
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Kodjovi Hippolyte-Fayol Toulassi

Software Tool for Validation of Chromatographic

Analytical Method

Master’s Thesis (30 ECTS)

Supervisor(s):

Marlon Dumas, Professor

 Koit Herodes, Associate Professor

Asko Laaniste, PhD

Tartu 2019

Software Tool for Validation of Chromatographic Analytical Method

Abstract:

Many industries rely on analytical procedures to analyze various substances. In the medical field

they are used to perform laboratory analyzes. In the pharmaceutical industry they are used to

determine and quantify the active component of a drug product as well as impurities. In the food

industry they are used to identify the properties of foods and their ingredients. An analytical

procedure can be assimilable to the algorithm of a chemical analysis. Due to their widespread use,

analytical procedures must be validated. The validation process will prove that the chemical

analysis described by the analytical procedure is judicious and fit for its intended use case. That

is, the chemical analysis can accurately measure the compound it is supposed to measure. Sadly,

that validation process, currently, is performed manually by analytical chemists. The completion

of analytical procedure validation manually is tedious and potentially error-prone. Therefore,

accessible systems that can assist analytical chemists during analytical procedure validation should

be made available to them. These systems will not only ensure the consistency of the result but

also alleviate the workload of analytical chemists. The Department of Chemistry of the University

of Tartu has acknowledged the need of such systems and launched the implementation of one

named ValChrom. This thesis highlights the implementation details of ValChrom – a web-based

application for analytical procedure validation, after evaluating the strengths and shortcomings of

existing similar software solutions.

Keywords: analytical procedure validation, analytical method validation, chromatography,

analytical procedure validation software, analytical method validation tool

CERCS: P300, P170

Tarkvaral ine tööriist kromatograafilise meetodi valideerimiseks

Tänapäeval toetuvad paljud valdkonnad erinevate ainete analüüsimiseks analüütilistele

protseduuridele. Meditsiinivaldkonnas kasutatakse neid laborianalüüside tegemiseks. Farmaatsias

kasutatakse neid ravimite aktiivsete komponentide ja nende koguste määramiseks ning defektide

tuvastamiseks. Toitainetööstuses määratakse nende abil toitude ja nende koostisosade omadused.

Analüütilist protseduuri võib vaadelda keemilise analüüsi algoritmina. Nende protseduuride suure

populaarsuse tõttu on vajalik saada neid valideerida. Valideerimine tõestab, et analüütilise

protseduuri poolt kirjeldatav keemiline analüüs on antud otstarbe jaoks mõistlik: et sellega saab

vajalikku ühendit piisava täpsusega mõõta. Kahjuks teostatakse protseduuride valideerimine

tänapäeval käsitsi analüütiliste keemikute poolt. Käsitsi valideerides võtab aga see palju aega ja

on kerge teha vigu. Seega on vajalik analüütiliste keemikute töö hõlbustamiseks luua süsteeme,

mis kindlustaks tulemuse korrektsust ja teeks kogu protsessi kergemaks. Tartu Ülikooli keemia

instituut on tunnistanud selliste süsteemide vajalikust ja alustas ühe sellise süsteemi - ValChrom’i

- arendust. See lõputöö hindab olemasolevate lahenduste tugevaid ja nõrki külgi ning räägib

analüütiliste protseduuride valideerimiseks mõeldud veebirakenduse ValChrom

implementatsioonist.

Märksõnad: analüütiliste protseduuride valideerimine, analüütilise meetodi valideerimine,

kromatograafia, analüütiliste protseduuride valideerimise tarkvara, analüütilise meetodi

valideerimise tööriist

CERCS: P300, P170

Contents

1. Introduction ... 7

2. Background .. 9

2.1. Chromatography ... 9

2.2. Validation of Analytical Procedure .. 10

2.2.1. Specificity ... 11

2.2.2. Accuracy ... 11

2.2.3. Precision .. 11

2.2.4. Linearity .. 11

2.2.5. Range .. 11

2.2.6. Detection limit .. 11

2.2.7. Quantitation limit .. 12

2.2.8. Robustness .. 12

2.3. Existing Solutions ... 12

2.4. Scope and requirements .. 13

2.5. Technologies Used .. 16

3. Solution .. 18

3.1. Architecture of the overall system .. 18

3.2. Data formats and domain model ... 20

3.3. REST API ... 22

3.3.1. Analytical Methods ... 23

3.3.2. Assessment Methods ... 23

3.3.3. Guideline ... 24

3.3.4. Validation plan templates ... 24

3.3.5. Experiment plan .. 25

3.3.6. Experimental datasets ... 25

3.3.7. Experiment Data ... 27

3.3.8. Experiment Data Value ... 27

3.3.9. Report templates ... 27

3.3.10. Reports .. 27

3.3.11. Users ... 28

3.3.12. Accounts ... 28

3.3.13. Token .. 29

3.4. Controllers and Resource Objects ... 29

4. Packaging and Testing ... 32

4.1. Containerization .. 32

4.2. Continuous Integration.. 36

4.3. Testing... 37

5. Conclusion and Future Work ... 40

References ... 41

Appendix A ... 42

Appendix B ... 43

License .. 46

List of Figures

Figure 2-1 High-Performance Liquid Chromatography (HPLC) System 10

Figure 2-2 BPMN Diagram - Planning Step ... 14

Figure 2-3 BPMN Diagram - Experiment Step .. 15

Figure 2-4 BPMN Diagram - Reporting Step ... 15

Figure 3-1 System Overall Architecture ... 19

Figure 3-2 Flowchart of the validation process using ValChrom ... 20

Figure 3-3 Example CSV File... 21

Figure 3-4 Domain Model .. 22

Figure 3-5 Element State Transition ... 30

Figure 3-6 Validation Report State Transition.. 31

Figure 4-1 Django Application Dockerfile ... 33

Figure 4-2 Database Dockerfile .. 33

Figure 4-3 Database Initialization Script .. 33

Figure 4-4 Cache Dockerfile ... 34

Figure 4-5 Cache Configuration File .. 34

Figure 4-6 Reverse Proxy Dockerfile ... 34

Figure 4-7 Reverse Proxy Configuration .. 35

Figure 4-8 bitbucket-pipelines.yml ... 37

7

1. Introduction

Before companies sell their products to people, the products must undergo tests and analyses to

ensure compliance with regulations. The same principle applies to chemically engineered products.

Chemical analyses are performed on them to know their quality and understand their chemical

composition. Often those analyses use chromatographic methods to obtain the composition of the

product. It may be an analysis to determine the content of active pharmaceutical ingredient of a

tablet, pesticide residue in tomatoes, or an analysis to detect doping substances in athletes’ bodily

fluids. It is important for these analyses to produce accurate and consistent results all the time. For

example, contents of active ingredient and impurities should always be accurately determined. In

order to correctly perform chemical analysis, there needs to be a blueprint that specifies the steps

to follow and tools to utilize. This blueprint is called an analytical method. Often the use of

analytical methods yields significant results that can affect several aspects of life. In the medical

field, an inaccurate result could imply an incorrect diagnosis of a patient. In food production, an

inaccurate result could imply that people will consume harmful food. That is why before an

analytical method is used to perform chemical analysis, it must be validated to determine whether

it produces results that comply with regulations and to ensure that it fits the intended purpose.

Even though today sophisticated lab equipment is available to help chemists perform chemical

analyses, there is still a lot of manual and time-consuming activities involved in the method

validation process. These activities include reading lengthy method validation guidelines to decide

which techniques to utilize to assess the different criteria and parameters of the analytical method,

preparing samples for laboratory analyses, collecting and compiling the results of the analyses,

performing mathematical and statistical computations on the analyses results and finally producing

a document to report the analytical method’s characteristics also known as validation parameters.

All these activities create room for errors. In some cases, chemists may use several software tools

at different stages of the validation process. Which means that they need to transfer data between

different tools. This can easily lead to the isolation of information in several files or databases, the

loss or inconsistency of data, and the difficulty to share data and collaborate with each other.

Subsequently, data integrity cannot be guaranteed.

An intuitive solution to this problem is to create a software for analytical method validation. The

software will automate the process and basically eliminate the problems faced by the current

analytical method validation process. This is the rationale behind ValChrom, a software project

initiated by the Institute of Chemistry at the University of Tartu1. ValChrom is envisioned as a

software-as-a-service SaaS solution to help analytical chemistry laboratories plan, assess and

report the validation of analytical methods in accordance with validation guidelines. This thesis

presents the implementation of ValChrom.

The implementation of ValChrom discussed in this thesis consists mainly of a frontend application

in VueJS and a backend application is Python Django. The backend system and the front-end

system communicate through a Representational State Transfer (REST) Application Programming

Interface (API). The backend abstracts the analytical method validation process and provides

means to represent domain concepts such as an analytical method, a validation guideline and an

analytical method validation report. It takes care of the creation and mutation of those domain

concepts and exposes them as resources. The frontend is a thick client application that transforms

1 https://valchrom.ut.ee

https://valchrom.ut.ee/#/

8

the data from the backend and renders it in a user-friendly manner. The frontend is in charge of

creating interfaces that mirror the analytical method validation processes and provides the desired

user experience.

This thesis is divided into five chapters. This introductory chapter is followed by chapter 2, which

provides some context and background about the problem domain. Its sections give an introduction

about chromatography – an analytical method and about analytical method validation. A review of

existing solutions for analytical method validation on the market is offered. The project’s

requirements and the technologies used are also discussed. Chapter 3 details the system design. It

describes the system’s architecture, its domain model and elaborates on the system’s resources.

Chapter 4 discusses the way the system has been packaged and shipped. An overview of testing

activities conducted during the project is given. We conclude this thesis in Chapter 5 and hint at

some possible improvements that can be made to the delivered system.

This software project was a joint work with Grace Achenyo Okolo, also a student in the Software

Engineering curriculum and Karl Kruuse, a software developer. Karl Kruuse handled the

implementation of the computation modules needed to compute the characteristics of the analytical

procedures. Grace Achenyo Okolo and I were respectively in charge of the frontend application

and the backend application. This thesis focuses on the implementation of the backend application

whilst Grace Achenyo Okolo’s focuses on the implementation of the frontend application.

Only Section 1 of this thesis was written jointly with Grace Achenyo Okolo. All the other sections

are individual work.

9

2. Background

This chapter starts with an introduction to the problem domain. It gives an overview of

chromatography as an analytical technique and of validation of an analytical method. It continues

with a review of existing software tools that are used to validate analytical methods. The chapter

ends with a specification of the system’s requirements and a discussion of the technologies used.

2.1. Chromatography

Chromatography is an analytical technique that makes it possible to separate compounds present

in a mixture from one another. Compounds can exist in liquid or gas phases and have different

affinities for other chemical particles. The technique leverages differences in partitioning behavior

of the compounds between two immiscible phases. The two phases are referred to as the mobile

phase and the stationary phase [1]. The mobile phase is liquid in the case of liquid chromatography,

and gas in the case of gas chromatography Compounds additionally have distinct physical

proprieties such as their solubility, boiling point, capability to absorb ultraviolet light that are also

involved in the chromatographic analysis process.

In practice, in a High-Performance Liquid Chromatography (HPLC) system, for example, a high-

pressure pump is used to generate a continuous flow of the mobile phase which is also known as

the eluent. A small amount of the mixture to be analyzed is then injected into the mobile phase

flow. The mobile phase flow subsequently carries the mixture into the chromatography column

where the separation of mixture components takes place. The chromatography column is a tube

which holds the stationary phase. The dimensions of the column namely the internal diameter and

the length can significantly impact the efficiency, sensitivity, and speed of the analysis. Often, the

choice of column dimensions is based on the chromatographic application and on the number of

compounds present in the mixture [2]. Commonly in liquid chromatography 5-25 cm long columns

with internal diameters in the range from 1-4.5 mm are used. The stationary phase consists of

porous spherical micro-particles of 2-5 μm in diameter [2]. Inside the chromatography column, the

respective affinities of the compounds under inspections for the particles present in the stationary

phase cause the respective compounds to elute at different points in time, ensuring their separation.

A detector spots the arrival of each compound against a background of the mobile phase as they

exit the column. The detector is connected to a computer system which interprets the arrival of a

new compound as an electrical signal. The intensity of the signal helps in determining the

concentration of the compound. A graph of the signal as a function of time is sketched by the

computer system. That graph is referred to as a chromatogram [3]. A chromatogram depicts peak

heights or areas plotting the concentration of the compound or analyte present in the mixture as a

function of time. The detector takes advantage of the analytes’ properties to ascertain their arrival.

Since those properties vary from one compound to the other often a combination of different types

of detectors is used [3]. The possibility of combining detectors lead to the appearance of the so-

called Liquid Chromatography Mass-Spectrometer LC/MS which couples a mass spectrometer to

a high-performance liquid chromatography system resulting in more extensive information about

a compound from one single injection. Figure 2-1 shows the components of a High-Performance

Liquid Chromatography system.

10

Figure 2-1 High-Performance Liquid Chromatography (HPLC) System

Waters (2018). High-Performance Liquid Chromatography [HPLC] System. [image] Available at:

http://www.waters.com/waters/en_MT/How-Does-High-Performance-Liquid-Comatography-

Work%3F/nav.htm?cid=10049055&locale=en_MT.

2.2. Validation of Analytical Procedure

The term “analytical procedure” refers to the step-by-step description of the necessary activities

that need to be carried out while performing an analysis [4]. It is assimilable to an algorithm of the

analysis.

The validation of an analytical procedure refers to the process used to demonstrate that the

analytical procedure is robust, appropriate and suitable for its intended purpose [5], [6]. The term

“analytical procedure” can be used interchangeably with “analytical method” [7].

Four most common types of analytical procedures can be distinguished [6]:

• Identification tests;

• Quantitative tests for impurities’ content;

• Limit tests for the control of impurities;

• Quantitative tests for the active moiety in samples of a drug substance or a drug

product or for other selected component(s) in the drug product.

The purpose of identification tests is to identify an analyte in a sample by examining a

characteristic of the sample against that of a recommended standard. Tests for impurities are

intended to exhibit the purity characteristics of a sample. Assay procedures’ goal is to quantify the

analyte present in a given sample [6].

11

During the validation of a given analytical procedure, a certain number of characteristics called

validation characteristics or validation parameters must be considered. These characteristics are

specificity, linearity, range, quantitation limit, detection limit, accuracy, precision, and robustness.

2.2.1. Specificity

An analytical method is said to be specific for a compound when the method can unequivocally

determine the compound in a sample without the interference of other components. Specificity is

confirmed when samples containing the analyte yield positive results and samples not containing

the analyte yield negative results [5]. Specificity is tightly linked to the primary goal of

chromatography which is the adequate separation of a given mixture [8]. Specificity is best

demonstrated by the resolution RS of two adjacent components appearing on a chromatogram. The

resolution is a measure of the quality of separations, it expresses to what extent the peak of an

analyte can be separated from that of an adjacent analyte.

2.2.2. Accuracy

The accuracy also termed trueness of an analytical method serves as the measure of the proximity

between the test results observed using the method and the true value. The true value is a generally

agreed upon authoritative value [6].

2.2.3. Precision

The precision of an analytical procedure indicates the degree of scatter between a set of

measurements collected from repeated use of the analytical procedure against multiple samplings

of the same sample under the recommended settings. Precision is often denoted as the standard

deviation or coefficient of variation of a statistically significant series of measurements [6]. Based

on the experimental conditions and environment we can distinguish:

• Repeatability – results obtained from the method while performing during a short time

interval under identical settings

• Intermediate precision – results from within-laboratories variations such as different

days, analysts, equipment

• Reproducibility – the result of collaborative studies between laboratories

2.2.4. Linearity

The linearity of an analytical method is the capability of the method to extract, within a given

range, test results that are in some way proportional to the concentration of analyte in a sample.

The linearity of an analytical method indicates to what extent a calibration curve representing the

signal as a function of the concentration of analyte satisfies a linear equation [1], [6].

2.2.5. Range

According to the ICH [6] guideline “the range of an analytical method is the closed interval

between the upper and lower concentration of analyte in a sample for which, it has been proven

that the analytical method has a suitable level of precision, accuracy, and linearity”.

2.2.6. Detection limit

The detection limit of an analytical procedure represents the smallest concentration of analyte in a

sample that can be reliably detected by the analytical procedure but not necessarily quantitated as

12

an exact value. It is defined as a peak whose signal is at least three times the noise registered by

the system [1], [6].

2.2.7. Quantitation limit

The quantitation limit of an analytical method represents the minimum concentration of compound

in a sample that can be gauged as an exact value by the analytical procedure with acceptable

precision and accuracy. Analogously to the detection limit, the quantitation limit is defined as a

peak whose signal is at least ten times the noise registered by the system [1], [6]

2.2.8. Robustness

The robustness of an analytical procedure indicates the degree of reliability of the procedure. It is

the ability of the analytical procedure to not be altered by small intended variations in method

parameters. Robustness can be used to establish system suitability parameters [6].

2.3. Existing Solutions

Analytical method validation is both a regulatory requirement and a scientific necessity. Therefore,

it must be completed with the utter-most rigor. In an effort to get rid of possible human errors that

can happen during the method validation process, a handful of software solutions that automate

the entire process have been implemented. Unfortunately, they usually do not come as standalone

solutions but rather as additional modules on top of a fully-fledged enterprise-wide software

system. It follows a steep cost of acquisition rising to EUR 100000 at time.

Empower 3 Method Validation Manager (MVM) is distributed as an option for Empower 3

Chromatography Data Software developed by Waters Corporation which also specializes in

laboratory equipment such as Ultra High-Performance Liquid Chromatography UHPLC

procurement. Empower MVM integrates nicely with the chromatography systems procured by

Waters Corporation and a few other vendors to directly fetch experiment data from the data station

thus eliminating one of the most error-prone steps in a typical manual validation process which is

data transfer to additional software applications. Empower MVM allows to automatically manage

the validation workflow, check the status of ongoing validation studies, perform statistical

calculations and generate validation reports. As a result, organizations implementing Empower

MVM can envision a reduction of up to 80% in time and cost pertaining to the validation process.

Moreover, the solution implements the latest regulations regarding data security [9].

Fusion Analytical Method Validation is part of the Fusion QbD Software Platform developed by

a company named S-Matrix. It is often used in combination with Fusion LC Method Development

which is a tool that is designed to assist analytical chemists in analytical method development.

While the association of these two software tools can be of tremendous help for an experienced

analytical chemist, it often is a source of confusion for much less experienced analytical chemists

and steepens their learning curve. Fusion Analytical Method Validation is referred to as “the

software that does it all” by its creators. It can be used to validate liquid chromatography methods

as well as gas chromatography methods. Fusion Analytical Method Validation can be integrated

with chromatographic data stations from multiple vendors including Agilent, Thermo, and Waters.

It provides ways to automate method validation experiments. It is statistically rigorous, supports

multiple analytes, creating complete reports for each. In addition, Fusion Analytical Method

Validation is fully compliant with validation guidelines from the United States’ Food and Drug

Administration (FDA) and the International Conference on Harmonization of Technical

13

Requirements for Registration of Pharmaceuticals for Human Use (ICH). The solution’s main

shortcoming is probably the fact that it is not available as a SaaS [10].

ValGenesis Validation Lifecycle Management System VLMS implemented by ValGenesis, Inc. is

a web-based solution that companies can leverage to effectively manage all types of validations

activities including analytical methods validation. The system is designed to get rid of the

inefficiencies found in manual validation lifecycle management. Analytical method lifecycle

management with ValGenesis VLMS is entirely automated. Like Fusion QbD Software Platform,

ValGenesis integrates analytical method development and validation in one system; providing the

ability to access data and documentation related to method development and validation in one

single repository [11].

Enoval from PharmaLex is a software that provides a means to validate physico-medical analytical

methods and generate matching validation reports. Enoval is fully compliant with validation

guidelines from the FDA, ICH, European Medicines Agency EMA and United States

Pharmacopeia USP. Enoval is a software as a service, therefore, users always get access to the

latest version with no extra update fees. Enoval is the existing software closest to the solution

implemented in the present thesis.

2.4. Scope and requirements

In a software development project, requirements analysis is the phase where stakeholders’ needs

are identified [12]. This is a critical step to ensure success in the development of the project since

it establishes clearly and unambiguously what is required, and what is expected as a deliverable at

the end. A series of five interviews conducted with analytical chemists from the University of

Tartu’s Chemistry Department namely Koit Herodes, head of the analytical chemistry testing

center and Asko Laaniste, chemist in chair of analytical chemistry allowed us to elicit the

envisioned system’s functional requirements and get a glimpse of its desired quality attributes.

The first interview focused on getting a general idea of analytical chemistry and method validation,

the way analytical method validation has been performed and the pain points that the system should

solve. The project’s deadline and success criteria were also discussed. It transpired from this first

interview that analytical method validation can be regarded as a three-step process namely the

planning step, the experiment step, and the reporting step. Each one of these steps have been

discussed in a separate interview. The last interview focused on user management in the system.

The planning step encompasses all activities that help in preparing the lab experiments. During

this step, ValChrom should provide means for the chemist to clearly document the analytical

method under validation. The compounds also known as analytes of interest in the analytical

method should be specified along with their targeted concentration and the units that will be used

for the measurements made during the experiments. The chemist also carefully selects the

guideline that the validation process will be based on. Several validation guidelines have been

defined and agreed upon by the scientific community to make analytical method validation a

systematic process. Each guideline recommends a set of methods to test the different validation

parameters. These methods are referred to as assessment methods and they come along with a set

of criteria that could be used to assert the validity of a given validation parameters. A validation

parameter is deemed valid when the experiment results satisfy the criteria. Guidelines usually

define default values for the criteria. Depending on the use case, the chemist can select a subset of

the recommended assessment methods that are more suitable for the analytical method and define

14

custom values for the criteria. The outcome of the planning step is an experimental plan that can

be downloaded as a PDF file. An experimental plan is a document that compiles the list of lab

experiments that need to be completed as part of the ongoing method validation process along with

instructions to be followed by the chemist while conducting the experiments. Figure 2-2 shows the

Business Process Model Notation (BPMN) diagram of the planning step.

Figure 2-2 BPMN Diagram - Planning Step

The experiment step includes performing lab experiments and evaluating the various validation

parameters. After conducting the experiments in a lab, the chemist is responsible for converting

the output of the lab equipment into a data format supported by ValChrom and upload it into the

system. ValChrom should ensure the validity of the uploaded data. Once the data is successfully

uploaded, ValChrom should proceed to evaluate the different validation characteristics. ValChrom

should provide analytical chemists the ability to perform method validation against three

international guidelines namely ICH[6], Eurachem[13] and EMA-BA[14]. As such the system

must implement all the assessment methods defined by each of these guidelines along with their

criteria assessment logic. Figure 2-3 displays the BPMN diagram of the experiment step.

In the reporting step, the output of the various lab experiments conducted during the method

validation process as well as the outcomes of the evaluation of the validation characteristics are

compiled in a report that can be downloaded as a PDF file. According to the audience targeted by

the report, it can have different levels of granularity. This behavior should be achieved by means

of report templates. ValChrom should provide by default two report templates and possibly allow

users to define their own. Figure 2-4 depicts the BPMN diagram of the reporting step.

15

Figure 2-3 BPMN Diagram - Experiment Step

Figure 2-4 BPMN Diagram - Reporting Step

Moreover, analytical methods are intellectual properties; therefore, they should be protected.

Ideally, ValChrom users should only have access to analytical methods that they own and possibly

those owned by their organization. For regulatory compliance purposes all data pertaining to

method validation procedures must be stored by ValChrom and no modification should be allowed

to them once the validation report has been generated.

In addition to its functional requirements, ValChrom is expected to provide its users a pleasant

experience. To achieve that goal, the system should be intuitive to use and allow analytical

chemists without prior experience with similar tools to seamlessly ramp up after two weeks of

16

utilization. The system should also be able, to provide an output for computations related to a

typical analytical procedure in less than two seconds with up to 200 concurrent users. The system

expected to have a 95% uptime.

2.5. Technologies Used

This section presents the technical details considered during the selection of the technology used

to implement the software tool and motivates the choice made.

A fundamental requirement of the system envisioned by the chemistry department is for it to be

web-based. It follows that the main technology to be used in the implementation of the software

tool will be a web development framework.

Our initial choice was Phoenix, a web development framework written in Elixir. Elixir is a general-

purpose functional programming language that runs on the Erlang virtual machine. This choice

was mainly motivated by the fact that all members of the team that will implement the software

tool were already familiar with the framework. Moreover, Phoenix offers some scaffolding

capabilities that will allow us to quickly bootstrap the project along with the RESTful API that

will expose the system’s resources to the outside world.

This initial choice has quickly been challenged by the fact that the system to be developed needs

to perform extensive mathematical and statistical computations and there was no mature

mathematical and statistical computation library available in Elixir. Provided that some chemists

from the chemistry department had already been using scripts written in R as part of their analytical

method validation processes, we considered implementing all the heavy mathematical and

statistical computations in R and use them within the Elixir based application through means of

interoperability. R is a programming language and environment specifically designed for statistical

computation and graphing. Interoperability refers to the ability of distinct programming languages

to natively pass messages and data with one another as part of the same system [15].

While the Erlang virtual machine on which runs the Elixir programming language offers several

means to achieve interoperability with external programs, this adds an extra layer of complexity

to the project. Also maintaining and context-switching between multiple programming languages

can affect the team’s productivity and hinder the project’s success. All these reasons made us

consider another web development framework.

Django is a web development framework written in Python. Python is an interpreted, general-

purpose programming language. It is a versatile programming language due to its multi-paradigm

characteristic. Python supports procedural, imperative, reflexive, object-oriented and functional

programming. Python’s strength lies in its comprehensive standard library and its extensive list of

community-contributed modules.

Python is one of the most widely used programming language for data science [16] giving us the

confidence that it can handle all our computational needs. Python’s community-contributed

modules NumPy and SciPy constitute the ideal combination to perform scientific computation.

NumPy augments the Python programming language with powerful data structures that allow

efficient computation of multi-dimensional arrays and matrices whilst SciPy supplies a large

library of high-level mathematical functions to operate on these matrices and arrays.

17

Django was created in 2003 by web programmers at the Lawrence Journal-World newspaper2 and

publicly released in 2005. The framework which is currently in version 2.2.2 fits perfectly into the

Python ecosystem since it comes like any other Python package and does not require any specific

setup apart from a Python virtual environment. Django facilitates the creation of web applications

by allowing components reusability and pluggability. Developers can easily reuse components

from previous Django projects in their new project. They can implement common web

development functionalities such as user authentication and authorization simply by plugging

some existing libraries into their project and tailor the necessary parameters to their needs. The

framework is also backed up by an impressive community making it easy to find help regarding

technical issues. The framework implements the Model View Controller architecture and embeds

an Object-Relational Mapper (ORM) that maps Python objects referred to as models into relational

database tables.

Python’s computational capabilities and Django’s web development features satisfy all our

programming needs.

2 https://en.wikipedia.org/wiki/Lawrence_Journal-World

https://en.wikipedia.org/wiki/Lawrence_Journal-World

18

3. Solution

This chapter outlines the main lines of the software solution. It starts with a description of the

architecture of the system along with its different components. A presentation of the domain model

and the resource API follows. The chapter finishes with an overview of the system’s controllers.

3.1. Architecture of the overall system

According to ISO/IEC/IEEE 42010:2011(en) Systems and software engineering — Architecture

description[17], a system’s architecture defines its “fundamental concepts or properties in its

environment embodied in its elements, relationships, and in the principles of its design and

evolution”. The software solution implemented in this thesis is related to the field of analytical

chemistry. This is a field about which none of the developers had prior knowledge.

Misunderstanding the system requirements or making wrong assumptions about them was a major

risk. To mitigate this risk, the team decided to follow an agile software development methodology

with short sprints of one-week duration. This gives us the opportunity to weekly sync up with chemists

and get their feedback on the current state of the system. Our overall system architecture benefited

tremendously from that rapid feedback cycle as it gets amended according to the outcome of those

weekly meetings.

The core of the system followed Django’s MVC pattern. Requests for resources go through

Django’s router that directs them to the relevant controller. The controller processes the requests

and returns the appropriate response. Request processing at the controller level generally involves

performing some business logic. In case of complex business logic like executing the mathematical

and statistical computations or generating the analytical method validation report PDF file, the

controller delegates to a service or a helper module. The controller also delegates the serialization

of results to a serializer module and eventually returns the serialized data. Serialization is the

process of converting data into a format that can be transmitted over a network. The model holds

a representation of a domain concept. It handles all interactions with the database. It also

implements some domain-specific business logic such as the rounding of computation results to a

given number of significant digits.

Besides catering for the system’s functional requirements, our architecture must also make sure

that the system produces an output for a typical analytical procedure within two seconds as

specified in the system’s requirements in Section 2.4.

During analytical method validation, multiple mathematical computations are executed. Upon

integration of the first computation functions, a certain latency has been noticed in the system’s

response time when running computation for given analytical method validation. The observed

latency continued growing as new computation functions were being implemented. Investigations

revealed that many database operations were being performed to gather the data required. To

alleviate the load from the database, the queries have been optimized and a caching service that

would hold the most up to date version of the data added.

While the caching service considerably improved the performance, its effect could only be noticed

at the second request for the resource. It turned out that the initial design of the system led to an

execution of all computation related to a given analytical method validation at once. Moreover,

the execution was synchronous. A modification has been introduced in the design to allow

individual execution of computation functions and the possibility to run them in background. A

queuing system has also been added to account for high traffic periods.

19

Method validation deals with sensitive data that can either be proprietary or essential to regulatory

compliance. Most of the existing analytical method validation solution only offer locally installed

instances giving users total control over their data. Since our system is web-based with a

centralized database, users have to entrust us with their data. Therefore, there is a need to ensure

that their data is available to them at all time, especially in the case of a technical outage on our

side. A scheduler service has been added to perform daily database backups. The backups are

saved locally, and a copy pushed to remote storage.

In addition to addressing current system requirements and technical challenges that they spawn;

the system’s architecture should also prepare the system to handle future increase in the number

of users. In that regard, a reverse proxy service has been set up. The reverse proxy works as an

intermediary between the system and the outside world. When the need would arise, many

instances of the system could be spawned, and the reverse proxy could be used as a load balancer

to distribute incoming traffic across the various instances of the system to provide high availability.

The reverse proxy could also serve a security purpose. It would help the system being less

vulnerable to attacks from the internet by dropping suspicious requests. Another advantage of the

reverse proxy is the fact that it would ensure that maintenance activities completed on the system

are transparent to end users.

Figure 3-1 shows the overall architecture of the system.

Figure 3-1 System Overall Architecture

During the review of existing software used for analytical procedure validation, one of the

shortcomings that have been uncovered is their complexity. This complexity due to their

association with other tools as mentioned in Section 2.3 is an important usability issue. ValChrom

sets to solve this issue by designing a system that has a straightforward workflow while still

embodies the highest scientific rigor. In ValChrom an analytical method validation process starts

with the creation of an analytical method and a validation plan template. The analytical method

and a validation plan template will in the next step be combined into an experiment plan that the

chemist can follow in the laboratory. After completing the experiments in the laboratory, the raw

output of the experiments will be saved in a new dataset. This data will serve as input for the

computational module. The output of the computations will also be saved in the same dataset. The

20

dataset can be compiled into a report based on a report template after it is evaluated. Figure 3-2

presents the application’s general workflow.

Figure 3-2 Flowchart of the validation process using ValChrom

3.2. Data formats and domain model

The first challenge encountered at the beginning of the project was to come up with a domain

model that accurately captures the problem domain. The series of interviews conducted with

analytical chemists and the review of existing tools satisfying similar requirements have been a

good starting point. The main difficulty was in the definition of a ubiquitous language that could

be easily understood by both the developers and the chemists. Thus, the following terms and

meanings associated with them have been agreed upon.

− Analytical Method: the analytical procedure that is subject to validation.

− Analyte: a compound of interest in the analytical method

− Guideline: an official analytical procedure validation guideline [6], [13]

− Validation plan template: a materialized form of a guideline. Guidelines define a range of

assessment methods that chemists can choose from to test validation parameters. A validation plan

template specifies the very assessment methods and criteria that will be used during an analytical

method validation process.

− Experiment plan: a compilation of laboratory experiments to be performed as part of an

analytical procedure validation based on a given validation plan template.

− Experiment data: properties of analytes measured during laboratory experiments or

computed by the system’s computational module (target concentration, residual …)

− Experiment data value: the value of an experiment data

− Dataset: the collection of experiment data and experiment data value for a given analytical

procedure validation process.

21

− Report template: a pattern that the analytical procedure validation report will follow.

− Report: compilation of the evaluations of the various validation parameters along with the

dataset used to perform them. The report can also contain remarks or interpretations of the chemist

on the evaluations.

− Series: a set of laboratory measurements done at once without interruptions.

− Levels: samples with intentionally different concentration level within a series

− Parallels: samples with intentionally same concentration level within a series

− Replicates: different measurements of one sample within a series

We equally convene on the naming style for experiment data within the system and the format to

use for uploading laboratory analysis output into the system. ValChrom would expect the

laboratory measurements to be provided as Comma Separated Values (CSV) with experiment data

as headers. A row in the CSV would correspond to a measurement of one sample for one analyte.

It follows that information regarding the corresponding analyte, series, level, and parallel must be

added to the given row. The CSV format has been chosen because it can be used with any text

editor or spreadsheet software and does require any technical knowledge. Figure 3-3 shows an

excerpt of a laboratory experiment output formatted as expected by ValChrom.

Figure 3-3 Example CSV File

One of the keys to a successful product development endeavor is the establishment of a business

model that clearly identifies the product’s users and customers, states how the product will bring

value to them and finally pinpoints the way to target them and convey information about the

product to them. Often, users are customers. Users are people or systems that interact with the

product whilst customers are those paying for the product. In ValChrom’s case, users are analytical

chemists and customers are the laboratories the analytical chemists work for. ValChrom’s

marketing strategy is to design a product targeted at analytical chemists, offering them the best

possible user experience and rely on them to recommend the product to their laboratories which

will get a subscription. This translated into the prioritization of the features to implement during

this thesis. The current version of the system could be considered as a Minimum Viable Product

MVP. Figure 3-4 shows the domain model of the MVP. The concept of organization or laboratory

is not included in this model. It will be part of a future update to the system.

22

Figure 3-4 Domain Model

3.3. REST API

This section documents the Application Programming Interface (API) designed to expose the

system's resources to the outside world. The frontend application communicates with the backend

through this API. The section is organized in tables that summarize the list operations supported

by each resource.

An analysis of the relationship between the different concepts present in our domain helped in

aggregating them and subsequently derive the REST API from those aggregates. As an example,

an analyte only exists in the context of an analytical method, therefore, it makes sense to aggregate

these two concepts. The analytical method class will be the aggregate root since an analytical

method object is required in order to access an analyte object. A similar conclusion can be inferred

about guidelines, assessment methods and criteria. In fact, criteria only make sense in the context

of an assessment method and an assessment method in turn only exists as part of a guideline. The

other roots identified are validation plan templates, experimental plans, experiment datasets,

experiment data, reports and users.

The “/datasets/:id/assessments/:aid/output” endpoint listed in Section 3.3.6 is

responsible for triggering the calculations for the assessment method identified by “aid” within the dataset

identified by “id”.

23

3.3.1. Analytical Methods

Method URI Template Relation Current

State

New

State

Comments

POST /methods create
Creates a new analytical

method

GET /methods get_all

Retrieves all analytical

methods created by the

authenticated user

GET /methods/:id get

Retrieves a specific

analytical method created by

the authenticated user

PUT|PATCH /methods/:id update

Updates a specific analytical

method created by the

authenticated user

PUT|PATCH /methods/:id/archive archive active archived
Archives an analytical

method

POST /methods/:id/duplicate duplicate
Creates a new analytical

method from the current

Analyte

GET /methods/:id/analytes analytes
Retrieves the list of analytes

linked to a specific

analytical method

3.3.2. Assessment Methods

Method URI template Relation
Current

state

New

state
Comments

POST /assessments create Creates a new assessment method

GET /assessments get_all Retrieves all assessment methods

GET /assessments/:id get
Retrieves a specific assessment

method

PUT /assessments/:id update
Updates a specific assessment

method

Criteria

GET /assessments/:id/criteria criteria

Retrieves the list of criteria

associated with a specific

assessment method

24

3.3.3. Guideline

Method URI Template Relation
Current

State

New

State
Comments

POST /guidelines create Creates a new guideline

GET /guidelines get_all Retrieves all guidelines

GET /guidelines/:id get
Retrieves a specific

guideline

PUT|PATCH /guidelines/:id update
Updates a specific

guideline

GET /guidelines/:id/assessments assessments Retrieves the list of

criteria associated with

a specific assessment

method

3.3.4. Validation plan templates

Method URI template Relation
Current

state
New

state
Comments

POST /templates create
Creates a new

validation template

GET /templates get_all

Retrieves all

validation templates

created by the

authenticated user

GET /templates/:id get

Retrieves a specific

validation template

created by the

authenticated user

PUT|PATCH /templates/:id update

Updates a specific

validation template

created by the

authenticated user

PUT|PATCH /templates/:id/archive archive active archived
Archives an

validation plan

template

GET /templates/:id/guideline guideline
Retrieves the

guideline that a

specific validation

25

plan template is

based upon

GET /templates/:id/assessments assessments

Retrieves the list of

assessment methods

associated with a

specific validation

plan template

GET /templates/:id/criteria criteria

Retrieves the list of

criteria

associated with a

specific validation

plan template

3.3.5. Experiment plan

Method URI template Relation
Current

state
New

state
Comments

POST /plans create Creates a new experiment plan

GET /plans get_all
Retrieves all experiment plans

created by the authenticated user

GET /plans/:id get

Retrieves a specific experiment

plan created by the authenticated

user

PUT|PATCH /plans/:id update

Updates a specific experiment

plan created by the authenticated

user

PUT|PATCH /plans/:id/archive archive active archived Archives an experiment plan

GET /plans/:id/template template

Retrieves the validation plan

template associated with a

specific experiment plan

GET /plans/:id/method method
Retrieves the analytical method

associated to a specific

experiment plan

3.3.6. Experimental datasets

Method URI Template Relation
Current

State

New

State
Comments

POST /datasets create
Creates a new

dataset

26

GET /datasets get_all
Retrieves all

datasets

GET /datasets/:id get
Retrieves a

specific dataset

PUT|PATCH /datasets/:id archive active archived
Archives a

specific dataset

POST /datasets/:id/duplicate duplicate

GET /datasets/:id/template template

Retrieves the

validation plan

template

associated with

the dataset

GET /datasets/:id/method method

Retrieves the

analytical

method

associated with

the dataset

GET /datasets/:id/analytes analytes

Retrieves the

analytes

associated with

the dataset

GET /datasets/:id/result result

Retrieves the

output of the

mathematical

computation

POST /datasets/:id/assessments/:aid/input post

Uploads input

data for a

specific

assessment

method within a

dataset

GET /datasets/:id/assessments/:aid/input get

Retrieves input

data for a

specific

assessment

method within a

specific dataset

POST /datasets/:id/assessments/:id/output post Starts

mathematical

computation for

27

a specific

assessment

method within a

dataset

3.3.7. Experiment Data

Method
URI

template
Relation

Current

state
New

state
Comments

POST /data create Creates a new experiment data

GET /data get_all Retrieves all experiment data

GET /data/:id get Retrieves an experiment data

PUT|PATCH /data/:id update Updates an experiment data

DELETE /data/:id delete Deletes an experiment data

3.3.8. Experiment Data Value

Method URI template Relation Current state New state Comments

POST /data-values create Creates a new data value

PUT|PATCH /data-values/:id update Updates a data value

3.3.9. Report templates

Method URI template Relation
Current

state
New

state
Comments

POST /report-templates
create

Creates a new report

template

GET /report-templates
get_all

Retrieves all report

templates

GET /report-

templates/:id
get Retrieves a report template

PUT|PATCH /report-

templates/:id
update Updates a report template

3.3.10. Reports

Method URI template Relation Current state New state Comments

28

POST /reports create Creates a new report

GET /reports get_all Retrieves all reports

GET /reports/:id get Retrieves a report

PUT|PATCH /reports/:id update Updates a report

PUT|PATCH /reports/:id/archive archive active archive Archives a report

POST /reports/:id/duplicate

3.3.11. Users

Method URI template Relation Current state New state Comments

POST /users create Creates a new user

GET /users get_all Retrieves all users

GET /users/:id get Retrieves a user

PUT|PATCH /users/:id update Updates a user

DELETE /users/:id delete Deletes a user

3.3.12. Accounts

Method URI template Relation
Current

state
New

state
Comments

POST /accounts/signup signup
Creates a new

user

POST /accounts/login login Logs a user in

POST /accounts/logout logout
Logs a user

out

POST /account/password/change change_password
Updates

password

POST /accounts/password/reset reset_password
Resets

password

POST /accounts/password/reset/confirmation confirm_reset

Confirms a

password

reset action

29

GET /accounts/user current_user

Retrieves the

authenticated

user

PATCH /accounts/user update_user

Updates

details of the

authenticated

user

3.3.13. Token

Method URI template Relation
Current

state
New

state
Comments

POST /token/refresh refresh
Refreshes the token of the

authenticated user

POST /token/verify verify
Verifies the authenticity of a given

token

3.4. Controllers and Resource Objects

Several classes have been derived from the domain model. Each one of those classes has a

controller associated with it. Most of the controllers perform Create Read Update and Delete

(CRUD) operations. Some of them handle more advanced business logic. The controllers rely on

serializers to translate the python objects into resources.

We can distinguish two types of resources in the system. On one hand, we have system owned

resources that cannot be modified by users and user-owned resources on the other. System owned

resources include guidelines, assessment methods, criteria, and experiment data. User-owned

resources are analytical methods, validation plan templates, experiment plans, datasets, report

templates, and reports.

In the context of the problem domain, user-owned resources are referred to as elements. An

important requirement of the system demands that users only have access to elements that they

created. A custom filter has been implemented to remove all objects not related to the currently

authenticated user from the result of a database query before passing it down for serialization and

returning it to the user. All controllers based on elements implement this filter.

Elements are generally connected to some others downstream and their lifecycle is dependent on

that of the downstream one. As an example, a report is based on a report template, therefore, a

report constitutes a downstream element for a report template. Elements can be in four different

states. A newly created element is in the “In Progress” state. From that state, it can transition to

“Archived” state or “Completed” state. Due to traceability and auditability needs, elements

deletion is not allowed in the system. The “Archived” state is assimilable to a deletion in the

problem domain. The “Completed” state means that the element can be used during the creation

of a downstream element. On creation of a downstream element, the current element moves to the

“Locked” state. A “Locked” state conveys the message that the element has other elements that

depend on it, therefore they can no longer be edited. The element comes back to the “Completed”

30

state when all connected downstream elements are archived. Figure 3-5 displays elements’ state

diagram.

Figure 3-5 Element State Transition

The report element has a specific lifecycle. A report is never “Locked” since there is no other

element that depends on it. Figure 3-6 displays a report’s state diagram.

Controllers based on elements handle state transition. Each of those controllers implements an

archive action that takes the element from its current state to the “Archived” state or returns an

error when it’s not possible. They also implement an update action which can be used to transition

between “In Progress” and “Completed” and a duplicate action that creates a new resource using

the current one as a template.

Changes are not allowed on system owned resources. The principal constituents of a guideline are

assessment methods which in turn are associated with multiple criteria. Criteria cannot exist on

their own, therefore a change to a criterion would imply a change to the related assessment method,

which would also imply a change to the guideline. The cascading effect will de facto affect the

validation plan template and ultimately the entire analytical method validation process. Only a

system administrator can make changes to system owned resources. Controllers associated with

system owned resources are set up in a way that any changes on them would result in the creation

of a new version of the guideline they are linked to. This ensures a deterministic outcome of the

analytical method validation process provided that the output of laboratory experiments has not

changed.

31

Figure 3-6 Validation Report State Transition

A dedicated controller handles the upload of laboratory experiments output into the system. The

data is uploaded by assessment method. The data is expected to be in a CSV format. For each

assessment method, a set of constraints is defined for the expected data. The uploaded data must

meet each one of the constraints so that the computational function associated with the assessment

method executes properly. The constraints are generally about the number of measurements, that

is the number of series, levels, and parallels present in the data set. The controller ensures that all

the constraints are met before extracting each data point in the CSV file into an experiment data

value object. All the data values extracted from the file are saved in bulk in the database and the

cache for a successful upload. When some data has been previously uploaded for a given

assessment method, a new upload overwrites the previous data. In some limited cases, graphs –

chromatograms, in a PNG format or a JPG format would be uploaded. The controller ensures that

the assessment method that the data is being uploaded for expects a graph and only graphs with

the expected file extension are accepted. Multiple chromatograms can be uploaded simultaneously.

The controller in charge of uploading data into the system provides an additional function to

retrieve data linked to a given assessment method. The data is arranged and serialized in a way

that it could be easily rendered in a tabular manner in the frontend. It is assumed that most users

would use spreadsheet software to compile the laboratory experiment output in the format expected

by ValChrom. Rendering the data in a tabular way in the frontend would give them a similar look

and feel as in the spreadsheet software.

To finish a result controller has been designed to handle the execution of computational functions.

This controller should ideally process requests asynchronously in the background and saves the

results of the computations both in the database and in the cache. In the system’s intended normal

workflow, a request should be sent to this controller after every successful data upload. This

ensures that no waiting time is experienced when users want to check the overall result of the

analytical method validation. It also makes it easy to have access to intermediate results after each

upload.

32

4. Packaging and Testing

This chapter gives an account of the technologies used and activities performed to continuously

verify and ship the system under development. The chapter starts with an introduction to the

containerization technology followed by a detail of the steps taken to leverage it to package the

application. The chapter continues with a presentation of the continuous integration pipeline that

supported the software development process. The chapter ends with a description of the testing

activities completed during the project.

4.1. Containerization

In 2008 some engineers from Google submitted a patch to the Linux kernel. The patch named

cgroups[18] – control groups introduced into the Linux kernel features like the aggregation and

isolation of a group of processes, the measurement of their resource utilization and the limitation

of their resource usage. These features will later be leveraged to develop containerization.

Containerization is a software packaging system that bundles the software source code together

with all its dependencies required for it to run. The dependencies include libraries, executables and

configuration files. The resulting bundle referred to as a container can run consistently on any

infrastructure. Containers are now used as an alternative to virtual machines. Unlike virtual

machines, containers do not embed a copy of the operating system. A container runtime engine

ensures that all containers running on a host machine share the same operating system.

Containerization is achieved in a three-step process. It starts with a manifest that describes the state

of the container. The manifest is used to generate a snapshot also known as an image of the

container. Finally, the container runtime engine produces the actual container from the image.

The adoption of the containerization technology has been accelerated by the advent of the open

source container runtime engine Docker. Docker rapidly became the industry’s standard for

containers thanks to its ubiquitous concept of packaging and its simple developer tools like Docker

Compose. Docker Compose or simply Compose is a tool offered by Docker to define and run

Docker applications with multiple containers. It helps to manage the complexity inherent in

orchestrating a multi-container environment. Using Compose, one can spin up an entire

environment with a single command.

In the Docker terminology, the manifest is called Dockerfile and the container image a Docker

image. A Dockerfile has been put together for each one of the services and components in the

overall architecture.

Figure 4-1 shows the Dockerfile of the core system – the Django application. The system is built

for Python 3. The first line of the Dockerfile declares a Python 3.7.1 official docker image as the

base image that will be used to build our system’s image. The Python 3.7.1 official docker image

provides a Python 3 environment setup on a Linux Ubuntu operating system, relieving us from

installing Python. The Dockerfile continues with the creation of an app directory to which the

requirements file of the system is copied. This directory is the working directory where our

system’s source code will reside. In a Python project, the requirements file contains all the

packages used. The next instruction installs the database client needed by the Linux operating

system to connect to an external database. All the dependencies of the system are then installed,

and the source code of the project copied to the working. The last instruction in Dockerfile ensures

that the wait-for-it.sh file is executable. wait-for-it.sh is a script that halts the execution of a

33

program until a dependent service is ready to receive connection. The Django application depends

on a database service, a cache service, and a queuing service. The wait-for-it.sh script will ensure

that all those services are available and ready before our system is launched.

Figure 4-1 Django Application Dockerfile

Figure 4-2 displays the Dockerfile of the database. The setup here is straightforward. The

Dockerfile is based on the official docker image of the latest version of PostgreSQL. The

PostgreSQL official docker image provides a PostgreSQL database installed on a Linux Ubuntu

operating system. A database initialization script is copied to the appropriate directory and

configured to be an executable file.

Figure 4-2 Database Dockerfile

The database initialization starts by creating a new database user and a new database belonging to

that user. It then populates the newly created database with the latest database backup available.

The database initialization script can be seen in Figure 4-3.

Figure 4-3 Database Initialization Script

Figure 4-4 shows the Dockerfile of the cache service. It builds an image based on a Redis official

docker image. The redis:4-alpine provides a Redis 4 cache server installed on a Linux Alpine

operating system. A Redis configuration file redis.conf is copied to the relevant directory and the

image is instructed to start the redis-server using the configuration file provided on startup of a

new container. The configuration file allocates a 3 Gigabytes memory space to the cache and

34

defines an LRU replacement policy for the cache. LRU stands for Least Recently Used. It’s a cache

replacement policy that discards the least recently used item of the cache when it hits its memory

limit. Figure 4-5 presents the cache configuration file

Figure 4-4 Cache Dockerfile

Like the cache service’s Dockerfile, the reverse proxy’s Dockerfile builds an image based on an

Nginx web server official docker image and supplies the configuration file nginx.conf to be used

by the server. nginx:1.15.6-alpine provide the version 1.15.6 of Nginx web server installed on a

Linux Alpine operating system. The configuration file overwrites the default Nginx configuration.

Figure 4-6 Reverse Proxy Dockerfile

The Nginx server is configured to intercept client requests and forward them to the right system

server. First, the intercepted requests are enriched with request forwarding HTTP headers namely

the X-Forwarded-For, X-Forwarded-Host, and X-Forwarded-Proto that allow to respectively keep

details about the client that submitted the request, the host initially targeted by the request and the

protocol used between the client and the reverse proxy. Any request that is received on the reverse

proxy’s port 80 is systematically redirected to the secured port 443. The reverse proxy uses a

regular expression (Regex) based Unified Resource Locator (URL) dispatcher to dispatch requests

to the suitable host. It’s worth noting that the client-facing application of our system will also be

hidden behind the reverse proxy. Figure 4-7 displays the configuration of the reverse proxy

The docker-compose file produced in Appendix B orchestrates our system’s entire infrastructure.

It encompasses eight services. Three more services are present in addition to those mentioned

above. The broker service sets up a RabbitMQ instance. RabbitMQ is a message-queueing system

referred to as a message broker that holds a queue onto which a producer transfers a message that

will afterward be taken off by a consumer. The messages are generally tasks to be executed.

Figure 4-5 Cache Configuration File

35

Figure 4-7 Reverse Proxy Configuration

36

The Django application plays the role of the producer in the case of requests destined to the result

controller and the worker service that of the consumer. In the case of daily database backups, the

beat service acts as the producer which periodically kicks off the database backup task that will be

eventually picked up and processed by the consumer, the worker service.

4.2. Continuous Integration

At the beginning of the project, the team made the choice to apply a Continuous Integration (CI)

development approach. In a CI development approach, all features are merged regularly into a

mainline and a feature is considered done when the mainline remains healthy after the feature has

been merged. The healthiness of the mainline is verified through the execution of a comprehensive

list of deterministic tests. These tests are executed in an environment that is as close as possible to

the production environment in which the system will ultimately be deployed. Thus, CI generally

requires us to package, build and deploy the whole system in a testing environment. The team

agreed upon a workflow that prevents any developer to directly push code to the master branch,

the master branch acting as our mainline. At any point in time, the master branch contains the

version of the application ready to be deployed. As part of the agreed-upon workflow, all new

feature branch stems from the master branch. Once the implementation of the feature is completed,

the developer creates a pull request targeting the master branch. The developer can then ask for a

code review from team members once the CI pipeline executed successfully. The feature is merged

into the master branch when at least one positive review has been received.

In this project, the CI setup is powered by Bitbucket Pipelines, Bitbucket’s built-in Continuous

Integration/Continuous Delivery (CI/CD) service. Bitbucket pipelines are defined in YAML.

Figure 4-8 displays our CI setup. The setup starts with the definition of the steps and services that

will be needed. Each step has a YAML anchor defined on it allowing us to reference it later in

multiple pipelines. The build-test step takes care of setting up the python environment where the

system will be executed, starts the application and finally executes the API tests designed with

Katalon Studio. The package step performs the necessary tasks in relation to packaging the

application into a Docker image and making it available on the container registry. The system

requires a database and a cache service to run properly. The service named db sets up a PostgreSQL

database and the one named redis spawns a Redis cache server. The CI setup also encompasses

two distinct pipelines. One that runs whenever a new pull request is created. That pipeline only

executes the build-test step to ensure that the feature branch can be safely merged into the master

branch. The second pipeline runs whenever the master branch is modified. This pipeline is

triggered after the feature branch is merged into the master branch. Both build-test and package

steps are performed. When this pipeline runs successfully a new Docker image containing the

latest version of the system is pushed to docker hub. The two pipelines execute in a Docker

container created from the Katalon Studio official docker image. The Katalon Studio official

docker image embeds a Katalon Studio installation within a Linux Ubuntu environment.

37

Figure 4-8 bitbucket-pipelines.yml

4.3. Testing

Testing is the process of assessing a system or its components’ conformance to the specified

requirements. It is the process to determine whether the right system is being built and it’s being built

in the right way.

Testing is usually delayed until all development is done. This approach turned out to be high-risk for

software development projects. Defects found at that stage are expensive to fix and make projects run

behind schedule. Thus, a new approach to testing has been introduced. In many organizations, today

testing activities start as early as possible in the development process.

In this project, testing activities were conducted side by side with development activities. Testing

efforts focused on ensuring that the REST API that will expose system resources to the outside

world works as expected, that is, it returns the data that is expected along with the right status code

and it performs actions that it is intended to perform. Katalon Studio3 was used to perform the API

Testing. Built on top of the open-source automation frameworks Selenium and Appium, Katalon

Studio is an automation testing solution for API, Web, and Mobile testing. It is mostly used to

3 https://www.katalon.com/

https://www.katalon.com/

38

record interaction with web applications in the browser and replay them to perform automated

User Interface (UI) testing.

Katalon Studio not only provides means to send HTTP requests to the system but also to retrieve

the responses of the requests, extract data from them using json-path and run assertions against the

data to ensure that the API works as expected. For instance, to test the endpoint

“/api/v1/experiment/methods/:id” that returns the details of a specific analytical method,

it can be checked that the response status code is indeed 200 – the HTTP response code for a

successful GET request. The response to this request is expected to contain a list of analytes. The

presence of that list can be verified, and assertions can be made on its size as well. Each endpoint

can be tested atomically or for CRUD like endpoints, they can be chained. When chained, one can

still run verification and assertion on each individual HTTP request. Information from previous

requests can also be retrieved and passed down to the following ones in the chain. This is a good

way to test how a given resource is affected by a sequence of API calls. The endpoint tests can be

grouped into test cases or test suites based on the behaviors under test. Since most of the endpoints

require authentication, the capabilities of Katalon Studio API testing have been leveraged to

organize the tests in a way that initially creates a new user, then authenticates that user and retrieves

and saves its authentication token into a global variable and finally use that variable to enrich

subsequent requests. All this can conveniently be achieved from the comfort of the Graphical User

Interface (GUI). Katalon studio converts the actions performed on the GUI into Groovy code

behind the scenes. For fine-grained control over the tests, one can even directly modify the

Groovy4 code.

Katalon Studio also offers a nice feature that helps generate a command that can be used from a

terminal to launch a given test case or test suite. This makes it easy to execute Katalon Studio tests

as part of an automated system like a continuous integration pipeline.

Tests performed using Katalon Studio were limited to the functional aspect of the system. As such,

CRUD operations on all the resources were tested. Access restrictions on analytical methods were

also tested. That is, checking that a new user doesn’t have access to existing analytical methods,

but only has access to the new one that he/she creates. Status changes related to elements’ lifecycle

were extensively tested especially in cases where they are linked to a downstream element. A

typical scenario was to verify that the status of an analytical method changes from “Completed”

to “Locked” when it is used during the creation of a new experimental plan and that the status is

reverted to “Completed” when the experimental plan is deleted. Tests were also performed to

ensure that data upload errors were correctly reported. Upload of graphs and CSV files were

equally tested.

Apart from the API level tests conducted with Katalon Studio, a lot end to end manual testing was

performed. The goal of these manual tests was to assert the output generated by the system for

individual validation parameters. When the implementation of a given method validation guideline

was completed end to end manual tests were also conducted to assert the output of the system

when the validation parameters are checked altogether.

No performance nor load testing has been conducted, therefore, the requirement stating that the

system should be able to provide an output for computations related to a typical analytical

procedure in less than two seconds with up to 200 concurrent users has not been validated.

4 https://groovy-lang.org/

https://groovy-lang.org/

39

Conducting load tests and configuring the platform to meet the requirement mentioned above is a

direction for future work. The reverse proxy integrated into ValChrom’s architecture already

provides a starting point to scale up the system in order to meet this requirement, but refinements

to the system might still be required. Also, some additional infrastructure management

functionality is likely to be required in order to execute ValChrom on a cluster of servers in order

to cater for 200 concurrent users.

40

5. Conclusion and Future Work

At the end of this thesis, we have successfully delivered a working system. The delivered system

can take its users through the entire analytical method validation process starting from the

validation planning phase to the validation report phase. Even though in its current state, the system

offers only one report template, it allows its users to perform method validation against three

official guidelines namely ICH, Eurachem and EMA BA and a fourth one which is a combination

of the previous three. The system has been presented at the Eurachem conference held in Tartu

from 20th – 24th of May 2019 and received positive feedback from the participants. Eurachem is

an organization that develops guidance documents for various aspects of analytical chemistry,

including analytical method validation. Currently the system is being beta tested by fifteen expert

users which were able to use it just after a twenty-minute tutorial.

The version of ValChrom resulting from this thesis represents a huge improvement to the initial

manual method validation process. It nevertheless introduces some potentially erroneous activities

into the process namely the collection and formatting of experiments results from lab equipment.

Our investigation at the beginning of the project revealed that each equipment provider has its own

output data format. A possible improvement to the current version of ValChrom would be the

implementation of a module that will be able to directly ingest output generated by the most

popular lab equipment. The ability to automatically convert the output of lab equipment into the

format expected by ValChrom will make the validation process even more accurate.

Report templates currently are written as Django templates and require a comprehensive

understanding of the API. Django templates are essentially HTML code augmented with Python

code. The typical analytical chemist will experience difficulties in creating a customized report

template. A less technical way to create report templates could be investigated.

Another potential point of improvement is the automation of the deployment of the system. In the

current setting, when a new feature is implemented on the system, the CI pipeline simply bundles

the new application into a Docker image and pushes it to the container registry. At that point,

human intervention is required to stop all the services on the Virtual Private Server (VPS) and

restart them by applying the docker-compose file. A possible solution would be to connect to the

VPS through a Secure Shell (SSH) tunnel from within the CI pipeline and apply the docker-

compose file.

Furthermore, it will be necessary to conduct load testing and to refine the system in order to meet

the requirement of being able to provide a response in less than two seconds even with 200

concurrent users.

41

References

[1] L. R. Snyder, J. J. Kirkland, and J. L. Glajch, Practical HPLC Method Development. John Wiley &

Sons, 2012.

[2] “HPLC Column Dimensions.” [Online]. Available:

https://www.chromacademy.com/chromatography-HPLC-Column-Dimensions.html. [Accessed: 16-

Dec-2018].

[3] “How Does High Performance Liquid Chromatography Work? : Waters.” [Online]. Available:

http://www.waters.com/waters/en_MT/How-Does-High-Performance-Liquid-Chromatography-

Work%3F/nav.htm?cid=10049055&locale=en_MT. [Accessed: 16-Dec-2018].

[4] R. Kadis, “Analytical procedure in terms of measurement (quality) assurance,” in Measurement

Uncertainty in Chemical Analysis, P. De Bièvre and H. Günzler, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2003, pp. 1–7.

[5] C. C. Chan, Y. C. Lee, H. Lam, and X.-M. Zhang, Analytical Method Validation and Instrument

Performance Verification. John Wiley & Sons, 2004.

[6] J. Abraham, “International Conference On Harmonisation Of Technical Requirements For

Registration Of Pharmaceuticals For Human Use,” in Handbook of Transnational Economic

Governance Regimes, A. Brouder and C. Tietje, Eds. Brill, 2009, pp. 1041–1054.

[7] D. FDA/CDER/"Beers, “Analytical Procedures and Methods Validation for Drugs and Biologics,” p.

18, 2015.

[8] L. R. Snyder and J. J. Kirkland, Introduction to modern liquid chromatography, 2d ed. New York:

Wiley, 1979.

[9] Waters, “Streamline the Chromatographic Method Validation Process Using Empower 2 Method

Validation Manager.” 2007.

[10] “Fusion QbD Analytical Method Validation - Powered by PageTurnPro.com.” [Online]. Available:

http://www.pageturnpro.com/S-Matrix-Corp/58884-Fusion-QbD-Analytical-Method-

Validation/default.html#page/1. [Accessed: 21-Dec-2018].

[11] “Technology Overview | ValGenesis.” .

[12] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques, 1st ed. Springer

Publishing Company, Incorporated, 2010.

[13] B. Magnusson and U. Örnemark, Eurachem Guide: The Fitness for Purpose of Analytical Methods –

A Laboratory Guide to Method Validation and Related Topics, 2nd ed. 2014.

[14] European Medicines Agency, “Guideline on bioanalytical method validation.”,

EMEA/CHMP/EWP/192217/2009, 21-Jul-2011.

[15] T. W. Malone, “Interoperability in Programming Languages,” 2014.

[16] J. King and R. Magoulas, “2015 Data Science Salary Survey,” p. 49.

[17] “ISO/IEC/IEEE 42010:2011(en), Systems and software engineering — Architecture description.”

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-1:v1:en. [Accessed:

27-Jun-2019].

[18] “Index of /doc/Documentation/cgroup-v1/.” [Online]. Available:

https://www.kernel.org/doc/Documentation/cgroup-v1/. [Accessed: 05-Jul-2019].

42

Appendix A

System Requirements for Server

ValChrom can be deployed on any operating system with a working installation of the

following:

− Docker

− Docker-compose

Installation / Deployment instructions

From a work station

1. Checkout valchrom_final repository

git clone git@bitbucket.org:valchrom/valchrom_final.git

2. Start the application

cd valchrom_final

docker-compose up -d

3. Stop the application

docker-compose down

The live version is available at https://valchrom.ut.ee/

The source code available at https://bitbucket.org/valchrom/

mailto:git@bitbucket.org:valchrom/valchrom_final.git
https://valchrom.ut.ee/
https://bitbucket.org/valchrom/

43

Appendix B

version: '3.2'

services:

 redis:

 build:

 context: ./cache/

 dockerfile: Dockerfile

 expose:

 - ${CACHE_PORT}

 broker:

 image: rabbitmq:3.7-alpine

 expose:

 - ${BROKER_PORT}

 database:

 restart: on-failure

 build:

 context: ./database/

 dockerfile: Dockerfile

 volumes:

 - data:/var/lib/postgresql/data

 - ./database/backup:/backup

 environment:

 - DB_NAME=${DB_NAME}

 - DB_USER=${DB_USER}

 - DB_PASS=${DB_PASS}

 expose:

 - ${DB_PORT}

 frontend:

 image: ${DOCKER_HUB_USER}/valchrom_frontend:latest

 expose:

 - ${FRONTEND_PORT}

 backend:

 image: &backend ${DOCKER_HUB_USER}/valchrom_backend:latest

 volumes:

 - backend-static:/app/valchrom/static

 - backend-media:/app/valchrom/media

 environment:

 - DB_NAME=${DB_NAME}

 - DB_USER=${DB_USER}

 - DB_PASS=${DB_PASS}

 - DB_SERVICE=${DB_SERVICE}

 - DB_PORT=${DB_PORT}

 - CACHE_PORT=${CACHE_PORT}

 - CACHE_SERVICE=${CACHE_SERVICE}

44

 command: ./wait-for-it.sh ${DB_SERVICE}:${DB_PORT} -s -t 0 -- bash -c "cd valchrom &&

python manage.py migrate && python manage.py collectstatic --noinput --clear && gunicorn

valchrom.wsgi:application -k gevent --worker-connections 1024 -t 90 -b :${BACKEND_PORT}"

 expose:

 - ${BACKEND_PORT}

 depends_on:

 - ${DB_SERVICE}

 - ${CACHE_SERVICE}

 - ${BROKER_SERVICE}

 - ${CELERY_BEAT_SERVICE}

 - ${CELERY_WORKER_SERVICE}

 worker:

 image: *backend

 volumes:

 - backend-media:/app/valchrom/media

 command: ./wait-for-it.sh ${BROKER_SERVICE}:${BROKER_PORT} -s -t 0 -- bash -c "cd valchrom

&& celery -A valchrom worker -l info"

 ports: []

 environment:

 - BROKER_PORT=${BROKER_PORT}

 - BROKER_SERVICE=${BROKER_SERVICE}

 - CACHE_PORT=${CACHE_PORT}

 - CACHE_SERVICE=${CACHE_SERVICE}

 depends_on:

 - ${BROKER_SERVICE}

 - ${DB_SERVICE}

 beat:

 image: *backend

 command: ./wait-for-it.sh ${BROKER_SERVICE}:${BROKER_PORT} -s -t 0 -- bash -c "cd valChrom

&& celery -A valChrom beat -l info"

 ports: []

 environment:

 - BROKER_PORT=${BROKER_PORT}

 - BROKER_SERVICE=${BROKER_SERVICE}

 - CACHE_PORT=${CACHE_PORT}

 - CACHE_SERVICE=${CACHE_SERVICE}

 depends_on:

 - ${BROKER_SERVICE}

 - ${DB_SERVICE}

 reverse_proxy:

 restart: unless-stopped

 build:

 context: ./reverse_proxy/

 dockerfile: Dockerfile

 volumes:

45

 - backend-static:/app/valchrom/static

 - backend-media:/app/valchrom/media

 - ./reverse_proxy/certbot/conf:/etc/letsencrypt

 - ./reverse_proxy/certbot/www:/var/www/certbot

 ports:

 - "80:80"

 - "443:443"

 command: "/bin/sh -c 'while :; do sleep 6h & wait $${!}; nginx -s reload; done & nginx -g

\"daemon off;\"'"

 depends_on:

 - ${FRONTEND_SERVICE}

 - ${BACKEND_SERVICE}

 stdin_open: true

volumes:

 data:

 backend-static:

 backend-media:

License

Non-exclusive licence to reproduce thesis and make thesis public

I,

Kodjovi Hippolyte-Fayol Toulassi

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Software Tool for Validation of Chromatographic Analytical Procedures,

supervised by Prof. Marlon Dumas, Koit Herodes and Asko Laaniste.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available

to the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by

giving appropriate credit to the author, to reproduce, distribute the work and communicate

it to the public, and prohibits the creation of derivative works and any commercial use of

the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Kodjovi Hippolyte-Fayol Toulassi

14/08/2019

	1. Introduction
	2. Background
	2.1. Chromatography
	2.2. Validation of Analytical Procedure
	2.2.1. Specificity
	2.2.2. Accuracy
	2.2.3. Precision
	2.2.4. Linearity
	2.2.5. Range
	2.2.6. Detection limit
	2.2.7. Quantitation limit
	2.2.8. Robustness

	2.3. Existing Solutions
	2.4. Scope and requirements
	2.5. Technologies Used

	3. Solution
	3.1. Architecture of the overall system
	3.2. Data formats and domain model
	3.3. REST API
	3.3.1. Analytical Methods
	3.3.2. Assessment Methods
	3.3.3. Guideline
	3.3.4. Validation plan templates
	3.3.5. Experiment plan
	3.3.6. Experimental datasets
	3.3.7. Experiment Data
	3.3.8. Experiment Data Value
	3.3.9. Report templates
	3.3.10. Reports
	3.3.11. Users
	3.3.12. Accounts
	3.3.13. Token

	3.4. Controllers and Resource Objects

	4. Packaging and Testing
	4.1. Containerization
	4.2. Continuous Integration
	4.3. Testing

	5. Conclusion and Future Work
	References
	Appendix A
	Appendix B
	License

