelte Teil des eingespritzten Morphins.

Dieses umgewandelte Morphin lässt sich ebensowenig wie das gepaarte M. durch Kalium-Cadmiumjodid in die typische Kristallform überführen, weist aber mit dem Formalin-Rgs. eine grüne Farbenreaktion auf, im Gegensatz zu dem gepaarten M., wo überhaupt keine Farbenreaktion eintritt, und zu unverändertem, reinem Morphin, wo eine prachtvoll rotviolette entsteht.

Es sei an dieser Stelle bemerkt, dass mein umgewandeltes Morphin mit Husemann's Rgs. eine grüne, mit Frohde's Rgs. eine blau, blaugrüne oder grüne Reaction zeigte.

Als Ursache einer vor sich gehenden Umwandlung des Morphins giebt Roger Glykogenanwesenheit in der Leber an. Es wurde von ihm jedoch, wie schon bemerkt, nur physiologische Versuche angestellt; irgend welche Daten über Isolierung und Identifizierung seines Umwandlungsproduktes auf chemischem Wege liegen nicht vor, so dass ein Vergleich desselben mit dem reinen nicht ohne weiteres möglich wäre. Ich bin jedoch gleichfalls zur Ueberzeugung gelangt, dass die Hauptursache oder wenigstens eine der Ursachen für die Umwandlung des Morphins in der Leber in der Glykogenanwesenheit zu suchen ist, zumal da in einem meiner Versuche «umgewandeltes» Morphin aus einer

4. Ueber die Bildung von Oxydimorphin im Organismus.

Betrachten wir einzelne Punkte genauer, in denen vielleicht charakteristische Abweichungen zwischen dem von Marmé angenommenen und dem wirklichen Oxydimorphin zu constatiren wären, so ist an erster Stelle hier das Froehde'sche Rgs. zu erwählen. Was letzteres nun anlangt, so ist es eine bekannte Thatsache, dass dieses Rgs. mit organischen Substanzen zusammengebracht, secundäre Farben erzeugt, die dem Rgs. selbst zukommen, es ist die blau, blaugrün oder grüne Farbe; und zwar entstehen diese bald sehr schnell, bald langsamer. Bekanntlich färbt sich Froehde's Rgs. in hellen Gläsern aufbewahrt beim Stehen am Tageslicht schon blau, was gewiss mit einem vor sich gehenden Reductionsprocess des in dem Rgs. enthaltenen Molybdänsauren Salzes zusammenhängt. Aus dem Vorstehenden erscheint uns, dass die entstehende blaue Farbennuance beim Zusatz von Froehde's Rgs. zum Marmé'schen Isolirungsprodukt kein wesentliches Moment für die Annahme, dass es Oxydimorphin war, sein kann. Zweitens ersehen wir aus Dragendorff's E.r.m. d. G. (1895), dass das Froehde'sche Rgs. mit Oxydimorphin nicht die blau, sondern eine ausgesprochen violette Farbenreaktion gibt (ebenso verhält sich Husemann's Rgs). Beim Stehen erscheinen natürlich wieder die gewöhnlichen secundären Farben des Rgs. Nach Puschmann soll Oxydimorphin wie Morphin mit Froehde's Rgs. eine violette Farbenreaktion entstehen lassen, saltsaures Oxydimorphin dagegen mit dem genannten Rgs. zuerst allerdings eine blau, dann aber auch violett werdende Reaction geben. Marmé erwähnt nichts davon, dass er vor dem Anstellen der Farbenreaktion seinen ausgeschüttelten Körper erst in saltsaures Salz übergeführt hat. Drittens möchte ich nur noch als Factum anführen, dass Marmé's Körper auf dem Wege der Abscheidung aus dem mit Salzsäure angesäuerten Untersuchungsobjecte von Alkohol aufgenommen wurde, während Oxydi-
morfadin als solches und als salzaures Salz von Alkohol nicht aufgenommen wird. Aus dem allen scheint mir zur Evidenz hervorzugehen, dass der von Prof. Marmé isolierte Körper nicht Oxydimorphin ist.

Um in Erfahrung zu bringen, in wie weit kleine Mengen von Morphin in Organen vermittels meines Abscheidungsweges noch isolirt werden können, stellte ich einige Versuche mit frischen Organen einer unvergifteten Katze (3100 Grm. schwer) an, denen ich bestimmte Morphininjektionen zusetzte. Noch deutliche Reactionen auf unverändertes Morphin erhielt ich mit meinem For-

malin-Rgs. aus der Dickdarmschleimhaut, der 1 Decimilligramm Morphin hypochlor, ferner aus den Nieren, denen 2 Decimilligr. und aus der Dünnarmschleimhaut, der ebenfalls 2 Decimilligr. zugesetzt worden waren.

VI. Die Verteilung des eingeführten Morphins im tierischen Organismus.

<table>
<thead>
<tr>
<th>bis</th>
<th>im Blut resp. Serum</th>
<th>in der Leber</th>
<th>in den Nieren und dem Harn</th>
<th>im Magen und Inhalt</th>
<th>in den Lungen</th>
<th>in der Milz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 St.</td>
<td>M. unv. = ca. 0,006 Grm. = 1,3 % M.</td>
<td>M. unv. = ca. 0,02 Grm. = 30 %</td>
<td>M. unv. = ca. 0,006 Grm. = 5 %</td>
<td>M. unv. = ca. 0,006 Grm. = 3,3 %</td>
<td>M. unv. = ca. 0,0006 Grm. = 1 %</td>
<td>M. gep. = ca. 0,0005 Grm. = 0,85 % M.</td>
</tr>
<tr>
<td>1 St.</td>
<td>M. gep. = ca. 0,0008 Grm. = 1,3 % M.</td>
<td>M. unv. = ca. 0,008 Grm. = 10 %</td>
<td>M. umg. = ein Teil.</td>
<td>M. unv. = ca. 0,001 Grm. = 1,6 %</td>
<td>M. unv. = ca. 0,0007 Grm. = 1,1 %</td>
<td>M. gep. = ca. 0,0006 Grm. = 1 % M.</td>
</tr>
<tr>
<td>2 St.</td>
<td>M. gep. = ca. 0,0008 Grm. = 1,3 % M.</td>
<td>M. unv. = ca. 0,01 Grm. = 1,6 %</td>
<td>M. umg. = ein grosser Teil.</td>
<td>M. unv. = ca. 0,002 Grm. = 3,3 %</td>
<td>M. unv. = ca. 0,0009 Grm. = 1 %</td>
<td>M. gep. = ca. 0,0006 Grm. = 1 % M.</td>
</tr>
<tr>
<td>2 + 1/2 St.</td>
<td>M. gep. = ca. 0,0007 Grm. = 1,1 % M.</td>
<td>M. unv. = ca. 0,0008 Grm. = 1,1 %</td>
<td>M. umg. = ein sehr grosser Teil.</td>
<td>M. unv. = ca. 0,003 Grm. = 1 %</td>
<td>M. unv. = ca. 0,0006 Grm. = 1 %</td>
<td>M. gep. = von Spuren bis 0,001 Grm. = 1,1 %</td>
</tr>
</tbody>
</table>

Das Morphin ist aus der gesamten Verhältnis durch Zahlen, die entsprechende Angaben, die Tabelle quantitativ angibt, die Menge der im beobachteten Zeitraume abgegangenen, gestattet sich für die obengenannten Zeiten folgende Angaben (g Tabelle):

Die Verteilung des Morphins, ausgeschieden in Zahlen, die Mittelwerte der gefundenen Objekte zu ermitteln.

Harn. Lange Zeit herrschte Unklarheit darüber, ob Morphin nach seinem Einführen in den Organismus im Harn erscheine.

Kauzmann (1868) unter Prof. Dragendorff ist der erste, welcher durch ausgeführte Versuche an Menschen und Tieren die Behauptung aufstellte, dass das Alkaloid nach Einnahme selbst bis zu einem Centigramm (1 Versuch), stets mit Sicherheit im Harn constatirt werden kann. Die Tragweite dieses Ergebnisses bei den ja so häufig vorkommenden Morphinvergiftungen, lässt sich leicht ernennt. Es erschienen daher auch in der Folgezeit behufs Controlierens der so wichtigen Kauzmann’schen Behauptung zahlreiche Arbeiten. Beim Prüfen und Vergleichen der diesbezüglichen von den Autoren gemachten Angaben über den Harn gewinnt man jedoch den Eindruck, dass Kauzmann’s Behauptung doch wohl als die richtige sich erweist.

in der That diesbezügliche Schwierigkeiten bestehen, scheint die Bemerkung Prof. Marmés zu bestätigen, dass nämlich das Wiederfinden des Alkaloides im Harn von Tieren für geübte Arbeiter durchaus nicht schwierig sei.

Mir gelang es stets Morphin im Harn der Versuchstiere nachzuweisen, vorausgesetzt dass der Körper genügende Flüssigkeitsmengen besass, die wahrscheinlich mit einem gewissen Einfluss auf Erhöhung der Nierenbehaltung das Morphin in die Blase befördern. In manchen Fällen hatte ich nämlich beobachten können, dass nach vorgeschriebener Vergiftungsdauer selbst bis zu 1 St. bei Sectionen der Versuchstiere Harnmengen von 10—30 ccm. in der Blase sich vorhanden, der Harn jedoch kein Morphin aufwies, statt dessen aber die ganze in der Tabelle angegebene Morphinmenge in den Nieren aufgespeichert vorlag; jedes Mal zeigte sich hierbei bei der Section, dass der Magen völlig frei von Flüssigkeit war. Die genannten 10—30 ccm. Harnmengen befanden sich gewiss noch vor der Vergiftung schon in der Blase, und Morphin, welches vom Blut in den Nieren abgelagert worden war, konnte des Flüssigkeitsmangels wegen nicht in die Harnblase gelangen.

tive Bestimmung ergab einen Morphingehalt von 7 Milligramm.

Für Blut, Gehirn, Milz, Rückenmark sind die betreffenden Daten auf pp. 69/70 angeführt.

vielleicht bei weitem größere Teil, wurde vom Blut wieder aufgenommen und in andere Organe weitergetragen.

Im Hinblick auf den Umstand, dass bei meinen Morphin-Vergiftungsversuchen die Anwesenheit und auch eine Zunahme des gepaarten Morphins in einigen Organen zu constatiren war, muss von jetzt ab bei diesbezüglichen gerichtlich-chemischen Untersuchungen die anzuwendende Isolierungsmethode dahin modifizirt werden, dass das gepaarte Morphin nach seiner Aufnahme in Alkohol (cf. p. 60), oder nach seiner vollständigen Isolierung zerlegt wird, um dadurch eine intensivere Reaction auf unsersetztes Morphin entstehen zu lassen, als sie ohne diese Manipulation sich ergeben würde.

Handelt es sich um tödtlich verlaufende Morphin-Vergiftungen, die hauptsächlich durch kleine Mengen des Alkaloïdes, subcutan injizirt, bedingt werden, so muss ich mich nicht allein für den Harn, sondern auch für die Nieren als die günstigsten Untersuchungsobjekte aussprechen. Ein gewisser Teil Morphin wird in dieselben stets ausgeschieden und lässt sich aus diesen (ausser Speichel) relativ leichter isoliren als aus anderen Organ- teilen und den Fæces.

Als ein bemerkenswertes Factum führe ich endlich noch an, dass bei einer trächtigen Katze nach Vergiftung mit 0,06 Grm. Morphin und nach 25 Min, post Injectionen erfolgter Entblutung, die vier vorhandenen Embryonen (zusammen ca. 40 Grm, schwer) eine sehr deutliche Reaction auf unverändertes Morphin mit meinem Formalin-Rgs. gaben, die gemeinsamen Placenten ebenfalls eine sehr deutliche Reaction, während das gemeinsam in Arbeit genommene Fruchtwasser keine Reaction aufwies.

Der rasche Uebergang des Morphins in den kindlichen Kreislauf ist damit von Nearem und zwar auf anderem Wege als bisher darzustellen. Dass Kinder morphiumsüchtiger Mütter morphiumsüchtig zur Welt kommen, kann uns darnach nicht mehr wundern.

VII. Ein Versuch mit Morphinaetherschwefelsäure.

Morphinaetherschwefelsäure ist schwer loslich in kaltem Wasser, Alkohol, Aether; sie löst sich in etwa 100 Teilen heissen Wassers und viel leichter in Alkalien. Um die Säure zu zerlegen, muss man sie mit verdünnter Salzsäure längere Zeit auf dem Wasserbade erhitzen. Hierbei zerfällt sie in Morphin und Schwefelsäure (weitere Bemerkungen über die Formel und die Darstellung der oben genannten Säure, siehe Stolnikow*).

wird, da eine beträchtliche Steigerung der Aetherschwefelsäureausscheidung dabei wahrgenommen wird.

Ca. 2 Stunden nach der letzten Injection fand man die Katze tot; von einer Durchspülung der Organe mit Zucker-Kochsalzlösung musste daher Abstand genommen werden.

Die Section wies unter dem Ueberzug der Lunge kleine Blutaustritte auf; im Herzen fanden sich solche nicht vor.

Der Mageninhalt kam nicht in Betracht, da er aus einem Gemenge von Grüten bestand.

Von Harn fand sich in der Blase nur 2 ccm. vor. Eine Reaction auf Morphinanwesenheit trat nicht ein, auch nicht aus einigen (ca. 4) während der Injection aufgefangenen Speichelropfen.

Ein negatives Resultat wurde ferner erzielt aus Gehirn, Milz, Rückenmark.

Resumé.

1. Vermittelst meiner Methode des Ausschwenkens gelang es mir Morphin nach intravenöser Injection von 0,06 Grm. in dreizehn verschiedenen Objecten von Katzen nachzuweisen, und zwar teils als unverändertes, teils als gepaartes, teils als umgewandeltes. Das umgewandelte Morphin kann auch auf künstlichem Wege aus einer Mischung von Leber, Glycogen, reinem Morphin etc. dargestellt werden.

2. Über die Verteilung dieser genannten verschiedenen Morphinmengen im Organismus von Katzen liegen Beobachtungen vor, die nach gewissen Zeiten der Vergiftungsdauer angestellt wurden. Die unverändert gebliebenen Morphinmengen sind hierbei meistens quantitativ bestimmt worden.

4. Die Identität des isolirten unveränderten Morphins konnte auf zweierlei Art bestimmt werden: 1) vermittelst zweier von mir entdeckten Reagentien, die mit anderen organischen Körpern ebenfalls charakteristische und empfindliche (1 : 1000000) Farbenreaktionen geben, 2) mit Kaliumcadmiumjodid, welches salzaures Morphin in eine typische Krystallform überführt.
5. Das intravenöse eingeführte Morphin geht als solches bei einer trächtigen Katze innerhalb 25 Min. in sehr deutlich nachweisbaren Mengen in die Embryonen und Placenten über.

Literatur,
auf deren Nummern im Text verwiesen ist.

8. Buchner. Neues Repert. f. Pharm. 1867, m. XVI.
40. Scheibe, E. Pharm. Zeitschr. 1883, Ig. XXII, Nr. 4, pag. 49.
45. Teegarden. Zur Casuistik der Morphinvergiftungen. 1887, Nr. 18.
48. Wisslein, ef. Landesberg: Arch. d. ges. Physiol. etc.

Thesen.

2. Der Gehalt der Schilddrüsen an Tyrojodin schwankt so sehr, dass bei der Herstellung von Schilddrüsen-Praeparaten zu therapeutischen Zwecken, unbedingt eine quantitative Jodbestimmung vorgenommen werden muss.
3. Der normale Organismus des Menschen und der Säugetiere enthält Jod.
7. Eine dem Chemiker genügende Untersuchungs-Methode der Praeparate von Cannabis indica auf ihren Wert hin, existirt nicht, so dass der Apotheker für die Brauchbarkeit dieser Praeparate nicht die geringste Garantie leisten kann.