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1. INTRODUCTION 

The genetic changes that have happened in the past and the processes that have 
shaped the demographic histories of populations through time have been studied 
for decades using modern genetic data. After the development of next gene-
ration sequencing (NGS) technologies almost 15 years ago (Margulies et al., 
2005), ancient DNA (aDNA) research has started to contribute significantly to 
this field of interest. Modern genomes contain a lot of information about the 
past and the large datasets available now provide a good representation of 
existing genetic diversity, enabling us to model how and when different 
processes affected populations in the past. Studying aDNA, however, allows us 
to confirm the more exact time when these processes were going on and adds a 
geographic component since each ancient genome is connected to a specific 
time and place in the past. Furthermore, aDNA can shed light on the social 
structure in the past and reveal genetic lineages that have not managed to 
contribute to the genomes of modern populations. To this end, aDNA research 
has already shown higher than expected levels of mobility and admixture (most 
unexpectedly between humans and other hominins). 

The main restrictions of aDNA research come from the available sample size 
often being quite small, geographic limitations due to differential preservation 
depending on environmental conditions and the high cost – chemical processes 
causing different types of damage lead to highly degraded DNA which calls for 
the use of dedicated clean-room facilities and abundant funds for sequencing, 
often coupled with expensive laboratory methods to improve sequencing 
efficiency. Due to this, the researchers in this field are constantly trying to find 
ways to improve their laboratory and bioinformatic methods to generate more 
data and to be able to answer more questions. 

The field of studying the human past is evolving and benefitting more and 
more from transdisciplinary research in recent times – combining the data and 
knowledge of genetics, archaeology, linguistics etc is crucial for being able to 
understand demographic processes and to get as clear of a picture of the past as 
possible. 

The main topic of this thesis is the demographic history of Europe and more 
specifically Estonia. Anatomically modern humans (AMHs) reached Europe by 
around 45,000 years ago (Benazzi et al., 2011). These hunter-gatherers persisted 
in refugia during the Last Glacial Maximum (LGM), re-expanded later and 
formed genetically, geographically and, in some cases (Jones et al., 2015; Mittnik 
et al., 2018), temporally distinguishable groups. Around 8,000 years ago (Pinhasi 
et al., 2005), farming was brought into Europe by people with ancestry from 
Anatolia and Levant (Lazaridis et al., 2016), nowadays most frequent in modern 
Sardinians. 

Archaeological data suggests that the demographic history of Estonia is 
somewhat different from more central areas of Europe – the first evidence of 
human settlement is from after the Last Glacial Period (LGP) around 11,000 



12 

years ago (Veski et al., 2005; Kriiska and Lõugas, 2009) and farming arrived 
only with the Late Neolithic Corded Ware culture (CWC) people. The most 
apparent thing that sets modern Estonians, Finns and some smaller populations 
apart from the rest of Europe is that they speak Uralic languages. The origin of 
this language family is probably in the Volga-Kama region from where the 
precursors of modern Uralic languages spread in several directions to be spoken 
today in areas of Europe and Siberia, far from each other. 

This thesis looks into the Neolithic in Estonia in the context of migrations 
affecting much larger areas in Eurasia (REF I), the more specific processes and 
changes in Estonia through time (REF II, III), and the genetic makeup of modern 
Estonians, particularly connections with other Uralic speakers (REF IV). 
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2. LITERATURE OVERVIEW 

The literature overview first gives a general background of the different aspects 
of using aDNA for studying the past. The later chapters explain the genetic, 
archaeological and linguistic background of the more specific questions 
addressed in the thesis. 
 
 

2.1. Ancient DNA (aDNA) 

Using aDNA to learn about the past is a relatively new development in the field 
of genetics. There are some characteristics of aDNA that make it more difficult to 
use in research compared to modern DNA, thus also impacting the history of 
aDNA studies and influencing the way that this research is conducted now. 
 
 

2.1.1. The history of aDNA studies 

The field of aDNA research started almost 35 years ago when Higuchi and 
colleagues (Higuchi et al., 1984) managed to sequence 229 bp of mitochondrial 
DNA (mtDNA) from a museum specimen of a quagga (Equus quagga), a 
mammal similar to extant zebras that went extinct in 1883. Already the next 
year, Svante Pääbo reported having cloned DNA from an Egyptian mummy 
(Pääbo, 1985). During the following years, many more articles were published, 
claiming to have successfully produced sequences from organisms who lived as 
long as millions of years ago (called “antediluvian”), including insects and plants 
stuck in amber (DeSalle et al., 1992; Cano et al., 1993; Poinar et al., 1993) and a 
Cretaceous dinosaur (Woodward et al., 1994). 

The first enthusiastic phase of aDNA studies was followed by a period of 
questioning the results of those first studies and the limits of aDNA studies in 
general. The supposed dinosaur sequence was already classified as contami-
nation a year after it was published when cytochrome b sequences of the so-
called Cretaceous bone fragments were compared with those of extant tetrapods 
and shown to cluster with humans (Figure 1) (Hedges and Schweitzer, 1995; 
Zischler et al., 1995). The same conclusion was reached for many of the early 
aDNA results in the following years, often by the same researchers who had 
participated in the false discoveries (Austin et al., 1997; Cooper and Poinar, 
2000; Pääbo et al., 2004). However, this also led to the establishment of the first 
laboratory protocols for avoiding contamination (Handt et al., 1996; Ward and 
Stringer, 1997; Cooper and Poinar, 2000), which have been built upon in later 
years (Knapp et al., 2012). 
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Figure 1. Phylogenetic tree of partial cytochrome b DNA sequences in 
representatives of extant tetrapod groups and putative dinosaur DNA sequence 
(majority rule consensus) derived from Cretaceous bone fragments (Woodward et 
al., 1994). Numbers on nodes are bootstrap confidence probabilities. A frog was 
included to root the tree. Tree shown is neighbor-joining with transversion distance. 
Figure reprinted with permission from Figure 1 (Hedges and Schweitzer, 1995), The 
American Association for the Advancement of Science. 
 
A major breakthrough in the field of aDNA research came with the develop-
ment of the NGS technology in 2005 (Margulies et al., 2005). In 2006, Poinar 
and colleagues published 0.5% (13 million bp) of the genome sequence of the 
extinct woolly mammoth (Poinar et al., 2006) and in 2008 Miller and others 
presented sequences covering 70% of the genome (Miller et al., 2008), making 
this the first ancient mammalian genome sequenced on a large scale. This was 
followed by the first human and Denisovan full genomes and a draft Nean-
derthal genome in 2010 (Rasmussen et al., 2010; Reich et al., 2010; Green et 
al., 2010), and the first high coverage Neanderthal genome in 2014 (Prüfer et 
al., 2014). The oldest aDNA genome sequenced so far is from a horse that lived 
735,000 years ago (Orlando et al., 2013), the oldest genetically studied 
hominins lived in Spain 430,000 years ago (Meyer et al., 2014, 2016). The as of 
yet oldest genome sequences of AMHs from the Old and New World date to 
45,000 and 12,600 years ago, respectively (Fu et al., 2014; Rasmussen et al., 
2014). 
 
 

2.1.2. Main characteristics of aDNA 

2.1.2.1. Preservation influenced by the environment 

It was already shown during the 1990’s that cool and stable environmental 
conditions contribute to the preservation of DNA in remains (Höss et al., 1996a, 
1996b; Hadly et al., 1998; Noro et al., 1998; Wayne et al., 1999). This is also 
supported by the fact that most of the first or oldest genomes mentioned in the 
previous chapter came either from permafrost conditions or caves and none of 
them from (sub)tropical conditions. 
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The negative impact of hot climate on aDNA preservation is exemplified by 
studies on Egyptian mummies. One of the first aDNA studies was conducted on 
mummies (Pääbo, 1985), but was later classified as contamination (Pääbo et al., 
2004). The feasibility of aDNA studies of ancient Egyptian material has been 
debated in a series of publications (Gilbert et al., 2005; Marota et al., 2002; 
Zink and Nerlich, 2003). The first reliable results from Egyptian mummies were 
published only in 2017 and even then the success rate for obtaining mtDNA 
haplogroups (hgs) was 90/151 and for whole-genome data 3/151 (Schuenemann 
et al., 2017). The first aDNA results from Oceania (Skoglund et al., 2016; 
Lipson et al., 2018; Posth et al., 2018) and sub-Saharan Africa (Skoglund et al., 
2017) were also published only recently. The dependency of DNA preservation 
on temperature has also been shown computationally (Allentoft et al., 2012). 

So far aDNA extraction has been unsuccessful from burned bones due to 
extensive heat-damage (Hansen et al., 2017) and also from remains found in 
bogs (so-called bog-bodies) (Lynnerup, 2015), most likely due to DNA damage 
caused by the highly acidic environment (Allentoft et al., 2012). 

 
 

2.1.2.2. Presence of exogenous DNA 

An important aspect that has to be taken into account when conducting aDNA 
research is that ancient samples always contain DNA that is not endogenous 
(belonging to the specimen from which the sample was taken), i.e. is exogenous 
(Pääbo, 1989 and all later publications). The proportion of exogenous DNA 
varies significantly between individual samples (Figure 2) (Der Sarkissian et al., 
2015) but it is not uncommon that a published sample contains only around 1% 
endogenous DNA (Green et al., 2010; Miller et al., 2012; Orlando et al., 2013). 

Low endogenous DNA content makes sequencing aDNA (much) more 
expensive than modern DNA which is why a lot of effort goes into finding the 
best materials for extracting aDNA and into developing methods to maximize 
the endogenous DNA yield (discussed in more detail below). 

Most of the exogenous DNA belongs to environmental organisms which 
have ended up inside the sample after the death of the organism the sample 
comes from (Der Sarkissian et al., 2014). However, in some cases, some of the 
DNA sequences belong to pathogens that were present in the blood of the 
organism at the time of their death (Spyrou et al., 2019 and references therein). 
The possibility of extracting DNA from pathogens infecting sampled 
individuals was first shown using PCR technology (Spigelman and Lemma, 
1993) and the first full pathogen genome was that of plague (Yersinia pestis) 
from Black Death victims (Bos et al., 2011). Ancient plague sequences have 
also already been published from two Estonian CWC individuals (Rasmussen et 
al., 2015; Andrades Valtueña et al., 2017). 
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Figure 2. Endogenous content of ancient genomic extracts. Datasets are ordered 
from the most ancient sample to the most recent. ‘yBP’, years before present. Figure 
adapted from Figure 2 (Der Sarkissian et al., 2015), licenced under the CC BY Licence. 
 
 

2.1.2.3. Degradation into short fragments 

After the death of an organism, its DNA starts decaying, leading to short fragment 
length being characteristic of aDNA (Pääbo, 1989). One of the reasons for this 
is nuclease activity within the cell (Darzynkiewicz et al., 1997). Once the 
organism starts decomposing, DNA is also digested by microorganisms (Eglinton 
Geoffrey et al., 1991; Lindahl, 1993). Furthermore, DNA is not very chemically 
stable, which leads to strand breaks also in living cells, there repaired by 
enzymatic repair systems (Lindahl, 1993) that no longer function after the death 
of the organism. Depurination (the loss of purine residues) is an example of the 
chemical decay – purine residues are removed from deoxyriboses through 
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hydrolysis, resulting in abasic sites where DNA strands break (Lindahl and 
Nyberg, 1972; Lindahl and Andersson, 1972). As a consequence of the 
depurination strand breaks, adenosine (A) and guanosine (G) are relatively over-
represented in reference sequences next to the ends of aDNA sequence reads 
(Briggs et al., 2007). Interestingly, the purine/pyrimidine ratio is higher in 
younger samples compared to older ones (Sawyer et al., 2012). 

Since the fragmentation is random (Deagle et al., 2006; Schwarz et al., 
2009), the relationship between the number of fragments and their length is 
exponential – the more fragments there are, the shorter they are. The relation-
ship between DNA decay (relative copy number) and time is also exponential, 
hence DNA decay has a constant rate (given that conditions are also constant) 
meaning that DNA has a predictable half-life (Allentoft et al., 2012). The 
predicted time until DNA reaches an average length of 1 bp is 22,000 years in 
25 °C and 6.83 million years in –5 °C (Allentoft et al., 2012) which means that 
even in ideal conditions there is a time constraint for aDNA studies, limiting 
research to relatively recent times in evolutionary terms. 

The short fragment length characteristic of aDNA is used as a measure to 
authenticate a sample as ancient or to find signs of modern contamination 
(Ginolhac et al., 2011; Jónsson et al., 2013). 

 
 
2.1.2.4. Presence of chemical modifications leading to nucleotide 

misincorporations in sequences 

Chemical damage in aDNA was first studied with gas chromatography/mass 
spectrometry and the amount of pyrimidine oxidation products was found to 
negatively correlate with the DNA amplification success (Höss et al., 1996a). 
The chemical modifications result mostly in cytosine (C) to thymine (T) and 
guanine (G) to adenine (A) substitutions in sequences (Hofreiter et al., 2001; 
Stiller et al., 2006; Gilbert et al., 2007). The C to T substitutions are caused by 
cytosine deamination – the amino group of the nitrogenous base is removed by 
hydrolysis, turning it into a uracil (U) (Lindahl, 1996), which is not available in 
DNA amplification/sequencing reactions and hence shows up in sequences as a 
thymine (T) (Hofreiter et al., 2001). C to T substitutions are most frequent in 5’ 
and G to A substitutions in 3’ ends of fragments (Briggs et al., 2007). Thus G to 
A substitutions seen in sequences likely appear during sample preparation for 
sequencing when the complementary strand is synthesized to a fragment 
containing a deaminated cytosine (Briggs et al., 2007). 

The proportion of C to T substitutions in the 5’ ends of sequence reads, as 
the sole cause of deamination damage (Brotherton et al., 2007), and the apparent 
excess of G to A substitutions in the 3’ ends is positively correlated with the age 
of the sample (Sawyer et al., 2012). On this basis, this characteristic, in addition 
to fragment length, is used to authenticate ancient samples (Ginolhac et al., 
2011; Jónsson et al., 2013; Sawyer et al., 2012). 
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2.1.3. Main materials and laboratory methods in aDNA studies 

Due to the characteristics described in chapter 2.1.2 complicating research, a lot 
of effort is put into finding the best materials for extracting aDNA and into 
developing laboratory methods. 
 
 

2.1.3.1. Materials used for extracting aDNA 

Teeth are relatively well protected from environmental conditions (Alvarez 
García et al., 1996; Schwarz et al., 2009) and have been shown to be a better 
source of DNA than most bones (Alonso et al., 2001; Ricaut et al., 2005). More 
detailed studies comparing different parts of teeth revealed that root cementum 
yields more DNA than dentine (Adler et al., 2011; Damgaard et al., 2015). It 
has also been shown that visual inspection is a useful (although not absolute) 
tool for predicting endogenous DNA preservation (Hansen et al., 2017). 

In recent years, the petrous part of the temporal bone (pars petrosa) has been 
identified as a premium source of aDNA (Rasmussen et al., 2014; Gamba et al., 
2014; Pinhasi et al., 2015; Hansen et al., 2017). More specifically, the dense 
inner ear bone yields more endogenous DNA when compared to other parts of 
the temporal bone (Pinhasi et al., 2015) and the highest yields are obtained from 
the cochlea (Pinhasi et al., 2019). Using the petrous bone is especially 
advantageous if the teeth from the same individual have low endogenous DNA 
content (<10%) while in case of higher proportions of endogenous DNA in 
teeth, using petrous bones often does not increase the DNA yield (Hansen et al., 
2017). Obtaining DNA from cremated remains has so far not been successful 
even when using petrous bones (Hansen et al., 2017). Although the high 
endogenous content of petrous bones is highly beneficial for population genetic 
studies, this material is not well suited for metagenomic studies since the 
microbial diversity in petrous samples is much lower compared to teeth, 
inhibiting research involving pathogens or the oral microbiome (Margaryan et 
al., 2018). 

 
 

2.1.3.2. Methods used for extracting aDNA 

In 2007 Rohland and Hofreiter compared and analyzed previous DNA extraction 
methods (Rohland and Hofreiter, 2007a) and developed a protocol based on the 
results and further modifications and testing (Rohland and Hofreiter, 2007b). 
The protocol includes extracting DNA using a buffer containing ethylenedia-
minetetraacetic acid (EDTA) for demineralizing the bone/tooth and proteinase 
K for degrading proteins, binding to silica suspended in solution, washing with 
an ethanol-based buffer, and eluting in Tris-EDTA (Rohland and Hofreiter, 
2007b). 

Dabney and colleagues developed a modified method in 2013, altering the 
binding buffer, using larger volumes of binding buffer relative to DNA extract, 
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and as the biggest technological change switching from in-solution binding to 
silica spin-columns (Dabney et al., 2013). 

Further modifications to these protocols have been suggested in later years, 
for example retaining shorter fragments (Allentoft et al., 2015; Glocke and 
Meyer, 2017). To decrease the proportion of contaminant DNA in extracts, pre-
digestion (Damgaard et al., 2015), using a phosphate buffer to release surface-
bound DNA (Korlević et al., 2015), and treatment with sodium hypochlorite 
(Korlević et al., 2015; Hajdinjak et al., 2018; Scheib et al., 2018) have been 
proposed. 
 
 

2.1.3.3. Methods used for generating aDNA data 

The first highly parallel or so-called NGS technology was developed in 2005 
(Margulies et al., 2005). Since that, data output amounts have increased and 
sequencing costs decreased on a logarithmic scale (Muir et al., 2016). The most 
commonly used NGS technologies require that the pool of DNA fragments is 
converted into a so-called sequencing library where the ends of all fragments 
are made identical by adding specific adapters, and in order to pool multiple 
libraries together in one sequencing run (multiplex), index sequences that are 
different for each library are added to all fragments  
(https://emea.illumina.com/science/technology/next-generation-sequencing.html). 

Most commonly, aDNA sequencing libraries are prepared using double-
stranded DNA (dsDNA) fragments based on a protocol developed by Meyer 
and Kircher (Meyer and Kircher, 2010) with modifications for aDNA (Orlando 
et al., 2013; Malaspinas et al., 2014). The main steps of this protocol are: 
1) end-repair –3’ single-stranded overhangs are digested and 5’ overhangs filled 
in; 2) adapter ligation – double-stranded sequencing adapters are added to the 
ends of fragments; 3) adapter fill-in – the shorter strands of adapters are filled 
in; 4) indexing PCR – multiplexing indexes are added and libraries are 
amplified (Figure 3) (Meyer and Kircher, 2010). Originally, the solution is 
purified between steps (Meyer and Kircher, 2010; Orlando et al., 2013; 
Malaspinas et al., 2014) but recently a single-tube protocol without purification 
steps was developed (Carøe et al., 2018). 

Another method for preparing aDNA for sequencing is by following the 
single-stranded DNA (ssDNA) protocol by Gansauge and Meyer (Gansauge 
and Meyer, 2013). The main steps of the protocol are: 1) removing phosphate 
groups and deoxyuracils from the ends of fragments while denaturing frag-
ments; 2) ligating biotinylated adapters hybridized with primers to 3’ ends of; 
3) binding biotinylated adapters to streptavidin-coated beads and synthesizing 
the complementary strand; 4) removing excess primers by washing at elevated 
temperature and removing 3’ overhangs; 5) ligating adapters to the 3’ ends of 
the synthesized strands; 6) washing away excess primers and denaturing frag-
ments; adding indexes and amplifying the libraries with PCR (Gansauge and 
Meyer, 2013). This method retains information from dsDNA fragments with 
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single-stranded breaks and avoids DNA loss during purifications but is more 
expensive and more time-consuming than the dsDNA protocols (Gansauge and 
Meyer, 2013). To reduce costs, the protocol has been updated to include 
hybridization with the 6 random nucleotides of a splinter oligonucleotide 
otherwise complementary to the adapter and nick closure using a less expensive 
ligase (Gansauge et al., 2017). 

 

 
 
Figure 3. Main steps of the dsDNA library preparation protocol. Figure reprinted 
with permission from Figure 1A (Meyer and Kircher, 2010), Cold Spring Harbor 
Laboratory Press. 

 
The libraries prepared using the dsDNA or ssDNA protocols are often 
sequenced as they are (shotgun sequencing) but due to low amounts of endo-
genous DNA, methods for enriching libraries for specific sequences have also 
been developed (Briggs et al., 2009; Burbano et al., 2010; Maricic et al., 2010; 
Fu et al., 2013a; Carpenter et al., 2013). The first of these methods captured 
limited parts of the genome, for example mtDNA (Briggs et al., 2009; Maricic 
et al., 2010), specific protein-coding positions (Burbano et al., 2010) or one 
chromosome (Fu et al., 2013a). However, in 2013 a whole-genome enrichment 
method was developed (Carpenter et al., 2013), which involves transcribing a 
biotinylated RNA bait library from a genomic DNA library with T7 RNA 
polymerase promoters, hybridization between the RNA bait library and the 
aDNA library, capturing the hybridized fragments to streptavidin-coated 
magnetic beads, and sequencing only the captured fragments (Carpenter et al., 
2013). A large proportion of aDNA data is generated using the so-called 1240k 
capture first described in 2015, which uses the same principle described above 
but with baits synthesized only for fragments of the human genome surrounding 
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1,237,207 single nucleotide polymorphisms (SNPs) chosen for being infor-
mative in population genetic or functional analyses (Mathieson et al., 2015). 

 
 
2.1.4. Perspectives in studying the human past using ancient 

biomolecules 

Since the development of NGS almost 15 years ago, the main objective of 
research using ancient materials has been extracting DNA from skeletal remains 
to produce genomic data to infer the ancestry of the studied population. 
However, in recent years, the scope of the field has begun to widen. Good 
examples of this are studies where DNA is extracted from sediments instead of 
skeletal remains, where the whole metagenome is studied not only the endo-
genous DNA or even pathogens, where proteins instead of DNA are used, or 
where DNA is extracted from a whole group of nearby graves to find out about 
the social structure of the population not only about the ancestry components 
present. 
 
 

2.1.4.1. Sediment DNA 

The first study using DNA extracted from sediments was conducted already 
more than 15 years ago (Willerslev et al., 2003) and since then, taxonomically 
informative fragments of sediment DNA (sedaDNA) have been amplified by 
polymerase chain reaction (PCR) and analyzed to gain insight into changes in 
floral and faunal communities through time (Haile et al., 2009; Anderson-
Carpenter et al., 2011; Giguet-Covex et al., 2014; Willerslev et al., 2014; 
Kisand et al., 2018). 

Recently, however, shotgun sequencing has been employed on DNA 
extracted from parasite eggs from an Iron Age settlement (Tams et al., 2018) 
and from mammalian and also more specifically hominin mtDNA from 
Pleistocene cave sediments (Slon et al., 2017). Articles presenting nuclear 
hominin DNA are to be expected soon as shown in conference presentations. 

 
 

2.1.4.2. Metagenomics and proteomics of dental calculus 

Dental calculus has been recognized as a source of information about diet in the 
past already for some time and studied using microscopy (Henry et al., 2011; 
Hardy et al., 2009). More recently, researchers have also started to use calculus 
from archaeological remains to extract both DNA and proteins (Adler et al., 
2013; Warinner et al., 2014a; Weyrich et al., 2017). Since calculus builds up in 
layers over time, it contains information not only about the time close to an 
individual’s death but about a longer period during their life (Jin and Yip, 2002). 

The metagenomic approach has already been used to characterize ancient 
oral microbiomes, for example looking at changes in microbial communities in 
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connection to major cultural changes (Adler et al., 2013), the presence of 
pathogens, the diet and behaviour (Warinner et al., 2014a; Weyrich et al., 
2017). One caveat of metagenomic research is currently the incompleteness and 
untrustworthiness of sequence databases but fortunately this will probably 
become less of a problem in the future and additional information can then be 
gained from already generated data (Breitwieser et al., 2017). 

Ancient protein sequences are a valuable addition to aDNA data, confirming 
the results gained from metagenomic analyses (Warinner et al., 2014a) and 
providing information about periods beyond the reach of DNA preservation, up 
to millions of years ago (Cappellini et al., 2014; Demarchi et al., 2016). Studies 
analyzing proteins in dental calculus have already started to confirm or provide 
new information about the pathogens (Warinner et al., 2014a) and diet (Warinner 
et al., 2014b, 2014a; Hendy et al., 2018) of past human populations. 

 
 

2.1.4.3. Studying social structure in the past 

The social structure of past societies can be studied by looking into the ancestry 
and kinship of individuals from close burials in combination with archaeo-
logical data. This has been done already for years using autosomal short tandem 
repeats (STRs) in case of sufficient preservation and Y chromosomal (chrY) or 
mtDNA hgs to see if paternal or maternal relatedness is excluded or not 
(Keyser-Tracqui et al., 2003; Dissing et al., 2007; Haak et al., 2008; Vanek et 
al., 2009). 

Recently, methods for estimating the relatedness of ancient individuals using 
low-coverage genome-wide data have been developed (Monroy Kuhn et al., 
2018; Waples et al., 2019). These methods have been used, for example, to 
study the social structure in Migration Period Longobard cemeteries in Hungary 
and Italy (Figure 4) (Amorim et al., 2018), in an Early Middle Age Allemanic 
cemetery in Germany (O’Sullivan et al., 2018) and in a Late Neolithic Globular 
Amphora culture mass grave in Poland (Schroeder et al., 2019). 
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Figure 4. Archeological and genetic characterization of Szólád and Collegno. A. 
Map of Europe showing the location (blue dots) of the two cemeteries and regional 
context is included (the Roman province of Pannonia in burgundy and the Longobard 
Kingdom in beige). B, C. Spatial distribution of graves in Szólád and Collegno (first 
period burials only) with indication of sex (different shapes), genetic ancestry (different 
colors) and summary of archeology (yellow dots for presence/absence of grave 
furnishings and green dots for the presence of wooden elements in grave structure). 
Kindreds (in the biological sense) are indicated by gray shading in B and C. 
N = FIN + GBR + CEU, S = TSI. Figure reprinted from Figure 1 (Amorim et al., 2018), 
licenced under CC BY Licence. 
 
 

2.2. The demographic history of Europe before  
the Late Neolithic from an aDNA perspective 

Anatomically modern humans (AMHs) reached Europe by around 45,000 years 
ago (Benazzi et al., 2011). The hunter-gatherer lifestyle of these people persisted 
for tens of thousands of years before farming spread to Europe around 7,500 
years ago bringing along drastic changes in social structure (Ammerman and 
Cavalli-Sforza, 1984; Gronenborn, 1999; Price, 2000). The genetic diversity and 
changes during these periods are discussed below. 
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2.2.1. European hunter-gatherers 

2.2.1.1. Paleolithic hunter-gatherers 

Although the oldest known AMH remains in Europe are around 45,000 years 
old (Benazzi et al., 2011), the oldest remains that have yielded nuclear DNA so 
far are those of a 37,000–42,000-year-old individual from Romania called Oase 1 
(Fu et al., 2015) and of an individual from Russia called Kostenki 14, dating to 
36,000–39,000 years ago (Krause et al., 2010; Seguin-Orlando et al., 2014). Oase 
1 shared more alleles with early Europeans and modern East Asians than modern 
Europeans, likely belonging to a population that did not contribute significantly to 
the latter (Fu et al., 2015). Kostenki 14, on the other hand, showed affinity to both 
ancient and modern Siberians and Europeans over East Asians, which means that 
the divergence between East Asians and other Eurasians happened before this 
individual was born (Seguin-Orlando et al., 2014). The same applies for later 
Paleolithic individuals and until 14,000 years ago they all seem to descend from a 
single ancestral population (Fu et al., 2016). At the end of the Paleolithic, 
European hunter-gatherers started to show increasingly more affinity to present-
day Near Eastern populations, pointing to a migration of the ancestors of the latter 
into Europe (Fu et al., 2016). 

The mtDNA diversity during the first 20,000 years of AMHs in Europe before 
the LGM was quite high with individuals belonging to different sub-hgs of U, hg 
R and even hg M (https://www.phylotree.org/tree/index.htm) no longer present in 
Europe later (Figure 5) (Benazzi et al., 2011; Seguin-Orlando et al., 2014; Fu et 
al., 2013b; Posth et al., 2016). After the LGM, mostly hg U2’3’4’7’8’9 lineages 
expanded from refugia (Posth et al., 2016). However, during the LGP, hg U5 was 
most frequent (Figure 5) (Fu et al., 2013b; Jones et al., 2015; Posth et al., 2016), 
potentially indicating a population replacement from another pre-LGM refugium 
(Posth et al., 2016). 

The chrY hgs present in Paleolithic males in Europe were C (Seguin-Orlando 
et al., 2014; Fu et al., 2016), F (Fu et al., 2016), I (Fu et al., 2016), NO (Fu et al., 
2015) and R (Fu et al., 2016) (https://www.yfull.com/tree/). 

Sequencing of the oldest AMH genomes from Eurasia, Ust’Ishim (Fu et al., 
2014) and Kostenki 14, has revealed that these individuals, living closer to the 
time of Neanderthal admixture, shared much longer genomic tracts with 
Neanderthals (Seguin-Orlando et al., 2014) than present-day genomes, consistent 
with an archaic introgression date 55,000 years ago. A linear decline in 
Neanderthal ancestry estimated for European ancient genomes through time (Fu 
et al., 2016) has recently been shown to be a technical artifact caused by gene 
flow among modern populations (Petr et al. 2019). However, some individuals 
did differ significantly in the length distribution of the Neanderthal fragments. 
Oase 1, in particular, had unusually long Neanderthal fragments and up to 10% of 
Neanderthal ancestry and the length of Neanderthal tracts in his genome indicates 
a Neanderthal ancestor as recently as 4–6 generations ago (Fu et al., 2015, 2016). 
Furthermore, the Neanderthal ancestry was not distributed randomly across the 
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genome – the frequency of Neanderthal alleles was significantly decreased in 
coding sequences and other conserved regions of the genome due to negative 
selection (Sankararaman et al., 2014; Fu et al., 2016; Petr et al., 2019). 

 

Figure 5. Late Pleistocene and Early Holocene Archeological Sites and Hunter-
Gatherer Mitochondrial DNA (mtDNA) Haplogroups. A. Pre-Last Glacial 
Maximum dispersal of non-African populations, carrying both M and N lineages 
(haplogroups R, U, U5, and U2’3’4’7’8’9 belong to the N clade, distinct from the M 
clade). B. Post-LGM re-expansion in Europe while ice sheets retracted. C. Late Glacial 
shift in mtDNA haplogroup (hg) frequency. D. Holocene hunter-gatherer mtDNA, 
mainly belonging to hg U5. Figure reprinted with permission from Figure 1 (Posth et 
al., 2016), Cell Press. 
 
 

2.2.1.2. Mesolithic hunter-gatherers 

Mesolithic hunter-gatherers in Europe could be divided into three groups based 
on ancestry. The first of these was the Western hunter-gatherer (WHG) group 
defined by the La Braña individual from Spain (Olalde et al., 2014) and the 
Loschbour individual from Luxembourg (Lazaridis et al., 2014). This ancestry 
has later been shown to have been present all the way from Iberia (Olalde et al., 
2019) to the Balkans (Mathieson et al., 2018) and the Eastern Baltic (Jones et 
al., 2015; Mittnik et al., 2018). The second group was Eastern hunter-gatherers 
(EHG), defined by two individuals from Karelia and Samara, Russia (Haak et 
al., 2015). Three more individuals from Russia have been added later (Mathieson 
et al., 2015; Mittnik et al., 2018). The third group was Scandinavian hunter-
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gatherers (SHG) with mixed WHG and EHG ancestry, consisting of individuals 
from Sweden (Lazaridis et al., 2014; Haak et al., 2015; Mittnik et al., 2018; 
Günther et al., 2018). Individuals from Ukraine and Latvia had intermediate 
EHG-SHG and WHG-SHG ancestry, respectively (Jones et al., 2017; Mathieson 
et al., 2018). 

Interestingly, while most Mesolithic hunter-gatherers had ancestry associated 
with less than 14,000 years old Paleolithic individuals (Villabruna cluster), 
Iberian individuals also showed ancestry related to earlier genetically dis-
tinguishable individuals (El Mirón cluster) (Posth et al., 2016; Villalba-Mouco 
et al., 2019). 

Mesolithic individuals mostly belonged to mtDNA hg U5 (Figure 5) 
(Bramanti et al., 2009; Sánchez-Quinto et al., 2012; Fu et al., 2013b; Bollongino 
et al., 2013; Haak et al., 2015; Posth et al., 2016; Jones et al., 2017; Mittnik et 
al., 2018; Mathieson et al., 2018), similarly to the previous Late Glacial 
individuals described above. However, some individuals, mostly with EHG or 
SHG ancestry, belonged to hgs U4 and U2 (Bramanti et al., 2009; Haak et al., 
2015; Jones et al., 2017; Mathieson et al., 2018; Mittnik et al., 2018). 

The chrY hgs present in Mesolithic Europe were C (Olalde et al., 2014), I 
(Haak et al., 2015; Jones et al., 2015), J (Mathieson et al., 2015) and R (Haak et 
al., 2015; Jones et al., 2017; Mittnik et al., 2018) (importantly not R1b-M269 or 
R1a-M417 that became very frequent in the Late Neolithic (Kivisild, 2017)). 

 
 

2.2.1.3. Neolithic hunter-gatherers 

In peripheral areas of Europe, for example Scandinavia (Malmström et al., 
2009; Skoglund et al., 2012, 2014) and the Eastern Baltic (Jones et al., 2017; 
Mittnik et al., 2018), the hunter-gatherer way of life persisted also during the 
Neolithic, although the use of pottery was already common. In Scandinavia, 
these late hunter-gatherers of the Pitted Ware culture were similar to Mesolithic 
SHGs and very different from the contemporaneous Neolithic farmers of the 
same region (Skoglund et al., 2012, 2014), while in the Eastern Baltic the Comb 
Ceramic culture individuals were most similar to Mesolithic EHG individuals 
(Jones et al., 2017; Mittnik et al., 2018). 
 
 

2.2.2. Early farmers 

Farming originated multiple times independently in the world and the earliest 
evidence of farming-based economies in West-Eurasia came from the Fertile 
Crescent (modern-day western Iran, Iraq, southeastern Turkey, Syria, Lebanon, 
Jordan, Israel, Palestinian territories and Egypt) in the Near East around 12,000 
years ago (Harris, 1996; Pinhasi et al., 2005; Balaresque et al., 2010). Farming 
reached the Balkan Peninsula around 8,000 and Central Europe around 7,000 
years ago (Pinhasi et al., 2005; Balaresque et al., 2010; Fort, 2015). It was 
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debated for decades whether this was mainly mediated by cultural transmission 
or demic diffusion (Ammerman and Cavalli-Sforza, 1984; Whittle, 1996; 
Renfrew and Boyle, 2000) before aDNA studies set out to answer this question. 

The ancestry of the Neolithic farmers of Europe was first studied using 
mtDNA and it was seen that their genetic diversity was much higher than that of 
preceding hunter-gatherers – they belonged to hgs H, HV, J, K, N1a, U, V, W 
and X (Haak et al., 2005; Bramanti et al., 2009; Malmström et al., 2009; Haak 
et al., 2010; Lacan et al., 2011; Hervella et al., 2012; Brotherton et al., 2013; 
Brandt et al., 2013; Hervella et al., 2015; Szécsényi-Nagy et al., 2015; Rivollat 
et al., 2016; Szécsényi-Nagy et al., 2017). 

The chrY hgs present in the European first farmers were C (Gamba et al., 
2014; Mathieson et al., 2015), F (Haak et al., 2010; Szécsényi-Nagy et al., 
2015), G (Haak et al., 2010; Lacan et al., 2011; Keller et al., 2012; Szécsényi-
Nagy et al., 2015; Mathieson et al., 2015; Hofmanová et al., 2016), H (Günther 
et al., 2015), I (Gamba et al., 2014; Szécsényi-Nagy et al., 2015; Mathieson et 
al., 2015) and R (Mathieson et al., 2015) (importantly not R1b-M269 or R1a-
M417 that became very frequent in the Late Neolithic (Kivisild, 2017)). 

The first Neolithic farmer studied on a genome-wide level was the Tyrolean 
Iceman Ötzi (Keller et al., 2012; Sikora et al., 2014). Numerous other individuals 
have been studied since and it is evident that they were all genetically most 
similar to modern Southern Europeans, more specifically Sardinians, regardless 
of being from the Balkan Peninsula (Hofmanová et al., 2016; Mathieson et al., 
2018), Central Europe (Lazaridis et al., 2014; Gamba et al., 2014; Haak et al., 
2015; Mathieson et al., 2015; Lipson et al., 2017; Fernandes et al., 2018; 
Mathieson et al., 2018), Iberia (Haak et al., 2015; Mathieson et al., 2015; Olalde 
et al., 2015; Lipson et al., 2017; Olalde et al., 2019), the British Isles (Brace et 
al., 2019) or Scandinavia (Skoglund et al., 2012, 2014). It is worth mentioning 
that farming reached Britain, Scandinavia and other peripheral areas of Europe 
more than a thousand years later than Central Europe (Collard et al., 2010; 
Malmer, 2002; Fort, 2015). 

In contrast to the demic diffusion model, which implied admixture between 
local hunter-gatherers and expanding farmers at the ‘front’ of the admixture 
wave, aDNA evidence shows that after reaching Europe, the early farmers did 
not start to admix with local hunter-gatherers immediately. Instead, the 
admixture was delayed in some regions for thousands of years, followed by the 
small resurgence of hunter-gatherer ancestry in the later stages of the Neolithic 
(Brandt et al., 2013; Skoglund et al., 2014; Haak et al., 2015; Mathieson et al., 
2015; Lipson et al., 2017; Mathieson et al., 2018; Olalde et al., 2019). An 
exception to this trend is Britain where no such resurgence can be seen (Brace 
et al., 2019). 

The Near Eastern origin of farming has also been confirmed with aDNA – 
Anatolian Neolithic farmers were very similar to those from Europe, having 
only slightly more affinity to modern Near Easterners than the latter (Figure 6) 
(Mathieson et al., 2015; Hofmanová et al., 2016; Omrak et al., 2016; Lazaridis 
et al., 2016). This ancestry extended to the Levant (modern-day Jordan and 
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Israel) in the western Fertile Crescent in space and to around 14,000-year-old 
Natufians in time (Figure 6) (Lazaridis et al., 2016). It did not, however, extend 
to the Neolithic farmers of the eastern Fertile Crescent (modern-day Iran) 
(Broushaki et al., 2016; Lazaridis et al., 2016) who shared ancestry with hunter-
gatherers from the Caucasus (Jones et al., 2015) (Figure 6). 

 
Figure 6. Genetic structure of ancient West Eurasia. Principal component analysis of 
991 present-day West Eurasians (grey points) with 278 projected ancient samples. Figure 
reprinted with permission from Figure 1B (Lazaridis et al., 2016), Springer Nature. 
 
 

2.3. The demographic history of Estonia from  
an archaeological perspective 

Since time periods have different time spans and related cultural layers in 
different parts of the world and also of Europe, information about the archaeo-
logical background is crucial for understanding the demographic history of 
Estonia. 
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Table 1. Chronology of periods and cultures in Estonia. BCE – Before the Common 
Era; CE – Common Era. After Kriiska and Lang (Lang, 2007; Kriiska, 2009; Kriiska 
et al., 2017). 

Period Sub-period Stage/culture 

Mesolithic 
(9,000–3,900 BCE) 

Early Mesolithic 
(9,000–7,000 BCE) 

Pulli stage 
(9,000–8,500 BCE) 

Kunda stage 
(8,500–7,000 BCE) 

Late Mesolithic 
(7,000–3,900 BCE) 

Sindi-Lodja stage 
(7,000–5,200 BCE) 

Narva stage 
(5,200–3,900 BCE) 

Neolithic 
(3,900–1,800 BCE) 

Early Neolithic 
(3,900–2,800 BCE) 

Comb Ceramic 
culture 
(3,900–1,800 
BCE) 

 

Late Neolithic 
(2,800–1,800 BC) 

Corded Ware culture 
(2,800–1,800 BCE) 

Bronze Age 
(1,800–500 BCE) 

Early Bronze Age 
(1,800–1,100 BCE) 

 

Late Bronze Age 
(1,100–500 BCE) 

 

Iron Age 
(500 BCE–1200 CE) 

Early Iron Age 
(500 BCE–450 CE) 

Pre-Roman Iron Age 
(500 BCE–50 CE) 

Roman Iron Age 
(50–450 CE) 

Middle Iron Age 
(450–800 CE) 

Migration Period 
(450–550 CE) 

Pre-Viking Era 
(550–800 CE) 

Late Iron Age 
(800–1,200 CE) 

Viking Age 
(800–1,050 CE) 

Final Iron Age 
(1,050–1,200 CE) 

Middle Ages 
(1,200–1,600 CE) 
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2.3.1. The Mesolithic 

During the LGM Estonia was fully covered by the Scandinavian Ice Sheet that 
started to retreat after ~15,000 years ago (Mangerud et al., 2004). The first known 
human settlement in Estonia is Pulli in Southwestern Estonia dated to around 
11,000 years ago to the Mesolithic (Veski et al., 2005; Kriiska and Lõugas, 
2009). The Mesolithic in Estonia can be divided into the Early (9,000–7,000 
Before the Common Era (BCE)) and the Late (7,000–3,900 BCE) periods which 
in turn can be divided into four cultural stages: Pulli (9,000–8,500 BCE), Kunda 
(8,500–7,000 BCE), Sindi-Lodja (7,000–5,200 BCE) and Narva (5,200–3,900 
BCE) (Table 1). The Mesolithic people in Estonia lived near rivers and lakes or 
by the sea and lived off of hunting-and-gathering (Kriiska, 2003). 

The oldest human remains have been found from the Late Mesolithic from 
around 8,500 years ago (Tõrv, 2016). So far there is knowledge of four 
Mesolithic burial grounds – Kivisaare, Veibri, Kõnnu and Narva Joaorg – and of 
some human bones from settlements (Tõrv, 2016). 

 
 

2.3.2. The Neolithic 

The Neolithic in Estonia started around 5,900 years ago (Table 1) when Comb 
Ceramic culture (CCC), a culture that gets it’s name from clay pots that were 
decorated with a comb-like stamp, reached the area (Jaanits et al., 1982). The 
CCC people were hunter-gatherers, confirmed by stable isotope analyses of 
human remains and by animal bones found at settlements (Kriiska, 2001; Tõrv, 
2016). The CCC lasted until the end of the Neolithic in Estonia (Lang and 
Kriiska, 2001). 

The Corded Ware culture (CWC) arose around 4,800 years ago (Włodarczak, 
2009) and quickly spread around Europe (Krainov, 1972; Kruk and Milisauskas, 
1999; Nordqvist, 2016), including to Estonia in the Late Neolithic (Kriiska, 
2009) (Table 1). The culture is named after clay vessels with cord impressions 
as decorations in English and after boat-shaped stone axes in Estonian (Jaanits 
et al., 1982). The CWC people were farmers, as evidenced by Cerealia pollen 
in bog and lake sediments, barley seed and a seed imprint on a pot shard, 
sheep/goat, pig and cattle bones and bone artefacts at burial sites, and 13C and 
15N stable isotope analyses of human bones (Kriiska, 2003; Lõugas et al., 2007; 
Rasmussen et al., 2015). 

There are four certain CCC burial grounds in Estonia – Kõljala, Naakamäe, 
Valma and Tamula – and some human remains from settlements (Tõrv, 2016; 
Kriiska, 1996). A few dozen CWC burial grounds are known in Estonia (mostly 
from Northern Estonia and Saaremaa (Kriiska, 2000)), but most of the remains 
have been unearthed during ploughing etc. and have been reburied or lost and 
only very limited research has been possible at Sope, Narva-Jõesuu, Ardu and 
Kunila sites (Moora, 1932; Indreko, 1935, 1938; Jaanits, 1985). 
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2.3.3. The Bronze Age 

The Bronze Age in Estonia started around 3,800 years ago and can be divided 
into Early (1,800–1,100 BCE) and Late Bronze Age (1,100–500 BCE) (Table 1). 
The first bronze artefacts from Estonia are from the Early Bronze Age (Lang 
and Kriiska, 2001) but very few settlements can be linked to that period (Lang, 
2007). During the Late Bronze Age, people lived in two types of settlements – 
open (mostly single farms) and enclosed (fortified or hilltop) settlements (Lang, 
2007; Kriiska et al., 2017). 

While little is known about the burial practices during the Early Bronze Age, 
the Late Bronze Age is characterized by distinct circular stone structures with a 
cist inside called stone-cist graves in coastal areas (Kriiska et al., 2017). The 
grave type and some grave goods point to connections to the west while other 
grave goods provide a link to the Eastern European Forest Belt (Lang, 2015, 
2018). However, stone-cist graves were probably only used by a small part of 
the society and the burial places of most of the Bronze Age people are unknown 
(Lang, 2011). 

 
 

2.3.4. The Iron Age 

Settlement types during the Early Iron Age (Table 1) were similar to those of 
the Late Bronze Age – mostly single households and some fortified settlements 
(Lang, 2007). There was a sharp decline in the population in the Middle Bronze 
Age (Table 1) followed by recovering and the establishment of strongholds and 
villages with active contacts with neighbouring areas, especially during the 
Viking Age (Table 1) (Kriiska et al., 2017). 

The burial practices of the Early Iron Age are somewhat different from those 
of the Late Bronze Age – circular stone-cist graves are replaced by tarand 
cemeteries with several quadrangular stone enclosures connected to each other 
(Lang, 2007). These structures have been proposed to mimic the so-called houses 
of the dead of the Uralic-speaking groups in the Volga-Kama region (Patrushev, 
2000). The well-visible stone structures being a burial place only for some sort of 
an elite is also true during the Early Iron Age (Lang, 2011). Burial practices 
changed considerably after the Early Iron Age with cremation burials becoming 
the norm in the Middle and Late Iron Age (Kriiska et al., 2017). 

 
 

2.3.5. The Middle Ages 

The Middle Ages in Estonia started as late as the beginning of the 12th century 
Common Era (CE) (Table 1) when crusaders conquered the area after which 
Northern Estonia belonged to Denmark and Southern Estonia became part of 
Livonia under the rule of the Teutonic Order (Kala et al., 2012). Northern 
Estonia was also sold to the Order in 1346 and the medieval period in Estonia 
ended at the end of the 15th century CE (Table 1) with the Russian-Livonian war 
(Kala et al., 2012). 
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Probably due to the violent fashion of Christianization, many pre-Christian 
traditions remained in medieval Estonia, for example most rural people were 
still buried in cemeteries near villages not in churchyards (Muižnieks, 2015; 
Valk, 2001). Since the mostly German nobility was buried in churchyards, the 
village cemeteries represent the local population (Muižnieks, 2015; Valk, 2001). 

 
 

2.4. The Uralic languages 

Estonians together with Hungarians, Finns and other smaller peoples differentiate 
from most European populations by their languages – the majority of Europeans 
speak Indo-European languages while these peoples speak languages belonging 
to the Uralic family. 

The Uralic language family is made up of around 40 languages (Abondolo, 
1998; Salminen, 2007; https://www.ethnologue.com/subgroups/uralic) and has 
been proposed to derive from a protolanguage which split into the Samoyed and 
the Finno-Ugric branch (Figure 7) 4,000–6,000 years ago (Kallio, 2006; Honkola 
et al., 2013). Most researchers support the hypothesis that Uralic languages 
originated in the Volga river basin (Koivulehto, 2001; Häkkinen, 2009). 

 
Figure 7. Map of the geographic spread of Uralic languages. Figure adapted with 
permission from Wikimedia Commons (author: Nug, derived from Chumwa (Maxi-
milian Dörrbecker)), licenced under CC BY-SA Licence. 
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2.4.1. Uralic languages in Europe 

The Uralic languages spoken today in Europe belong to the Finno-Ugric branch 
of the language family (except the Nenets language from the Samoyed branch 
spoken both in Europe and in Siberia) (Abondolo, 1998). The classification of 
the languages of the Uralic linguistic family and the localization of the original 
core areas of different sub-groups in space are not solved uniformly, but the 
major subdivisions of the Finno-Ugric branch could be described as follows: 
Ugric containing Hungarian and the Ob-Ugric sub-group spread in Siberia, 
Permian containing Komi and Udmurt, Mari containing Mari, Mordvin 
containing Erzya and Moksha, Saami containing Eastern, Central and Western 
Saami, and Finnic containing, for example, Estonian, Finnish, Karelian and 
Veps (Korhonen, 1981) (Figure 7). Many of these languages can be subdivided 
further (https://www.ethnologue.com/subgroups/uralic). The precursors of the 
Mordvin and Mari groups and of the Udmurt language of the Permian group 
remained in the Volga river basin while Proto-Permian (precursor of Komi) 
spread north (Abondolo, 1998), Proto-Saami northwest (Frog and Saarikivi, 
2015) and Proto-Finnic west (Honkola et al., 2013; Lang, 2015). Proto-
Hungarian spread southwest during the first millennium CE (Abondolo, 1998). 
 
 

2.4.2. Uralic languages in Siberia 

The Uralic languages spoken in Siberia belong to the Samoyed branch and the 
Ugric group of the Finno-Ugric branch (Abondolo, 1998). The Samoyed branch 
consists of Nganasan, Selkup, Nenets and Enets languages, and the Siberian 
Ob-Ugric sub-group consists of Khanty and Mansi (Korhonen, 1981) (Figure 7). 
The precursors of Samoyed and Ugric languages were most likely spread near 
the Ural Mountains (Häkkinen, 2009; Janhunen, 2009). The Samoyed languages 
later spread east and reached the Taymyr peninsula as recently as in the 16th 
century CE (Popov, 1966; Carpelan, 2006). 
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3. AIMS OF THE STUDY 

The aim of this thesis was to study the demographic history of Estonia and more 
broadly, Europe, and to look for genetic similarities between Uralic-speaking 
populations. The introduction of NGS has allowed for the rapid development of 
the aDNA field during the last decade. Taking advantage of this new possibility 
of studying the past using samples from the periods of interest, the more 
specific aims were as follows: 
 
First (REF I), to study the genetic background of the major cultural changes in 
Eurasia during the Late Neolithic/Bronze Age. 

• To extract DNA from the first ancient individual studied from Estonia 
and to see how the data fits into the wider context of European Late 
Neolithic/Bronze Age. 

 
Second (REF II), to find out if the shift from hunting-gathering to farming was 
accompanied by genetic changes in Estonia. 

• To extract DNA from Mesolithic and Neolithic individuals from Estonia. 
• To characterize the composition of the autosomal as well as mtDNA, X 

chromosome (chrX) and chrY ancestries of these individuals in the 
context of modern and other ancient populations. 

 
Third (REF III), to try to pinpoint the arrival of the ancestry that connects 
Estonians to Uralic speakers in Siberia. 

• To extract DNA from Bronze, Iron and Middle Age individuals from 
Estonia and Ingria, Russia. 

• To characterize the composition of the autosomal as well as mtDNA, 
chrX and chrY ancestries of these individuals in the context of modern 
and other ancient populations. 

 
Fourth (REF IV), to characterize the genetic affinities of Uralic-speaking popu-
lations from east to west, including Estonians. 

• To compare the autosomal affinities of both European and Siberian 
Uralic speakers to other modern and ancient populations, taking into 
account geographic and linguistic origins. 

• To contrast the autosomal and chrX affinities of a population of interest 
to other modern populations, taking into account geographic origins and 
the probability of a man from the population of interest and a man from 
the comparison population sharing chrY hg N3-M178. 
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4. MATERIALS AND METHODS 

The origin and archaeological context of the ancient samples of this study is 
described in detail in the supporting materials of the research articles. The 
aDNA samples were obtained through a collaboration with the archaeologists of 
the University of Tartu. The samples were collected following the Code of Ethics 
of Estonian archaeologists (www.arheo.ut.ee/eesti-arheoloogide-eetikakoodeks). 

The modern DNA samples were obtained from unrelated volunteers after 
receiving informed consent in accordance with the guidelines of the ethical 
committees of the institutions involved. 

The experimental and bioinformatic methods of the present study are 
described in the respective publications and their supplementary materials. 
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5. RESULTS AND DISCUSSION 

This section is a summary of the four research articles that present the novel 
results of this study. The aim of the section is to provide an overview of the 
main results of the articles; more detailed information about the findings can be 
found in the publications themselves and their supplemental materials. 
 
 

5.1. The cultural changes in Late Neolithic/Bronze Age 
Eurasia are a result of large-scale human migrations (REF I) 

In this study, we assembled a set of 101 ancient genomes from Eurasia from the 
Late Neolithic to the Iron Age – the largest aDNA dataset published at the time 
(Figure 8). This was possible due to improving aDNA extraction methods in the 
course of the study (Methods, REF I). One example of this, which I also did 
with the Estonian individual, is sampling both the root cementum and the inner 
dentine of a tooth and seeing that the cementum produces more endogenous 
DNA. 
 
 

5.1.1. Genetic changes in Bronze Age Europe 

We compared our newly sequenced genome-wide data to previously published 
modern and ancient samples (Lazaridis et al., 2014; Fu et al., 2014; Seguin-
Orlando et al., 2014; Gamba et al., 2014; Skoglund et al., 2014; The 1000 
Genomes Project Consortium, 2012; Raghavan et al., 2014; Olalde et al., 2014; 
Keller et al., 2012) and found that the Late Neolithic/Bronze Age individuals of 
Europe (Scandinavia, Eastern Baltic and Central Europe) showed an influx of 
genetic material compared to the Early Neolithic farmers of Central Europe and 
Scandinavia. Principal component analysis (PCA) and ADMIXTURE analysis 
(Alexander et al., 2009) point to the Caucasus as the origin of this ancestry 
(Figure 2, REF I). However, the Caucasian ancestry reached Europe through the 
steppe since CWC individuals from Central Europe and Estonia were closer to 
Yamnaya culture individuals from the Pontic-Caspian steppe than to the 
individuals of Bronze Age Armenia using D statistics (Extended data table 1). 
CWC having been the result of admixture between Early Neolithic farmers and 
Yamnaya culture people is further confirmed by negative admixture f3 values 
(Extended data table 2, Supplementary table 12, REF I). 

The genetic change was also clear in the male lineages with most of the 
individuals sampled from the context of the CWC belonging to chrY hg R1a 
(Extended data figure 6, REF I) not found among the hunter-gatherers and early 
farmers of Europe (Kivisild, 2017). Interestingly though, most of the Yamnaya 
individuals of the study belonged to chrY hg R1b and none to R1a (Extended 
data figure 6, REF I). 
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Our autosomal, as well as mtDNA and chrY results show that the Late 
Neolithic/Bronze Age genetic structure was much more similar to that of 
modern Europe than it had been during the previous time layers. However, 
further changes during later periods and the more specific demographic processes 
in various parts of Europe remain to be addressed in following studies. 

 
 
Figure 8. Sites, cultural context and approximate timeline of the samples of this 
study. CA, Copper Age; MN, Middle Neolithic; LN, Late Neolithic; EBA, Early Bronze 
Age; MBA, Middle Bronze Age; LBA, Late Bronze Age; IA, Iron Age; BAC, Battle 
Axe culture; CWC, Corded Ware culture. Figure reprinted with permission from Figure 
1 left (REF I), Springer Nature. 
 
 

5.1.2. Genetic changes in Bronze Age Asia 

We also made comparisons between individuals of Bronze Age Asia and 
previously published modern and ancient data (Lazaridis et al., 2014; Fu et al., 
2014; Seguin-Orlando et al., 2014; Gamba et al., 2014; Skoglund et al., 2014; 
The 1000 Genomes Project Consortium, 2012; Raghavan et al., 2014; Olalde et 
al., 2014; Keller et al., 2012), which showed that human migrations played an 
equally important role there. The Afanasievo culture people of the Altai-Sayan 
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region were extremely similar to Yamnaya culture people, meaning that there 
was no admixture involved in the emergence of this culture unlike for CWC in 
Europe (Figure 3b, Extended data figure 2b, Extended data table 1, REF I). 
These results also point to the migration from the Pontic-Caspian steppe being 
multidirectional, expanding both towards the west and the east. 

The Sintashta culture people, who lived on the border of Europe and Asia, 
and the Andronovo culture people of Central Asia, on the other hand, were most 
similar to the CWC individuals of Central Europe and Estonia (Extended data 
figure 2ac, REF I). This is indicative of these cultures being the result of back 
migration from west to east. 

What is more, the Okunevo people of the Sayano-Altai region were similar 
to modern Native Americans (Extended data figure 2d, REF I). This means that 
they might have been a remnant of the Upper Paleolithic population that con-
tributed to the gene pool of Native Americans (represented by the Mal’ta boy 
(Raghavan et al., 2014)). 

 
 

5.1.3. Temporal dynamics of phenotypically informative variants 

We found an increase in the frequency of two alleles associated with light skin 
pigmentation (rs1426654, rs16891982) between the Mesolithic and the Bronze 
Age in Europe (Figure 4a, Supplementary table 13, REF I). On the other hand, 
there was no considerable increase in the frequency of the lactase persistence 
allele (rs4988235), pointing to the onset of the positive selection on this allele 
starting later than the start of dairying in Europe (Figure 4, Supplementary table 
13, REF I). The allele associated with blue eyes (rs12913832) was at inter-
mediate frequency in Bronze Age Europeans but absent in the Pontic-Caspian 
steppe populations (Figure 4, Supplementary table 13, REF I). 
 
 

5.2. A sex-biased migration is connected to farming 
reaching Estonia (REF II) 

To find out if migration of people (rather than ideas) had a significant role in 
the spread of farming to Estonia, we extracted DNA from 10 individuals from 
Mesolithic and Neolithic Estonia radiocarbon dated to between around 6300 to 
4500 years ago. One of the individuals was a Mesolithic hunter-gatherer of 
Narva culture, 4 were Neolithic hunter-gatherers of CCC and 5 were Neolithic 
farmers of CWC (Figure 1, Table 1, Methods, REF II). 
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5.2.1. Maternal and paternal lineage diversity in Mesolithic and 
Neolithic Estonia 

All of the successfully haplogrouped hunter-gatherers of the study at hand – the 
Mesolithic Narva culture individual as well as 3 Neolithic CCC individuals – 
belonged to mtDNA hg U (Table 1, Table S2, REF II) as expected from previous 
studies (Skoglund et al., 2012, 2014; Sánchez-Quinto et al., 2012; Fu et al., 
2013b; Jones et al., 2015; Fu et al., 2016; Posth et al., 2016). The Neolithic 
farmers of CWC, on the other hand, displayed a much larger variety of mtDNA 
lineages, belonging to hgs T, J and H in addition to U (Table 1, Table S2, REF 
II). This is also in accordance with previous studies focusing both on the Early 
Neolithic and the CWC farmers of Europe (Skoglund et al., 2012, 2014; Haak et 
al., 2005, 2010; Bollongino et al., 2013; Brandt et al., 2013, 2015; Szécsényi-
Nagy et al., 2015; Mathieson et al., 2015; Haak et al., 2015; REF I). 

Due to low coverage, the chrY hg of Mesolithic Narva individual could not be 
determined, but the only male CCC hunter-gatherer belonged to hg R1a5 
(Table 1, Table S3, REF II). That is an early lineage of R1a, and similar lineages 
have also been found in EHG (Haak et al., 2015). All four CWC males, however, 
belonged to hg R1a-Z645 (Table 1, Table S3, REF II), a lineage most frequent 
in the carriers of this culture also in Central Europe (REF I; Haak et al., 2015; 
Mathieson et al., 2015). These results suggest that admixture between CCC 
hunter-gatherers and CWC farmers was limited, at least in the male lineages. 

 
 

5.2.2. Genome-wide ancestries of Neolithic Estonia 

We compared our newly generated data to previously published modern and 
ancient genomes (Lazaridis et al., 2016; Jones et al., 2017) using PCA and 
ADMIXTURE analysis (Alexander et al., 2009) as well as f3 and D statistics. 
We found that the last hunter-gatherers of Estonia were most similar to another 
CCC hunter-gatherer from Latvia and to EHGs (Figure 9; Figure 2B, Figure 
3AB, Figure S2, Data S1, REF II). Other studies, however, have shown that 
Mesolithic hunter-gatherers from the Eastern Baltic were most similar to WHGs 
(Jones et al., 2017; Mittnik et al., 2018). This points to a genetic influx from the 
east being involved in the arrival of CCC in Estonia and in the Eastern Baltic. 

Furthermore, when using the same analyses to make comparisons involving 
the CWC samples of this study, we found that these individuals were similar to 
Late Neolithic/Bronze Age populations in other parts of Europe and clearly 
different from the previous CCC people (Figure 9; Figure 2B, Figure 3AB, 
Figure S2, Data S1, REF II). This means that farming in Estonia started as a 
result of human migration. However, it is important to note that the first farmers 
of Estonia were not the descendants of the first wave of farmers into Europe 
from Anatolia (Mathieson et al., 2015 and others, see chapter 2.2.2) but the next 
big migration wave into Europe from the Pontic-Caspian steppe (REF I; Haak et 
al., 2015). 
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Figure 9. Principal component analysis results. Principal component analysis results 
of modern West Eurasians with ancient individuals (including seven ancient Estonians) 
projected onto the first two components (PC1 and PC2). In the legend, the following are 
shown from left to right: this study, Jones et al. 2017, and Lazaridis et al. 2016. Kud2, 
3 – Kudruküla; Ard1, 2 – Ardu; Kun1, 2 – Kunila. Figure reprinted with permission 
from Figure 2A (REF II), Elsevier. 
 

We studied the demographic processes involved in farming reaching Estonia 
further by comparing the autosomal and chrX ancestries of the Estonian CWC 
individuals. Both men and women contribute one of each autosomal chromo-
some to all children, but men only pass on their chrX to their daughters while 
boys always get their chrX from their mother. This means that in this comparison, 
autosomal data gives more information about the male and X chromosomal data 
about the female lineage. We found that the Anatolian early farmer ancestry that 
reached Estonia through CWC people was more prominent in the chrX (Figure 
3D, Data S1, REF II), suggesting that the admixture involved was biased towards 
Yamnaya ancestry in the male and early farmer ancestry in the female lineages. 
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5.3. Bronze and Iron Age genomes reveal genetic influxes 
in Estonia from multiple directions (REF III) 

We newly sequenced 56 ancient genomes to study the demographic history of 
Estonia from the Bronze Age onward and to find out, when chrY hg N3a 
(nomeclature as in Karmin et al., 2015) reached the Eastern Baltic. This hg is 
frequent in modern Estonians, but also in other, mostly Uralic-speaking, Euro-
pean populations and many populations in West Siberia and the Far East 
(Ilumäe et al., 2016; Tambets et al., 2004; Pliss et al., 2006; Rootsi et al., 2007; 
REF IV). What is more, the time of the transition from Bronze to Iron Age 
matches the hypothesized period of the diversification of western Uralic 
languages (Honkola et al., 2013) and of the Proto-Finnic language reaching the 
Eastern Baltic from the east (Kallio, 2006; Häkkinen, 2009). Our sample 
consists of 23 individuals mostly from stone-cists graves from Late Bronze Age 
Estonia (1200–400 BC), 14 mostly from tarand cemeteries from Pre-Roman 
Iron Age Estonia (800/500 BC–50 AD), 12 from Pre-Roman to Roman Iron 
Age Ingria, Russia (500 BC–450 AD) and 7 from Middle Age Estonia (1200–
1600 AD) (Figure 1A, Table 1, Table S1, REF III). 
 
 

5.3.1. Maternal and paternal lineage diversity  
in Bronze to Middle Age Estonia 

The samples of the given study belonged to various different hgs – multiple 
lineages of hgs U, T, J, H, K, W, HV and I (Table 1, Table S1, REF III). A 
comparison to modern Estonian whole mtDNA sequences (unpublished) 
revealed that all of these lineages are also present in the modern-day Estonian 
population and not restricted to a specific area. 

The chrY diversity was low in the Bronze Age with all 16 successfully 
haplogrouped males belonging to hg R1a and none to N3a (Table 1, Table S1, 
Table S2, REF III). This means that no change could be seen from the previous 
CWC in the Eastern Baltic (REF II; Jones et al., 2017; Mittnik et al., 2018; 
Mathieson et al., 2018). Admittedly, the sample size is small, but even so, the 
frequency of N3a in the population should not exceed 17% with 95% 
confidence. We did, however, detect hg N3a in the Iron and Middle Age groups 
(3/6 in both) (Table 1, Table S1, Table S2, REF III). From these results, we can 
conclude that chrY hg N3a most likely reached the Eastern Baltic during the 
transition from Bronze to Iron Age. 
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5.3.2. Genome-wide ancestry in Estonia from  
the Bronze Age onward 

We also tested if autosomal data reveals similar patterns by using PCA and 
ADMIXTURE analysis (Alexander et al., 2009), f3 and D statistics, the 
program qpAdm (Patterson et al., 2012) and the CromoPainter-NNLS pipeline 
(Lawson et al., 2012; Hofmanová et al., 2016; Leslie et al., 2015; Montinaro et 
al., 2015). Unlike uniparental lineages, autosomal data revealed a detectable 
shift in ancestry between the CWC and the Bronze Age individuals. The Bronze 
Age samples displayed an increase in ancestry related to WHGs (Figure 1BC, 
Figure 2A, Figure S1, Figure S2AB, Data S1, REF III). 

Furthermore, the change in paternal lineage diversity between Bronze and 
Iron Age was not as clearly mirrored in autosomal data. Individuals from 
Bronze, Iron and Middle Ages, and modern Estonians seemed quite similar in 
some of the analyses (Figure 1BC, Figure 2A, Figure S1, Data S1, REF III), but 
more detailed studies revealed the presence of around 3% Siberian (Nganasan 
used as proxy) ancestry starting from the Iron Age (Figure 10; Data S1, REF 
III). A small increase in early farmer ancestry was also detected between Bronze 
and Iron Age individuals and modern Estonians (Data S1, REF III) while the 
sex-bias seen in this ancestry in the CWC individuals (REF II) decreased in 
time (Figure S2C–F, Data S1, REF III). 

 

 
Figure 10. ChromoPainter-NNLS and qpAdm results. EstBA – Estonian Bronze Age; 
EstIA – Estonian Iron Age; IngIA – Ingrian Iron Age; EstMA – Estonian Middle Ages; 
WHG – Western hunter-gatherers; Central MN – Central European Middle Neolithic. 
A. ChromoPainter unlinked mode summarized results. B. qpAdm results. Figure 
reprinted with permission from Figure 3 (REF III), Cell Press. 
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5.3.3. Relatives in Bronze Age sample and phenotypic changes  
in the Eastern Baltic through time 

We used READ (Monroy Kuhn et al., 2018) and found a pair of second-degree 
relatives in our Bronze Age sample – most likely an uncle and his sister’s son 
(Figure S3A–D, REF III). Interestingly, these individuals were not buried in the 
same grave group, but 13 km apart. These results point to the stone-cist graves 
being used for a limited circle of people. 

We further imputed the genotypes of phenotype informative positions 
(Methods, REF III) and inferred that the frequency of the lactase persistence 
allele was low in Estonia in the Late Neolithic, as elsewhere in Europe (REF I), 
but increased considerably (to over 50%) in the Bronze Age (Data S2, REF III). 
We also inferred a change in the frequencies of alleles connected with skin 
pigmentation, hair and eye colour from mostly dark for the hunter-gatherers and 
Neolithic farmers of Latvia and Estonia to lighter starting from the Bronze Age 
in Estonia (Data S2, REF III). 

 
 

5.4. Traces of shared demographic history can be found  
in the genomes of most of modern Uralic speakers (REF IV) 

In this study, we set out find out whether genetic connections can be found 
between modern Uralic speakers from Europe and Siberia not only in their 
paternal lineages but also in the rest of the genome. For that, we put together a 
genotyping dataset of individuals from 15 populations (Table S1, REF IV), 
covering the main groups of the Uralic language family (Table S2, REF IV). 
 
 

5.4.1. Female and male demographic histories of Uralic speakers 

The mtDNA lineages of most of the studied Uralic speakers are typical to West 
Eurasia (Figure 1B, Table S3, Table S4, REF IV). Nganasans and West Siberian 
Nenets are the exception with mostly East Eurasian lineages (Figure 1B, Table 
S3, Table S4, REF IV). 

However, when looking at chrY, East Eurasian lineages, more specifically 
hg N lineages, are much more common – especially in Siberian, but also in 
European Uralic speakers (Figure 1B, Table S5, REF IV). Here the exceptions 
are Hungarians with almost no prevalence of this hg, and Selkups with fre-
quencies much lower than in other Samoyed speakers (Table S5, REF IV). 

We further tested the differences in the male and female demographic 
histories of Uralic speakers by comparing their autosomal and chrX ancestries 
using outgroup f3 analysis (Figure 11). We grouped the populations based on 
the probability of a randomly chosen pair of men – one from a given comparison 
population and the other from the study population – to share chrY hg N3-M178. 
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We found that population pairs for which this probability is over 10% compared 
to under 5% have a significant although small excess of autosomal rather than 
chrX affinity to each other (Figure 11). 

 
Figure 11. Comparison of autosomal (x-axis) and X chromosome (y-axis) outgroup 
f3-statistics for Estonians and Khanty. Four classes of probability values (%) for a 
pair of men from two populations – Estonians (left) or Khanty (right) vs others – to 
share Y chromosome hg N3-M178 are shown with crosses of different colours. The 
overall trendline (black) and trendlines for lower (<5%, grey) and higher (>10%, red) 
probability classes are shown. Differences of slopes of the grey and red trendlines were 
non-significant (Estonians p=0.96, Khanty p=0.73). Differences of the interception 
points of the grey and red trendlines were significant (Estonians p=0.01532, Khanty 
p=0.00542). Figure adapted with permission from Figure S13 (REF IV), Springer 
Nature. 
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from Sweden) and interestingly also North Russians (Figure 3, Figure S3, REF 
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IV). The westernmost Uralic speakers Estonians and Hungarians, however, 
have very little or none of the component (Figure 3, Figure S3, REF IV). 

D statistics suggested that most of Western Uralic speakers (Saami, Finns 
and Estonians), compared to their Indo-European neighbours share more genetic 
ancestry with Siberian populations while other European populations share 
more with their proximate geographic neighbours (Figure S4, REF IV). Notably, 
Hungarians behaved like non-Uralic speakers in this analysis (Figure S4, REF 
IV). 

Next, we tested identity-by-descent (IBD) (Browning and Browning, 2011) 
segment sharing and found that Uralic speakers compared to non-Uralic 
speakers from Siberia and the Volga-Ural region (except Mordovians) share more 
with most of the other Uralic-speaking populations from these two regions and 
also with some Northeast European Uralic speakers (Figure 4, Table S8, Table 
S9, REF IV). What is more, Northeast European Uralic speakers rather than 
their non-Uralic-speaking neighbours mostly share more with other Uralic 
speakers from their own region, the Volga-Ural region and Siberia, and in some 
cases even with distant non-Uralic speakers (Figure 4, Table S7, REF IV). The 
only populations that do not show a higher genetic affinity to Uralic speakers 
from other regions are Estonians and Hungarians (Figure 4, Table S7, Table S8, 
REF IV). 

The haplotype-based regional Globetrotter analysis (Hellenthal et al., 2014) 
(Figure 5B, Table S10, Table S11, REF IV), which reveals admixture events 
between sample clusters (identified using fineSTRUCTURE (Lawson et al., 
2012) (Figure S5, Figure S6, REF IV)) not belonging to the same geographic 
region as the target, points to the connections between Uralic speakers in 
Europe and Siberia being unidirectional from east to west (Figure 5B, Table 
S10, Table S11, REF IV). The Siberian clusters mostly show admixture events 
within the region or also involving the Volga-Ural region (Figure 5B, Table 
S10, Table S11, REF IV). Samoyed-speaking clusters further have admixture 
from East Asia/South Siberia (Figure 5B, Table S10, Table S11, REF IV). 
Interestingly, as estimated using ALDER, the admixture from East Eurasia into 
Europe took place 800–900 CE or earlier but from West Eurasia into Siberia 
later than 1500 CE (Figure S7, Table S12, REF IV). 

We also found that lexical and genetic distances of Uralic speakers are 
significantly positively correlated when using autosomal genetic data in the 
form of a fineSTRUCTURE (Lawson et al., 2012) matrix based on coancestry 
determined by shared chunk counts, or an FST distance matrix (Table S14, Table 
S15, REF IV). However, geographic distances significantly predict genetic 
distances when lexical distance is kept constant, meaning that both the 
geographic and lexical distances contribute to the genetic variation of Uralic 
speakers (Table S15, REF IV). 

5.4.3. Affinities between Uralic speakers and ancient Eurasians 

Lastly, we used the program qpGraph (Patterson et al., 2012) to see, if and in 
which proportions modern Uralic-speaking populations can be modeled as a 
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mixture of five ancestral populations: WHG, EHG, Linearbandkeramik (LBK; 
early farmers), CWC (steppe ancestry) and Nganasan (Siberian proxy) (Figure 
S10, REF IV). We found that the Siberian ancestry accounts for most of the 
genome of Uralic speakers in West Siberia, up to one third in the Volga-Ural 
region and in Saami, and less than 10% in Northeast Europe (5% in Estonians) 
(Figure 6, REF IV). Hungarians are the only Uralic-speaking population that 
could not be modeled using these ancestral populations due to them not having 
the Siberian component. What is more, the non-Uralic-speaking neighbours of 
Estonians (Latvians and Lithuanians) have almost no Siberian ancestry in their 
autosomes (Figure 6, REF IV). 
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6. CONCLUSIONS 

• A genetic influx from the east was involved in the arrival of the hunting-
gathering Comb Ceramic culture in Estonia during the Early Neolithic. 

• The major cultural changes in Eurasia during the Late Neolithic/Bronze Age 
were connected to the expansion of the Yamnaya culture from the Pontic-
Caspian steppe. In Europe (including Estonia), the Yamnaya expansion and 
admixture with Neolithic early farmer populations resulted in the Corded 
Ware culture. In Asia, this expansion gave rise to the Afanasievo culture, 
without significant admixture with local populations. However, the Sintashta 
and Andronovo cultures in Asia were likely the result of back migration of 
Corded Ware culture people from Europe. 

• The Corded Ware culture people with Yamnaya ancestry were the first 
farmers of Estonia, meaning that the Anatolian early farmers who brought 
farming into most parts of Europe did not reach Estonia. What is more, the 
limited amount of early farmer ancestry that reaches Estonia with the Corded 
Ware culture people was more prominent in the female lineages, pointing to 
sex-biased admixture. 

• An increase in Western hunter-gatherer ancestry can be seen in the autosomal 
data of Bronze Age Estonians. Interestingly, this change was not detected in 
their mtDNA and chrY lineages. Furthermore, light hair, skin and eyes, and 
lactose tolerance become frequent in Estonia during this period. 

• A genetic component most similar to modern Siberians had been added to 
the genomes of Iron Age Estonians, very clearly visible in the composition 
of their chrY lineages (hg N3a) and less apparent in their autosomal data. 
ChrY hg N3a is present in high frequencies in modern Estonians, in other 
Uralic speakers in northeastern Europe and in populations of West Siberia 
and the Far East. The time of the arrival of the Siberian ancestry in Estonia 
coincided with the proposed arrival of Proto-Finnic language in the Eastern 
Baltic region. 

• On a genome-wide scale, modern Uralic speakers are most similar to their 
geographic neighbours but, importantly, most of them share an ancestry 
component of possibly Siberian origin and share more IBD segments with 
each other over long distances than with other equidistant populations. 
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SUMMARY IN ESTONIAN 

Eesti esiajalugu geneetika vaatevinklist:  
uus teave vana DNA uuringutest 

Juba aastakümneid on uuritud populatsioonide demograafilist ajalugu vorminud 
minevikus aset leidnud geneetilisi muutusi ja protsesse, kasutades selleks täna-
päeval elavate inimeste geneetilisi andmeid. Pärast teise põlvkonna sekveneerimis-
tehnoloogiate kasutuselevõttu peaaegu 15 aastat tagasi on sellesse valdkonda 
hakanud oluliselt panustama ka vana DNA uurimisel põhinev teadustöö. Täna-
päevaseid genoome analüüsides on võimalik ennustada, millised protsessid ja 
millal populatsioone mõjutanud on. Vana DNA uurimine võimaldab neid ennus-
tusi kontrollida ja lisab neile geograafilise mõõtme, kuna iga ammune genoom 
on seotud mingi kindla aja ja kohaga. Lisaks on vana DNA abil võimalik leida 
populatsioone, millel tänapäeva genoomidesse panustada ei õnnestunud. 

Vana DNA uuringute peamised piirangud on seotud saadavaloleva bioloogi-
lise materjali piiratud hulga, keskkonnatingimustest sõltuvast DNA säilimisest 
tulenevate geograafiliste piirangute ja sedalaadi uurimistöö kulukusega. Viimase 
põhjuseks on see, et vana DNA on mitmesuguste keemiliste protsesside tagajärjel 
tugevalt kahjustunud, mistõttu on selle uurimiseks vaja kasutada spetsiaalset 
puhaslaborit ning spetsiifilisi meetodeid. Nende piirangute mõju vähendamiseks 
arendatakse pidevalt laboritöö ja analüüside metoodikaid, et oleks võimalik 
suurema hulga andmete abil vastata rohkematele küsimustele. 

Selle doktoritöö peamiseks uurimisteemaks on Euroopa ja täpsemalt Eesti 
demograafiline ajalugu. Nüüdisinimesed jõudsid Euroopasse umbes 45 000 aastat 
tagasi. Need küttimisest ja korilusest elatuvad inimesed elasid refuugiumides üle 
ka viimase jääaja maksimumi ning asustasid hiljem taas kogu Euroopa ja 
moodustasid geneetiliselt, geograafiliselt ja mõnel juhul ka ajaliselt eristuvad 
grupid. Umbes 8000 aastat tagasi jõudis Euroopasse põlluharimine koos 
Anatoolia ja Levanti päritolu inimestega, kes tänapäeva populatsioonidest olid 
geneetiliselt kõige sarnasemad sardiinlastega. 

Arheoloogilistele andmetele toetudes erineb Eesti demograafiline ajalugu 
mõneti Euroopa kesksemate alade omast – esimesed inimasustuse jäljed päri-
nevad jääajajärgsest perioodist umbes 11 000 aastat tagasi ning põlluharimine 
sai alguse alles hilisneoliitikumis nöörkeraamika kultuuri saabumisega. Täna-
päeva eestlasi, soomlasi ja mitmeid väiksemaid Ida-Euroopa ja Lääne-Siberi 
rahvaid eristab ülejäänud eurooplastest kõige selgemini meie keel. Uurali keel-
kond pärineb tõenäoliselt Volga-Kama piirkonnast, kust tänaste uurali keelte 
eelkäijad levisid mitmes suunas, nii et praegused nende keelte kõnelejad elavad 
üksteisest kaugel Euroopa eri piirkondades ja Siberis. 

Selle doktoritöö raames uuriti tänasel Eesti territooriumil nooremal kiviajal 
ehk neoliitikumis elanud inimeste geenipärandit suuri Euraasia piirkondi mõju-
tanud migratsioonide kontekstis, Eesti alal erinevatel ajaperioodidel toimunud 
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spetsiifilisemaid muutusi ja protsesse ning tänapäeva eestlaste geneetilist pärit-
olu ja eriti seoseid teiste uurali keelte kõnelejatega. 
 
Töö peamised tulemused ja järeldused on järgmised: 
• Küttimise-korilusega seostatud varaneoliitilise kammkeraamika kultuuri 

Eestisse jõudmisega kaasnes inimeste lisandumine idast. 
• Hilisneoliitikumis ja pronksiajal aset leidnud suured kultuurilised muutused 

olid seotud aukhaudade kultuuri inimeste rändamisega Musta ja Kaspia 
meredega piirnevalt stepialalt nii Euroopa kui Aasia suunas. Euroopas (sh 
Eestis) tekkis varajaste põlluharijatega segunemise järel nöörkeraamika 
kultuur ning Aasias ilma erilise segunemiseta Afanasjevo kultuur ja nöör-
keraamika kultuuri inimeste tagasirände tulemusena Sintashta ja Andronovo 
kultuurid. 

• Eesti esimesed põlluharijad olid stepirahvastest pärinevad nöörkeraamika 
kultuuri esindajad, mis tähendab, et Anatoolia päritoluga varased põlluhari-
jad Eestisse ei jõudnud. Nöörkeraamika kultuuri inimestega meie alale jõud-
nud vähene Anatoolia päritolu oli sagedasem emaliinis, mis viitab soospet-
siifilisele segunemisele – stepipäritolu seostub eelkõige meeste ja Lähis-Ida 
mõjutused naistega. 

• Pronksiaegsete kivikirstkalmetesse maetute genoomides oli varasemaga 
võrreldes suurenenud Lääne-Euroopa küttide-korilastega seotud geneetiline 
komponent, mis samas ei kajastunud huvitaval kombel nende mitokondriaal-
ses DNA-s ega Y kromosoomis. Just pronksiajal muutusid sagedaseks ka 
tänapäeva eestlastele (ja põhjaeurooplastele) omased heledad juuksed, nahk 
ja silmad ning laktoositaluvus. 

• Rauaajal tarandkalmetesse maetute genoomidesse oli lisandunud geneetiline 
komponent, mis on sage tänapäevastes Siberi populatsioonides. See idapoolne 
mõju oli sage Y kromosoomis (haplogrupp N3a) ja väiksemamahuline üle-
jäänud genoomis. Haplogrupp N3a on sage ka tänapäeva eestlaste ja teiste 
Kirde-Euroopa uurali keelte kõnelejate ning Lääne-Siberi ja Kaug-Ida popu-
latsioonide meesliinides. Ühtlasi kattus Siberi päritolu Eestisse jõudmise aeg 
keeleteadlaste poolt välja pakutud läänemeresoome keelte saabumisajaga 
Läänemere idakaldale. 

• Tänapäevased uurali keelte kõnelejad on ülegenoomsete andmete alusel 
kõige sarnasemad enda geograafilistele naabritele, kuid sellegipoolest jagab 
enamik neist veidi rohkem hiljutist ühise päritoluga geneetilist materjali teiste 
sama keelkonna esindajatega kaugemal, kui nende teisi keeli kõnelevad 
naabrid. 
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