
1
Tartu 2019

ISSN 2613-5906
ISBN 978-9949-03-026-2

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
8

TO
O

M
A

S K
R

IPS	
Im

proving perform
ance of secure real-num

ber operations

TOOMAS KRIPS

Improving performance of
secure real-number
operations

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

8

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

8

TOOMAS KRIPS

Improving performance of
secure real-number

operations

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on April 17th, 2019 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisors

Dr. Jan Willemson
Cybernetica AS

Prof. Dr. Dominique Unruh
University of Tartu

Opponents

Prof. Dr. Claudio Orlandi
Aarhus University

Prof. Dr. Octavian Catrina
Polytechnic University of Bucharest

The public defense will take place on June 12th, 2019 at 14:15 in J.Liivi 2, room
405.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2019 by Toomas

ISSN 2613-5906
ISBN 978-9949-03-026-2 (print)
ISBN 978-9949-03-027-9 (PDF)

University of Tartu Press
http://www.tyk.ee/

iKrips

http://www.tyk.ee/

To my family and friends

ABSTRACT

Secure computation is a field that studies the problem of how to perform computa-
tions on data in such a way that the computing parties do not learn anything about
the data. These computations have applications in a wide variety of areas such
as medicinal research or outsourcing computation. Most of the focus concerning
secure computation has been on integer-based data types. However, for many ap-
plications, real-number based data types are necessary. This thesis studies three
approaches on making real-number based secure computation more efficient.

First we study an approach combining fixed-point numbers and floating point
numbers, choosing the number types according to the situations where they give
faster results. The efficiency of this method depends on the concrete function
being computed as in some cases, switching between the data types is more ex-
pensive than the improvement we gain by using the more suitable data type for a
specific operation.

Secondly, we study a method that uses the fact that parallel composition of op-
erations is often orders of magnitude more efficient than sequential composition in
some approaches for secure computation. This method improves monotone func-
tions f for which there exists a more efficiently computable ’inverse’ operation g,
and we show that f can be evaluated by evaluating many instances of g in parallel.
This can be more efficient than the traditional approach.

Thirdly, we introduce a new number type that we call the golden section num-
bers. A pair of signed integers (a,b) represents the real number a−ϕb where ϕ

is the golden ratio. We show that we achieve results comparable to fixed-point
numbers in the secure setting using this data type. As this data type is new, more
improvements may be possible.

6

CONTENTS

Abstract 6

1. Introduction 11
1.1. Author’s Contributions . 12

2. State of the art 14
2.1. Secure Fixed-Point Numbers . 14
2.2. Secure Floating-Point Numbers 14
2.3. Other Approaches . 16

3. Preliminaries 17
3.1. Universal Composability . 17
3.2. Security Models . 18
3.3. Methods for Secure Computation 19

3.3.1. Secret Sharing . 19
3.3.2. Yao’s Garbled Circuits . 21
3.3.3. Fully Homomorphic Encryption 22
3.3.4. Secure Computation Based on Partially Homomorphic En-

cryption . 23
3.3.5. On Using Secure Computation Frameworks 23
3.3.6. Security Guarantees of Our Implementation 24

3.4. Notations and Conventions . 25
3.4.1. Secure Bits and Integers 26
3.4.2. Secure Fixed-Point Numbers 26
3.4.3. On Algorithm Notation 29
3.4.4. Existing Primitives . 30

4. Hybrid Model 39
4.1. Introduction . 39
4.2. Fixed-Point Numbers . 40

4.2.1. Polynomial Evaluation on Fixed-Point Numbers 41
4.2.2. Helper Functions . 44
4.2.3. Converting a Fixed-Point Number to a Floating-Point Number 47

4.3. Inverse . 48
4.4. Square Root . 51
4.5. Exponential . 54
4.6. Error Function . 56

4.6.1. Conclusion . 60

7

5. Point-Counting 63
5.1. Introduction . 63
5.2. The Scalar Pick Function . 64
5.3. The Point-Counting Method . 65

5.3.1. Iteration . 69
5.4. Applications of the Method . 71

5.4.1. Finding Roots of Polynomials 72
5.4.2. Logarithm . 76

5.5. Conclusion and results . 79

6. Golden Section Numbers 80
6.1. Normalization . 84

6.1.1. First Normalization Method 86
6.1.2. Finding Normalization Sets 90
6.1.3. Second Normalization Method 100
6.1.4. A Variation on The Second Method 109

6.2. Why ϕ? . 109
6.3. Protocols for Golden Section Numbers 112

6.3.1. Multiplication by ϕ . 112

7. Results and Conclusions 118
7.1. Benchmarking . 118

7.1.1. Hybrid Method Benchmarking 118
7.1.2. Point-Counting Benchmarking 119
7.1.3. Golden Numbers Benchmarking 120

7.2. Benchmarking Results . 120
7.2.1. Inverse . 120
7.2.2. Square Root . 122
7.2.3. Exponent . 124
7.2.4. Gaussian Error Function 125
7.2.5. Logarithm . 126
7.2.6. Golden Number Normalization 128
7.2.7. Multiplication . 128

7.3. Conclusions . 129
7.3.1. Hybrid Method . 129
7.3.2. Point-Counting . 129
7.3.3. Golden Section Numbers 130

Bibliography 131

Acknowledgments 136

Summary in Estonian) 139

Curriculum Vitae 140

8

Elulookirjeldus (Curriculum Vitae in Estonian) 141

List of original publications 142

9

LIST OF TABLES

1. The round complexity of the presented primitives in the Sharemind
3 setting. 38

2. Operations per second for different implementation of the inverse
function for different input sizes. 121

3. Operations per second for different implementation of the square
root function for different input sizes. 123

4. Operations per second for different implementation of the exponen-
tial function for different input sizes. 125

5. Operations per second for different implementation of the Gaussian
error function for different input sizes. 127

6. Operations per second for different implementation of the logarithm
function for different input sizes. 127

7. Operations per second for different sizes of golden number normal-
ization for different input sizes. 127

8. Operations per second for multiplication of different real-number
data types for different sizes. 128

10

1. INTRODUCTION

In the modern world, data is ubiquitous and analysis of existing data is highly use-
ful. However, the owner(s) of the data and the parties that analyze data might not
coincide exactly. For example, the owner of the data might have little computing
capacity, and would want to outsource the computation to the cloud. He might not
want to share the data with the computing agent(s), but would naturally still be
interested in the result of the computation. Or there might be no single agent who
possesses all the relevant data necessary for the data analysis. For instance, the
relevant data could be held by several parties who are interested in the outcome
of the analysis but do not want to share the data with the other parties. These
requirements may sound contradictory at first, but it is in fact possible to satisfy
both of these requirements and the field of solving problems in this way is called
secure multiparty computation (SMC).

The field was started in 1982 by Yao, who posed the so-called Millionaire
Problem [63] — two millionaires wish to know which of them has more money
while leaking no more information about how much money they possess to the
other party. The original problem is rather specific and its solution was very costly
in both time and memory, however, after 1982 the field has become both more
efficient and wider classes of problems have been studied.

Recently, several Turing-complete SMC frameworks have been developed with
a variety of existing protocols and primitives. Such frameworks allow for building
new desired protocols out of existing sub-protocols instead of tailoring a specific
SMC solution for a problem from the beginning. Three popular SMC paradigms
are secret-sharing based schemes, schemes built out of Yao’s garbled circuits and
schemes based on fully homomorphic cryptography. Examples of specific frame-
works built on these paradigms include SPDZ [29] , Sharemind [11] , Viff [28],
FairPlay [53], SCET [16], SMCR [15], SEPIA [18], TASTY [39], and Λ◦λ [27].

For these frameworks, some rather nontrivial primitives and protocols have
been built. However, these primitives are usually based on either bit-typed or
integer-typed values. In practice, more various types of values are needed for
different types of problems. One example of such an important value type is real
number types — they are so ubiquitously needed that often a special floating-
point unit is built into the hardware. Recently, different real number models in
SMC have been researched. This is also the focus of this thesis.

In regular, non-SMC models, floating-point numbers are often used to depict
real numbers, as they provide flexibility and good precision. Floating-point num-
bers and protocols have been implemented in SMC settings, however, some basic
operations such as addition have proven to be expensive on them [5, 47, 52].

As a different solution, fixed-point numbers have also been implemented in
SMC, such as the works of Catrina and Saxena [24]. Fixed-point numbers are
simpler than floating-point numbers and usually less expensive in the SMC set-
ting, but they are quite inflexible and may not be sufficiently precise.

11

Thus there is no one best way for depicting real numbers in the SMC setting.
The setting of SMC is rather different from the ordinary case and thus we should
study how to perform various operations on real numbers there more efficiently.
SMC operations are usually significantly more expensive than their nonsecure
counterparts, and thus efficiency is highly important for the methods to be practi-
cally applicable.

While one strategy for constructing algorithms for SMC is taking existing
algorithms and replacing the necessary primitives with corresponding privacy-
preserving primitives, this strategy can often fail in that it can make the resulting
SMC algorithm prohibitively expensive.

Thus various methods should be studied to find ways how to improve the effi-
ciency of various operations on real-number computation in SMC, that utilize the
special properties that SMC has. This thesis presents three such methods and they
will be described in section 1.1.

1.1. Author’s Contributions

In this thesis we present several techniques for improving secure computation over
real numbers.

1. First, we present new techniques that use both fixed-point numbers and
floating-point numbers to compute a function. This is based on the fact
that fixed-point numbers and floating-point numbers have different effec-
tiveness for different primitives and operations and thus it sometimes pays
to convert the number to a different type to perform some computation. The
author contributed the implementation and specifics for this method.

2. Second, we present the point-counting technique. This technique is based
on the fact that in SMC, we greatly benefit from parallel composition.
There are various functions for which there is an ’inverse function’ that is
much easier to compute than the original function, such as the pair f (x) =√

x,g(x) = x2. We present a method that is usable on fixed-point numbers in
which we use many parallel instances of the ’inverse function’ to compute
one instance of the original function. We also show where this method is
usable. The author contributed the initial idea, the analysis, the examples
of its applicability, the idea how it can be used for generic polynomials and
its analysis, and finally the implementation and benchmarking.

3. Third, we present a new number type, distinct from both fixed-point num-
bers and floating-point numbers. A pair of signed secret integers (JaK,JbK)
represents the number a−ϕ · b where ϕ = 1.61 . . . is the golden ratio. We
show that for this number type addition can be done locally, and on aver-
age, its multiplication is faster than the equivalent fixed-point number, thus
making it a suitable candidate for uses in secure computation. The initial
idea of using such a number type in the secure setting came from Vassil

12

Dimitrov, however, the author contributed the theory and practice of differ-
ent normalization methods and their analysis, the analysis on why we chose
ϕ , and the implementation of the protocols.

We claim that the methods described in this thesis can in certain models im-
prove performance of computations based on real numbers in SMC.

13

2. STATE OF THE ART

Research has been conducted about secure real-valued operations. Here we give
some overview on some of the related work.

2.1. Secure Fixed-Point Numbers

Fixed-point numbers have been a popular approach for representing real numbers
in a secure setting. Fixed-point numbers are quite similar to integers and as many
secure computation frameworks support integers, fixed-point numbers are a very
natural match for secure real numbers.

More specifically, Catrina and Dragulin proposed a secure fixed-point frame-
work in [22]. They used it to build a protocol for secure division. The secure di-
vision called a secure reciprocal as a subprotocol that used the Newton-Raphson
method. This method, however, only worked for positive fixed-point numbers.
Catrina and Saxena gave a framework that could support signed fixed-point num-
bers and a number of protocols in [24]. The proposed underlying integer primi-
tives were improved in [21] by Catrina and Hoogh. Catrina and Hoogh also used
these secure fixed-point numbers in [23] to solve linear programming problems se-
curely. In 2012, de Hoogh defended his thesis [30] on secure linear programming
which made use of secure fixed-point numbers. Additionally, Catrina introduced
optimizations for fixed-point operations in [20] including a bit decomposition
operation that takes not a logarithmic but constant (more precisely, 3) number of
rounds.

Liedel applied that fixed-point framework to compute fixed-point square roots
in [50]. Liedel also defended his PhD thesis [51] where he also uses this frame-
work. Another example of existing secure fixed-point protocols comes from Ug-
wuoke et al., who in [62] proposed a method for dividing homomorphically en-
crypted fixed-point numbers.

A problem with the fixed-point approach is that if the order of magnitude of the
data is not well known, there is the danger of either overflow or high imprecision.
In essence, the problem is finding a suitable radix-point. Note that this can also
leak information. Henecka et al. deal with this problem in [38]. They propose a
method for mapping real numbers to integers in order to do secure computation.
This is essentially a form of fixed-point numbers. They propose a method how
two parties can agree on a suitable radix-point securely. However, it is a two-
party protocol and thus somewhat limited in scope.

2.2. Secure Floating-Point Numbers

Floating-point numbers are more complicated than fixed-point numbers. How-
ever, they offer great precision and flexibility, and are the preferred method to
represent real numbers in normal computation.

14

Kamm in her PhD thesis [46] used secure floating-point numbers. She con-
structed an R-like package for performing statistical analysis. She then used this
package for the satellite collision problem.

In [48] Kerik, Laud, and Randmets presented optimizations for the Sharemind
SMC engine that among other protocols improved floating-point protocols. We,
in this thesis, base our secure floating-point numbers on this work.

Floating-point numbers have also been studied by other groups. In [6], Alias-
gari et al. developed a framework for secure floating-point numbers that supported
various operatinos, such as multiplication, addition, subtraction, comparison, and
rounding. More complicated operations were also developed, such as the square
root, exponentiation, and logarithm. In [3] Aliasgari and Blanton used the frame-
work to develop privacy-preserving techniques for hidden Markov models and
Gaussian mixture models. They also improved upon the efficiency of the expo-
nential function. In [4], Aliasgari et al. give an approach for the malicious model.
The results obtained were good, but this framework does not gain significant im-
provements in efficiency when the operation is carried out for larger vector sizes.
That is, the amortized cost of operations per second does not improve significantly
when we increase the number of operations carried out simultaneously.

In [35], Franz et al. implemented a secure floating-point number framework
that implemented the IEEE 754 floating point standard. They used it for digi-
tally filtering secure real-value signals. In [34], they applied these techniques to
privacy-preserving sequence analysis. Franz also defended his PhD thesis [32]
where he viewed secure real numbers, in particular, secure logarithmically en-
coded numbers and secure floating-point numbers.

Mohanty uses secure computation on floating-point numbers and fixed-point
numbers for cloud-based image-processing in his PhD thesis [54]. He uses pas-
sively secure Shamir secret-sharing based approach. The operations used are those
necessary for image processing. However, Shamir secret sharing and floating-
point numbers appear to be difficult to combine as they are based on different
arithmetic structures. Mohanty views two approaches of combining these two.
The first approach is excluding the modular prime operation. This, however, in-
troduces some security flaws, for example, it is unknown whether the scheme
proposed is secure against side-channel attacks. Mohanty’s second approach is
converting the floating-point number to a fixed-point number. While this sounds
on a superficial level similar to our Chapter 4, it is in fact not, as Mohanty does
not use secret floating-point numbers. He merely uses secure fixed-point numbers
to represent floating-point numbers. Thus the goals of Mohanty’s thesis and this
thesis are rather different in nature, as his goals are based on developing a frame-
work that is specifically useful for secure image processing while we study the
problem more generally.

In addition Bai et al. proposed secure floating-point numbers based on fully
homomorphic encryption in [7] and Liu et al. proposed secure floating-point num-
bers dor secure data analysis in [52].

15

2.3. Other Approaches

As secure computation over reals is a relatively novel field, other real number
types have also been used.

For example, Chung used continued fractions in her PhD thesis [25] in order to
represent secure real numbers. Continued fractions are a method for representing
real numbers that are not considered in this thesis.

In [33], Franz et al. used logarithmically scaled numbers to represent real num-
bers. We already noted that Franz used secure logarithmically encoded numbers
in his thesis [32].

16

3. PRELIMINARIES

In this section we describe general notation, other necessary conventions, and
preliminary results that are useful for better understanding this thesis.

A fundamental idea on which the field of SMC lays is the concept of secret
values. We say that a value of a variable x is secret if it is somehow manipulated
into some form in such a way that nothing about its value can be learned from
this new form. We denote this new form with JxK. There are various methods
for making a value secret — for example encryption and secret sharing. There
are also several possible definitions to what the phrase ’nothing about a value can
be learned from JxK’ means, we will later give several possible definitions to this
that are more formal. We shall also use the words secure value and private value
synonymously with the word secret value.

However, for the concept of secure computation it does not suffice for JxK
to be private. We must be able to perform operations on secure values. Min-
imally, for the framework to be Turing-complete, we must be able to add and
multiply secure values, i.e, we should have access to operations ⊕ and ⊗ such
that JxK⊕ JyK = Jx+ yK and JxK⊗ JyK = Jx · yK. Theoretically, it suffices to have
constants, addition and multiplication for secure computation as a system with
constants, addition and multiplication is Turing-complete. However, in practice,
it is recommended to build more complicated operations (for example built from
addition and multiplication) for efficiency and ease of writing protocols.

There are also various methods for building SMC settings where operations ⊕
and ⊗ with the abovementioned properties exist. We shall briefly explain fully
homomorphic encryption, Yao schemes and secret-sharing based schemes,

3.1. Universal Composability

A basic foundation of cryptography are security proofs that show that a given
protocol is secure, given certain assumptions. However, often these proofs are
constructed as if the protocols were the end-products and not as if they were sub-
products of some more complicated protocol. However, in practice, the protocols
for which proofs are given are often just building blocks and thus the security of
the more complex protocol should be proved by itself. This is very cumbersome
and requires the prover to be well-versed in cryptography, which is undesired as
it takes time and expert knowledge. It would be commendable if the security of a
more complex protocol would follow from the security of its building blocks.

For this it would be necessary that a protocol would remain secure if placed in
an environment where it interacts with other protocols, that are possibly controlled
by malicious parties. More formally, a security of a protocol R is often defined by
comparing the protocol to an ideal version F of the protocol. The ideal version is
often modelled as a trusted third party. The security is shown by demonstrating
that it is computationally difficult (i.e. success happens with a negligible probabil-

17

ity given a computationally bounded adversary) for the environment to distinguish
the ideal case from the actual protocol. If the protocol leaked some data that the
ideal case does not, then it would be possible to use that fact to distinguish be-
tween the ideal world case and real world case — which, provided that we have
shown it to be practically infeasible, would be a contradiction.

We also need to add another layer between the environment and the ideal func-
tionality. This is mainly for syntactic purposes. For example, in the multiparty
case it is trivially possible to distinguish between the ideal functionality and the
real-world multiparty case since the different parties pass messages to each other
while the trusted third party does no such thing. Even if the messages are en-
crypted, they still leak something, for example, the length of the messages. Thus,
we need to add a layer that makes the message-passing behaviour of the multi-
party case and the ideal case indistinguishable. This layer is called a simulator
S. It should be hard to distinguish between R and S ◦F . Here, by S ◦F we mean
that the distinguishing party only communicates with S. We have now in general
terms introduced the concept of universal composability[19].

One main benefit of universally composable protocols is the UC theorem which
states that the composition of UC protocols will be an UC protocol [26] Thus UC
protocols make for good building blocks — given that we prove that a set of ele-
mentary protocols are universally composable, we can build much more compli-
cated protocols out of them that will also be universally composable thanks to the
theorem. This is the property the usefulness of which we noted at the beginning
of this subsection. This fact allows this thesis to focus more on algorithm design
and efficiency than proving the security of the schemes, as the security follows
from the UC property of the building blocks.

3.2. Security Models

Security is an intuitive notion, but can be understood in several ways — in cryp-
tography, there are several versions of security that are used. While more types
exist, we shall focus on two types of security — passive and active security. We
additionally talk about the assumption of how parties are allowed to collude.

First, there is the concept of passive security. In this security model, all the
parties taking part of the protocol are presumed to behave as the protocol dictates,
but may use the data to compute things that were not intended by the protocol, and
yet should not learn anything more. This is also known as the honest-but-curious
model.

We formalize this security concept in the following way in the UC framework.
To do this, we introduce the concept of the adversary.

In the case of passive security, the adversary is allowed to passively corrupt
some subsets of the parties. We define passive corruption via the ideal function-
ality F . The adversary can send F the message (passive, i) which means that it
corrupts the ith party. As a result F sends to the adversary the input messages

18

Fin,i and the output messages Fout,i of this party. The adversary is allowed to
send these messages for fixed subsets of parties (for example, in the common t-
threshold schemes, the adversary is allowed to corrupt subsets with no more than
t parties).We now define the scheme to be passively secure if the environment
cannot distinguish between R and S◦F .

Second, there is the concept of the active security. In this security model,
the integrity of the data is protected, even if malicious parties do not follow the
protocol. Note that in a context where there is more than one party performing
the secure computation, the protocol may be actively secure for some subset of
parties but not for all subsets of parties. For example, [29] describes a model that
is not secure when all parties are allowed to not follow the protocol, but is secure
when there is at least one honest party that follows the protocol. This is generally
formalized by describing an adversary who is allowed to control a certain subset
of parties in the computation.

More formally, active security is formalized in the following way. The adver-
sary is allowed to actively corrupt some parties. This means that the adversary
can send F the message (active, i) which means that it corrupts the ith party. Now,
F will ignore all incoming messages Fin,i. However, the adversary can send to
F any messages xi and F will accept these as legitimate input. F also sends to
the adversary Fout,i. Similarly as before we now define the scheme to be actively
secure if the environment cannot distinguish between R and S◦F . This definition
should capture the intuition that the parties are allowed to choose their input and
thus it is not possible to protect against an attack that merely changes the input.
However, the only thing an attacker should be able to do is to change the input
and to learn the result.

There are more security models besides active and passive security, for exam-
ple, the concepts of covert security and synchronous and asynchronous communi-
cation, and others. However, as this thesis focuses mainly on the algorithm design
aspect of SMC, these finer notions of security are not crucial for understanding
this thesis and thus we will omit them.

3.3. Methods for Secure Computation

In this section, we will describe three popular approaches to secure computation.
These approaches are based on secret-sharing, on Yao’s garbled circuits, and on
fully homomorphic encryption.

3.3.1. Secret Sharing

Secret sharing was first proposed by Shamir [61] and Blakley [10] in 1979.
Secret sharing is a method for sharing a piece of data between k agents in such

a way that some subsets of agents can reconstruct the data by collaborating and
other subsets learn no new information from their shares when collaborating.

19

We will now explain additive and Shamir secret sharing after which we will
discuss SMC based on secret sharing.

Shamir Secret Sharing. An important group of secret-sharing schemes are the
so-called threshold secret sharing schemes. A (t,k)-threshold secret sharing scheme
is a scheme where any subset of t parties can reconstruct the secret value but no
smaller group can gain any information about it. One example of this is Shamir
secret sharing [61]. The scheme works in the following way. Our underlying alge-
braic structure for this is a quotient field Zp. Suppose that we want to secret-share
a value a. For this we choose t random values b1, . . . ,bt from Zp and construct

the polynomial f (x) = a+
t

∑
i=1

bixi. We evaluate the polynomial f at k non-zero

values c1, . . . ,ck and give every party Mi the pair (ci, f (ci)). Now any subset of
t players or more can find the coefficients of the polynomial using Lagrange in-
terpolations, but any smaller subset possesses no information, even when they are
computationally unbounded.

Additive Secret Sharing. We will now describe additive secret sharing.
In additive secret sharing, there are M independent parties. If we want to

secretly store a value x that is an element of an abelian ring A, then we randomly
pick elements x1, . . . ,xM−1 from A. We set xM := x− x1− x2− . . .xM−1 in ZN .
Every party Pi gets the value xi. Now, in A, the sum of all the xi is x, however,
none of the parties learns no new information about the value of x from its share
xi — the values x1, . . . ,xM−1 were randomly chosen, and xM is uniformly random.

Moreover we have the following theorem from [11]
Theorem 1. For each secret value s ∈ Z232 , any subset of n− 1 shares of s is
uniformly distributed and for any two secret values u,v ∈ Z232 , their secret shared
forms are indistinguishable for any coalition of parties holding up to n−1 shares.

The result and the proof can be easily generalized from Z232 to any Abelian
ring A. This guarantees the passive security of secret-sharing.

In [29], a version of additive secret sharing that is actively secure when all
except one of the parties is corrupted was described.

Secure Multiparty Computation Based on Secret Sharing. Some secret shar-
ing schemes also allow for methods to compute functions without the agents not
learning anything about the data. This allows us to construct secure multiparty
computation based on secret sharing.

For Shamir secret sharing, it is possible to manipulate the shares in a way to
obtain addition and multiplication operations [8]. Examples of Shamir secret-
sharing based SMC schemes are VIFF [28], SCET [16], and SEPIA [18].

This is also possible for additive secret sharing. Examples of secure com-
putation schemes based on additive secret sharing include Sharemind [11] and
SPDZ [29]. We used the Sharemind scheme in our implementations, with M = 3.

When designing protocols for SMC based on secret sharing, one should keep
in mind the following heuristic principle. Namely in this setting, for computation

20

the agents generally need to exchange messages. As sending one large message
is generally much faster than sending many small messages sequentially, parallel
composition is often orders of magnitude more efficient than sequential composi-
tion [11].

3.3.2. Yao’s Garbled Circuits

In [64], Yao described a method for securely evaluating binary circuits. Here the
function that we wish to securely evaluate must be expressed as a binary circuit.
This method provides secure evaluation of NOT-gates, AND-gates, and XOR-
gates. It also allows for secure evaluation of compositions of these gates and is
thus Turing complete. We will now shortly describe Yao’s scheme in this subsec-
tion.

In this two-party scheme one party builds the binary circuit along with their
inputs and sends the circuit to the other party who then evaluates it. For clarity,
let the party that builds the circuit be called Alice and the party that evaluates the
circuit be Bob. We assume that both Alice and Bob put inputs into the circuit.
Note that if some internal value of the circuit depends only on the inputs of one
party, then that party can compute it locally and thus more efficiently. Thus we
assume without loss on generality that every gate evaluated depends on both the
inputs of Alice and the inputs of Bob.

Alice takes the binary circuit C that Alice and Bob have agreed to evaluate
together and compiles it into a garbled binary circuit C′ that she sends to Bob to
evaluate. How this garbled circuit is built and how Bob evaluates it are the key
components of this scheme. Currently we shall describe a circuit that can only be
evaluated once.

A circuit consists of wires and gates. For every wire w, Alice prepares two
values w0 and w1 that respectively correspond to the values 0 and 1. Generally,
though evaluation, Bob can obtain one of those values wb which signifies that the
bit carried by that wire in this evaluation is b. However, while Bob gets access to
wb, he does not learn whether it is w0 or w1. We now briefly explain how this is
achieved.

The easiest case is when w is an input wire of Alice — if the corresponding
value is b then Alice can simply send the corresponding value wb to Bob.

The case when the value is an input wire of Bob is not much more compli-
cated. In this case, Bob uses oblivious transfer on the pair (w0,w1) to obtain wb
where b is the corresponding input bit of Bob. The definition of oblivious transfer
guarantees that Bob only learns one of the values and that Alice does not learn the
value b.

Let us now consider the case where the wire w is the output wire of a gate. For
clarity, let it be an AND-gate. The cases for the other binary gates are analogous.

Let two wires u and v be the input wires to the gate and let w be the output wire
of the gate. Let the input bits be a and b, i.e, Bob has the values ua and vb. We want

21

that Bob would obtain waANDb as the result. This is achieved via a garbled gate.
A garbled gate consists of four randomly permuted doubly-encrypted ciphertexts.
The encryption used is a symmetric encryption. There are four possible pairs of
values (ua,vb) that Bob can possess — he should be able to decrypt precisely one
of the cyphertexts provided to him. The value that Bob can decrypt (e.g the value
that is encrypted with the keys ua and vb) is waANDb

Thus, there are four ciphertexts ca,b = Encua(Encvb((waANDb))), for example,
c0,1 = Encu0(Encv1((w0)). Bob tries to decipher those four ciphertexts with ua

and vb. He succeeds in decrypting one of them, namely waANDb. Since the outputs
are permuted, Bob does not know which of the four ciphertexts he managed to
decrypt. Thus he learns nothing new from those four ciphertexts (besides waANDb,
of course).

Now consider the case when the wires hold the output bits. Essentially, there
are two approaches to this — either first Bob learns the values of the output bits
and sends them to Alice or vice versa. In the first case, the values of the output
wires can actually correspond to the bits it carries – so the value of w0 will be 0
and the value of w1 will be 1. In the second case, w0 and w1 are encryptions of 0
and 1, respectively, and only Alice knows the decryption key.

Other gates can be constructed in a similar manner. Fairplay [53] is an example
of a SMC system using Yao’s circuits. There have been improvements on making
Yao’s circuits more effective and more secure, for example [55] and [45].

3.3.3. Fully Homomorphic Encryption

The problem of fully homomorphic encryption was originally proposed in 1978 [60],
however, the first possible solution was not proposed until 2009 [36]. Fully homo-
morphic encryption is a method for secure computation with encryption , decryp-
tion, addition of plaintexts, addition of cyphertexts, multiplication of plaintexts
and multiplication of cyphertexts that we respectively denote with Enc,Dec,+, ·,⊕,
and⊗ that satisfy the properties Enc(Dec(x)) = x, Enc(x+y) = Enc(x)⊕Enc(y),
and Enc(x · y) = Enc(x)⊗Enc(y). As a system with addition and multiplication
is Turing-complete, any computable function can theoretically be evaluated using
fully homomorphic encryption.

Thus suppose that there is a set of parties who possess the values x0, . . . ,xk and
who wish to evaluate the computable function f (x0, . . . ,xk). To do that, they could
homomorphically encrypt the values JxiK on which the computation will be run.
They then send those values to the computing party P who then homomorphically
computes f (Jx0K, . . . ,JxkK) and obtains the result J f (x0, . . . ,xk)K. Party P then
sends J f (x0, . . . ,xk)K back to the output parties who can decrypt the answer. As P
only sees encrypted values, it learns nothing about the input values x0, . . . ,xk and
because the system is Turing-complete, given enough time, P is able to compute
f (Jx0K, . . . ,JxkK).

22

rently too slow for real-world applications [2].

3.3.4. Secure Computation Based on Partially Homomorphic
Encryption

While fully homomorphic encryption is yet not efficient enough for practical use,
there are applications where full homomorphism is not needed. For some ap-
plications, it is sufficient that an encryption scheme is homomorphic in one op-
eration. An encryption scheme that is homomorphic with regards to addition
is one where there exists an operation ⊕ in the group of cyphertexts such that
Enc(x+ y) = Enc(x)⊕Enc(y). Homomorphism with regards to multiplication is
analogously defined. ElGamal and Paillier encryption schemes are examples of
somewhat homomorphic encryption schemes.

Somewhat homomorphic encryption schemes can have practical applications.
For example, we can consider a binary vote where each participant votes either
’yes’ or ’no’, where ’yes’ is encoded by 1 and ’no’ by 0. Participants encrypt
their votes and the cyphertexts are added together. Provided that the participants
followed the protocol, the result will be an encryption of some value k, where
k is the number of participants who voted ’yes’. We can decrypt this value and
trivially obtain the result of the vote. Note that this does not leak who voted ’yes’
and who voted ’no’.

Applications such as this are very useful and practical, however, their scope is
limited, because we can use only one operation.

3.3.5. On Using Secure Computation Frameworks

Note that while having a number of universally composable primitives can make
designing secure algorithms quite similar to regular programming, there are still
some aspects that are different and need to be considered. First, one needs to
consider that secure computation primitives are generally much slower than the
respective primitives in the standard setting as generally either network commu-
nication or cryptographic operations are needed for secure computation, and these
take a non-trivial amount of time. Second, the relative costs of different primitives
can be different from their usual cost in non-SMC frameworks. These relative
costs depend on the framework we use. For example, in the Sharemind framework
[44] where we developed our implementations, bit extraction is an operation that
is several times more expensive than integer multiplication, as we will see in the
table 1 presented at the end of this chapter. Third, use of branching is heavily
limited. Operations such as the following where JbK is a secure bit and A and B

23

While this scheme is very desirable, in practice, the existing schemes are cur-

are sub-programs, are not allowed.

1 if b == 1 then
2 JxK← A

3 else
4 JxK← B

If this was allowed the program flow would leak information about the value of
JbK. This, of course, is the case not only for secure bits, but for all secure values.
Instead we can execute both branches and choose the result obliviously, such as
in the following example.

1 JxAK← A
2 JxBK← B
3 JxK← JbK · JxAK+(1− JbK) · JxBK

Presuming that the operations used are valid, x will be set to the correct value.
However, this can be costly in resources, and thus algorithms that rely heavily on
branching become prohibitively expensive and are hence not practically usable in
SMC.

3.3.6. Security Guarantees of Our Implementation

The exact security guarantees of the methods developed in the current thesis de-
pend on the underlying framework. As stated above, we have implemented our
protocols on Sharemind SMC engine which, in its default three-party setting, pro-
vides the following guarantees.

We start with the following definition (see, e.g. [14]).
Definition 1. We say that a share computing protocol is perfectly simulatable if
there exists an efficient universal non-rewinding simulator S that can simulate all
protocol messages to any real world adversary A so that for all input shares the
output distributions of A and S (A) coincide.

In the original Sharemind paper [12], Bogdanov et al. show that a perfectly
simulatable share computing protocol that ends with re-sharing of output shares
is perfectly universally composable. In [14], Bogdanov et al. show perfect simu-
latability of a number of basic Sharemind primitives which we make use of. On
the other hand, the author has not performed a review of Sharemind code base
to make sure that all the primitive implementations really perform the re-sharing
required for the composability proofs to work.

Another potential source of privacy violation is premature declassification of
values; say, control flow bits (which is sometimes done to trade some privacy for
efficiency). We have designed all our protocols so that no declassifications happen
before the end result is computed.

Still, one would prefer to verify the security guarantees of high-level complex
protocols formally. During the time research of this thesis was ongoing, such a

24

tool became available in the form of a compiler for a Domain Specific Language
developed particularly for Sharemind protocols [59]. The author was able to make
use of this tool for Chapter 6.

The above results hold for the standard passive honest-but-curious adversary
model where the attacker is only able to observe values held by one of the comput-
ing parties. However, it has been recently shown by Laud and Pettai that privacy
is also guaranteed in the active setting [56]. This means that Sharemind protocols
tolerate one computing party that can arbitrarily deviate from the protocol, but is
still unable to learn anything about the private inputs.

3.4. Notations and Conventions

In this section we will give certain notations and conventions that will be used
throughout this thesis. We shall assume the following conventions.
• We use� and� to denote shifts to the right and left, respectively. That

is, x� k means the value x shifted to the right by k bits and x� k means
the value x shifted to the left by k bits. We also use x << y (and x >> y) to
denote that the value x is significantly smaller (larger) than y.
• If we say that {ai}n−1

i=0 are the bits of an n-bit unsigned integer a, then the
bit an−1 will refer to the most significant bit, the bit an−2 to the next most
significant and so on, with a0 being the least significant bit.
• An integer type may be either unsigned, which means it takes only non-

negative values, or signed, which means it can be either negative or positive.
Usually we use some finite algebraic structure to store integers, such as a
residue ring Zk. Note that the values of this finite ring can be interpreted
as many elements of Z. While usually there is a canonical interpretation,
in some cases, there is potential for confusion, e.g in Subsection 6.1.3. To
avoid confusion in those cases, we will define two functions. We shall use
the function z : Z2n → Z that maps an element c ∈ Z2n to the member of
the residue class of c that is in the interval [0,2n−1]. Similarly, we define
the function t : Z2n → Z that maps an element c ∈ Z2n to the member of the
residue class of c that is in the interval [−2n−1,2n−1− 1]. We will not use
these functions before Subsection 6.1.3.
For the sake of simplicity, if we are speaking about unsigned integers when
the underlying ring is some Z2n , we will use x instead of z(x). Thus, we will
use x to refer to both as a member of Z2n and Z without there being con-
fusion about which integer we are speaking. Similarly, if we are speaking
about signed integers when the underlying ring is some Z2n , we will use x
instead of t(x). Here we can also use x to refer to both a member of Z2n and
Z.
• When not specified differently, integers refer to unsigned integers.
• When we speak of signed integers in this thesis, we mean the standard two’s

25

complement. If we have a value a with bits an−1,an−2, . . .a0, then this rep-

resents the number −an−12n−1 +
n−2

∑
i=0

ai2i.

• We use Fk to denote the kth Fibonacci number. Recall that F0 and F1 are
defined to be equal to 1 and that for k ≥ 2, Fibonacci numbers are defined
recursively as Fk = Fk−1 +Fk−2.

We also assume that we have access to some pre-existing primitives and secure
data types as they have been realized in various frameworks such as the frame-
works noted previously.

3.4.1. Secure Bits and Integers

We presume that we have access to secure integers. ’Security’ can have several
meanings, depending on the security model we use (as described in Section 3.2)
and the method we use to achieve that security goal (as described in Section 3.3).

For all security models and methods, JxK denotes the structure that is stored
and contains the integer value x in a secure fashion. For example, this can be
either an encryption of x or a secret-sharing of x

3.4.2. Secure Fixed-Point Numbers

A fixed-point number is a data type that represents real numbers with a specific
absolute precision. A fixed-point number has a specified number of bits after the
radix-point and a specified number of bits before the radix-point.

More formally, we define a fixed-point number to be a triple (a,m,x) where
a · 2−m = x holds. Here a will be the integer value that is stored in the computer
memory, x is the real number value that the number represents, and m is the posi-
tive ’radix-point’ that describes how many bits of a should be thought to be ’after
the radix point’.

For the sake of brevity, we denote such a fixed-point number with f x. To refer
to the integer a, we use x̃. We shall also refer to x̃ as the representative of the
fixed-point number.

The precedence of the operator f will be weaker than exponentiation but stronger
than multiplication and division. Thus f x2 will refer to the fixed-point number
holding the value x2, not the square of the fixed-point number f x. Concerning
multiplication and division, we will generally use parenthesis in order to avoid
confusion. We will later introduce similar notations for floating-point numbers
and a new number type we will call golden section numbers. Their precedence is
analogous.

Note that generally, x must be a member of the set

{a ·2−m|a ∈ {0,1, . . . ,2n−1}}.

We shall, in some cases, write f y for some y that does not belong to that set (for
example, f

π). In that case, f y signifies the triple (a,m,x) where a ·2−m = x and x

26

is the member of {a ·2−m|a ∈ {0,1, . . . ,2n−1}} that is closest to y. In the case of
there being two such members of {a ·2−m|a ∈ {0,1, . . . ,2n−1}} that are closest
to y, we shall use the smaller value.

We also similarly define a secure fixed-point number as a triple (JaK,m,x)
where JaK is the secure structure that is stored and contains a, and where like-
wise a · 2−m = x. We will call JaK the representative of the secure fixed-point
number, and a the value of the representative. We will refer to this structure as
J f xK.

Throughout this thesis we will use the letter m to signify the number of bits
after the radix-point when speaking of fixed-point numbers. We will also refer to
this value as the radix-point.

There are several possible variations of fixed-point numbers. The most im-
portant variable that we will need to consider is whether the fixed-point number
is signed or not. Also, if the number is signed, we need to consider how this is
achieved.

First, consider the case when we use unsigned fixed-point numbers. In this
case we assume that all the numbers that we represent are non-negative. In that
case, the underlying integers (i.e the elements a in the tuples (JaK,m,x)) are also
unsigned, and also represent only non-negative numbers. This is useful in cases
where we know that the numbers that we represent will be non-negative.

Second, consider the case where we use signed fixed-point numbers that are
achieved by using signed integers as the underlying data type. Here, the element
a in the tuple (a,m,x) is a signed integer. We refer to these kinds of signed fixed-
point numbers as three-field signed fixed-point numbers or three-field fixed-point
numbers. By default, when we refer to signed fixed-point numbers, we assume
them to be this type of signed fixed-point numbers.

Third, consider the case where we, instead of the triple (a,m,x) have a quadru-
ple (JaK,JsK,m,x) where s is a sign bit and a is an unsigned integer, with x =
(−1)s · a · 2−m. We will refer to these fixed-point numbers as four-field signed
fixed-point numbers or four-field fixed-point numbers.

Here the sign bit represents whether the number is positive or negative and
a ·2−m is the absolute value of the number. In the secure version of this data type,
if we wish to add or subtract, we need to perform both the addition and subtraction
operations on the representatives and then

Also comparison of absolute values is needed. If we are given a signed fixed-
point number of this type that represents x we will denote its sign with sgnx and
the unsigned integer with absx.

Note that this makes addition and subtraction more costly that three-field fixed-
point numbers. However, multiplication can be be more efficient compared to
the three-field signed fixed-point numbers. However, as addition is a more com-
mon operation than multiplication, we will generally prefer to use three-field fixed
point numbers. This is the reason why we assume the default signed fixed-point
numbers to be three-field signed fixed-point numbers. However, in Chapter 6, we

27

will also occasionally use four-field signed fixed-point numbers.
When we are talking about real numbers in a situation where they are repre-

sented only by fixed-point numbers, we will occasionally use the notation in the
following way. We shall interpret the interval [a,b) to be the same interval as
[a,b′] where b′ is the largest expressible fixed-point number smaller than b. Simi-
larly, (a′,b] will be considered to be the same as the interval [a′,b] where a′ is the
smallest expressible fixed-point number larger than a. The reason for this is that
if we want to express numbers in [b′,b), we have to either express them with b′ or
with a fixed-point number outside of [a,b).

Secure Floating-Point Numbers. We will use floating-point numbers in this
thesis as described in [46]. The IEEE 754 standard defines the single-precision
floating-point number in the following way [1]: it is a 32 bit number, where the
first bit refers to the sign s, the next 8 bits refer to the exponent E and the last 23
bits refer to the significand σ.

The format also has a fixed number q called bias and exception flags for the
conditions such as division by zero or overflow.

The value of a number expressed by these values is

(−1)s ·2E−q ·σ .

The floating-point standard analogously defines other precisions [1]. However,
this format is generally not very suitable for the secure computation setting. Usu-
ally, accessing individual bits of a machine word is very cheap, however, in secure
computing, it can be rather expensive. We will see examples of this at the end of
this chapter. Thus, instead of packing all the three values into one machine word,
we use three separate integer values. We use the triple of integers (sx,Ex,σx) to
represent the floating-point number with the value x.

Analogously to the case of the fixed-point number we say that the floating-
point number Fx is a 5-tuple (sx,Ex,σx,q,x) with the property that

(3.1)x = (−1)1−sx · 2Ex−q · σx

2n and σx ∈ [2n−1,2n − 1] ,

where n is the number of bits in σx. We refer to the three values sx,Ex,σx, as the
sign, the exponent, and the significand, respectively. When we wish to refer to all
three, we call them the representatives of Fx. We also will use ex to denote Ex−q
for more intuitive understanding. Note that

(3.2)|x|∈ [2ex−1,2ex)

holds for all x 6= 0. Likewise we will use τx to denote
σx

2n . The requirement that

σx ∈ [2n−1,2n−1] can also be thought of as τx ∈
[

1
2
,1
)

.

Like in the case of fixed-point numbers, most of the reals x cannot be repre-
sented as in Equation (3.1). Thus, if we use Fy where y cannot be represented

28

in that way, it will be equal to Fx where x is the closest real number that can be
represented in such a way. If there are two closest numbers to y then we will use
the one with the smaller absolute value. There is the special case of x = 0, where
the 5-tuple (s0,0,0,q,0) is also considered a legitimate floating-point number rep-
resenting 0. The sign s0 is either 1 or 0, representing whether it is a positive or
a negative zero. Note that in protocols, we often use certain assumptions about
floating-point numbers that do not necessary hold for zero. Thus one should al-
ways check whether the protocol works as intended in the case of zero.

Likewise, JFxK shall denote a secret floating-point number, that is, a 5-tuple

(JsxK,JExK,JσxK,q,x) with x = (−1)1−sx · 2Ex−q · σx

2n and σx ∈ [2n−1,2n− 1], and

JsxK,JExK,JσxK being securely stored.
Note that our floating-point numbers do not have any exception handling, be-

cause public exception handling would leak information about values. Alterna-
tively, at every step we would have to obliviously check for overflow which would
be very expensive. In this system, programs should be designed in such a way that
illegal operations were never performed. If they are performed, there are no guar-
antees that the results would mean anything.

Note that we require that for all nonzero values of x, the first bit of σx is 1,
thus, τx =

σx

2n ∈ [0.5,1). This is due to the common practice of representing sig-
nificands [1]. This helps in some of the protocols. Note that we can think of the
significand as a fixed-point number with the radix-point n and the value in [0.5,1).

3.4.3. On Algorithm Notation

We now give a short overview of how we present our protocols. We use JxK← y
to denote that JxK stores the secure value that is equal to the public value y, i.e,
here, x = y.

For fixed-point numbers, we use f x
f←− a to denote that the representative of

f x will be a, i.e x̃ = a. Likewise for secret values, J f xK f←− JaK will denote that
the protected representative of J f xK will be JaK. In the case that we use four-field

fixed-point numbers we use the notation f x
f←− (s,a) to denote that s is the sign of

the fixed-point number and a is the representative.
Similarly, for floating-point numbers, we use Fx F←− (s,E,σ) to denote that s

is be the sign, E the exponent and σ the significand of Fx. Likewise for secret
values, JFxK F←− (JsK,JEK,JσK) denotes that the protected representatives of JFxK
are JsK,JEK and JσK.

As noted in section 3.3.5, secure computing tends to be remarkably slower than
analogous computation in nonsecure setting and, thus, optimization is important.
One way of optimizing is using parallel composition where possible. Besides the
usual advantage gained from parallel composition, some SMC frameworks [11,
p.74-75] benefit greatly from parallel composition.

Thus we need a way to denote in protocols and in their descriptions that some

29

operations are done in parallel composition. It is often natural to represent parallel
composition with vector operations. Generally, if we have a protocol F(a,b, . . .x)
that outputs y, then to denote that we want to compute y0 = F(a0,b0, . . . ,x0),
y1 = F(a1,b1, . . . ,x1), . . . ,ys = F(as,bs, . . . ,xs) in parallel composition we write

{yi}s
i=0← F({ai}s

i=0,{bi}s
i=0, . . . ,{xi}s

i=0) .

In the case where some inputs c are common for all the parallel evaluation, we
shall write c instead of {ci}s

i=0. Thus, for example, if we wish to evaluate y0 =
F(a0,b,c),y1 = F(a1,b,c), . . . ,ys = F(as,b,c), we denote it with

{yi}s
i=0← F({ai}s

i=0,b,c) .

It might also be that the elements that we wish to call as the i-th inputs of a
function in a parallel evaluation have different notations, such as a and b instead
of a0 and a1. In that case we will simply denote it with the keyword in parallel,
for example:

1 begin in parallel
2 JcK← F(JaK)
3 JdK← F(JbK)

We also use the notation f (X) where f is some function and X is a set. This
will mean the set { f (x)|x ∈ X}.

3.4.4. Existing Primitives

The framework-based approach depends on building more complex primitives out
of existing ones. Thus, here we list the building blocks that will be used in the
protocols that we present. Note that not all primitives are needed for all chapters.
We will specify at the beginning of each chapter what primitives will be needed
for that chapter. As the protocols that we present were implemented, the existing
primitives described in this section had also been previously implemented. For
some integer-related primitives, there are versions for both signed and unsigned
integers. We will use the same notation for both of the cases. By default, unsigned
integers are used. When signed integers are to be used, then it will be said so
in context. Unsigned and signed integers will not be used together in the same
context.

General Secure Primitives. This subsection gives an overview of the general
previously-existing secure primitives.
• We have addition and subtraction of secret integers. We denote this with

JaK+ JbK or JaK− JbK, respectively. The result of this operation is Ja+bK
or Ja−bK, respectively. We also have these operation for signed integers.
• We have multiplication of public and private integers. We denote this with

aJbK. The result of this operation is JabK. We also have this operation for
signed integers.

30

• We have multiplication of private integers. We denote this with JaK · JbK.
The result of this operation is JabK. We also have this operation for signed
integers.
• We have an operation that returns the last bit of a private integer JaK. We

denote this with LastBit(JaK).
• We have an XOR-operation that, given two secret values JaK,JbK, where

a,b ∈ {0,1}, returns Ja XOR bK. Note that if a and b are stored as bits, this
is essentially addition of a and b but if a and b are stored in some larger
integer format, the value must be computed as JaK+ JbK−2JaK · JbK.
• We have an oblivious choice operation that takes a secure bit b and two

values JxK and JyK as inputs. If b = 1, the output will be set to JxK, and if
b = 0, it will be set to JyK. We refer to this operation as

ObliviousChoiceProtocol(JbK,JxK,JyK).

Note that this operation can easily be generalized to tuples. We take in a se-
cure bit JbK and two secret tuples (Jx1K,Jx2K, . . . ,JxkK) and (Jy1K,Jy2K, . . . ,JykK).
We will output (Jx1K,Jx2K, . . . ,JxkK), if b = 1, and (Jy1K,Jy2K, . . . ,JykK), if
b = 0. This assumes that for all i, JxiK and JyiK have the same type. This op-
eration may also be used to obliviously choose between more complicated
structures, such as secure fixed-point numbers. We also have this operation
for signed integers.
• We have an operation called MSNZB(JxK) that returns a binary vector {JbiK}n−1

i=0
that is the secret characteristic vector for the most significant nonzero bit of
x. That is, bi = 1 if and only if the ith bit is the most significant nonzero bit
of x, otherwise bi = 0.
• We we have the bit-extract operation that takes in a secret integer JxK and

outputs the vector of n secret values {JuiK}n−1
i=0 where each ui ∈ {0,1} and

un−1un−2 . . .u0 is the bitwise representation of JxK. We refer to this as
BitExtraction(JxK). We also have this operation for signed integers.
• We have a comparison operation that takes in two secret integers JxK and JyK

and outputs a secret bit b that is equal to 1 if x≤ y and 0 if x > y. We refer
to this operation as LTEProtocol(JxK,JyK). We also have this operation for
signed integers.
• We have a bit-shift operation that takes a secret shared integer JxK and a

public integer k and outputs Jx� kK where x� k is equal to x shifted right
by k bits. x� k is equal to

x
2k rounded down. We refer to this operation as

PublicBitShiftRightProtocol(JxK,k).
• We have a primitive for dividing a signed integer JxK by 2k, rounded to

the value with a lower absolute value. This can be achieved with per-
forming in parallel the operations PublicBitShiftRightProtocol(JxK,k) and
PublicBitShiftRightProtocol(J−xK,k) and obliviously choosing the correct

31

value based on the sign of x. We refer to this operation as DivideBy2tok(x,k).
Note that we will use this operation also polymorphously for unsigned in-
tegers.
• We have an operation for converting a secure integer to a secure boolean.

It takes in a secret-shared integer JxK where x is equal to either 0 or 1, and
converts it to the corresponding boolean value shared over Z2. We refer to
this operation as ConvertToBoolean(JxK). We also have this operation for
signed integers.
• We have a primitive for converting a secure boolean to a secure integer. It

takes in a bit JbK secret-shared over Z2 and outputs a value JxK secret-shared
over Zn, where x is equal to b as an integer. We refer to this operation as
ConvertBoolToInt(JbK) .
• We have a primitive for converting a private integer JxK from a smaller ring
Zk to a larger ring Zk′ . We will denote this with ConvertUp(JxK,k′). We
also have this operation for signed integers.
• Similarly, we have a primitive for converting a private integer x from a larger

ring Zk to a smaller ring Zk′ . We will denote this with ConvertDown(JxK,k′).
We also have this operation for signed integers.
• We have a primitive that performs a more general version of oblivious

choice. It takes in an array of secret integers Jx0K, . . . ,Jxk−1K and a secret in-
dex J`K where ` ∈ [0,k−1], and outputs the shared integer Jx`K. We denote
this primitive with GenObliviousChoice(Jx0K, . . . ,Jxk−1K,J`K).
We also have this operation for signed integers.
• We have a primitive that shifts a secret integer to the right by a secret num-

ber of bits. It takes a secret value JxK and a secret integer JkK and outputs
Jx� kK where x� k is equal to x shifted right by k bits. When we apply this
protocol to an n-bit secret integer JxK and k is not among 0, . . . ,n−1, the re-
sult will be J0K. We refer to this operation by PrivateBitShiftRightProtocol(JxK,JkK).
• We have a primitive for adding two secure floating-point numbers. It takes

in two secure floating-point numbers JFxK and JFyK and outputs the secure
floating-point number JFx+ yK. We denote this operation with JFxK+ JFyK.
• We have a primitive for multiplying a secure and a public floating-point

number [46]. It takes in a private float JFxK and a public float Fy and outputs
a private float JFxyK. We denote this operation with JFxK · Fy.
• We have a primitive for multiplying two secure floating-point numbers [46].

It takes in two secure floating-point numbers JFxK and JFyK and outputs the
secure floating-point number JFxyK. We denote this with JFxK · JFyK.
• We have a primitive for converting a secure integer into a secure floating

point number. It takes in a secure integer JxK and outputs the secure floating-
point number JFxK [47].
• We have a secret-sharing specific primitive ReshareToTwo(JxK). This prim-

32

itive takes a secret-shared integer JxK and reshares it in such a fashion that
all but the first two parties P0 and P1 hold zeroes.

Primitives on Public Values. In this section we will describe some operations
that function on public values that we will need. They are rather simple in nature,
and their cost compared to private operations is negligible, but for cleaner notation
in protocols, they are necessary.
• We have a primitive for converting a public integer a that is in the ring Zn to

a larger ring Zn′ where n′ > n. We will denote this with ConvertUp(a,n′).
This naturally exists for both signed and unsigned integers.
• Similarly, we have a primitive for converting a public integer a that is in

the ring Zn to a smaller ring Zn′ where n′ < n. We will denote this with
ConvertDown(a,n′). This naturally exists for both signed and unsigned
integers.
• We have a primitive for obtaining the largest Fibonacci number that is not

larger than the input integer a. We denote it with PrevFibo(a).
Fixed-Point Number Related Primitives. We shall now describe some fixed-

point operations and their notations. Our fixed-point arithmetic follows the frame-
work of Catrina and Saxena [24](for example, our multiplication protocol is based
on that paper) but with several simplifications allowing for a more efficient soft-
ware implementation.

We assume that our underlying algebraic structure is some ring Zk.
• The algorithm for fixed-point addition is presented in Algorithm 1. It takes

in two secure fixed-point numbers J f xK and J f yK with the same radix-point
m. Then it adds the representatives of J f xK and J f yK. Then it sets the sum of
those to be the representative of the secure fixed-point number J f zK, which
it will return as the result. We represent this operation with J f xK+ J f yK.
The algorithm for fixed-point subtraction is analogous and will not thus be
presented separately.

Algorithm 1: Addition of fixed-point numbers.

Data: J f xK,J f yK
1 J f zK f←− Jx̃K+ JỹK
2 return J f zK

• We also specify an algorithm for fixed-point addition for four-field signed
fixed-point numbers. This algorithm is formalized in algorithm 2.
We first compute the sum and difference of the absolute values, denoting
these with JtK and JuK, respectively. Note that if absy > absx, then we want
to obtain JabsyK− JabsxK as the absolute value of the result. The integer in
the underlying ring that carries this value is −u, so we can use that.
Now, consider the possible cases. If the signs of J f xK and J f yK are the same,
then we simply add the absolute values to obtain the absolute value of the

33

answer and set the sign of the answer to be one of the signs. Thus, in this
case the answer will be J f z0K← (sgnx,absx +absy).
If the signs are different, however, mere subtraction or addition does not
suffice for obtaining the answer. The sign and the absolute value of the
answer also depend on which of absx and absy is greater.
Thus we set JbK to LTEProtocol(JabsxK,JabsyK).
Now, in the case where absx > absy, the answer is (sgnx,JuK) and in the
case absx ≤ absy, the answer is (sgny,−JuK). We can use the technique for
oblivious choice to get that in this case the answer is

(JbKsgny +(1− JbK)sgnx,JbKJuK+(1− JbK)J−uK).

We can simplify this part and obtain the answer

J f z0K← (JbK+ sgnx−2JbKsgnx,(2JbK−1) · JuK).

Note that whether the signs of the numbers are the same or different is
equivalent to whether sgnx XOR sgny is equal to 0 or 1.
Thus we set JcK to JsgnxK XOR JsgnyK and let the final answer be

ObliviousChoiceProtocol(JcK,J f z1K,J f z0K).

The subtraction of four-field signed fixed-point numbers is analogous.

Algorithm 2: Addition of four-field fixed-point numbers.

Data: J f xK,J f yK
1 JtK f←− JabsxK+ JabsyK

2 JuK f←− JabsxK− JabsyK
3 JbK← LTEProtocol(JabsxK,JabsyK)
4 JcK← JsgnxK XOR JsgnyK
5 J f z0K← (JsgnxK,JabsxK+ JabsyK)
6 J f z1K← (JbK+ JsgnxK−2JbKJsgnxK,(2JbK−1) · JuK)
7 J f zK← ObliviousChoiceProtocol(JcK,J f z1K,J f z0K)
8 return J f zK = (JsgnzK,JabszK)

• We have a primitive for multiplication of a fixed-point number and an inte-
ger. This primitive is formalized in Algorithm 3. Given an integer JaK and
a fixed-point number J f xK, we compute J f axK by multiplying JaK with Jx̃K,
the representative of J f axK will be Jax̃K.

Algorithm 3: Multiplication of a private fixed-point number and a private
integer.

Data: J f xK,JaK
1 JyK← JaK · Jx̃K

2 J f zK f←− JyK
3 return J f zK

34

• We have a primitive for multiplication of a public and a private fixed-point
number. This process is formalized in Algorithm 4.
This is a somewhat more complicated protocol. It takes in a private fixed-
point number J f xK and a public fixed-point number f y and outputs a secret
fixed-point number the value of which should be as close to xy as possi-
ble. Note that if we are given J f xK and f y, then the representative of J f xyK
should be Jxy2mK, but multiplying the representatives of J f xK and f y gives
us Jxy22mK, and thus plain multiplication would give us a number that is
2m times too large. Moreover, it can also happen that xy22m is larger than
k and causes overflow would happen, for example, in the case of 2m ≥

√
k

and xy ≥ 1. Both of these conditions are rather natural as we often need
to represent numbers larger than 1. Also, we often want to represent num-
bers with a fine enough granularity that we need to such a value for the
radix-point that 2m ≥

√
k.

The overflow concern can be solved by casting the inputs into a larger ring.
We choose Zk2 because we know that this ring will be able to hold the prod-
uct of any two values of Zk. While converting the public fixed-point number
to a larger ring can be thought of as a "free" operation, for converting the
private fixed-point number up, we need to apply ConvertUp to the repre-
sentative of J f xK to convert it to Zk2 . We can multiply the cast-up versions
of the representatives of J f xK and f y, obtaining JsK, but it cannot be set to
be the representative of the result yet, as it is too large by 2m and not in
the correct ring. To correct the first problem, we apply DivideBy2k to JsK,
shifting it to the right by m bits. After that we apply ConvertDown to the
result to get back to the correct ring. We set the result of that process to be
the representative of the result.

Algorithm 4: Multiplication of a private and a public fixed-point number.

Data: J f xK, f y
1 JzK← ConvertUp(Jx̃K,k2)

2 w← ConvertUp(ỹ,k2)
3 JsK← JzK ·w
4 JtK← DivideBy2tok(JsK,m)
5 JuK← ConvertDown(JtK,k)

6 J f vK f←− JuK
7 return J f vK

• We have a primitive for multiplication of two private fixed-point numbers.
This is formalized in Algorithm 5. It is very similar to the previous protocol,
save for two differences. First, we need to convert both the inputs up in a
secret fashion, which can be parallelized. Second, instead of multiplication
of a private and public integer in the bigger ring, we have to perform a
multiplication of secure integers.

35

In some applications, where one needs to compute the product of more than
two secret fixed-point numbers, it might be sensible to cast the numbers
to a bigger ring than Zk2 so that one might be able to multiply them all in
that large ring and then shift the result by the necessary number of bits and
cast it back to the original ring. However, we did not use this option as
at the time when we implemented those applications, using arbitrary ring
sizes was not yet technically possible in the framework we were using for
implementation.

Algorithm 5: Multiplication of two private fixed-point numbers.

Data: J f xK,J f yK
1 begin in parallel
2 JzK← ConvertUp(Jx̃K,k2)

3 JwK← ConvertUp(JỹK,k2)

4 JsK← JzK · JwK
5 JtK← DivideBy2tok(JsK,m)
6 JuK← ConvertDown(JtK,k)

7 J f vK f←− JuK
8 return J f vK

• We have a primitive for multiplication of two private four-field field fixed-
point numbers.This is formalized in Algorithm 6. This is formally quite
similar to the multiplication of three-field fixed point numbers, we only
have to XOR the signs together in the end to obtain the sign of the result.
However, converting up and down can be cheaper as we convert unsigned
integers instead of signed integers.

Algorithm 6: Multiplication of four-field fixed-point numbers.

Data: J f xK,J f yK
1 begin in parallel
2 JzK← ConvertUp(JabsxK,k2)

3 JwK← ConvertUp(JabsyK,k2)

4 JsK← JzK · JwK
5 JtK← PublicBitShiftRightProtocol(JsK,m)
6 JuK← ConvertDown(JtK,k)
7 JcK← JsgnxK XOR JsgnyK
8 return (JuK,JcK)

• We have an operation for comparing fixed-point numbers. Essentially, this
can be trivially done just by comparing the representatives. We will use
LTEProtocol(J f xK,J f yK) to denote the secure operation that compares se-
cure fixed-point numbers.

Note 1. We note that for Algorithms 4 and 5, the result obtained might differ from

36

x ·y by some very small amount, due to the DivideBy2k losing some data. Usually,
small errors are natural when dealing with fixed-point numbers so it would be of
no great concern. However, when we are dealing with unsigned fixed-point num-
bers and the values are close to zero, there might be concern to whether underflow
might happen. If the error introduced is greater than the value of the number,
then the result can be a small negative number in the signed case. In the unsigned
case, however, there are no negative numbers, and, thus, that value would instead
correspond to a very large positive value, which would be an unacceptable error.

We note that this error cannot happen. Namely, note that the error is introduced
at the operation DivideBy2k. For that operation, as it was noted above, the result
is the input divided by a power of two, rounded to the value with a lower absolute
value. It is clear that an error that is introduced by rounding to a value with a
lower absolute value can not change a non-negative number to a negative one.

Comparative Performance Cost of the Primitives in a Specific Implementation.
For easier understanding, we present the relative costs of the given primitives in
the framework where we implemented the techniques presented in this thesis. This
was the Sharemind framework, which is based on three-party additive secret shar-
ing. That paradigm greatly benefits from parallel composition and for that reason
the most important characteristic describing a primitive is the number of rounds
of communication. The inputs here presume that unless specified otherwise, the
values given are n-bit integers. The fixed-point numbers given in operations are
assumed to have n-bit integers as representatives. The floating-point numbers are
assumed to have n-bit significands.

For primitives for which we could find the round complexity in existing litera-
ture, we added the reference. However, for some primitives, we could not find the
round complexity and thus we derived our own estimates by analyzing the code
or the pseudocode and verifying the results by running the PDSL optimizer tool.
This should be presumed to be the case for any operation for which no reference
is given.

37

Operation Rounds
JxK+ JyK 0 [11]
JxK · y 0 [11]

JxK · JyK 1 [13]
LastBit(JxK) 0
MSNZB(JxK) logn

ObliviousChoiceProtocol(JbK,JxK,JyK), b is an n-bit integer 1
ObliviousChoiceProtocol(JbK,JxK,JyK), b is a bit 3

BitExtraction(JxK) logn+3 [11]
LTEProtocol(JxK,JyK), assumes the most significant bit to be 0 logn+2 [11]

LTEProtocol(JxK,JyK) logn+3 [11]
PublicBitShiftRightProtocol(JxK,k) logn+3 [11]

ConvertToBoolean(JxK) 0
ConvertBoolToInt(JbK) 2 [11]

ConvertUp(JxK,k′) logn+3
ConvertDown(JxK,k′) 0

GenObliviousChoice(Jx0K, . . . ,Jxk−1K,J`K) logn+ logblogkc+3
PrivateBitShiftRightProtocol(JxK,JkK) logn+5

cast an n-bit signed integer to float 3 logn+8
cast an n-bit unsigned integer to float 2 logn+4

JFxK+ JFyK 5logn+24
JFxK · Fy. 2 logn+14

JFxK · JFyK. 2 logn+16
J f xK+ J f yK 0
J f xK− J f yK 0
J f xK · f y 2logn+6

J f xK · J f yK 2logn+7

Table 1: The round complexity of the presented primitives in the Sharemind 3
setting.

38

4. HYBRID MODEL

4.1. Introduction

There are two data types that are usually used for real numbers in computation,
fixed-point numbers and floating-point numbers. This chapter is about how to
combine and switch between these two data types in SMC for better performance.

Fixed-point numbers are essentially integers shifted to the right by a fixed num-
ber of bits. Thus fixed-point numbers translate rather naturally to the secure set-
ting. Due to their similarity to integers, standard operations on them are relatively
cheap. However, as is the case with normal computing, they usually lack either
range, granularity, or require a large amount of memory.

Let us now consider floating-point numbers. Outside of SMC, floating-point
numbers are ubiquitous as they are flexible and provide good relative precision.
The fact that they also have the exponent variable makes computing functions that
are related to powers easier. However, floating-point numbers are complicated
by nature. In practice, the algorithms designed for them often contain a number
of if-else statements and special cases, such as zero or overflow flags. In the
SMC setting, complicated algorithms often translate into costly algorithms, as
they tend to have a lot of branching based on special cases. For example, addition
of floating-point numbers is very expensive in the Sharemind setting where we
implemented our algorithms, as can be seen in Table 1, but this also holds in
other frameworks.

In this thesis we study some ways of how to combine floating-point numbers
with fixed-point numbers in computing a function. Intuitively, we would like
to perform addition and multiplication on fixed-point numbers and evaluate func-
tions that rely on manipulating the exponent on floating-point numbers. Moreover,
we want to obtain the range, flexibility, and precision of the floating-point number
in the result.

We shall look at four functions: the inverse f (x) =
1
x

, the square root f (x) =
√

x, the exponent f (x) = ex and the Gaussian error function f (x) = erf(x) =
2√
π

∫ x

0
e−t2

dt. The reason why we have chosen these four functions is that these

functions are necessary and sufficient for the satellite collision problem [47].
Kamm and Willemson provided algorithms for these four functions, however, they
used only floating-point numbers, which led to inefficiencies. Often these algo-
rithms had parts were the significand of an existing floating-point number was
taken and converted into a floating-point number of its own and then polynomial
evaluation was performed on it.

We note that the significand of a floating-point number is much more similar to
a fixed-point number than a separate floating-point number. Due to this similarity
we attempt to improve these algorithms by using fixed-point numbers instead of
floating-point numbers for significands.

39

We also attempt to improve performance by using fixed-point numbers in some
other contexts where this substitution might be beneficial. Note that while some-
times this approach improves results, it does not do so always because converting
from floating-point values (or parts of floating-point values) to fixed-point values
can be expensive, depending on the circumstances. These conversion costs are
sometimes larger than our gains from using a more suitable type for an operation.

Our algorithms are based on the algorithms of Kamm and Willemson [47]. For
the algorithms we will describe, we will need the following primitives:
• fixed-point addition, subtraction, and multiplication,
• floating-point addition, subtraction, and multiplication,
• BitExtraction(JxK),
• PublicBitShiftRightProtocol(JxK,k),
• LTEProtocol(JxK,JyK),
• ObliviousChoiceProtocol(JbK,JxK,JyK),
• ConvertToBoolean(JxK),
• ConvertBoolToInt(JbK),
• GenObliviousChoice(Jx1K, . . . ,JxkK,J`K),
• PrivateBitShiftRightProtocol(JxK,JkK),
• ConvertToFloat(JxK),
• LastBit(JxK).

The more detailed descriptions of the algorithms can be found in Section 3.4.4.

4.2. Fixed-Point Numbers

Even though we will occasionally need to cope with negative values, we will only
represent non-negative fixed-point numbers. This is because fixed-point numbers
will be used only for polynomial evaluation, where both the input and the result are
guaranteed to be non-negative, making unsigned fixed-point numbers sufficient.
Note that we will also use fixed-point numbers in a context where both the inputs
and outputs will be relatively small. We, thus, assume that inputs will not be larger
than 4 and that outputs will not be larger than 2. This allows us to use fixed-point
numbers with a relatively large radix-point. We will, however, have intermediate
fixed-point values that are several orders of magnitude larger, and, thus, our fixed-
point numbers must be able to hold these values as well. The specific value for
the radix-point will depend on the specific algorithm that we use.

Also note that while we generally assume that the underlying ring for the fixed-
point numbers is some general Zk, in this section we will assume that the under-
lying ring is more specifically Z2n for some n ∈ Z+. We assume this, because the
significand of a floating-point number is a member of a ring Z2n and conversion
between fixed-point numbers and floating-point numbers is easier if the signifi-

40

cand of the floating-point number has the same type as the representative of the
fixed-point number.

4.2.1. Polynomial Evaluation on Fixed-Point Numbers

As it was noted above, the main difference between this chapter and the article
of Kamm and Willemson [47] is that instead of floating-point numbers as it is
done in [47], polynomial evaluation will be performed on fixed-point numbers.
Thus, it is important to have an algorithm for polynomial evaluation on fixed-
point numbers. As mentioned above, since the evaluations will be performed on
values which will be small and positive, we will use small unsigned fixed-point
numbers. In this section we will describe an algorithm for evaluating a fixed-point

polynomial
k

∑
i=0

(−1)sicixi at x where x is stored as a private fixed-point value J f xK.

This is formalized in Algorithm 7. A similar algorithm for floating-point numbers
has also been described by Kamm and Willemson [47]. Note that the polynomials
used are approximation polynomials and thus the final result contains an error
that depends on the polynomial used and the errors introduced through fixed-point
multiplication.

The non-negative fixed-point coefficients ci and the sign bits si are public. J f xK
is a private non-negative fixed-point number.

First we need to evaluate J f x2K,J f x3K, . . . ,J f xkK. It is trivial to do this with
k−1 rounds of multiplications, however, we shall do it in dlogke rounds because
parallel composition and round-efficiency are important to us. In every round
we compute the values J f x2i+1K,J f x2i+2K, . . . ,J f x2i+1

K by multiplying J f x2i
K with

J f x1K,J f x2K, . . . ,J f x2i
K, respectively (line 4).

Following that, on line 7 we can multiply the powers of x with the respective
coefficients f ci with one round of multiplication, obtaining the values J f y1K =
f c1 ·J f xK,J f y2K= f c2 ·J f x2K, . . . ,J f ykK= f ck ·J f xkK. We also set J f y0K to the public
fixed-point number f c0.

After that we can compute the sums J f y′K= ∑
i:si=1

J f cixiK and J f y′′K= ∑
i:si=−1

J f cixiK,

respectively, on lines 11 and 13 and find the final result J f yK = J f y′K− J f y′′K on
line 13. We return J f yK.

We must pay some attention to the fact that we use unsigned fixed-point num-
bers here. Namely, we should be certain that the final result and the intermediate
results are non-negative fixed-point numbers. Note that due to Note 1, it follows
that if we multiply two non-negative fixed-point numbers, the results will also be
non-negative. Addition of fixed-point numbers is an exact operation, so adding
non-negative fixed-point numbers will also result in a non-negative result. From
this it follows that the yi are non-negative numbers.

Thus also y′ and y′′ are non-negative numbers, as they are sums of non-negative
numbers. Now the only possible value that might be negative is y = y′− y′′. For

41

this to be negative, it is necessary that y′ is smaller than y′′.
The polynomials that we use will be such that the output is non-negative on

the input we provide. However, multiplication may introduce small errors. Hence
the result might be wrong by some small ε . Thus it is necessary to require that
the output of the polynomial is larger than this ε in the domain that we evaluate
it. We will only use such polynomials that have this property.

Concerning the polynomials, while it may seem at first that approximation
polynomials with more terms will automatically give more accurate results than
approximation polynomials with less terms, this is not necessarily the case. Con-
sider that, depending on the function, more coefficients may also mean that the
coefficients are larger. There are two problems with large coefficients. First, if
we want to be able to store larger coefficients, we must decrease the value of the
radix-point and, thus, lose granularity and precision. Secondly, the operations
may have some small errors. So, if the polynomial has a term that is larger than
10k and it is multiplied with a value that has an error of ε , then this can result in a
total error of 10k

ε , which significantly decreases the accuracy.
One should note that this type of error is not due to the original value x being

wrong by some ε so that we compute
k

∑
i=0

(−1)sici(x+ ε)i instead of
k

∑
i=0

(−1)sicixi.

This would not be a big problem since the polynomial is continuous and, thus, this
would not change the result significantly. This error is due to a small error possibly

happening every multiplication and thus the result would be
k

∑
i=0

(−1)sici(xi + εi)

which can have a maximal error of
k

∑
i=0
|ciεi| in the worst case. Thus, if ci are small,

it might be that we get better results.
We can estimate the error of this algorithm with the following claim.

Claim 1. Suppose that the fixed-point multiplication algorithm we use has an
error with an absolute value no greater than ε . Algorithm 7, when called at value
J f xK where 0 < x ≤ 1− ε for the polynomial with coefficients {(−1)si · f ci}k

i=0,

will return the secret value J f yK where y differs from
k

∑
i=0

(−1)si · cix by at most

k

∑
i=0
|ci|(i−1)ε .

Proof. We first show by induction over i that a term J f x2i
K has a multiplication

error at most (2i−1)ε .
The case for i = 1 is trivial — one multiplication is performed, thus the result

can differ by no more than ε .
Suppose that the multiplication error for i = k is no greater than (2i− 1)ε .

Now J f x2k+1
K is computed by squaring J f x2k

K and the computed value of J f x2k
K

42

Algorithm 7: Computation of a polynomial on fixed-point numbers.

Data: Takes in a secret fixed point number J f xK where the radix-point is m,
the number of bits in the representative of the fixed-point number n
and the coefficients {(−1)si · f ci}k

i=0 for the approximation
polynomial. The function is called as
Poly(J f xK,m,n,{(−1)si · f ci}k

i=0).
Result: Outputs a secret fixed-point number J f yK that is the value of the

approximation polynomial at point x.
1 J f x1K← J f xK
2 for j← 0 to dlog2(k)e do
3 for i← 1 to 2 j do in parallel
4 J f xi+2 j

K← J f x2 j
K · J f xiK

5 J f y0K← J f c0K
6 for i← 1 to k do in parallel
7 J f yiK← f ci · J f xiK

8 J f y′K,J f y′′K← f 0
9 for i← 0 to k do in parallel

10 if si == 0 then
11 J f y′K+= J f yiK

12 if si == 1 then
13 J f y′′K+= J f yiK

14 J f yK← J f y′K− J f y′′K
15 return J f yK

43

differs from the real result by no more than (2i − 1)ε , that is, we might have
x2k

+(2k−1)ε instead of x2k
.

Thus the error of J f x2k+1
K is no greater than 2(2k−1)εx2k

+ ε
2 + ε ≤ (2k+1−

1)ε .
We now show that a term J f x jK has a multiplication error at most (j−1)ε .
We likewise do it with induction. Suppose that the claim holds for j < 2i, we

shall show it for j ∈ (2i,2i+1).
Take some j ∈ (2i,2i+1). Let j = 2i + j′ where j′ < 2i. The value J f x jK is

computed by multiplying J f x2i
K by J f x j′K. The error of this is bounded by (j′−

1)εx2i
+2ix2 j′

ε + ε
2 + ε ≤ jε .

From this the claim easily follows.

4.2.2. Helper Functions

We shall need a few common functionalities for computing the four functions
that we will give algorithms for. Namely, as we need to alter between floating-
point numbers and fixed-point numbers, we require functions that help us with
converting between the two cases. We will be able to make some assumptions
about our inputs — for example, if we take a significand as an input, we know
that the respective fixed-point number lies in [0.5,1). Based on these assumptions
and the nature of the operations, we can also make some assumptions about the
outputs which can be helpful when we want to convert fixed-point outputs back
to floating-point outputs. However, for different functions, these assumptions can
be different. Thus we need some variability in these helper functions.

Range Correction. In the case of the inverse, the square root and the exponen-
tial, we shall obtain, as the result of fixed-point calculation, a number about which
we know that it is approximately in some interval [2t ,2t+1). For example, when
we evaluate the inverse function on fixed-point numbers, we start with J f xK about

which we know that x is in [0.5,1). Thus,
1
x

ought to be in (1,2].
This property would make it easy and cheap to convert the fixed-point result

J f xK back to a floating-point number. We would set t + 1 as the exponent and
Jx̃K� n−m− 1 as the significand and would thus get a very fast conversion.
However, the problem here is that the result is approximately in [2t ,2t+1). As
we will see from the algorithms we will use, the error of the algorithm that we
use for converting the fixed-point number back to a floating-point number is not
continuous at 2t or 2t+1.

Namely, if we assume for f x that x∈ [2t ,2t+1) but the true value of x is 2t+1+ε ,
for example, then we will obtain either a notably different floating-point number
at best or something that is not even a properly formatted floating-point number at
worst. Even in the case where x = 2t+1, where the value fails to be in the correct
interval by the least possible amount, shifting x to the left by n−m− t bits (as is

44

done to obtain a significand from a fixed-point number) will result in 0, which is
not a proper significand for our case.

Thus we need a method for guaranteeing that the result is in [2t ,2t+1). For this
purpose, we present Algorithm 8. The idea is quite simple. We have a fixed-point
number J f yK and we know that y is approximately in [2t ,2t+1).

We interpret this rather loosely. We shall assume that y is either in [0,2t),
[2t ,2t+1) or [2t+1,2t+1 +2t). In the first case we want to give J f 2tK as the answer,
in the second case we want to give J f yK as it is, without changing it and in the
third case we want to return J f (2t+1−2−m)K, i.e. representing the largest number
that we can represent that is smaller than 2t+1 (this is also the largest element in
the set [2t ,2t+1) that we can represent).

This gives us a result that is in [2t ,2t+1). Note that this operation will not
lose precision, on the contrary, it is possible that it corrects some error of the

polynomial. For example, if computing
1
x

where x ∈ [0.5,1), it is possible for the
polynomial to give an answer that is smaller than 1. If we replace that answer with
1, it is bound to be closer to the true answer. The only exception to this is when
2t would be the correct answer and we return instead 2t − 2−m but that is a very
small error.

We assumed that y is in either [0,2t), [2t ,2t+1) or [2t+1,2t+1 + 2t). Note that
the fact which interval y is in depends on precisely two bits of y. Let the bits of ỹ
be {yi}n−1

i=0 .
The most significant nonzero bit is either yt+m+1, yt+m or some less significant

bit, depending on in which of the three abovementioned intervals y is. Also note
that if yt+m+1 = 1, then yt+m = 0, because otherwise f y≥ 2t+1 +2t .

Thus, there are three possibilities: either yt+m+1 = 1 and yt+m = 0, yt+m+1 = 0
and yt+m = 1 or yt+m+1 = 0, and yt+m = 0. These correspond to the respective
three intervals to which y can belong. Thus, if yt+m+1 = 1, then we ought to
return J f (2t+1−2−m)K, if yt+m = 1, then we ought to return J f yK and otherwise
we should return J f 2tK. Thus, we need to extract the bits yt+m+1 and yt+m and then
perform two oblivious choices based on their values.

It might be that we can rule out one or two of the three possibilities. We can
give upper and lower bounds to the values of the polynomial evaluation algorithm,
learning that the result of an input will be in [2t − ε0,2t+1 + ε1). If we know
that ε0 ≤ 0, then we know that the output of the algorithm cannot be in [0,2t).
Likewise, if we know that if ε1 < 0, then the output of the algorithm cannot be
in [2t+1,2t+1 + 2t). If both of these conditions hold, then we do not have to use
the correction algorithm. If one of them holds, then we can only perform a part
of the correction algorithm. We will specify public flags to signify what parts will
be performed. These flags only depend on the function that we evaluate and the
polynomial used so they will not leak information about the data.

We shall now describe the range-correcting protocol which is formalized in
Algorithm 8.

45

The inputs are the following: the fixed-point number J f yK that is the input, the
number of bits n of the representative type, the radix-point m, and three public
parametres t,b0 and b1 that describe the potential range where J f yK could be. We
note that depending on the context, we might not have to perform both of the
checks. As discussed above, it might be possible that we know that the input will
certainly be no smaller than 2t or that it will certainly be smaller than 2t+1. Thus,
we shall give the algorithm two public flags b0 and b1 that describe it: we know
that y is in [2t −b02t ,2t+1 +b12t) where b0,b1 ∈ {0,1}.

We first extract the bits {JuiK}n−1
i=0 from the representative of J f yK on line 1.

What will be done next depends on the values of the public flags b0 and b1. If
b0 = 0 and b1 = 0 then there is no need for this algorithm, thus, we shall assume
that at least one of the flags must be equal to 1.

If b0 = 1 and b1 = 0, then we know that y is in [0,2t+1), and hence the bit
Jut+mK describes whether y is in [0,2t) or [2t ,2t+1). If ut+m = is equal to 0 then y
is in [0,2t) and if it is equal to 1, then y is in [2t ,2t+1). Thus we have to obliviously
choose between J f yK and J f 2tK based on the bit Jut+mK. On line 3 we set the
answer to be equal to

ObliviousChoiceProtocol(Jut+mK,J f zK,J f 2tK).

If b0 = 0 and b1 = 1, then we know that y is in [2t ,2t+1 + 2t), then the bit
Jut+m+1K describes whether y is in [2t ,2t+1) or [2t+1,2t+1 +2t) — if ut+m+1 = 0,
then it is in [2t ,2t+1) and if ut+m+1 = 1, then it is in [2t+1,2t+1+2t). Thus we have
to obliviously choose between J f 2t+1−2−mK and J f yK based on the bit Jut+m+1K
— on line 5 we set the answer to be equal to

ObliviousChoiceProtocol(Jut+m+1K,J f 2t+1−2−mK,J f yK).

If b0 = 1 and b1 = 1, then we know that y is in [0,2t+1 + 2t), and hence we
need to run both checks. We first run the check based on the value of ut+m. Thus,
we set first J f yK to ObliviousChoiceProtocol(Jut+mK,J f yK,J f 2tK) and then J f yK to
ObliviousChoiceProtocol(Jut+m+1K,J f 2t+1−2−mK,J f zK). It is easy to verify that
in all three possible cases, the function returns the respectively correct result.

Note that it is important in which order the checks are performed. Suppose that
we performed the check based on ut+m+1 before the check based on ut+m and that
our input was in [2t+1,2t+1 +2t). Then ut+m+1 = 1 and ut+m = 0. We would first
set the answer to J f 2t+1−2−mK as it ought to be, but after then, the next check
would set the answer to J f 2tK, which would be the wrong result. Thus the order
of the checks is important.

We shall refer to this algorithm as Correction.
Note that a polynomial in a given setting gives us could give a result where

ε0 ≤ 0, ε1 < 0, or both of these conditions hold. However, even if neither of them
holds, then we can make a small modification to make one of them to hold. More
specifically, if the constant member of the polynomial that was used to obtain

46

Algorithm 8: Correcting the range of a fixed-point number.

Data: J f yK, t,m,n,b0,b1
Result: Takes in a secret fixed-point number J f yK, the number of bits n, the

position of the radix-pointm, and integer t and two bits b0 and b1
such that we know from prior data that y ∈ [2t −b02t ,2t+1 +b12t).
Outputs a fixed-point number that is equal to f y if y ∈ [2t ,2t+1),
equal to f 2t if y ∈ [0,2t), and equal to f 2t+1−2−m if
y ∈ [2t+1,2t+1 +2t).

1 {JuiK}n−1
i=0 ← BitExtraction(JỹK)

2 if b0 == 1 then
3 J f yK← ObliviousChoiceProtocol(Jut+mK,J f yK,J f 2tK)

4 if b1 == 1 then
5 J f yK← ObliviousChoiceProtocol(Jut+m+1K,J f 2t+1−2−mK,J f yK)

6 return J f yK

the result is f c, then we can replace it either with f (c+ ε0) or f (c− ε1− 2−m).
Modifying the constant member of the polynomial does not alter any other errors
and thus it is safe to assume that the result will be either no smaller than 2t , or
smaller than 2t+1, respectively. However, note that this can affect the precision
of the result, and the efficiency gain tends to be rather small. Thus the question
whether to add or deduce the respective ε from the constant term of the polynomial
is a question of speed-precision tradeoff and we will leave it to be decided by the
implementer.

Thus we can summarize the result of this subsection with the following claim.
Claim 2. Algorithm 8, when given a secret fixed-point number J f yK, the number
of bits n, the position of the radix-pointm, and integer t and two bits b0 and b1
so that y ∈ [2t − b02t ,2t+1 + b12t), outputs a fixed-point number that is equal to
f y if y ∈ [2t ,2t+1), equal to f 2t if y ∈ [0,2t), and equal to f 2t+1− 2−m if y ∈
[2t+1,2t+1 +2t).

4.2.3. Converting a Fixed-Point Number to a Floating-Point Number

We will need a specific functionality for the Gaussian error function. Namely,
unless in the other cases where the evaluation of the polynomial gives an answer
that fits into an interval [2t ,2t+1), the case of the error function is more compli-
cated and, thus, polynomial evaluation gives us fixed-point numbers about which
we know that they belong to some interval [2t−1,2t+1).

Thus, in this subsection we shall present Algorithm 9 for changing a fixed-
point number to a floating-point number, on the condition that we know that it
belongs to [2t−1,2t+1). We will to refer it as FixToFloatConversion.

Essentially, we need to convert the fixed-point number J f yK to the significand
by shifting it to the left by n−m− t +1 bits (if it is in [2t−1,2t)) or by n−m− t

47

Algorithm 9: Converting a fixed-point number to a floating-point number.

Data: Takes in a secret positive fixed-point number J f yK, the number of bits
n, the position of the radix-point m, and integer t such that we know
from prior data that y ∈ [2t−1,2t+1). We call this function
FixToFloatConversion(J f yK, t,m,n)

Result: Outputs a floating-point number JFxK that represents approximately
the same number as J f yK

1 {JuiK}n−1
i=0 ← BitExtraction(JỹK)

2 JσK← ObliviousChoiceProtocol(Jut+mK,JỹK ·2n−t−m−1,JỹK ·2n−t−m)
3 JEK← ObliviousChoiceProtocol(Jut+mK,Jt +q+1K,Jt +qK)
4 JFxK← (J1K,JEK,JσK)
5 return JFxK

bits (if it is in [2t ,2t+1)). We also need to set the exponent to either q+ t + 1 or
q+ t.

This choice depends on whether f y≥ 2t or not. This information is contained
in the (t +m)-th bit of y — if it is 0, then f y < 2t and if it is 1, then f y≥ 2t .

We start by extracting the bits of JỹK on line 1. Let the bits be {JuiK}n−1
i=0 .

We then use only the (t +m)-th bit Jut+mK to first perform oblivious choice on
both the candidates for the exponent (either Jt +q+1K or Jt +qK) and the candi-
dates for the significand (either JỹK ·2n−t−m−1 or JỹK ·2n−t−m). We then set the sign
of the resulting floating-point number to 1 (because we are using non-negative
fixes as a default) and, thus, obtain the result.

We can summarize this subsection with the following claim.
Claim 3. Algorithm 9, when given a fixed-point number J f yK and integer t such
that y ∈ [2t−1,2t+1), outputs the secure floating-point number JFyK.

4.3. Inverse

We shall describe four algorithms using both floating-point numbers and fixed-
point numbers. We shall start with the inverse function as the method works most
easily on it. This is because computing the inverse breaks very naturally into two
distinct parts, the first of which is manipulating the exponent and the second is
evaluating a polynomial on the significand.

We will not include here the concrete polynomials that we use due to several
reasons. First, different polynomials should be used for different precision levels.
Second, even for a single given precision level, there are several possible poly-
nomials that one can use. Third, we believe that the particular polynomials used
do not give any particular insight and are not interesting for the reader. The poly-
nomials we used for testing can be found in Chapter 7. For similar reasons, we
also did not include the concrete polynomials used for the other protocols in this

48

chapter that use some kind of approximation polynomial. Those polynomials can
likewise be found in Chapter 7.

In this section we will discuss computing the inverse of a secure floating-point
number. This is formalized in Algorithm 10.

Let us first note that while usually, in the case of floating-point algorithms,
extra attention must be paid to zero, because constraints that apply to ordinary

floating-point numbers do not apply here, in the case of the inverse,
1
0

does not
make any sense. Thus, it is assumed for this algorithm that the input is not zero.

We know that our input is x = (−1)1−sx · 2ex · τx and we want to compute the

floating-point number representing
1
x

or a suitably close approximation of it. Ob-

viously
1
x
= ((−1)1−sx)−1 · (2ex)−1 · (τx)

−1. Because the inverse operation does

not change the sign, we can take Js 1
x
K = JsxK. Finding the exponent of the re-

sult is similarly easy — (2ex)−1 = 2−ex . We will show later that we can take
JE 1

x
K = J2q−Ex +1K.

The difficult part is computing J f (τx)
−1K. Because τx ∈

[
1
2
,1
)

which is a

rather small interval, computing its inverse can be done using polynomial evalu-
ation. The specific polynomials we use will be specified in Section 7.2. Hence,
given some approximation polynomial P, we would get that (τx)

−1 = P(τx) and

thus that
1
x
= (−1)1−sx ·2−ex ·P(τx). This is, in fact, the core idea for our inverse

function algorithm, but some modifications are necessary.
First, we may not be able to simply give −ex + q and P(τx) as the exponent

and the significand of the result as the significand of the result should represent a

number in
[

1
2
,1
)

, i.e τ 1
x

should be in
[

1
2
,1
)

. If we apply a polynomial P to τx,

then we obtain a value that is approximately equal to
1
τx

. However, as τx ∈ [
1
2
,1),

then P(τx)≈
1
τx
∈ (1,2].

The interval (1,2] is not the desired
[

1
2
,1
)

, however, it is rather simple to

obtain
[

1
2
,1
)

from (1,2]. We note that 2−ex · P(τx) = 2−ex+1 · P(τx)

2
and that

P(τx)

2
is approximately in

(
1
2
,1
]

. It is problematic that
P(τx)

2
is approximately

in the interval as well that this interval contains the point 1. However, we can get
solve both of these by applying the Correction protocol (Algorithm 8).

One additional problem is how to apply the polynomial. While a significand
is, in essence, a fixed-point number with a radix-point equal to its number of
bits, the value of the radix-point means that we can only represent numbers in

49

Algorithm 10: Inverse of a floating-point number.

Data: Takes in a secret floating-point number JFxK = (JsxK,JExK,JσxK), the
bias of the exponent q and the radix-pointof the corresponding
fixed-point number m, the coefficients {(−1)si · f ci}k

i=0 for computing
the fixed-point polynomial, the number of bits of the fixed-point
number n and flags b0 and b1 that detail how the Correction algorithm
will be performed. Assumes that x 6= 0.

Result: Outputs a secret floating-point number JFyK so that y≈ 1
x

.

1 J f
σK f←− PublicBitShiftRightProtocol(JσxK,n−m)

2 J f tK← Poly(J f
σK,{(−1)si · f ci}k

i=0,m,n)
3 J f tK← Correction(J f tK,0,m,n,b0,b1)

4 return JFyK = (JsxK,J2q−Ex +1K, J̃tK ·2n−m−1)

[0,1). This would mean that we could not use coefficients, intermediate values,
or results larger than 1. This would be a restriction that would make polynomial
approximation infeasible.

The solution is to convert the significand to the fixed-point format with a dif-
ferent radix-point for performing the polynomial evaluation.

Let m be such a radix-point that we would not run into overflow errors when
evaluating the respective polynomial. That is, we should be able to represent the
coefficients, the results, and the intermediate values when evaluating the polyno-
mial with values from [0.5,1) with these radix-point numbers. Note that the value
of this m depends on the specific polynomial that we use, but we generally assume
that m < n. We thus arrive to Algorithm 10.

Converting from a fixed-point format with a radix-point n to a fixed-point for-
mat with radix-point m is essentially dividing by 2n−m. This, in turn, can be
closely approximated by shifting the secret integer to the right by n−m bits. Thus,
what happens is that on line 1 we apply PublicBitShiftRightProtocol(JσxK,n−m)
and obtain a fixed-point number that we denote with J f

σK.
We shall now apply the polynomial P to the J f

σK by calling the protocol
Poly(J f

σK,{(−1)si · f ci}k
i=0,m,n), obtaining the fixed-point number J f tK where

t ≈ 1
τx

.

This is done on line 2. After that we apply Correction on J f tK in order to be
certain that t belongs to [1,2). This is done on line 3.

Note that we should now divide t by 2 and then convert it up to the significand
format where m = n. However, as converting is essentially multiplying by 2n−m,
we can do both of these operations by simply multiplying t̃ by 2n−m−1.

We can summarize this subsection with the following claim.
Claim 4. Algorithm 10, when given a secret floating-point number JFxK, outputs

50

a secret floating-point number JFyK where y≈ 1
x

.

4.4. Square Root

In this section we shall present an algorithm for computing the square root of a
secure floating-point number JFxK. This will be presented in Algorithm 11.

First we note that since the square root of a negative number is not defined for
real numbers, we assume that the floating-point number x is non-negative. Thus,
we do not use the sign bit JsxK at all in our computations because we assume that
it is 1. In effect, the function we compute is

√
|x|.

Square root is also a function that naturally splits into manipulations of the
exponent and manipulations of the significand.

If x = 2exτx, then
√

x = 2
ex
2
√

τx. , where
ex

2
and
√

τx can be computed inde-
pendently.

Concerning
√

τx, this is essentially computing the square root of a fixed-point
number about which we know that it belongs to [0.5,1). This can be naturally
evaluated using approximation polynomials. However, as noted in the previous
section, the significand is a fixed-point number with 0 bits before the radix point
and n bits after it, which is suboptimal as we cannot use values that are larger than
1. We would rather use a fixed-point number with m bits after the radix point and
n−m bits before it, for a suitably-picked m. This requires shifting JσxK to the
right by n−m bits.

We start the Algorithm 11 by calling PublicBitShiftRightProtocol(JσxK,n−
m) on line 1 of our algorithm and setting the result to be the representative of the
fixed-point number J f

σK. After that we perform polynomial evaluation, i.e. we
will call Poly(J f

σK,{(−1)si · f ci}k
i=0,m,n) on line 5. The polynomial we will use

will be specified in Section 7.2.
Now let us consider what we must do with the exponent. We get as input

JExK= Jex +qK, and we would like to return a value that is close to J
ex

2
+qK. See-

ing that
ex

2
+q =

Ex

2
+

q
2

and that using the function PublicBitShiftRightProtocol

is very close to dividing by two, a natural approach would be first computing
PublicBitShiftRightProtocol(JExK,1) and then adding

q
2

to the result. However,

there are problems with this approach. First, as q is odd,
q
2

is not an integer. Sec-

ond, if Ex is odd, then Ex� 1 is not equal to
Ex

2
but to

Ex

2
−0.5. In the case of the

exponent, simply rounding those values off would result in a significant relative
error.

Thus, we slightly need to modify our algorithm. Let b be the last bit of Ex.
Then we can say that

51

ex

2
+q = Ex� 1+0.5b+q� 1+0.5 = Ex� 1+q� 1+1+0.5(b−1).

Now, if b = 1, then the value we want is Ex � 1+ q� 1+ 1, which can be
easily computed and represented. However, if b = 0, then the result would be
Ex� 1+q� 1+0.5, which is not an integer and, thus, storing it accurately is a
problem.

Suppose that, using the approximation polynomial, we have computed the

fixed-point number J f tK. Here t ≈
√

τx. Note that approximately, t ∈

[√
1
2
,1

)
.

We now note that

t ·2Ex�1+q�1+0.5 = t

√
1
2
·2Ex�1+q�1+1,

where t

√
1
2

is approximately in

[
1
2
,

√
1
2

)
and Ex� 1+q� 1+1 is an integer,

making them potential valid candidates for the significand and the exponent of the

result. Thus, in the case where b = 0, we can multiply the significand with

√
1
2

and set the exponent to Ex � 1+ q� 1+ 1. By doing this we will get a result
that accurately represents the correct square root, provided that we shift the result
to the left by n−m bits and that the Correction algorithm is applied. The choice
between the two cases can be performed with oblivious choice.

In Section 4.2.2 we noted that the question about which flags to use in Correction
and whether to add or subtract a respective ε from the constant member of the
polynomial is left up to the implementation. However, we will not leave it unde-
cided for the square root, as the case is slightly different here.Namely, even if we

know that t ∈

[√
1
2
− ε1,1+ ε2

)
and, thus, use t + ε1 instead of t, it is not guar-

anteed that

√
1
2
· (t + ε1) will be larger than or equal to 0.5, as secure fixed-point

multiplication can introduce additional errors.
However, if we modify the polynomial by using t − ε2 instead of t, then on

the one hand, we can be sure that t − ε2 ∈
[

1
2
,1
)

. On the other hand, when

we multiply t− ε2 by

√
1
2

, then the result may be smaller than 0.5 but certainly

cannot be larger than 1. Thus, we will apply Correction to t ′ with b0 = 1 and
b1 = 0. We will assume that the polynomial will be chosen in such a way that
t < 1. We will also in parallel apply Correction to t with b0 = 1 and b1 = 0
because of the case when x = 0. We will explain later why this is necessary. Now

52

that we have considered the necessary pieces of the algorithm, we will present it
in Algorithm 11.

We get as input the floating-point number JFxK, the bias q, the radix-point m
of the fixed-point numbers that we will use, n that describes how many bits are in
the significand of x and the evaluation polynomial {(−1)si · f ci}k

i=0.
We start by shifting the significand σx to the right by m bits on line 1 to get

a secure fixed-point number J f
σK that represents the same value as τx. We then

evaluate the polynomial P at σ by calling Poly(J f
σK,{(−1)si · f ci}k

i=0,m,n) at line

5 and setting the result to J f tK. On line 6, we multiply J f tK with f

(√
2

2

)
and

denote the product with J f t ′K.
We then compute the last bit JbK of Ex on line 2 by using the LastBit protocol.

We compute JEx� 1K by calling PublicBitShiftRightProtocol(JExK,1) on line 3
and denoting the result with JEK. Now note that since the value of the exponent is
the same for both possible values of b, on line 4 we thus compute the exponent
of the result by adding 1+q� 1 to JEK. We will denote this with JE ′K.

Then, on line 8 we set J f t ′K to Correction(J f t ′K,−1,m,n,1,0). Next, on line
10 we choose obliviously between the J̃tK and corrected Jt̃ ′K using the bit JbK and
denote the result with Jt ′′K. We then multiply Jt ′′K with 2n−m on line 11 to make
it into a valid significand, obtaining Jσ

′K.
We finish the algorithm by setting JFx′K to (J1K,JE ′K,Jσ

′K) which is the value
that we return.

Let us consider what happens if x = 0. We shall see that in that case the answer
will be very close to 0. In this case, σx = 0 and ex = 0.

The exponent of the result will be set to
q
2

which is not the exponent for zero,

however, as we use q = 214−1, if z ∈ [2
q
2 ,2

q
2+1), then z≈ 10−2500 which is negli-

gible. Thus, if the significand is in the correct format, the result will be a floating-
point practically equal to zero.

We now have to consider whether the first bit of the significand is 1 for the
number to be a correctly-formed floating-point number.

We take σx as a fixed-point number and since it is equal to 0, we will obtain f 0
if we shift it to the right by n−m bits. We apply the approximation polynomial to
the fixed-point number 0 and obtain the constant member of that specific polyno-
mial. A number of useful approximation polynomials that we use have constant
members in [0,0.5). Thus it is necessary that Correction is applied to the result.

Note that the last bit of Ex = ex + q = q is 1 and, thus, oblivious choice will
give us J f tK. Thus we see why Correction must also be applied to J f tK. How-
ever, this is necessary due to our choice of polynomials. If we used polynomials
where the constant member was larger than 1, another flag would be necessary for
the Correction algorithm. If we used a polynomial with the constant member in
[0.5,1), we would not need to use the Correction algorithm at all.

Now we can be sure that we obtain a legal floating-point number when the

53

Algorithm 11: Square root of a floating point number.

Data: Takes in a a secret floating-point number JFxK = (JsxK,JExK,JσxK), the
bias of the exponent q and the radix-point of the corresponding
fixed-point number m, the coefficients of the approximation
polynomia { f ci}k

i=0 in fixed-point format and the number of bits of
the fixed-point number n. Assumes x≥ 0.

Result: Outputs a secret floating-point number with a value that is
approximately equal to

√
x.

1 J f
σK← PublicBitShiftRightProtocol(JσxK,n−m)

2 JbK← LastBit(JExK)
3 JEK← PublicBitShiftRightProtocol(JExK,1)
4 JE ′K← JEK+q� 1+1
5 J f tK← Poly(J f

σK,{(−1)si · f ci}k
i=0,m,n)

6 J f t ′K← J f t1K · f

√
1
2

7 begin in parallel
8 J f tK← Correction(J f t2K,−1,m,n,1,0)
9 J f t ′K← Correction(J f t2K,−1,m,n,1,0)

10 Jt ′′K← ObliviousChoiceProtocol(JbK,J f tK,J f t ′K)
11 Jσ

′K← Jt ′K ·2n−m

12 return JF√xK = (J1K,JE ′K,Jσ
′K)

input is 0.
We can summarize this subsection with the following claim.

Claim 5. Algorithm 11, when given a secret floating-point number JFxK, outputs
a secret floating-point number JFyK where y≈

√
x.

4.5. Exponential

Computing the exponential function is somewhat more difficult as this problem
does not partition as neatly into a part where we evaluate a polynomial on fixed-
point numbers and a part where we manipulate the exponent as we do in the case
of the inverse function and the square root. We shall see that it is possible, albeit
potentially expensive.

We shall now describe how to compute the exponent of a floating-point number
as it will be given in Algorithm 12. We are given JFxK and we have to compute
JFexK.

We note that ex = 2log2 e·x so we can instead evaluate 2y where y= log2 e ·x. This
should be more natural to obtain, as computing a specific power of 2 is close to
manipulating exponents. Thus, on line 1, we multiply JFxK with F log2 e, obtaining
JFyK.

54

It is possible to split y into an exponent-part and significand-part, however, this
is not as easy as in the case of inverse and square root.

Namely, let y = [y] + {y} where [y] ∈ Z and {y} ∈ [0,1). Note that 2{y} ∈

[20,21) and that thus 2y = 2[y] ·2{y} = 2[y]+1 · 2
{y}

2
where

2{y}

2
∈
[

1
2
,1
)

. Also note

that [0,1) is a relatively small interval which means that polynomial evaluation
can be used in that interval. Thus we could set sex to 1, Eex to [y]+ 1+ q and τex

to
2{y}

2
where

2{y}

2
is computed with the respective polynomial.

We will use this idea of splitting a number in this way as the main idea behind
our algorithm, however, the problem is that splitting the floating-point number y
into an integer part and a fractional part is nontrivial and potentially expensive.
Also, this requires conversions between different types in a secure setting, which
can in turn be expensive.

Concerning how to obtain the integer part, we note that if y ≥ 0 and ey > 0,
then the first ey bits of σy correspond to the bits of [y] (the integer part of y) and
the last n− ey bits of the sy correspond to {y} (the fractional part of y). If y ≥ 0
and ey ≤ q, then the integer part [y] is zero. Thus, if y≥ 0, both in the case where
Ey ≥ q and in the case where Ey < q, shifting σy to the left by n− ey bits gives
us [y]. This is done on line 2. If y < 0, then, analogously, similar properties will
hold. We will discuss that case later.

Now we have obtained the integer part of y. However, in order to obtain the
fractional part of y we need to deduct [y] from y and for that [y] and y must have
the same type. Thus we shall convert the integer [y] into a floating-point number
JF [y]K by using ConvertToFloat(J[y]K) on line 3. We can then compute JF{y}K
by deducting JF [y]K from JFyK on line 4.

However, now JF{y}K has the wrong type. We have established that it is pre-
ferrable to perform polynomial evaluation on fixed-point numbers and thus we
have to convert JF{y}K to a fixed-point number J f {y}K.

This can be done by using the PrivateBitShiftRightProtocol. We shall shift
σ{y} to the right by ey + n−m bits, we obtain the fixed-point number J f {y}K, on
which we can perform polynomial evaluation. This is done on line 5 and we
denote the result with J f {y}K. Note that although we mentionaed before that we

want to set τex to
2{y}

2
, the result will be shifted left by n−m bits after that. We can

equivalently evaluate 2{y} and shift the result to the left by n−m−1 bits instead
of n−m bits. Here we choose the second option and evaluate the polynomial to
compute 2{y} on line 7 by using J f {y}K as input. The specific polynomials used
will be specified in Section 7.2. We denote the result as J f vK.

Let us now consider what happens if y < 0. The problem is that the method
for splitting y into an integer part and a fractional part does not work here as
intended. Note that we did not use the sign of y while computing [y] and {y}.
Thus, essentially, if one performs those steps on a negative y, one obtains [y] and

55

{y} such that [y]+{y}= |y|=−y.
However, one can modify these results to obtain numbers [y]

′
and {y}′ that

satisfy y = [y]
′
+ {y}′ and where [y]

′ ∈ Z and {y}′ ∈ (0,1]. Namely, y = −[y]−
{y} = (−[y]− 1)+ (−{y}+ 1) and, thus, we can take {y}′ := −{y}+ 1 ∈ (0,1]
and [y]

′
:=−[y]−1 ∈ Z.

Thus, we do not have to split y into an integer and fractional part twice, for
the positive and negative case. However, what we must do twice, is polynomial
evaluation, as −{y}+1 and {y} are different numbers. Thus, on line 8, we eval-
uate the polynomial for computing 21−{y}. We denote the result with J f v′K. This,
of course, can be performed in parallel with polynomial evaluation for computing
2{y}.

Likewise, correcting the J f vK and J f v′K must also be done twice. Thus on lines
10 and 11, we call the Correction protocol on J f vK and J f v′K. Which flags b0 and
b1 to use will be left decided by the implementation.

Finally, we have to obliviously choose between the negative and positive cases.
Thus on line 13 we use sx to choose between the two possible exponents for the
result — J[y]K+1+q and J−[y]K+q and on line 14 we use sx to choose between
the two possible significands for the result — JṽK ·2n−m−1 and Jṽ′K ·2n−m−1.

Consider what will happen if x = 0. In that case, also y = 0 and σy = 0. Thus
also [y] = 0 and likewise {y} = 0. Now we will get that v′ ≈ 1 and v′′ ≈ 2, but
still v′,v′′ ∈ [1,2) due to the Correction protocol. If sx = 1, then we will obtain the
floating-point number that is approximately (J1K,Jq+1K,J1 ·2m ·2n−m−1K) which

represents the number 21 · 2
n−1

2n ≈ 1. If sx = 0, then we will obtain the floating-

point number that is approximately (J1K,JqK,J2 ·2m ·2n−m−1K) which represents

the number 20 · 2
n

2n ≈ 1. Thus the function works as intended for x = 0.
We can summarize this subsection with the following claim.

Claim 6. Algorithm 12, when given a secret floating-point number JFxK, outputs
a secret floating-point number JFyK where y≈ ex.

4.6. Error Function

This section discusses the algorithm for securely evaluating the Gaussian error
function which is formalized in Algorithm 13. The Gaussian error function is

defined by erf(x) =
2√
π

∫ x

0
e−t2

dt. It is an antisymmetric function, i.e, erf(−x) =

−erf(x). Thus, we can evaluate the function only depending on the exponent and
the significand, and in the end, set the sign of the output to be the sign of the input.
Thus, for the sake of simplicity, we will assume that our input is non-negative.

The Gaussian error function, however, is a more difficult function than the
other three functions we have discussed. It does not partition naturally into a
part where we manipulate exponents and a part where we evaluate a fixed-point
polynomial.

56

Algorithm 12: Power of e of a floating-point number.

Data: Takes in a secret floating-point number JFxK = (JsxK,JExK,JσxK), the
bias of the exponent q and the radix-point of the corresponding
fixed-point number m, coefficients {(−1)si · f ci}k

i=0 for computing the
fixed-point polynomial, public flags b0 and b1 that specify how the
correction will be applied and the number of bits of the fixed-point
number n.

Result: Outputs a secret floating-point number that is approximately equal
to ex.

1 JFyK = (JsyK,JEyK,JσyK)← F log2 e · JFxK
2 J[y]K← PrivateBitShiftRightProtocol(JσyK,Jn− (Ey−q)K)
3 JF [y]K← ConvertToFloat(J[y]K)
4 JF{y}K← JFyK− JF [y]K
5 J f {y}K← PrivateBitShiftRightProtocol(Jσ{y}K,J−E{y}+q+n−mK)
6 begin in parallel
7 J f vK← Poly(J f {y}K,{(−1)si · f ci}k

i=0,m,n)
8 J f v′K← Poly(J f (1−{y})K,{(−1)si · f ci}k

i=0,m,n)

9 begin in parallel
10 J f vK← Correction(J f vK,0,m,n,b0,b1)

11 J f v′K← Correction(J f v′K,0,m,n,b0,b1)

12 begin in parallel
13 JEK← ObliviousChoiceProtocol(JsxK,J[y]+1+qK,J−[y]+qK)
14 JσK← ObliviousChoiceProtocol(JsxK,JṽK ·2n−m−1,Jṽ′K ·2n−m−1)

15 JFexK← (J1K,JEK,JσK)
16 return JFexK

57

The good aspect of the error function is that it is difficult to evaluate only in a
small range, as the function starts approximating 1 very soon, for example, when
the input x is larger than 4, then 1− erf(x) < 1.5 · 10−8. Thus, if x ≥ 4, we can
approximate erf(x) with 1. Note that erf(x) approaches 1 superexponentially as x
tends to infinity, as 1− erf(x) = Θ(e−x2

) [40]. On the other hand, when the input

x is small, then erf(x) behaves practically linearly, namely, erf(x)≈ 2√
π

x

This can be explained by observing the McLaurin series of the error function

which is erf(x) =
2√
π

∞

∑
i=0

(−1)n

n!(2n+1)
x2n+1. Note that

∣∣∣∣erf(x)− 2√
π

x
∣∣∣∣ =

∣∣∣∣∣ 2√
π

∞

∑
i=1

(−1)n

n!(2n+1)
x2n+1

∣∣∣∣∣< 2√
π

∞

∑
i=1

1
n!(2n+1)

x2n+1 <

<
2√
π

x
1

1!(2 ·1+1)

∞

∑
i=1

x2n =
2

3 ·
√

π

x3

1− x2 .

If x is small enough, then
2

3 ·
√

π

x3

1− x2 becomes sufficiently small to be ignored.

Hence, we need a method for evaluating erf(x) if x ∈ [2−v,22) where v is suit-
ably picked, depending on what speed and precision we wish to achieve. This is
the range for which we need polynomial interpolation.

A single polynomial cannot be used for the whole range as it is too large.
We shall, thus, use four specific polynomials p0, p1, p2, p3 so that pi(y)≈ erfy in
[i, i+ 1) for every i ∈ {0,1,2,3}. The specific polynomials will be presented in
Section 7.2.

We now need to cast the number into a suitable fixed-point number for the
polynomial evaluation to work. As it was noted before, there are several possibil-
ities for x — either x < 2−v, x≥ 4 or x ∈ [2−v,2−v+1),x ∈ [2−v+1,2−v+2), . . . ,x ∈
[21,22). The information about which of the cases is true is contained solely in
the exponent of x. Therefore we compute erf(x) for all the cases, later obliviously
choosing between the cases. As it was noted before, the first two cases are easy.
We shall now consider the other cases.

We want to cast our floating-point number into a fixed-point number for poly-
nomial evaluation. If x ∈ [2 j,2 j+1) and our fixed-point type has m bits after the
radix point, then we have to shift the significand of x to the right by n−m− j−1
bits. Namely, given a fixed-point number f a with radix-point m, if a ∈ [2 j−1,2 j),
then the most significant nonzero bit of ã is the (n−m+ j + 1)-st bit. In the
significand, the most significant nonzero bit is the first bit.

In the previous protocol, when we did not know in which interval [2 j−1,2 j)
lies and we used PrivateBitShiftRightProtocol to obtain a fixed-point number
on which to perform polynomial evaluation. However, in this case, the algoritm
will be slightly different depending in which interval x lies. Thus we have to run

58

all these possibilites. As it was noted above, if x lies in [2 j−1,2 j), we have to
shift σx to the right by n−m− j bits to obtain the representative of f x. Thus let us

the compute fixed-point numbers J f x jK
f←−PublicBitShiftRightProtocol(JσxK,n−

m− j) for j ∈ {−v+1, . . . ,2}. This is done on line 1.
Now we can apply suitable polynomials to J f x jK. For j ∈ {−v+1, . . . ,0} we

will apply the polynomial p0 as in all those cases, x ∈ [0,1). This is done on lines
3 to 6 and we denote the result of applying p0 to J f x jK with J f y jK. If j = 1, we
apply p1, because in this case x ∈ [1,2). This is done on line 7, and likewise, we
denote the result with J f y1K. In the case of j = 2, we know that x∈ [2,4) and, thus,
we ought to apply either p2 or p3. To find which of these should be applied we
examinine the second most significand bit of x̃2, however, there is one additional
problem with this case.

Namely, note that if x ∈ [2,4) and we want to use a polynomial with a degree
t, then we have to be able to express numbers as large as 4t = 22t . Thus, when
our fixed-point number has n bits, this leaves only n−2t bits after the radix-point.
This can result in low granularity and, thus, poor precision. Also note that we
do not use fixed-point numbers with values as high as 4t anywhere else in this
functionality. Thus we would have to use such a radix-point only for the sake of
being able to represent this one value.

Thus, instead of evaluating
t

∑
i=0

aiJ f x2Ki, we evaluate
t

∑
i=0

2iaiJ f x1Ki, because

x2 ≈ 2x1. In this case, the numbers J f x1Ki are all in [0,1] and thus we can still
obtain good granularity. Observe that in approximating polynomials, the coeffi-
cients ai tend to diminish exponentially as i grows and thus generally 2iai tends to
be smaller than 1 and we do not lose granularity from this side either. On line 8
we set J f y2,0K to Poly(J f x1K,m,n,{(−1)si,2 · f (2ici,2)}t2

i=0) where {(−1)si,2ci,2} are
the coefficients of p2 and on line 9 we set J f y2,1K to Poly(J f x1K,m,n,{(−1)si,3 ·
f (2ici,3)}t3

i=0) where {(−1)si,3ci,3} are the coefficients of p3.
As mentioned above, the choices between most of the cases shall be based on

the exponent, but the choice between the cases where x ∈ [2,3) or x ∈ [3,4) must
be made based on the significand. If x ∈ [2,4) and the second most significant bit
of the signifcand is 0, then x ∈ [2,3), otherwise, x ∈ [3,4). Thus we obliviously
choose between J f y2,0K and J f y2,1K using the second bit of σx. Thus, on line 10
we first extract the bits of σx and denote them with {JuiK}n−1

i=0 , and then, on line
11, we use un−2 to obliviously choose between J f y2,1K and J f y2,0K. We denote the
result of this by J f y2K.

Now that we have obtained the correct fixed-point values for the different val-
ues of the exponent, we shall change them back to floating-point values. Note that
for x larger than approximately 0.5, erf(x)∈ (0.5,1) and that for x ∈ [0,0.5), erf is

rather linear, with
erf(x)

x
∈ [1,1.15) for x ∈ [0,0.5). This was experimentally ver-

ified. Thus, if x ∈ [2 j−1,2 j) for a j < 1, then erf(x)∈ [2 j−1,2 j+1). If x ∈ [2 j−1,2 j)

59

for a j ≥ 1, then erf(x) ∈ [0.5,1).
However, due to approximation errors, it might happen that y1 or y2 are greater

than 1. Thus we assume that if j ≥ 1, then y j ∈ [2−1,21).
Now the prerequisites for the FixToFloatConversion are satisfied and we can

apply it to the fixed-point numbers J f yiK to obtain the corresponding floating-point
values JFyiK. This is done on line 16, the respective parametres were set on the

lines 12 to 14. On line 17 we additionally set J f y−vK to be F 2√
π
·JFxK. As noted,

if x is small, then erf(x) can be very well approximated with
2√
π

JxK. Similarly,

on line 18 we set JFy3K to JF1K for a similar reason. If x ≥ 4, then erf(x) is very
close to 1.

Now, we simply must choose the correct result among the JFy−vK, . . . ,JFy3K.
We will do this by using the exponent of x and the GeneralizedObliviousChoice
protocol to choose obliviously between the various JFyiK — intuitively, we want to
returnJFyexK. However, at the moment this cannot yet be done because currently,
ex can have values outside of {−v, . . . ,3}. We note, however, that if ex <−v, then
we want to return JFy−vK, just as in the case when ex = JFy−vK. Thus, if ex ≤−v,
then we shall replace it with −v. Likewise, if ex ≥ 3, then we shall replace it with
3.

Replacing ex with −v if ex ≤−v is done in the following way: we compare Ex

with q− v using LTEProtocol and set the resulting bit to Jb0K on line 20. After
that we use Jb0K on line 22 to obliviously choose between Ex and q− v for the
new value of Ex.

Replacing ex with 3 if ex ≥ 3 on lines 21 and 23 is analogous and note that
the two comparisons can be run in parallel.

Now it is finally possible to run the GeneralizedObliviousChoice on lines 24
and 25 and obtain the result.

Note that if x = 0, then Ex < −v and the result will be set to JFy−vK =
2√
π
·

JF0K = JF0K which is the correct answer.
We can summarize this subsection with the following claim.

Claim 7. Algorithm 13, when given a secret floating-point number JFxK, outputs
a secret floating-point number JFyK where y≈ erfx.

4.6.1. Conclusion

In this section we presented a method for combining fixed-point and floating-point
numbers in the context of evaluating certain functions securely. We implemented
the protocols and benchmarked the results. The specific benchmarks can be found
in Chapter 7. From the benchmarks we can see that the methods we propose
in this section are much more efficient for larger vector sizes. Considering the
amortized cost, our solution greatly outperforms the approaches that were built for
computing only a single operation. For inverse and square root functions, it also

60

Algorithm 13: Gaussian error function of a floating-point number.

Data: JFxK,q,m,n,v,{{(−1)si, j · f ci, j}
t j
i=0}

3
j=0

Result: Takes in a a secret floating-point number JFxK, the bias of the
exponent q and the radix-point of the corresponding fixed-point
number m, coefficients {si, j

f ci, j}l
i=0 for computing the fixed-point

values that are accurate in [j, j+1) and an integer v so that we
evaluate the function with a polynomial, if 2−v ≤ x < 4. Outputs a
secret floating-point number that is approximately equal to erf(x).

1 {J f x jK}2
j=−v+1

f←− PublicBitShiftRightProtocol(JσxK,{n−m− j}2
j=−v+1))

2 begin in parallel
3 J f y−v+1K← Poly(J f x−v+1K,m,n,{(−1)si,0 · f ci,0}t0

i=0)

4 J f y−v+2K← Poly(J f x−v+2K,m,n,{(−1)si,0 · f ci,0}t0
i=0)

5 . . .

6 J f y0K← Poly(J f x0K,m,n,{(−1)si,0 · f ci,0}t0
i=0)

7 J f y1K← Poly(J f x1K,m,n,{(−1)si,1 · f ci,1}t1
i=0)

8 J f y2,0K← Poly(J f x1K,m,n,{(−1)si,2 · f (2ici,2)}t2
i=0)

9 J f y2,1K← Poly(J f x1K,m,n,{(−1)si,3 · f (2ici,3)}t3
i=0)

10 {JuiK}n−1
i=0 ← BitExtraction(JσxK)

11 J f y2K← ObliviousChoiceProtocol(Jun−2K,J f y2,1K,J f y2,0K)
12 for j←−v+1 to 0 do
13 t j← j

14 t1, t2← 0
15 for j←−v+1 to 2 do in parallel
16 JFy jK← FixToFloatConversion(J f y jK, t j,m,n)

17 JFy−vK← F 2√
π
· JFxK

18 JFy3K← F1
19 begin in parallel
20 Jb0K← LTEProtocol(JExK,Jq− vK)
21 Jb1K← LTEProtocol(Jq+3K,JExK)

22 JExK← ObliviousChoiceProtocol(Jb0K,Jq− vK,JExK)
23 JExK← ObliviousChoiceProtocol(Jb1K,Jq+3K,JExK)
24 JEK← GenObliviousChoice(JEy−vK, . . . ,JEy3K,JEx−q+ vK)
25 JσK← GenObliviousChoice(Jσy−vK, . . . ,Jσy3K,JEx−q+ vK)
26 return JFerf(x)K = (JsxK,JEK,JσK)

61

outperforms the results of Kamm and Willemson. As this technique was based
on improving the results of that paper by replacing a floating-point number with a
fixed-point number, this shows that for the inverse and square root the technique
gives the expected benefit.

Considering the exponent and the Gaussian error function, our approach still
often outperforms the results of Kamm and Willemson, however, the improvement
is not as remarkable as in the case of the inverse and square root functions.

Indeed, for the 64-bit exponential function with batch size 10000 the amortized
cost of the current result is even slightly outperformed by both the corresponding
result by Kamm and Willemson and the amortized cost of the 64-bit exponential
function with batch size 1000.

The reason behind why the inverse and square root functions gain more from
the optimization presented in this chapter is that it is possible to utilize the fixed-
point polynomial evaluation in a more contained, modular sense. For both the
exponential and the Gaussian error function more corrections have to be made to
ensure that the inputs and outputs belong to the correct intervals. However, even
in those cases, there is generally a notable improvement in efficiency.

62

5. POINT-COUNTING

In this chapter we shall describe another technique that is suitable for improve-
ments in secure computing for a certain class of functions. Although it can be
used also for integer-typed computations, its main application is for real-value
typed secret values. More specifically, it is suitable for fixed-point numbers. It
presumes the existence of relatively few pre-existing primitives, and can theoret-
ically be used for various secure computation settings. However, its main opti-
mization gain is that it achieves lower round cost by performing more operations
and, thus, is only reasonable in settings where parallel composition is highly pre-
ferrable to sequential composition. Therefore it is a good fit for the secure com-
putation setting based on secret-sharing, as the architecture benefits from parallel
composition very much [11, p. 74-75]. It must be noted that this requires a rel-
atively sophisticated implementation that is able to make use of the resources.
1

5.1. Introduction

Like in the previous chapter, we want to obtain methods that improve performance
of functions on secure real-valued input. There are several desirable qualities
that such methods should have — we would like them to improve precision and
be more efficient in that they take less time, but there are also other desirable
qualities. For example, two such qualities are applicability to a large number of
functions and the ability to have precision as an input parameter not as a built-in
constant of the technique.

In this chapter we will describe a method that can take precision as an input
parameter and is applicable to a wider class of functions than the hybrid method.
As can be seen in Chapter 7, in some cases it outperforms some other comparable
methods with regards to precision and efficiency.

The method described in this chapter was inspired by the Monte Carlo methods
— to evaluate a function f (x), we run a test on a large amount of randomly picked
points and count the number of points where the test passes. The test depends on
both the function f and the value x. The number of points where the test passes
can be used to more efficiently evaluate the function f at value x. In this chapter
we are naturally interested in the case where we want to evaluate f at a secret

1Note that the term ’parallel composition’ does not necessarily mean that this needs to be per-
formed on parallel infrastucture. For example, in the secret-sharing paradigm, computation is per-
formed by the parties sending messages to each other. "Parallel composition’ can here mean that
instead of sending several messages sequentially that contain the respective data about the variables,
we send a larger message than contains the data about all the variables. Note that for this case, the
capabilities of communication channels are an important factor in this case. If the network chan-
nel is unsaturated, then the running time grows sublinearly in the number of inputs. This can be
considered ineffective [46, p. 20].

63

value JxK. Unlike the real Monte Carlo methods, it turned out that it was more
efficient to use equidistributed values instead of random values.

Also, the technique relies on the assumption that for a function f that we wish
to compute there exists an ’inverse function’ g that is easy to compute. We can
thus run many instances of g on different inputs as tests and the proportion that
passes gives us the answer.

We will be working on fixed-point numbers in this chapter. The fixed-point
numbers used in this chapter can mean either unsigned or signed fixed-point num-
bers, depending on whether we can be sure that we will have negative values or
not.

The reason why we use fixed-point numbers is that this method is built on the
possibility of easily obtaining sets of equidistributed points. While this is also
possible for floating-point numbers with the extra constraint that the points all
belong to some [2t ,2t+1), this makes the method more complicated and thus we
do not consider floating-point numbers. Whether this method can be generalized
to other number types is a subject of further research.

The technique that we shall describe shall require relatively few operations and
data types. Now let us consider what operations are necessary. There are three
operations that are generally needed for the method:
• addition of private fixed-point numbers;
• multiplication of public fixed-point numbers with private integers;
• comparison of private fixed-point numbers. Since fixed-point numbers are

stored and ordered as integers, this reduces to comparison of integers.
In addition to these, we also need a special operation g that depends on the func-
tion f that we want to compute. We can intuitively think of g as the inverse
operation of f or verification of f . In order for the method to be fast and therefore
applicable, g should be easy to compute. The function g should also be monotone
and g f should be a simple function. In our examples, g f is either the identity
function or the constant function that outputs 1. We formalize this by requiring
that we must have access to functions g and h so that g(x, f (x))≡ h(x) and that g
is monotone in the first argument in the range where we know f (x) to lie.

In our examples, g can be usually be computed by one or a few multiplication
operations. Thus, g can in practice be reduced to the ability of multiplying fixed-
point numbers.

5.2. The Scalar Pick Function

The main method this chapter relies on performing many operations in parallel,
with the aim of reducing the round complexity of communication. However, we
first give an example of another, fairly trivial method. The aim of this is to build
intuition about the main method, as its construction is rather similar to it. We will
also use this example later as a subprotocol in a more complicated protocol. For

64

this example we shall need secret integer comparison, multiplication of a secret
fixed-point number with a public fixed-point number, and the addition of private
fixed-point numbers. The process is specified in Algorithm 14.

Suppose that we want to compute some function f on a secret input J f xK where
x ∈ [a,b) and where f is twice differentiable in [a,b). We then choose a small ∆

and, thus, obtain a large set of equidistributed points {ai}`−1
i=0 := {a + i · ∆|i ∈

N,a+ i ·∆ ∈ [a,b)}. Let j be such an integer that x ∈ [a j,a j+1). Because f is
twice differentiable, we can expect its values not to fluctuate too much, thus the
value of f (x) should be close to f (a j). We would like to obtain the value of that
index j.

For that we compute in parallel JciK← f ai
?
≤J f xK for all the f ai by using the

secure comparison operator LTEProtocol. Note that the vector {ci}`−1
i=0 looks like

(1,1, . . . ,1,1,0,0, . . . ,0) with c0 = · · ·= c j = 1 and c j+1 = · · ·= c`−1 = 0.
We thus let JdiK := JciK− Jci+1K if i ≤ `− 1 and Jd`−1K := Jc`−1K. Now we

note that d j = 1 and that di = 0 for all i 6= j. Essentially the vector {JdiK}`i=0 is the
private characteristic vector of j.

It easily follows that
`−1

∑
i=0

f (ai) · di = f (a j). As it was noted above, f (a j) is a

good approximation for f (x). Thus we can return ∑
i

f f (ai) · JdiK as the answer.

Let us briefly consider the precision of this method. We assumed that f has
first and second derivatives in [a,b). Let c1 := max

y∈[a,b)
| f ′(y)| and c2 := max

y∈[a,b)
| f ′′(y)|.

Then, according to Taylor’s theorem, | f (x)− f (a j)|≤ c1∆+
c2∆2

6
. We can also

add the error resulting from the inaccuracy of the fixed-point representation, but
the error will be dominated by c1h.

This method may of course be used for functions that are not twice differen-
tiable in the given interval but where the value of the function simply does not
change much, however, then we need different error estimation methods.

5.3. The Point-Counting Method

Now we shall consider the main idea of this chapter.
While the intuition-building idea described in the previous section is very

round-efficient, there are two main problems with it. First, that it needs a very
large number of operations to be performed in parallel if we want to achieve rea-
sonable precision. Second, it requires either a large amount of memory or a large
amount of public computation, because all of the f (ai) must be either stored or
recomputed. We will solve both of these problems with the cost of a more limited
scope of application. We start by considering a solution that deals with the second
problem but not the first.

This method can be applied to functions that have easily-computable ”inverse

65

Algorithm 14: Scalar Pick

Data: Takes in a secret number J f xK such that x ∈ [a,b), and numbers
bi ≈ f (a+ i ·∆) where f is the function we evaluate. Here ∆ is a small
constant. This function is called with ScalarPick(J f xK,a,b,{ f bi}`−1

i=0)
Result: Outputs JzK where z approximately equal to f (x).

1 for i = 0, i < `, i++ do
2 f ai← f a+ i · f

∆

3 {JciK}`−1
i=0 ← LTEProtocol({ f ai}`−1

i=0 ,{J
f xK}`−1

i=0)
4 for i = 0, i < `−1, i++ do
5 JdiK← JciK− Jci+1K

6 Jd`−1K← Jc`−1K

7 JzK =
`−1

∑
i=0

JdiK · f bi

8 return JzK

functions”. This definition is somewhat informal in order to be intuitively under-
standable. For example, consider the function f (x) = k

√
x in some interval. This

function could be computed using polynomial interpolation, which uses many
rounds and is only accurate in a small interval. However, computing xk takes only
logk rounds of multiplications and its accuracy does not depend on the interval.
However, for some settings, xk might not fit into the respective fixed-point type
for larger values of x and k and, thus, for those cases, one must be careful when
designing protocols.

Let us now consider an alternative approach. Unlike in Section 5.2, here we
do not consider a large set of points in the domain of the function, but a large set
of points in the range of the function.

We start with the knowledge that k
√

x belongs to some interval [a,b) where
the endpoints a and b might be either private or public. Note that this does not
constrain us too much, as when we know nothing about the possible value of k

√
x,

we can take a and b to respectively be the smallest and largest fixed-point numbers
that we can represent.

Let now the interval [a,b) be covered in equidistributed points a+ i ·∆ where ∆

is relatively small. Note now that if j is such that a+ j ·∆≤ k
√

x < a+(j+1) ·∆,
then (a+ j ·∆)k ≤ x < (a+(j+1) ·∆)k. Thus, by computing (a+ i ·∆)k for all the
i and performing a trick similar to the one performed in the previous section, we
can obtain J f (a+ j ·∆)K where a+ j ·∆ is an approximation to k

√
x. Note that here

we do not need to store the f (a j).
Thus, we have a method that essentially computes k

√
x by computing many

instances of xk in parallel. Hence here the ”inverse function” is thus g(x,y) = yk.

However, when we apply the same method, for example, to f (x) =
1
x

, the ’inverse

66

function’ is g(x,y) = y · x.
We will now describe the method more formally, as it is presented in Algorithm

15. We want to compute a function f (x) where the input x is secret, but about
which we know that f (x) belongs to the interval [a,a+2k) where a can be private
or public. Additionally there should be easily computable functions g and h where
g(f (x),x) ≡ h(x) where g(·,x) is also monotonous in the interval [a,a+2k). For

example, if f (x) =
1√
x

, then g(x,y) = x2 · y and h(x) = 1.

We thus start with a value a about which we know that the output f (x) will be
in some [a,a+ 2k). Let the precision that we want to achieve be 2k−s. We start
by computing h(J f xK) on line 1 and set it to J f wK. Then, on line 2, we establish
the values ai ← a+ i · 2k−s for every i ∈ {1, . . . ,2s−1}. On line 3, we compute
g(ai,x). We can now get an estimate for the value of f (J f xK) with the proportion
of g(ai,x) that are smaller than J f wK.

Thus, on lines 5 and 7 we perform secret comparisons by setting ci := g(ai,x)
?
≤h(x)

if g is increasing and ci := g(ai,x)
?
≥h(x) if g is decreasing, respectively. Finally,

on lines 8 and 9, we set the representative of the result to be a+2k−s+m ·

(
2s−1

∑
i=1

ci

)
.

Intuitively, this gives a correct answer because for one j ∈ {0, . . . ,2s−1}, a j is
approximately equal to f (x). If g is increasing, we can measure the position of this

j in {0, . . . ,2s−1} by testing whether g(ai,x)
?
≤h(x) for all i. Due to monotonicity,

for all i smaller than j, g(ai,x) ≤ h(x) but for all i greater than j, g(ai,x) > h(x).
Thus the number of i that ’pass the test’ is proportional to the position of j in
{0, . . . ,2s−1}. A similar argument holds when g is decreasing.

The following theorem shows why the approach works.
Theorem 2. Let f be a function. Let g,gx and h be functions such that g(f (x),x)≡
h(x), gx(y) := g(y,x) and gx is strictly monotonous in [a,a+2k) for all x ∈ [a,a+
2k). Let x ∈ X be such that f (x) ∈ [a,a+2k), y0,y1, . . . ,y2s be such that yi :=
a + i · 2k−s, and Y := {y1, . . . ,y2s−1}. Additionally let Z := gx(Y), j := |{yi ∈
Y |gx(yi)≤ h(x)}| and j′ := |{yi ∈ Y |gx(yi)≥ h(x)}|. Then f (x) ∈ [y j,y j+1) if g is
monotonously increasing and f (x) ∈ [y j′ ,y j′+1) if it is monotonously decreasing.

Proof. We will give a proof for a monotonously increasing gx without the loss of
generality. First note that

gx(y1)< gx(y2)< · · ·< gx(y2s−1),

because gx is monotonously increasing. We know that f (x) ∈ [yr,yr+1) for some
r. This is equivalent to gx(f (x)) ∈ [gx(yr),gx(yr+1)), because gx is monotone.
Rewriting this gives us h(x) ∈ [gx(yr),gx(yr+1)). Because

gx(y1)< gx(y2)< · · ·< gx(y2s−1),

67

this is equivalent to

h(x)≥ gx(y1), . . . ,gx(yr) and h(x)< gx(yr+1), . . . ,gx(y2s−1),

which in turn means that

|{g(yi) ∈ Z|h(x)≥ g(yi)}|= r.

Because the function g is one-to-one, we get that

|{yi ∈ Y |h(x)≥ gx(yi)}|= r,

which gives us r = j which is what we wanted to show.

Algorithm 15: Computing a function with an easily computable inverse.

Data: Takes in J f xK,J f aK,k,n,s and sign. We know that f (x) ∈ [a,a+2k).
We assume that f is either monotonously increasing or decreasing in
the interval and that we know which of the two options is true. sign is
a public flag that is set to 1 if the function is increasing in the interval
[a,a+2k), and 0 if it is decreasing in the interval [a,a+2k).

Result: Computes one round of function f of J f xK where we already know
that f (x) ∈ [a,a+2k). Here g and h are functions so that
g(f (x),x)≡ h(x). The public flag sign is 1 if the function is
increasing and 0 if it is decreasing in [a,a+2k). We use 2s−1 test
points and we work on n-bit data types.

1 J f wK← h(J f xK)
2 {J f aiK}2s−1

i=1 ←{J
f aK+ i · f 2k−s}2s−1

i=1
3 {J f biK}2s−1

i=1 ←{g(J
f aiK,J f xK)}2s−1

i=1
4 if sign == 1 then
5 {JciK}2s−1

i=1 ← LTEProtocol({J f biK}2s−1
i=1 ,{J f wK}2s−1

i=1)
6 else
7 {JciK}2s−1

i=1 ← LTEProtocol({J f wK}2s−1
i=1 ,{J f biK}2s−1

i=1)

8 J f cK f←−
2s−1

∑
i=1

2k−s+mJciK

9 return J f aK+ J f cK

The theorem also holds for slightly weaker assumptions which will be speci-
fied in the following note. We did not include these assumptions in the theorem
for the sake of simplicity, however, it is easy to see that the theorem also holds for
these weaker assumptions. Namely, one can replace the given assumptions with
the weaker assumptions provided and follow through with the proof with only
very minor modifications needed, the addition of which is trivial.
Note 2. We also note that it is not strictly necessary for gx to be monotonous in
[a,a+2k). It suffices for it to be monotonous in [a+α,a+2k−β) provided that
x ∈ [a+α,a+2k−β) and that α,β < 2k−s.

68

We can summarize the results of this subsection with the following claim.
Claim 8. Suppose that Algorithm 15 is given J f xK,J f aK, k, s, α , β , functions f ,
g, and h so that f (x) ∈ [a+α,a+ 2k − β) and g(f (x),x) ≡ h(x), where gx is
monotonous in [a+α,a+ 2k−β) and α,β < 2k−s. Then Algorithm 15 outputs
J f yK so that f (x) ∈ [a′,a′+2k−s).

5.3.1. Iteration

While the method described in the previous section gives us a good round-efficiency,
we still need a large amount of memory to store all of the JciK and JdiK. We also
have to perform 2s−2 secure evaluations function g and 2s−2 secure evaluations
of the comparison operator. If we want to obtain reasonable precision, then 2s−2
must be rather large.

Thus, in a way, this can be thought of as just a version of the introductory
idea, albeit one that takes slightly less memory and requires less precomputation.
However, the method works only on a specific class of functions so it would seem,
practically speaking, like a strictly worse version of the example-building idea,
and, thus, not very useful. In this section, we describe how to improve on this
method.

Besides the question of memory, we have also established that we operate in a
setting where one of the most important parameters is round-efficiency and where
we, thus, want to use parallel composition as much as possible.

However, in any specific setting, there is an upper limit to how much parallel
processing power is available. This holds also for secret-sharing based settings,
as there the parallel processing ability is limited by the network capabilities.

Thus, there is a practical saturation point that describes the maximal amount of
parallel processing that we are able to do in a given setting. Past that point, even
if the algorithm specifies that more operations should be performed in parallel
composition, practically, some of them will have to be performed after others, i.e.
in sequential composition [46, p.22].

Thus, in a specific setting, for every operation f there is, roughly speaking,
some number ρ f so that when we perform operations f more than ρ f times, we
start observing diminishing returns with increasing vector size. For example, in-
creasing the vector size from k to αk for some α > 1 improves the amortized
speed by approximately a factor of α if αk < ρ f but the improvement is strictly
less than α if αk < ρ f . This is of course, a somewhat idealized model.

For the sake of simplicity, we let 2p be an approximation for both ρLTEProtocol

and ρg. In the following it shall signify the maximal power of two of either com-
parisons or operations g (whichever is larger) for which parallel composition gives
an advantage. Thus we know that both 2p secure comparison operations can be
performed in parallel, as can 2p operations g, but this does not hold for 2p+1.

Thus, up to 2p−1, doubling the number of tests should increase the overall com-
putation time by a factor that is strictly smaller than 2. Past that point, however,

69

doubling the number of tests will double the performance time.
Thus, if we want to perform more than 2p tests, the number of rounds will

increase. If we want to perform k2p tests, then we essentially increase the round
complexity k times. Thus, if we had a way of modifying our method by perform-
ing significantly fewer tests by performing slightly more rounds, it would be a
gain in efficiency.

It happens to be that we have such a way for modifying our method. The idea
is, in essence, 2p-ary search.

We note that in the beginning of Algorithm 15 we start with values J f xK and
J f aK where f (x) ∈ [a,a+ 2k) and running the protocol we obtain J f a′K so that
f (x) ∈ [a′,a′+ 2k′) where k′ is smaller than k. Thus, we can apply Algorithm
15 again, using a smaller h. This can be repeated until we obtain the desired
precision.

More precisely, suppose that we want to compute v instances of some function
f in parallel with accuracy of t bits and so that we beforehand know that f (xi) ∈
[ai,ai +2k) for every i ∈ {1, . . . ,v}. Suppose also that our system can perform at
most approximately 2p comparison operations or operations g in parallel and we
want to achieve precision 2t .

Then we have to perform approximately
(k− t)dlogve

p
rounds of Algorithm

15 where in every round the total number of operations performed is smaller than
or equal to 2p.

The value
(k− t)dlogve

p
is derived in the following way. When v = 1, then it

takes about
(k− t)

p
rounds of the Algorithm 15 to reach from k to t—after the first

round, the length of the interval goes from 2k to 2k−p, after the second round to
2k−2p, and so on, until we reach 2t .

However, if v is larger, then after the first round, the length of the interval goes
from 2k to only 2k−bp−logvc, provided that v ≤ 2p. We will specify the case when

v > 2p later. Now, using easy arithmetic, we obtain the value
(k− t)dlogve

p
.

However, if the number of operations we wish to do in parallel is too large,
then we must perform more than 2p operations in one round. In this case, we
shall compute only one extra bit each round because that is the smallest possible
amount. The resulting procedure is presented as Algorithm 16, where the Round

70

subroutine refers to Algorithm 15.

Algorithm 16: Computing f using iteration

Data: v,{JxiK}v−1
i=0 ,{JaiK}v−1

i=0 ,k, p,n, t
Result: Computes function f of values {JxiK}v−1

i=0 . We know that
f (xi) ∈ [ai,ai +2k) for all i ∈ {0, . . . ,v−1}. We can perform at
most 2p comparison or g operations in parallel. We work on n-bit
data types and we wish to achieve precision 2t

1 s←max{bp− logvc,1}

2 r← bk− t
s
c

3 s′← k− t− s · r
4 if s′ == 0 then
5 s′← s
6 r← r−1

7 {Jy0,iK}v−1
i=0 ← Round({JxiK}v−1

i=0 ,{JaiK}v−1
i=0 ,k,n,s

′)
8 for j = 1; j ≤ r; j++ do
9 {Jy j,iK}v−1

i=0 ← Round({JxiK}v−1
i=0 ,{Jy j−1,iK}v−1

i=0 ,k− s′− (j−1)s,n,s)

10 return JyrK

We can summarize the results of this subsection with the following claim.
Claim 9. Suppose that Algorithm 15 is given J f xK,J f aK, k, s, α , β t, functions
f , g, and h so that f (x) ∈ [a+α,a+ 2k−β) and g(f (x),x) ≡ h(x), where gx is
monotonous in [a+α,a+ 2k−β) and α,β < 2k−s. Then Algorithm 16 outputs
J f yK so that f (x) ∈ [a′,a′+2t).

5.4. Applications of the Method

The class of functions f described in Theorem 2 is rather abstract and not easy to
interpret. This section studies this class more closely.

The functions described by Theorem 2 are perhaps better understood when
considering the possible options for the easily computable functions g,h and h̃.
Which functions exactly are easy to compute depends on the underlying imple-
mentation of the secure computation engine. Typically such functions would in-
clude constants, additions, subtractions, multiplications and their compositions.
However, depending on the system, other operations such as bit decompositions,
shifts or other functions might be cheap and, thus, different functions might be-
long into that class. Note that in the case of the fixed-point multiplication detailed
above in section 3.4.4, the operation calls converting up and down and shifting to
the right as sub-operations and, thus, it might be reasonable to also consider these
operations easily computable. However, for now, we shall not consider them for
the sake of simplicity.

The compositions of constants, additions, subtractions, and multiplications are

71

polynomials. Thus, we are looking for functions f (x) for which there exist poly-
nomials p1 and p2 so that p1(f (x),x) = p2(x) with the additional constraint that
p1 must be strictly monotonous in the first argument for any fixed value of the
second argument.

Note that by defining the polynomial p3(y,x) := p1(y,x)− p2(x) we obtain that
for a function f there must exist a polynomial p3 so that p3(f (x),x)≡ 0 and that
p3(·,x) is strictly monotonous in the interval for any fixed x.

This means that we can think of f as a function that returns the root of p3 in a
given interval — the inverse function of that polynomial. Due to the monotonicity
of p3, an inverse function exists.

Thus, in this case, we can rephrase our class of functions as the set of functions
that can be represented as problems for finding the roots of polynomials with
secret coefficients in an interval where the named polynomials have precisely one
root. Formally we can represent the problems in this class as

(5.1)
"given {J f aiK}, find x ∈ [a,b) so that ∑

i
J f aiKxi ≈ 0,

provided that ∑
i
J f aiKxi has precisely one root in [a,b)".

For example:

• computing
1

J f aK
is equivalent to finding a root of J f aKx−1 = 0;

• computing
√

J f aK is equivalent to finding a root of x2− J f aK = 0;

• computing
1√
J f aK

is equivalent to finding a root of J f aKx2−1 = 0;

• computing
J f aK
J f bK

is equivalent to finding a root of J f bKx− J f aK = 0.

This class of problems can also be extended to finding the roots of polynomials
with secret coefficients in general, whether they are injective in an area or not,
and this is done in Section 5.4.1. Later, in Section 5.4.2, we will present the
computation routine for the binary logarithm.

5.4.1. Finding Roots of Polynomials

We saw that finding the roots of injective polynomials with secret coefficients is
a large subclass of problems that can be solved using the point-counting method
described above.

We will now present a method for making point-counting applicable also for
polynomials that are not injective in the given interval. Denoting the rank of the
polynomial by k, the extended method will possibly be up to k2 times slower,
hence, it should be used only for polynomials with a suitably small rank.

The key observation for the extended method is the fact that we can still use the
point-counting method if we can divide [a,b) into intervals [a,c1), [c1,c2), .., [ck,b)

72

so that the polynomial p(x) is monotone in all those intervals. We can then sepa-
rately use the point-counting method in all those intervals.

The polynomial is monotone in an interval if the derivative of the polynomial
does not change signs there. Since the derivative of a polynomial is a continuous
function, it can change signs only at points where it is equal to zero. Thus we can
find the points c1, . . . ,ck by computing the roots of p′(x). Now we again must find
the roots of a polynomial, but that polynomial has a smaller rank than the original
one. This, rather naturally, gives us a recursive algorithm. If p′(x) is an injective
function, we can directly use the point-counting algorithm. If it is not, we can
compute its roots recursively.

Thus, if the rank of the polynomial p(x) is k, then its (k− 1)st derivative is
a linear function and therefore injective, which means that the recursion has no
more than k−1 steps.

We will now give the algorithm in more detail. We presume that we have
access to the following three functions. First, we naturally assume that we have
access to the function that evaluates the polynomial. We denote with

p(J f a0K, . . . ,J f anK,J f x0K)

the function that evaluates the polynomial
n

∑
i=0

aixi at x0. This only requires multi-

plication and addition, which we already have access to.
Second, we assume access to the function Der(J f a0K, . . . ,J f anK) that takes in

the coefficients of a polynomial and returns the coefficients of its derivative. This
requires only multiplication of a secret fixed-point number with a public integer.
We have access to this operation.

Third, we presume that we have access to a version of Algorithm 16 that, in an
interval where a polynomial is injective, returns a root of the polynomial if it has
one or an endpoint of the interval if it does not. The requirements for this function
have been specified earlier in this chapter.

However, we need to modify the function Round that Algorithm 16 calls. We

73

shall replace Algorithm 15 with Algorithm 17 which differs from it in two ways.

Algorithm 17: Computing a function with an easily computable inverse in a
secret interval. Function may be either increasing or decreasing.

Data: Gets in the values J f xK,J f aK,J f bK,k,n,s. Here J f xK is the input of the
function. [a,b) is the interval in which we know the answer to be. We
know that b−a < 2k. The value n refers to the number of bits in the
underlying integer type of the fixed-point numbers and the number of
test points we are using is 2s−1.

Result: Computes one round of function f of J f xK where we already know
that f (x) ∈ [J f aK,J f bK). Here g and h are functions so that
g(f (x),x)≡ h(x). We know that the function is monotone but not
whether it is increasing or decreasing.

1 J f wK← h(J f xK)
2 {J f aiK}2s−1

i=1 ←{J
f aK+ i · f (2k−s)}2s−1

i=1
3 {J f biK}2s−1

i=1 ←{J
f g(ai,x)K}2s−1

i=1
4 {Jci,0K}2s−1

i=1 ← LTEProtocol({J f biK}2s−1
i=1 ,{J f wK}2s−1

i=1)

5 {Jci,1K}2s−1
i=1 ← LTEProtocol({J f wK}2s−1

i=1 ,{J f biK}2s−1
i=1)

6 {Jc′iK}2s−1
i=1 ← LTEProtocol({J f biK}2s−1

i=1 ,{J f bK}2s−1
i=1)

7 {Jci,0K}2s−1
i=1 ←{Jci,0K}2s−1

i=1 · {Jc′iK}2s−1
i=1

8 J f c0K = f (2k−s) ·
2s−1

∑
i=1

Jci,0K

9 {Jci,1K}2s−1
i=1 ←{Jci,1K}2s−1

i=1 · {Jc′iK}2s−1
i=1

10 J f c1K = f (2k−s) ·
2s−1

∑
i=1

Jci,1K

11 J f zaK← p(J f a0K, . . . ,J f anK,J f aK)
12 J f zbK← p(J f a0K, . . . ,J f anK,J f bK)
13 JzK← LTEProtocol(J f zaK,J f zbK)
14 J f cK← JzK · J f c0K+(1− JzK) · J f c1K
15 return J f aK+ J f cK

First, unlike in Algorithm 15, we do not know the length of the interval where
our result may be. It might even happen that the interval has length zero. We solve
this problem in the following way.

Suppose that we have J f aK and J f bK so that our solution is in [a,b). It might

happen that when we let ci := g(a+ i · h,x)
?
≤h(x) for all i ∈ [0,2k] that the value

a+2k−s+m · (
2s−1

∑
i=1

ci) would fall out of [a,b). This happens if for instance f is not

monotonous in [a,a+h2k] and thus we can not use the Theorem 2.
We would still like to get a result that is in [a,b) and that the test points that

fall out of [a,b) would not affect the outcome. We do this by essentially setting

74

the value ci to 0 if the respective ai does not belong to [a,b).
We therefore do the following: for an increasing function (the algorithm is

analogous for a decreasing function) we compute the values J f biK by applying gx

to J f aiK on line 3 as usual in the interval [a,a+ 2k) where 2k is such a number
such that b≤ a+2k. We also set {JciK} to LTEProtocol(J f biK,J f h(x)K) on line 4.

However, now we also securely compare every point J f aiK to J f bK on line 6
obtaining the comparison vector {Jc′iK}. Here c′i is zero if and only if ai > b,
which means that it is out of [a,b).

We now compute JciK = JciK · Jc′iK for every i on line 7. We then proceed as
usual. After this procedure we can be certain that the result is in [J f aK,J f bK).

Additionally Algorithm 17 differs from Algorithm 15 as we do not know

whether the polynomial p(x) =
n

∑
i=0

aixi is increasing or decreasing in the interval

[JaK,JbK) where it is injective. Hence we execute the algorithm for both cases and

then compute p(a)
?
≤p(b) to perform oblivious choice between the two options on

lines 11, 12, and 13.
Because p is injective in the interval, the only case when it can happen that

p(JaK) = p(JbK) is when JaK = JbK, but then the output of the function is always
JaK and does not depend on whether we use the increasing or decreasing version
of the algorithm. In other cases comparing p(JaK) and p(JbK) will determine
whether the function is increasing or decreasing in that interval and, thus, the
correct output. Thus we obtain the correct output by performing an oblivious
choice on line 14. Thus we obtain Algorithm 17.

If we replace the call to Algorithm 15 with a call to Algorithm 17 in Algo-
rithm 16, we shall obtain the function injecRoot(J f a0K, . . . ,J f anK,J f aK,J f bK) that
takes in the secret coefficients J f a0K, . . . ,J f anK of a polynomial and the secret in-
terval [J f aK,J f bK) such that the polynomial has at most one root in [J f aK,J f bK).
The function outputs the root of the polynomial in [a,b), if it exists. If it does not
exist, the function outputs the point J f aK if the function has only positive values
and is increasing in the interval or has only negative values and is decreasing in
the interval. In other cases, it outputs the fixed-point number with the smallest
representable absolute value in [JaK,JbK).

We shall now present Algorithm 18 that returns n values, in increasing order,
among which are all the real roots of the polynomial. We call this function with
polyRoot(J f a0K, . . . ,J f anK,J f aK,J f bK, t). By saying that a root is at point c we
mean that the root is in the interval [c,c+2−m).

It is important to note that not all the returned values might be the roots of
the polynomial — this is because the polynomial might not have n real roots as
some of them might be complex. Generally, the algorithm returns the value with
the smallest absolute value. If there is no root in the given interval, it returns the
endpoint with a smaller absolute value.

We note that the behaviour of these ”false roots” in the recursive algorithm that

75

we will present is interesting, but out of the scope of this thesis.
First the algorithm finds the polynomial that is the derivative of the polynomial

n

∑
i=0

JaiKxi. If that is a linear function, it applies the function injecRoot to it to

obtain its root if it has one. If the derivative has a higher order, it recursively calls
polyRoot to obtain n−1 values c1, . . . ,cn−1, in increasing order, among which are
all the real roots of the derivative.

We then set Jc0K= JaK and JcnK= JbK. We then apply the function injecRoot to
the original polynomial in the intervals [JciK+2t ,Jci+1K] where 2t is the precision
of the function injecRoot. We return the outputs of injecRoot, ordered.

Algorithm 18: Computing roots of a polynomial

Data: Gets as input the values J f a0K, . . . ,J f anK,J f aK,J f bK, t. Here the
J f a0K, . . . ,J f anK are the polynomial coefficients and all the points that
interest us are in (a,b). The value m is the radix-point of the
fixed-point number.

Result: Returns n values, in an increasing order, among which are all the
real roots of the polynomial. Has precision 2−m.

1 if n > 1 then
2 J f b0K, . . . ,J f bn−1K← Der(J f a0K, . . . ,J f anK)
3 J f c1K, . . . ,J f cn−1K← polyRoot(J f b0K, . . . ,J f bn−1K,J f aK,J f bK, t)
4 J f c0K← J f aK
5 J f cnK← J f aK
6 for i = 0, i < n, i++ do
7 J f diK← injecRoot(J f a0K, . . . ,J f anK,J f (ci +2−m)K,J f ci+1K)

8 return J f d0K, . . . ,J f dn−1K
9 else

10 return injecRoot(J f a0K, . . . ,J f a1K,J f aK,J f bK)

Based on Theorem 2, we note that each step gives correct answers provided
that the function under question is injective in the intervals where it is called.
Based on properties of the derivative of a polynomial we conclude the correctness
of the algorithm.

The reason why we chose the specific intervals for injecRoot as [JciK+2t ,Jci+1K]
is the following. We know that when we call the function on the derivative,
all the zeroes are in the intervals [ci,ci + 2−m). Thus, when taking an interval
[ci+2−m,ci+1), we know that the derivative has no zeroes there and thus the func-
tion is one-to-one, hence we can apply the method.

5.4.2. Logarithm

In this Section we show how the point-counting method can be applied to com-
puting binary logarithms.

As it was noted by Aliasgari et al. [5], an approximation of the exponential

76

function can be computed using the bits of the input to obliviously choose between
22i

and 1 and then computing the product over all bits — we can use this for the
function g. At first, it may seem that this requires us to perform bit-decomposition
and many multiplications for computing the function g. However, we will later see
that it can be done in a manner where we only need a multiplication of a private
and a public value to compute g.

Let us have input J f xK and suppose that we want to compute J f logxK.
Let us have n-bit three-field signed fixed-point numbers with radix-point m as

input.
We assume that we have J f aK and u such that logx ∈ [a,a + 2u). We also

assume that we have the value J f 2aK. We will later show how this J f 2aK can be
obtained.

Our test points will be thus ai = a+ i∆. We let ∆ = 2u′ where u′ < u and will
be our new precision level.

Here f (x) = logx. We will thus set g(y) to 2y and h(x) to x. Now we are
interested in how to compute 2ai .

2ai = 2a+i2u′
= 2a ·2i2u′

.

Note that the values 2i2u′
depend only on public values, and thus these fixed-

point numbers can be computed publicly. Thus, to compute gx(ai) = 2ai we need

to multiply J f 22a
K with the public fixed-point number f 2i2u′

.
Let us now consider the requirement that we must possess the private value

J f 2aK. This, in fact, does not really restrict us much, besides the fact that we need
perform somewhat more operations.

Consider the first round. We note that for fixed-point numbers, there is a well-
defined minimal positive number — namely, 2−m. Thus we can say that the log-
arithm of the fixed-point number will be in [−m,n−m). Thus we can set J f aK to
f −m and J f 22a

K to f (2−m).
However, if it is not the first round, then we can compute it based on the values

we obtained from the previous round using the method described in Section 5.2.
We see that after a round of the algorithm, we obtain some J f a+ ju′K so that

logx ∈ [a+ ju′,a+(j+1)u′). We are interested in obtaining the value J f 2a+ ju′K.
It is clear that 2a+ ju′ is equal to 2a ·2 ju′ . While we possess the value J f 2aK, we

do not possess the value J f 2 ju′K, in fact, the value j is a secret. However, we can
obtain j in a different manner.

Note that when we performed the first round of Algorithm 15, we computed

the values JciK = J f g(ai)K
?
≤J f xK = J f 2aiK

?
≤J f xK.

As described in the section 5.2, we then compute Jd0K := 1− Jc0K and JdiK :=
Jci−1K− JciK for all i ∈ {1, . . . ,2s−1}.

We note that only d j = 1 — for all the other i 6= j, di = 0. This gives us

a method for computing J f 2 ju′K — namely, we compute
2s−1

∑
i=0

JdiK f 2iu′ . Note that

77

these multiplications can be performed in parallel.
We thus arrive to Algorithm 19. It receives as input the shared fixed-point value

J f xK the logarithm of which we compute and a number of parametres, which we
have discussed above, and additionally the parametre r that describes how many
iterations of the protocol we perform. On lines 1 and 2 we set u to dlogne and u′ to
u− s, respectively. This is because we know the logarithm is in [−m,−m+n) and
after performing an iteration we wish to know the value of logx with precision 2u′

— i.e we want to improve the secure knowledge by s bits. As it was noted above,
we can initialize J f aK as f (−m) on line 4 and J f 2aK as f (2−m) on line 3.

Then on lines 6 to 17 we run the body of the algorithm r times. Every time we
learn secure s bits of logx.

The iterated argument is fairly standard, however, in addition to updating J f aK
we also update the approximate version of x— the J f 2aK on line 15.

Algorithm 19: Computing logarithm of a fixed-point number

Data: We get the inputs J f xK,s,m,n,r. This algorithm securely computes
the logarithm of x. We presume x > 0. Every round we test 2s points.
The radix-point of the fixed-point number is m and the underlying
integer has n bits. We run this operation for r rounds.

Result: Returns a value J f aK so that logx ∈ [a,a+2dlogne−sr).
1 u← dlogne
2 u′← u− s
3 J f 2aK← f (2−m)

4 J f aK← f (−m)
5 for j = 0, j < r, j++ do
6 {J f aiK}2s−1

i=1 ←{J
f aK+ i · f 2u′}2s−1

i=1

7 {J f biK}2s−1
i=1 ←{J

f 2aK · f 2i2u′}2s−1
i=1

8 {JciK}2s−1
i=1 ← LTEProtocol({J f biK}2s−1

i=1 ,{J f xK}2s−1
i=1)

9 J f cK f←−
2s−1

∑
i=1

f 2u′+mJciK

10 for i = 0, i < 2s−1, i++ do
11 JdiK← JciK− Jci+1K

12 Jd2s−1K← Jc2s−1K
13 J f aK← J f aK+ J f cK
14 if j < r−1 then

15 J f 2aK← J f 2aK · (
2s−1

∑
i=0

JdiK f 2iu′)

16 u← u′

17 u′← u− s

18 return J f aK

78

We can summarize the results of this section with the following claim.
Claim 10. Algorithm 19, when given inputs J f xK,n,s,r where x > 0, outputs a
fixed-point number J f aK so that logx ∈ [a,a+2dlogne−sr).

5.5. Conclusion and results

We implemented and benchmarked the iterated point-counting method for the in-
verse function, the square root function and the logarithm. One benefit of such
approach is that we can very easily fine-tune the desired precision. The specific
results and analysis can be found in Chapter 7.

79

6. GOLDEN SECTION NUMBERS

Previously we saw that both fixed-point numbers and floating-point numbers can
be used in the secure setting. However, we saw that in this case, the costs of
different operations vary from the usual case. Thus it is sensible to try techniques
that might not be practical in the usual, non-secure setting. We can also apply this
idea to real number types — perhaps there are use cases where neither fixed-point
numbers nor floating-point numbers are the optimal real number type. Thus it
makes sense to consider other real number types for secure computation.

In this chapter we will describe a real number type that can depict signed real
numbers, has local addition, and other operations that are comparable to fixed-
point numbers in efficiency.

We denote by ϕ the golden ratio

√
5+1
2

. We define a golden section number to

be a triple (a,b,x) where a,b∈Z, x∈R, and a−ϕx≈ x. The idea is storing a and
b in computer memory in order to store the value x. We also define a secret golden
section number to be a triple (JaK,JbK,x), where a,b ∈ Z, x ∈ R, and a−ϕx ≈ x.
Here, likewise, the secure integers JaK and JbK are stored with the aim to store x
securely. For the sake of brevity, we will denote a golden number (a,b,x) with gx
and a secret golden section number (JaK,JbK,x) with JgxK. We also say that the
pair (a,b) represents x. Which one it will refer to will be clear from the context.
We also use the term golden numbers for golden section numbers for the sake of
brevity.

We refer to the first two elements of the triple as the representatives of the
golden number, more specifically, we refer to the first element as the integer rep-
resentative and to the second element as the ϕ-representative of the number. The
value x will also be called the value of the golden number. Instead of referring to
the absolute value of the value of a golden number, we will simply refer to it as
the absolute value of that golden number.

Note that it would also be possible to define the golden section numbers in an
alternative way where the number represented by the tuple (a,b) would be a+ϕb.
This is largely a matter of taste.

There are some properties that a system that represents real numbers should
have. First, we want to be able to represent numbers with a sufficiently high gran-
ularity, and to perform some elementary arithmetic operations using the system.
For a system of secure real numbers, we require that computing those arithmetic
operations would not be too expensive or inaccurate in a secure setting. In this
chapter we shall show that golden section numbers achieve these properties.

We begin with demonstrating that addition and multiplication, provided the
existence of addition and multiplication of integers, is relatively straightforward.
Suppose that we wish to add two golden numbers (a,b,x) and (c,d,y). We note
the property

a−ϕb+ c−ϕd = (a+ c)−ϕ(b+d).

80

Hence if a−ϕb≈ x and c−ϕd ≈ y, then (a+ c)−ϕ(b+d)≈ x+ y and thus the
sum of (a,b,x) and (c,d,y) can be considered to be (a+ c,b+d,x+ y).

For multiplication, likewise, suppose that we wish to multiply two golden num-
bers (a,b,x) and (c,d,y). We note that ϕ

2 = ϕ +1 and thus obtain

(a−ϕb) · (c−ϕd) = (ac+bd)−ϕ(bc+ad−bd). (6.1)

Thus if a−ϕb≈ x and c−ϕd ≈ y, then (ac+bd)−ϕ(bc+ad−bd)≈ x · y.
We now continue with the property of granularity. However, to discuss that,

we first need a language to describe how well some pair (a,b) represents the value
x.
Definition 2. Given a real number x, we say that the tuple of integers (a,b) is a
(k,ε)-approximation of x if |a| , |b| ≤ k and |a−ϕb− x|≤ ε . If k is implied by
the context or not important in the context, we shall refer to (a,b) as just an ε-
representation of x. If ε is implied or not important, we shall refer to (a,b) as a
(k, ·)-representation of x.

If neither are important (or are implied) we refer to (a,b) as just as a represen-
tation of x.

Now, let us note that it is preferable to use such a (k,ε)-approximation of a
number where both k and ε are relatively small. While it is clear that a small
ε implies a small error and is therefore better, the reason why a small k is good
requires some explanation.

Namely, we observe that when we multiply two golden section numbers x
and y with a (k, ·)-approximation, then their product is with high probability a
(2k+1, ·)-approximation of xy. Thus, we quickly run into the risk of overflow in
the underlying data type. This could possibly happen even after one multiplication
when k is too large. We will solve this problem by replacing a (k,ε)-representation
of a number with a (k′,ε + ε

′)-representation where k′ << k and ε
′ is suitably

small. We will give more details about this method later.
Throughout the section we shall assume that the error ε is small, several orders

of magnitude smaller than 1 because otherwise, the data type would be so inaccu-
rate that it would be unusable. Thus, when we discuss how either the number or
the representatives need to be bounded by some quite large numbers, we shall ig-
nore ε in those analyses as the rounding down used in finding those large numbers
will cover any overflow ε might cause.

Now let us consider how to characterize the distribution of golden section num-
bers. We want them to be distributed as uniformly as possible. There are two
properties concerning distribution that we are interested in.

First, is the property of granularity — given a k, what is the largest distance
between two consecutive golden section numbers that have (k, ·)-representations.
More formally, what is

max{y− x|x = a0−ϕb0,y = a1−ϕb1,x < y, |a0|, |a1|, |b0|, |b1|≤ k,

6∃ z : z = a2−ϕb2,x < z < y, |a2|, |b2|≤ k}.

81

Granularity is a property that describes the maximal error we make if we want
to give a (k, ·)-representation of a number. It is very important for describing a
real number system.

The second property that we are interested in is equidistributedness. A set
of elements where all elements fall to some interval [a,b] is said to be equidis-
tributed if the probability of falling to some subinterval of [a,b] is proportional to
the length of that subinterval in relation to [a,b]. The Weyl equidistribution theo-
rem [17] states that for α ∈ R, the sequence {i ·α (mod 1)}∞

i=0 is equidistributed
in [0,1) if and only if α is irrational. This gives us a sense of why we can expect
golden numbers to be fairly evenly distributed.

This result suggests that the obtained set would be rather well equidistributed
on [0,1), as {i ·ϕ (mod 1)}k

i=0 would with a high probability be relatively evenly
distributed in [0,1), given a large enough k. Thus, given some β ∈ [0,1), we
could find some bβ ∈ Z so that bβ ·ϕ (mod 1) ≈ β . Then the golden number
representing β would be bβ · ϕ − bbβ · ϕc. Now, to represent a number β + t
where β ∈ [0,1) and t ∈ Z, we obtain the representation (aβ ,bβ) for β in the
manner we just discussed and then use (aβ + t,bβ) for β + t.

This argument however, is not very good. We now will give an argument that
is better for several reasons. First, we will give a proof. Second, we will describe
how good a (k, ·)-representation we will obtain. Finally, it will be constructive.

Lemma 2 gives us a more specific construction for obtaining approximations
for specific numbers. However, to prove that, we first need Lemma 1. Recall that
F j denotes the j-th Fibonacci number.

Lemma 1. Let j > 1 and let {ai} j
i=0 be bits such that ai = ai+1 = 1 holds for no

i. Then
j

∑
i=0

aiFi < F j+1.

Proof. We prove by induction over j. First, if j = 2, then the claim obviously
holds.

Now, let us assume that
j

∑
i=0

aiFi < F j+1 for all j ≤ k and show that it holds

for
k+1

∑
i=0

aiFi < Fk+2.

We note that there are two possibilities, either ak+1 = 0 or ak = 0, otherwise
the assumption would not hold.

Let us consider the case when ak+1 = 0. In that case
k+1

∑
i=0

aiFi =
k

∑
i=0

aiFi <

Fk+1 < Fk+2.

Now let us consider the case when ak = 0. Then
k+1

∑
i=0

aiFi =
k−1

∑
i=0

aiFi+ak+1Fk+1 <

Fk +Fk+1 = Fk+2.
Thus the claim is proven.

82

Lemma 2. For a real number x which satisfies |x|< ϕ
s+1, and a positive integer

k, there exists a
(

ϕs+1 +ϕk+2
√

5
−1,ϕ−k

)
-approximation of x.

Proof. We note that we can write every positive real number as a (possibly infi-

nite) sum of powers of ϕ . We can write x =
s

∑
i=−∞

aiϕ
i where ai ∈ {0,1} and where

there is no i so that ai = 1 and ai+1 = 1 would both hold [9].

We also note that given such a requirement,
j

∑
i=−∞

aiϕ
i < ϕ

j+1 holds for any j.

Thus, taking j =−k if we choose to represent x as x =
s

∑
i=−k

aiϕ
i, the error we

make is no greater than ϕ
−k, that is, |x−

s

∑
i=−k

aiϕ
i|≤ ϕ

−k.

The following three facts about Fibonacci numbers F j (j ∈ Z) are common
knowledge and are easily proven:
• ϕ

j = F jϕ +F j−1 for every j [42],
• |F j|= |F− j| for every j [41],

• F j ≈
ϕ j
√

5
for every positive j [41].

Considering this, if x ≈
s

∑
i=−k

aiϕ
i, then we note that

s

∑
i=−k

aiϕ
i =

s

∑
i=−k

ai(Fiϕ +

Fi−1) and thus we can represent x with
s

∑
i=−k

aiFi−1 +ϕ

s

∑
i=−k

aiFi. We know that

this is a ϕ
−k-approximation.

Let us now show that
s

∑
i=−k

aiFi−1 and
s

∑
i=−k

aiFi can be bounded from above

by Fs+1 +Fk+2−1.
Namely, we note that∣∣∣∣∣ s

∑
i=−k

aiFi

∣∣∣∣∣ ≤ −1

∑
i=−k

aiFi +
s

∑
i=0

aiFi

≤
k

∑
i=1

aiFi +
s

∑
i=0

aiFi

< Fk+1 + Fs+1 − 1 .

The last inequality comes from Lemma 1. Likewise,

s

∑
i=−k

aiFi−1 < Fs +Fk+2−1.

83

Both of these values can be bounded from above by Fs+1 +Fk+2−1, which

is approximately equal to
ϕs+1 +ϕk+2
√

5
−1.

Thus the lemma is proven.

We have obtained a method for finding a golden number representing a value
with a desired precision, provided that we can compute the numbers ai that de-
scribe the ϕ-decompostion of the number and perform elementary arithmetic op-
erations. This is easy to do in the public setting. However, it might be more
resource-costly in the private setting. Thus, one solution is to only use golden-
section numbers throughout the secure computation session, so that we could in-
put the secure values in a golden number format.

However, it is possible that we might wish to perform some secure computa-
tions in a different data format and only then convert to a secure golden number
format. Thus, later, we will present protocols for securely converting a private
fixed-point number to a private golden section number and vice versa.

We will presume the following protocols for this chapter:
• integer addition, subtraction, and multiplication,
• fixed-point number addition, subtraction and multiplication,
• ObliviousChoiceProtocol(JbK,JxK,JyK),
• BitExtract(JxK),
• MSNZB(JxK).

6.1. Normalization

As it was previously noted, to get good precision in our number system, we use
representatives that are rather large. This holds even when the real numbers that
we represent are quite small. This, however, means that when multiplying several
real numbers, the representatives may grow exponentially and may overflow very
fast. Secure computation is especially vulnerable to these kinds of errors as check-
ing for possible overflows in a secure way is expensive. We would like to keep
the absolute value of the representatives smaller than some reasonable constant in
order to prevent them from overflowing.

The solution for this comes from the fact that there may be several differ-
ent (k,ε)-approximations of a number. Thus we want a method for replacing
a (k1,ε1)-approximation with a (k2,ε2)-approximation where ε2 may be slightly
greater than ε1, but where k2 << k1. We shall use a normalization method, which
is, in essence, subtraction of a suitable representation of 0 from the golden section
number.
Definition 3. We say that a golden section number is `-normalized if the absolute
value of its integer representative is not greater than `.

84

This definition might seem deficient at first — it would seem more natu-
ral to demand that both integer representative and ϕ-representative were smaller
than some bound. However, we shall see that if we slightly restrict the set of
numbers that we represent, then the boundedness of the ϕ-representative follows
from the boundedness of the integer representative. Thus it suffices to define `-
normalization using only the integer representative.
Lemma 3. Let an `-normalized golden section number a−ϕb satisfy the inequal-
ity |a−ϕb|≤ `(ϕ−1). Then |b|≤ `.

Proof. Using the reverse triangle inequality, we obtain

||a|− |bϕ|| ≤ |a−bϕ| ≤ `(ϕ−1).

From this we obtain

|bϕ|− `(ϕ−1)≤ |a| ≤ |bϕ|+ `(ϕ−1).

From |bϕ|−`(ϕ − 1) ≤ |a| we obtain |bϕ|−`ϕ + ` ≤ `, i.e. |bϕ| ≤ `ϕ . This is
equivalent to |b| ≤ `.

Considering this result, we must require that all the golden section numbers
we use have absolute values less than `(ϕ − 1) in order for the definition of `-
normalization to have its intended meaning. Therefore, we need to agree on a
certain value for ` so that from here on, we would assume that unless otherwise
specified, all the golden numbers we use have absolute values less than `(ϕ −1)
for the ` that we will now specify.

One reasonable property that ` should have is that we should be able to mul-
tiply two `-normalized golden section numbers with no possibility of overflow
happening. On the other hand, ` should be as large as possible, because it bounds
the choices we have for representatives and thus also precision — the larger ` is,
the greater precision we can achieve. Because of this, we shall generally take

`=

⌊√
2n−1−1

2

⌋
, where n refers to the bit length of a and b.

The following lemma shows that no overflow will happen when multiplying
two `-normalized golden numbers.

Lemma 4. If two golden section numbers a−ϕb and c−ϕd are

⌊√
2n−1−1

2

⌋
-

normalized, then, assuming that both they and their product is smaller than⌊√
2n−1−1

2

⌋
(ϕ−1),

both the integer representative and the ϕ-representative of their product are smaller
than 2n−1.

85

Proof. Let us denote (a−ϕb) · (c−ϕd) with x−ϕy, i.e. x = ac+ bd and y =
ad +bc−bd. We give the proof for x ≥ 0. The proof for x < 0 is analogous. We
assume that |a| , |b| , |c| , |d| ≤ `. Thus x = ac+bd ≤ 2`2 < 2n−1. We assumed that
the absolute value of the product x−ϕy is no greater than `(ϕ − 1). In a similar
way as we did in the proof of Lemma 3, we obtain that |yϕ|−`(ϕ−1)≤ x. Thus
|yϕ|≤ 2`2 + `(ϕ−1) which gives us |y|< 2`2 < 2n−1.

From now on, ` shall refer to

⌊√
2n−1−1

2

⌋
. Likewise, when we speak of

normalized numbers we will mean

⌊√
2n−1−1

2

⌋
-normalized numbers.We will

also assume that all the numbers that we will deal with from now on will have
absolute values no greater than `(ϕ − 1). This can be thought of as a specific
kind of overflow. In the private setting we do not have checks for overflow as
that would leak information and it is assumed that the user will take care that the
values do not overflow. The user can do this by for example only allowing inputs
from a certain range, or adding oblivious checks that prevent possible overflows.
We require that the user takes the similar necessary precautions also in this setting.

We want to significantly reduce the absolute values of the representatives of
the number while keeping its value relatively the same.

There are various possibilities for this, but due to the nature of the task, they
are equivalent to deducing suitable ε-representations of zero from the number.
Namely, suppose that we normalized a−ϕb and ended up with a′−ϕb′. Let the
error made in this process be no greater than ε , i.e.

∣∣a−ϕb− (a′−ϕb′)
∣∣ ≤ ε .

This means that |(a− a′)− ϕ(b− b′)|≤ ε , i.e.
∣∣(a−a′)−ϕ(b−b′)

∣∣ is an ε-
representation of 0. The smaller the ε , the smaller the error arising from the nor-
malization process and thus it is desirable to obtain ε-representations of 0 where
ε is very small. Also, the process should not be very resource-consuming. We
first note that, thanks to Lemma 3, it suffices to normalize only the integer rep-
resentative of the number. If the normalization error is small, then the result will
still be an ε-representation of a golden number, and, thus, the absolute value of
the ϕ-representative of the result will also be smaller than `.

Note that in order to normalize an integer representative down to 2k, we need
either the n− k most significant bits to be zero (if this repesentand is positive)
or the n− k most significant bits to be one (if it is negative) in the end-result.
In principle, k can be chosen freely, but we generally use k =

n
2
− 1. There are

several possibilities for normalization which we shall now describe.

6.1.1. First Normalization Method

First, for the sake of simplicity, let us consider the case where the integer repre-
sentative is non-negative. We will discuss the negative case later, and it will be
very similar to the positive case.

86

As we noted above, we need that after normalization, the n− k most sig-
nificant bits of the integer representative should be zero. Using the protocol
BitExtract(J·K), we can have access to the individual bits of a. Thus we arrive
at the idea of normalizing the integer representative bitwise.

We noted that normalization can be essentially thought of as subtracting suit-
able representations of 0. We use this idea by building a basis from 0-representations
where the basis elements correspond to different powers of 2.

First we will give an example that does not work for reasons specified after-
wards, but introduces the general idea. Namely, we will try to use the set of golden

numbers (2k,

[
2k

ϕ

]
,0) , (2k+1,

[
2k+1

ϕ

]
,0), . . .(2n−2,

[
2n−2

ϕ

]
,0) for the basis vec-

tors.
Thus, if we want to normalize a golden number a−ϕb, we would perform

BitExtract(JaK) to obtain the bits an−1, . . . ,a0. For every bit ai in {an−2,an−3, . . . ,ak}

that is equal to 1 we subtract 2i from a and
[

2k

ϕ

]
from b. Note that this can be

easily done by just subtracting
n−2

∑
i=k

ai2i from a and subtracting
n−2

∑
i=k

ai

[
2k

ϕ

]
from b.

The integer representative of our result will be a−
n−2

∑
i=k

ai2i =
k−1

∑
i=0

ai2i and that is

certainly smaller than 2k−1.
However, there is a problem with this approach. Namely, in the general case,

the numbers (2i,

[
2i

ϕ

]
) are very poor approximations for 0. Intuitively speaking,

this was to be expected. Generally, as suggested by the Weyl equidistribution the-
orem, we would expect that if we picked an integer c randomly, then the value∣∣∣∣c−[c

ϕ

]
ϕ

∣∣∣∣ would fall somewhere in the interval [0,
ϕ

2
) with roughly uniform

probability. Because the powers of 2 do not have any special property that would

cause the values
∣∣∣∣2i−

[
2i

ϕ

]
ϕ

∣∣∣∣ to be especially close to 0, they are similar to most

other integers in that they make for poor integer representative in the representa-
tions of 0.

Thus, we need to modify our algorithm somewhat. We want to find numbers

xi that are close to 2i but where
∣∣∣∣ϕ [xi

ϕ

]
− xi

∣∣∣∣ is very small. On the other hand, we

also wish |2i− xi| to be small, since if |2i− xi| is too large, then the number that
we obtain after the normalization process is still not normalized.

We shall now describe the algorithm for normalization. We use a number of
pairs of public constants (xi,yi) such that xi−ϕyi ≈ 0 and that xi is close to 2i.
After describing the algorithm we shall show what properties they must satisfy.
The algorithm that we have described is formalized in Algorithm 20.

We are given a golden section number JaK−ϕJbK. We perform bit decompo-

87

sition on JaK and obtain its bits Ja0K, . . . ,Jan−1K. Out of these, we are interested in
bits with large indices as the less significant bits will not be important in normal-
izing. As it was noted before, we will at first consider only the positive case. In
the algorithm, we will compute both the positive case and the negative case and
then use an−1 to obliviously choose between them.

If ai = 1 and n− 1 > i ≥ k, we will subtract xi from a and yi from b. This
is done by multiplying xi with JaiK and subtracting JxiaiK from JaK, and likewise,
multiplying yi with JaiK and subtracting JyiaiK from JbK.

Likewise, in the negative case, if ai = 0 and n−1 > i≥ k, we will add xi to a
and yi to b.

Algorithm 20: GoldenNorm
Data: JaK,JbK,{xi}n

i=k,{yi}n
i=k

Result: Given a golden section number and a normalization set, returns the
number normalized according to the set.

1 {JaiK}n−1
i=0 ← BitExtract(JaK)

2 {JziK}n−2
i=k ←{JaiK}n−2

i=k · {xi}n−2
i=k

3 {JwiK}n−2
i=k ←{JaiK}n−2

i=k · {yi}n−2
i=k

4 {Jz′iK}n−2
i=k ←{J1−ai)K}n−2

i=k · {xi}n−2
i=k

5 {Jw′iK}n−2
i=k ←{J(1−ai)K}n−2

i=k · {yi}n−2
i=k

6 for i← k to n−2 do
7 Ja′K← JaK− JziK
8 Jb′K← JbK− JwiK
9 Ja′′K← JaK+ Jz′iK

10 Jb′′K← JbK+ Jw′iK

11 JaK← ObliviousChoice(Jan−1K,Ja′K,Ja′′K)
12 JbK← ObliviousChoice(Jan−1K,Jb′K,Jb′′K)
13 return JaK,JbK

Now we will explain what properties the pairs {(xi,yi)}n−2
i=k must satisfy so

that the integer representative of the final result would have an absolute value no
greater than ` and that the final results difference from the original golden number
would be no greater than ε .

We want the end result, which in the positive case is a−
n−2

∑
i=k

aixi and in the

negative case is a+
n−2

∑
i=k

(1−ai)xi, to be in the interval (−`,`). We note that in the

positive case the following equality holds:

a−
n−2

∑
i=k

aixi =
k−1

∑
i=0

ai2i +
n−2

∑
i=k

ai(2i− xi).

88

Likewise, in the negative case the following holds:

a+
n−2

∑
i=k

(1−ai)xi =−1+
k−1

∑
i=0

(ai−1)2i +
n−2

∑
i=k

(ai−1)(2i− xi).

In attempting to estimate these quantities with inequalities, it is important
whether 2i is smaller or greater than xi. Thus, by distinguishing these cases, we
can bound the values of the normalized numbers from both below and above and,
thus, arrive at the following inequalities:

∑
i:2i<xi

k≤i≤n−2

(2i − xi) ≤
k−1

∑
i=0

ai2i +
n−2

∑
i=k

ai(2i − xi)

≤ 2k − 1 + ∑
i′:2i′>xi

k≤i≤n−2

(2i′ − xi′),

and

∑
i:2i<xi

k≤i≤n−2

(xi − 2i) ≥ −1 +
k−1

∑
i=0

(ai − 1)2i +
n−2

∑
i=k

(1− ai)(xi − 2i)

≥ −2k + ∑
i:2i>xi

k≤i≤n−2

(xi − 2i).

We thus have upper and lower bounds to the normalized numbers. Considering

that, in order to achieve that a−
n−2

∑
i=k

aixi or a+
n−2

∑
i=k

(1− ai)xi belongs the interval

(−`,`), it suffices for both cases that

−`≤ ∑
i:2i<xi

k≤i≤n−2

(2i− xi)

and
2k + ∑

i′:2i′>xi
k≤i≤n−2

(2i′− xi′)≤ `.

Thus we arrive at the following definition.
Definition 4. A (k, `,ε,n)-normalization set is a set of integers
{xk, . . . ,xn−1,yk, . . . ,yn−1} with the following properties:

1.
n−2

∑
i=k
|xi−ϕ · yi|≤ ε ,

2. ∑
i:2i<xi

k≤i≤n−2

(2i− xi)≥−`,

89

3. 2k + ∑
i′:2i′>xi

k≤i≤n−2

(2i′− xi′)≤ `.

There is some freedom in choosing k, with lower values giving us more free-
dom in choosing the normalization set, but reducing the number of values that a
normalized number can have. We will now show how to find such sets.

6.1.2. Finding Normalization Sets

In essence, finding normalization sets is about finding good 0-approximations
xi−ϕyi with the additional constraint that the xi should not be too far from the
respective powers of two 2i. It is an optimization problem: we intend to minimize
n−2

∑
i=k
|xi−ϕ ·yi| with the constraints 2 and 3 from Definition 4. Note that it does not

really matter how tightly or loosely the constraints 2 and 3 are satisfied. If they
are satisfied, then we can be sure that the result of the normalizing process will be
a normalized number, however, we will not gain any extra benefits if they, in fact,
satisfy stronger constraints.

On the other hand, the smaller we make the sum
n−2

∑
i=k
|xi−ϕ ·yi|, the smaller the

maximal possible error will be. More specifically, what matters is the sum of the
positive errors and the sum of the negative errors. It is clear that if some errors are
positive and others negative, they will cancel each other out by some amount and
thus the total error will be smaller. Hence, the largest possible error can happen if
all the errors have the same sign.

Our solution to the optimization problem has two main components. First,
finding pairs (xi, j,yi, j) so that xi, j −ϕyi, j are as small as possible so that xi, j ∈
[ai,bi]. We will describe later how ai,bi will be chosen. The second part of our
solution is picking the suitable pair (xi, j,yi, j) for every i so that the constraints 2
and 3 in Definition 4 hold and the maximal error is very small.

We shall first consider the first component. This part of the optimization prob-
lem is doable in time that is logarithmic to bi−ai. It does require a considerable
amount of space, though, and it is necessary to be careful when tuning the con-
stants to keep the space costs practical. We first note that in order to find such pairs

xi, j−ϕyi, j it suffices to search only for numbers xi, j in [ai,bi] where ϕ

[
xi, j

ϕ

]
−xi, j

is small, or, alternatively, for yi, j in
[

ai

ϕ
,
bi

ϕ

]
so that ϕyi, j− [ϕyi, j] is small. We

can search in either of those intervals as good solutions in one of the intervals

correspond to good solutions in the other. As the interval
[

ai

ϕ
,
bi

ϕ

]
is shorter than

[ai,bi], the search problem is easier there. For this reason, we will frame our
question as finding yi, j in that interval so that ϕyi, j− [ϕyi, j] would be small.

90

Because we will be dealing with the values ϕc− [ϕc] and ϕ

[
d
ϕ

]
− d quite a

lot, let us define for integers c,d the functions err(c) := ϕc− [ϕc] and err′ (d) :=

ϕ

[
d
ϕ

]
− d. These values measure how well the pairs ([ϕc] ,c) (d,

[
d
ϕ

]
) would

represent 0. These two measurements are intrinsically connected.
Lemma 5. For all d ∈ Z, err′ ([ϕd]) = err(d).

Proof. Let εd be the number so that ϕd− εd ∈ Z and |εd |< 0.5, i.e. εd measures
how far ϕd is from the closest integer. We note that it is impossible for |εd | to be
equal to 0.5, as then ϕ would be rational. We now observe that since ϕd− εd =
[ϕd], err(d) = ϕd− [ϕd] = εd . On the other hand

err′ ([ϕd]) = ϕ

[
(ϕd− εd)

ϕ

]
− (ϕd− εd) = ϕd−ϕd + εd = εd .

Thus err′ ([ϕd]) = err(d).

From now on, we will refer to err(y) as the error of y.We will now present
some results that will be necessary for the algorithm. The proof of the following
lemma is trivial.
Lemma 6. For all x ∈ Z, err(−x) =−err(x).

The following lemma shows us the condition under which the error function is
linear.

Lemma 7. Let a and b be integers with the property that |err(a)|+|err(b)|< 1
2

.
Then

err(a+b) = err(a)+ err(b).

Proof. Let us consider the cases for the signs of err(a) and err(b). Both of them
can be either non-negative or negative, resulting in four total cases. We will give
the proof for err(a) ≥ 0 and err(b) ≥ 0, the proofs for the other cases are analo-
gous.

Let err(a)≥ 0 and err(b)≥ 0. Thus [ϕa]≤ ϕa and [ϕb]≤ ϕb.
We shall partition ϕa = [ϕa]+ err(a) and ϕb = [ϕb]+ err(b).

Because err(a)≥ 0 and err(b)≥ 0 and |err(a)|+|err(b)|< 1
2

, err(a)+err(b)∈

[0,
1
2
).

Now it holds that

ϕ(a+b) = ϕa+ϕb = [ϕa]+ err(a)+ [ϕb]+ err(b).

Note now that ϕ(a+b) is the sum of an integer [ϕa]+ [ϕb] and a real number

err(a)+ err(b) that has absolute value smaller than
1
2

. Thus [ϕa]+ [ϕb] must be

91

the closest integer to (a+b)ϕ and thus [(a+b)ϕ] = [aϕ]+ [bϕ] and

err(a + b) = ϕ(a + b)− [ϕ(a + b)]
= ([ϕa]− err(a) + [ϕb]− err(b))− [ϕa] + [ϕb]
= err(a) + err(b).

Thus the claim holds.

We can expand this easily to the following lemma.

Lemma 8. Let k be a positive integer. If k · |err(y)|< 1
2

, then err(k · y) = k ·err(y).

Proof. We prove this by induction over k. The case when k = 1 is obvious. Let
now the statement hold for k = j and let us show that it holds for k = j+1. We thus

assume that (j+ 1) · |err(y)|< 1
2

. Thus also j · |err(y)|< 1
2

and thus err(j · y) =

j · err(y). Now, |err(j · y)|+|err(y)|= j · err(y)+ err(y) = (j+1)err(y)<
1
2

and

thus err(j · y+ y) = err(j · y)+ err(y) = (j + 1)err(y). Hence, the statement is
proven.

We can obtain the following corollary from the previous three lemmas.

Corollary 1. Let k and l be positive integers. If k · |err(y)|+l · |err(w)|< 1
2

, then

err(±k · y± l ·w) =±k · err(y)+±l · err(w).
We also need to note that generally, err(Fk) tend to be very small. More

precisely, as Fk =
ϕk− (−ϕ)−k
√

5
, and we know that [ϕFk] =Fk+1 for all positive

k, we get that

(6.2)

err(Fk) = ϕFk −Fk+1

= ϕ
ϕk − (−ϕ)−k

√
5

− ϕk+1 − (−ϕ)−k−1
√

5

=
ϕk+1 − ϕ(−ϕ)−k − ϕk+1 + (−ϕ)−k−1

√
5

=
(−ϕ)−k−1 − ϕ(−ϕ)−k

√
5

=
(−ϕ)−k
√

5
((−ϕ)−1 − ϕ)

=
(−ϕ)−k
√

5
(−
√

5)

= −(−ϕ)−k

Now we are ready to explain the first part of the algorithm. Suppose that
in some interval [a,b] we have found all such elements g that err(g) ≤ α . For

92

shorthand we denote this set with G. If this interval [a,b] is small enough, those
elements can be found by brute force, if it is larger, however, they can be found
recursively using the same method. Nevertheless, we presume that α has been
chosen so that G is relatively small.

Now suppose that we want to find all elements g′ in a larger interval [a,b′] with
a smaller error. More specifically, we want to find all such g′ so that err(g′)≤ α

′

in an interval [a,b′] where α
′ << α and b− a << b′− a. Let us denote this set

with G′. We will show that then we can find all such elements g′ by only checking

at most db
′−a

b−a
e · |G| elements.

The idea is that because of the linearity of err(·) and the smallness of the errors
of the Fibonacci numbers, the distance of any element g′ with a small error from
some element of G must be a multiple of a Fk, where Fk is a suitably chosen
large enough Fibonacci number.

More specifically, let Fk be such a Fibonacci number so that b−a > Fk and

α
′+ err(Fk)

b′−a
Fk

≤ α . This is only possible if b′ and α
′ are suitably chosen.

Thus, attention must be paid when choosing a new α
′ and b′ so that such a Fi-

bonacci number would exist. We also want to choose Fk in such a manner that
b′−a
Fk

would be relatively small.

Now consider the set H := {g+ i ·Fk|g∈G,g+ i ·Fk ∈ [a,b′], i∈Z}. We claim

that G′ ⊆H. Because the size of H is upper bound by
b′−a
Fk
|G| and we chose our

parametres so that
b′−a
Fk

and |G| would not be very large, we can search the set

H for the set G′. We shall now state this claim as a theorem and prove it.
Theorem 3. Let a < b < b′ and G := {g ∈ [a,b]||err(g)|≤ α,g ∈ Z}. Let Fk be

such that b−a≥Fk and also α
′+ |err(Fk)|b

b′−a
Fk
c ≤ α and α <

1
2

. Let G′

be defined as G′ := {g′ ∈ [a,b′]||err(g′)|≤ α
′,g′ ∈ Z} and H be defined as H :=

{g+ i ·Fk|g ∈ G,g+ i ·Fk ∈ [a,b′], i ∈ Z}. Then G′ ⊆ H.

Proof. Let us consider for all g′ ∈ G′ the set

Hg′ := {g′− i ·Fk|0≤ i≤ b′−a
Fk

, i ∈ Z}.

We shall first see that, for all h ∈ Hg′ and for all g′ ∈ G′ the equation |err(h)|≤
α is satisfied. Indeed, we see that if h ∈ Hg′ , then h = g′ − jFk for some j.

Because |err(g′)|+ j · |err(Fk)|<
1
2

, the error of h is linear and err(h) = err(g′)−
j · err(Fk). By the triangle inequality we get |err(h)|≤ α

′+ j · |err(Fk)|. We

93

know that j is an integer no greater than
b′−a′

Fk
and hence j ≤ bb

′−a′

Fk
c. Thus

|err(h)|≤ α
′+ bb

′−a′

Fk
c|err(Fk)|≤ α.

Second, we shall see that for all g′ ∈ G′ the intersection of Hg′ and [a,b] is
nonempty. Either g′ ∈ G, in which case this trivially holds, as g′ ∈ Hg′ , or there
exists the smallest i such that g′− i ·Fk > b. Now consider g′− (i+ 1) ·Fk. If
g′− (i+1) ·Fk < a, then

b < g′− i ·Fk < a+Fk ≤ a+b−a = b

which would be a contradiction. Thus a ≤ g′− (i+ 1) ·Fk ≤ b and thus g′−
(i+1) ·Fk ∈ [a,b]. Now note that as g′ ≤ b′, we get that a≤ b′− (i+1) ·Fk, i.e

i+1≤ b′−a
Fk

. Thus g′−(i+1) ·Fk ∈Hg′ and hence g′−(i+1) ·Fk ∈ [a,b]∩Hg′ .

These two observations combined give us that for any g′ ∈ G′ the intersection
of Hg′ and G is nonempty.

Now the main result easily follows. Consider any g′ ∈ G′. We shall show that
g′ ∈ H. We know that there must exist an element g ∈ G∩Hg′ . We know that for
some j, g = g′− j ·Fk and thus also g′ = g+ j ·Fk. Based on the definition of H
we obtain that g′ ∈ H.

Hence, we have a method for obtaining the set of values with a smaller error
in a larger interval from the set of values with a larger error in a smaller interval.
Alternatively, we can describe this as a method for obtaining the set that contains
all the elements g′ from [a,b′] with |err(g′)|≤ α

′ from the set that contains all the
elements g from [a,b] with |err(g)|≤ α where b′−a >> b−a and α

′ << α .

94

This is formalized in Algorithm 21.

Algorithm 21: Recursion step
Data: G,α,α ′,a,b,b′,Fk
Result: Takes in the set G of elements g ∈ [a,b] that satisfy |err(g)|≤ α.

Also takes in Fk that satisfies Fk < b−a and

α
′+ err(Fk)b

b′−a
Fk
c ≤ α . The algorithm outputs the set G′ that

contains all the elements g′ in [a,b′] for which |err(g′)|≤ α
′.

1 foreach g ∈ G do
2 Hg←{g+ i ·Fk|g ∈ G,g+ i ·Fk ∈ [a,b′]}
3 H←∪g∈GHg

4 G′←{}
5 foreach h ∈ H do
6 if |err(h)|≤ α

′ then
7 G′← G′∪h

8 return G′

For all elements g of G we find the set Hg. Then we take the union over all
the Hg on line 3 and then find the elements with a sufficiently small error in that
set by checking every element on lines 4 to 7. We assume that parametres were
chosen in a way that this union is small enough and thus this step should be rather
fast.

This is the main tool for recursively finding the elements y with the smallest
|err(y)| from any interval [a,b]. However, there are still some technical problems
that must be answered. For example, how to choose the different constants such
as α and α

′, the Fk and b. In the beginning, we just have a possibly very large
interval [a,b] and we want to find either the element y with the smallest error or k
best elements for some small value of k.

Weyl’s equidistribution theorem suggests that if we pick consecutive integers
a,a+ 1, . . . ,b, then approximately 2(b− a)α of them have errors with absolute
values smaller than α , that is

(6.3)|{y ∈ [a,b]||err(y)|< α}|≈ 2(b− a)α.

However, Weyl’s equidistribution theorem does not say anything about the speed
of the convergence and, thus, we need a different result if we want to quantify
how well this intuition holds for different b−a and α .

For this we need the following definition.
Definition 5. Let [d0,d1, . . .] be the continued fraction representation of a real
number β . Let

pn

qn
be defined as [d0,d1, . . . ,dn]. We call qn the n-th partial quotient

denominator of β .
Note that for ϕ the partial quotient denominators are precisely the Fibonacci

numbers. We shall now give a result from [43] which it follows that if b− a is

95

a Fibonacci number Fk and α =
1
k

, then the equation in 6.3 holds with equality.

Also, for the sake of brevity, we will denote with m(x) the value x (mod 1), i.e,
the fractional part of x.
Lemma 9. [43] If β is an irrational number and q is a partial quotient denom-

inator of β , then every interval
[

i
q
,
i+1

q

)
contains precisely one of the points

(m(i ·β))q−1
k=0.

However, we would like that the claim would also hold if b− a is not a Fi-
bonacci number. Also, it would be useful to consider number systems that use
different irrational number instead of ϕ . We would like the claim also hold for
other values of β .

We now give a present a lemma that is helpful for estimating the distribution
of elements for the case when b−a is not necessarily a Fibonacci number.

Lemma 10. Let k ∈ Z+. Let
n

Fk
≤ 2α <

n+1
Fk

for some integer n. Let a,b,m, t

be such non-negative integers that b = a+mFk + t and let 0 ≤ t < Fk. Then
mn≤ |{y ∈ [a,b]||err(y)|≤ α}|≤ mn+2m+ t.

Proof. Let γ j :=(a+ jFk)ϕ . Let R j := {y∈ [a+ jFk,a+(j+1)Fk−1]||err(y)|≤
α} for j ∈ {0, . . . ,s−1}. Note that due to Lemma 9, every interval[

m
(

γ j +
i

Fk

)
,m
(

γ j +
i+1
Fk

)]
holds exactly one element of the set {m(yϕ) |y ∈ [a+ jFk,a+(j+ 1)Fk− 1]}.
Now note that the interval [−α,α] certainly contains n of these intervals and is
contained in n+ 2 of them. Thus we obtain that n ≤ |R j|≤ n+ 2. By summing
over all the R j and adding the final t points that do not belong in any of the R j, we
get that mn≤ |{y ∈ [a,b]||err(y)|≤ α}|≤ mn+2m+ t.

Note that the upper bound is not very strict here as for equality to be achieved,
all the last t points would have to lie in [−α,α], which is unlikely as the points
tend to be evenly distributed. However, as obtaining more accurate estimates is
not our goal, we will not give them.

Based on Lemma 10, we obtain the following estimate.
Corollary 2. Let k be such that F 2

k−1 < b− a ≤F 2
k and Fk ≥ 3. Let α < 0.5.

Then ||{y ∈ [a,b]||err(y)|< α}|−2(b−a)α|≤ 3Fk−2.

Proof. Let b = a+mFk + t where 0 ≤ t < Fk. Let n be such that
n

Fk
≤ 2α <

n+1
Fk

.

96

Now,
n

Fk
(mFk + t) ≤ 2(b−a)α ≤ n+1

Fk
(mFk + t). This simplifies to nm ≤

2(b−a)α ≤ nm+m+
(n+1)t

Fk
≤ nm+m+n+1.

Thus, |{y∈ [a,b]||err(y)|<α}|−2(b−a)α|≤m+n+1,2m+t. Hence, we are
interested in choosing a Fk in such a manner that would minimize both m+n+1
and 2m+ t. Note that m+n+1≤ m+1+2Fkα < m+2.

We can also rewrite the relationship between a and b as b = a+(m+1)Fk +
(Fk− t) which gives us b−a > (m+1)Fk. On the other hand F 2

k ≥ b−a, thus
F 2

k > (m+1)Fk which gives us m+1 < Fk.
Thus we get that m + n + 1 < m + 2 < Fk + 1 on one hand and 2m + t ≤

2Fk−2+t on the other. Assuming that Fk ≥ 3, we get that Fk+1≤ 2Fk−2+t.
Thus we obtain that |{y ∈ [a,b]||err(y)|< α}|−2(b−a)α|≤ 2Fk−2+ t.
Now note that as t ≤Fk, we get that

|{y ∈ [a,b]||err(y)|< α}|−2(b−a)α|≤ 3Fk−2.

Recall that we intend to call Algorithm 21 several times recursively in order
to find the set of results. Suppose that we want to find the k elements with the
smallest absolute errors in [a,b]. We cannot start the recursion with [a,b] as it
is too big. We need to start from some smaller interval that we can search with
brute-force.

Let the number of recursion steps be s. We will later estimate what the value of
s should be. We, thus, start with some small interval [a,bs] and a relatively large
maximal allowed error αs. At the first step we perform a brute-force search and
obtain a solution set Gs{y ∈ [a,bs]||err(y)|≤ αs} for that interval and maximal
allowed error. After that, we start recursively applying Algorithm 21. We use
Gi+1 as an input and obtain better sets of results Gi where the interval is larger
and the maximal allowed result is smaller. Note that if some intermediate set of
results Gi+1 is empty, then the algorithm stops and we have to restart it from some
previous point. This is undesirable. On the other hand, if some intermediate set
of results is too large, then it might be difficult to store it in the memory and also
Algorithm 21 may be too costly. Thus we must be careful when choosing the bi

and αi for the intermediate steps i. We also should estimate how large the original
bs and αs should be and how many recursion steps are needed.

We will now try to obtain estimates for these parametres. We start with the
interval [a,b0] and α0. We supposed that we want to find k elements Here b0 = b.

We now take α0 :=
k

2(b−a)
. By using Corollary 2 as an estimate, we can expect

that there are approximately k elements y with |err(y)|≤ α0 in [a,b].
We may also let α0 be slightly larger if we want to be more sure about obtain-

ing at least k elements with the corresponding error. We now need to find suitable

97

candidates for b1,b2, . . .bs and α1,α2, . . .αs which will respectively be the end-
points of the interval and the maximal allowed errors for the intermediate steps in
the recursive algorithm. Let us denote G j := {y ∈ [a,b j]||err(y)|≤ α j}.

We will start by finding Gs by brute force, as the interval [a,bs] should be small
enough to be searchable by brute force. Then, at every recursive step, we will find
G j by using G j+1 where we will be using the Fibonacci number Fk j . At the end
we will obtain G0 which is the desired result.

The main constraint that we will face here will probably be the space constraint

— we will need to keep
b j−a
Fk j

|G j+1| elements in memory. Let K be the number

of elements that we can comfortably store without loss of performance.
Given a b j, we shall always pick the largest possible Fibonacci number al-

lowed, thus making
b j−a

ϕ
≤Fk j ≤ b j−a. Seeing as |G j+1|≈ 2(b j+1−a)α j+1,

if 2ϕ(b j−a)α j ≤ K holds, then
b j−a
Fk j

|G j+1|≤ K also holds.

Thus,
b j−a
Fk j

|G j+1|≈ 2(b j+1−a)α j+1.

Suppose that we have found b j and α j. Now we need that

α j + |err(Fk j+1)|·
c j

Fk j+1

≤ α j+1.

Knowing estimates on err(Fk) and Fk, we get that this approximately simplifies
to

α j +

√
5c j

F 2
k j+1

≤ α j+1. (6.4)

As
1

c j+1
≥ 1

Fk j+1

≥ ϕ

c j+1
, we get that if

α j +

√
5c j

c2
j+1
≤ α j+1 (6.5)

holds, then Equation 6.4 also holds. Every step we will choose α j+1 :=
K

2ϕ(b j+1−a)

which gives (b j+1−a) =
K

2ϕα j+1
. Let us take d j :=

b j−a
b j+1

=
α j+1

α j
.

Then Equation 6.5 simplifies to d2
j

(
α j
√

5
K

)
−dα j +α j ≤ 0. This inequality

holds for values of d j that are in

K
(

1−
√

1− 8ϕ
√

5
K

)
2ϕ

,

K
(

1+
√

1− 8ϕ
√

5
K

)
2ϕ

.

98

Thus we take b j+1−a to be the largest Fibonacci number that is smaller than

(b j− a)
K
(

1+
√

1− 8ϕ
√

5
K

)
2ϕ

and α j+1 :=
K

2ϕc j+1
. Note that for Theorem 3 to

hold, it is necessary for α j+1 to be less than 0.5. If we compute α j+1 to be greater
than 0.5, we simply terminate the computation and use α j and bs as the starting
point.

Algorithm 22: Finding the base set for the recursive normalization-set-
finding algorithm

Data: K,a,b0,α0,L
Result: Takes in the number of elements K that can be easily stored without

loss of performance and the number of L for which brute-force
search takes an acceptably small time. Returns the set
G0 := {y ∈ [a,b0]||err(y)|≤ α0}.

1 j← 0
2 while b j−a≥ L do

3 b j+1← PrevFibo((b j−a)
K
(

1+
√

1− 8ϕ
√

5
K

)
2ϕ

)+a

4 α j+1←
K

2ϕ(b j+1−a)

5 if α j+1 ≥
1
2

then
6 break
7 Fk j+1 ← b j+1−a
8 j← j+1

9 G j←{}
10 for i = a; i≤ b j; i++ do
11 if |err(i)|≤ α j then
12 G j← G j ∪ i

13 while j > 0 do
14 j← j−1
15 G j← NormStep(G j+1,α j+1,α j,a,b j+1,b j,Fk j)

16 return G0

This can be thus summed up with Algorithm 22. We denote with PrevFibo(x)
the function that returns the largest Fibonacci number that is smaller than or equal
to x. We denote with Normset() the algorithm 21, with the corresponding input.
We first recursively compute the b j,α j and Fk j in the way as described above and
increase the counter j by one each step. We do this until b j−a is suitably small to

brute-force search it or when α j+1 would be greater than
1
2

. We then brute-force

99

search [a,b j] for elements y with |err(y)|≤ α j which we shall denote with G j. We
then recursively compute all the smaller G j, using G j+1 and the coefficients we
have computed before. In the end we obtain

G0 := {y ∈ [a,b0]||err(y)|≤ α0}

which is exactly what we were looking for.
We now have the method for obtaining the set G0 := {y∈ [a,b0]||err(y)|≤α0}.

However, this isn’t still enough provide us with a normalization set. We need to
first set a suitable [a,b0] and α0 for each 2i, then apply the algorithm 22, and then
to pick the right element from each G0.

One option is to let for each 2i the interval [a,b0] to be the interval [2i− `,2i +
`]. We can be sure that the elements y with the smallest |err(y)| will be in these
sets.

However, we do not have efficient methods for finding an optimal or near-
optimal solution if the pool of possible solutions is large for every 2i. Note that
in essence, this is an instance of integer programming. While it also has some
additional structure, we do not know how to use that in order to effectively obtain
a near-optimal solution.

Thus, we tried to keep the set of possible approximants small for every 2i rela-
tively small, choosing only 2 or 3 approximants for every 2i. After that, we applied
some regular integer programming techniques to obtain normalisation sets.

6.1.3. Second Normalization Method

Note that we assumed that we have to normalize after every multiplication. Be-
cause normalization is rather costly and introduces inaccuracy, we would prefer to
do it more rarely. We could do it more rarely if we cast our representatives to some
larger ring, perform several multiplications there and then do only one normaliza-
tion before converting back. However, because finding good normalization sets is
difficult, we can only do it for a smaller number of bigger rings, while it would be
preferrable to be able to specify the bigger ring size depending on the number of
multiplications we need to perform depending on the application. While it would
technically be possible to pre-compute normalization sets for a large number of
rings Z2n , the normalization value ` could also depend on the specification, and
thus one would have to compute a new normalization set for every new applica-
tion, which would be too resource-costly. Thus a normalization method where
less precomputation is needed would be good.

We now describe such a method for normalization. This is a method that only
works for secret-sharing based frameworks, due to it using some properties of
those frameworks. While it supposes that the value is secret-shared between two
parties, it can be also applied for other cases than 2-party secret-sharing as in
other cases, it is possible to use the ReshareToTwo primitive beforehand. The
method is based on how secret-sharing computation works. In essence, we note

100

that when the secret integer representative JaK is shared between two parties P0
and P1 with Pi holding ai so that a0 + a1 = a (mod 2n) then both of them can
normalize their shares locally and only minor modifications are needed for the
method to result in an (approximately) correct result. However, here we need to
pay attention on how we interpret a member of Z2n as a member of Z. There are,
of course, an infinite number of such interpretations, but usually, we use one fixed
interpretation and this question can be ignored. However, in this section, we need
to use two different interpretations, and thus we will recall the necessary notation
for those two interpretations.

Recall the function z : Z2n → Z that maps an element c ∈ Z2n to the member
of the residue class of c that is in the interval [0,2n− 1]. We also will use the
following helpful lemma the proof of which is trivial.
Lemma 11. Let c,d ∈ Z2n . If z(c)+ z(d) ∈ 2n, then z(c)+ z(d) = z(c+d). Oth-
erwise, z(d)+ z(d) = z(c+d)+2n.

Note that if some value e is additively 2-shared as (e0,e1), then this lemma
can be applied to it, with c = e0 and d = e1. Also recall the function t : Z2n → Z
that maps an element c ∈ Z2n to the member of the residue class of c that is in
the interval [−2n−1,2n−1−1]. Before, we simply used c instead of t(c) but as in
this subsection we need to deal with different conventions, we use this notation
to avoid confusion. A lemma similar to Lemma 11 holds, the proof of which is
similarly trivial.
Lemma 12. Let c,d ∈ Z2n . t(c)± t(d) = t(c± d) if and only if t(c)± t(d) ∈
[−2n−1,2n−1].

The following note follows directly from the definitions of t(c) and z(c)
Note 3. Note that if t(c) ≥ 0, then t(c) = z(c), otherwise t(c) = z(c)−2n. Like-
wise, if z(c)< 2n−1, then t(c) = z(c), otherwise t(c) = z(c)−2n.

Now we shall describe the method more precisely. Let there be a golden num-
ber a−ϕb that shall be normalized. We shall apply the ReshareToTwo(a) primi-
tive to obtain a sharing of a where only the first two parties hold nonzero shares.
The value b does not have to be shared between two parties.

Now let both parties hold their shares of a, a0 and a1, respectively. The method
now specifies threshold values `i for both parties. The role of these values is
similar to ` in the previous normalization method — it describes, how much a
value should be normalized. More precisely, suppose that we normalize (a,b) and
obtain the value (a′,b′) with the shares of a′ being a′0 and a′1. We require that
0≤ t(a′i)≤ `i for both P0 and P1 for the number to be correctly normalized.

The values of the `i depend on the desired specifics of the application. While
often it is reasonable for `0 and `1 to be equal, sometimes different values can
result in a better efficiency. Generally, we here assume that `= `0 + `1.

Let us only consider the case where t(a) is non-negative. We note that we can
apply the same protocol to −a for the negative case and obliviously choose the
correct option based on the most significant bit of a. While obtaining the most

101

significant bit is rather expensive, we have not found a cheaper option. Thus we,
from here on, presume that t(a) is non-negative.

Both parties Pi locally find pairs of numbers (xi,yi) so that z(xi)−ϕz(yi) ≈
0 and that 0 ≤ z(ai)− z(xi) ≤ `i. How this is done will be explained in more
detail later, but essentially, it can be done by deducing Fibonacci numbers until
the number obtained is smaller than `i.

Then they compute a′i := ai− xi and b′i := bi− yi and let the normalized value
be a′ = (a′0,a

′
1,0, . . . ,0),b

′ = (b′0,b
′
1,b2, . . . ,bM). Now we know that the value of

z(a′) is now no greater than `0 + `1 = `. However, whether the value of t(a)−
ϕt(b) is approximately equal to the value of t(a′)−ϕt(b′) depends on a value that
we call the overflow bit.

Namely, note that there are two possibilities for the pair (a0,a1) — either
z(a0)+ z(a1) = z(a) or z(a0)+ z(a1) = z(a)+2n. It is easy to see that other cases
are not possible. We shall see that if z(a0)+ z(a1) = z(a), then t(a)−ϕt(b) ≈
t(a′)−ϕt(b′), however, if z(a0)+ z(a1) = z(a)+2n, then either t(a)−ϕt(b) and

t(a′)−ϕt(b′) differ by about
2n

ϕ
or t(a)−ϕt(b) is already sufficiently normalized.

We have access to a primitive that returns us the overflow bit and thus we can use
that to obtain the correct result.

We shall see that the question whether t(a)−ϕt(b) and t(a′)−ϕt(b′) are ap-
proximately equal is equivalent to the question whether t(x)−ϕt(y) is approxi-
mately zero. This equivalence will be shown by the following three lemmas.

We will use the variables introduced before in this subsection in the context as
they have been assumed.

Namely, we will assume that a,a′,b,b′,a0,a1,a′0,a
′
1,x0,x1,y0,y1 ∈ Z2n and

`0, `1, `,ε0,ε1,ε ∈ R and that they satisfy the following properties: a0 + a1 = a,
`0+`1 = `, εi = z(xi)−ϕz(yi), ε = ε0+ε1, 0≤ z(ai)−z(xi)≤ `i, a′i := ai−xi and
b′i := bi− yi for i ∈ {0,1} and a′ = a′0 +a′1. We also assume |εi|<< 1.

We now give three lemmas that state that under certain fairly natural con-
straints, t(a′) = t(a)− t(x) and t(b′) = t(b)− t(y).
Lemma 13. Let the variables have the properties as as described above. Let
t(a)≥ 0. Then t(a′) = t(a)− t(x).

Proof. We know that t(a) ∈ [0,2n−1−1].
Thus t(x) ∈ [0,2n−1−1]. Thus t(a)− t(x) must lay in [−2n−1,2n−1−1]. The

claim follows from Lemma 12.

Lemma 14. Let the variables have the properties as as described above. Let
ϕ` < 2n−1.

Let t(a)≥ 0. Let z(a0)+ z(a1)< 2n.
Then t(b′) = t(b)− t(y).

102

Proof. As t(a) ∈ [0,2n−1), and |t(a)−ϕt(b)|≤ `(ϕ−1), we get that

t(b) ∈
[
−`(ϕ−1)

ϕ
,
2n−1 + `(ϕ−1)

ϕ

)
.

From t(a) ≥ 0, it follows that z(a) < 2n−1. Applying Lemma 11, we get
that z(a0)+ z(a1) < 2n−1. Thus 0 ≤ z(x0)+ z(x1) < 2n−1. Thus z(y0)+ z(y1) <
2n−1

ϕ
. Because z(y0)+ z(y1) ∈ [0,2n−1], z(y0)+ z(y1) = z(y) = t(y). Thus t(y) ∈[

0,
2n−1

ϕ

)
Combining these two estimates, we get that

t(b)− t(y) ∈
(
−`(ϕ−1)−2n−1

ϕ
,
2n−1 + `(ϕ−1)

ϕ

)
= (−2n−1,2n−1).

Now, due to Lemma 12, t(b−y) = t(b)−t(y). As b′= b−y, t(b′) = t(b)−t(y)
and hence the claim is proven.

Lemma 15. Let the variables have the properties as as described above. Let ` <
2n−1

ϕ + εϕ . Let t(a)≥ `. Let z(a0)+ z(a1)≥ 2n. Then z(y0)+ z(y1) ∈ [2n−1,2n)
and t(b′) = t(b)− t(y).

Proof. We begin by noting that because z(a0)+ z(a1) ∈ [2n + `,2n + 2n−1) and
0 ≤ z(ai)− z(xi) ≤ `i, then z(x0)+ z(x1) ∈ [2n,2n + 2n−1). From this we get that

z(y0) + z(y1) ∈
[

2n

ϕ
,
2n +2n−1

ϕ

]
⊂ [2n−1,2n) which is the first part of what we

needed to prove.
This also means that z(y0)+z(y1)= z(y)= t(y)+2n, due to Note 3. We also get

that z(x) = z(x0)+ z(x1)− 2n. Note 3 also gives us that t(a) = z(a). Now there

exists such a positive v such that z(y0)+ z(y1) =
2n

ϕ
+ v. Thus z(x0)+ z(x1) =

ϕ · (z(y0)+ z(y1))+ ε0 + ε1 = 2n + vϕ + ε .
As 0≤ z(ai)− z(xi)≤ `i, we get that

2n + vϕ + ε ≤ z(a0)+ z(a1)≤ z(x0)+ `0 + z(x1)+ `1 ≤ `+2n + vϕ + ε

Because of this and because of z(a) = z(a0)+ z(a1)−2n, we obtain that

z(a) ∈ [vϕ + ε, `+ vϕ + ε] (6.6)

Because z(a0)+ z(a1) ≥ 2n, z(a) ∈ [`,2n−1, thus t(a) = z(a) and is thus also in
[vϕ + ε, `+ vϕ + ε].

We know that |t(a)−ϕt(b)|≤ `(ϕ−1) and hence

t(b) ∈
[

t(a)− `(ϕ−1)
ϕ

,
t(a)+ `(ϕ−1)

ϕ

]
.

103

Plugging in that t(a) ∈ [vϕ + ε, `+ vϕ + ε], we obtain that

t(b) ∈
[

v+
ε

ϕ
− `

ϕ2 ,v+ `+
ε

ϕ

]
.

Thus

t(b)− t(y) ∈
[

v +
ε

ϕ
− `

ϕ2 − (
2n

ϕ
+ v− 2n),v + `+

ε

ϕ
− (

2n

ϕ
+ v− 2n)

]
=

[
− `

ϕ2 −
2n

ϕ
+ 2n +

ε

ϕ
, `− 2n

ϕ
+ 2n +

ε

ϕ

]
=

[
2n − `

ϕ2 +
ε

ϕ
,

2n

ϕ2 + `+
ε

ϕ

]
⊂ (0,2n−1)

(6.7)

Per Lemma 12, t(b)− t(y) = t(b− y) = t(b′). Hence the claim is proven.

Now, we combine these lemmas and obtain the following proposition.
Proposition 1. Let the variables have the properties as as described above. Let
ϕ` < 2n−1. Let t(a)≥ `. If z(a0)+z(a1)< 2n, then t(a)−ϕt(b) = t(a′)−ϕt(b′)+

ε . If z(a0)+ z(a1)≥ 2n, then t(a)−ϕt(b) = t(a′)−ϕt(b′)+
2n

ϕ
+ ε .

This proposition gives us a strategy for normalization. Namely, if 0 ≤ a ≤ `,
then we do not want to normalize. If z(x0)+ z(x1) < 2n, then parties P0 and P1
behave as described before — they simply replace their respective shares ai and bi

with a′i and b′i respectively. If z(x0)+z(x1)≥ 2n, then they should deduce a golden

number with a value equal to
2n

ϕ
. Naturally, they have to perform all three cases

and then use corresponding bits to obliviously choose between these options. This
will be formalized later. Now we will give the proof for the proposition.

Proof. Per the lemmas that were just proven, t(a′) = t(a)−t(x) and t(b′) = t(b)−
t(y). (Note that if ϕ` < 2n−1, then also ` < 2n−1

ϕ + εϕ and thus the prerequisite
is satisfied also for Lemma 15.) Thus t(a)−ϕt(b)− t(a′)−ϕt(b′) = t(x)−ϕt(y).

Now, consider the case when z(a0)+ z(a1) < 2n. We note that because 0 ≤
z(xi)≤ z(ai) then 0≤ z(x0)+z(x1)≤ z(a0)+z(a1)< 2n−1 and thus z(x0)+z(x1)=

z(x) = t(x). Clearly ε < ϕ , thus also z(yi) =
z(xi)

ϕ
− εi

ϕ
>−1 and because the z(yi)

have to be integers, we get that z(y0),z(y1) ∈ [0,2n−1) and thus z(y0)+ z(y1) =
z(y) = t(y). Now

t(x)−ϕt(y) = z(x0)+ z(x1)−ϕ(z(y0)+ z(y1)) = ε0 + ε1 = ε.

Thus, if z(a0)+ z(a1)< 2n, t(a)−ϕt(b) = t(a′)−ϕt(b′)+ ε .

104

Now, consider the case when z(a0)+ z(a1) ≥ 2n. Note that in this case also
z(a0)+ z(a1)≥ 2n + `. As 0≤ z(ai)− z(xi)≤ `i,

2n ≤ z(a0)+ z(a1)− `0− `1 ≤ z(x0)+ z(x1)≤ z(a0)+ z(a1)< 2n +2n−1.

Thus z(x0) + z(x1) ∈ [2n,2n + 2n−1] and hence z(x) = z(x0) + z(x1)− 2n. Thus
z(x) ∈ [0,2n−1) and hence t(a) = z(a). Thus, t(x) = z(x0)+ z(x1)−2n.

On the other hand, Lemma 15 also gave us that z(y0)+z(y1)∈ [2n−1,2n). Thus
z(y) = z(y0)+ z(y1) and t(y) = z(y)− 2n = z(y0)+ z(y1)− 2n. Combining those
we obtain that, if z(x0)+ z(x1)≥ 2n, then

t(x)−ϕt(y) = z(x0)+ z(x1)−2n−ϕ · (z(y0)+ z(y1)−2n) =
2n

ϕ
+ ε.

Thus the claim is proven.

Now let us consider the two more questions that must be solved for the argu-
ment to work — how exactly do the parties find the pairs (xi,yi) and how do we

safely deduce
2n

ϕ
from the result.

We shall explain now how to find the numbers (xi,yi) with the desired proper-
ties. Note that while this can be done locally and thus we can more easily perform
operations that would be expensive otherwise, we still should have a reasonably
efficient algorithm for that. Here we use the fact that the number Fn−ϕFn−1 is
very small, more precisely, it is equal to (−ϕ)−k, as shown in 6.2. Thus, the
party Pi starts deducing as large Fibonacci numbers from ai as possible. This is
formalized in Algorithm 23.

We choose the first Fk to be such that Fk ≤ a < Fk+1. A simple calculation
shows that this is equivalent to k = blogϕ a+ logϕ

√
5c. We then start trying to de-

duce smaller Fibonacci numbers until a is no greater than ` and remember the sum
of the Fibonacci numbers that we deduce. Note that if parties locally perform this
operation as has been described until now, it opens up a timing attack. Namely,
for some values of a logarithmically many comparisons and subtractions need to
be made whereas for others less are needed (e.g in the case when a < `). Thus
this problem should be corrected for in that every call of the algorithm would take
the same amount of time. Since this requires only a small amount of very simple
arithmetic, the time can be upper-bounded by some small amount of time p. Thus

105

the algorithm returns the result only when the time p is over.

Algorithm 23: LocalFiboApproximator
Data: Gets in a positive integer a and a positive parameter ` and a timing

parameter p.
Result: Finds (x,y) so that 0≤ a− x≤ ` and x−ϕy≈ 0

1 k← blogϕ a+ logϕ

√
5c

2 (x,y)← (0,0)
3 while a > ` do
4 if a≥Fk then
5 a← a−Fk
6 x← x+Fk
7 y← y+Fk−1

8 k← k−1

9 delayuntil(p)
10 return x,y

Now let us consider how to deduce
2n

ϕ
. We note that this is a value much larger

than we usually allow for (i.e larger than `(ϕ−1)) and thus we should be cautious
about which of the claims we have proven we can use.

We thus need a pair of integers (c,d) with the following properties: if the
variables are defined as above and z(a0)+z(a1)≥ 2n, then t(a′+c)−ϕt(b′+d)≈
t(a)−ϕt(b) and t(a′+ c) ∈ [−`,`].

Thus we need that t(c) ∈ [−`,0]. We will show that if t(c) ∈ [−`,0] and t(c)−
ϕt(d) ≈ −2n

ϕ
, then the pair (c,d) has the desired properties. We measure how

far t(c)−ϕt(d) is from −2n

ϕ
with ε̄ . While the proposition requires only that

`± ε− ε̄

ϕ
< 2n−1 holds, (which is true for any practical values of `, ε and ε̄ , as

` << 2n−1 and ε, ε̄ << 1) the ε̄ introduces an additional error term and thus it is
desirable to keep it small.
Proposition 2. Let the variables be defined as in above. Let c,d ∈ Z2n be such

that t(c) ∈ [−`,0] and t(c)−ϕt(d) =
2n

ϕ
+ ε̄ where is such that `± ε− ε̄

ϕ
< 2n−1

holds.Let ϕ` < 2n−1. Let t(a)≥ `.
Let z(a0)+ z(a1)≥ 2n.
Then t(a′+ c) ∈ [−`,`] and t(a′+ c)−ϕt(b′+d) = t(a)−ϕt(b)+ ε̄− ε .

Proof. Note that as t(c) ∈ [−`,0] and t(a′) ∈ [0, `], thus t(a′)+ t(c) ∈ [−`,`] ⊂
[−2n−1,2n−1) and thus t(a′+ c) = t(a′)+ t(c) ∈ [−`,`], thus obtaining the first
thing we needed to prove.

For the second, we note that if t(a′+ c) = t(a′)+ t(c) and t(b′+d) = t(b′)+

106

t(d) then

(6.8)

t(a′ + c)− ϕt(b′ + d) = t(a′) + t(c)− ϕ(t(b′) + t(d))

= t(a)− ϕt(b)− 2n

ϕ
− ε +

2n

ϕ
+ ε̄

= t(a)− ϕt(b) + ε̄ − ε

Thus we need to show that t(a′)+ t(c), t(b′)+ t(d)∈ [−2n−1,2n−1) for the second
part.

We already showed that t(a′)+ t(c) ∈ [−2n−1,2n−1) above. Now, we know
that

t(d) =
t(c)
ϕ
− 2n

ϕ2 −
ε̄

ϕ
∈
[
−2n

ϕ2 −
`

ϕ
− ε̄

ϕ
,
−2n

ϕ2 −
ε̄

ϕ

]
.

For t(b′) we know that t(b′) = t(b)− t(y) and Equation 6.7 gives us that

t(b)− t(y) ∈
[

2n− `

ϕ2 +
ε

ϕ
,

2n

ϕ2 + `+
ε

ϕ

]
.

Thus we get that t(b′)+ t(d) ∈ [−`+ ε− ε̄

ϕ
, `+

ε− ε̄

ϕ
]⊂ [−2n−1,2n−1] and hence

t(b′+d) = t(b′)+ t(d). Hence the claim is proven.

107

Algorithm 24: GoldenNorm2Pos
Data: Gets in a golden section number (JaK,JbK), integers c,d such as

described in Proposition 2 and bounding coefficients , `0 and `1. Also
gets in the timing parameter p. We assume a≥ ` where `= `0 + `1.

Result: Returns the golden number Ja′K,Jb′K so that a−ϕb≈ a′−ϕb′.
1 JaK← ReshareToTwo(JaK)
2 for i = 0,1 do
3 (xi,yi)← Fibo(ai, `i, p)
4 a

′
i← ai− xi

5 b
′
i← bi− xi

6 JoK← Overflow(Ja′K)
7 Ja′K← Ja′K+ JoK · c
8 Jb′K← Jb′K+ JoK ·d
9 return Ja′K,Jb′K

Algorithm 25: GoldenNorm2
Data: JaK,JbK,c,d, `0, `1,k
Result: Given a golden section number and a normalization pair, returns the

number normalized according to the pair.
1 begin in parallel
2 (Ja

′
K,Jb

′
K)← Posnorm(JaK,JbK,c,d, `0, `1)

3 (−Ja
′′
K,−Jb

′′
K)← Posnorm(J−aK,J−bK,c,d, `0, `1)

4 `← `0 + `1
5 begin in parallel
6 J f0K← LTEProtocol(JaK,J`K)
7 J f1K← LTEProtocol(J−`K,JaK)

8 (JaK,JbK)← ObliviousChoiceProtocol(J f0K,(JaK,JbK),(Ja
′
K,Jb

′
K))

9 (JaK,JbK)← ObliviousChoiceProtocol(J f0K,(Ja
′′
K,Jb

′′
K),(JaK,JbK))

10 return JaK,JbK

The algorithm is formalized in Algorithms 24 and 25. We shall refer to Al-
gorithm 24 as Posnorm(JaK,JbK,c,d, `0, `1). It intakes a golden section number
a−ϕb and a pair of integers c and d that satisfies the conditions described in the
Proposition 2 and also `0 and `1. We assume a≥ `.

We first reshare JaK to two parties in the sense that only the first two par-
ties hold nonzero shares. Then parties P0 and P1 call out Algorithm 23 and ob-
tain pairs (xi,yi) and (a′i,b

′
i) with the properties described above. We then use

Overflow(Ja′K) to obtain the overflow bit of Ja′K — i.e the bit that describes
whether z(a

′
0)+ z(a

′
1)< 2n or not.

After that we use the overflow bit to deduce (c,d) if necessary. If a ≥ `, then
this gives us the correct result. If −` < a < `, then we do not have to normalize.

108

Thus, we need to only deal with the case where a≤−`. In that case, however, it
is easy to see that −a ≥ ` and thus we can instead normalize (−a,−b). This is
summed up in Algorithm 25.

We now apply the Posnorm twice and compute Posnorm(JaK,JbK,c,d, `0, `1)
and−Posnorm(J−aK,J−bK,c,d, `0, `1) in parallel. After that we compare JaK to `
and −`. Based on that result, we obliviously pick either one of those or leave the
pair (JaK,JbK) unchanged.

6.1.4. A Variation on The Second Method

Note that while the second method greatly reduced the need to find specific con-
stants, we still have to find the pair (c,d) that depends on both 2n and the bound `.
We propose a slight modification of the second method where no constants would
need to be precomputed. Namely, instead of the ring Z2n we will use the ring ZFk .
Most of the things would be the same, if we only replace 2n with Fk everywhere.

Thus, instead of the equation 6.9 we will have

(6.9)

x0 + x1 −Fk − ϕ(y0 + y1 −Fk)

= x0 − ϕy0 + x1 − ϕy1 − (Fk − ϕFk)

≈ −(Fk − ϕFk)

≈ Fk−1.

Thus we can take (−Fk−1,0) for (c,d), computing of which takes practically no
time.

6.2. Why ϕ?

We note that the golden numbers are essentially built on the equality ϕ
2 = ϕ +1

which allows us to reduce the product of

(a0−ϕb0) · (a1−ϕb1) = a0a1−ϕ(a0b1 +b0a1)+ϕ
2b0b1

to
(a0a1 +b0b1)−ϕ(a0b1 +b0a1−b0b1).

However, any irrational number γ that satisfied an equality γ
2 = uγ + v where u

and v are small integers would allow us to perform an analogous reduction. Thus
we could build a similar number scheme out of such real numbers γ . The aim of
this section is to discuss this possibility and why we chose ϕ specifically.

First note that technically, we are not even bound to require that γ must satisfy
γ

2 = uγ +v for some u,v ∈ Z for the multiplication scheme to work. γ could also,
for example, satisfy some γ

3 = uγ
2 + vγ +w or even another polynomial with a

higher degree.
However, in that case we would have to deal with not only the integer represen-

tative and the γ-representative, but also the γ
2-representative, and, depending on

109

the degree of the polynomial, possibly with even more representatives. The prob-
lem with this is that with three or more representatives, it would be more difficult
to obtain a result similar to Lemma 3 — suppose that we are dealing with such
a situation with three representatives a,b and c. Now, even if the absolute value
of one of these three is bounded, and the value of the real number it represents
is also bounded, it is possible that the other two can have values with arbitrarily
large absolute values. For example, if we are talking about numbers in the format
a+ bγ + cγ

2, then we could have a = 0 and a+ bγ + cγ
2 ≈ 0, but also b ≈ −cγ ,

with b being as large as the number format permits.
Thus, when we would want to normalize such numbers, we would have to nor-

malize at least two of the representatives simultaneously. While this is possible, it
is more resource-consuming.

Let us for now consider only the solutions to equations x2 = ux+ v with u
and v being small integers. There are several things we would want out of such
solutions γ . Let us for now denote with γu,v,0 and γu,v,1 the solutions to the equation
x2 = ux+ v. Let γu,v,· refer to both of them.
• It is well known that a solution to a quadratic equation with integer coeffi-

cients such an equation must be either an integer, an irrational real number,
or a complex number with a nonzero imaginary part. While it is perhaps
possible to depict complex numbers using a number system similar to this,
it is not our current goal. On the other hand, if the γu,v,· are integers, then
our number system is not able to represent non-integers at all, making it
useless. Thus, the γu,v,· must be irrational real numbers.
• There should be many good rational approximations to the γu,v,·. The er-

ror of normalization directly depends on how good the approximations that
make can be. In this aspect, ϕ does not perform well. It is known [42] to be
the worst irrational number to rationally approximate.
• In addition to good rational approximations existing, it should not be too

difficult to compute them. In the case of ϕ , Fibonacci numbers have proved
useful in several aspects, such as finding normalization sets and proving
statements about them.
Thus it would be useful if the number γ had some similar integers with
similar properties to the Fibonacci numbers.
Pisot numbers are defined to be positive numbers greater than 1 whose all
conjugate elements are smaller than 1. They have the property that their
powers are almost integers [57]. This property makes it easy to compute
some rational approximations and proves useful in other places. ϕ is a
Pisot number. Other Pisot numbers, such as the plastic constant 1.32472 . . .
might prove useful in this aspect.
• The larger u and v are, the larger multiplication will make the representa-

tives. Note that the multiplication becomes

110

(6.10)(a0 + γb0)(a1 + γb1) = a0a1 + γu,v(a0b1 + b0a1) + γ
2
u,vb0b1

= a0a1 + ub0b1 + γu,v(a0b1 + b0a1

+ vb0b1).

If u and v are too large, then the multiplication amplifies the results too
much and the respective value of ` must be significantly smaller, thus re-
ducing other good properties that a number system might otherwise have.
In the case of ϕ , the constants u and v are small.
• We want the set {a+bγu,v|a,b ∈ Z, |a|, |b|≤M} to be as equidistributed as

possible to obtain good granularity. Measuring this, however, turns out to
be nontrivial. We decided to measure it by measuring the largest difference
between two consecutive γ-section numbers in [0,1). To measure this we
introduce the function b(γ,n).
Definition 6. Let γ be irrational and n be a positive integer. Let the numbers
ai := i · γ (mod 1) with 0≤ i≤ n. Let {a′i}n

i=0 be the permutation of the set
{ai}n

i=0 that is in the ascending order. (that is, a′i < a′j if and only if i < j)
We define the function b(γ,n) as

b(γ,n) = max0<i′≤n({a′i−a′i−1}) (6.11)

This value seems like a natural measurement for granularity. We took the
idea for using such a measurement from [37] however, we were not able to
reproduce the results given there.
The problem with this measurement and also other types of measurements
we tried is that it is very dependent on the value n in a quite discontinuous
way. The maximum distance stays constant until another point is inserted
into the largest interval at which point another interval becomes the largest
one. It is essentially a decreasing step function. Thus one might want to
characterize γ by observing the average length of the steps and by how much
on average b(γ,n) decreases at every step. Concerning how the number of
the intervals goes up, it is rather natural that it takes longer to hit the largest
interval. It is desirable that the length of the steps would increase slowly
and that b(γ,n) would decrease quickly.
We ran tests for several γu,v,· with small u,v and observed the following in-
teresting pattern. The two parametres described seem strongly linked —
their product appears to be very close to 1 for every number we tested. In
this way, no number we tested appears to be better than the others. Notably,
for ϕ the step lengths increased most, and the b(γ,n) decreased quickest.
We also proved the following lemma to note that behaviour of partial quo-
tient denominators bounds granularity.
Lemma 16. Let q1 and q2 be two partial quotient denominator of α so that

q1 < q2.Then for any q1 ≤ p≤ q2, it holds that
1
q2
≤ b(α, p)≤ 2

q1
.

111

Proof. Let q1 ≤ p≤ q2. It is clear that if we place q1 points on [0,1), then

there must be two consecutive points with difference
1
q1

.

Namely, note that if r0,r1 . . . ,rq1 are the ordered points in [0,1), then

1 = (r1− r0)+(r2−21)+ · · ·+ rq1− rq1−1 + r0− rq1 (mod 1)≤ q1b().

By Lemma 9, every interval
[

i
q1

,
i+1
q1

)
contains precisely one of the points

(i ·α)q2−1
k=0 . Thus the difference between two consecutive points can be at

most
2
q1

6.3. Protocols for Golden Section Numbers

We shall now describe a few protocols for golden section numbers. These give
ideas how the golden section numbers can be used. We have already described
addition, multiplication, and normalization protocols, and thus we will not discuss
them any further here.

For normalization, we do not specify everywhere which normalization method
exactly we use. Generally, the first method gives us better precision while the
second one is faster and more flexible as less precomputation is necessary to find
constants needed for normalization. Thus, for example, if we need to perform
several consecutive multiplications, we can find such a ring ZK so that we can be
sure that overflow would not happen, convert the multiplicands to ZK and perform
the multiplications there. Then, we could find normalization constants for ZK ,
normalize the value there and convert back to the original ring. We assume four-
field signed fixed-point numbers in this part.

It is somewhat complicated to compare the efficiency of multiplication to, for
example, fixed-point or floating-point multiplication. The multiplication itself
is a fast operation, requiring only four parallel integer multiplications and some
summation, however, after a number of multiplications, we need to normalize the
value.

To obtain some standard approach, we shall assume that all the inputs that we
get to a multiplication protocol are normalized and that we have to normalize the
output.

6.3.1. Multiplication by ϕ

We will start by describing a sub-protocol that we will often use. We will describe
now a protocol for multiplying an integer by the golden ratio. This protocol,
presented in Algorithm 26, will be useful for performing golden-to-fix conversion

112

described in Section 10.
Algorithm 26: MultWithPhi

Data: Gets in a secure signed integer JxK, with n bits and the fixed-point
parameter m (where m > n), bits of ϕ denoted with {pi}∞

i=0
Result: Returns the fixed-point number JxϕK where the underlying integer

type has n+m bits and the radix point is m.
1 {JxiK}n−1

i=0 ← BitExtract(JxK)

2 Js0K←
m

∑
i=0

pi · (
n−2

∑
j=0

Jx jK ·2m+ j−i)

3 Js1K←
m+n

∑
i=m+1

pi · (
n−2

∑
j=i−m

Jx jK ·2m+ j−i)

4 JsK← Js0K+ Js1K
5 {Jx′iK}n−1

i=0 ← BitExtract(J−xK)

6 Js′0K←
m

∑
i=0

pi · (
n−2

∑
j=0

Jx′jK ·2m+ j−i)

7 Js′1K←
m+n

∑
i=m+1

pi · (
n−2

∑
j=i−m

Jx′jK ·2m+ j−i)

8 Js′K← Js′0K+ Js′1K
9 JrK← ObliviousChoice(Jxn−1K,Js′K,JsK)

10 return (Jxn−1K,JrK)

The protocol takes in a secret n-bit signed integer JxK and returns a signed
fixed-point number J f xϕK where the underlying integer type has m+ n bits and
the radix-point is m. This protocol needs one bit-extraction protocol and one
oblivious choice. We start with a secret signed integer JxK. We also have the

bits of ϕ which are denoted here by {pi}∞
i=0 with ϕ =

∞

∑
i=0

pi · 2−i. We begin by

extracting the bits JxiK from the input JxK on line 1. For now, suppose that x is
non-negative and thus the most significant bit is zero. We want to compute the
representative of the product of ϕ and JxK, thus we would like ideally to compute

2m(
−∞

∑
i=0

pi2−i)(
n−2

∑
j=0

Jx jK2 j)=
∞

∑
i=0

pi(
n−2

∑
j=0

Jx jK2m+ j−i). We operate on integers and thus

compute instead
∞

∑
i=0

pi(
n−2

∑
j=0

Jx jKb2m+ j−ic). Note that if i > m+n, then

n−2

∑
j=0

(Jx jKb2m+ j−ic) = 0,

if m+1≤ i≤ m+n, then
n−2

∑
j=0

(Jx jKb2m+ j−ic) =
n−2

∑
j=i−m

Jx jK2m+ j−i,

113

and if 0≤ i≤ m, then

n−2

∑
j=0

(Jx jKb2m+ j−ic) =
n−2

∑
j=0

Jx jK2m+ j−i.

All of these can be computed relatively easily.

We thus, on lines 2 to 4 compute
m

∑
i=0

pi ·

(
n−2

∑
j=0

Jx jK ·2m+ j−i

)
+

m+n

∑
i=m+1

pi ·

(
n−2

∑
j=i−m

Jx jK ·2m+ j−i

)
that represents xϕ if x is positive. We then do the same for −x on lines 5 to 8 and
obliviously choose between the two cases based on the most significant bit of x
on line 9. The most significant bit of x is also the sign of the resulting fixed-point
number, as multiplication with ϕ does not change the sign.

Conversion to a Fixed-Point Number. Algorithm 27 presents the protocol for
converting a golden section number to a fixed-point number.

Algorithm 27: GoldToFix
Data: Gets in a secret golden number (JaK,JbK) where the underlying

integers are n-bit integers and the fixed-point parameter m (where
n > m)

Result: Returns a fixed-point number that represents the same value as the
golden number input JaK−ϕJbK. The underlying integer of the
fixed-point number has n+m bits and its radix point is m.

1 JAK← ConvertUp(JaK,n,n+m)
// we will also obtain an−1 as a side product from the

ConvertUp function.
2 J f AK← (Jan−1K,JaK ·2m)

3 J f BK←MultWithPhi(JbK,n,m)

4 J fCK← FixSubtract(J f AK,J f BK)
5 return J fCK

While conversion functions are important on their own, here we will also use
them as subprotocols in more complicated algorithms. Since we have access to
MultWithPhi function, converting a golden number to a fixed-point number is
trivial. We need to convert both the integer representative and the ϕ-representative
to a respective fixed-point number and deduce the second from the first.

Return a Constant Based on the Floor of The Logarithm. We will see that in
both the inverse protocol and the square root protocol, we get a secret golden
number JgxK and, based on the interval [2i,2i+1) its absolute value is in, return a
golden number JgziK.

114

The protocol for performing this operation is presented in Algorithm 28.

Algorithm 28: TwoPowerConst
Data: JgxK,{gzi}= {(xi,yi)},n,m < n
Result: Will return the sign of the input and (x j,y j) if |x|∈ [2 j,2 j+1).

1 JsignK,J f K← GoldToFix(JgxK)
2 {JbiK}n+m−1

i=0 ←MSNZB(J f K)

3 (JsK,JtK)←
n−1

∑
i=−m

(JbiK · xi,JbiK · yi)

4 return JsignK,(JsK,JtK)

The computation is performed the following way. We convert the input to a
fixed-point number. Note that the interval [2 j,2 j+1) where the absolute value is
described by the most significant nonzero bit of the representative of the fixed-
point number. We thus then perform MSNZB on the integer representative of the
fixed-point number and compute the scalar product with the set of public coeffi-
cients {gzi}, thus obtaining (x j,y j).

Inverse. We shall now describe the protocol for computing the inverse of a
secret golden number JgxK. A protocol for computing the inverse of numbers in
[0.5,1] is presented in Algorithm 29. It uses the approximation

1
x
= ∏

(
(1− x)2i

+1
)

that works well in the neighbourhood of 1 (being equivalent to the respective
Taylor series). We refer to it as HalfToOneInv .

Algorithm 29: HalfToOneInv
Data: Gets in a golden section number JgxK where (x ∈ [0.5,1]) and integers

n,m, and k where (n > m)-

Result: Returns the golden section number Jg 1
x
K the value of which is

approximately equal to
1
x

.

1 JgyK← 1− JgxK
2 Jgy0K← JgyK
3 for i← 0 to k−1 do
4 Jgyi+1K← GoldenMult(JgyiK,JgyiK)

5 JgzK← GoldenProd(Jgy0K+1,Jgy1K+1, . . . ,JgykK+1)
6 return JgzK

The protocol for computing the inverse of a golden number is presented in

115

Algorithm 30.

Algorithm 30: GoldInv
Data: Gets in the secure golden section number JgxK integers n and m (with

n > m), and constants {(xi,yi)}.
Result: Returns the golden section number Jg 1

x
K the value of which is

approximately equal to
1
x

.

1 (JsignK,JgyK)← TwoPowerConst(JgxK,{gzi})
2 Jgx′K← GoldenMult(JgxK,JgyK)
3 JgzK← HalfToOneInv(Jgx′K)
4 JgwK← GoldenMult(JgyK,JgzK)
5 JguK← ObliviousChoice(JsignK,−JgwK,JgwK)
6 return JguK

We use Algorithm 29 as a subprotocol. Given gx as an input, we need to find
gx′ and gy so that x′ ∈ [0.5,1] and that x ·y= x′. We can then use the HalfToOneInv

function to compute
1
x′

=
1
x
· 1

y
which we shall then multiply with y to obtain

1
x

.

We note that if |x|∈ [2 j,2 j+1), then |x|·2− j−1 is in [0.5,1] which would thus be a
suitable value for |x′|— hence y should be 2 j−1.

We compute y using the function TwoPowerConst(JgxK,{gzi}). Here the gzi

are approximations of different powers of 2 – when x∈ [2 j,2 j+1), then TwoPowerConst
should return approximately 2− j−1.

Thus we obtain the following algorithm. We first compute Jgx′K by multiplying

JgxK and JgyK. We then use the HalfToOneInv protocol on Jgx′K, obtaining Jg 1
x′

K.

To get this back to the correct range, we multiply it by JgyK.

Finally, since our current result is approximately Jg
∣∣∣∣ 1
x′

∣∣∣∣K, we have to make an

oblivious choice between the result and its additive inverse so that it would have
the correct sign.

116

Square Root Protocol. Algorithm 31 presents the protocol for finding the square
root of a golden section number.

Algorithm 31: GoldSqrt
Data: Gets in a secret golden section number JgxK. The underlying integer

type has n bits. Uses fixed-point numbers with n+m bits and radix
point m as an ancillary data type. Does k rounds and uses the
constants {gwi}.

Result: Returns the secret golden section number Jg√xK the value of which
is approximately equal to

√
x.

1 Jgy0K← TwoPowerConst(JgxK,{gwi})
2 for i← 0 to k−1 do
3 Jgz0K← GoldenMult(JgyiK,JgxK)
4 Jgz1K← GoldenMult(JgyiK,Jgz0K)
5 Jgz1K← 3− Jgz1K
6 Jgz2K← GoldenMult(JgyiK,g 0.5)
7 Jgyi+1K← GoldenMult(Jgz1K,Jgz2K)

8 JgwK← GoldenMult(JgxK,JgykK)
9 return JgwK

The protocol is following. We first compute the inverse square root of the input

x and then multiply it with x. There exists an iterative algorithm for
1√
x

where the

formula for the nth approximation is yn+1 = 0.5yn(3− xy2
n). The reason why we

use inverse square root to compute square root is that general iterative methods
for square root need division, which is too costly in our setting.

To obtain the starting approximations, we shall use the function TwoPowerConst

where the constants are 2
i
2 – if x ∈ [2 j,2 j+1), the function will return 2

j
2 . We then

iteratively compute yn+1 = 0.5yn(3− xy2
n) k times, thus obtaining an approxima-

tion of
1√
x

. In the end, we will multiply J
1√
x
K with JxK, obtaining J

√
xK.

117

7. RESULTS AND CONCLUSIONS

7.1. Benchmarking

We have implemented and benchmarked most of the protocols given in this thesis.
In this chapter we give benchmarks for our implementations. One must note that
the benchmarks have been run on fairly different settings. Thus while we can put
some data on the same graph, it would not give a fair overview on the relative
effectiveness of the different methods, as they were not run on the same condi-
tions. Also, the methods have different precisions. Most importantly, we should
note that the golden number algorithms were run using the PDSL optimizer in
a domain-specific language that gave large gains for all algorithms it was run on.
For example, the optimizer made floating-point multiplication up to 14 times more
efficient [59, p.119]. For fairness, we compare golden number multiplication with
multiplications of other data types that have been optimized with the same engine.

It would not be possible to apply the PDSL algorithms to all of the methods,
as the point-counting methods are built in such a way that the algorithms obtained
can not be optimized with the PDSL algorithm. The reason behind this is that the
optimizer works on the dependency graph of the algorithm and the dependency
graphs of the algorithms that use point-counting methods are relatively large and
thus applying those methods to point-counting algorithms in infeasible.

7.1.1. Hybrid Method Benchmarking

For the hybrid method the four described functions were implemented on Share-
mind 3 computing platform that uses 3-additive secret sharing and the implemen-
tations were benchmarked. To measure the performance of the floating point op-
erations the developed software was deployed on three servers connected with fast
network connections.

More specifically, each of the servers used contains two Intel X5670 2.93 GHz
CPUs with 6 cores and 48 GB of memory. They were connected with 1 Gbps
Ethernet connection. Since on Sharemind parallel composition of operations is
more efficient than sequential composition, all the operations were implemented
as vector operations. To see how much the vector size affects the average perfor-
mance, we ran tests for different input sizes for all our inputs. The results given
are the amortized costs — for example, if it took 3500 microseconds to evaluate
a 1000 instances of an operation, then the amortized cost for that operation is 3.5
microsecond. We did 5 tests for each operation and input size and computed the
average.

Note that for the square root protocol we applied the Correction algorithm to
only one side due to not taking into account the case where the result would be
ill-formed when the input was zero. However, this requires only one more secure
multiplication which is performed in parallel with another multiplication, which
is a very small cost when compared with the overall cost of the protocol.

118

7.1.2. Point-Counting Benchmarking

We implemented three functions – inverse, square root and logarithm using the
point-counting technique. All three computing nodes for the Sharemind platform
that we used contained two Intel X5670 2.93 GHz CPUs with 6 cores and had 48
GB of RAM. They were connected with 1 Gbps Ethernet connection. Although
we optimized the methods concerning round-efficiency, total communication cost
became the deciding factor for efficiency. Since these methods were designed to
fully use the communication capacity of channels, communication cost is propor-
tional to time. We performed tests for 32-bit numbers and 64-bit numbers as the
basic integer data type, and with different precision levels. To see how vector size
affects the performance, we ran tests for different vector sizes. We performed 20
tests for every value given here for the inverse, square root and the Gaussian error
function and 10 tests for every value for the logarithm and averaged the result.

We chose the precision parameters for square root and inverse for the following
reasons. We wished to have a near-maximal precision for both 32-bit and 64-bit
numbers but for practical reasons, we implemented the method for 30 or 62 bits
of precision. We also ran tests for 16 bits of precision for 32-bit numbers and 32
bits of precision for 64-bit numbers. These precisions are approximately half of
the near-maximal precision but also close to the precisions of the corresponding
functions computed with the hybrid method.

Comparing these benchmarks with the near-maximal precision we can see how
doubling the number of bits for precision also approximately doubles the execu-
tion time. Based on the nature of the protocol, we can also assume that this pattern
also holds more generally — when a protocol with n bits precision would take
time t, then the same protocol would take time 2t for 2n bits of precision. Con-
sequently, this protocol can be used with reasonable efficiency for applications
needing very high precision. Verifying this conclusion assumes implementation
of our algorithms on a platform providing 128-bit primitive types, so this remains
the subject for future research.

We can also see that for 64-bit numbers, the performance for vector size 10000
is poorer than for vector size 1000. This happens because for 64-bit numbers,
the number of maximal possible comparison operations that can be efficiently
performed in parallel is smaller than 10000 and thus we have to perform more
operations in a round than can be efficiently computed in parallel.

As for the logarithm, we implemented a logarithm function for 32-bit and 64-
bit fixed-point numbers, although only for positive logarithms. We have reason to
believe though, that as computing both positive and non-positive logarithms only
means extending the starting interval somewhat, this would not lead to a notable
decrease in performance.

Our implemented methods had precisions of 2−15 and 2−31, respectively, due
to the respective radix-point used — for the radix-point used, higher precision
was not possible. We can see that while the method proposed by Aliasgari et al

119

can achieve very high precision due to the nature of the floating-point data type,
the point-counting method is faster, and for larger vector sizes, faster by several
orders of magnitude.

7.1.3. Golden Numbers Benchmarking

We have implemented golden section numbers on the SHAREMIND SMC plat-
form. We chose SHAREMIND because of its maturity, tooling, and availability of
fixed-point and floating-point numbers. As existing number systems were already
implemented using SHAREMIND’s domain-specific language [49], we decided to
also use it for the golden section representation. The protocol language provides
us with directly comparable performance and allows to avoid many complexities
that a direct C++ implementation would have.

Performance measurements were made on a cluster of three computers con-
nected with 10Gbps Ethernet. Each cluster node was equipped with 128GB DDR4
memory and two 8-core Intel Xeon (E5-2640 v3) processors, and was running De-
bian 8.2 Jessie with memory overcommit and swap disabled.

To provide a clear overview of accuracy and speed trade-offs, we measured the
performance of golden section numbers on multiple bit-widths. Generally, higher
bit-widths offer us better accuracy for the cost of performance.

We implemented three versions of golden numbers — where the underlying
integers were 32-bit, 64-bit, and 128-bit integers respectively. A golden section
number where the underlying integer type has n bits provides comparable accu-
racy to n-bit fixed-point numbers with radix point at bn/2c.

Accuracy was measured experimentally, by identifying the range of inputs in
which the largest errors should be found, and then uniformly sampling this range
to find maximum error.

Performance measurements were made on a cluster of three computers con-
nected with 10Gbps Ethernet. Each cluster node was equipped with 128GB DDR4
memory and two 8-core Intel Xeon (E5-2640 v3) processors, and was running De-
bian 8.2 Jessie with memory overcommit and swap disabled.

We measured each operation on various input sizes, executing the operation in
parallel on the inputs. Each measurement was repeated a minimum of ten times
and the mean of the measurements was recorded. Measurements were performed
in randomized order. Note that due to the networked nature of the protocols,
parallel execution improves performance drastically up to the so called saturation
point.

7.2. Benchmarking Results

7.2.1. Inverse

Table 2 compares various results of computing the inverse function.
For 32-bit hybrid version fixed-point numbers we used the polynomial

120

Protocol 1 10 100 1000 10000
Catrina, Dragulin,
128 bits, AppDiv2m,
LAN(ms) [22]

3.39

Catrina, Dragulin,
128 bits, Div2m,
LAN(ms) [22]

1.26

Kamm and Willem-
son, Chebyshev, 32
bits [47]

0.17 1.7 15.3 55.2 66.4

Kamm and Willem-
son, Chebyshev, 64
bits [47]

0.16 1.5 11.1 29.5 47.2

Hybrid,32 bits, accu-
racy 1.3 ·2−13

0.99 8.22 89.73 400.51 437.94

Hybrid 64 bit, accu-
racy 1.3 ·2−26

0.82 8.08 62.17 130.35 171.1

Point-counting, 32
bits, accuracy 2−30

0.34 3.60 21.97 98.13 106.15

Point-counting, 64
bits, accuracy 2−62

0.24 2.21 10.8 48.1 37.1

Point-counting, 32
bits, accuracy 2−16

0.61 8.25 40.8 190.9 212.01

Point-counting, 64
bits, accuracy 2−32

0.45 4.11 23.31 100.0 67.13

Fixed-point 32
bits [31]

221.11 1490.79 3674.99 4264.14 5888.87

Fixed-point 64
bits [31]

160.92 733.24 998.84 1276.98 1814.06

Golden 32-bit 168.65 1459.13 7869.32 15468.27 16027.36
Golden 64-bit 125.40 1002.57 3736.34 5389.09 5336.79
Golden 128-bit 96.61 482.03 929.80 1123.85 1275.11

Table 2: Operations per second for different implementation of the inverse func-
tion for different input sizes.

121

(7.1)
8.528174592103877− 29.937500008085948 · x
+ 55.37549588994695 · x2−56.93285001066663 · x3

+ 30.856441181457452 · x4−6.889823228694366 · x5.

For 64-bit hybrid version fixed-point numbers we used the polynomial

(7.2)

15.599242404917524− 109.93750000000036 · x
+ 462.0659715136437 · x2−1286.8971364795452 · x3

+ 2493.839270222642 · x4−3431.3944591425357 · x5

+ 3352.5408224920825 · x6−2279.4653178732265 · x7

+ 1027.2836075390694 · x8−276.20062206966935 · x9

+ 33.566121401778425 · x10

These coefficients are based on the table on page 175 in [58].
For point-counting, we chose the precisions 2−30 and 2−62 in order to obtain

a maximal possible precision, and 2−16 and 2−32 in order to compare with the
hybrid method.

For golden section numbers, our precision is in the order of magnitude of 2−9

for 32-bit numbers, 2−23 for 64-bit numbers and 2−51 for 128-bit numbers. This
was experimentally verified.

We see that our results perform the previous results and that the golden section
protocols outperform our other methods. However, one must keep in mind that
these were run on different system and that the golden section numbers benefited
from the PDSL optimizations. For this reason, we included the fixed-point inverse
function that was implemented in [31] in the same system. The fixed-point num-
bers have comparable strengths and weaknesses to golden section numbers and
are thus a good comparison point. Due to precision reasons, it is fair to compare
32-bit fixed point numbers to 64-bit golden section numbers and 64-bit fixed-
point numbers to 128-bit golden section numbers. We see that they are about in
the same effectiveness range, with fixed-point numbers being more effective in
some cases and golden section numbers in other cases. Seeing that golden section
numbers are a new number type and thus can probably be improved on, this looks
promising for the golden section numbers.

7.2.2. Square Root

Table 3 compares previous results for computing the square root with our results.
We used the polynomial

(7.3)

0.19536315261152867
+ 1.562905220892229 · x−1.736561356546921 · x2

+ 1.852332113650049 · x3 − 1.3230943668928923 · x4

+ 0.5488391447851997 · x5 − 0.09978893541549086 · x6

122

Protocol 1 10 100 1000 10000
Liedel [50] 0.204
Kamm and Willem-
son, 32 bits [47]

0.09 0.85 7 24 32

Kamm and Willem-
son, 64 bits [47]

0.08 0.76 4.6 9.7 10.4

Hybrid, 32 bits 0.77 7.55 70.7 439.17 580.81
Hybrid, 64 bits 0.65 6.32 41.75 78.25 119.99
Point-counting, 32
bits, accuracy 2−30

0.30 2.98 19.97 94.13 101.8

Point-counting64 bits,
accuracy 2−62

0.21 1.93 9.23 44.79 37.13

Point-counting, 32
bits, accuracy 2−16

0.49 5.98 35.2 152.0 202.3

Point-counting, 64
bits, accuracy 2−32

0.38 3.59 21.2 86.0 79.5

Fixed-point, 32
bits [31]

254.82 2221.34 10322.99 19082.67 20698.29

Fixed-point, 64
bits, [31]

194.28 1389.53 4123.38 5425.28 5892.21

Golden 32-bit 93.11 814.32 4944.88 6741.24 6698.23
Golden 64-bit 57.25 449.16 1438.58 1941.49 1798.58
Golden 128-bit 66.37 383.76 839.77 1052.07 1189.45

Table 3: Operations per second for different implementation of the square root
function for different input sizes.

123

to compute
√

x for 32-bit fixed-point numbers and the polynomial

(7.4)

0.11762379327093657 + 2.6615226192244417 · x
− 9.371849704313805 · x2 + 36.81121979293309 · x3

− 119.39255388354168 · x4 + 310.12390025990817 · x5

− 644.7233686085026 · x6 + 1075.8084777766278 · x7

− 1442.1892383934844 · x8 + 1549.0933690616039 · x9

− 1323.521774124341 · x10 + 887.547679235167 · x11

− 457.04755897707525 · x12 + 174.4585858163298 · x13

− 46.49878087370222 · x14 + 7.724960904027444 · x15

− 0.6022146941311717 · x16

to compute
√

x for 64-bit fixed-point numbers.
These polynomials are Chebyshev polynomials. Note that while we should

have performed corrections on both sides, we only performed it on one side. This,
however, adds only one round so the increase is probably not very noticeable.

We estimate the error to be no larger than 2−17 for 32 bit case and 2−34 for the
64 bit case. We had m = 31 in the 32 bit case and m = 52 in the 64 bit case.

For reasons similar to the inverse case, we chose the precisions 2−30 and 2−62

in order to obtain a maximal possible precision, and 2−16 and 2−32 in order to
compare with the hybrid method.

For golden section numbers, our precision is in the order of magnitude of 2−7

for 32-bit numbers, 2−16 for 64-bit numbers and 2−34 for 128-bit numbers. These
estimates were obtained experimentally.

We see again that the hybrid model greatly improves on the previous ap-
proaches and that the point-counting gives a comparable result with the ability
to precisely tune the result.

The results for golden numbers are again comparable to the fixed-point num-
bers, although the fixed-point numbers are better in this respect.

7.2.3. Exponent

Table 4 compares previous results for computing the exponent with the hybrid
method. Our results are up to 2 times faster than the best previously existing
implementations. We estimate the error to be no larger than 2−17 for 32 bit case
and 2−39 for the 64 bit case. We had m = 30 in the 32 bit case and m = 62 in the
64 bit case.

We used the polynomial

(7.5)
1.00000359714456
+ 0.692969550931914 · x+0.241621322662927 · x2

+ 0.0517177354601992 · x3 + 0.0136839828938349 · x4

124

Protocol 1 10 100 1000 10000
Aliasgari et al. [5] 6.3 9.7 10.3 10.3
Kamm and Willem-
son, (Chebyshev) 32
bits [47]

0.11 1.2 11 71 114

Kamm and Willem-
son, (Chebyshev) 64
bits [47]

0.11 1.1 9.7 42 50

Hybrid, 32 bits 0.24 2.41 24.03 104.55 126.42
Hybrid, 64 bits 0.23 2.27 16.66 47.56 44.84

Table 4: Operations per second for different implementation of the exponential
function for different input sizes.

to compute ex on 32-bit fixed-point numbers and the polynomial

(7.6)

1.0000000000010827
+ 0.693147180385251 · x+0.24022651159438796 · x2

+ 0.055504061379894304 · x3 + 0.009618370224295783 · x4

+0.0013326674872182274 · x5+0.00015518279382265856 · x6

+ 0.000014150935770726401 · x7

+ 0.0000018751971557376 · x8

to compute ex on 32-bit fixed-point numbers. These coefficients are based on the
table on page 201 in [58].

7.2.4. Gaussian Error Function

For error function, we used the following polynomials for n = 32:
If n = 32, we will use the following polynomials.

p0(x) = 1.1283793940340756 · x− 0.0000026713076584281906 · x2

− 0.3761072585979022 · x3 − 0.00009283890849651041 · x4

+ 0.1131594785717268 · x5 − 0.000814296779279163 · x6

− 0.025351408042362075 · x7 − 0.0020389298750037445 · x8

+ 0.007118807679212721 · x9 − 0.0010650286415166768 · x10

− 0.0006807918740908649 · x11 + 0.00019635679847600037 · x12

p1(x) = 0.02817728429 + 0.9359512202 · x
+ 0.5434989619 · x2−1.19447516 · x3 + 0.6900358762 · x4

− 0.1783646656 · x5 + 0.01787727625 · x6

p2(x) =−0.942158979+4.022796153 · x−3.575876227 · x2+1.760980817 · x3

− 0.5145918337 · x4 + 0.08734960153 · x5 − 0.007365154875 · x6

+ 0.00009644273755 · x7 + 0.00001896345963 · x8

125

p3(x) = 0.8576789792
+ 0.2245825763 · x−0.1480373801 · x2+0.05217363374 · x3

− 0.01036910781 · x4 + 0.001101880093 · x5 − 0.00004891580119 · x6

For n = 64, we used the following polynomials for erf(x):

p0(x) = 1.1283793940340756 · x− 0.0000026713076584281906 · x2

− 0.3761072585979022 · x3 − 0.00009283890849651041 · x4

+ 0.1131594785717268 · x5 − 0.000814296779279163 · x6

− 0.025351408042362075 · x7 − 0.0020389298750037445 · x8

+ 0.007118807679212721 · x9 − 0.0010650286415166768 · x10

− 0.0006807918740908649 · x11 + 0.00019635679847600037 · x12

p1(x) = 0.006765005 + 1.068755853503136 · x + 0.2421008129968042 · x2

− 0.9749339270141031 · x3 + 1.0041963324534586 · x4

− 1.088243712366528 · x5 + 1.0471332876840715 · x6

− 0.6926003063553184 · x7 + 0.30152947241780975 · x8

− 0.08606929528345982 · x9 + 0.01564245229830543 · x10

− 0.0016528687686237157 · x11 + 0.00007769002084531931 · x12

p2(x) = 1.363422003− 4.975745564 · x + 12.27381879 · x2

− 14.9219185 · x3 + 11.19823154 · x4 − 5.711718595 · x5

+ 2.080646945 · x6−0.5558494039 · x7 + 0.1102226843 · x8

− 0.01621608793 · x9 + 0.00174112969 · x10 − 0.0001305244651 · x11

+ 0.000006161109129 · x12 − 0.0000001385406897 · x13

p3(x) = −0.7639003533 + 4.00501476 · x− 4.064372065 · x2

+ 2.419369363 · x3 − 0.9308524286 · x4 + 0.2400308095 · x5

− 0.04147567521 · x6 + 0.004630079428 · x7

− 0.0003029475561 · x8 + 0.000008849881454 · x9

We see that the hybrid method gives better results than the paper by Kamm
and Willemson, but that the progress is not as great as in the case of the inverse or
the square root. This is natural, as we saw that the error function does not break
so naturally into a component based on the exponent of the floating-point number
and a component on which we can do fixed-point polynomial evaluation as the
inverse and square root do.

7.2.5. Logarithm

Table 6 provides data for computing the logarithm. We can see that while the
solution of Aliasgari has a much higher precision, the point-counting technique
provides a much efficient solution.

126

1 10 100 1000 10000
Kamm and Willemson, 32
bits [47]

0.1 0.97 8.4 30 39

Kamm and Willemson, 64
bits [47]

0.09 0.89 5.8 16 21

Hybrid, 32-bit 0.5 4.41 30.65 45.42 49.88
Hybrid, 64-bit 0.46 4.13 21.97 19.54 26.11

Table 5: Operations per second for different implementation of the Gaussian error
function for different input sizes.

1 10 100 1000 10000 100000
Aliasgari [5] , accuracy
2−256

12.36 12.5 13.3 13.3 13.5

Point-counting, 32-bit,
accuracy 2−15

2.39 15.43 119.2 549.9 1023.6 1288.9

Point-counting, 64-bit,
accuracy 2−31

0.90 6.8 37.9 152.5 244.3 275.6

Table 6: Operations per second for different implementation of the logarithm
function for different input sizes.

Protocol 1 10 100 1000 10000
Golden 32-bit 1329.58 12118.27 101972.14 451789.54 598745.03
Golden 64-bit 1129.64 10899.90 77892.54 207509.35 201411.57
Golden 128-bit 168.82 1267.73 13510.12 48624.94 62325.29

Table 7: Operations per second for different sizes of golden number normalization
for different input sizes.

127

Protocol 1 10 100 1000 10000
Fixed-point, 32-bit 955.33 8694.44 74014.86 329001.48 504339.34
Fixed-point 64-bit 794.18 8081.07 56438.50 208979.43 249032.01
Floating-point, 32-bit 618.35 5788.31 40466.17 147214.26 241552.66
Floating-point, 64-bit 514.11 4661.18 33755.96 106290.48 133894.80
Log-float, 16-bit 1755.19 17729.87 153751.54 726174.22 1453678.53
Log-float, 32-bit 1526.81 14872.98 97025.21 433373.20 708271.48
Log-float 64-bit 1755.19 12118.27 101972.14 451789.54 598745.03
Log-float 64-bit 1213.95 11775.79 68705.86 266269.04 339654.53
Golden 32-bit 983.81 9555.30 73186.08 234154.75 258999.05
Golden 64-bit 900.35 7133.79 77892.54 207509.35 201411.57
Golden 128-bit 168.82 1267.73 25530.00 30122.24 28804.89

Table 8: Operations per second for multiplication of different real-number data
types for different sizes.

7.2.6. Golden Number Normalization

Table 7 provides data for golden number normalization. While this is a very spe-
cific operation to golden section numbers, it is still interesting to see how vector
size and bitlength influence efficiency. We see that for small vector sizes, the
different bitlengths are rather similar in efficiency, but that as the vector length
grows, the differences start to grow also. This might be due to the fact that while
the round complexity of the normalization is not very high, being logn+4 while
the bits sent tends to grow superlinearly as n grows.

7.2.7. Multiplication

The results comparing golden section multiplication to fixed-point and floating-
point multiplication in the same setting are given in table 8.Measuring golden sec-
tion multiplication fairly is nontrivial — namely, for practical sizes, one needs to
multiply normalized values and those values often are normalized as well. How-
ever, if we normalize both before and after multiplication, we are doing double
the work, thus we should only normalize once. Whether we normalize before
or after the multiplication operation also affects precision. These measurements
were made so that we normalize the inputs and leave the output un-normalized.
While there are scenarios where this scenario is not what happens, it is one of
the most common ones and thus we chose it. The error of the 32-bit of golden
multiplication is 2−11, 64-bit of golden multiplication is 2−24, 128-bit of golden
multiplication is 2−52.

Comparatively, the error of fixed-point multiplication is 2−m for a fixed-point
number with the radix-point m, and the error of n-bit floating-point multiplication
is 2−(n−1).

We see that the golden number multiplication is comparable to the fixed-point

128

multiplication of the corresponding precision. Its properties make the golden sec-
tion numbers more suitable for high latency and high throughput situations, and
also better for applications that perform many consecutive operations on small
inputs.

The worse performance of golden section numbers after the saturation point
can be wholly attributed to increased communication cost. Namely, every mul-
tiplication of 64-bit golden section numbers requires 6852 bits of network com-
munication, but a single 32-bit multiplication requires only 2970. We also note
that golden section numbers are a new and relatively unstudied data type and thus
there may be possibilities of improving it.

7.3. Conclusions

7.3.1. Hybrid Method

We can see that that the hybrid method is much more efficient for larger vector
sizes. Considering the amortized cost, it greatly outperforms the approaches that
were built for computing only a single operation. For inverse and square root func-
tions, it also outperforms the results of Kamm and Willemson. As this technique
was based on improving the results of that paper by replacing a floating-point
number with a fixed-point number, this shows that for the inverse and square root
the technique gives the expected benefit.

Considering the exponent and the Gaussian error function, our approach still
often outperforms the results of Kamm and Willemson, however, the improvement
is not as remarkable as in the case of the inverse and square root functions.

Indeed, for the 64-bit exponential function with batch size 10000 the amortized
cost of the current result is even slightly outperformed by both the corresponding
result by Kamm and Willemson and the amortized cost of the 64-bit exponential
function with batch size 1000.

The reason behind why the inverse and square root functions gain more from
the optimization presented in this chapter is that it is possible to utilize the fixed-
point polynomial evaluation there in a more contained, modular sense — for both
the exponential and the Gaussian error function more corrections have to be made
to ensure that the inputs and outputs belong to the correct intervals. However,
even in those cases, there is generally a notable improvement in efficiency.

7.3.2. Point-Counting

The point-counting method provides an oblivious evaluation of special-format
single-variable functions, including, but not limited to functions that can be repre-
sented as finding roots of polynomials with secret coefficients. Several important
functions belong to this class (e.g. various power functions and binary logarithm).
The method is easy to implement and rather flexible as it can be used for various
vector sizes and precisions, is designed to fully use the communication capacities

129

of channels, and it offers good performance/precision ratio and can effectively be
used for both small and large datasets and give maximal precision for fixed-point
data types. It also allows one to exactly choose the level of precision needed —
thus it can be used as a method to refine already obtained answers.

7.3.3. Golden Section Numbers

Golden number representation allows for very fast addition, and with a multipli-
cation speed that is comparable with that of fixed-point numbers. For elemen-
tary functions, it performs about in the same efficiency with fixed-point numbers.
Seeing that the golden section numbers have arithmetic properties that were not
used in this implementation (such that multiplying or dividing a golden section
number by ϕ can be done locally), it is possible that these properties allow for
tricks that can make some operations faster. In our approach, the golden section
multiplication also took considerably less rounds than the fixed-point multipli-
cation, although the communication overhead was higher. For example, 32-bit
fixed-point multiplication took 16 rounds and 2970 bits of network communica-
tion , whereas the comparable 64-bit fixed-point number took 11 rounds and 6852
bits of network communication. This suggests that the golden section numbers
and fixed-point numbers have their own strengths and weaknesses which suggests
that although golden section numbers are a new data-type, there are some settings
in which it is more effective than the fixed-point numbers. Thus it is worthy of
further research.

130

BIBLIOGRAPHY

[1] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-
1985, 1985.

[2] Abbas Acar, Hidayet Aksu, Arif Selcuk Uluagac, and Mauro Conti. A Sur-
vey on Homomorphic Encryption Schemes: Theory and Implementation.
CoRR, 2017.

[3] Mehrdad Aliasgari and Marina Blanton. Secure Computation of Hidden
Markov Models. In 2013 International Conference on Security and Cryp-
tography (SECRYPT), pages 1–12, July 2013.

[4] Mehrdad Aliasgari, Marina Blanton, and Fattaneh Bayatbabolghani. Secure
Computation of Hidden Markov Models and Secure Floating-Point Arith-
metic in the Malicious Model. International Journal of Information Secu-
rity, 16(6):577–601, Nov 2017.

[5] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure
Computation on Floating Point Numbers. In NDSS, 2013.

[6] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Se-
cure Computation on Floating Point Numbers. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego, California,
USA, February 24-27, 2013, 2013.

[7] Shuangjie Bai, Geng Yang, Jingqi Shi, Guoxiu Liu, and Zhaoe Min. Privacy-
Preserving Oriented Floating-Point Number Fully Homomorphic Encryp-
tion Scheme. Security and Communication Networks, 2018, 2018.

[8] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 1–10, 1988.

[9] George Bergman. A Number System with an Irrational Base. Mathematics
Magazine, 31(2):98–110, 1957.

[10] George Robert Blakley. Safeguarding Cryptographic Keys. In Proceedings
of the 1979 AFIPS National Computer Conference, pages 313–317, 1979.

[11] Dan Bogdanov. Sharemind: Programmable Secure Computations with Prac-
tical Applications. PhD thesis, University of Tartu, 2013.

[12] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework
for Fast Privacy-Preserving Computations. In ESORICS’08, volume 5283 of
LNCS, pages 192–206, 2008.

[13] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. Improved
protocols for the Sharemind Virtual Machine. Technical Report T-4-10, Cy-
bernetica, http://research.cyber.ee/., 2010.

[14] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-

131

http://research.cyber.ee/

performance secure multi-party computation for data mining applications.
International Journal of Information Security, 11(6):403–418, 2012.

[15] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Secure Multiparty Computation Goes Live. In Financial Cryptography
and Data Security, pages 325–343, 2009.

[16] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. A Practical Implementation of Secure Auctions
Based on Multiparty Integer Computation. In Financial Cryptography and
Data Security, pages 142–147, 2006.

[17] Piers Bohl. Über ein in der Theorie der säkularen Störungen vorkommendes
Problem. Journal für die reine und angewandte Mathematik, 135:189–283,
1909.

[18] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropou-
los. SEPIA: Privacy-preserving Aggregation of Multi-domain Network
Events and Statistics. In Proceedings of the 19th USENIX Conference on
Security, USENIX Security’10, pages 15–15, 2010.

[19] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A Simpler Variant of Uni-
versally Composable Security for Standard Multiparty Computation. In Ad-
vances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume
9216 of Lecture Notes in Computer Science, pages 3–22, 2015.

[20] Octavian Catrina. Round-Efficient Protocols for Secure Multiparty Fixed-
Point Arithmetic. 07 2018.

[21] Octavian Catrina and Sebastiaan de Hoogh. Improved Primitives for Se-
cure Multiparty Integer Computation. In Security and Cryptography for
Networks, pages 182–199. 2010.

[22] Octavian Catrina and Claudiu Dragulin. Multiparty Computation of Fixed-
Point Multiplication and Reciprocal. In Database and Expert Systems Appli-
cation, 2009. DEXA ’09. 20th International Workshop on, pages 107–111,
2009.

[23] Octavian Catrina and Sebastiaan de Hoogh. Secure Multiparty Linear Pro-
gramming Using Fixed-Point Arithmetic. In Computer Security–ESORICS
2010, volume 6345 of Lecture Notes in Computer Science, pages 134–150.
2010.

[24] Octavian Catrina and Amitabh Saxena. Secure Computation with Fixed-
Point Numbers. In Financial Cryptography and Data Security, volume 6052
of Lecture Notes in Computer Science, pages 35–50. 2010.

[25] Heewon Chung. Secure Computation via Homomorphic Encryption. PhD
thesis, Seoul National University, 2017.

132

[26] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. Secure
Multiparty Computation and Secret Sharing. 1st edition, 2015.

[27] Eric Crockett and Chris Peikert. Λoλ : functional lattice cryptography. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016, pages 993–
1005, 2016.

[28] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.
Asynchronous Multiparty Computation: Theory and Implementation. In
Public Key Cryptography – PKC 2009, pages 160–179, 2009.

[29] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 643–662, 2012.

[30] Sebastiaan de Hoogh. Design of Large Scale Applications of Secure Multi-
party Computation : Secure Linear Programming. PhD thesis, Technische
Universiteit Eindhoven, 2012.

[31] Vassil Dimitrov, Liisi Kerik, Toomas Krips, Jaak Randmets, and Jan Willem-
son. Alternative Implementations of Secure Real Numbers. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 553–564, 2016.

[32] Martin Franz. Secure Computations on Non-Integer Values. PhD thesis,
Technische Universität Darmstadt, 2011.

[33] Martin Franz, Björn Deiseroth, Kay Hamacher, Somesh Jha, Stefan Katzen-
beisser, and Heike Schröder. Secure Computations on Non-Integer Values.
In 2010 IEEE International Workshop on Information Forensics and Secu-
rity, pages 1–6, Dec 2010.

[34] Martin Franz, Björn Deiseroth, Kay Hamacher, Somesh K Jha, Stefan
Katzenbeisser, and Heike Schröder. Secure Computations on Non-Integer
Values with Applications to Privacy-Preserving Sequence Analysis. Infor-
mation Security Technical Report, 17(3):117 – 128, 2013. Security and Pri-
vacy for Digital Ecosystems.

[35] Martin Franz and Stefan Katzenbeisser. Processing Encrypted Floating Point
Signals. In Proceedings of the thirteenth ACM multimedia workshop on
Multimedia and security, pages 103–108, 2011.

[36] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stan-
ford University, 2009.

[37] Subrandom numbers. https://web.archive.org/web/
20160304125746/http://mollwollfumble.blogspot.com/. On-
line; accessed 22 January 2019.

[38] Wilko Henecka, Nigel Bean, and Matthew Roughan. Conversion of Real-

133

https://web.archive.org/web/20160304125746/http://mollwollfumble.blogspot.com/
https://web.archive.org/web/20160304125746/http://mollwollfumble.blogspot.com/

Numbered Privacy-Preserving Problems into the Integer Domain. In Infor-
mation and Communications Security, pages 131–141, 2012.

[39] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. TASTY: Tool for Automating Secure Two-party Com-
putations. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, pages 451–462, 2010.

[40] Erfc. http://mathworld.wolfram.com/Erfc.html. Online; accessed
22-January-2019.

[41] Fibonacci Number. http://mathworld.wolfram.com/
FibonacciNumber.html. Online; accessed 22-January-2019.

[42] Golden Ratio. http://mathworld.wolfram.com/GoldenRatio.html.
Online; accessed 22-January-2018.

[43] CF1: uniform distribution and Denjoy-Koksma’s inequal-
ity. https://matheuscmss.wordpress.com/2012/02/16/
cf1-uniform-distribution-and-denjoy-koksmas-inequality/.
Online; accessed 22-January-2019.

[44] Sharemind. https://sharemind.cyber.ee/. Online; accessed 22-
January-2019.

[45] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster Secure
Two-party Computation Using Garbled Circuits. In Proceedings of the 20th
USENIX Conference on Security, SEC’11, pages 35–35, 2011.

[46] Liina Kamm. Privacy-Preserving Statistical Analysis Using Secure Multi-
Party Computation. PhD thesis, University of Tartu, 2015.

[47] Liina Kamm and Jan Willemson. Secure Floating Point Arithmetic and Pri-
vate Satellite Collision Analysis. International Journal of Information Se-
curity, 14(6):531–548, 2015.

[48] Liisi Kerik, Peeter Laud, and Jaak Randmets. Optimizing MPC for Robust
and Scalable Integer and Floating-Point Arithmetic. LNCS. 2016. Accepted
to Workshop on Applied Homomorphic Cryptography 2016.

[49] Peeter Laud and Jaak Randmets. A Domain-Specific Language for Low-
Level Secure Multiparty Computation Protocols. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Den-
ver, CO, USA, October 12-6, 2015, pages 1492–1503, 2015.

[50] Manuel Liedel. Secure Distributed Computation of the Square Root and Ap-
plications. In Information Security Practice and Experience, volume 7232
of Lecture Notes in Computer Science, pages 277–288. 2012.

[51] Manuel Liedel. Sichere Mehrparteienberechnungen und datenschutzfre-
undliche Klassifikation auf Basis horizontal partitionierter Datenbanken.
PhD thesis, Universität Regensburg, 2012.

[52] Yun-Ching Liu, Yi-Ting Chiang, Tsan-Sheng Hsu, Churn-Jung Liau, and
Da-Wei Wang. Floating Point Arithmetic Protocols for Constructing Se-

134

http://mathworld.wolfram.com/Erfc.html
http://mathworld.wolfram.com/FibonacciNumber.html
http://mathworld.wolfram.com/FibonacciNumber.html
http://mathworld.wolfram.com/GoldenRatio.html
https://matheuscmss.wordpress.com/2012/02/16/cf1-uniform-distribution-and-denjoy-koksmas-inequality/
https://matheuscmss.wordpress.com/2012/02/16/cf1-uniform-distribution-and-denjoy-koksmas-inequality/
https://sharemind.cyber.ee/

cure Data Analysis Application. Procedia Computer Science, 22:152 – 161,
2013. 17th International Conference in Knowledge Based and Intelligent
Information and Engineering Systems - KES2013.

[53] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a
Secure Two-party Computation System. In Proceedings of the 13th Confer-
ence on USENIX Security Symposium - Volume 13, SSYM’04, pages 20–20,
2004.

[54] Manoranjan Mohanty. Secret Sharing Approach for Securing Cloud-Based
Image Processing. PhD thesis, National University of Singapore, 2013.

[55] Jesper Buus Nielsen and Claudio Orlandi. LEGO for Two-Party Secure
Computation. In Theory of Cryptography, pages 368–386, 2009.

[56] Martin Pettai and Peeter Laud. Automatic Proofs of Privacy of Secure Multi-
party Computation Protocols against Active Adversaries. In IEEE 28th Com-
puter Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July,
2015, pages 75–89, 2015.

[57] Pisot Number. http://mathworld.wolfram.com/PisotNumber.html.
Online; accessed 31 August 2018.

[58] Boris A. Popov and Genadiy S. Tesler. Vyc̆islenie funkcij na ÈVM -
spravoc̆nik (in Russian). 1984.

[59] Jaak Randmets. Programming Languages for Secure Multi-Party Computa-
tion Application Development. PhD thesis, University of Tartu, 2017.

[60] Ronald Linn Rivest, Len Adleman, and Michael Leonidas Dertouzos. On
Data Banks and Privacy Homomorphisms. Foundations of Secure Compu-
tation, Academia Press, pages 169–179, 1978.

[61] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[62] Chibuike Ugwuoke, Zekeriya Erkin, and Reginald L. Lagendijk. Secure
Fixed-point Division for Homomorphically Encrypted Operands. In Pro-
ceedings of the 13th International Conference on Availability, Reliability
and Security, ARES 2018, pages 33:1–33:10, 2018.

[63] Andrew Chi-Chih Yao. Protocols for Secure Computations. In Foundations
of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages
160–164. IEEE, 1982.

[64] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets. In Proceed-
ings of the 27th Annual Symposium on Foundations of Computer Science,
SFCS ’86, pages 162–167, 1986.

135

http://mathworld.wolfram.com/PisotNumber.html

ACKNOWLEDGMENTS

This research was supported by the European Regional Development Fund through
Centre of Excellence in Computer Science (EXCS) and the Estonian Research
Council under Institutional Research Grant IUT27-1 and Estonian Doctoral School
in Information and Communication Technologies

I would like to thank my colleagues in STACC and Cybernetica for collab-
oration. I would like to thank Liina Kamm, Jaak Randmets, Liisi Kerik, Vassil
Dimitrov, and Dominique Unruh. I would like to thank my family and friends for
supporting me. I would especially like to thank Jan Willemson for supervision.

136

INDEX
<<, 25
>>, 25

f←−, 29
F←−, 29
�, 25
�, 25
J·K, 17

active security, 19

b(γ,n), 111
BitExtraction, 31

ConvertBoolToInt, 32
ConvertDown, 32
ConvertToBoolean, 32
ConvertUp, 32

DivideBy2tok(x,k), 32

environment, 17
equidistributedness, 82
error function, 56

Fibonacci numbers, 26
finding roots of polynomials, 72
fixed-point number

secure fixed-point number, 27
fixed-point numbers, 26

radix-point, 26
representative of a fixed-point num-

ber, 26
signed fixed-point numbers, 27

absx, 27
sgnx, 27
four-field fixed-point numbers, 27
three-field fixed-point numbers,

27
unsigned fixed-point numbers, 27

floating-point numbers, 28
exponent, 28
secure floating-point numbers, 29

sign, 28
significand, 28
single-precision floating-point num-

bers, 28
fully homomorphic encryption, 22

GenObliviousChoice, 32
golden numbers, 80

`-normalized, 85
integer representative, 80
ϕ-representative, 80
granularity, 81
normalization, 86

first normalization method, 86
second normalization method, 100

representative, 80
value, 80

golden section number, see golden num-
bers80

hybrid model, 39

137

parallel composition, 63
passive security, 18

integer
signed, 25
unsigned, 25

(k,ε)-approximation, 81

LTEProtocol, 31

m(x), 96
Millionaire Problem, 11
Monte Carlo methods, 63
most significant bit, 25
MSNZB, 31

n-th partial quotient denominator, 95
normalization set, 89

oblivious choice, 31

PrevFibo, 33
private value, 17
PrivateBitShiftProtocol, 32
PublicBitShiftRightProtocol, 32

radix-point, see fixed-point numbers
range correction, 44
ReshareToTwo, 33

scalar pick function, 64
SCET, 20
secret sharing, 19

additive secret sharing, 20
Shamir secret sharing, 20
threshold secret sharing, 20

secret value, 17
secure multiparty computation, 11

secret-sharing based secure multi-
party computation, 20

Yao’s Garbled Circuits, 21
secure value, 17
SEPIA, 20
Sharemind, 20
simulator, 18
SMC, 11
somewhat homomorphic encryption, 23

t(x), 25, 101
Turing-complete, 17
two’s complement, 26

UC, 17
universal composability, 17

VIFF, 20

Weyl equidistribution theorem, 82

JxK← y, 29

z(x), 25, 101

138

Pisot numbers, 110
point-counting method, 65

iterated point-counting method, 70
logarithm, 76

SUMMARY

Turvaliste reaalarvuoperatsioonide efektiivsemaks muutmine

Turvaline ühisarvutus on distsipliin, mis uurib seda, kuidas arvutada nõnda, et
arvutavad osapooled ei saaks midagi uut teada andmete kohta, mis on arvutuse si-
sendiks. Sel distsipliinil on rakendusi mitmetes erinevates valdkondades, näiteks
meditsiiniuuringutes ja arvutuste delegeerimises vähemusaldatud, kuid suure ar-
vutusvõimsusega osapooltele. Käesolev doktoritöö uurib kolme võimalust, kuidas
reaalarvuliste sisenditega ühisarvutust efektiivsemaks teha.

Esiteks me uurime meetodit, mis kombineerib ujukoma- ja püsikomatehteid.
Kasutatav arvutüüp valitakse selle järgi, kumb antud situatsioonis efektiivsem on.
Meetodi efektiivsus sõltub konkreetsest hinnatavast funktsioonist, sest arvesse tu-
leb võtta ka kulu, mis tekib arvutüüpide vahelisest teisendamisest. Mõnede funkt-
sioonide arvutamise puhul kaalub meetodist saadav tulu teisenduskulud üles, aga
see pole alati nii.

Teiseks uurime me meetodit, mis kasutab ära fakti, et mõnedes turvalise ühis-
arvutuse tehnikates on operatsioonide paralleelkompositsioon nende sekventsiaal-
kompositsioonist suurusjärkude võrra efektiivsem. Seda meetodit saab rakendada
selliste monotoonsete funktsioonide f juures, mille puhul leidub lihtsasti arvuta-
tab ’pöördfunktsioon’ g. Me näitame, kuidas funktsiooni f väärtust mingis punk-
tis saab välja arvutada hoopis paljude funktsiooni g paralleelis rakendamiste abil.
See võib traditsioonilisest lähenemisest efektiivsem olla.

Kolmandaks tutvustame me uut arvutüüpi, mida nimetame kuldlõikearvudeks.
Täisarvude paar (a,b) tähistab reaalarvu a−ϕb, kus ϕ = 1.618 . . . on kuldlõike
konstant. Me näitame, et selle arvutüübiga saab saavutada turvalises paradigmas
tulemusi, mis on võrreldavad turvaliste püsikomaarvudega. Kuna tegemist on uue
ja seega väheuuritud arvutüübiga, on võimalik, et kuldlõikearvudel arvutamist
saab muuta veel efektiivsemaks.

139

IINIESTONIAN

CURRICULUM VITAE

Personal data

Name: Toomas Krips
Birth: September 23rd, 1988, Tartu, Estonia
Citizenship: Estonian
Languages: English, Estonian, French, German
E-mail: toomaskrips@gmail.com

Education

2012–... University of Tartu, Ph.D. candidate in Comp. Science
2010–2012 University of Tartu, M.Sc. in Mathematics
2007–2010 University of Tartu, B.Sc. in Mathematics
2004–2007 Hugo Treffner Gymnasium
1995–2004 Tartu Secondary School of Business

Employment

01.09.2012–31.08.2016 STACC, Junior Researcher
01.09.2016– University of Tartu, Teaching Assistant
01.09.2017– University of Tartu, Junior Researcher

Scientific work

Main fields of interest:
• Secure Multiparty Computation
• Zero-Knowledge Proofs
• Combinatorics

140

ELULOOKIRJELDUS

Isikuandmed

Nimi: Toomas Krips
Sünniaeg: September 23rd, 1988, Tartu, Eesti
Kodakondsus: Eesti
Keeled: eest, inglise, prantsuse, saksa
E-mail: toomaskrips@gmail.com

Haridus

2012–... Tartu Ülikool, arvutiteaduse doktorantuur
2010–2012 Tartu Ülikool, matemaatika magistrantuur
2007–2010 Tartu Ülikool, matemaatika bakalaureus
2004–2007 Hugo Treffneri Gümnaasium
1995–2004 Tartu Kommertsgümnaasium

Teenistuskäik

01.09.2012–31.08.2016 STACC, nooremteadur
01.09.2016– University of Tartu, informaatika assistent
01.09.2017– University of Tartu, krüptograafia nooremteadur

Teadustegevus

Peamised uurimisvaldkonnad:
• Turvaline ühisarvutus
• Nullteadmus
• Kombinatoorika

141

LIST OF ORIGINAL PUBLICATIONS

1. Hybrid Model of Fixed and Floating Point Numbers in Secure Multiparty
Computations Krips, Toomas; Willemson, Jan (2014). Proceedings of ISC
2014„ 12-14 October 2014, Hong Kong. Springer-Verlag, 179–197. (Lec-
ture Notes in Computer Science; 8783).

2. Point-Counting Method for Embarrassingly Parallel Evaluation in Secure
Computation Krips, Toomas; Willemson, Jan (2016). 8th International
Symposium on Foundations & Practice of Security, October 26-28 2015,
Clermont-Ferrand, France . Ed. Joaquin Garcia-Alfaro, Evangelos Kranakis,
Guillaume Bonfante. Springer, 66–82. (Lecture Notes in Computer Sci-
ence; 9482).

3. Alternative Implementations of Secure Real Numbers Dimitrov, Vassil; Kerik,
Liisi; Krips, Toomas; Randmets, Jaak; Willemson, Jan (2016). Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (ACM CCS), Vienna, Austria, October 24-28, 2016. Ed. Edgar
R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
Shai Halevi. ACM, 553–564.

142

143

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

144

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

145

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

	Abstract
	Introduction
	Author's Contributions

	State of the art
	Secure Fixed-Point Numbers
	Secure Floating-Point Numbers
	Other Approaches

	Preliminaries
	Universal Composability
	Security Models
	Methods for Secure Computation
	Secret Sharing
	Yao's Garbled Circuits
	Fully Homomorphic Encryption
	Secure Computation Based on Partially Homomorphic Encryption
	On Using Secure Computation Frameworks
	Security Guarantees of Our Implementation

	Notations and Conventions
	Secure Bits and Integers
	Secure Fixed-Point Numbers
	On Algorithm Notation
	Existing Primitives

	Hybrid Model
	Introduction
	Fixed-Point Numbers
	Polynomial Evaluation on Fixed-Point Numbers
	Helper Functions
	Converting a Fixed-Point Number to a Floating-Point Number

	Inverse
	Square Root
	Exponential
	Error Function
	Conclusion

	Point-Counting
	Introduction
	The Scalar Pick Function
	The Point-Counting Method
	Iteration

	Applications of the Method
	Finding Roots of Polynomials
	Logarithm

	Conclusion and results

	Golden Section Numbers
	Normalization
	First Normalization Method
	Finding Normalization Sets
	Second Normalization Method
	A Variation on The Second Method

	Why ?
	Protocols for Golden Section Numbers
	Multiplication by

	Results and Conclusions
	Benchmarking
	Hybrid Method Benchmarking
	Point-Counting Benchmarking
	Golden Numbers Benchmarking

	Benchmarking Results
	Inverse
	Square Root
	Exponent
	Gaussian Error Function
	Logarithm
	Golden Number Normalization
	Multiplication

	Conclusions
	Hybrid Method
	Point-Counting
	Golden Section Numbers

	Bibliography
	Acknowledgments
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications
	ToomasKripsPhDThesis2.pdf
	Abstract
	Introduction
	Author's Contributions

	State of the art
	Secure Fixed-Point Numbers
	Secure Floating-Point Numbers
	Other Approaches

	Preliminaries
	Universal Composability
	Security Models
	Methods for Secure Computation
	Secret Sharing
	Yao's Garbled Circuits
	Fully Homomorphic Encryption
	Secure Computation Based on Partially Homomorphic Encryption
	On Using Secure Computation Frameworks
	Security Guarantees of Our Implementation

	Notations and Conventions
	Secure Bits and Integers
	Secure Fixed-Point Numbers
	On Algorithm Notation
	Existing Primitives

	Hybrid Model
	Introduction
	Fixed-Point Numbers
	Polynomial Evaluation on Fixed-Point Numbers
	Helper Functions
	Converting a Fixed-Point Number to a Floating-Point Number

	Inverse
	Square Root
	Exponential
	Error Function
	Conclusion

	Point-Counting
	Introduction
	The Scalar Pick Function
	The Point-Counting Method
	Iteration

	Applications of the Method
	Finding Roots of Polynomials
	Logarithm

	Conclusion and results

	Golden Section Numbers
	Normalization
	First Normalization Method
	Finding Normalization Sets
	Second Normalization Method
	A Variation on The Second Method

	Why ?
	Protocols for Golden Section Numbers
	Multiplication by

	Results and Conclusions
	Benchmarking
	Hybrid Method Benchmarking
	Point-Counting Benchmarking
	Golden Numbers Benchmarking

	Benchmarking Results
	Inverse
	Square Root
	Exponent
	Gaussian Error Function
	Logarithm
	Golden Number Normalization
	Multiplication

	Conclusions
	Hybrid Method
	Point-Counting
	Golden Section Numbers

	Bibliography
	Acknowledgments
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

