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ABSTRACT

The general idea of personalized medicine is to provide more effective clinical
care and prevention of diseases by utilizing individual differences mostly in ge-
netics, but also in detailed electronic health records (EHR) and other data. I pro-
vide an overview of the definition and its elements of personalized medicine, also
the current state of the field. To date, personalized medicine is used in oncology
and for testing developmental diseases in children. For more broader use, several
challenges need to be dealt with. Some of these are addressed in this thesis. We
show, by using genetic data from Estonian Biobank and 1000 Genomes Project,
that polygenic risk score models are biased towards Europeans and should not
be used for people from other populations. Similarly, frequencies of single nu-
cleotide variants associated with asthma and liver diseases among Estonians are
close to Europeans but different from the others. To bring personalized medicine
into state-level clinical use, one has to integrate them to the workflows of the
EHR systems. By combining genetic data and EHR of the participants of Es-
tonian Biobank, we conducted a phenome-wide association study, by utilizing
genetic variants related to asthma and liver diseases in order to find new gene-
disease associations. Although we did not identify novel associations, we showed
that this data could be effectively used for validation studies. Finally, we describe
a pharmacogenomics recommendation pipeline for producing individual pharma-
cogenomic recommendations for 44,000 gene donors. We show that genotyping
arrays with imputation can be used as cost-effective alternatives for whole genome
sequencing in pharmacogenomic testing.
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1. INTRODUCTION

Traditional medicine is mostly relying on the symptoms-based disease diagnosing,
and selected therapies have evidence of working on large sets of people (Chen
and Snyder, 2013; Fröhlich et al., 2018). Indeed, doctors also take into account
individual factors such as gender, age, blood type, etc., however, the therapies are
still inefficient for significant proportions of the patient population (Spear et al.,
2001). This is mostly due to the over-simplification of the complex nature of most
diseases and not considering the differences in the individual genetic background
of the patients (Loscalzo and Barabasi, 2011) – the problem often addressed as
“one size does not fit all” (PMC, 2017). Personalized medicine is a new approach
that utilizes individual genetic information in combination with detailed medical
records and other data to provide more targeted – and therefore more effective –
therapies based on detailed subgrouping of the patients.

A lot of research has been done in this field already. Several research find-
ings could be potentially taken into use in routine medical practice as of today.
However, there is a myriad of challenges to tackle beforehand, including regula-
tory, technical, ethical, educational and financial obstacles. This thesis is mainly
about technical challenges, particularly related to large-scale computations, and
is motivated by Estonian state-level ambition to bring personalized medicine into
national clinical practice.

In Chapter 2, I provide a general overview of the concept of personalized
medicine. In Chapter 3, I elaborate on the current state of the field in more detail
to give a better understanding of the data and approaches behind the publications
of this thesis. Chapter 4 shows that one cannot apply the same polygenic risk
estimation models blindly to all people because it could lead to incorrect esti-
mations. Chapter 5 reveals how personalized medicine is influencing electronic
health records. Chapter 6 shows how to combine genetics and health records to
discover new associations which could lead to better options for disease preven-
tion in the future. Finally, we describe the developed pipeline that can be used for
adjusting drug dosage for each patient based on his/her genome in Chapter 7.
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2. PERSONALIZED MEDICINE – PROMISES BUILT
ON DATA

This chapter gives an overview of the concept of personalized medicine. I first
describe its different definitions and later explain its core elements.

2.1. Variety of definitions

Although medicine has always been an individualized interaction between a pa-
tient and a doctor, the term personalized medicine has entered into common use
and research publications during recent decades (Pokorska-Bocci et al., 2014).
Having several aliases like personalized healthcare, stratified medicine, precision
medicine, systems medicine, and P4 medicine (predictive, personalized, preven-
tive and participatory) (Duffy, 2015), the general idea behind these has mainly
been the same: to provide more effective clinical care and prevention of the dis-
eases by more finely dividing patients and diseases into subgroups (Katsnelson,
2013; Pokorska-Bocci et al., 2014).

New subgrouping options rely mostly on the vast amount of additional data
about the patient that has become available during recent decades. First, due to
the widespread use of electronic health records instead of notes on paper, the
whole medical history of the patient is now easily accessible and can be shared
between physicians. Second, huge amounts of data are also produced by ma-
chines. Machines can produce large quantities of high-density data (e.g. digital
images, genetic information) in a very short period of time. This has led to the
rapid growth of any digital data. It is estimated that digital data doubles in size
every two years, and it is even faster (48% growth annually) in healthcare (Gantz
and Reinsel, 2012).

Personalized medicine has been mostly associated with molecular data, espe-
cially genetic data. Due to the rapid decline in costs of genetic testing, more and
more genetic data have become available in order to finely characterize the pa-
tients and diseases to discover the true causes of the illness and therefore to select
the best treatment. However, the attention has turned to other data sources besides
genetics also (Duffy, 2015; Fröhlich et al., 2018). For instance, a lot of informa-
tion can now be collected by the patient – such as heart rate and atrial fibrillation
measured by smart-watches or smart-phones (Galloway et al., 2013), or physical
activity measured by step counters (Mooses et al., 2018). Consequently, the col-
lection of the information can start long before a person goes to the doctor and
even before any disease has manifested. That provides a great opportunity for
clinicians to monitor even healthy individuals and deal more thoroughly with the
prevention of the diseases.

However, there is another important enabler that has empowered the analysis
capabilities of these vasts amount of data – increased computational power. It is
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already almost impossible to analyze all the available information – patient data
and clinical knowledge – thoroughly by a single human and therefore, computers
are needed to assist physicians in their clinical decision-making. Computer’s role
would be to do the necessary data filtering and analysis, present the results to
the doctor and let them make the final treatment decision (Welch and Kawamoto,
2012).

In 2015, the Ministry of Social Affairs of Estonia conducted a feasibility study
for bringing personalized medicine into healthcare on a national scale (Reisberg
et al., 2015). After thorough discussions, the definition of personalized medicine
was put as follows: “Personalized medicine refers to prevention, diagnosis and
treatment of health disorders, based on individual risk-tailored approach using
computational decision support analysis of person’s phenotype and genotype data.
The goal of personalized medicine is to contribute towards preventive, predictive
and participatory health system.” This nicely summarizes what we said above –
personalized medicine uses both genetic and phenotype (physical characteristics,
clinical) data, computers are involved in the process of making recommendations
not only to treat the disorders but also to prevent healthy people from getting ill.

We will describe each of these components in more detail in the following
sections.

2.2. Genetic data

In this Section, we briefly explain what biological DNA is and how it is turned to
digital format.

2.2.1. The essence of DNA

As mentioned above, genetic data has been the most important driving force of
personalized medicine. This thesis also relies on the analysis of human genetic
data. Humans, like most of the living organisms, have their genetic information
stored in a molecule called DNA (deoxyribonucleic acid) located in the nuclei of
the cells. All DNA molecules have the same repeating building blocks – four types
of nucleotides, denoted by a single letter depending on what type of nucleobase
they contain – C (cytosine), G (guanine), A (adenine) or T (thymine). These
nucleotides join to one another and compose long chains (millions or even billions
of elements). For each individual, the exact ordering of the nucleotides – called
genome – is unique.

For replication purposes, every DNA chain has a complementary bound par-
allel chain that carries exactly the same information. These chains are called
strands and therefore, DNA is called a double-stranded molecule.

The ordering of the nucleotides carries essential information for each cell
– how to grow, function, reproduce, etc. Particularly, there are approximately
20,000 regions in the genomes – called genes – each containing subparts called
exons, that cover approximately 3% of the whole genome (Braschi et al., 2018).
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Exons carry the information for making proteins – the building blocks of the
whole organism that regulate body processes, transport materials within the body,
protect against foreign substances, etc. Therefore, genes determine most of the
physical characteristics (phenotype, also phenome) of an individual. Each gene
has a symbol and name, e.g. INS stands for insulin. All exons together are called
an exome.

The genomes of the organisms of a particular species are very similar to each
other – for instance, every two people share approximately 99.9% of their genomes
(1000Genomes, 2015; HapMap, 2003). However, as the total length of the human
genome is nearly 3.2 billion elements, the remaining 0.1% still leaves room for
millions of differences in total (1000Genomes, 2015; Hinds et al., 2005). What is
more, as humans are diploid organisms, they inherit their genome as two “copies”1

from their parents, both split into 23 slices – physically arranged as chromo-
somes. This means that we have two “copies” of each gene in our genome –
called alleles of the gene. One is inherited from the mother, one from the father.
Due to slight differences of the genomes, we may have different versions of the
same gene, leading to different proteins as a result. This might play an impor-
tant role if one of the versions is “faulty” and not functioning properly. We will
explore this further in Section 3.4.

As mentioned, all human genomes have their unique differences. Majority
of the differences (also called mutations) are single nucleotide variants, shortly
called SNVs, where there is a single nucleotide replacement in the genome (e.g.
A is replaced by G, denoted as A>G). Different versions of the same variant (here,
A and G) are called alleles. If SNV is frequent enough (usually >1% in the pop-
ulation), it is often called a SNP (single nucleotide polymorphism) instead. Other
changes are structural, including insertions (for instance, there is GCACC instead
of GCC), deletions (vice versa) or repeated parts of the genome where the exact
number of repetitions varies across people, called copy number variations (CNV).

In this thesis, genetic data of approximately 50 thousand Estonian gene donors
are used.

2.2.2. Turning biological DNA into digital format

The modern technology can read the whole human genome and turn it into a
digitally analyzable format. The work of this thesis is conducted purely on digital
genetic data. Whole genome sequencing that detects the full nucleotide sequence
of the genome or exome sequencing that analyses the coding part are the most
thorough ones. A cost-effective alternative to them is genotyping – a method that
detects only specific nucleotides of the genome (genotype). Modern genotyping
arrays can detect up to one million genetic variants, that can be effectively used for

1Although half of the chromosomes come from the mother and half from the father and they are
very similar to each other, there are always slight differences between them and therefore a widely
used word “copy” is not fully correct in this context as they are not identical nor coming from the
same source.
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predicting the remaining nucleotides between them – a process called imputation.
For a good imputation, a representative reference genome, preferably from the
same population, is needed.

For imputation, it is necessary to distinguish which nucleotides are read from
which pairing chromosome. It is accomplished through a process called phasing
before a proper imputation can be applied. A problem arises from the fact that
common sequencing and genotyping methods lose the source chromosome infor-
mation and it is not known which nucleotides are read from maternal and which
from paternal chromosome. Therefore, in case this kind of information is needed,
a phasing process that tries to reconstruct the two DNA chains of both pairing
chromosomes has to be conducted.

From personalized medicine perspective, the question of which sequencing/
genotyping methods could be utilized for clinical use provides a great scientific
and practical interest. In Chapter 7, we analyze how they perform as providers of
pharmacogenomics information – to estimate, how fast the drugs are metabolized
in our body.

For each genome, it is usually important to know how it differs from the av-
erage genome – this is why a comparison with the reference genome is used.
Reference genomes are averaged genomes of a number of people and there are
several widely used reference genomes available. Perhaps the most commonly
utilized is a reference genome called GRCh37 (Consortium et al., 2001) that is
used in this thesis also. In a reference genome, each nucleotide has a specific
position, which is a distance from the beginning of the chromosome. If in some
position the alternative nucleotide is common, usually a special identifier for the
SNV is assigned, e.g. rs12979860 denotes a C>T nucleotide change in chromo-
some 19 at position 39738787. An actual genotype for a particular sample for the
same position can be given as ‘C/C’ (meaning that the sample does not have the
variant) or ‘C/T’ (the sample has the variant in one chromosome, but not in the
other) or ‘T/T’ (the sample has the variant in both chromosomes).

There are several file formats for expressing the particular genetic data of a
sample – SAM, CRAM, VCF, etc. In this thesis, de facto standard Variant Call
Format VCF (Danecek et al., 2011; Rehm et al., 2013) is used. In Figure 1, there
is an example of VCF data given. While VCF format represents the genetic differ-
ences between samples, it is more suitable for scientific use when one investigates
the genetic differences of two sets of people (cases and controls). In order to
utilize VCF data for individual use in personalized medicine, there is a set of lim-
itations that need to be taken into account.

2.2.3. Limitations of VCF format

The notation of the same genetic variant in VCF format can vary, especially for
structural variants. For instance, deletion GTTTTTTTA>GTTTTTA on chromo-
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#CHROM POS ID REF ALT SAMPLE
...
2 234668879 rs57191451 C CAT 0/1
7 117188682 . GTT G 0/0
10 96521657 rs12248560 C T 0/1
16 31107689 rs9923231 C T 0/0
16 31107927 rs17878544 T C 0/0
16 31110501 rs17880887 G T 0/0
...

Figure 1. Example extraction of genotype data of the author of this thesis. The data
is given in VCF format, but some columns are removed for saving space. “0” denotes
the nucleotide sequence of the reference genome and “1” an alternative sequence. Thus,
“0/1” for rs12248560 means that from one parent the author has inherited nucleotide C
on chromosome 10 at position 96521657 and nucleotide T from the other.

some 7 in position 117188682 in the CFTR gene which is used for drug metab-
olization (Ref. IV), is normalized and represented as GTT>G in whole genome
VCF files (chromosome 7 line in Figure 1) and I>D in genotyping array data. This
also results in the chromosomal position difference of the variant (the position is
117188688 for genotyping array), which in turn creates challenges in automating
the detection of the variant in different genotype files.

Many genetic variants have great importance in how an individual metabolizes
medications. For instance, position 234668879 on chromosome 2 can have differ-
ent mutations in gene UGT1A1 – instead of a genetic sequence CAT, an individual
might have CATAT, C, or CATATAT, each having a different effect on the func-
tional characteristics of a protein. Although all these variants were detected by
whole-genome sequencing of 2,400 gene donors in Estonian Biobank, some of
these were detected with poor quality and only variant notation of CAT>CATAT
remains in the files after a quality check. Due to the variant normalization pro-
cess, the variant labels are trimmed (variant normalization, https://genome.
sph.umich.edu/wiki/Variant_Normalization) to the shortest possible no-
tation C>CAT in the VCF file (chromosome 2 line in Figure 1). Therefore, these
variants can be mistakenly interpreted as C and CAT versions of the variant, as
they actually correspond to CAT and CATAT. For providing personal pharma-
cogenomic information about the speed of drug metabolism, there is a major dif-
ference.

Perhaps the most challenging task regarding genetic data in the light of per-
sonalized medicine is to interpret variants that are missing in the VCF files. It is
crucial to distinguish between whether the presence of a variant can be ruled out
or if it simply remained undetected (Rehm et al., 2013). To improve future genetic
tests, it is also important to investigate the causes of undetected variants.

The clearest cause of undetected variants is restrictions of the platforms used

19

https://genome.sph.umich.edu/wiki/Variant_Normalization
https://genome.sph.umich.edu/wiki/Variant_Normalization


for genotyping. For instance, whole exome sequencing rarely detects variants out-
side coding regions of the genome, e.g. rs9923231, that are crucial for pharma-
cogenomics testing. Genotyping arrays, on the other hand, only cover a limited set
of predefined DNA positions, particularly restricting the analysis of rare variants.
Although imputation helps in increasing the number of variants detected, it is, in
turn, restricted by variants that are present in the respective reference genomes
used for phasing and imputation.

The second cause of unclarity in undetected data lies in the limitations set by
VCF format itself. It was developed to reduce the number of variants from genome
sequencing by only including positions that differ from the reference genome.
However, when one is making a complete survey of variants for allele calling,
this creates a challenge in determining whether variants not present in the VCF
were covered at sufficient quality during the sequencing to rule out the presence
of the variant in the person’s genome. Cases where all sequenced individuals
carry the alternative allele also create challenges, as such monomorphic variants
are not included in the VCF file. Therefore, awareness of these issues and manual
inspection of all input variants is important.

A final cause of missing data is due to the filtering of variants during the
quality control (QC) process. Importantly, several genetic variants related to
drug metabolism were present in our data before QC in Ref. IV. For instance,
rs1985842 T>C was present in both whole-genome and exome sequencing data.
However, after the QC step, these variants were removed. In total, 20 variants
(4.9%) were removed during the QC to keep confident variant calls only. Again,
when calling alleles, it is essential to flag variants that have been removed dur-
ing QC to ensure that these are not automatically assumed to be alleles of the
reference genome.

The issues raised above highlight the importance of inspecting the original
sequencing and genotype files as well as QC logs to determine which positions
can be called as reference allele and where we do not have sufficient information
to make this call.

2.2.4. Increasing volume of genetic data

Due to the rapid developments of gene technology, the speed and amounts of
producing digital genetic data have increased exponentially in recent years. Full
human DNA sequence can now be determined in one day, producing up to 100 GB
of data per sample (He et al., 2017). It also costs less than ever before. While the
first human whole genome sequence cost 0.5-1 million dollars in 2003, the price
has now dropped to nearly 1,000 dollars (Reuter et al., 2015). Several studies
are currently ongoing to sequence or genotype thousands of new individuals and
it is estimated that genomes of 60 million Americans will be fully sequenced by
2025 (Khan and Mittelman, 2018). In Estonian Biobank, approximately 2,400
samples have been fully sequenced to date. Using genotyping arrays is even
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more popular. They can nowadays detect approximately 1 million genetic po-
sitions and are cheaper than sequencing by an order of magnitude (Martin et al.,
2019). This has led to tremendous amounts of genetic data available in different
databases (e.g. HapMap project (HapMap, 2005), followed by 1000 Genomes
project (1000GenomesProject, 2015)) and biobanks worldwide and these keep
growing rapidly. Being so far mainly used for scientific purposes, their use for re-
turning research results and providing personal genetic counselling to participants
of the biobanks is more and more being discussed (Gottesman et al., 2013).

Genetic data is collected also by private enterprises. It is estimated that 50%
of all clinical trials led by pharmaceutical companies collect DNA from patients
to aid in drug development (for the Study of Drug Development, 2011). In addi-
tion, hundreds of companies are also providing direct-to-consumer genetic test-
ing online, including health-testing (Phillips, 2016). The first officially approved
direct-to-consumer tests got their approval from U.S. Food and Drug Administra-
tion (FDA) in 2015 (Curnutte, 2017). One can collect a DNA sample at home
and receive results of the genetic test online. The consumer genetics sector has
grown exponentially since 2016, reaching to 10 million genotyped individuals
worldwide by mid-2018, and it is estimated to increase 10-fold by 2021 (Khan
and Mittelman, 2018).

The enormous volume of the data poses challenges for its use in clinical prac-
tice. It has become apparent that the bottleneck of personalized medicine has
shifted from data generation to data management and interpretation (Alyass et al.,
2015). Data storing requires not only large quantities of disk space but also secure
environment, procedures and infrastructure for accessing the data (Evans, 2016).
In order to analyze the data, sufficient amounts of computational power, memory
and data science skills are required. Finally, the major value of the genetic data re-
veals itself in integration and interpretation with other types of data like electronic
health records (He et al., 2017) that will be described in the next section.

2.3. Electronic health records

Electronic health record (EHR), also called electronic medical record (EMR), is
the longitudinal record of patient health information generated by multiple en-
counters (physicians) in any care delivery setting (De Moor et al., 2015). Usually,
these records contain all or some of the following attributes: diagnoses, drugs,
treatments, procedures, surgeries, laboratory measurements, complaints, health-
care service bills and other clinical notes. This kind of information has been
recorded in a paper form for decades, but since around 2002-2010 these data have
been moved to electronic medium (Charles et al., 2015; Schade et al., 2006) and
presently majority of the physicians use them (PMC, 2017). There is a good rea-
son behind this – it enables faster access to the patient information and simplifies
sharing the data with other physicians, reduces redundant data capture and med-
ical errors, and also provides faster statistical reporting options (Schade et al.,
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However, EHR is not only a replacement for the old paper records. New
types of high-resolution data have also become part of EHR: computer tomog-
raphy (CT) images, magnetic resonance images (MRI), real-time monitoring data
through medical sensors (electrocardiogram data, measurements for sleep apnea,
etc.) are just some examples (Fröhlich et al., 2018; He et al., 2017).

Therefore, the volume of EHR data is increasing worldwide. For instance,
in the Personalized Medicine Research Project at Marshfield Clinic, the database
size for 20,000 patients is approximately 3.3 GB (mean 165 KB per patient, He
et al. (2017)). In comparison, the author of this thesis has had access to Estonian
central e-health database Digilugu which contains 21 million EHR documents
of 1.4 million patients from 2012-2016 and takes 620 GB of disk space (440
KB/patient on average). The continuous growth of the volume of EHR data can
be also seen from Figure 2.
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Figure 2. Counts of different types of EHR documents in Estonian central e-Health
database in 2012-2016

During the current decade, the high value of the secondary use of EHR data
for clinical research has also been acknowledged (Botsis et al., 2010). For in-
stance, EHR can be used for building risk prediction models as they contain all
patients who are in touch with the medical system in contrast to cohort-based
models (Goldstein et al., 2017). It is not only cheaper to use EHR data instead of
building a new study cohort for the specific purpose for every study, but also more
effective – the volume of the data is much larger, it better reflects the complexity
of the medicine and can be used for investigating multiple outcomes. During the
years 2011-2016, an ambitious project EHR4CR was conducted. This brought
together 10 pharmaceutical companies and 34 academic partners to utilize data
from hospital EHR systems for clinical research (De Moor et al., 2015). They
envisioned that detailed EHR data could be used for the feasibility assessment of
the study and patient recruitment – to connect patients to the right clinical trial.
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Another, even larger initiative – European Medical Infrastructure Framework2

(EMIF, 2013-2018) – contained 58 teams from academia and pharmaceutical field
who worked together to improve access and use of health data, specifically focus-
ing on Alzheimer’s disease and metabolic disorders. Ref. III of this thesis was
written during EMIF project. I am also a member in an ongoing project EHDEN3

that implements a federated health data network in Europe for scientific purposes
and aims to harmonize health records of 100 million Europeans.

Despite a number of terminology and documentation standards used in health-
care (e.g. ICD-104 for diseases, ATC5 for drug substances, LOINC6 for health
measurements, SNOMED CT7 for different kind of clinical data; HL78 for trans-
ferring clinical data between applications, etc.), different countries use different
standards with various local modifications in them. Importantly, these standards
also change in time. Therefore, the constant work of harmonizing EHR databases
is highly needed.

EHR data are also important enablers for genetic research. Therefore, a num-
ber of projects have already linked them with genomic data (He et al., 2017). For
instance, to discover genomic variants associated with clinical conditions identi-
fied using EHR data (Gottesman et al., 2013). For clinical trials, case and control
groups can be finely defined by using comprehensive health records together with
genetic information. No less important, the results of the studies can be more
easily integrated back to EHR systems.

While having lots of benefits, EHR data also have their shortcomings. Perhaps
the biggest challenge is the data quality (De Moor et al., 2015) as EHR data tend
to be very “messy” – contain lots of missing data, repeated measurements, loss
of follow up, input errors, etc. (Gottesman et al., 2013). It often lacks standards
and some information (e.g. symptoms) might be given only as free text notes.
Therefore, reconstructing the true patient state from the EHR is a challenge on its
own (Hripcsak and Albers, 2012).

In chapter 5, I describe the research that I have done in the EHR field in more
details.

2.4. Self-collected data (health wearables)

As it was mentioned above, one of the keywords in personalized medicine is par-
ticipatory, which means that individuals are expected to take more responsibility
for managing their health condition. For instance, by monitoring and responding

2http://emif.eu/
3http://ehden.eu/
4https://icd.who.int/browse10/2016/en
5https://www.whocc.no/atc/
6https://loinc.org/
7http://www.snomed.org/
8http://www.hl7.org/
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to fluctuations in the data generated by their wearables (McLean, 2013). These
wearable technologies include smart-watches, wristbands, subcutaneous sensors,
etc., equipped with gyroscopes, accelerometers, optical sensors, cameras, temper-
ature sensors and many more (Yetisen et al., 2018), capable of monitoring a range
of medical risk factors.

Hundreds of millions of wearable devices have already been sold worldwide
(Yetisen et al., 2018). However, the potential of the wearables is still in infancy
and has been studied mostly within academic research rather than for medical use
in a real-world context. Perhaps the main problem has been the questionable ac-
curacy and reliability of these devices. Yetisen et al. (2018) summarize that many
evaluation studies of widely used wearables have shown up to 25-30% inaccu-
racies of measuring physical activity, heart rate, and burnt calories. Therefore,
additional clinical studies are needed to validate the accuracy of wearable devices
before integrating them into healthcare systems.

I have also helped to carry out one of such study. In Ref. VII, we used Fit-
Bit activity trackers worn by third-grade students to measure their physical activ-
ity at school setting and compared the measured accuracy with more expensive
research-grade accelerometers. We found that though a few FitBit trackers failed
during the data collection and some inaccuracies were observed, the overall re-
sults were relatively similar to the accelerometers. Thus, FitBit devices could
be used as cost-effective alternatives for similar studies. Interestingly, one of the
major challenges of this study was to build the IT infrastructure for distributing
the trackers among students every morning, collecting and synchronizing the data
after the last lesson and create the aggregated data instead of high-resolution time-
points (Figure 3). This highlights the need to have a proper IT infrastructure in
place in order to use any of such solutions on a large scale – either for research or
medical use.

2.5. Linking different databases

In order to take into account all information about the patient – one of the central
concepts of personalized medicine –, there has to be a way to link all pieces of
data together (Duffy, 2015; Wu et al., 2017).

For new discoveries, scientists have to combine different databases not only
to put together different types of information (e.g. genomic data and EHR like
we discussed in Section 2.3) but also to increase statistical power by collecting
more cases to detect the associations. For instance, in eMERGE project about
discovering genetic variants associated with clinical conditions identified using
EHR, the power increased when studies were deployed across a network where
cases and controls were shared (Gottesman et al., 2013).

Another example is UK Biobank, one of the largest open resource for studies
in the personalized medicine field. It contains genomic data and deep phenotyp-
ing data for half a million volunteers, including biological measurements, lifestyle
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Figure 3. Data flow of studying physical activity in Mooses et al. (2018)

indicators, markers in blood and urine, and imaging of the body and brain (By-
croft et al., 2018). Gathering the follow-up information is currently underway by
linking health and medical records from several databases.

However, to move from the discovery phase to clinical implementation, such
database integrations should be made instantly and online. As emphasized by
Personalized Medicine Coalition, “all of this requires providers to adopt power-
ful health information technology (IT) platforms that enable instant connections
between real-world clinical results and molecular data so that providers can make
clinical decisions based on a body of scientific knowledge that exceeds the train-
ing, experience, or memory of any single practitioner” (PMC, 2017). This requires
at least two things – a unique personal identifier for each individual across all
databases, and an IT infrastructure that enables online interoperability between
databases. Estonia is in a good situation here as all residents have a personal ID
and there is also a national level secure data exchange layer X-Road9 (Figure
4). As of today, 99% of Estonian state level services are conducted online and
using X-Road for them is mandatory. X-Road is also implemented in Finland,
Kyrgyzstan, Namibia, Faroe Islands, Iceland and Ukraine.

2.6. From computerized analysis towards clinical decision
support systems

Not only the amount of patient-level data is increasing. The growth of medi-
cal knowledge is also accelerating. At the same time, physicians who are over-
whelmed by the vast amount of information, are under the pressure for taking

9https://e-estonia.com/solutions/interoperability-services/x-road/
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Figure 4. X-Road in Estonia – an example of IT infrastructure for linking databases.
Most of the health-related databases are exchanging the data online via X-Road. The per-
sonal ID for each individual is provided by the population registry. Hospital IT systems
are sending discharge summaries to central e-health database and healthcare bills to in-
surance bills database, the majority of the prescriptions are made through a central pre-
scription database. Also, national level registries like causes of death registry and cancer
registry are using X-Road. Note that Estonian Biobank is currently not linked to X-Road,
mostly due to regulatory reasons.

all these details into account for high-quality clinical decisions (Obermeyer and
Emanuel, 2016). Unfortunately, due to the volume and complexity of the data,
physicians might not have proper data science skills to do such analysis and this
is where bioinformatics – an essential enabler for personalized, predictive, and
preventive medicine – is brought into play, as each of these medical applications
requires data from multiple sources and multiple scales to be integrated (Duffy,
2015; Fernald et al., 2011; He et al., 2017; Phan et al., 2012).

However, bioinformaticians doing the analysis on demand in the back-office
would not be a scalable solution for the nation-wide implementation of personal-
ized medicine. There is a need for appropriate clinical decision support (CDS)
tools for prompting their use at the point of care and delivering results in an easily
interpretable format (McCarthy et al., 2013).

According to Aleksovska-Stojkovska and Loskovska (2010), typical CDS con-
tains three main components (see Figure 5):

• Patient-related data, such as EHR (medical history, diseases, symptoms,
laboratory results, diagnostic images, treatment plans) and genetics;

• Medical knowledge base – given in a format that computers can use;
• Inference (reasoning) mechanism – empirically validated computer algo-

rithms for combining patient data and medical knowledge base to generate
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conclusions and recommendations.
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Figure 5. A general model of clinical decision support system. Figure adapted from
Aleksovska-Stojkovska and Loskovska (2010).

This is the way how the integration of personalized medicine into clinical prac-
tice is also seen – the actionable genomic information needs to be matched with
the knowledge-based CDS systems and deployed through EHRs (Evans, 2016;
Gottesman et al., 2013). While such integration indeed poses several challenges,
it also provides a feasible opportunity to identify clinically actionable genetic vari-
ants for individualized diagnosis and therapy (Fernald et al., 2011; He et al., 2017)
which is the core of personalized medicine.

In this chapter, the concept and key components behind personalized medicine
approach were described. In the next chapter, we elaborate more closely on the
current state of this field.
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3. CURRENT STATE OF PERSONALIZED MEDICINE
IN THE WORLD AND ESTONIA

In this chapter, we focus on specific clinical applications where the personalized
medicine approach is already utilized or has a high potential to be taken into use
in the near future.

3.1. Targeted therapies and carrier screening in oncology

In this thesis, germline DNA – DNA that is inherited from mother and father – is
analyzed. However, one may be interested in DNA changes within an individual
– called somatic mutations. For instance, DNA is continuously altered in cancer
cells and exploring somatic changes in them provide a great interest as they make
the tumour cells different from normal cells and help to select better treatment
targeted for that type of cancer.

A classical example of using DNA data in oncology starts with the discovery
in the mid-1980s that in about 30% of breast tumours a cell-surface protein HER2
(human epidermal growth factor receptor) is overexpressed (Slamon et al., 1987),
causing tumour cells to grow and spread faster than the ones with normal levels
of the protein. That led to the development of new drug trastuzumab in 1998,
which binds to HER2 receptors and blocks them from receiving growth signals.
HER2 testing has thereafter been a standard procedure for breast cancer patients
(Rüschoff et al., 2017; Tannock et al., 2016).

Another example is drug gefitinib, which was approved for non-small cell lung
cancer by U.S. Food and Drug Administration (FDA) in 2003. However, after a
few months on the market, it became clear that the drug did not work significantly
better than placebo, and the approval was withdrawn (Kazandjian et al., 2016).
During the followed investigation, it was found that the drug was effective only
among patients having certain mutations in EGFR (epidermal growth factor re-
ceptor) gene. Therefore, FDA re-approved the drug in 2015, requesting genetic
testing before prescribing the medication. This is a good example of how one size
does not fit all and identifying the target population that most likely benefit from
the drug has great importance.

There are many other examples of using genetic profiling of the tumour tissue
before making decisions for therapy. As of today (27 March 2019), FDA lists 86
drugs used in oncology that have some genetic information in the drug labelling
(FDA, 2019). Out of all oncology drugs currently in development, 73% are per-
sonalized medicines (PMC, 2017). There is also a paradigm shift taking place in
cancer care as instead of defining disease by anatomical location, the therapy can
be selected by genetic profiling of the tumour cells. Since 2017, FDA has twice
approved a drug to treat tumours with a specific genetic change regardless of the
type of cancer (Challener, 2019).
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Unfortunately, cancer cells are highly adaptable and can often develop a re-
sistance to single-target-drugs after some time. Using a combination of targeted
therapies is troublesome due to toxic effects, and, therefore, it has been difficult
to show significant long-term effect for tailored cancer drugs (Nawrocki, 2018).
Additionally, further limiting the target population makes the market size smaller,
drugs more expensive and less cost-effective (Tannock et al., 2016). These are the
big challenges that pharmaceutical companies in cancer care have to face as of
today.

Besides treatment of cancer, genetic testing is also used for prevention and
early detection of the disease – this is called carrier screening. The most widely
used example is the use case related to hereditary breast (5% of all breast cancers,
Key et al. (2001)) and ovarian cancer. Women with certain germline mutations in
BRCA1 and BRCA2 genes (responsible for producing proteins that repair damaged
DNA) have a very high risk (up to 87%) of developing breast cancer (Petrucelli
et al., 1998) and these mutations also increase the risk of ovarian (Antoniou et al.,
2003) and prostate cancer (Edwards et al., 2003). Therefore, knowing that in-
dividual is carrying pathogenic variants in BRCA1 or BRCA2 is a crucial piece
of information from prevention (more frequent screening, mastectomy suggested)
and better survival perspective.

In Estonian Biobank, genetic data of approximately 5 thousand gene donors
have been screened as of today, and nearly 50 individuals out of them carry high-
risk BRCA1/2 mutations. For almost half of them, personal genetic counselling
has been provided.

3.2. Testing for developmental diseases in children

Personalized medicine is trying to move towards the earliest possible point in the
course of the disease. It is extremely valuable for detecting risks of developmental
disorders in children, where early genetic testing can treat or prevent diagnosis
at birth (newborn screening), before birth (in utero) or sometimes even before
conception (carrier testing) (McCarthy et al., 2013).

Some severe diseases are caused by a single gene, called Mendelian diseases.
For instance, the parents might both be the carriers of an “affected” gene caus-
ing cystic fibrosis (approximately every 1:30 people are, De Boeck et al. (2014);
de Vries et al. (1996)), but the disease has never manifested on them as they have
another working “copy” of that gene also. However, there is a 25% chance that
their child gets two affected genes (one from each parent), resulting in a severe
life-threatening disease which affects lungs and other organs. Therefore, espe-
cially when there is a family history of such conditions, genetic carrier testing is
suggested for parents before planning a family.

Sometimes the condition of the patient is so rare (occurs in less than 1 out
of 1000-2000 people, called rare diseases) that it is extremely hard to detect the
true cause of the condition. It is estimated that approximately 80% of such cases

29



have a genetic origin and a substantial part of them are found in children (Boat
et al., 2011). Therefore, whole genome and exome sequencing technologies pro-
vide an opportunity to conduct a thorough search over the patient’s genome to find
the causal mutation and obtain an accurate diagnosis (Yang et al., 2013). How-
ever, this can be an extremely challenging task, like searching for “the needle in
a haystack” as the causal genetic mutation is rare, possibly novel, and it might re-
quire an enormous effort to find a patient with a similar rare condition and genetic
background to build evidence for causality (Philippakis et al., 2015).

Chromosomal disorders (having a missing or an extra copy of a chromo-
some) usually start with the cell division error in the development of egg or sperm
cells. Particularly, when the division of the cell does not split chromosomes
equally. It can also occur after fertilization in the developing embryo where new
cells of the baby are built through continuous cell division process. Perhaps the
most known disease of chromosomal disorders is Down syndrome that has three
copies of chromosome 21. Genetic testing can help to detect such abnormalities
early and nowadays it is possible to do these test non-invasively (non-invasive pre-
natal diagnostics, NIPD, tested substance is taken from mother’s blood instead of
inserting a needle into the uterus).

Some diseases, such as phenylketonuria (Blau et al., 2010), might not have any
visible symptoms in the beginning, but can lead to severe disability later without
prompt intervention. Therefore, in some countries, newborn screening is manda-
tory and state-supported to protect children for rare, treatable disorders at birth
(McCarthy et al., 2013). In Estonia, all newborns are tested against 20 treatable
inborn errors of metabolism since 2015 (coverage >99.5% of newborns) (Reinson,
2018).

3.3. Polygenic risk scores

In contrast to Mendelian diseases, most of the common diseases have a com-
plex origin and are caused by a number of different factors including gender, age,
lifestyle, and hundreds of genetic variants in the patient’s DNA. Type 2 diabetes
and coronary artery disease are some examples of such diseases. Although it has
been shown that several genetic variants are associated with them, each variant
has only a tiny effect when taken separately. However, if a person has a high pro-
portion of such mutations, and combined with other risk factors, the cumulative
effect is large enough to end up with the disease (Martin et al., 2019).

For assessing the genetic risks of getting such complex diseases (and other
traits), polygenic risk scores (PRS, also known as genetic risk scores, GRS) are
built. They are mathematical models containing a set of genetic variants, each
having a certain weight and based on the actual DNA of the patient these weights
are summed up so that the resulting score reflects the estimated risk of getting the
disease. Higher score usually indicates higher genetic risk and vice versa (Figure
6).
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Figure 6. Distribution of polygenic risk score (PRS). A low score for an individual
indicates a low genetic risk of the disease, a high score indicates a high risk.

Although several PRS models have been built and their estimation capabilities
demonstrated (Aly et al., 2011; Dudbridge, 2013; Euesden et al., 2014; Khera
et al., 2019; Läll et al., 2017), there is a problem that they mostly work only
in European populations, making it difficult to use them in admixed populations
(Khera et al., 2019; Martin et al., 2019), where multiple divergent genetic lineages
have interbred (Rius and Darling, 2014).

Therefore, additional investigation in this field is required and the problem still
remains largely unresolved. Ref. I was one of the first studies to demonstrate this
problem and showed how this could dramatically affect the accuracy of the risk
estimation if the tested individual is from a different population. We elaborate on
this more thoroughly in Chapter 4.

3.4. Pharmacogenomics

Pharmacogenomics, an important part of personalized medicine, is a study of how
genetic variation influences responses to drugs. It has been shown that the same
drug may work differently among patients – for some individuals the drug may
have a lower (insufficient) effect while for the others it may cause toxicity and
other side effects (Wilkinson, 2005). It largely depends on how many “working”
copies of the genes responsible for drug metabolism a particular patient has, lead-
ing to either poor, intermediate, normal, or in some cases also rapid and ultrarapid
metabolism of a drug (this response to a drug is called pharmacogenomic phe-
notype) (Caudle et al., 2017; Nebert et al., 2003). Therefore, a clinical decision
about the most appropriate drug and its dosage should be made by taking into
account the genetic background of a particular patient.
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There are several genetic tests available for detecting pharmacogenomic phe-
notype, which is the basis for making pharmacogenomic recommendations for
an individual. However, these tests are usually very limited, targeting a very
small group of drugs and testing only against very common phenotypes (Chua
and Kennedy, 2012). Taken also into account the debate over cost-effectiveness
of such tests, pharmacogenomic testing has not become into common practice yet
(Ashley, 2016). In Ref. IV, for the first time, we developed a pipeline for estimat-
ing pharmacogenomic phenotype for 11 genes by testing against a wide range of
actionable phenotypes and by utilizing cost-effective genotyping arrays. This will
be further described in Chapter 7.

3.5. Integrating personalized medicine to (state-level) routine
care

As it could be seen from above, there is enough evidence in several clinical ap-
plications to start integrating the methods of personalized medicine into routine
practice. However, there are also several barriers to tackle. In this section, we
briefly describe these obstacles and give a short overview of the current state of
integration of nation-wide personalized medicine approach in Estonia.

3.5.1. Challenges to tackle

Several challenges need to be addressed before personalized medicine could be-
come an acceptable part of clinical practice.

Evidence. Showing the clinical and economic evidence of the impact to con-
vince authorities to approve, insurance companies to cover and physicians to use
genomic-based therapies has probably been the biggest challenge of personalized
medicine (McCarthy et al., 2013; PMC, 2017). Here are some examples of the
questions that need answers: is there enough evidence that genetic testing pro-
vides accurate results and reflects the cause of diseases correctly?; is there enough
evidence of clinical benefit?; does the acting based on genetic testing improve the
outcome – quality of life and medical care (Ginsburg and Phillips, 2018)? These
questions are related to other types of data also, not only to genetics – EHR, lab-
oratory measurements, lifestyle, self-collected data, etc. (Chow et al., 2018).

Actionability. Even if there is enough evidence of the causality, an interven-
tion mechanism has to be available also (Severin et al., 2015). There is little help
if nothing can be done to prevent the predicted outcome, or there are no guidelines
for intervention. For instance, some genetic variants may alter the speed of drug
metabolism, but as long there is no action plan how to react if any of these variants
are found in a patient’s genome, it cannot be used in a clinical decision making
(Relling and Evans, 2015). Some markers (for instance, PRS) might indicate a
high risk of a disease, but there has to be an action plan also in place to react to
these findings so that clinical benefit could be obtained.
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Cost-effectiveness. Even if there is a concrete action plan for intervention,
testing and acting according to the plan might not always be cost-effective. Al-
though screening whole genomes of all people would allow detecting individuals
with high risks of specific diseases, this method is still considered not optimized
for cost. It has been shown that although many personalized medicine tests pro-
vide better health, it tends to come at a higher price, highlighting the need for fur-
ther debate over the cost-effectiveness of personalized medicine (Buchanan et al.,
2013; Phillips et al., 2014).

Computational feasibility. In order to utilize computers for assisting physi-
cians in their decision making, fully specified (proven and accepted by clinical
committees) computer algorithms are needed to rely on. A number of such di-
agnostic (answering to question “is a disease or condition present?”) and prog-
nostic (“will the disease or condition occur in the future?”) algorithms have been
published (Obermeyer and Emanuel, 2016). However, the reporting of such algo-
rithms has been mostly poor, usually containing insufficient information not only
about algorithm development and validation but also for reproduction, making
them difficult to use in clinical practice (Collins et al., 2015).

Additionally, even if the algorithms are well defined, it does not mean that the
necessary input data exists and has the right format at the place of care (Obermeyer
and Emanuel, 2016). For instance, obesity, defined via high body mass index, has
been considered an important risk factor for several diseases and mortality for
a long time (Calle et al., 1999), but its use (representation) in Estonian national
health records is still not standardized, meaning that it is almost impossible to use
this information automatically for computer algorithms in clinical practice as of
today. This also holds for smoking status, blood pressure, heart rate, etc.

Finally, in order to provide clinical guidance in real time, the algorithms should
be able to run in real time. This is not only related to computational power but also
to have a convenient access to the required data, especially to genetic information.
As the volume of the genetic data can be large, it is technically challenging to ex-
change these amounts of information over the computer network quickly, meaning
that the data have to be processed close to the storage. This highlights the need
for high performance storing and computing platforms to facilitate personalized
medicine in clinical practice (Alyass et al., 2015).

Integration into clinical workflow. Integrating the concepts of personalized
medicine into routine clinical workflows has been one of the biggest challenges in
this field. This means – to present relevant information to clinicians at the point
of care (Gottesman et al., 2013) so that the right treatment for the right patient at
the right time could be provided (Ginsburg and McCarthy, 2001). As most of the
doctors work with EHR systems, these computerized assistants have to function
within electronic health records as a part of the clinical workflow to automati-
cally alert treating physicians about relevant information that could help inform
treatment decisions (PMC, 2017; Welch and Kawamoto, 2012). This applies not
only to genetic but also to other types of data, e.g. history of the diagnoses or
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the therapy currently under consideration (Sittig et al., 2008). For instance, alert-
ing a physician about the high risk of diabetes is not justified in case the disease
has already been diagnosed based on his/her EHR data. Alerts about drug dosage
adjustments should not be made when prescribing the drug has never been under
consideration.

3.5.2. Estonian personalized medicine program

It should be clear from the above that personalized medicine is an interdisciplinary
field where experts from several domains – clinicians, bioinformaticians, statisti-
cians, biologists – are needed (Wolkenhauer et al., 2013). Therefore, universi-
ties, research funding agencies, and governments should support connecting re-
searchers from diverse scientific backgrounds (Alyass et al., 2015).

In several countries, state-level personalized medicine programs have been re-
cently launched for that purpose – 100,000 Genomes project1 in United Kingdom
(in 2012), Precision Medicine Initiative2 in the USA (2015), Genomic Medicine
20253 in France (2016), a similar project in Denmark4 (2017), etc. They largely
share a common objective – to build a dedicated inter-disciplinary team of health-
care experts, researchers, industry participants, and government representatives
with sufficient funding to improve the diagnosis and prevention of the diseases by
utilizing genetic information. Most of them are focusing on targeted therapies in
oncology and rare diseases as a first step.

In Estonia, a feasibility study for nation-wide piloting of personalized medicine
was carried out in 2015. Four topics were thoroughly investigated to identify the
most promising clinical fields to start with, describe what kind of information
architecture is needed, what kind of clinical decision support solutions are avail-
able, and how should the management organization of the program look like5.
After identifying the main shortcomings in the field, several projects have been
started afterwards to deal with them specifically. In 2018, a 3-year-long project6

was launched to develop and validate new genetics-based disease risk assess-
ment methods for preventing breast cancer and cardiovascular diseases. This year
(2019), a decision support project was started to provide a set of validated deci-

1https://www.genomicsengland.co.uk/about-genomics-england/the-100000-
genomes-project/ (accessed on 3 April 2019)

2https://ghr.nlm.nih.gov/primer/precisionmedicine/initiative (accessed on 3
April 2019)

3https://aviesan.fr/fr/aviesan/accueil/toute-l-actualite/plan-france-
medecine-genomique-2025 (accessed on 3 April 2019)

4https://www.sum.dk/~/media/Filer%20-%20Publikationer_i_pdf/2017/
Personalised-Medicine-Summary/SUM_klar_diagnose_summary_UK_web.ashx (accessed
on 3 April 2019)

5All reports are available at https://www.sm.ee/et/personaalmeditsiini-
juhtprojekti-eeluuring (accessed on 3 April 2019)

6https://www.etag.ee/uuring-kaardistab-rinnavahi-ja-sudameveresoonkonna-
haiguste-ennetuse-voimalusi/ (in Estonian, accessed on 3 April 2019)
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sion support algorithms for general practitioners. Besides them, another project
was started in 2019 to develop a comprehensive state-level IT infrastructure for
connecting genomic data from Estonian Biobank, Estonian EHR databases, health
insurance data, and digital prescription system, in order to provide pharmacoge-
nomics recommendations through clinical software7. It will be largely based on
pharmacogenomics pipeline described in Ref. IV and will be further explained in
Chapter 7. The key databases involved in this project will be briefly described in
the next sections.

3.5.3. Estonian Biobank

Estonian Biobank8 is a national population-based biobank, established in 1999
mostly by private partners (original name EGeen). After the end of the collabo-
ration, the University of Tartu took control of the biobank and it is now led by
Institute of Genomics. It acts within Human Genes Research Act9 of Estonia and
is purposed for research activities. It aims to collect biological samples and ge-
netic material of Estonian gene donors and link them to EHR data to investigate
the genetic, environmental, and behavioural background of common diseases in
the Estonian population (James et al., 2019).

After a decade of operation, nearly 52 thousand voluntary participants (approx-
imately 5% of Estonian adult population) had joined Estonian Biobank by 2012
and signed a broad informed consent (Leitsalu et al., 2014). Each of them had
donated a blood sample, and a thorough questionnaire had been filled in during
standardized health examination by trained medical personnel. The survey con-
tained more than 600 questions about nationality, education, family tree, lifestyle
(including smoking and alcohol consumption), diseases, and medications. Addi-
tionally, height, weight, blood pressure and other objective measurements were
recorded during the examination visit.

During these years, several specific studies have been conducted on these data,
and many specific modules have been added for diabetes, psychiatry, cardiovascu-
lar diseases, physical activity, etc. Also, different types of analyses of biological
samples have been conducted (Leitsalu et al., 2014).

For most of the participants, their genetic data is also available in digital for-
mat. Particularly, whole genome sequencing data is available for 2,400 donors
and exome sequencing data for another 2,400 donors as of the present date. DNA
of 41,000 donors has been genotyped using either Illumina Global Screening Ar-
ray (GSA, n=33,000) or Illumina OmniExpress array (OMNI, n=8,000). In Ref.
II and Ref. III, data from GSA array were used. Whole genome data is used in
Ref. I and all sources in Ref. IV.

7https://www.openaccessgovernment.org/personalised-medicine-estonia/
55550/ (accessed 3 Apr 2019)

8https://www.geenivaramu.ee/en (accessed 4 April 2019)
9https://www.riigiteataja.ee/en/eli/ee/531102013003/consolide/current (ac-

cessed on 4 April 2019)
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One of the strengths of Estonian Biobank is the permission to collect health-
related data from other sources. Therefore, additional data about the gene donors
have been continuously updated from hospitals, state-level EHR databases, and
registries.

A detailed overview of the cohort of Estonian Biobank as of 2014 is given
in the article by Leitsalu et al. (2014). However, things have rapidly changed in
recent years. In the light of national personalized medicine program, the Estonian
government provided funding for recruiting additional 100,000 gene donors in
201810 which was completed in only nine months by the end of the year. Only
informed consent together with the blood sample was collected this time, and the
samples will be genotyped by the end of 2019. Health data of new participants will
be acquired entirely from EHR databases. Due to the enormous public interest, the
recruitment was extended to additional 50,000 gene donors in 2019. Therefore,
it is expected that Estonian Biobank will have 200,000 participants (15% of the
total population) by the end of 2019.

It has been shown that even if the data were collected for research purposes,
the participants are likely willing to receive personal genetic risk information, es-
pecially when there is an effective preventive measure (Johansson et al., 2019).
To pilot individual genetic counselling, Estonian Biobank has provided personal
feedback for nearly 2,000 participants as of today. This includes reporting the
genetic risk of diseases such as type 2 diabetes, cardiovascular diseases, and
other conditions such as early menopause, carrier status of several diseases (e.g.
breast cancer, cystic fibrosis), and pharmacogenomics information about drug
metabolism.

This thesis has a strong connection to these developments. Ref. I and Ref.
II are studying the frequencies of genetic variants across different populations,
including Estonians, in order to highlight the differences of the frequencies, which
should be taken into account when making genetics-based decisions. Ref. IV
describes a pipeline for producing pharmacogenetic recommendations, used when
providing personal counselling for gene donors. Ref. III explains how genetics
data linked to EHR could be a valuable resource for studying new genetics-disease
associations.

3.5.4. Estonian central EHR databases

Besides hospital EHR systems, there is a number of central health databases in
Estonia (see Figure 4 on page 26). In this section, we briefly introduce the most
notable ones.

Central e-Health database Digilugu. Central database of in- and outpatient
discharge summaries, referrals and responses to referrals (mostly laboratory mea-
surements), called Digilugu, is the largest central health database in Estonia (see

10https://www.tai.ee/et/instituut/koostooprojektid/100-000-uut-
geenidoonorit (accessed on 4 April 2019)
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also Figure 2 on page 22). It was originally used as a data sharing platform be-
tween physicians as sending case summaries to the database has been mandatory,
and all physicians can see the patient records added by everyone else. However,
there is also an online patient portal available where patient himself/herself can
see his/her documents. Data collection began in 2009.

All Digilugu documents have Health Level 7 version 3 format (Dolin et al.,
2001) where part of the information is strictly structured (diagnoses, medications,
patient and clinician data), but the rest (complaints, laboratory measurements) less
strictly, even containing sections of free text. Loose format restrictions increase
the variation of data quality and from a scientific perspective poses several chal-
lenges to deal with. This will be further elucidated in Chapter 5.

Digital prescription. As of today, 99% of all prescriptions in Estonia are made
via digital prescription system called e-Prescription11, launched in 2009. The
doctors fill in the online form and patients can immediately purchase the medica-
tions from any pharmacy on their will. One of the strengths of e-Prescription in
Estonia, when compared to other similar systems, is that it also contains fill data
(shows whether the medicine was actually purchased or not).

Insurance bills. There is a single health insurance broker in Estonia – Health
Insurance Fund – covering all people having state-level health insurance (94%
of the population, Liivlaid et al. (2019)). Reimbursement of health expenditures
is strictly based on health service bills, which are reported electronically to the
central insurance bills database by health care providers. Therefore, clinicians are
motivated to send the reports in a timely and well-formatted manner, which is a
reason why this database is perhaps the most complete EHR database in Estonia.
Data collection was started in 2002.

11https://e-estonia.com/solutions/healthcare/e-prescription (accessed on 4
April 2019)
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4. DIFFERENCES BETWEEN POPULATIONS
HAMPERS USING POLYGENIC RISK SCORES

BLINDLY (REF. I-II)

Polygenic risk scores (PRS) are prediction metrics (models) used for assessing
the genetic risk of developing certain conditions/diseases in the future, e.g. type 2
diabetes. They are composed of a large set of disease-associated genetic variants
which are weighted so that people having a high probability of developing the dis-
ease will get a high score, and people with the low probability get a low score (see
Figure 6 on page 31) (Belsky and Israel, 2014). However, for complex diseases,
the exact proportion of genetic risk to total risk is usually unknown – for instance,
estimated to be around 20-80% for type 2 diabetes (Ali, 2013). Therefore, PRS
is not a highly accurate prediction model without taking into account additional
risk factors such as lifestyle, age, and environment. Nonetheless, it would still be a
reasonable option for selecting people for targeted lifestyle modification programs
for disease prevention (Schellenberg et al., 2013).

As PRS is a prediction model (answering to a question “what happens to
me?”), it does not explain causality (“why it happens?”). Generally, genetic vari-
ants are chosen to PRS model from genome-wide association studies (GWAS),
where certain alleles of the variants are found to be associated with the disease
(Belsky and Israel, 2014), but it does not necessarily mean causality. Several vari-
ants in human genome are correlated with each other, and, therefore, for strongly
correlated variants with similar frequency, similar association with the disease can
be seen for all of them. Usually, only one of these variants that shows the strongest
association, is included in PRS model. Instead of being a causal variant, this could
also be non-causal (Carlson et al., 2013). As long as the correlations between the
causal and non-causal variant remain similar, this does not affect the PRS result.
In case the correlations change, the result of the PRS model could be dramatically
altered. The problem is that correlations between variants vary across different
populations, and, therefore, a model that works well for one population, might
not work for the others. In addition, there might be additional causal variants in
other populations. When the model is built on data from one population, it may
miss several causal variants from the others, and, therefore, not reflect the true ge-
netic risk of these people. Finally, as the frequencies of variant alleles vary among
populations, the mean of PRS differs as well, affecting the result of PRS model in
other populations.

Most of the currently available genomic data are from European populations.
Therefore, also PRS models are biased towards Europeans (Martin et al., 2019),
especially when the PRS contains a large number of genetic variants. Ref. I was
one of the first studies to indicate this problem. In this study, we investigated two
PRS models, developed mostly on European genomic data and using a very large
number of variants, probably the largest PRSs by the time of the publication. The
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first of them was developed by Läll et al. (2017) for assessing the genetic risk
of type 2 diabetes, the other by Abraham et al. (2016) for evaluating the risk of
coronary heart disease. In our paper, we showed that the resulting risk scores
are so different across different populations that applying the same model blindly
to all people would lead not only to slightly biased but to incorrect disease risk
estimations.

Several studies have reached the same conclusion afterwards, and the problem
has remained largely unresolved as of now (Martin et al., 2017, 2019).

In Ref. II, we investigated allele frequencies of the variants that had been
associated with asthma and liver disease in the literature. Specifically, we com-
pared allele frequencies in Estonia and other populations and tested, in how many
of them the difference was significant. Similarly to Ref. I, we observed that al-
lele frequencies of these disease-associated variants among Estonians are close to
other Europeans but more distant to other populations, especially Africans.

Taking this into consideration, one has to be cautious when estimating genetic
risk in the clinical setting. Differences in the genetic background of the patients
may cause biases in the models and lead to wrong conclusions as a result. Even
in relatively homogeneous populations, there might be individuals from different
ancestries. Therefore, when using genetics-based risk models, we emphasize the
importance of assessing the genetic suitability of the patient and avoid providing
risk estimations to anyone else.

These publications have had a direct impact on Estonian Biobank participants.
During genetic counselling, genetic risks for type 2 diabetes and coronary heart
disease are not provided if the ethnicity of the gene donor is not stated as Estonian.
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5. TURNING NATIONAL ELECTRONIC HEALTH
RECORDS INTO BETTER FORMAT

Estonian EHR data is exceptional from several aspects. First, they are mostly writ-
ten in Estonian, requiring Estonian natural language processing tools and skills to
analyze them on a large scale. Second, central EHR databases (discharge sum-
maries, prescriptions, bills) cover almost the whole population and can be rela-
tively easily linked together electronically. The latter provides a unique opportu-
nity not only to do research on national data but also to build new personalized
medicine services for the entire country.

The author of this thesis has a long experience of working with Estonian
national EHR data, especially with facilitating scientific use of these data. If
one wants to integrate new evidence-based personalized medicine approaches to
national-level clinical workflows and EHR systems, the underlying data and sys-
tems must be well understood. Due to local nuances, the publications in this topic
(Ref. V, Ref. VI, Ref. X) have been mostly targeted to local researchers and au-
thorities, written mainly in Estonian, and are therefore not included in this thesis.
However, in this chapter, a brief overview of these studies is provided.

5.1. High-quality decisions need high-quality information

Across the world, EHR data have been mainly collected for the treatment of a
particular patient rather than scientific purposes. These documents can be seen as
collections of information about a patient, stored in a format which allows easy
manual recording and reading them through later (e.g. by a clinician) if needed.
Therefore, the format restrictions of such documents are usually relatively loose
in order to not limit adding any kind of relevant information (Scholte et al., 2016).
However, as soon as one wants to apply some automatic analyses on these data
– either for research or for clinical decision support systems – such format is not
suitable anymore. Well-defined format and structure are essential for machine
readability (Hripcsak and Albers, 2012; Obermeyer and Emanuel, 2016). For
this reason, converters are needed to extract the necessary information from EHR
documents and transform into better format.

In Estonia, the author of this thesis is a member of the health informaticians
team (a joint effort by the University of Tartu and private companies STACC and
Quretec) who have developed a data extraction and filtering pipeline for Estonian
central discharge summary documents. It starts with exploding summary doc-
uments into smaller pieces and adding medical facts from the fragments to the
relational database, followed by fact duplication filtering (sometimes new sum-
mary documents are started with duplicating some old ones, so that the old facts
are also present in the new document) and fact extraction from structured and
free text parts, including identifying laboratory measurements and unifying their
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units. Development of the pipeline has taken years by now, and the work contin-
ues. However, this has been a vital prerequisite for any further analysis of these
data – either for assessing the data quality or building new services on top of them.
Note that in order to use EHR data as input for personalized medicine algorithms,
the data has to be extracted with high quality.

5.2. Need for automatic patient-level data summarization

Recently, Estonian clinicians raised the problem in the Parliament that due to a
large number of EHR documents per patient, it takes an unreasonable amount of
time for a physician to look them through (Koppel, 2018). This is an indication
of a problem that researches foresaw more than a decade ago – that automatic
summaries of patient-level information are needed (Sittig et al., 2008). Although
several research groups have developed patient-level summarization tools and pro-
totypes to date and investigated different summarization techniques (Feblowitz
et al., 2011; Hsu et al., 2012; Laxmisan et al., 2012; Pivovarov and Elhadad,
2015; Rind et al., 2013; West et al., 2014), we have also build our own version
of it (Figure 7). It was designed for dealing with large amounts of data to get a
quick overview of what has happened to a particular patient. Practising physicians
in Estonia who have consulted us have found it very useful to overcome the in-
formation overload problem. Additionally, we have demonstrated its interaction
with clinical guidelines of type 2 diabetes so that alerts about undone procedures
are shown to the doctor.

5.3. Moving towards common data models

Using common health data structures is important for several reasons. Firstly,
different coding systems and free text information make it extremely difficult to
directly replicate any external study or apply a computer algorithm to the tar-
get environment. Therefore, it is hard to estimate their applicability in the target
population. For instance, in Ref. VIII we presented how difficult it is to find a
common “defining criterion” for patients of type 2 diabetes in different European
databases. Secondly, data are more and more spread over several databases, and
it is required to gather them at the time of care. Therefore, the semantic interop-
erability – the ability to exchange data with unambiguous, shared meaning – is
necessary. Thirdly, as in personalized medicine the target patient groups for dif-
ferent treatment options are getting narrower, there is a need to combine several
datasets to achieve a large enough number of a specific type of patients for a proper
research study. This emphasizes the necessity of harmonization of the standards
and data formats of health data cross-border. Recently launched EHDEN project
is a great example of this – aiming to harmonize health records of 100 million Eu-
ropeans into a common data format in 4 years for enabling reproducible science.
They provide funding for observational data sources to map their data to OMOP
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common data model (Hripcsak et al., 2015) so that these data could be more eas-
ily used for research studies. I have already conducted an initial mapping of two
central EHR databases to OMOP common data model (Digilugu, health insurance
bills database). However, this effort is ongoing.

5.4. Well formatted EHR data opens new opportunities

When successful, having EHR data in a proper format opens new opportunities for
investigating disease trajectories (Figure 8), associations between diseases and lab
measurements or, in combination with genetic data, discover new associations be-
tween genetic variants and diseases (Evans, 2016). Ref. III (further explained
in Chapter 6) is a perfect example of this – EHR diagnoses and laboratory mea-
surements were combined with genetic data in order to validate the current DNA-
disease associations and discover new ones. If not applicable to date, this can lead
to better personalized treatments or prevention in the future.
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Figure 7. Example of the automatic patient-level summary report for Estonian dis-
charge summary data. Diagnoses, prescriptions, blood pressure and laboratory mea-
surements are displayed in a zoomable timeline graph. Above them, alerts about undone
procedures, required by clinical guidelines for type 2 diabetes, are shown. From each data
point, a tooltip with additional information can be opened.
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Z00.1 Routine child health examination

Z24.6 Need for immunization
against viral hepatitis

Z27.3 Need for immunization against
diphtheria-tetanus-pertussis with
poliomyelitis [DTP + polio]

Z23.8 Need for
immunization
against other single
bacterial diseases

J00 Acute
nasopharyngitis
[common cold]

J06.9 Acute upper
respiratory infection,
unspecified

B34.9 Viral infection, unspecified

J35.2 Hypertrophy of adenoids

Z01.0 Examination
of eyes and vision

Z02.0 Examination for admission
to educational institution

H65.0 Acute
serous
otitis media

H52.0 Hypermetropia

R51 Hypermetropia

H52.1 Headache

L70.0 Acne vulgaris

J35.0 Chronic tonsillitis

Z30.4 Surveillance of contraceptive drugs

Z11.3 Special screening examination for
infections with a predominantly sexual

mode of transmission

Z30.0 General counselling and advice on contraception

Z01.4 Gynaecological examination (general)(routine)

D22.5 Melanocytic
naevi of trunk

Z30.5 Surveillance of (intrauterine) contraceptive device

B37.3 Candidiasis of vulva and vagina

O80.0 Spontaneous vertex delivery

Z13.6 Special screening
examination for cardio-

vascular disorders

M54.5 Low back pain

H52.4 Presbyopia

M51.1 Lumbar and other
intervertebral disc disorders
with radiculopathy

I10 Essential (primary) hypertension

I11.9 Hypertensive
heart disease without

(congestive)
heart failure

E78.2 Mixed hyperlipidaemia

E66.0 Obesity due to excess calories

I11.0 Hypertensive
heart disease with

(congestive) heart failure

H25.0 Senile
incipient cataract

N40 Hyperplasia
of prostate

E11.9 Type 2 diabetes
mellitus without

complications

Z96.1 Presence of
intraocular lens

I48 Atrial fibrillation and flutter

H25.1 Age-related
nuclear cataract

I50.0 Congestive heart failure

H35.3 Degeneration
of macula
and posterior pole

DEATH

I50.9 Heart failure, unspecified

N39.0 Urinary tract
infection, site not specified

Figure 8. Most common diagnoses and their order throughout life, based on EHR
data of 1.3 million patient in central e-Health database of Estonia. Each node denotes
one ICD-10 code, the size of the node indicates the number of patients having that diag-
nosis, the width of the arrow indicates the proportion of patients having both diagnoses.
The number of incoming arrows for each node is limited to 1.
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6. COMBINING ELECTRONIC HEALTH RECORDS
AND GENETIC DATA ALLOWS INVESTIGATION OF
NEW ASSOCIATIONS FOR FUTURE CARE (REF. III)

A number of genome-wide association studies (GWAS) where correlations be-
tween a genome-wide set of genetic variants and specific diseases are searched
for in order to find disease-associated (and possibly causal) genetic variants, has
grown rapidly after 2002 when the first study of that kind was published (Ozaki
et al., 2002). In 2010, a reverse type of study was introduced – phenome-wide
association study (PheWAS). In this approach, a small set of genetic variants,
usually associated with some disease, are tested towards a large set of other dis-
eases (or traits) to find out whether any previously unknown correlations peak
up, potentially indicating a shared causal pathway (Denny et al., 2010). Uncov-
ering genetic markers that signal potential disease could help to focus on disease
prevention and early intervention.

PheWAS is heavily dependent on EHR data as it requires a diverse set of clin-
ical events to test against. However, settings where biobank information could be
linked to EHR are not very common to date. Estonian Biobank is one of those.
It has not only genetic information available for nearly 5% of the Estonian popu-
lation but also EHR data from state-level databases and laboratory measurements
from main hospitals. Therefore, with the motivation to support new discoveries
in clinical science, we utilized this valuable data and conducted a PheWAS on
them (Ref. III). Particularly, we studied genetic variants that had been previously
associated with asthma and liver disease, and tested in this computationally exten-
sive study, whether there are other associations between these variants and health
events. Genetic data of 26 thousand samples and EHR data of over 2,000 dif-
ferent diagnosis codes and 25 types of laboratory measurements were used. We
confirmed 7 asthma and liver disease associations and found 2 phenome-wide sig-
nificant associations with other diseases (type 1 diabetes, autoimmune thyroiditis).
Although these particular associations were not completely novel, we believe that
there was just not enough statistical power (too few cases) to detect all associa-
tions. However, as the EHR data of the gene donors grows in time, the power
will also increase. Additionally, we showed that such integrated database settings
could be effectively used for validation studies. Note that in order to utilize some
previously published association in clinical practice, one should always validate
the association in the target population – not only to verify its validity but also to
assess the potential impact of the intervention.

This study has great importance in the light of a rapid expansion of Estonian
Biobank. It is expected that there will be 200 thousand participants in the Biobank
by the end of 2019. Therefore, it is possible to rerun the analysis on a much larger
dataset in the near future, which could increase the statistical power and possibly
allow detecting many more associations. This is the reason why Estonian Biobank
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and PheWASs are seen as valuable resources for discovering common disease
pathways which would possibly lead to better treatment of these diseases in the
future.
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7. BUILDING PHARMACOGENOMICS
RECOMMENDATION PIPELINE FOR 44,000 GENE

DONORS (REF. IV)

The pharmacogenomics field has developed fast during the last decade. More
than 250 drugs have pharmacogenomic information available in their information
leaflets as of today, 69% of them are non-oncology drugs (FDA, 2019). They
describe how a pharmacogenomic phenotype of a patient should be taken into
account when selecting the right dosage or drug.

The problem is that detecting pharmacogenomic phenotype is not a trivial task.
Although several genetic tests are available for that, they are usually quite limited
– using only a small set of genetic variants and single genes. Therefore, it is not
easy to decide in what cases which tests to use and at what costs.

At the same time, for a large amount of people, their genetic data already exists
in various biobanks. In Estonia, they are stored in Estonian Biobank. Although
thorough public mapping tables exist for linking genetic variants to pharmacoge-
nomic phenotypes (Whirl-Carrillo et al., 2012), they are hard to use by medical
doctors due to missing or ambiguous guidelines on how to interpret these tables.

Therefore, we saw great potential in utilizing existing genetic information and
pharmacogenomic knowledge for comprehensive pharmacogenomic testing. In
Ref. IV, we combined two pieces of information – the existing definition tables
of pharmacogenomic alleles and the individual genomes – in order to provide per-
sonal pharmacogenomic recommendations for each gene donor (see also Figure
5 on page 27). We built a software pipeline for providing such pharmacogenomic
recommendations for all donors who had their genetic data digitally available in
the Biobank at that time (44 thousand participants). However, it turned out that
building a universal pipeline requires several hurdles to overcome: non-unified
notation of genomic data (see also Section 2.2.3), missing machine-readable phar-
macogenomic knowledgebase, variety in the amount of evidence, missing action-
ability for some associations, etc. We describe some of these challenges in Ref.
IV. Despite these issues, we were able to calculate the pharmacogenomics report
for all 44 thousand people, and this is now used as a standard part of personal
genetic counselling of Biobank participants.

We showed that 99.8% of the donors need a dosage adjustment for at least
one of the medications (otherwise possibly suffering from side effects or having
no effect of the drug), which is larger proportion than estimated before (98.5%
by Dunnenberger et al. (2015)), highlighting the enormous potential and need for
using the pipeline for the whole nation also. Moreover, we compared the results
derived from different sequencing/genotyping methods and showed that the geno-
typing array – a cost-effective alternative for full sequencing (Martin et al., 2019)
– could be successfully used for pharmacogenomic testing.

This study has had a direct impact. In spring 2019, a national-level project
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was launched to build the necessary IT infrastructure to bring the developed phar-
macogenomics pipeline into state-level use. As using offline report is relatively
inconvenient, the true value would reveal when the pipeline and alert mechanism
were integrated into clinical workflows. That is, a pharmacogenomic alert should
be shown to the physicians at the time of prescribing a drug (Gottesman et al.,
2013). This also requires that the genetic information exists in some database
(Ashley, 2016) and is securely maintained but accessible by EHR systems online
when needed (Evans, 2016).
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8. CONCLUSION

The driving force behind this thesis has been Estonian state level desire to bring
personalized medicine into routine care. However, there is a number of challenges
to overcome. This thesis is investigating some of these, mainly computational
ones, by combining several datasets, conducting large scale calculations and de-
veloping computer algorithms for large scale use.

The results of this thesis can be summarized as follows.
• Due to differences in genetic background, polygenic risk scores used for as-

sessing genetic risks of the diseases can produce incorrect risk estimations
when applied to individuals from different populations. In admixed popu-
lations, these scores should be used with caution. It is suggested to verify
the ancestry of an individual before using a polygenic risk score for disease
risk estimation.

• Genomic data together with electronic health records in Estonian Biobank
can be effectively used for phenome-wide association studies to discover
new associations between DNA and diseases and thereby increase our un-
derstanding of these diseases. It can also be used for validation studies.

• Almost everyone needs a dosage adjustment for some medications. We de-
scribe a pipeline for producing individual pharmacogenomics recommen-
dations for 44 thousand biobank participants.

The process of integrating both the developed pharmacogenomic diagnostic
pipeline and genetic risk scores onto state level clinical practice is currently ongo-
ing. To become an accepted part of routine clinical treatment, fitting these tools
to clinical workflows and integrating them with existing (EHR) systems is crit-
ical. For instance, pharmacogenomic alerts should be shown only if the doctor
is going to prescribe a medication which requires an adjusted dosage; polygenic
risks of diseases should be presented only if a person is genetically a representa-
tive of the population that was used to build the risk model and if he/she has not
already been diagnosed with the disease. This is why it is vital to understand the
characteristics of the data that EHR systems and genetic databases contain – what
is the quality of the data, how to analyze them and how to build cost-effective
pipelines for making algorithm-based health-related recommendations. This the-
sis has increased our understanding in all of these aspects and helps us to step
closer towards national-level implementation of personalized medicine.

There is strong evidence that the amount of genetic data is about to increase
rapidly in the clinical setting during the upcoming years and decades. While be-
ing so far used mainly for scientific purposes, we are reaching a point where peo-
ple are more and more expecting to use this information for individual clinical
care. Therefore, bringing all pieces of information smoothly into clinical work-
flows requires additional work on semantic interoperability, and it can be foreseen
that new health data standards will be developed. Several initiatives are already
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working on this topic, aiming to use health-data cross-border across European
countries. This would not only make it easier for the patient to move around and
get high-quality treatment anywhere but also allow using much larger datasets for
clinical research.

Together with the growing amount of genetic data, our understanding of ethnic
diversity is going to increase. Polygenic risk scores, currently suffering from eth-
nic bias, will be globally more balanced, containing more causal variants, leading
to better disease risk estimation capabilities even in admixed populations.

As a result of increasing amounts of data, new associations between genetics
and diseases could be detected, leading to better prevention, diagnosis and treat-
ment. Therefore, a proper IT infrastructure, together with the skilled medical staff
and data scientists, as well as legal and supporting environment for the multidis-
ciplinary collaboration must be in place to take the full advantage of this new era.
It is expected that several new nation-wide personalized medicine initiatives will
be kicked off in the near future.

Though not discussed in this PhD thesis, it must not be overlooked that the
field of using any individual-level data in general and using computer software in
healthcare is getting more and more regulated. During this PhD study, the Euro-
pean Parliament approved General Data Protection Regulation (GDPR) in 2016,
setting privacy issues into primary focus. Additionally, software used in the med-
ical setting is now seen as medical devices, falling under appropriate regulations.
In Europe, two new regulations – Medical Devices Regulation (2017/745/EU) and
In-vitro Diagnostic Medical Devices Regulation (2017/746/EU), both published
2017 – apply in 2020 and 2022, and have a significant impact on medical software,
possibly also on the results of this thesis. In order to improve clinical safety, they
put more responsibility on computer software used in healthcare and on the man-
ufacturer, requesting an external conformity assessment, post-market surveillance
etc. While there is no doubt that stronger regulation improves the privacy, quality
of the computerized assistance and safety of the patients, it will also require a lot
of time and energy to bring new products to the clinical practice. Therefore, future
studies have to put much more effort into satisfying various regulations.

Despite these limits and other challenges discussed in this thesis, the trend
towards more personalized medicine is undeniable. The more information gets
available, the more computers and advanced computer algorithms are needed to
analyze the data, stratify patients and diseases into more granular subgroups and
thereby helping clinicians to select the optimal therapy for each individual patient.
However, there are no signs that the personal interaction between doctors and
patients is about to disappear. We, as bioinformaticians, have to equip doctors
with useful tools to support this interaction as much as possible, which, as a result,
would lead to better health for everyone.
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SISUKOKKUVÕTE

Arvutuslikud meetodid personaalmeditsiini arendamiseks

Kuigi meditsiin on alati põhinenud patsiendi ja arsti vahelisel individuaalsel suht-
lusel, on mõiste personaalmeditsiin tulnud laiemasse kasutusse alles viimastel
aastakümnetel. Selle ajendiks on asjaolu, et senised raviskeemid toimivad küll
paljudel patsientidel, kuid siiski mitte kõigil. Selle põhjuseks on patsientide in-
dividuaalsed, eriti geneetilised, omapärad. Personaalmeditsiini eristab traditsioo-
nilisest meditsiinist püüe võtta maksimaalselt arvesse ka patsiendi individuaalset
(geneetilist) tausta, mis võimaldaks senisest efektiisemat haiguste ennetust ja ravi.

Selline lähenemine on saanud võimalikuks tänu mitmele asjaolule. Esiteks on
inimese geeniandmete tuvastamine bioloogilisest materjalist (verest) saanud laialt
kättesaadavaks, mistõttu kasvab geeniandmete maht kogu maailmas kiiresti. Tei-
seks on tänapäeva arvutusvõimsus jõudnud geeniandmete analüüsimiseks ja tööt-
lemiseks piisavale tasemele. Kolmandaks kasutab suurem osa arste oma töölaual
elektroonilisi infosüsteeme, mis teeb võimalikuks kõigi kolme komponendi – gee-
niandmed, arvutusvõimsus, arsti töölaud – omavahelise ühendamise ja arstidele
nn digitaalse otsustustoe pakkumise.

Mõnedes kliinilistes valdkondades on personaalmeditsiin juba jõudnud tava-
praktikasse. Näiteks onkoloogias, kus täpne raviskeem valitakse vastavalt konk-
reetse patsiendi vähirakkude iseärasustele. Samuti teostatakse Eestis raseduseel-
set, rasedusaegset ja vastsündinute geneetilist testimist eesmärgiga varakult ära
tunda võimalikke tõsiseid pärilikke haigusi. Kliinilisse praktikasse on jõudmas
farmakogeneetiline testimine, mille eesmärgiks on tuvastada, kas konkreetsele
patsiendile sobib konkreetse ravimi tavapärane doos või tuleks seda kohandada.
Samuti on tänaseks välja töötatud mitmeid nn polügeenseid riskiskoore, mis ai-
tavad hinnata keerukamate haiguste nagu 2. tüüpi diabeedi või südamehaiguste
pärilikku riski ja on potentsiaalselt kasutatavad haiguse riskirühmade kindlakste-
gemiseks (nt sõeluuringutele kutsumiseks).

Personaalmeditsiini kontseptsiooni kliinilises praktikas rakendamine hõlmab
mitmete eri osapoolte – arstide, bioinformaatikute, statistikute, bioloogide jne –
koostööd, mistõttu on mitmetes riikides käivitatud selle toetamiseks riiklikul ta-
semel spetsiaalsed personaalmeditsiini programmid. Lisaks nõuab see paljude eri
valdkondade küsimuste lahendamist, m.h regulatoorsete, tehniliste, eetiliste, hari-
duslike ja finantsiliste.

Ka Eestis on käivitatud riiklik personaalmeditsiini programm. Käesolev dok-
toritöö ongi seotud personaalmeditsiini rakendamisega Eesti tervishoiusüsteemis,
kasutades Eesti Geenivaramu geeniandmeid ning käsitledes eelkõige selle arvu-
tuslikke küsimusi.

Polügeensed riskiskoorid on matemaatilised arvutusmudelid, mis isiku genee-
tilise info põhjal ennustavad, kas isikul on madal, keskmine või kõrge pärilik risk
teatud haiguse tekkimiseks. Need mudelid on tavaliselt välja töötatud teadustööks
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kättesaadavate geeniandmete puhul, mis on tänapäeval paraku valdavalt Euroopa
päritolu. Seetõttu on ka välja töötatud riskiskoorimudelid “kallutatud” ega sobi
riski hindamiseks mitte-eurooplastele. Käesoleva doktoritöö artikkel Ref. I oli
üks esimesi artikleid, kus seda probleemi sõnastati ja ühtlasi esimene, kus näi-
dati, et tuhandeid geenimutatsioone sisaldavate riskiskooride korral – näiteks 2.
tüüpi diabeedi (7500 geenimutatsiooni) ja südamehaiguste riskihinnang (49 000
mutatsiooni) – võib teisest populatsoonist pärit isikule olla ennustatud riskihin-
nang risti vastupidine tema tegelikule riskile. Artiklis Ref. II on näidatud, et sama
kehtib ka astma ja maksahaigustega seotud geenimutatsioonide kohta – eestlas-
te hulgas on nende mutatsioonide sagedused sarnased teistele eurooplastele, kuid
erinevad muudest rahvastest. Seetõttu tuleb riskiskooride puhul vältida nende mu-
delite kasutamist sellistel isikutel/patsientidel, kelle päritolu oluliselt erineb mu-
deli väljatöötamise aluseks olevate isikute päritolust. Nimetatud artiklitel on ka
olnud otsene mõju – Geenivaramu poolt oma doonoritele antavad personaalsel
nõustamisel ei kasutata riskiskoore, kui geenidoonor pole oma rahvuseks märki-
nud eestlane või venelane (s.t on põhjust arvata, et tema genoom erineb oluliselt
tüüpilise eestimaalase omast).

Lisaks geeniandmetele tuleb personaalmeditsiinis arvesse võtta ka muid eri-
nevatest terviseinfosüsteemidest pärinevaid terviseandmeid. Paraku on kogutud
terviseandmed ebaühtlase kvaliteediga ja nende ühtlustamise ning paremini ka-
sutatavale kujule viimise osas on käesoleva doktoritöö autor viinud läbi mitmeid
teadusuuringuid, mida on käsitletud peatükis 5. Samas on näidatud lahendusi, mi-
da ühtlustatud andmeid kasutades on võimalik luua.

Valdavalt on senised geeniuuringud keskendunud konkreetse haiguse põhjus-
likkuse uurimisele – otsides haigusega korreleeruvaid geenimutatsioone (nn ge-
noomiülene assotsiatsiooniuuring). Seoses elektrooniliste terviseandmete laialda-
se levikuga, ning juhul kui neid on võimalik kokku viia geeniandmetega (nagu
Eesti Geenivaramus), on sel kümnendil hakatud läbi viima ka vastupidiseid uurin-
guid – nn fenoomiüleseid assotsiatsiooniuuringuid. Nende sisuks on uurida, mil-
liste haigustega mingi konkreetne geenimutatsioon on korreleerunud. See eeldab
suuremahulist geeniandmete ja terviseandmete ühendamist, ning artiklis Ref. III
vaadeldi, milliste muude haigustega on seotud mutatsioonid, mis varasemalt on
seostatud astma ja maksahaigustega. Nimetatud artiklis kasutati ligi 27 000 gee-
nidoonori geeniandmeid, kuid see valim osutus uute seoste leidmiseks liialt väik-
seks. Kuna aga Geenivaramu andmestik kasvab 2019. aasta lõpuks eeldatavasti
200 000 geenidoonorini, on võimalik sama uuringut lähitulevikus korrata. Lisaks
näitasime artiklis, et vaadeldud andmestik sobib hästi varem leitud geenide ja hai-
guste vaheliste seoste kontrollimiseks.

Farmakogeneetikat on peetud üheks kõige potentsiaalikamaks personaalme-
ditsiini rakendusvaldkonnaks, sest paljude ravimite infolehtedel on juba praegu
kirjas soovitused selle kohta, kuidas sõltuvalt geneetilisest taustast konkreetse
ravimi annustamist tuleks kohandada. Samas ei olnud protsess, mis kirjeldaks
täpselt, kuidas konkreetse isiku andmetest jõuda ravimisoovituseni, varem kir-
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jeldatud, ning jättis palju tõlgendamisruumi. Käesoleva doktoritöö artiklis Ref.
IV loodi tarkvara, mis selle töö 11 geeni puhul ära teeb ning mille abil koostasi-
me farmakogeneetilise info raportid 44 tuhandele geenidoonorile. Selgus, et ter-
velt 99,8% geenidoonoritel esineb niisuguseid geenivariante, mis nõuaksid mõne
ravimi puhul koguse kohandamist (iseasi, kas doonor seda ravimit kunagi tar-
bib). See number on suurem, kui varasemalt näidatud. Lisaks näitasime, et kuigi
kõige parem on farmakogeneetiliseks testimiseks kasutada nn täissekveneerimise
tulemusel saadud geeniandmeid, pakub ka kordades odavam alternatiiv – nn ge-
notüpiseerimiskiipide kasutamine koos imputeerimisega – peaaegu samaväärseid
tulemusi.

Selleks, et personaalmeditsiin jõuaks kliinilisse praktikasse, on oluline tuua
selle IT-lahendused arstide igapäevastesse töövoogudesse, mis paljuski tähendab
nende integreerimist olemasolevate terviseinfosüsteemidega. Näiteks polügeense-
te riskiskooride põhjal tehtud haigusriskide ennustusi on mõtet teha üksnes juhul,
kui terviseandmete põhjal patsient seda haigust veel ei põe. Ka farmakogeneetili-
si hoiatusi konkreetse ravimi kohta tasub kuvada vaid siis, kui arst kaalub selle
ravimi väljakirjutamist. Seetõttu on olemasolevate terviseinfosüsteemide ja ter-
viseandmete tundmine oluline – teada, milliseid andmeid on olemas, milline on
nende kvaliteet ning kuidas luua arstidele digitaalseks otsustustoeks algoritmidel
põhinevaid kuluefektiivseid IT-töövoogusid. Käesolev doktoritöö on kõigis neis
aspektides meie teadmisi laiendanud ja aitab Eesti riigi tasemel personaalmedit-
siini rakendamisele oluliselt kaasa.

Praeguseks on Eestis käivitatud mitmed personaalmeditsiini valdkonna alamp-
rojektid, mis käsitlevad selle eri tahke. Üheks selliseks on riikliku IT-infrastruktuuri
loomise projekt, et võtta Ref. IV kirjeldatud tarkvara ka kliinilises praktikas kasu-
tusele. See infrastruktuur peaks võimaldama kasutada ka geneetilisi riskiskoore.
Seega töö nimetatud teemadega jätkub ning loodetavasti saab personaalmeditsii-
nist varsti kasu juba suur osa Eesti inimestest.
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