
1
Tartu 2019

ISSN 2613-5906
ISBN 978-9949-03-210-5

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
13

H
U

ISH
I Y

IN

U
sing a K

ano-like M
odel to Facilitate O

pen Innovation in R
equirem

ents Engineering

HUISHI YIN

Using a Kano-like Model to Facilitate Open
Innovation in Requirements Engineering

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

13

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

13

HUISHI YIN

Using a Kano-like Model to Facilitate Open
Innovation in Requirements Engineering

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on October 24, 2019 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisor

Prof. Dietmar Alfred Paul Kurt Pfahl
University of Tartu, Estonia

Opponents

Department Head Andreas Jedlitschka
Fraunhofer Institute for Experimental
Software Engineering IESE, Germany

Assoc. Prof. Richard Berntsson Svensson
Chalmers and University of Gothenburg, Sweden

The public defense will take place on December 17, 2019 at 10:15 in J.Liivi 2-405.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2019 by Huishi Yin

ISSN 2613-5906
ISBN 978-9949-03-210-5 (print)
ISBN 978-9949-03-211-2 (PDF)

University of Tartu Press
http://www.tyk.ee/

http://www.tyk.ee/

To my family and friends

ABSTRACT

When Requirements Engineering (RE) is applied, requirements analysis is often
used to determine which candidate requirements of a feature should be included
in a software release. This plays a crucial role in the decisions made to increase
the economic value of software. Nowadays, products evolve fast, and the process
of requirements prioritization is becoming shorter as well. Companies benefit
from receiving quick feedback from end users about what should be included in
subsequent releases. One effective approach supporting requirements prioritiza-
tion is the Kano model. The Kano model defines the relationship between user
satisfaction and product features. It is a method used to classify user preferences
according to their importance, and in doing so, supports requirements prioritiza-
tion. However, implementing the Kano model is costly and time-consuming, and
the application of the Kano model cannot be repeated quickly. Moreover, this is
even more difficult for small companies because they might not have sufficient
funds and resources to contact end users and conduct interviews. This puts small
businesses, especially start-ups, at an unfair disadvantage in competing with big
companies.

To address this problem and make the application of the Kano model simpler,
faster, and cheaper, we propose evolving the Kano model in two aspects. First,
free online text data should be used to replace responses collected from intervie-
wees. Second, in order to handle the higher amount of data that can be collected
from free online text data and in order to facilitate frequent analyses, the data
analysis process should be automated.

The goal of this research is to propose methods for (semi-)automatically clas-
sifying user opinions collected from online open sources (e.g., from online re-
views) to help decision-makers decide which software requirements to include in
subsequent product versions. To achieve this research goal, we propose the Open
Innovation in Requirements Engineering (OIRE) method to help software orga-
nizations gain a better understanding of user needs and satisfaction with existing
products. A key element of the OIRE method is its Kano-like model. This Kano-
like model mimics the traditional Kano model, except that it uses data from online
reviews instead of interviews conducted with select focus groups. We use machine
learning and sentiment analysis methods to deal with text lines corresponding to
the input of the Kano-like model.

The purpose of the OIRE method is to help software organizations assess end
users’ level of appreciation for software products to be developed. In addition,
a partly automated approach lowers software RE costs. We think that the OIRE
method mostly offers benefits to small companies with small teams and a low
marketing and customer research budget.

Another significant contribution of this research is that we present three typical
use cases and a proof-of-concept of the OIRE method that demonstrate the appli-
cability of the OIRE method using real-world data collected from the Internet. We

6

also discuss the suitability of potential input sources for the OIRE method.
A further contribution of this research is the design and implementation of a

web-based prototypical system, the OIRE System (OIRE-S), and the evaluation
of the OIRE method using OIRE-S. We conducted a case study with two Chinese
companies and an interview study with two other stakeholders. The results of
the case study and the interview study show that the OIRE method was perceived
to be useful by all stakeholders, and that it was perceived to be most useful for
decision-makers in small companies.

7

CONTENTS

1. Introduction 17
1.1. Research Approach . 17
1.2. OIRE Method . 18
1.3. Contributions . 20
1.4. Outline . 21

2. Background 22
2.1. Open Innovation . 22
2.2. Requirements Engineering . 23
2.3. Kano Model . 24

3. State of the Art 28
3.1. OI in All Research Fields . 28

3.1.1. Introduction . 28
3.1.2. Goal and Data Collection 29
3.1.3. Results and Analysis . 30
3.1.4. Discussion and Conclusion 34

3.2. OI in Software Requirements Engineering 35
3.2.1. Introduction . 35
3.2.2. Systematic Mapping Study Process 36
3.2.3. Results and Analysis . 39
3.2.4. Discussion . 43
3.2.5. Conclusion . 44
3.2.6. Threats to Validity . 44

3.3. Summary . 45

4. OIRE Method 47
4.1. Component 1 - Sentence Classification 48

4.1.1. Algorithm Design . 49
4.1.2. Application Example for Component 1 50

4.2. Component 2 - Sentiment Mining 53
4.2.1. Algorithm Design . 53
4.2.2. Application Example for Component 2 55
4.2.3. Overall Performance of Component 1 and Component 2 . . 56

4.3. Component 3 - Kano-like Processing 57
4.3.1. Half-Kano Model . 59
4.3.2. Deformed-Kano Model 61
4.3.3. Simulation of Kano-like Models 62

4.4. Component 4 - Visualization . 65
4.5. Work Process . 65
4.6. Summary . 67

8

5. OIRE Tool Support 68
5.1. Structure . 68
5.2. Implementation . 69

5.2.1. Function "Upload file" . 70
5.2.2. Function "Sentiment analysis" 70
5.2.3. Function "Kano-like analysis" 70

5.3. Summary . 72

6. Validation 73
6.1. Task-Adequacy of Input Source 73
6.2. Use Cases . 74

6.2.1. Use Case 1 . 74
6.2.2. Use Case 2 . 75
6.2.3. Use Case 3 . 76

6.3. Application of the Use Cases . 76
6.3.1. Application of Use Case 1 78
6.3.2. Application of Use Case 2 81
6.3.3. Application of Use Case 3 84

6.4. Threats to Validity . 85
6.4.1. Construct Validity . 85
6.4.2. Internal Validity . 86
6.4.3. External Validity . 86

6.5. Discussion . 87
6.6. Conclusion . 88
6.7. Summary . 88

7. Evaluation 89
7.1. Study Design . 89

7.1.1. Research Question . 89
7.1.2. Case Study Design . 90
7.1.3. Interview Study Design 91

7.2. Results . 91
7.2.1. Case Study . 91
7.2.2. Interview Study . 99

7.3. Discussion . 102
7.4. Threats to Validity . 103

7.4.1. Construct Validity . 103
7.4.2. Internal Validity . 103
7.4.3. External Validity . 104

7.5. Conclusion . 105
7.6. Summary . 106

9

8. Conclusion and Future Work 107
8.1. Summary of Contributions . 107
8.2. Future Work . 108

Bibliography 109

Appendix A. Collection of the links to research materials 119
A.1. Code . 119
A.2. Document . 119

Acknowledgement 120

Summary in Estonian 121

Curriculum Vitae 123

Elulookirjeldus (Curriculum Vitae in Estonian) 124

List of original publications 125

10

LIST OF FIGURES

1. The steps of the research approach 18
2. Expected input for the OIRE method and the components of the

OIRE method . 19
3. The process the OIRE method 20
4. An example of the process of the traditional Kano model 25
5. Number of publications on OI (all research fields) 29
6. Trend of peer reviewed publications on OI 30
7. Distribution of publications across research areas using the ISI Web

of Science classification scheme 31
8. Frequencies of top 10 unique terms 31
9. Growth rates of publications and terms 32

10. Connections between nine research areas based on text mining results 32
11. Peer reviewed publications on OI in CS and in SE 36
12. Identification steps . 37
13. Time distribution of studies . 39
14. Classified activities of RE that OI may affect 40
15. The composition of the OIRE method 47
16. Expected inputs for the OIRE method 48
17. Example input and expected output of Component 1 48
18. The process of Component 1 . 49
19. Example input and expected output of Component 2 53
20. The schematic process of calculating the sentiment score in the dictionary-

based method . 55
21. Example input and example output of Component 3 59
22. Example of the process of the Half-Kano model 60
23. Example of the process of the Deformed-Kano model 61
24. Projection of the distribution of the differences between the tradi-

tional Kano model and the Kano-like models on the Y vector plane 64
25. Projection of the distribution of the differences between the tradi-

tional Kano model and the Kano-like models on the N vector plane 65
26. Example visualizations produced by Component 4 66
27. Flowchart of implementing the OIRE method 66
28. Structure of OIRE-S . 68
29. Flowchart of the function "Upload file" 68
30. Flowchart of the function "Sentiment analysis" 69
31. Flowchart of the function "Kano-like analysis" 69
32. Main page of OIRE-S . 69
33. "Upload file" function . 70
34. "Sentiment analysis" function - selecting files 70
35. "Sentiment analysis" function - visualizing the analysis output . . 71
36. "Kano-like analysis" function - selecting files 71

11

37. "Kano-like analysis" function - step 1: Sentence classification . . . 71
38. "Kano-like analysis" function - step 2: Sentiment analysis 72
39. "Kano-like analysis" function - visualizing the analysis output . . . 72
40. Sentiment distribution . 80
41. Extreme sentiment distribution 81
42. Visualization of the results of Components 1 and 2 of Use Case 2 . 83
43. Modified Kano table . 84
44. Visualization of the results of Components 1 and 2 of Use Cases 3 85
45. The elements of the study . 90

12

LIST OF TABLES

1. Included and excluded publications on OI 29
2. Correlation between number of publications and number of terms . 33
3. Top five frequent terms in nine research areas 33
4. Distributions of the results of the terms analysis 34
5. Inclusion and exclusion criteria 38
6. Keywords per related field . 38
7. Search strings . 38
8. Data extraction properties mapped to research question 39
9. Classification based on the type of study and the research methods

used . 40
10. Classification based on OI used in the RE process 41
11. Examples of labeled text lines . 50
12. The confusion matrix used to assess the performance of supervised

machine learning methods . 50
13. Experiment results . 52
14. Prediction accuracy of Component 1 52
15. Emotion dictionary with example words 54
16. Examples of calculating the sentiment and Kano scores for text lines 55
17. Evaluation criteria for manually checking sentiment classifications 56
18. Prediction accuracy of Component 2 57
19. Accuracy of Components 1 and 2 for text lines classified as func-

tional in Component 1 . 58
20. Accuracy of Components 1 and 2 for text lines classified as dysfunc-

tional in Component 1 . 58
21. An example of the difference between the traditional Kano model

and the Kano-like models . 63
22. The range and means of the differences between the outputs of the

traditional Kano model and the Kano-like models 63
23. Prediction accuracy based on data set 1 (Stack Overflow) 74
24. Prediction accuracy based on data set 2 (Google Play and Apple App

Store) . 74
25. Context of Use Case 1 . 75
26. Use Case 1 . 75
27. Context of Use Case 2 . 76
28. Use Case 2 . 77
29. Context of Use Case 3 . 78
30. Use Case 3 . 79
31. Output of Use Case 1 . 80
32. The confusion matrix used to assess the performance of supervised

machine learning algorithms . 82
33. Performance of supervised machine learning algorithms 82

13

34. Output of Use Case 2 . 83
35. Output of Use Case 3 . 84
36. Accuracy of the application results of Use Case 1 86
37. Accuracy of the application results of Use Case 2 87
38. Accuracy of the application results of Use Case 3 87
39. Overall sentiment distribution . 94
40. Sentiment distribution of features 94
41. Kano-like category classification 98
42. Sentiment distribution of F3 and F5 99

14

LIST OF ABBREVIATIONS

A - Attractive quality
ACC - Analysis of complaints and compliments
AW - Adversative words
BST - Binary search tree
CIT - Critical incident technique
CrowdRE - Crowd-based requirements engineering
CS - Computer science
CV - Cumulative voting
DPV - Dysfunctional predictive value
FPV - Functional predictive value
I - Indifferent quality
IW - Intense words
M - Must-be quality
N - No vector
NEW - Negative emotional words
NW - Negative words
O - One-dimensional quality
OI - Open innovation
OIRE - Open innovation in requirements engineering
OIRE-S - Open innovation in requirements engineering rystem
OSS - Open source software
PD - Product developer
PEW - Positive emotional words
PG - Planning game
PLM - Product lifecycle management
PO - Product owner
PPS - Probability proportional to size
Q - Questionable
QFD - Quality function deployment
R - Reverse quality
RE - Requirements engineering
Qu - Question
SA - Sentiment association
SE - Software engineering
SVM - Support vector machine
VEPW - Very positive emotional words

15

VNEW - Very negative emotional words
VOP - Value oriented prioritization
Y - Yes vector

16

1. INTRODUCTION

The overarching goal of this thesis is to extend the body of knowledge regarding
Open Innovation (OI) in software Requirements Engineering (RE). Since 2003,
when Henry Chesbrough proposed the concept of OI [17], Closed Innovation
gradually fell behind while more and more companies began to apply OI in their
business. The increasing popularity of OI can be observed in many research fields,
including computer science [106]. Nevertheless, according to a mapping study
conducted by Wnuk et al. [104], there is still room for research on the poten-
tial of OI in Software Engineering (SE), one example being the field of software
requirements engineering [110].

Due to time and effort limitations, we decided to focus on requirements analy-
sis in this thesis, in particular on classifying and prioritizing requirements. When
RE is applied, requirements prioritization is performed to rank requirements in
their order of importance. Prioritization is often used to determine which can-
didate requirements of a feature should be included in a software release. This
plays a crucial role in making decisions aimed at increasing the economic value
of a piece of software [1]. However, simple one-dimensional prioritization of re-
quirements is not necessarily clearly correlated with end user satisfaction and thus
economic value. To capture the more complex relationship between the economic
value of a piece of software and its attributes (or features), the Kano model was
developed by Noriaki Kano in the 1980s [46].The Kano model classifies customer
requirements (or potential features) into five categories. The different categories
of customer requirements influence user satisfaction and dissatisfaction [46]. Be-
yond a simple prioritization of requirements, the Kano model also provides a
mechanism for identifying (1) the set of requirements that must be implemented
in order to succeed, and (2) the set of requirements that must not be implemented
in order to prevent failing.

1.1. Research Approach

In our research, we have designed a Kano-like model according to the Kano model
theory. The main goals of this study are: 1) to develop a new approach that could
(semi-)automatically classify user reviews collected from online open sources to
help decision-makers decide which software requirements to include in subse-
quent product versions; 2) to demonstrate the applicability and usefulness of the
new approach. To achieve these research goals, we use an engineering approach
comprising the following steps: a) an analysis of the state of the art; b) the design
of a new method by combining existing approaches and ideas in a new way; c) the
development of prototypical tool support; d) validation (proof-of-concept using
several use cases); e) evaluation in industry. Steps a) to e) are covered by Chap-
ters 3, 4, 5, 6, and 7, respectively. The steps of the research approach followed in
this thesis are shown in Figure 1.

17

Figure 1. The steps of the research approach

We propose the Open Innovation in Requirements Engineering (OIRE) method
to help software organizations gain a better understanding of user needs and satis-
faction with existing products. The OIRE method is also designed to identify user
needs that are not addressed well by competing products. We believe that imple-
menting the OIRE method will help software organizations understand the impact
of a software product to be developed on user appreciation. This is particularly
an issue for small companies. Due to a lack of resources, social influence, user
feedback, etc., small companies, particularly start-ups, rely almost exclusively
upon their own expertise with regard to technological innovation [111]. Hence,
we believe it could be beneficial for them to be able to use results from automated
analyses of freely available online data, such as provided by the OIRE method.
In addition, a partly automated approach could lower RE costs. Therefore, we
think that the OIRE method will especially offer benefits for small companies
with small teams and a low marketing and customer research budget.

1.2. OIRE Method

The OIRE method mimics the well-known Kano model, except that it uses data
from online reviews instead of interviews conducted with select focus groups. The

18

Figure 2. Expected input for the OIRE method and the components of the OIRE method

right half of Figure 2 shows the components of the OIRE method and the order
in which they are typically used. The OIRE method comprises four components:
Sentence Classification, Sentiment Mining, Kano-like Processing, and Visualiza-
tion.

Suppose, for instance, that we have an input file with twelve text lines relating
to Feature A of a software product. The process of the OIRE method, using all of
its components from input to output, is shown in Figure 3. We will describe each
component below. A more detailed introduction will be given in Chapter 4. The
content of the input file is shown at the top of Figure 3.

Component 1 - Sentence Classification: We use machine learning to classify
the text lines of the input into two classes, "functional" and "dysfunctional". This
classification is inspired by the "functional question" and "dysfunctional question"
of the traditional Kano model [46]. Text classified as "functional" corresponds to
text lines stating the presence of a feature, while text classified as "dysfunctional"
corresponds to text stating the absence of a feature [109]. The unit of analysis
of the classifier is one line of text. Figure 3 shows the example input and the
expected output of Component 1.

Component 2 - Sentiment Mining: We use a dictionary-based method [109]
to calculate the sentiment score of each text line in each of the two classes (output
from Component 1). Then we classify the polarity of the sentiment (from very
negative to very positive) of each text line according to its sentiment score and
translate it into the corresponding Kano score. For example, the sentiment "very
negative" corresponds to a Kano score of "-2" and the sentiment "very positive"
corresponds to a Kano score of "+2". Figure 3 shows the example input and the
expected output of Component 2.

Component 3 - Kano-like Processing: We have designed a Kano-like model
algorithm that is applied when the traditional Kano model cannot be used because
the functional and dysfunctional input is unpaired or partially missing [108]. Fig-
ure 3 shows the example input and the expected output of Component 3. In the

19

Figure 3. The process the OIRE method

OIRE method, we do not assign a final Kano category to a feature but rather a
probability distribution over the Kano categories. This is different from the tradi-
tional Kano model, where the most frequently assigned Kano category is used as
the last assigned category value.

Component 4 - Visualization: We visualize the outputs of Components 1 to 3
for the user. Figure 3 shows three examples of different output formats: pie chart,
bar chart, and table.

The left half of Figure 2 also shows how the input for the OIRE method has
to be formatted. We see from Figure 2 that a product may have several features.
We put all text lines related to one feature into one file as the input. Thus, each
product consists of a set of input files, with each file corresponding to one feature
and containing all text lines related to exactly one feature. All the input text used
in this thesis was taken from the Internet, in particular from online open sources.

1.3. Contributions

To summarize, our contributions in this work are as follows:
• We conducted a systematic mapping study to survey the state of the art of

OI in the sub-fields of SE, especially in RE.
• We propose the OIRE method.

– We provide a solution by applying machine learning to determine
whether a text line extracted from an online open source potentially
corresponds to an answer to the functional or dysfunctional question
asked in the Kano model.

– We designed a dictionary-based method to classify the sentiment found
in text lines into five sentiment classifications: Very Negative, Nega-
tive, Neutral, Positive, and Very Positive.

– We propose and validate the Kano-like model. This model follows the

20

Kano model theory and can be used as an approximation of the tradi-
tional Kano model in situations where the input to the Kano model is
unpaired or partly missing.

• We designed a web-based prototypical system, the OIRE System (OIRE-S).
OIRE-S is a tool supporting the OIRE method.
• We present three typical use cases and a proof-of-concept of the OIRE

method, which demonstrate the applicability of the OIRE method using
real-world data collected from the Internet.
• We interviewed industry people and conducted a case study and an inter-

view study to evaluate the usefulness of the OIRE method.

1.4. Outline

After the introductory Chapter 1, Chapter 2 introduces the main concepts in-
volved in this thesis, including open innovation, requirements engineering, the
Kano model, and classification.

In Chapter 3, we introduce the literature relating to OI in different research
fields. When analyzing peer-reviewed literature on OI, we observed that the field
of Computer Science seems to have significantly less diversity than all other fields.
To further understand the research status of OI in RE, we summarize the body
of knowledge regarding the use of OI in the field of RE. More specifically, we
analyze what uses of OI in the context of RE have been reported and how OI has
contributed to individual steps of the RE process.

In Chapter 4, we introduce the composition of the OIRE method as well as the
design and verification of the algorithm of each component. Based on the OIRE
method, we will develop a web-based prototypical system as tool support for the
OIRE method: OIRE-S.

In Chapter 5, we introduce the design and implementation of OIRE-S.
In Chapter 6, we present three typical use cases and a proof-of-concept of the

method, which demonstrate the applicability of the method using real-world data
collected from the Internet.

In Chapter 7, we describe a case study and an interview study that we con-
ducted to evaluate the OIRE method using OIRE-S.

We conclude this thesis and suggest directions for further study in Chapter 8.

21

2. BACKGROUND

In this chapter, we will introduce the main concepts involved in this research.
Understanding these concepts will help the reader comprehend the subsequent
parts of this thesis.

2.1. Open Innovation

In 2003, Henry Chesbrough proposed the term "Open Innovation", defining it as
follows: "Open innovation is a paradigm that assumes that firms can and should
use external ideas as well as internal ideas, and internal and external paths to
market, as the firms look to advance their technology" [17, 107]. The concept has
also been described as "Companies should traverse the firm’s boundaries to absorb
technology sources from other companies" [17], meaning that boundaries between
a company and its environment should become permeable so that innovations can
easily move from outside the company boundaries to the inside and vice versa.
This also implies that companies and their partners start sharing risks and rewards.

In the past decade, OI has become a major element of companies’ innovation
progress in almost all industries. The influence of OI in the development and
evolution of software products has become significant [16, 21, 87]. OI has been
identified as a new strategy for software-developing organizations to benefit from
the exchange of innovative ideas and the adoption of value-creating processes
across and beyond company boundaries [38].

However, we found there is still room for research on the potential of OI in
software engineering [111]. For example, there is a lack of empirical research
regarding the use of OI in software engineering [104]. We also found that the
OI journey of small enterprises has not been smooth because small enterprises do
not have enough resources (e.g., financial and human resources, etc.) to take the
initiative in terms of OI. At the same time, their ability to bear the risk of OI is
weak.

In a mapping study, Hussan Munir et al. stated that "OI is not for free" [69].
According to their research, they found that "in order to gain the full and long
term benefits from OI, companies must invest in the open communities, and since
these are complex networks with a multitude of actors, these companies must have
a clear resources investment plan, just as they need for closed innovations."

Yubing [114] classified OI models according to the flow of direction of tech-
nology and knowledge. Yubing believes that when a company is too small, espe-
cially a start-up, it is better for it to follow the "inside-out" model, which means
that small companies should offer technology to the "outside world" and expect
other organizations to commercialize this technology. The main reason for this is
that small companies usually cannot afford the cost of buying technology from big
organizations or lack the resources to cooperate with other organizations [8, 15].
Through a systematic literature review, Hossain et al. gave a similar conclusion

22

that small businesses publicize or sell innovative technology to large companies
in order to obtain attention and benefit. Hossain et al. also found that it might be
true that small enterprises rely more on OI than large businesses [40]. It indicates
that when the open innovation model is driven by resources, innovation, and prof-
itability largely in the hands of large companies, small businesses will lose their
power of initiative. Our research could use OI to help small businesses save time
and costs in the RE process in order to lower the development risk.

2.2. Requirements Engineering

We have been studying the combination of OI and RE to expand the possibilities
for enterprises to obtain more resources and to reduce costs and risks. We believe
that this will be conducive to small businesses, especially to start-ups.

Since the term "Requirements Engineering" was coined by Mack Alford in
1978, [2] the field has matured a lot and has become one of the most important
fields of software engineering [12]. Nuseibeh and Easterbrook defined require-
ments engineering as follows: "It is the process of discovering that purpose, by
identifying stakeholders and their needs and documenting these in a form that
is amenable to analysis, communication, and subsequent implementation." [74].
The typical activities involved in RE are requirements elicitation, requirements
analysis, requirements specification, requirements validation, requirements man-
agement, etc. [91]. Requirements prioritization is a sub-activity of requirements
analysis and is also related to requirements management.

In the RE process, requirements prioritization is one of the key activities often
used to determine which candidate requirements of a feature should be included
in a software release. Requirements are also prioritized to minimize risk during
development, meaning that the most important requirements or those with the
lowest risk are implemented first [5, 55, 108]. Many requirements prioritization
techniques have been proposed. By conducting a systematic literature review,
Achimugu et al. identified and analyzed 49 existing prioritization techniques
[1].The most frequently used and most prominent techniques include: Analytic
Hierarchy Process (AHP) [48, 85], Quality Function Deployment (QFD) [30],
Planning Game (PG) [78], Cumulative Voting (CV) [54], Cost-Value approach,
sometimes called Value Oriented Prioritization (VOP) [47], and Binary Search
Tree (BST) [48]. Other requirements prioritization techniques like MosCow, Bub-
ble Sort, Minimal Spanning Tree, Priority Groups, Win-Win, Top Ten, Wiegers’
Matrix Approach, and Binary Priority Listing are also used sometimes [1].

Crowd-based requirements engineering (CrowdRE) is the term for automated
or semi-automated methods that contribute to the collection and analysis of "user
feedback" from a crowd of people to obtain validated user requirements [35, 36].
According to Hosseini et al. [41], the "Four Pillars of CrowdRE" are crowd-
sourcer, crowd, crowdsourced task, and crowdsourcing platform. Groen et al. [35]
proposed a tentative model for gathering "user feedback" based on the principle

23

of CrowdRE. This model combines tools that existed in the field at the time, such
as "social collaborations, text mining, or data mining". In another study, Groen et
al. [36] discussed the benefits, challenges, and lessons learned from several Crow-
dRE projects and experiments and assessed how to apply CrowdRE approaches
and tools in an industrial setting. Their research presented the concepts and mod-
els of CorwdRE but did not explain how to implement their models automatically.
In a recent mapping study, Wang et al. [98] provided an overview of the literature
published on CrowdRE.

In our research, we are interested in a method that is related to but goes beyond
simple prioritization of requirements and does not require the involvement of a
crowd. To capture the more complex relationship between the economic value of
a piece of software and its attributes (or features), we focus on using the well-
known Kano model developed by Noriaki Kano in the 1980s [46].

2.3. Kano Model

The Kano model was originally developed by Noriaki Kano [46,115] who studied
Herzberg’s Motivation-Hygiene theory [39]. The traditional Kano model defines
the relationship between user satisfaction and product features.

Since the 1980s when the Kano model was first introduced, it has become a
popular theory used by researchers and business practitioners across many indus-
tries. Many researchers use the Kano model to increase user satisfaction and to
improve the product design process [10, 11, 75, 97]. After an extensive review
of the literature on the Kano model, Josip and Darko summarized and evaluated
five methods that classify quality features into the categories defined by the Kano
model [65], however, in a different way than Noriaki Kano proposed. The meth-
ods analyzed were the original Kano model developed by Noriaki Kano [46], the
"Penalty reward contrast analysis" originally proposed by Brandt [10], the "Im-
portance grid" developed by IBM [97], the "Qualitative data methods" including
CIT (critical incident technique) developed by Herzberg and ACC (Analysis of
Complaints and Compliments) used by Cadotte [11], Oliver [75], Friman, and
Edvardsson [32], and the "Direct classification" method proposed by Emery and
Tian [27]. Among those five methods, only CIT and ACC are based on the same
assumption, i.e., that "quality features can be categorized by comparing how fre-
quently customers mention it in a positive context or a negative context" [65].
However, compared to the Kano model, the reliability of both the CIT and ACC
method remains questionable when the frequency with which customers mention
features is low. According to Josip and Darko’s research, the Kano model and
the direct-classification method are the only methods capable of classifying Kano
features [65].

The traditional Kano model defines five categories of user needs that have dif-
ferent effects on user satisfaction. These categories are One-Dimensional Quality
(O), Attractive Quality (A), Must-be Quality (M), Indifferent Quality (I), and Re-

24

Figure 4. An example of the process of the traditional Kano model

verse Quality (R) [6, 43, 88, 105]. "O" implies that a user is the more satisfied the
more they can get from this feature quantitatively. "A" indicates that the feature
is unexpected and has a highly positive effect on the user. Such features might
distinguish the product positively from other products. "M" implies that if such a
feature is not provided or provided with bad quality, the user will be dissatisfied
and not buy the product. "I" implies that the user does not care whether the feature
is present or not. "I" features are not desirable because they cost money to imple-
ment without adding value to the product. "R" implies that a user is dissatisfied
if that feature is present in the product [46, 112]. Since it is possible to receive
contradictory responses from customers, the category Questionable (Q) is also an
option. Use of the Kano model requires the Kano questionnaire. It is composed
of a pair of questions, i.e., a functional and a dysfunctional question, that a group
of users has to answer for every feature to be categorized. In the software engi-
neering domain, it is a well-known method to classify user preferences according
to their importance, and by doing so support requirements prioritization [108].
Figure 4 shows an example of the process of the traditional Kano model.

Since its introduction, many researchers have used the Kano model to improve
user satisfaction and the product design process [9, 13, 25, 64]. Some researchers
studied the potential use of the Kano model for classifying and prioritizing user
needs. They conducted extended research based on the original Kano model. For
example, using the Kano model, Zhang and Chen constructed a functional rela-
tionship between user satisfaction and product quality. They defined an adjust-
ment coefficient "K" to obtain the importance of user needs [116]. This method
relies on questionnaires. Fabijan and Olsson developed a model resembling the
Kano model [29]. Their model focuses on software products with rapid customer
feedback capabilities. The model defines four types of features named "duty",
"wow", "checkbox" and "flow". The input for this model must be collected from

25

interviews with customers.
Lili et al. [57] established the "eXtreme Programming high-quality analysis

module" based on the Kano model theory. This model divides user requirements
and developer requirements into eight categories forming a requirements matrix.
A demand module is set up to enhance the requirements quality and to reduce
misunderstandings, barriers, and potential business risks. This model is an ex-
tension of the Kano model. The input to this model is based on discussions with
developers and users.

The above-mentioned studies using the Kano model are based on interviews
and questionnaires. The difference in our research is that we use online open
source data as input to the Kano model. In addition, we automatically use the
Kano model theory to classify user needs.

In Nascimento and Aguas’s research [70], the data is collected from online
sources. However, the role of the online data is not to provide the input data for
the Kano model but to help developers locate the people to be interviewed.

There exist also studies focusing on the combination of the Kano model with
QFD to improve user satisfaction and to reduce user dissatisfaction [22,33,60,95].
We found two articles that describe a combination of the Kano model and QFD
while using online reviews to analyze user satisfaction and the importance of user
demands. The goals of these two articles are similar to our research goal. They
attempt to analyze online text data using an automated approach based on a com-
bination of the principles of the Kano model and QFD. In Shugang Li and Yuem-
ing Li’s paper [56], the authors used a new word alignment model for sentiment
analysis on online text data. They first calculated a value called "sentiment as-
sociation" (SA) and then combined this SA with the usage of the Kano model
and QFD; finally, they classified all attributes into the Kano categories. Song and
Chen [92] combined data mining with the Kano model and QFD to "obtain the
real demand of multiple customers as well as the weight of demand". Although
some contents of these two articles are close to our research, we found that both
focus on improving user satisfaction rather than classifying user needs. At the
same time, we noticed that the analysis process used in these two articles is not
clear, and it is difficult to understand how the results of the analysis were derived.

Unlike the above research, in our research, we designed a Kano-like model that
follows the Kano model principle, to replace the artificial interview or question-
naire step used when implementing the traditional Kano model with a mechanism
that automatically classifies online text data. In order to obtain standardized in-
put data that meets the requirements of the Kano-like model, we need to classify
the features and related sentiments into two classes corresponding to answers of
the Kano paired questions, i.e., functional questions and dysfunctional questions.
Within each of these classes, each feature-related text must then be classified into
one of five sentiment categories, which are Very Negative, Negative, Neutral, Pos-
itive, and Very Positive.

According to Reagan et al.’s study [81], sentiment detection methods can be

26

one of the following types: 1) dictionary-based methods [51]; 2) supervised learn-
ing methods [20]; 3) unsupervised / Deep learning methods [90]. Since, we need
to classify text lines into five sentiment categories, multiclass instead of binary
classification methods are needed. However, multiclass classification is more
intricate than solving binary classification problems [4]. In other words, using
supervised machine learning methods is costlier. Since it is easy to implement,
we therefore designed a dictionary-based method to classify the polarity of senti-
ments [109].

There exists quite a lot of research related to sentiment analysis. Sentiment
analysis, also known as opinion mining or emotion mining, is a field of study that
analyzes texts containing opinions, comments, and evaluations. While research
on sentiments and opinions using online texts (e.g., product comments, reviews)
started in 2001 [19, 67, 94, 100], the terms "opinion mining" and "sentiment anal-
ysis" appeared for the first time in 2002 [71, 77]. Some researchers do sentiment
classification at the document and sentence levels with regard to their emotional
bias towards either the positive or negative side [96, 102, 113]. Unlike this re-
search, we divide emotions into five categories instead of two (positive, negative)
or three (positive, neutral, negative) categories.

In our research, we used supervised machine learning methods to classify lines
of text in input files into two categories, functional and dysfunctional. We de-
signed a dictionary-based sentiment analysis method to determine the sentiment
polarity in each line of text, and lines of text are classified into five categories:
Very Positive, Positive, Neutral, Negative, and Very Negative.

27

3. STATE OF THE ART

In this chapter, we will introduce the state of the art of OI in RE. This chapter
is structured as follows. In Section 3.1, we will present a preliminary study that
we conducted to introduce and summarize the research status of OI, specifically,
the research distribution of OI in different research fields. In Section 3.2, we will
present a mapping study we performed to show the research status of OI in RE.

3.1. OI in All Research Fields

In Section 3.1, we will describe our study results regarding research on OI in
peer-reviewed literature in all research fields. The special focus is on the field of
computer science as compared to other fields using the categorization scheme of
Thomson Reuters’ Web of Science Core Collection (ISI Web of Science1).

3.1.1. Introduction

In order to get a baseline for the year 2015, the start of our research, we searched
for the number of publications with the term "Open Innovation" in their title in two
popular repositories, i.e., Google Scholar and the ISI Web of Science. The differ-
ence between the two repositories is that Google Scholar does not distinguish pre-
defined categories of publications. Also, Google Scholar automatically collects
all kinds of publications (including gray literature) from the Internet, whereas the
ISI Web of Science mainly indexes peer-reviewed scientific literature from inter-
nationally recognized sources with high scientific standards. As shown in Figure
5, the number of publications on OI considerably increased over the course of
eleven years (2003 to 2014). We retrieved a total of 2463 publications on the sub-
ject of OI from Google Scholar (all types of publications) and 579 from the ISI
Web of Science (peer-reviewed publications).

We see from Figure 5 that the line for Google Scholar increases more sharply
than the line for the ISI Web of Science. Starting in 2007, the number of all
types of publications grew, especially from 2007 to 2010. In 2011, the number
of publications grew once more, but the growth rate was lower. According to
the data, over 79% of the total publications (all types) were published during a
five-year period (2010 to 2014).

The line of the ISI Web of Science shows that the trend of peer-reviewed pub-
lications is more gradual. There is only one big increase shown in 2009, but two
significant drops in 2010 and 2014. Nevertheless, over 76% of the total publica-
tions were published between 2010 and 2014.

We can recognize an interesting trend in Figure 5, namely that the growth rate
of all types of publications (Google Scholar) is much higher than the rate of peer-
reviewed publications (ISI Web of Science). This may be because the interest

1http://apps.webofknowledge.com

28

Figure 5. Number of publications on OI (all research fields)

in OI is generally increasing, but thorough research about OI has not yet been
conducted – or at least has not been published yet.

The fact that the growth rate of all types of publications (Google Scholar) is
much higher than the rate of peer-reviewed publications (ISI Web of Science)
seems to suggest that general interest in OI is growing at a higher rate than the
number of strictly quality-controlled research on OI. In Section 3.1, we aim to
characterize the body of peer-reviewed research literature on OI and find out
whether there are differences between research areas.

3.1.2. Goal and Data Collection

In this section, we will try to understand and describe the literature on OI indexed
in the ISI Web of Science. To achieve this goal, we aim to answer two questions
(Qu 3.1.1 and Qu 3.1.2):

Qu 3.1.1: What topics are discussed in peer-reviewed publications about OI?
Qu 3.1.2: Are there differences in peer-reviewed publications about OI be-

tween research areas?
The ISI Web of Science provides us with a convenient interface that accesses

several academic publication sources. Using "Open Innovation" as a search term
in publication titles, we retrieved a total of 579 publications. The time span was
set to the period from 1980 to 2014, but the first hit occurred in the year 2003.
Since we were only interested in primary sources, we excluded publications of
the type "Review" and similar, and restricted our results set to publications of the
types "Article", "Proceedings Paper", "Book", and "Book Chapter". This filtering
reduced the total number of publications to 477 (82% of 579), as shown in Table
1. In the remainder of Section 3.1, all analyses will be based on the final results
set of 477 publications.

Table 1. Included and excluded publications on OI

Count Percentage
Included Types 477 82%
Excluded Types 102 18%

Total 579 100%

After retrieval and filtering of peer-reviewed publications on OI, we used text

29

Figure 6. Trend of peer reviewed publications on OI

mining methods for further analysis. The trend of peer-reviewed publications on
OI from 2003 to 2014 is shown in Figure 6. We see that the number of publi-
cations continues to grow until the year 2010. After 2010, this trend does not
continue; rather, the number of publications seems to have reached a ceiling with
high variability. In 2011, the number of publications decreased from 85 to 64, but
in the following year, it reached an all-time peak of 86 publications. After that, the
number of publications decreased again, down to only 54 publications in 2014.

The classification scheme provided by the ISI Web of Science distinguishes 40
different research areas. The overall distribution of the 477 peer-reviewed publi-
cations distributed over these 40 research areas is shown in Figure 7. Each point
without a label represents a peer-reviewed publication and each labeled point rep-
resents a research area. The size of a labeled point is proportional to the number
of publications classified under this research area and corresponds to the number
of connections to unlabeled points. In our data set, 15 research areas contained
only one publication, 16 research areas contained two to six publications, and nine
research areas had more than ten publications.

In Figure 7, most publications have been classified in the research area "Busi-
ness Economics", indicated by the size of the point labeled "Business Economics",
which is the largest. The second largest research area is "Engineering", followed
by the research areas "Operation Research / Management Science" and "Com-
puter Science". There are also connections between different research areas be-
cause some publications are related to more than one research area. The distance
between labeled points indicates the degree of connectedness between research ar-
eas. For example, there are quite a lot of connections between the research areas
"Operation Research / Management Science" and "Engineering" because the dis-
tance between the corresponding labeled points is closer than that between most
of the other labeled points.

3.1.3. Results and Analysis

To answer Qu 3.1.1, we applied text mining techniques on titles and abstracts of
the 477 selected publications from the years 2003 to 2014. The pre-processing of
the available data included removal of stop words and removal of non-informative

30

Figure 7. Distribution of publications across research areas using the ISI Web of Science
classification scheme

Figure 8. Frequencies of top 10 unique terms

words such as the search term "Open Innovation".
Text mining yielded 4913 unique terms (in the following, simply called "terms")

from the 477 peer-reviewed publications. The top ten most frequent terms with
their frequencies are shown in Figure 8. The most popular term is "knowledge"
(appearing 388 times). We interpret the ten terms shown in Figure 8 as the de-
scriptors of the concept of OI.

The growth rates of (a) publications and (b) terms from 2004 to 2014 are shown
in Figure 9. Before 2011, the growth rates of publications and terms appear to be
synchronized. From 2011 to 2014, the rate of publications continues to show a
pattern of changing growth rates, while the change rates of terms seem to be more
stable (-0.132, 0.021, -0.05, -0.047) and close to zero.

The observation that the change rate of terms became out of synch with the

31

Figure 9. Growth rates of publications and terms

Figure 10. Connections between nine research areas based on text mining results

change rate of publications is quantified in Table 2, which shows the correlations2

between the number of publications and the number of terms. The correlation
coefficients shown in Table 2 are calculated based on the three most recent pairs
of data. For example, the coefficient 0.92 in the row corresponding to the year
2005 uses the data on publications and termsfrom the years 2003 to 2005. It can
be seen that the correlation is high (above 0.8) for all years except the first two
years after 2011, where it drops to 0.57 and 0.22, respectively. Currently, we
do not have an explanation for the singular behavior in the year 2011, where the
number of publications dropped at a much higher rate than that of the number of
terms.

We were also interested in how the research areas are connected based on
terms. For that purpose, we chose the top 1% of the most frequent terms for each
research area and drew the graph shown in Figure 10. Similar to the semantics
in the graph of Figure 7, labeled points represent research areas, while unlabeled

2Correl(X,Y) =
∑(x− x̄)(y− ȳ)√

∑(x− x̄)2
∑(y− ȳ)2

32

points represent terms (and not publications, as in Figure 7). The graph in Figure
10 structurally resembles the one shown in Figure 7. This indicates that terms and
publications structure the research areas in a similar way. The natural explanation
for this observation is that when research areas share publications, they share the
terms used in those publications to a similar degree.

To answer Qu 3.1.2, we focused on the nine research areas that had more than
ten peer-reviewed publications. We again applied text mining to extract the five
most frequent terms for each research area. The results are shown in Table 3.

Table 2. Correlation between number of publications and number of terms

Years Number of Publications Number of Terms Correlation Coefficient
2003 2 37 -
2004 1 52 -
2005 4 245 0.92177105
2006 8 365 0.976732365
2007 22 950 0.998570958
2008 30 892 0.897151567
2009 42 1211 0.836385146
2010 85 2068 0.998411235
2011 64 1794 0.981660336
2012 86 1832 0.574248289
2013 79 1741 0.21996331
2014 54 1659 0.941399378

The gray cells contain terms that are also included in the top ten most frequent
terms across all 40 research areas (cf. Figure 8). Three research areas, i.e., Com-
puter Science, Information Science / Library Science, and Food, seem to have
only one term among their top five most frequent terms that is also contained in
the top ten most frequent terms across all research areas.

Table 3. Top five frequent terms in nine research areas

Top1 Top2 Top3 Top4 Top5
Business Economics firms knowledge technology external development

Engineering technology firms external knowledge performance
Operations Research /
Management Science

firms technology external knowledge performance

Computer Science model platform based web framework
Public Ad-ministration knowledge firms model regional development
Information Science /
Library Science

knowledge information ideas creation source

Food food industry case companies value
Telecom model firms mobile external project

Science / Technology interme-diaries technology process public analysis

Because the distinction of research fields based on the data presented in Table
3 is somewhat coarse-grained, we applied a more detailed quantitative analysis
of the distribution of terms in the sets of publications of each research area. The

33

results of this analysis are shown in Table 43.

Table 4. Distributions of the results of the terms analysis

Research Area n S S/n σFi

S

∑
i=1

Fi AP

Business Economics 328 4314 13.15 12.9 22074 0.0156
Engineering 123 2435 19.80 7.19 8716 0.0291

Operations Research /
Management Science

86 2108 24.51 6.11 6744 0.0372

Computer Science 81 444 5.48 0.95 644 0.0179
Public Ad-ministration 30 1143 38.10 2.58 2479 0.0723
Information Science /
Library Science

23 851 37.00 2.35 1652 0.0844

Food 17 453 26.65 1.41 735 0.0954
Telecom 16 492 30.75 1.24 803 0.102

Science /
Technology

14 620 44.29 1.51 1026 0.1182

In Table 4, n denotes the number of publications in a research area, S denotes
the number of terms in a research area, and S/n equals the average number of terms
per publication in a research area. Sum(Fi) denotes the sum of term frequencies
for a research area and σFi denotes the standard deviation of term frequencies in
a research area. Finally, AP denotes the average probability of a term to appear in
a specific publication of a research field. The formula for AP is as follows:

AP =
∑

s
i=1 Fi
S∗n

One can see from Table 4 that there is a regular pattern: A higher number of
publications goes hand in hand with a higher number of terms, a higher standard
deviation of term frequencies, a lower number of (unique) terms per publication
on average, and a lower probability for a term to appear in a specific publication.
Only the research area "Computer Science" breaks this pattern. While Computer
Science has the fourth-highest number of publications, it has the lowest values for
S/n, σFi and Sum(Fi), and almost the lowest AP value.

3.1.4. Discussion and Conclusion

In this section, we tried to answer two questions.
Regarding Qu 3.1.1, based on data retrieved from the ISI Web of Science,

we found that there was a steady growth in the number of publications on OI
across all research areas up to the year 2010. Beginning with 2011, a ceiling
for the number of annual publications appears to have been reached, with strong

3n=Count of publications; S=Count of terms; Fi =Term frequencies per research area;

σ =Standard Deviation;
S

∑
i=1

Fi = Sum(Fi)

34

variations in subsequent years. Business Economics is the research area with the
highest number of publications. We found that research areas were connected
both via multi-classified publications and the top most frequent terms used in
publications classified in different research areas.

Regarding Qu 3.1.2, based on a comparison of terms, term frequencies, and
term distributions between research areas, we found that Computer Science has
characteristics that make this area stand out from the other research areas, with
more than ten publications on OI retrieved. The small number of unique terms (for
the number of publications in the field) and the small frequencies of these terms
seem to indicate that publications on OI in Computer Science are less diverse than
in other fields. This could signal that the body of literature does not yet represent
the potential that OI appears to offer in other research areas, or at least that the
full potential has not yet been investigated and/or reported.

Based on the preliminary results regarding Qu 3.1.2, we believe that more
research on OI in directions not yet addressed by the literature is possible. This
motivated us to perform a more progressive study on OI in the field of Computer
Science, specifically, on OI in RE.

3.2. OI in Software Requirements Engineering

In Section 3.2, we aim to summarize the body of knowledge about the use of
OI in the field of RE. More specifically, we will analyze what uses of OI in the
context of RE have been reported and how OI has contributed to individual steps
of the RE process. We will also report on a mapping study we conducted on the
literature provided in four scientific databases (ISI Web of Science, IEEE Xplore,
ACM Digital Library, and Science Direct).

3.2.1. Introduction

The research presented above indicates that the use of OI in Computer Science is
less diverse than in other fields. Figure 11 shows the percentage of peer-reviewed
publications on OI in software engineering (SE) from 2003 to 2014 in contrast to
the number of publications on OI in computer science (CS), based on data and
classifications from the ISI Web of Science. We see from Figure 11 that the first
article on OI both in SE and in CS was published in 2007. The percentage of OI
publications in SE compared to those in CS is stable from 2007 to 2014 (11% to
20%), with the exception of 2008. In 2008, there was no OI publication in SE.
These numbers clearly show that there is room for research on the use of OI in
SE. In addition, based on these findings, we assume that RE as a subfield of SE
must have even less research on OI. Therefore, we decided to survey existing
research on how OI as a strategy is used in RE to see how OI contributes to
RE. We found very few survey studies dealing with OI in the context of software
engineering. Munir et al. [69] conducted a very comprehensive mapping study
on OI in SE. In a small study, Lorenzi and Rossi [61] discussed the innovation

35

Figure 11. Peer reviewed publications on OI in CS and in SE

potential of open source software in the Italian software industry. However, none
of these studies provides details about applying OI in subfields of SE such as
testing, design, architecture, or RE.

Finally, Edison et al. conducted a study in which they compared the state of
the art with the state of the practice of innovation measurement in the software
industry [24]. Their study presents different types of definitions of innovation for
the software industry but focused neither focus on OI nor on sub-fields of SE.

3.2.2. Systematic Mapping Study Process

We will now present the systematic mapping study process, including the formula-
tion of the research questions, the approach to search string construction and data
source selection, the steps taken to identify primary studies, and the method used
to extract content that will help answer the research questions. We followed the
guidelines on conducting mapping studies by Petersen et al. [80] and Kitchenham
et al. [49].

Questions. Section 3.2 has three main goals. First, we want to get an overview
of the body of published literature on OI specifically focusing on RE. Second, the
RE process typically contains activities such as requirements elicitation, require-
ments specification, requirements analysis, requirements prioritization, require-
ments validation, and requirements management. We are interested in understand-
ing whether certain OI-related concepts are used more or less often in the various
requirements activities. Third, whenever OI ideas and concepts are used in a spe-
cific RE activity, we are interested in understanding what tool support exists and
to what degree OI has been automated for that specific activity.

To achieve the research goals, we defined questions relevant to each goal.
Qu 3.2.1: How many and what types of studies on "OI in RE" have been

published?
Qu 3.2.2: How is OI used in the RE process?
Qu 3.2.3: What is the degree of automation of proposed solutions on "OI in

RE"?
Search Strings and Selected Database. We first identified control studies re-

porting on the application of OI strategies to RE. We then used the keywords

36

Figure 12. Identification steps

highlighted in the control studies to design the search strings. Next, we searched
frequently used digital databases for relevant literature.

The principles for designing the search strings were:
a) The title of the publication should contain keywords related to OI.
b) Either the title, abstract, or author keywords should contain words related to

RE.
Since the concept of OI was proposed in 2003, we only searched the time

period from 2003 to 2016.
Identification of Studies. We performed five steps to identify relevant studies,

as shown in Figure 12. To reduce the risk of excluding relevant studies on the one
hand and including irrelevant studies on the other hand, we defined three groups
of inclusion/exclusion criteria for each of the selection steps (step 3 to step 5), as
suggested by Petersen and Ali [79]. The inclusion/exclusion criteria are shown in
Table 5.

Step 1: We identified three control papers [52, 58, 63], and used the keywords
highlighted in these control papers to design our search strings. The keywords
derived from the three control papers are shown in Table 6.

Step 2: We followed the string design principle described in the previous sec-
tion to design the initial search strings. Then we applied these search strings to
four frequently used digital databases: ISI Web of Science, IEEE Xplore, ACM
Digital Library, and Science Direct. Because the formats of the search string used
by each database differ, we had to adjust the search strings to get reasonable re-
sults. After several rounds of revisions, we confirmed the search string for each

37

Table 5. Inclusion and exclusion criteria
Criteria

For Step 3
Inclusion

Written in English
Peer-reviewed papers
Studies from 2003 to 2016
The study must be accessible in full text.

Exclusion
Non-English papers
Duplicate studies

For Step 4
Inclusion

Relates to Innovation in RE domain
The studies pertaining to the scope of open source software used as OI examples

Exclusion
Study of Innovation in non-software domain
Research on OI, but does not relate to RE
Studies about RE, but does not relate to OI

For Step 5
Inclusion Studies with (expected) contribution for OI in RE
Exclusion Studies without (expected) contribution for OI in RE

Table 6. Keywords per related field

Related fields Keywords
OI Open innovation; OI; Open-innovation; Innovation; open source
RE Requirement(s); Requirement(s) Engineering

database. The confirmed search strings are shown in Table 7. Next, we executed
those strings on the digital databases and extracted 504 papers in total.

Table 7. Search strings

Database Search strings

Web of
Science

TI=("Open Innovation" OR open-innovation OR innovation OR OI OR
"open source") AND (TI=("requirement*" OR "requirement* engineer*")

OR TS="requirement* engineer*") Indexes=SCI-EXPANDED, SSCI,
A&HCI, CPCI-S, CPCI-SSH Timespan=2003-2016

IEEE Xplore

((("Document Title":open innovation) OR (p_Title:OI) OR
(p_Title:open-innovation) OR (p_Title:innovation) OR

(p_Title:openness)) AND ((p_Abstract:requirements engineering)
OR (p_Author_Terms:requirements engineering) OR (p_Abstract:requirement*)

OR (p_Author_Terms:requirement*)))

ACM Digital
Library

{ acmdlTitle:(+open +innovation OI innovation
requirements engineering requirements requirement) AND

recordAbstract:(requirements engineering requirement) AND
keywords.author.keyword:(requirements engineering requirement) }

Science
Direct

("open innovation" OR "OI"
OR "open-innovation" OR innovation OR "openness") AND
("requirements engineering" OR "requirement engineering")

Step 3: We applied the inclusion/exclusion criteria set for step 3 to filter the
504 papers found in step 2. We found 12 duplicate papers, which were excluded.

Step 4: From the remaining 492 papers, we removed 460 papers that were
found to be not relevant after checking their title, abstract, and keywords and
applying the inclusion/exclusion criteria set for step 4. We removed those papers
as being not relevant to OI in RE even though OI and RE were keywords found in
the title or abstract. For example, one paper has OI in its title but presents "water
requirements" in the abstract.

38

Figure 13. Time distribution of studies

Step 5: Then we used the inclusion/exclusion criteria for step 5 to analyze the
exclusion criteria for step 5 to analyze the content of each of the remaining 32
papers, and identified the papers pertaining to the scope of our study. At the end,
20 papers were found to be relevant, including the three control papers.

Data Extraction. To answer questions Qu 3.2.1 to Qu 3.2.3, we extracted the
relevant data from the set of identified papers. The properties of the extracted data
and the relationship between the data and the Qus are shown in Table 8.

Table 8. Data extraction properties mapped to research question

Category Properties Qus
General information Title, Year of paper, Abstract Qu 3.2.1, Qu 3.2.2

Study type Proposal solution, Evaluation, Validation, etc. Qu 3.2.1
Research methods Case study, Survey, etc. Qu 3.2.1
Research problem Subject, Research questions Qu 3.2.1, Qu 3.2.2, Qu 3.2.3

Outcomes Affected steps of the RE process Qu 3.2.2, Qu 3.2.3

3.2.3. Results and Analysis

In this section, the results of our mapping study will be reported in three parts
according to the Qus. First, we will report the overview information we extracted
regarding time distribution, research method, and type of study. Then we will
focus on the content of the papers to sum up the existing contributions of OI in
RE.

Overview Information. To answer Qu 3.2.1, we analyzed the general informa-
tion contained in the 20 identified papers, i.e., the year of publication, the research
method used, and the type of study. Figure 13 shows the time distribution of the
identified papers based on their publication years. We see from Figure 13 that
during the period from 2003 to 2005, there was no identified paper. During the
period from 2006 to 2016, only one paper each was published in 2006, 2010, and
2013, two papers each were published in 2009, 2011, and 2015, three papers were
published in 2012, and four papers each appeared in 2014 and in 2016.

Next, we classified the selected papers according to the type of study and the
research method used. According to Wieringa et al., the main study types are
"a new solution, evaluation research, validation research, and opinion research."

39

Figure 14. Classified activities of RE that OI may affect

[101]. To classify the research methods used in the selected papers, we used the
categories established by Creswell in 2003 [18]: qualitative approach (i.e., case
study, phenomenological research, etc.), and mixed approach (i.e., transformative
research, framework). The classification is shown in Table 9. We see from Table
9 that there are nine evaluation studies among the selected papers. The most
frequently used research method is transformative research, with seven papers in
this category.

Table 9. Classification based on the type of study and the research methods used

Type of Study
Solution Evaluation Validation Opinion Total

Research Methods

Experiments R_14 [76] 0 R_8 [45] 0 2

Survey 0
R_6 [53]; R_12 [50];

R_13 [7]
R_16 [59] 0 4

Case study R_19 [86] R_9 [68]; R_20 [44] R_5 [103]; R_18 [72] R_4 [66] 6
Phenomenological 0 R_15 [52] 0 0 1

Transformative
R_1 [31]; R_2 [63];

R_10 [82]
R_7 [26]; R_11 [58];

R_17 [34]
R_3 [83] 0 7

Total 5 9 5 1

OI Used in the RE Process. This section answers Qu 3.2.2. The RE process
is organized as a set of activities aimed at transforming input into output [14, 62].
Among the selected papers, we found that the following RE activities were ad-
dressed: stakeholder identification, requirements extraction, requirements prior-
itization, requirements validation, and requirements management. In addition,
some papers addressed the role of OI in the RE framework as a whole, including
all activities of the RE process.

Table 10 shows to which RE activities OI was applied in the set of selected
papers. The frequency with which RE activities or the RE framework are ad-
dressed is shown in Figure 14. The numbers add up to more than 20 because
some papers describe the use of OI applied to several activities. Papers R_8,
R_10, R_11, R_16, and R_19 discuss how OI is used in the RE framework as a
whole as well as in select RE activities. In 50% of the papers, OI was applied
to the RE framework as a whole. The most frequent activities to which OI was
applied are requirements extraction (8 occurrences), followed by RE management
(6 occurrences) and stakeholder identification (4 occurrences). The application of

40

OI in the context of requirements prioritization and requirements validation was
only mentioned once for each activity.

Table 10. Classification based on OI used in the RE process

Reference
No.

Stakeholder
Identification

Requirements
Extraction

Requirements
Prioritization

Requirements
Validation

Requirements
Management

Framework

R_1 x
R_2 x
R_3 x
R_4 x
R_5 x
R_6 x
R_7 x
R_8 x x
R_9 x
R_10 x x
R_11 x x x x
R_12 x
R_13 x
R_14 x
R_15 x
R_16 x x x
R_17 x
R_18 x
R_19 x x x x
R_20 x

Stakeholder Identification. There are four papers related to stakeholders.
Two papers (R_1, R_4) propose new approaches for identifying and discovering
new stakeholders. One paper (R_11) presents a research agenda and a framework
"along with framing model to help researchers frame and break down their re-
search questions", including identifying stakeholders. By proposing a web-based
process, another paper (R_14) attempts to enhance stakeholders’ contributions in
the software engineering process.

Requirements Extraction. Eight papers connect OI and requirements extrac-
tion. Four papers (R_7, R_8, R_18, R_20) are related to extraction techniques.
Paper R_7 verifies a method for obtaining new ideas based on semantic recog-
nition technology to support innovation in RE. Paper R_8 provides a framework
that can "support pre-clustering and evolvement of open innovation input before
transfer it into the company". Paper R_18 presents an approach for an automated
requirements elicitation process using the requirements and ideas from end users
discovered in open source software (OSS) communities. Paper R_20 proposes
a process based on customer requirements collected from previous products and
problem analyses to extract new software requirements. The four remaining pa-
pers (R_10, R_13, R_16, R_19) focus on the impact of an OI strategy on re-
quirements extraction. In Paper R_10, a framework is designed for assessing the
innovation capabilities of development teams in the early stages of RE, especially
with regard to a new features-design process. In Paper R_13, a research plan
is designed to verify whether the identification and acquisition of requirements

41

meet the "Twin Peaks" model in an open source development environment. Paper
R_16 proposes a model (RAMBO) focusing on the interaction and overlap be-
tween the internal RE process of the focal firm and its connected OSS ecosystem,
to better manage the challenges implied by OI. Paper R_19 validates the impact
of "informalist" requirements extraction, as part of a RE framework, on software
development in an open source software development environment.

Requirements Prioritization. There is only one paper (R_11) that has rele-
vant content regarding the contribution of OI to the activity of requirements pri-
oritization. This paper provides a research agenda that guides researchers on how
to frame and break down research questions related to requirements prioritization,
considering the different angles implied by the OI model.

Requirements Validation. There is one paper (R_19) that mentions the vali-
dation of requirements with the help of OI as part of an overall RE framework.

Requirements Management. Two papers (R_5, R_12) refer to the challenges
and risks of sharing information, including sharing requirements with partners
in the context of OI. Paper R_5 highlights that "managing requirements in an
open innovation context is challenging as requirements are freely available for
several potentially contributing companies." Paper R_12 analyzes what possible
challenges the RE process would face when using OI. For instance, the authors
found that managing context and mapping requirements to actors are two highly
interconnected and challenging RE tasks.

Based on the interoperability between innovation and requirements manage-
ment, paper R_6 proposes the L model. The L model improves the quality of
software development by improving the quality and speed of innovation within
complex systems.

RE Framework. Ten papers relate OI to RE frameworks (R_2, R_3, R_8,
R_9, R_10, R_11, R_15, R_16, R_17, and R_19). There are two papers (R_15,
R_17) that discuss the differences in RE practice and the RE process between the
development environment of OSS and that of closed source software. Four papers
(R_2, R_3, R_9, and R_19) introduce the new RE frameworks or processes that
support innovation.

One paper (R_2) demonstrates an RE approach to support the optimization of
innovation (TI) assessment. Another paper (R_3) emphasizes the need to con-
sider the business analytics role of RE in Product Lifecycle Management (PLM)
when high PLM data is to be turned into a successful market-oriented innova-
tion management strategy. The paper (R_9) proposes a process that integrates RE
with innovation. The paper (R_19) validates the impact of "informalist" software
RE in an open source software development environment, including requirements
extraction, validation, and management.

Automation of Proposed Solutions on "OI in RE". This section answers Qu
3.2.3. We found only one paper (R_18) that presents an automated approach.

The authors of paper R_18 present an approach for the identification of an
automated requirements elicitation process in OSS communities. The goal of this

42

paper is to address the relationship between the role of end users and the influence
of the development processes in OSS. This paper can be seen as a preliminary
guideline for the organization of community-oriented software development.

3.2.4. Discussion

Regarding our three research questions, our findings can be summarized as fol-
lows.

Regarding Qu 3.2.1, we found only 20 papers that connect OI strategy and RE.
Among these 20 papers, OI strategy in RE was limited to the context of OSS de-
velopment (papers R_5, R_13, R_14, R_15, R_16, R_17, R_19). More than half
of the selected primary studies contained evaluation or validation. Only one pa-
per (R_4) was purely an opinion paper. This indicates that published research on
OI in the context of RE is of practical value for industrial software development.
More than half of the selected primary studies include an evaluation or validation.
Only one paper (R_4) is purely an opinion paper. This indicates that published
research on OI in the context of RE is of practical value for industrial software
development.

Regarding Qu 3.2.2 and Qu 3.2.3, we found that there appears to be a lack of
research on the use of OI for requirements prioritization and requirements valida-
tion, as there was only one paper each dealing with these topics, i.e., papers R_11
and R_19, respectively. In addition, we found only one paper (paper R_18, deal-
ing with OI in the context of requirements extraction) that presented a solution
approach with tool support. This indicates that there is little automation support
mentioned in the literature on the use of OI strategies in RE.

We are aware that regarding the use of OI strategies in the context of RE, much
more research is ongoing than what has been published in research papers. For
example, the field of OSS development has been studied well and different busi-
ness models combining open and closed development have been developed. Sim-
ilarly, crowdsourcing is emerging as another way to open up traditionally closed
work settings. However, our study, as limited as it may be, provides some indi-
cation about facets of OI in RE that have been researched to a greater or lesser
extent. For example, we can say that, similar to many other methods applied in
SE (and specifically in RE), OI could be used in two flavors, either in the form
of an intrusive approach or in the form of a non-intrusive approach. Our study
results suggest that currently, the way that companies implement OI is normally
intrusive. For example, the way a company reaches out to the OSS community
in order to inject innovation into their RE processes is usually to participate in
OSS projects with their own human resources. Alternatively, companies may use
surveys and interviews as instruments to extract innovative impulses from their
user base. Both approaches are highly intrusive and effort-intensive, either on
the company’s or the users’ side (or both). The upside of using this approach is
that engineers establish a relationship with their user community and thus may

43

get much first-hand, high-quality input. The downside of intrusiveness is that end
users might feel disturbed. Thus, not only is the intrusive approach costly, but it
might also induce self-selection bias and researcher bias, as well as other negative
effects.

3.2.5. Conclusion

The application of OI strategies in RE has not been researched much to date,
especially with regard to using OI in the prioritization and validation steps of the
RE process.

Summarizing, we found that 20 primary studies found in the period 2003-2016
report on results regarding the application of OI in RE. Half of these studies report
on the application of OI in RE as a whole. Only one paper each was found to be
related to requirements prioritization and validation. None of the primary studies
present proprietary tool support for OI in RE. Only one study presents a method
for automatic requirements extraction in OSS projects that can be implemented
using standard machine learning tools.

Acknowledging the lack of published research on the use of OI strategies in
specific RE activities, i.e., prioritization and validation, as well as the lack of
reported tool support, we see new opportunities for research on automated and
low-cost methods for applying OI strategies in RE.

3.2.6. Threats to Validity

Like all empirical studies, our mapping study has limitations. In the following, we
will describe the threats to construct, internal, and external validity that we faced.

Construct Validity. In this mapping study, the greatest possible threat to con-
struct validity is the co-existence of multiple definitions of OI. In order to control
this threat, we decided to use the concept of OI as proposed and defined by Ches-
brough in 2004 [17].

Internal Validity. We faced several threats to internal validity caused by the
subjectivity imposed during several steps of the paper selection and analysis pro-
cess.

First, the choice of the data sources from which to extract the primary studies
is subjective. We tried to control this threat by choosing a standard set of digital
databases typically used in software engineering survey studies.

Second, the construction of the search strings might have been inappropriate
and might have created either too many false positives, imposing an inordinately
high workload on the involved researchers for filtering these out in later steps of
the selection process, or simply missed relevant publications. We tried to control
this threat by identifying three control papers that were clearly within the scope
of our study. We used the keywords of these papers to construct our search string.
We also checked whether the control papers were retrieved when we applied the
search string and whether they were contained in the final set of primary studies

44

after all filtering steps had been performed.
Third, all papers selected in the first step of the search, when the search string

was applied, had to be filtered using the step-by-step approach described in Sec-
tion 3.2.2. Each of these steps had to be conducted manually and thus was subject
to the threat of subjective bias. We tried to control this threat by using previously
defined inclusion/exclusion criteria in each selection step.

External Validity. The 20 papers identified in the mapping study are related to
the field of software engineering, and thus the findings are restricted to that field.
Since we retrieved the papers from data sources that typically archive research
publications, we might have missed much of what is going on in the software
industry with regard to OI and RE simply because it is never published. On the
other hand, since many of the selected papers report on industry case studies, we
believe that our findings are not completely irrelevant for software industry but
are indeed beneficial for both industry and academic research.

3.3. Summary

Our analysis of the state of the art was conducted on two levels of abstraction. On
the first level, we first compared the number of non-professional articles (searched
by Google Scholar) with that of peer-reviewed articles (searched by the ISI Web
of Science). We found that the number of non-professional articles was far higher
than that of peer- reviewed articles in research databases. We assumed that this
means that people are interested in OI, but that relevant research is not abundant.
Next, we studied the distribution of OI research articles in the ISI Web of Sci-
ence database. We found that in the field of computer science, especially in the
SE field, the number of OI research publications were lower than that in other
fields. When analyzing peer-reviewed literature on OI, we observed that the field
of computer science seems to have significantly less diversity than all other fields
with more than ten publications indexed in the ISI Core Collection. Our prelim-
inary interpretation of this observation is that the topic of ‘Open Innovation’ has
not yet been researched and discussed in a depth and breadth comparable to other
fields, in particular Business Economics, Engineering, and Operations Research
Management Science.

On the second level, we conducted further research about OI in RE. We chose
four commonly used research databases as data sources and completed a mapping
study. We found 20 primary studies from the period 2003-2016 that report on
results regarding the application of OI in RE. Half of the studies report on the
application of OI in RE as a whole. Only one paper each is related to require-
ments prioritization and validation. None of the primary studies present propri-
etary tool support for OI in RE. Only one study presents a method for automatic
requirements extraction in OSS projects that can be implemented using standard
machine learning tools. In summary, the application of OI strategies in RE has
not been studied much, especially with regard to using OI in the prioritization and

45

validation steps of the RE process. In addition, there is a lack of reported tool
support.

Based on this analysis, we saw an opportunity to develop automated and low-
cost methods for applying OI strategies in RE. As discussed above, implementing
OI by using online open sources (data and/or people) has been used for the pur-
pose of requirements elicitation and prioritization. However, OI in RE has not yet
been used for implementing more complex ideas about the relationship between
requirements and the value of a software product, like those suggested by Noriaki
Kano. This motivated us to design an automatic classification method based on
the traditional Kano model [108] theory, the OIRE method. In the next chapter,
we will present the OIRE method in detail.

46

4. OIRE METHOD

In this chapter, we will introduce the components of the OIRE method and how
we designed each component.

The components of the OIRE method and the order in which they are typically
used are shown in Figure 15. A user provides input data collected and prepro-
cessed from the Internet, e.g., from online reviews. The input data must cor-
respond to self-contained English sentences (lines of text) that relate to product
features. As shown in Figure 15, the OIRE method comprises four components,
i.e., Sentence Classification, Sentiment Mining, Kano-like Processing, and Visu-
alization. In the following, we will use examples to illustrate the functioning of
each component of the OIRE method.

Figure 16 shows how the input data must be organized. A product may have
several features. All text lines relating to the same feature are stored in one input
file. The opinions of reviewers about features of a product are captured by a set
of input files, each file corresponding to one feature and containing all text lines
related to this feature.

This chapter is structured as follows. In Section 4.1, we will outline the algo-
rithm design and validation of Component 1 and in Section 4.2, that of Component
2. In Section 4.3, we will introduce the algorithm design and validation of Com-
ponent 3. In Section 4.4, we will show the outputs of Component 4. We will
use application examples to verify the applicability of the algorithms designed for
Component 1 and Component 2. For Component 3, we will use simulations to
verify the availability of the algorithms. In Section 4.5, we will show the work
process of implementing the OIRE method.

Figure 15. The composition of the OIRE method

47

Figure 16. Expected inputs for the OIRE method

Figure 17. Example input and expected output of Component 1

4.1. Component 1 - Sentence Classification

Since the input data of this step already contains only feature-related text, in this
process we use machine learning methods to classify the text lines of the input into
two classes, i.e., "functional" and "dysfunctional". The unit of analysis is one line
of text. Text classified as functional corresponds to text lines stating the presence
of a feature, while text classified as dysfunctional corresponds to text stating the
absence of a feature [109]. Figure 17 shows the example input and the expected
output of Component 1. Assume that we have an input file that has twelve text
lines related to Feature A of a product. We realize that users of the OIRE method
might not be familiar with the various machine learning methods. Therefore, in
Component 1, we provide ready-to-use trained models.

48

Figure 18. The process of Component 1

4.1.1. Algorithm Design

The process of classifying feature-related text lines into the functional and dys-
functional dimensions of the traditional Kano model is shown in Figure 18. We
apply supervised machine learning methods in this step. The process consists of
four steps.

Step 1: To be able to select a suitable machine learning method for our clas-
sification task, we must analyze the performance of candidate machine learning
methods. To do so, we need to label training and test data sets.

Our input is unlabeled, which means that if we cannot find suitable existing
labeled data sets for our purpose, we must create such data sets manually. We
can do this, for example, by taking a subset of the input data set and analyzing
each text line relating to a feature as follows: If a text line contains words of
affirmation or complaint about using/having a feature, it means the feature exists
or is imagined as being present, and thus we label the related text line as belonging
to the category “functional”. If a text line contains words that express affirmation
or complaint about the lack of a feature, it means the related feature does not exist,
and thus we label the related text line as belonging to the category “dysfunctional”.
However, when the subjunctive mood is used, we classify the text line according
to the imagined or desired part of the text line. For example, when someone says,
"I would be happy if you could add this feature", even though this means the
feature is still missing, the text line expresses the feeling a person has when they
imagine that the feature exists. Hence, we classify this text line as belonging to
the category “functional”.

The total size of the labeled data set should be large enough to facilitate proper
training and small enough not to be time-consuming. We suggest a data set size
of 100-250 labeled text lines. Table 11 shows some example text lines that we
labeled as either functional or dysfunctional.

Step 2: We split the set of labeled text lines into a test and a training data set.

49

Table 11. Examples of labeled text lines

Examples

Functional

The plugin function is good.
I have found that this method works.
I use "checkstyle" to analyze my code.
I cannot figure out why people want this button here.
I would be happy if you could add this feature.

Dysfunctional

I miss the hierarchical (frame-based) view.
The link is not available now.
Basically, I’d like to avoid to do this in a js file.
So far, I’ve had no luck to use the Bespin one in Pydev.
I would be sad if this feature was deleted.

The ratio of the lines of text of the training data set to those of the test data set is
80:20.

Step 3: We used the training data set to train the classification models and
the test data set to check the accuracy of the output of the models. We selected
several supervised machine learning methods for comparison, e.g., Naïve Bayes,
MaxEnt, Decision Trees, Support Vector Machines (SVM), and others.

We use a confusion matrix [93] to calculate the performance of each method.
Table 12 shows the confusion matrix for our classification problem. Based on
the predicted results of each model, we calculated the accuracy 1 of each trained
classification model as well as FPV2 (Functional predictive value), which shows
the proportion of the functional text lines that are predicted correctly, and DPV 3

(Dysfunctional predictive value), which shows the proportion of the dysfunctional
text lines predicted correctly.

Step 4: We selected the best-performing classification model for our original
input and classified each text line as either functional or dysfunctional.

Table 12. The confusion matrix used to assess the performance of supervised machine
learning methods

Predicted Condition
Functional Dysfunctional

True Condition
Functional True Functional (TF) False Functional (FF)

Dysfunctional False Dysfunctional (FD) True Dysfunctional (TD)

4.1.2. Application Example for Component 1

Next, we will demonstrate the applicability of the algorithm of Component 1 with
an example. We applied machine learning methods to determine whether a text

1Accuracy = (T F +T D)/(T F +FF +FD+T D)
2FPV = T F/(T F +FF)
3DPV = T D/(FD+T D)

50

line extracted from an online open source corresponds to an answer of the func-
tional or dysfunctional question asked in the traditional Kano model.

Input: We used a data set containing 1,493 lines of text from an app store
as input to our method. This data set was derived from an original set of 92,217
reviews, which was cleaned in order to make it appropriate for further process-
ing. In addition, we removed stop words (e.g., "a", "an", "the", etc.) as well as
punctuation and strange symbols. We also removed text lines containing less than
20 words because we think that long text lines may be able to comprehensively
express a reviewer’s real thoughts.

Approach: In order to classify the input text lines and transform them into
input for Kano-like models, we first created a "functional-dysfunctional" corpus
for use as the training and test data sets for selecting machine learning methods.
We followed the rules described in Section 4.1.1. We needed approximately four
person-hours of effort to manually label 250 lines of text. The split between text
lines labeled as functional and dysfunctional was 50:50.

We compared five frequently used machine learning methods, i.e., Naïve Bayes,
MaxEnt, Decision Trees, Random Forest, and SVM. We used the confusion ma-
trix (cf. Table 12) to calculate the performance of each method. To check whether
the proposed ratio of 80:20 between the training and the test data set really gets the
best results, we varied the size of the training data set in the range from 50 to 200
with a fixed test data set of size 50. Thus, we checked for the ratios 50:50 (training
data set size = 50), 66:34 (training data set size = 100), and 80:20 (training data
set size = 200). Table 13 shows the results of the experiment.

We see from Table 13 that the Naive Bayes method achieved the highest av-
erage FPV (90%), while the SVM method achieved the highest average DPV
(76.7%) and the highest average overall accuracy value (64.2%). For the training
data set containing 200 text lines, the methods MaxEnt and SVM had the highest
accuracy (65%) and the closest FPV and DPV values. In addition, the standard
deviations of the accuracy values of the MaxEnt and SVM methods (0.006 and
0.014, respectively) from the three tests are very small. This suggests that the per-
formance of the MaxEnt and SVM methods is stable and no further improvement
can be expected for larger training data sets. However, although the accuracy val-
ues are the highest in Table 14 when the MaxEnt and SVM methods were used,
the absolute values (65% for both methods) are not very high. Thus, to further
improve accuracy, we decided to use the training data set of size 200, then imple-
ment both the MaxEnt and the SVM methods together, and then only keep those
cases where the predictions of the two methods were consistent. According to the
experiment results, we found that the two methods yielded the same classifications
for 44 out of 50 text lines in the test data sets. A further analysis showed that 15
out of 22 text lines were accurately classified as functional (FPV = 68%) and 17
out of 22 text lines were accurately predicted as dysfunctional (DPV = 77%). This
means that the overall accuracy increased from 68% to 73%. Hence, we decided
to use MaxEnt together with SVM in our application example and only keep those

51

cases where the predictions of the two methods were consistent.

Table 13. Experiment results

Methods Indicator
Size of Training Set

(number of text lines)
Average

Value
Standard

Deviation (σ)
50 100 200

Naive
Bayes

FPV 100% 100% 70% 90% 0.173
DPV 0 0 45% 15% 0.260

Accuracy 50% 50% 57.5% 52.5% 0.043

MaxEnt
FPV 45% 40% 60% 48.3% 0.161
DPV 75% 80% 70% 73.3% 0.076

Accuracy 60% 60% 65% 61% 0.006

Decision
Trees

FPV 50% 40% 40% 43.3% 0.058
DPV 55% 80% 80% 71.7% 0.144

Accuracy 52.5% 60% 60% 57.5% 0.043

Random
Forest

FPV 60% 70% 60% 63.3% 0.058
DPV 35% 50% 45% 43.3% 0.076

Accuracy 47.5% 60% 52.5% 53.3% 0.063

SVM
FPV 45% 45% 65% 51.7% 0.115
DPV 80% 85% 65% 76.7% 0.104

Accuracy 62.5% 65% 65% 64.2% 0.014

Table 14. Prediction accuracy of Component 1

Lines of Texts Proportion Samples
Correct

Classification
Functional 628 55% 126 116

Dysfunctional 523 45% 105 61
Total 1151 100% 231 173
FPV 92%
DPV 58%

Accuracy 75%

Result: After implementing the classification method in Component 1, we
found that 1,151 out of 1,493 lines of text were classified into the same categories
when using both SVM and MaxEnt. 628 lines of text were classified as functional
and 523 were classified as dysfunctional.

To estimate the actual classification accuracy of Component 1, we used the
Probability Proportional to Size (PPS) method [89].We randomly chose 20% of
the total number of classified text lines and then manually checked the correctness
of the classification of the text lines contained in this sample. The results of this
performance check are shown in Table 14. We see that the overall accuracy of
Component 1 is 75%. The accuracy of classifying text lines into the category
“functional” is very high (FPV = 92%), while the accuracy of classifying text

52

Figure 19. Example input and expected output of Component 2

lines into the category “dysfunctional” (DPV = 58%) is relatively low.

4.2. Component 2 - Sentiment Mining

In this section, we will first present the dictionary-based method [108] we de-
signed to calculate the sentiment score of each text line in each of the two classes,
functional and dysfunctional (output from Component 1). Next, we will classify
the polarity of the sentiment (from Very Negative to Very Positive) of each text
line according to its sentiment score and translate it into the corresponding Kano
score. For example, the sentiment "Very Negative" corresponds to a Kano score
of "-2" and the sentiment "Very Positive" corresponds to a Kano score of "+2".
Figure 19 shows the example input and the expected output of Component 2.

4.2.1. Algorithm Design

The purpose of this process is to conduct opinion mining to attach sentiment
scores to each of the labeled text lines. According to Reagan et al.’s study [81],
sentiment detection methods can be one of the following types:
• Dictionary-based methods [51],
• Supervised learning methods [20],
• Unsupervised / Deep learning methods [90].

We want to classify text lines into five categories, i.e., Very Positive, Positive,
Neutral, Negative, and Very Negative. To do so, multiclass instead of binary clas-
sification methods are needed. However, multiclass classification is more intricate

53

than solving binary classification problems [4]. In other words, using supervised
machine learning methods is costlier. Since it is easy to implement, we decided to
design a dictionary-based method to classify the polarity of sentiments contained
in each of the labeled text lines received from Component 1 of the OIRE method.

Step 1: We first created a special emotion dictionary consisting of seven cor-
puses, i.e., containing "Positive Emotional Words" (PEW), "Very Positive Emo-
tional Words" (VEPW), "Negative Emotional Words" (NEW), "Very Negative
Emotional Words" (VNEW), "Adversative Words" (AW), "Negative Words" (NW),
and "Intense Words" (IW), respectively.

The PEW and NEW corpuses of our emotion dictionary were created based on
a sentiment dictionary consisting of two files provided by Minqing Hu and Bing
Liu [42]. The two files contain 2,041 positive words (file: positive-words.txt)
and 4,818 negative words (file: negative-words.txt), respectively. The IW corpus
refers to the intense corpus file of the HowNet sentiment dictionary collected by
Qiang Dong and Zhendong Dong [23]. The IW includes 71 words. To create
VPEW, VNEW, AW, and NW, we used the world’s largest and most trusted free
online synonyms dictionary, Thesaurus.com. We first identified a keyword, such
as the word "amazing", as a keyword of VPEW, or the word "awful" as a keyword
of VNEW. Then we searched for the synonyms of this keyword. Next, we manu-
ally checked all the synonyms suggested by the synonym dictionary. This is how
we finally got our word lists for the VPEW, VNEW, AW, and NW corpuses. We
also removed those very positive words listed in VPEW from "positive-words.txt"
(PEW) and those very negative emotional words listed in VNEW from "negative-
words.txt" (NEW). Table 15 shows the total numbers of words and example words
of each corpus of the emotion dictionary.

Table 15. Emotion dictionary with example words

Corpus No. of Words Examples
PEW 2013 like, good, well, accept
NEW 4794 bad, sad, cannot, delete

VPEW 28 amazing, love, brilliant
VNEW 24 awful, worst, terrible

IW 71 very, much, extremely
AW 9 but, however

Emotion
Dictionary

NW 18 no, not, never, aren’t

Step 2: We split each labeled text line into words and searched for each word
in the emotion dictionary in order to identify its sentiment polarity. When one
word was confirmed as being included in one corpus of our emotion dictionary,
we assigned a sentiment score to this word according to the different corpuses to
which it belongs. For example, if a word was included in VPEW or in VNEW, the
sentiment score of this word was 100 or -100. If this word was included in PEW
or in NEW, the sentiment score of this word was 1 or -1.

54

Figure 20. The schematic process of calculating the sentiment score in the dictionary-
based method

Step 3: We calculated the total sentiment score of each text line and trans-
ferred it to the Kano score (ranging from -2 to 2, i.e., from Very Negative to Very
Positive), which constitutes the input needed for Kano-like models. In Figure 20,
a simplified algorithm is used to show the schematic process for automatically cal-
culating the sentiment score when using our dictionary-based method. The real
script is implemented in the R language with over 100 lines of code.

Instead of classifying sentiments into three categories, i.e., positive, negative,
and neutral, like other researchers have done, we need to classify functional and
dysfunctional text lines into five categories, i.e., Very Positive (sentiment score >=
100), Positive (0 < sentiment score < 100), Neutral (sentiment score = 0), Negative
(-100 < sentiment score < 0), and Very Negative (sentiment score < = -100).

Table 164 shows examples of how to calculate the sentiment score and the
Kano score of text lines using the algorithm presented in Figure 20. The words in
different colors indicate the reference to different emotion corpuses as shown in
Table 15. For example, words in red refer to the PEW corpus.

Table 16. Examples of calculating the sentiment and Kano scores for text lines

Text Line Sentiment Score Polarity Kano Score
i like (a) this function very much (b) 10000 Very positive 2

why cannot (c) you delete (c) this function -2 Negative -1
i hate (d) this feature -100 Very Negative -2

this feature is not (e) bad (c) 1 Positive 1
the software allows user to open files automatically 0 Neural 0

4.2.2. Application Example for Component 2

Next, we will demonstrate the applicability of the algorithm of Component 2 with
an example.

4a = words from PEW, b = words from IW, c = words from NEW, d = words from VNEW, e =
words from NW.

55

Input: The output of the application example of Component 1 (cf. Section
4.1.2), which contained two categorized files. One file has 628 lines of functional
text, and the other file has 523 lines of dysfunctional text. These two files were
used as the input of Component 2. In the remainder of this section, we will use
"functional input" and "dysfunctional input" when referring to these two files.

Approach: We ran the dictionary-based method as described in Section 4.2.1
to calculate the sentiment and Kano scores of each line of text in the functional
and dysfunctional inputs separately. Then we used the PPS method again to check
the performance for 20% of the text lines contained in each input. To be able to
manually check the emotions expressed in the sampled text lines and thus verify
the accuracy of the classifications, we used the guidelines presented in Table 17.

Result: After implementing Component 2, we classified the text lines into
five sentiment categories. The classification details as well as the corresponding
degree of accuracy for the samples drawn from each class are presented in Table
18. We see from Table 18 that the highest accuracy value (93%) was achieved for
the category Very Positive. 118 out of 127 text lines were predicted accurately.
The lowest accuracy value (58%) was achieved for the category Positive, closely
followed by the category Very Negative (59%). Nonetheless, due to the larger
number of text lines classified as Very Positive (55% of 231) and a very high
degree of accuracy for this category, the overall accuracy of Component 2 of our
method reached 81%.

Table 17. Evaluation criteria for manually checking sentiment classifications

Sentiment
Classification

Evaluation Criterion

Very Positive
When the content shows a very happy or excited

mood or high satisfaction.

Positive
When the content shows a happy or excited mood
or satisfaction without a very strong expression.

Neutral
When the content does not clearly show positive or

negative emotions or the content has contradictory expressions.

Negative
When the content shows an unhappy or disappointed

mood without a very strong expression.

Very Negative
When the content shows a very unhappy or

disappointed mood.

4.2.3. Overall Performance of Component 1 and Component 2

To see the combined accuracy of both components 1 and 2, we consider those
lines of text that were classified into the correct categories both in Components 1
and 2 as the final correct classifications. As described in Sections 4.1 and 4.2, the
analysis of classification accuracy was done manually based on a sample of 231
text lines (out of a total of 1,151 classified text lines). The results of this analysis
are shown in Tables 19 and 20, which present the results for the text lines classified

56

Table 18. Prediction accuracy of Component 2

Lines of
Text

Proportion Samples
Correct

Classification
Accuracy

Very Positive 629 55% 127 118 93%
Positive 154 13% 31 18 58%
Neutral 135 12% 27 20 74%

Negative 146 13% 29 23 79%
Very Negative 87 7% 17 10 59%

Total 1151 100% 231 188 81%

in Component 1 as functional and dysfunctional, respectively. When comparing
the results shown in Tables 19 and 20, we observe that the overall accuracy of text
lines classified as functional (81%, i.e., 102 out of 126 text lines in the sample)
is much higher than the accuracy of text lines classified as dysfunctional (46%,
i.e., 48 out of 105 text lines in the sample). The overall weighted average of the
accuracy of all 231 text lines of the sample is 65%.

If we take a closer look at the details of Tables 19 and 20, we can see that
classification accuracy varies a lot. For example, the highest overall accuracy is
92% for text lines expressing very positive emotions about something that exists
(functional). On the other hand, the overall accuracy of dysfunctional text lines
is very low, especially when expressing very positive (32%), positive (40%), and
neutral (47%) emotions. While the accuracy of text lines classified as functional is
generally better than that of text lines classified as dysfunctional, those text lines
classified as dysfunctional that express negative and very negative emotions have
higher accuracy (74%, resp. 60%) than the corresponding text lines classified
as functional (60%, resp. 57%). We also observe that the main cause for low
overall accuracy can be traced to both components of the method depending on
the sentiment classification. For example, the low overall accuracy of 32% for text
lines classified as dysfunctional and expressing very positive emotion is mostly
due to the low accuracy in Component 1 (36%). On the other hand, the relatively
low overall accuracy of 56% for text lines classified as functional and expressing
positive emotion is mostly due to low accuracy in Component 2 (56%).

When comparing the accuracy of the method applied in Components 1 and 2,
we observe that the lowest accuracy value for Component 1 is 36%, which is the
only value lower than 65%, while the lowest accuracy values for Component 2 are
56%, 57%, 60%, and 60%, respectively. The low accuracy values in Component
2 are related to text lines classified as Positive and Very Negative for both the
functional and dysfunctional categories.

4.3. Component 3 - Kano-like Processing

In this section, we will describe our design of two Kano-like models, i.e., a Half-
Kano model and a Deformed-Kano model, that can be applied when the traditional

57

Table 19. Accuracy of Components 1 and 2 for text lines classified as functional in
Component 1

Lines of
Text

Proportion
Analyzed
Examples

Component 1 Component 2 Overall
Correct

Classification
Accuracy

Correct
Classification

Accuracy
Correct

Classification
Accuracy

Very
Positive

413 66% 83 77 93% 77 93% 76 92%

Positive 78 12% 16 14 88% 9 56% 9 56%
Neutral 52 8% 10 7 70% 9 90% 7 70%

Negative 50 8% 10 8 80% 7 70% 6 60%
Very

Negative
35 6% 7 6 86% 4 57% 4 57%

Total 628 100% 126 116 92% 107 85% 102 81%

Table 20. Accuracy of Components 1 and 2 for text lines classified as dysfunctional in
Component 1

Lines of
Text

Proportion
Analyzed
Examples

Component 1 Component 2 Overall
Correct

Classification
Accuracy

Correct
Classification

Accuracy
Correct

Classification
Accuracy

Very
Positive

216 41% 44 16 36% 41 93% 14 32%

Positive 76 15% 15 10 67% 9 60% 6 40%
Neutral 83 16% 17 11 65% 11 65% 8 47%

Negative 96 18% 19 16 84% 15 79% 14 74%
Very

Negative
52 10% 10 7 70% 6 60% 6 60%

Total 523 100% 105 61 58% 85 81% 48 46%

Kano model cannot be used because the functional and dysfunctional input is
unpaired or partially missing. Here, we prioritize the formatted data following the
principle of the Kano model [108]. Figure 215 shows the example input and the
example output of Component 3. Compared with the traditional Kano model, we
use the probability of each category that one feature is categorized into instead of
the one category to which the feature is most frequently categorized.

To apply the traditional Kano model to data extracted from the Internet, we
assume that we have already filtered out the sentiment information expressing a
person’s feeling from online reviews, comments, or questions, and that we have
translated this sentiment information into a data set similar to the format of the
traditional Kano model. For example, the statement "I dislike X very much!" rep-
resents a very negative answer to a functional question regarding feature X, while
"I would be very happy if there were no function X." represents a very positive
answer to a dysfunctional question regarding feature X. We put all answers to the
functional questions in a "Yes" (Y) vector, and all answers to the dysfunctional
questions in a "No" (N) vector.

One of the biggest problems we are facing is how to pair the input required for
the traditional Kano model without conducting interviews with real people to get
answers to both functional and dysfunctional questions. Reviews and comments
from online sources are usually unpaired, so we cannot process the data follow-
ing the traditional Kano model. Because of this, we designed Kano-like model
algorithms for processing unpaired data.

5O = One-dimensional Quality, A = Attractive Quality, M = Must-be Quality, I = Indifferent
Quality, R = Reverse Quality.

58

Figure 21. Example input and example output of Component 3

The two Kano-like models we propose differ in the way they interpret the
unpaired answers derived from online open sources. The assumption of the Half-
Kano model is that we only have either answers to a functional question or an-
swers to a dysfunctional question. The assumption of the Deformed-Kano model
is that answers to the functional and the dysfunctional questions are from the same
group of people, even though we lost the links between answers. One output of
the traditional Kano model only contains one specific category into which a fea-
ture is classified. However, to enable comparison with the output of the Kano-like
models in our study, we use the probability of each category that one feature is
categorized into instead of the one category to which the feature is most frequently
categorized to. For example, if we get five paired answers about one feature, and
each paired answer leads to one category, then we have a list of five categories
(e.g., "M", "M", "A", "M", "O"). The traditional Kano model output is that this
feature is classified into category "M". However, in our study, we say that the
output is that there is a 60% probability that this feature is classified into cate-
gory "M", a 20% probability that it is classified into category "A", and a 20%
probability that it is classified into category "O".

4.3.1. Half-Kano Model

To implement the Kano-like models on unpaired data, we assumed the follow-
ing extreme case: Each time we have an interview with our interviewees, we ask
only functional questions or only dysfunctional questions relating to one software
feature; hence we only get two groups of responses for functional, resp. dysfunc-
tional, questions from the different interviewees. In such a case, we cannot use
two responses from different interviewees to classify a person’s satisfaction and
then, based on that, derive the Kano category to which the software feature be-
longs. However, we can implement an algorithm that calculates the probability
with which a software feature would be classified based on the responses for the
functional and the dysfunctional questions. Since the data in the Y and the N
vectors are not matched, the Half-Kano model is not a traditional Kano model.
Nevertheless, we calculate the probabilities following the traditional Kano model.
The difference is that in this method, we use each signal value from vectors Y and

59

Figure 22. Example of the process of the Half-Kano model

N to derive a Kano category. Figure 22 shows an example of how the Half-Kano
model processes the Y and N vectors when the unpaired input is "1" for vector Y
and "-2" for vector N. In this case, we can say that this feature should be classi-
fied into the “M” category with a probability of 40%, into the "I" category with a
probability of 30%, and into the "R", "O", and "Q" categories with a probability
of 10% each.

The algorithm of probability (P) that vector Y (functional) and vector N (dys-
functional) will be categorized into the same category (X) can be written as

P(cat (Y) = cat(N) = X) =
∑

m
i=1 Fxcat(Y (i))+∑

n
j=1 Fxcat(N(j))

(m+n)∗5
and

FOcat(Y (i)) =

{
1 if Y (i) = 2
0 if Y (i) = {−2,−1,0,1} .

FAcat(Y (i)) =

{
3 if Y (i) = 2
0 if Y (i) = {−2,−1,0,1} .

FMcat(Y (i)) =

{
1 if Y (i) = {−1,0,1} .
0 if Y (i) = {−2,2} .

FIcat(Y (i)) =

{
3 if Y (i) = {−1,0,1} .
0 if Y (i) = {−2,2} .

FRcat(Y (i)) =

4 if x =−2
1 if x = {−1,0,1}
0 if x = 2

60

Figure 23. Example of the process of the Deformed-Kano model

FQcat(Y (i)) =

{
1 if Y (i) = {−2,2} .
0 if Y (i) = {−1,0,1} .

and Fx is a function that maps the statement X to the set {0,1,3,4}
Fx : X →{0,1,3,4}

where
i ∈ {1,2,3...m}
j ∈ {1,2,3...n}

X ∈ {O,A,M, I,R,Q}
m is the number of values of Y vector
n is the number of values of N vector

4.3.2. Deformed-Kano Model

In the Deformed-Kano model, we assume that the responses are from the same
group of people, but we lost the links between the answers to the functional and
dysfunctional questions.

We sequentially pick a number of vector Y and combine it with each number of
vector N to derive the Kano categories, resulting in a list of Kano categories. After
each value of vector Y has been combined with all values of vector N, we calculate
the overall proportion of the appearance of each category. Figure 23 shows an
example of the process of the Deformed-Kano model when the unpaired input is
"2, 1" for vector Y, and "-1, -2" for vector N. The output is that the probability
that this feature is classified into category "M", "A", "O", and "I" is 25% for each
category.

61

The algorithm of the probability (P) that vector Y (functional) and vector N
(dysfunctional) are categorized into the same category (X) can be written as

P(cat (Y) = cat(N) = X) =
∑

m
i=1(∑

n
j=1(cat(Y (i))∗ cat((N(j))))

m∗n
and

and xx is a function that maps the statement X to the set {0,1,3,4}
xx : X →{0,1}

where
i ∈ {1,2,3...m}
j ∈ {1,2,3...n}

X ∈ {O,A,M, I,R,Q}
m is the number of values of Y vector
n is the number of values of N vector

4.3.3. Simulation of Kano-like Models

To see which type of Kano-like model performs better, we ran simulations with
artificial inputs. According to the simulation results, we chose the model that
performed better as the method for Component 3.

Simulation Input: There are 31 possible value sets in both vector Y and vector
N. For example, value set ID No. 1 indicates that vectors Y and N only contain
elements with the value "-2". Value set ID No. 31 indicates that both vectors
contain all possible values, i.e., "-2, -1, 0, 1, 2".

Simulation Approach: We used the R language to execute the simulation al-
gorithms we proposed in sections 4.3.1 and 4.3.2. We first set the length of vectors
Y and N to 20, and then picked these 20 numbers from each possible value set to
simulate the responses of one feature. We combined all 31 possible value sets of
vectors Y and N. The total number of possible combinations of the value sets of
vectors Y and N is 31 * 31 = 961. In each simulation round, for each combination
of value sets of Y and N, we sampled the data randomly, following a predefined
distribution, e.g., uniform distribution. Then we ran the traditional Kano model
and the Kano-like models five times each. Next, we calculated the average value
of those with the same value set ID of vectors Y and N and combined them, which
finally yielded a table containing 961 rows and 20 columns (value set ID of vectors
Y and N plus PO, PA, PM, PI, PR, and PQ for the traditional Kano, Half-Kano,
and Deformed-Kano model, respectively).

62

cat(Y (i))∗cat(N(j))=

O if Y (i) = 2andN(j) =−2
A if Y (i) = 2andN(j) ∈ {−1,0,1}
M if Y (i) ∈ {−1,0,1}andN(j) =−2
I if Y (i) ∈ {−1,0,1}andN(j) ∈ {−1,0,1}
R if Y (i) ∈ {−2,−1,0,1}andN(j) = 2||Y (i) =−2andN(j) ∈ {−1,0,1}
Q if Y (i) = 2andN(j) = 2||Y (i) =−2andN(j) =−2

Simulation Hypothesis 1: The output generated by the Deformed-Kano model
is more similar to the traditional Kano model than that of the Half-Kano model.

We picked the data from one of the 961 rows to show an example of how to
calculate the difference between the traditional Kano model and the Kano-like
models. Table 21 shows how to calculate the difference between the traditional
Kano model and the Kano-like models, and also shows the calculation results.
For calculating the absolute value of the difference between the two sets of data
(traditional Kano model and Half-Kano model, or traditional Kano model and
Deformed-Kano model), the range was 0 to 200%. Hence, we divided the absolute
value by 2 to get a result in the range of 0 to 100%.

Table 21. An example of the difference between the traditional Kano model and the
Kano-like models

PO PA PM PI PR PQ
Traditional (%) 0 20 0 45 25 10

Half (%) 3 15.5 7 40.5 27.5 6.5
Deformed (%) 0 19.5 0 45.5 24.5 10.5

Difference (%)
Traditional – Half = (|0−3|+ |20−15.5|+ |0−7|+ |45−40.5|+ |25−27.5|+ |10−6.5|)/2=12.5
Traditional – Deformed = (|0−0|+ |20−19.5|+ |0−0|+ |45−45.5|+ |25−24.5|+ |10−10.5|)/2=1

The lower value of the difference represents output that is closer to the tradi-
tional Kano model. In the case shown in Table 21, we see that the Deformed-Kano
model’s output is closer to the output of the traditional Kano model (difference =
1%) than the output of the Half-Kano model (difference = 12.5%).

The ranges and means of the differences between the outputs of the traditional
Kano model and the Kano-like models are shown in Table 22. We see from Table
22 that the range of differences between the traditional Kano model and the Half-
Kano model varies from 10.5% to 80%, which is much higher than the range of
differences between the traditional Kano model and the Deformed-Kano model,
which is 0% to 18.74%. The means show the same trend: 25.99% between the tra-
ditional Kano model and the Half-Kano model, and 4.28% between the traditional
Kano model and the Deformed-Kano model.
Table 22. The range and means of the differences between the outputs of the traditional
Kano model and the Kano-like models

Traditional-Half (%) Traditional-Deformed (%)
Ranges [10.5, 80] [0, 18.74]
Means 25.99 4.28

To see the distribution of the differences of the outputs between the traditional
Kano model and the Kano-like models more clearly, we drew figures. Figures
24 and 25 show that the Deformed-Kano model shows outputs that have lower
differences to the outputs of the traditional Kano model than the outputs of the
Half-Kano model. This means that Simulation Hypothesis 1 has been confirmed
as true.

Simulation Hypothesis 2: The Deformed-Kano model yields similar outputs
as the traditional Kano model.

63

Figure 24. Projection of the distribution of the differences between the traditional Kano
model and the Kano-like models on the Y vector plane

According to the simulation results, we found that when the input value of the
vector Y or the vector N belongs to the set {−2}, {−1}, {0}, {1}, {2}, {−2,0},
{−2,1}, {0,1}, {−2,0,1}, the difference always equals zero, which means 477
out of 961 (49.6%) output combinations of the Deformed-Kano and the traditional
Kano model show no difference.

When the input value of vector Y or the vector N does not belong to the set
{−2}, {−1}, {0}, {1}, {2}, {−2,0}, {−2,1}, {0,1}, {−2,0,1}, the difference
will always be more than zero. 484 out of 961 (50.4%) combinations show dif-
ferences ranging from 1% to 18%. In addition, the average values are less than
11%.

Simulation Result: The results of our simulation experiments revealed that
the results of using the Deformed-Kano model were always close to the results
of the traditional Kano model. Because of that, we consider the Deformed-Kano
model to be a good approximation of the traditional Kano model. Moreover, the
Deformed-Kano model can be used even when the input is unbalanced or partly
missing. We believe that the low cost of using the Deformed-Kano model com-
bined with the possibility to use unbalanced data compensates for the potential
lack of paired data compared to the traditional Kano model. Therefore, we chose
the Deformed-Kano model as the default method for Component 3 (Kano-like
Processing).

4.4. Component 4 - Visualization

In this section, we will visualize the outputs of Components 1 to 3. Figure 26
shows three examples of different output format, i.e., pie chart, bar chart, and
table.

4.5. Work Process

The work process of implementing the OIRE method is shown in Figure 27. The
OIRE method provides users with two work models. The first is the sentiment

64

Figure 25. Projection of the distribution of the differences between the traditional Kano
model and the Kano-like models on the N vector plane

Figure 26. Example visualizations produced by Component 4

65

Figure 27. Flowchart of implementing the OIRE method

analysis model (Component 2) and the second is the Kano-like analysis model
(Components 1+2+3).

The advantage of the sentiment analysis model is that it is simple and saves
time. The disadvantage is that the output is not comprehensive. For example,
when a user says: "If you could remove this feature, I would be very happy", then
the result is "Very Positive" if we use the sentiment analysis model. However, we
understand that the user intended to express that they are very dissatisfied with this
feature; hence, we got a "correct", but misunderstood result. The advantage of the
Kano-like model is that the result is more comprehensive, while the disadvantage
is that it is time-consuming. Therefore, we provide these two models at the same
time so that users can choose which model is more suitable for their needs.

We see from Figure 27 that when a user chooses to use the Kano-like model to
do an analysis, the input data is first processed by the "Sentiment Classification"
process. The "Sentiment Classification" process has six sub-processes, which are
shown in Figure 27 as well. After that, the processed data enters the processes
"Calculate sentiment score" and "Transfer to Kano score" and then undergoes the
"Kano-like classification" process. Finally, the "Visualization" process presents
users a variety of charts and a diversity of information.

66

4.6. Summary

In this chapter, we introduced the four compositions of the OIRE method and
how each algorithm was designed. We used experimental methods to verify the
availability of the algorithms of Component 1 and Component 2, and we found
that the accuracy of the algorithm was more than 60%. We used simulations
to compare the performance of two Kano-like models (Half-Kano and Deformed-
Kano) with that of the traditional Kano model. We found that the Deformed-Kano
model produced outputs that were more similar to those of the traditional Kano
model than those produced by the Half-Kano model. Therefore, we chose the
Deformed-Kano model as the default method for Component 3. We also showed
an example of Component 4 and the work process of implementing the OIRE
method. In the next chapter, we will introduce tool support for the OIRE method,
OIRE-S.

67

5. OIRE TOOL SUPPORT

To support the application of the four components of the OIRE method, we devel-
oped OIRE-S, a prototypical web application. OIRE-S was implemented using R,
PHP, Apache, and Wampserver. The OIRE-S prototype supports only basic file
operations.

This chapter is structured as follows. Section 5.1 describes the structure of
OIRE-S, while Section 5.2 shows how to implement OIRE-S.

5.1. Structure

OIRE-S offers three functions: "Upload file", "Sentiment analysis", and "Kano-
like analysis". In addition, OIRE-S comprises four basic modules correspond-
ing to the components of the OIRE method. The basic modules are grouped
in different ways to support OIRE-S’s two main functions "Sentiment analysis"
and "Kano-like analysis". The "Sentiment analysis" function uses the "Sentiment
mining" and "Visualization" modules. The "Kano-like analysis" function uses the
"Sentence classification", "Sentiment mining", "Kano-like processing", and "Vi-
sualization" modules. Figure 28 shows the structure of OIRE-S. In the following,
we will briefly describe each of the functions.

"Upload file" function: The user selects the input files that need to be an-
alyzed and uploads them to the system. The format of the file must be CSV
(Comma-Separated Values file). Figure 29 shows the process flow of the "Upload
file" function. If there are several features to be analyzed, several files can be
uploaded.

"Sentiment analysis" function: From among the uploaded files, the user se-
lects those files for which a sentiment analysis is to be done. OIRE-S will perform
the sentiment analysis and display the results. Figure 30 shows the process flow
of the "Sentiment analysis" function.

Figure 29. Flowchart of the function "Upload file"

68

Figure 28. Structure of OIRE-S

Figure 30. Flowchart of the function "Sentiment analysis"

Figure 31. Flowchart of the function "Kano-like analysis"

"Kano-like analysis" function: From among the uploaded files, the user se-
lects those files for which a Kano-like analysis is to be done. OIRE-S will auto-
matically analyze the file contents and display the results of the analysis. Figure
31 shows the process flow of the "Kano-like analysis" function.

5.2. Implementation

We designed OIRE-S for Windows 10. We used R-3.5.0, PHP-5.6.19, Apache-
2.4.18, Jpgraph-4.2.1 and Wampserver 64 to implement the system. We made the
code open source 1 so that users can modify OIRE-S according to their actual

1https://figshare.com/s/9bc19c086449be76ed90

Figure 32. Main page of OIRE-S

69

Figure 33. "Upload file" function

Figure 34. "Sentiment analysis" function - selecting files

requirements. For example, users can add new machine learning methods to the
"Sentence classification" module or modify the visual style of the analysis results.
Figure 32 shows an image of the homepage of the OIRE-S web application.

5.2.1. Function "Upload file"

Figure 33 shows the interface (input side) of the "Upload file" function. Users can
choose the file(s) to be uploaded and then click on the "Upload" button.

5.2.2. Function "Sentiment analysis"

Figure 34 and Figure 35 show the user interface (input and output sides) of the
"Sentiment analysis" function. First, as shown in Figure 34, a user chooses the
file(s) to be analyzed by the "Sentiment analysis" function. Then they click on the
"Analysis" button, and the file(s) is/are analyzed automatically. Figure 35 shows
the visualization of the output of the sentiment analysis. The "Sentiment analysis"
function of the OIRE method classifies the sentiment polarity of the input data into
five categories: Very Negative, Negative, Neutral, Positive, and Very Positive.
For visualization purposes, the sentiment of the input data is mapped to three
categories in two different ways. The pie chart on the left of Figure 35 shows
the sentiment distribution of the input data mapped to the categories Negative
(merging Very Negative and Negative sentiments), Neutral, and Positive (merging
Positive and Very Positive sentiments). The bar chart on the right of Figure 35
shows the extreme sentiment distribution, where the sentiment distribution of the
input data is mapped to Very Negative, Non-Extreme (merging Negative, Neutral,
and Positive), and Very Positive.

5.2.3. Function "Kano-like analysis"

Figures 36 to 38 show the user interface (input side) of the "Kano-like analysis"
function. First, as shown in Figure 36, a user chooses the file(s) to be analyzed.

70

Figure 35. "Sentiment analysis" function - visualizing the analysis output

Figure 36. "Kano-like analysis" function - selecting files

Next, they click on the "Analysis" button, and the file(s) is/are analyzed automat-
ically. Step 1 classifies the text lines in each file into "functional" and "dysfunc-
tional". Then the user clicks on the "Proceed to Step 2" button. In Step 2, the
sentiment analysis is performed. Then the user clicks on the "Proceed to Step 3"
button, and the output file(s) of Step 2 is/are analyzed automatically in Step 3. In
Step 3, the "Kano-like processing" is conducted, where for each feature for which
an input file has been submitted, the Kano category distribution is calculated. The
results of Step 3 are presented using the "Visualization" module.

Figure 39 shows the visualization of the "Kano-like analysis" output. The vi-
sualization consists of three parts: sentiment distribution of functional sentences,
sentiment distribution of dysfunctional sentences, and Kano-like classification.
The sentiment distribution of functional sentences embodies the users’ feeling
about the existence or good performance of a feature. The sentiment distribution
of dysfunctional sentences embodies users’ feeling about the lack or poor per-
formance of a feature. The Kano-like classification table shows the probability
distribution over Kano categories for each feature.

Figure 37. "Kano-like analysis" function - step 1: Sentence classification

71

Figure 38. "Kano-like analysis" function - step 2: Sentiment analysis

Figure 39. "Kano-like analysis" function - visualizing the analysis output

5.3. Summary

In this chapter, we introduced our tool support for the OIRE method, OIRE-
S. OIRE-S has three main functions: "Upload files", "Sentiment analysis", and
"Kano-like analysis". We introduced the function structure of OIRE-S as well as
the operation flow of each function and showed screenshots of OIRE-S.

72

6. VALIDATION

In the previous chapter, we described a web-based prototypical system, OIRE-S,
for implementing the OIRE method. In this chapter, we will describe the valida-
tion with a more detailed demonstration of how to use the OIRE method. We will
present three typical use cases and a proof-of-concept of the method to validate the
applicability of our method using real-world data collected from the Internet. We
semi-automatically ran the process of the OIRE method to explain what it can do
and how it provides useful information to help software engineers and managers
make better-informed decisions.

This chapter is structured as follows. In Section 6.1, we will describe the
selection of the input sources of the OIRE method. In Section 6.2, we will outline
the design of the use cases and in Section 6.3, the application of the use cases.
In Section 6.4, we will summarize the threats to validity. In Section 6.5, we will
discuss our findings, and Section 6.6 will conclude the validation study.

6.1. Task-Adequacy of Input Source

There are different types of online open sources, and we believe that different data
sources can be selected for different analytical purposes. In order to investigate
which kind of data source (data from Question and Answer sites or data from
App reviews) is more suitable for the application of the OIRE method, we ran
an experiment to test the accuracy of Component 2 (Sentiment Mining) as the
starting point of our validation research. Our reason for choosing Component 2 is
that Component 2 is the process required by the two models offered by the OIRE
method (the sentiment analysis model and the Kano-like analysis model). In the
experiment, we used a small set of 250 user questions and comments collected
from Stack Overflow as our test data set 1. We used another small set of 250
reviews collected from the Google Play store and the Apple App Store as our test
data set 2. We manually labeled the test inputs by attaching a sentiment score to
all 500 data text lines. To do so, we used the criteria shown in Table 17, Chapter
4.

Tables 23 and 24 show the actual and predicted classifications of data set 1 and
data set 2, respectively. Gray table cells show the numbers of those cases where
data text lines were classified correctly by the dictionary-based method. We see
from Tables 23 and 24 that the overall prediction accuracy was similar (71.6% and
70.8%). We also observe that the highest prediction accuracy for both data set 1
and data set 2 was achieved for text lines expressing very positive emotions.

Another observation we made is related to the distribution of sentiments in the
two data sets. Data set 1, containing data collected from a Question & Answer
site, had considerably more text lines expressing neutral emotions than data set
2, which contained data collected from App reviews. Also, data set 1 contained
more text lines expressing positive or very positive emotions and fewer text lines

73

expressing negative or very negative emotions than data set 2. We think this is
because when people post a question, they usually describe a problem and need
an answer, so most of the posts are written in an objective mode describing facts,
rather than in a subjective mode expressing emotions. Even if someone wants to
express feelings in a question/answer forum, it is difficult for someone to have
a positive feeling when they have a problem. However, when writing an app
review, the sentiments expressed are often related to features and if a feature is
good/bad, more positive/negative sentiments will be expressed. Thus, app reviews
are potentially more comprehensive with regard to the expression of sentiments.
Based on that, we think that input stemming from reviews (such as those found
in App stores) is a more suitable data source for our purposes than Question &
Answer sites. Therefore, in this chapter, we will use reviews collected from App
stores as input data for the validation.

Table 23. Prediction accuracy based on data set 1 (Stack Overflow)

Predicted Sentiment Classification
Very

Positive
Positive Neutral Negative

Very
Negative

Accurate
Text
lines

Accuracy

Very Positive 10 2 0 0 0 10 12 83%
Positive 2 30 1 8 1 30 42 64%
Neutral 1 15 61 9 1 61 87 70%

Negative 1 12 14 68 0 68 95 72%

Actual
Sentiment

Classification
Very Negative 1 2 0 1 10 10 14 71%

Overall 179 250 71.6%

Table 24. Prediction accuracy based on data set 2 (Google Play and Apple App Store)

Predicted Sentiment Classification
Very

Positive
Positive Neutral Negative

Very
Negative

Accurate
Text
lines

Accuracy

Very Positive 86 3 2 1 1 86 93 92%
Positive 8 30 2 4 2 30 46 65%
Neutral 7 3 27 6 2 27 45 60%

Negative 13 10 0 24 4 24 51 47%

Actual
Sentiment

Classification
Very Negative 5 0 0 0 10 10 15 67%

Overall 177 250 70.8%

6.2. Use Cases

In this section, we will introduce what the OIRE method can do for software orga-
nizations, specifically how it supports software product owners and developers in
making decisions will. We describe three typical use cases representing the appli-
cation of the OIRE method using a prototype of OIRE-S because we believe these
three kinds of use cases are most often faced by product managers and product
owners.

6.2.1. Use Case 1

The OIRE method can help product owners (PO) to better understand end users’
feelings about an existing product. For example, when the PO needs a quick

74

and simple way to understand the distribution of end users’ sentiment regarding
a particular feature of a product, they can use the OIRE method. Table 25 shows
the context of Use Case 1, while Table 26 presents the description of Use Case 1.

Table 25. Context of Use Case 1

Role Product Owner (PO)
Situation The PO has a product.

Question
The PO needs a quick and simple way to understand the end
users’ sentiment distribution regarding a feature of the product.

Initial Input The PO has text (sentences) related to this feature.

Component 2
Input: A list of sentences (lines of text) where each line
relates to a known feature.
Output: The lines of text in files have a score (-2 to +2).

Component 4
Input: The output of Component 2.
Output: The distribution (e.g. bar chart) of sentiment polarity
of the feature.

Answer to
the Question

According to the visualization of Component 4, the user can
directly notice the end users’ feelings about the feature.

Table 26. Use Case 1

Name Find end users’ feeling about one feature.
ID UC-1

Description
The PO wants to add or delete one feature from their product, and wants to
know the end users’ feelings about the feature.

Actors PO

Main course

1. A user chooses a text file to upload into OIRE-S.
2. OIRE-S prompts the user to confirm upload of the text file.
3. User confirms to upload the text file (see EX1)
4. OIRE-S stores the file. (see EX2)
5. Show notification "file is uploaded successfully"
Component 2:
6. OIRE-S automatically calculates the sentiment score of each text line of
the input file.
7. OIRE-S shows the diagram of the distribution of sentiment polarity.
Component 4:
8. OIRE-S shows all the results provided by Component 2 of the OIRE method.

Exceptions

EX1: User decides to upload another file.
1. Return user to Main Course step 1
EX2: OIRE-S fails on uploading the file to the system
1. OIRE-S notifies the user that an error has occurred (e.g. format problem).
2. Return user to Main Course step 1

6.2.2. Use Case 2

The OIRE method can classify features into Kano categories based on the Kano-
like model. For example, when the PO wants to add or delete a feature from their
product and wants to know the end users’ feelings about that feature, they can use

75

the OIRE method to analyze a single feature. Table 27 shows the context of Use
Case 2, while Table 28 presents the description of Use Case 2.

Table 27. Context of Use Case 2
Role Product Owner (PO)

Situation The PO has a product

Question
The PO wants to add or delete a feature from their product, and wants
to know end users’ feelings about the feature.

Initial Input The PO has text (sentences) related to this feature.

Component 1
Input: A list of sentences (lines of text) where each line relates
to a known feature.
Output: The lines of text are classified as "functional" or "dysfunctional".

Component 2
Input: The output of Component 1.
Output: The lines of text in files have a score (-2 to +2).

Component 3
Input: The output of Component 2.
Output: Kano-like classification of the feature contained in the input file of
Component 1.

Component 4

Input: a) The output of Component 1. b) The output of Component 2.
c) The output of Component 3.
Output: The distribution (e.g., bar chart) of the sentiment polarity of the feature.
The probabilities with which the feature is classified to each Kano category, which
represents end the users’ feelings.

Answer to
the Question

According to the visualization of Component 4, the user can directly notice
the end users’ feelings about the feature and adding or deleting this feature
would have what kind of impact on the users’ feeling about the product.

6.2.3. Use Case 3

The OIRE method can prioritize classified features following the theory of the
traditional Kano model. For example, when the PO plans to release a new version
of an existing product, they might want to understand which new features should
be developed first and which features should be deleted. Then they can use the
OIRE method to prioritize the features. Another similar example is the situation
where a product developer (PD) wants to know what features are necessary and
most popular (most positive feelings from end users) in existing products. To
decide which feature should be developed first, the PD can use the OIRE method
to prioritize the features. Since these two scenarios have the same work process,
we will only show one of them in this section. Table 29 shows the context of Use
Case 3, while Table 30 presents the description of Use Case 3.

6.3. Application of the Use Cases

To show how the OIRE method interacts with the end user, in this section, we
will present three applications of the use cases proposed in Section 6.2. We will
use real-world input data to simulate the process and show the resulting output of
the OIRE method for each use case application. To get the input data, we down-
loaded reviews of multiple apps from the Apple App Store and from a Chinese

76

Table 28. Use Case 2
Name Find end users’ feelings about a particular feature.

ID UC-2

Description
The PO wants to add or delete a feature from their product and wants to
know end users’ feelings about this feature.

Actors PO

Main
course

1. User chooses a text file to upload to OIRE-S.
2. OIRE-S prompts the user to confirm upload of the text file.
3. User confirms to upload the text file (see EX1)
4. OIRE-S stores the file. (see EX2)
5. Show notification "file is uploaded successfully"
Component 1:
6. In order to confirm the proportion of functional and dysfunctional text of feature
related text lines, user randomly selects some text lines (e.g. 20% of the input file, but up
to 20 lines of text) from the whole text and manually classifies them into "functional" or "dysfunctional"
categories by following the classification examples shown in Table 11. (See AC 1)
7. OIRE-S uses the data manually classified by the user as a test dataset to test the
accuracy of the different algorithms. (e.g. SVM, DT, RF).
8. OIRE-S outputs the classification results of the different algorithms. (EX3)
9. User compares the classification results.
10. User selects the best performing algorithm to do the classification.
11. OIRE-S uses the algorithm chosen by the user to classify all text lines into
"functional" or "dysfunctional" categories and to split the initial input file into a functional
file and a dysfunctional file.
12. OIRE-S shows the classification results. (EX4)
Component 2:
13. OIRE-S automatically calculates the sentiment score of each text line of functional
and dysfunctional categories.
14. OIRE-S shows a diagram of the distribution of sentiment polarity. (See AC2,
AC3 EX5)
15. OIRE-S converts the sentiment scores into Kano scores.
Component 3:
16. OIRE-S uses the Kano-like model to classify the feature into Kano categories.
Component 4:
17. OIRE-S shows all the results provided by Components 1 to 3 of the OIRE method.

Alternate
course

AC1: Zero functional or dysfunctional data.
1. All text lines are classified into the same class, either "dysfunctional" or "functional".
2. Transfer user to Main Course step 12.
AC2: Zero functional data.
1. Show the sentiment polarity of the feeling about the feature if it
not exists. (More positive the sentiment polarity, the worse the feature.)
AC3: Zero dysfunctional data.
1. Show the sentiment polarity of the feeling about the feature if it
exists. (More negative the sentiment polarity, the worse the feature.)
2. OIRE-S notifies user that this is the end of the analysis.

Exceptions

EX1: User decides to upload another file.
1. Return user to Main Course step 1.
EX2: OIRE-S fails to upload the file to the system.
1. OIRE-S notifies user that an error has occurred (e.g. format problem).
2. Return user to Main Course step 1
EX3: User decides to redo the manual classification process.
1. Return user to Main Course step 6
EX4: User wants to choose a different classifier.
1. Return user to Main Course step 10
EX5: Zero functional or dysfunctional data.
1.OIRE-S notifies the user that this is the end of the OIRE method.

77

app monitoring platform named Kuchuan1. We manually extracted features from
the app descriptions and then used an appropriate online synonym dictionary2. We
classified the synonymous features into one class and selected from the reviews
the lines of text related to this feature class as input for the use cases. If the review
text was in Chinese, we translated it into English. We followed the work process
shown in Section 4.5.

Table 29. Context of Use Case 3

Role Product Developer (PD)

Situation
The PD wants to develop a new product that
contains several features.

Question
The PD wants to know what features are necessary and more
popular (more positive feelings from end users) in existing products
and which features should be developed first.

Initial Input
The PD has text (sentences) related to
the features (existing in competitors’ products).

Component 1
Input: Several files; and each file has a list of sentences (lines
of text) with each line related to a known feature.
Output: The lines of text are classified as "functional" and "dysfunctional".

Component 2
Input: The output of Component 1.
Output: The lines of text in the files have a score (-2 to +2).

Component 3
Input: The output of Component 2.
Output: Kano-like classification of the features contained in
the input file of Component 1.

Component 4

Input: a) The output of Component 1. b) The output of Component
2. c) The output of Component 3.
Output: The distribution (e.g., bar chart) of the sentiment polarity of
each feature. The probability with which each feature is classified into each
Kano category. User can rank features according to their own standards.

Answer for
the Question

From the visualization of Component 4, the user can directly see
whether features are popular (more positive user feelings) or unpopular (more
negative user feelings). According to the ranking result, the user can decide
which features should be developed first (ranking higher) and which are should
be deleted (ranking lower).

In this section, we chose three apps, Pinterest, Meituan, and WeChat, as the
input sources for our use cases. The reasons for choosing these three apps are that
they are well-known (either in the Western world or in China) and that they have
plenty of customer reviews that can be used in our analysis.

6.3.1. Application of Use Case 1

Regarding Use Case 1, we chose reviews of the app Pinterest collected from App
Store, as they are openly available for research from the Website of the Swinburne
University of Technology3. There are 9178 lines of review text. As the example

1http://android.kuchuan.com/page/detail/index (accessed: 30-April-2018)
2http://www.thesaurus.com/ (accessed: 15-October-2018)
3http://researchbank.swinburne.edu.au/vital/access/manager/Repository/swin:35267 (accessed:

15-October-2016)

78

Table 30. Use Case 3
Name Prioritize the user’s feelings about certain features.

ID UC-3

Description

The PD wants to develop a new product that contains several features.
The PD wants to know what features are necessary and which are more popular
(more positive feelings from end users) in existing products, as well as which
feature should be developed first.

Actors PD

Main course

1. User chooses up to 10 text files into upload into OIRE-S.
2. OIRE-S prompts user to confirm upload of the text files.
3. User confirms upload of the text files (see EX1)
4. OIRE-S stores the files. (see EX2)
5. Show notification "Files are uploaded successfully"
Component 1:
For each input file, OIRE-S implements step 6 to step 12 (described
in the main course of Use Case 2) in parallel.
Component 2:
13. OIRE-S automatically calculates the sentiment score of each text line
of functional and dysfunctional files.
14. OIRE-S shows a diagram of the distribution of the sentiment polarity
per feature. (See AC2, AC3 EX5)
15. OIRE-S converts the sentiment scores into Kano scores.
Component 3:
16. OIRE-S uses the Kano-like model to classify each feature into the Kano categories.
Component 4:
17. OIRE-S shows the all results provided by Component 2 and 3 of the OIRE
method.
18. User can rank features based on the output from Component 3 according
to their own standard.

Alternate
course

AC1: Zero functional or dysfunctional data.
1. OIRE-S defaults all text lines to the same class, either "dysfunctional" or
"functional".
2. Transfer user to Main Course step 12.
AC2: Zero functional data.
1. Show the sentiment polarity of the feelings about the feature if it not
exists. (More positive the sentiment polarity, the worse the feature.)
AC3: Zero dysfunctional data.
1. Show the sentiment polarity of the feelings about the feature if it exists.
(More negative the sentiment polarity, the worse the feature.)
2. OIRE-S notifies user that this is the end of the analysis.

Exceptions

EX1: User decides to upload another file.
1. Return user to Main Course step 1.
EX2: OIRE-S fails to upload the file to the system.
1. OIRE-S notifies user that an error has occurred (e.g., a format problem).
2. Return user to Main Course step 1
EX3: User decides to redo the manual classification process.
1. Return user to Main Course step 6
EX4: User wants to choose a different classifier.
1. Return user to Main Course step 10
EX5: Zero functional or dysfunctional data.
1. OIRE-S notifies user that this is the end of the OIRE method.

79

Figure 40. Sentiment distribution

app feature for implementing Use Case 1, we chose the first word combination that
looked like a feature and occurred very frequently in the review texts. We ended
up with the feature "already pinned". Then we classified synonymous features into
one feature class. The resulting feature class contained "already pinned, pinned
already, pinned before, already posted, posted already, repeated pinned, repeated
post". Next, we searched all sentences containing the words in the feature class.
In total, we extracted 151 lines of text related to the feature "already pinned".
These 151 text lines constitute the initial input for our example application of Use
Case 1.

Input: One file with 151 text lines relating to the elements in the feature class
of the feature "already pinned" of the app Pinterest.

Approach: We first cleaned the data. We changed all capital letters to lower-
case and removed punctuations and other strange characters, such as "@:(". Then
we used Component 2 of the OIRE method to process the input.

Output: Table 31 shows the output when applying Use Case 1. We see from
Table 31 that 93 text lines of the input show very positive feelings, accounting for
the largest proportion. There are two lines of text showing very negative emotions,
accounting for the smallest proportion. Next, we classified very negative emotions
into negative emotions and very positive ones into positive emotions. In Figure
40, three categorized scales are shown. We see that 81% of the text lines showed
positive emotions, 5% negative emotions, and the other 14% neutral emotions.

Table 31. Output of Use Case 1

Sentiment Very Negative Negative Neutral Positive Very Positive Total
Times 2 6 21 29 93 151

Next, we will show the distribution of extreme emotions. We classified those
emotions that are not very negative and not very positive as non-extreme emotions.
In Figure 41, we see that 37.1% of the text lines showed non-extreme emotions.
1.3% of the text lines were very negative and 61.6% showed very positive emo-
tions.

80

Figure 41. Extreme sentiment distribution

6.3.2. Application of Use Case 2

Regarding Use Case 2, we chose reviews of the app Meituan collected from the
Chinese platform Kuchuan. The review texts are freely available from this plat-
form. At the point in time when we conducted our analysis, there were 6,977
reviews. As the example app feature for implementing Use Case 2, we chose
"Alipay" in the same manner as we chose the feature in the application of Use
Case 1. Since "Alipay" is a proprietary feature, no synonyms for this feature are
expected to exist, and thus the synonym tool was not needed in this situation.
Next, we searched all the sentences containing "Alipay" in the reviews. In the
end, we extracted 54 lines of text. Since the reviews were in Chinese, we trans-
lated these 54 lines of text into English. These 54 translated text lines constitute
the initial input for our example application of Use Case 2.

Input: One file with 54 text lines relating to the feature "Alipay" of the app
Meituan.

Approach: First, we randomly selected 12 text lines (22% of the input text
lines) from the input text and manually classified them into functional and dys-
functional categories by following the classification standard we had already used
in one of our previous studies [109]. These 12 labeled text lines were used as the
test data set in Component 1 to select the best machine learning method, while
the remaining 42 lines of text were then predicted using the best machine learning
method in Component 1 of the OIRE method. In total, the OIRE method offers
five ready-to-use machine-learning algorithms. We used a confusion matrix [93]
to calculate the performance of each algorithm. Table 32 shows the definition of
the confusion matrix. Based on the predicted results of each algorithm, we cal-
culated the accuracy of each trained classification algorithm as well as the FPV,
which shows the proportion of the functional text lines predicted correctly, and
the DPV, which shows the proportion of the dysfunctional text lines predicted
correctly. Table 33 shows the performance of each machine-learning algorithm.
We see that SVM has the highest accuracy (75%) and relatively balanced FPV
and DPV values. There are three algorithms that have the second best accuracy
of 66%. Since the Random Forest algorithm has high accuracy (66%) and the
most balanced values for FPV and DPV (resulting in a standard deviation of 0),
we decided to use Random Forest together with SVM in our application example
to increase the reliability of the output results. We only kept those cases where

81

the predictions of the two algorithms were consistent. We found that 39 out of
the 42 lines of text were classified into the same categories when using both SVM
and Random Forest together. 17 lines of text were classified as functional, and
22 were classified as dysfunctional. On top of this, we added the 12 manually
classified text lines. In the end, we had one file containing 20 functional and 31
dysfunctional text lines. This file was the input for Component 2. Then we used
Component 2 and Component 3 of the OIRE method to process this input file.

Output: The visualization of the results of Components 1 and 2 when applying
Use Case 2 is shown in Figure 42. Table 34 shows the Kano-like classification
output of Use Case 2.
Table 32. The confusion matrix used to assess the performance of supervised machine
learning algorithms

Predicted Condition
Functional Dysfunctional

True Condition
Functional True Functional (TF) False Functional (FF)

Dysfunctional False Dysfunctional (FD) True Dysfunctional (TD)
FPV TF / (TF+FF)
DPV TD / (FD+TD)

Accuracy (TF+TD) / (TF+FF+FD+TD)

Table 33. Performance of supervised machine learning algorithms

Method Indicator Value (%)
Standard

Deviation (σ)

Naive
Bayes

FPV 0
0.458DPV 88

Accuracy 66

MaxEnt
FPV 100

0.282DPV 44
Accuracy 66

Decision
Trees

FPV 33
0.115DPV 55

Accuracy 50

Random
Forest

FPV 66
0DPV 66

Accuracy 66

SVM
FPV 100

0.176DPV 66
Accuracy 75

To assign a Kano category to the feature "Alipay", we applied Component 3.
The results are shown in Table 34. The first row of Table 34 shows the probability
distribution of the Kano categories when applying the traditional Kano table (5*5
matrix as shown in the upper part of Figure 43). The probability of category "I" is
rather high (62%). We found that this is mainly due to the fact that the proportion

82

Figure 42. Visualization of the results of Components 1 and 2 of Use Case 2

of category "I" entries in the traditional Kano table is relatively high (9 out of
25). Considering that the application of the traditional Kano model is based on
face-to-face interviews where the user is passive when expressing opinions, this
result might not be surprising. However, unlike the traditional Kano model, the
Kano-like model is based on comments that the users themselves actively publish
on the Internet. We believe that when one wants to take the initiative to express
an opinion rather than answer a question passively, the willingness to express an
emotion is stronger. Therefore, we simplified the traditional Kano table from a
5*5 matrix to a 3*3 matrix (Kano-like table). Figure 43 shows how we modified
the Kano table. We classified emotion ratings into three levels: Negative, Neutral,
and Positive. When we ran Component 3 using the Kano-like table, the results
looked like what is shown in the second data row of Table 34. We used red and
italics to represent the results processed by using a 3*3 matrix Kano-like table.
We see from Table 34 that when we used the traditional Kano table (5*5 matrix),
the Kano-like classification output was that the probability of this feature being
is classified into category "M" was 22.5%. For category “A”, the probability was
3.6%, for “O” 1.4%, and for “I” 62%. When we used the Kano-like table (3*3
matrix), the Kano-like classification output was that the probability of this feature
being classified into category "M" was 37.8%. For category “A”, it was 2.3%, for
“O” 19%, and for “I” 4.5%.

Table 34. Output of Use Case 2

Kano-like Classification O A M I R

Probability (%)
5*5 matrix 1.4 3.6 22.5 62.0 10.5
3*3 matrix 19.0 2.3 37.8 4.5 36.4

83

Figure 43. Modified Kano table

6.3.3. Application of Use Case 3

Regarding Use Case 3, we chose reviews of WeChat, again collected from the
Kuchuan platform. At the time of our analysis, there were 31,966 reviews.

The features we chose as the example feature for implementing Use Case 3
were "Ads blocker", "Fingerprint", "Three days visible", and "Top circle post".
Each feature had more than 20 lines of review text. This was the minimum we
considered necessary for conducting a proper analysis. Since these features are
proprietary features offered by the software developer, the synonym tool was again
not needed in this situation. Next, we searched all the sentences containing "ad-
vertising" and "tourism" in the reviews. In the end, we extracted 68 lines of text
related to "Ads blocker", 122 text lines related to "Fingerprint", 25 text lines re-
lated to "Three days visible", and 56 text lines related to "Top circle post". Since
the text lines were in Chinese, we translated them into English.

Input: The input of Use Case 3 consisted of four text files containing text lines
relating to four features of WeChat, i.e., "Ad blocker", "Fingerprint", "Three days
visible", and "Top circle post".

Approach: We followed the same approach used in Section 6.3.2 and imple-
mented Component 1-3 on each input file in parallel.

Table 35. Output of Use Case 3

Kano-like Classification O A M I R

Probability (%)

Ads blocker 8.3 3.4 28.7 6.8 46.8
Fingerprint 14.7 29.4 9.9 20.0 26.0

Three days visible 8.8 0.0 26.5 0.0 64.7
Top circle post 31.2 35.0 8.5 9.5 15.8

Output: Table 35 shows the Kano-like classification output when applying
Use Case 3. Using the Kano-like table (3*3 matrix), the features "Ad blocker" and
"Three days visible" had the highest probability of being classified into category

84

Figure 44. Visualization of the results of Components 1 and 2 of Use Cases 3

"R" (46.8%, resp. 64.7%), and the features "Fingerprint" and "Top circle post" had
the highest probability of being classified into category "A" (29.4%, resp. 31.2%).
The visualization of the results of Components 1 and 2 is shown in Figure 44.

6.4. Threats to Validity

We identified several threats to validity – to construct validity, internal validity,
and external validity – which will be discussed in this section.

6.4.1. Construct Validity

The use cases presented in this validation study were not proposed by real product
managers and product owners but rather by the authors, who put themselves into
the shoes of product managers and product owners. Therefore, the use cases pre-
sented in this validation study might not represent the real perspective of product
managers and product owners. This may lead to a gap between our analysis and
the actual situation. However, in order to mitigate this threat, we showed our use
cases to a small sample of product managers. The members of this convenience
sample confirmed that the use cases made sense to them.

85

6.4.2. Internal Validity

Many decisions made during the application and validation of the OIRE method
were choices made by the author, who might be biased in their view of what is typ-
ical and what is adequate. Researcher bias might also apply to the interpretation
of the results achieved.

When the amount of input data is limited, the amount of test data that can
be used in Component 1 of the OIRE method is also limited. This affects the
performance and choice of the best machine learning algorithm, and thus may
have an impact on the application of the model.

Because the OIRE method was designed on the basis of text mining of English-
language texts, translation was required for implementing the model on input con-
taining non-English text. The translation process will naturally affect the accuracy
of the OIRE method to some extent.

To check the accuracy of the individual components of the OIRE method, we
used the PPS method [88] to check the performance of 20% of the text lines (not
fewer than five lines of text) contained in the input. Then we manually checked
the accuracy of the result achieved by each component. Tables 36 to 38 show
the accuracy (Accuracy = Correct prediction / Samples * 100%) of the results of
applying Use Cases 1 to 3.

According to our implementation approach for the OIRE method, which we
introduced in Section 6.3.2, to enhance reliability, we may discard some text lines
after running Component 1, so the number of text lines contained in the result is
lower than that in the input.

We see from Table 36 that the accuracy of Application 1 (only implementing
Component 2) was 80%. The accuracy of the output of Application 2 is shown
in Table 37. It shows that the accuracy of implementing Component 1 was 70%,
while the accuracy of implementing Component 2 was 80%. The overall accuracy
of Application 2 was 60%. The accuracy of the output of Application 3 is shown
in Table 38. We see from Table 38 that the accuracy of implementing Component
1 was between 63% and 83%, while the accuracy of implementing Component 2
was between 67% and 88%. The overall accuracy of Application 3 was between
50% and 61%.

Table 36. Accuracy of the application results of Use Case 1

Application
Name

Feature
Name

Lines of
Text

Samples
Correct

Prediction
Accuracy

Pinterest already pinned 151 30 24 80%

6.4.3. External Validity

To minimize the impact of the input on the experiments, we randomly selected the
objects of analysis, including the apps and the features of the selected apps. How-
ever, the number of use cases is rather small, which limits the representativeness

86

Table 37. Accuracy of the application results of Use Case 2

Application
Name

Feature
Name

Lines of
Text

Samples Correct Prediction Accuracy

Meituan Alipay 51 10
Component 1 7 70%

60%
Component 2 8 80%

Table 38. Accuracy of the application results of Use Case 3

Application
Name

Feature
Name

Lines of
Text

Samples Correct Prediction Accuracy

WeChat

Ad
blocker

62 12
Component 1 9 75%

50%
Component 2 8 67%

Fingerprint 88 18
Component 1 15 83%

61%
Component 2 12 67%

Three days
visible

17 5
Component 1 4 80%

60%
Component 2 4 80%

Top circle
post

41 8
Component 1 7 63%

50%
Component 2 8 88%

of our results.

6.5. Discussion

Although the output of the OIRE method will almost always produce results that
differ from those of the traditional Kano model, our approach could be considered
as providing richer output. For example, let’s assume an extreme case where
you get 100 paired answers, with 40 answers leading to category "I", 39 answers
leading to category "M", and 21 answers leading to category "A". The output of
the traditional Kano model would be that this feature should be categorized as
"I". If only this final categorization is conveyed, one will not know that 39% of
the interviewees considered this feature to be "M" and 21% of the interviewees
considered this feature to be "A".

We know that software organizations need to consider a variety of information
(e.g., cost) when making decisions. The end users’ perception of a product’s
features is just one of many attributes. So the limitation of the OIRE method
is that it cannot provide users with all the information that supports decision-
making regarding the prioritization of features. Also, when we talked to product
owners and product managers as well as owners of companies, we received the
feedback that the idea of the OIRE method is interesting, and in the context of the
rapid development of methods in artificial intelligence and data mining, the OIRE
method may have the potential for a variety of extensions. On the other hand,
however, based on their work experience, they believed that the usefulness of the
OIRE method highly depends on the quality (and amount) of review texts, and that
this may be a limitation. One cannot expect users to write comprehensive reviews.
They will typically focus on aspects of an app that they perceive as either very

87

exciting or disappointing; in addition, they are subjective (i.e., not necessarily fair
and unbiased). They might even occasionally give negative reviews just because
they are in a bad mood.

6.6. Conclusion

Overall, the accuracy of the OIRE method was satisfactory. The accuracy of Com-
ponent 1 and Component 2 of the OIRE method exceeded 63% and the highest
value was 88%. The overall accuracy of the OIRE method was between 50% and
61%.

We also demonstrated that the OIRE method can produce results for typical use
cases of product managers and product owners. Due to the fact that no real product
managers and product owners used the OIRE method yet during this study stage,
we cannot conclusively state how easy to use the method would be perceived, and
how useful its results would be considered. Thus, in the follow-up chapter, we
will conduct a more comprehensive study to evaluate the OIRE model.

Such a study would also be useful to help us further improve the way the
results of the various components of the OIRE method are presented in OIRE-S.
For example, by checking the inputs and outputs when applying Use Cases 1 to
3, we found that when users comment on a feature, they may either evaluate the
feature itself or the way the app implements the feature. For example, regarding
the feature "Ad blocker" analyzed in the application of Use Case 3, the users
were not necessarily dissatisfied with the feature itself, but rather with the way
the app implements the feature. Therefore, we believe that showing more detailed
outputs of each component of the OIRE method to users would help improve their
comprehensive judgment and help them draw more accurate conclusions about
apps and individual app features.

6.7. Summary

In this chapter, we first discussed the selection of the input source. We found
that the input collected from app reviews was more suitable for the OIRE method.
Next, we presented three typical use cases and a proof-of-concept of the method
demonstrating the applicability of the OIRE method. We used real-world data
collected from the Internet as the input source. Our findings were as follows: The
accuracy of Component 1 and Component 2 of the OIRE method exceeded 63%,
with the highest value being 88%. The overall accuracy of the OIRE method
was between 50% and 61%. For the selected use cases, the OIRE method had
the potential to help stakeholders make better-informed RE decisions. In the next
chapter, we will present how we evaluated the OIRE method in industry using
OIRE-S.

88

7. EVALUATION

In previous chapters, we introduced the design, implementation, and preliminary
validation of the OIRE method. We also developed a prototypical web applica-
tion based on the OIRE method, OIRE-S, to provide tool support for users of the
OIRE method. In this chapter, we will evaluate the OIRE method using OIRE-S.
We conducted a case study with two Chinese companies that plan to have soft-
ware apps developed by suppliers. In addition, we conducted an interview study,
interviewing two other stakeholders about the case study. The case study tried to
solve real problems. The interview study did not include any actual application of
OIRE and OIRE-S. We used Support Vector Machine (SVM1) as the default ma-
chine algorithm in the "Sentence Classification" module of OIRE-S since SVM
showed stable performance in previous experiments.

This chapter is structured as follows. In Section 7.1, we will describe the
design of this evaluation study. In Section 7.2, we will outline the results of the
case study and the interview study we conducted to evaluate the OIRE method. In
Section 7.3, we will discuss the results of the evaluation study. In Section 7.4, we
will present and discuss threats to validity. Section 7.5 concludes this evaluation
study.

7.1. Study Design

In Chapter 6, we reported an initial validation of the OIRE method based only on a
simulated use case study [112]. The objective of the evaluation studies presented
in this chapter was to perform a realistic evaluation of the OIRE method together
with its prototypical tool support OIRE-S in industry. For this purpose, we carried
out a case study and an interview study. We analyzed the usefulness of the OIRE
method together with software development stakeholders. We designed the study
in line with the guidelines for case study research provided by Runeson and Höst
[84]. Figure 45 shows the elements of the study.

As shown in Figure 45, we first identified the research question. Then we
designed a case study and an interview study in an industrial setting. The case
study was conducted in two Chinese companies in which we evaluated the OIRE
method. We presented the OIRE results to the stakeholders in the two case com-
panies and discussed the findings with them. Then we presented the OIRE method
and the case study results to two other stakeholders and interviewed them to get
further feedback. We agreed with all the stakeholders that the information pro-
vided by them would be anonymized.

7.1.1. Research Question

The research question was formulated as follows:

1We use the package "e1071" developed by TU Wien, Austria

89

Figure 45. The elements of the study

Qu 7.0: Is the OIRE method useful to decision-makers in industry?

7.1.2. Case Study Design

The case study was conducted to explore how stakeholders without software de-
velopment competence would appreciate the OIRE method.

Case and Unit of Analysis. We conducted the case study in China, involving
two case companies as the unit of analysis. The choice of the case companies was
purely opportunistic. The author had established contact with these companies
previously. One stakeholder each was involved per case, i.e., customer C1 (in
case 1) and customer C2 (in case 2). We call the stakeholders "customers" because
they plan to develop or contract the development of a new app and would like to
better understand what users of similar existing apps think about certain features.
To provide the requested information to the stakeholders, we employed the OIRE
method and its tool support OIRE-S.

Procedure. The evaluation procedure followed in each case consisted of eight
steps: 1) Identify existing competitors; 2) Collect Chinese-language review data;
3) Identify features; 4) Extract feature-related text from reviews (and translate
into English); 5) Select analysis function ("Sentiment analysis" function and/or
"Kano-like analysis" function); 6) Process data and generate analysis results; 7)
Present analysis results (and translate into Chinese); 8) Collect stakeholder feed-
back, translate feedback into English, and summarize.

The input data for each case was collected from the online review platform,
Kuchuan2.

After completion of the case study, the results of the case study served as input
material for two follow-up interviews. The outcomes from the case study will be
presented in Section 7.2 (Results).

2http://android.kuchuan.com/page/detail/index (accessed: 15-October-2018)

90

7.1.3. Interview Study Design

The interview study was conducted to explore how stakeholders in software com-
panies would appreciate the OIRE method. Note, however, that, unlike the case
study, the interview study did not include any actual application of OIRE and
OIRE-S. In this section, we will characterize the interview participants and then
describe the interview procedure.

Participants. We conducted two interviews with stakeholders in the Chinese
software industry. The first stakeholder, P, was a product manager in a large soft-
ware company. He had worked as a software product manager for over three years.
The second stakeholder, M, was co-founder (and manager) of a start-up informa-
tion technology company. One participant was involved in each interview, i.e., P
in interview 1 and M in interview 2.

Procedure. To provide the required information to the participants, we com-
municated via phone and online chat tools. The procedure of each interview con-
sisted of three steps: 1) Introduce the OIRE method; 2) Show the case study
results from C1 and C2 (in Chinese); 3) Interview the participants, collect their
responses, translate the responses into English, and summarize.

The interviews consisted of three main questions: 1) In the process of software
development, what difficulties or problems do you face? 2) After knowing about
the OIRE method, what do you think about the OIRE method? Do you think that
the OIRE method would help you to solve the above problems, and why? 3) After
knowing the case study results, how do you evaluate the OIRE method?

In the interview, we expanded the three main interview questions into several
open questions. Each interview lasted about 15 minutes.

7.2. Results

This section reports the results of the case study and the interview study. We will
first present the execution of the case study and its results as well as the feedback
from the stakeholders in the case companies regarding Qu 7.0 in Section 7.2.1.
Next, we will present the execution of the interview study and the feedback from
the participants regarding Qu 7.0 in Section 7.2.2.

7.2.1. Case Study

In each case of the case study, we first communicated with C1, respectively C2,
to understand their business situation and the basic requirements for their planned
applications. Then we gathered the input data and used OIRE-S as the tool support
of the OIRE method to analyze it. After the analysis, we presented the results and
our suggestions to C1 and C2. Finally, we collected feedback about the usefulness
of the OIRE method from C1 and C2. Note that OIRE-S was not given to the
stakeholders but was used by the author of this thesis to answer the questions of
the stakeholders when using the OIRE method.

91

Case 1: Shipping System. Stakeholder C1 was working for a shipping com-
pany and planned to develop an online shipping app. We designed Case 1 to help
C1 understand better whether their ideas about the features to be included in the
planned software app have the potential to make it a success.

Based on their description of the context, C1 put forward the following list of
features c1f.1 to c1f.8 they thought should be included in the anticipated app:

c1f.1) Based on "Automatic Identification System" and "Vessel Traffic Ser-
vice", the app shall provide enterprises with information about the position of a
ship.

c1f.2) Based on a ship’s location on the nautical chart, the app shall show
information about weather phenomena such as typhoons, etc.

c1f.3) Login feature.
c1f.4) The core content of the platform shall consist of displaying cargo pal-

lets and fuel information on a nautical chart, providing fuel stations, fuel prices,
inventory content, etc.

c1f.5) Simple algorithms shall help businesses to calculate profits, shipping
rates, wages, turnover, etc.

c1f.6) Other services, such as seafarer recruitment, crew qualification inquiry,
etc. shall be offered.

c1f.7) The app shall post news about maritime and shipping companies.
c1f.8) The app shall offer advertisement, for example, by insurance companies

or second-hand equipment trading companies, etc.
In the following, we will describe what happened during the eight steps of the

case study procedure for Case 1.
Step 1: Identify existing competitors. The business area is very mature, with a

relatively small number of competitors. We asked C1 to select the most interesting
competing apps. C1 provided four target apps: CX3, CLL4, XCW5, and CBR6.

Step 2: Collect Chinese review data. To get the input data, we retrieved user
reviews related to the four selected apps from the Chinese app-monitoring plat-
form Kuchuan. Since we found only two reviews about XCW, we removed this
app from the list of existing competitors. Including all reviews of the other three
apps from the Android platform and the Apple store in the past year, we collected
110 lines of text in total. Because of the small number of relevant text lines, we
merged the data from the three competitive apps into one file, representing one
synthetic competitive app.

Step 3: Identify features. We identified features in two ways. First, we an-
alyzed the set of proposed features provided by C1. C1 proposed twelve fea-
tures, i.e., "nautical chart", "weather", "typhoon", "login", "cargo pallets", "fuel",

3http://www.shipfinder.com/
4https://xy.ship56.net/
5http://www.xcw9898.com/
6http://m.msa.gov.cn

92

"calculation", "recruitment", "qualifications", "post maritime", "shipping news",
"advertising".

Second, we used online NLP analysis platforms to analyze the original 110
lines of text and extracted the most frequent words as potential features. Since
the input text was in Chinese, we used a Chinese online NLP platform7. The plat-
form offered the 15 most frequent items, i.e., the Chinese words corresponding
to "berth", "garbage", "update", "maritime affairs", "import and export", "edi-
tion", "maritime bureau", "port", "always", "system", "change", "visa", "thing",
"departure", and "software". We first removed words from the 15 most frequent
terms that cannot be considered as proper features, such as "always", "system",
"change", "thing", "software", etc. Four out of the 15 terms remained, i.e., the
Chinese words for "berth", "port (report)", "update", and "visa". We added these
four items to the originally proposed twelve features, thus ending up with a list of
16 (=12+4) potential features.

Step 4: Extract feature related text from reviews. Then we manually did pattern
matching on the original 110 lines of text and extracted feature-related text lines
as input data for further analysis. Note that when we did the pattern matching, we
included feature synonyms that we had derived manually8. In total, six features
were retained. Two of the twelve features provided by C1 were found in the text
lines, i.e., "login" and "nautical chart". As OIRE-S uses an English-language
analysis tool, the Chinese feature-related text had to be translated into English
using an online translator9.

Step 5: Select analysis function. Two analysis functions are offered by the
OIRE method/ OIRE-S, i.e., "Sentiment analysis" and "Kano-like analysis". After
communicating with C1, we decided to use the "Sentiment analysis" function to
analyze the polarity of the input data and to determine to what extent these features
were liked or disliked by end users.

Step 6: Process data and generate analysis results. In order to check whether
the overall sentiment regarding the apps was consistent with that regarding the
identified six features, we analyzed whether the sentiment distribution of the text
related to the six extracted features was consistent with the sentiment distribution
exhibited by all 110 lines of text. Therefore, we performed the sentiment analysis
separately for the total 110 lines of text (input 1) and for the 84 text lines related
to the six features (input 2).

Input 1: One file with 110 text lines corresponding to the reviews of the three
competitor apps.

Input 2: Six files with 84 text lines in total relating to the six extracted features.
Approach: We first cleaned the data. We changed all capital letters to lower-

case and removed punctuations and strange characters, such as "@:(". Then we

7https://bosonnlp.com/product/intro (accessed: 22-October-2018)
8If the feature list had already been provided in English, we had used an English-language online

synonym dictionary(http://www.thesaurus.com/).
9https://fanyi.baidu.com/ (accessed: 15-October-2018)

93

used the "Sentiment mining" module of OIRE-S to process the inputs.
Output 1: Table 39 shows the output after applying the "Sentiment mining"

module to input 1. We see from Table 39 that 14% of the text lines showed Very
Negative emotions, 55% Negative emotions, 14% Neutral emotions, 13% Positive
emotions, and 5% Very Positive emotions.

Output 2: Table 40 shows the output after applying the "Sentiment analysis"
function to input 2. We see from Table 40 that the feature "Visa" has the highest
number (25%) in the "Very Negative" column. The feature "Nautical chart" has
the highest number (75%) in the "Negative" column. The feature "Berth" has
the highest number (9%) in the "Neutral" column. The feature "Login" has the
highest number (36%) in the "Positive" column, and the feature "Visa" has the
highest number (25%) in the "Very Positive" column.

Step 7: Present analysis results. Based on the data shown in Tables 39 and
40, we summarized the analysis results and generated a report as feedback to C1.
This report was translated into Chinese and provided the basis for our discussions
with C1. Below we list the key findings c1r.1 to c1r.4, which were communicated
to C1:

c1r.1) Table 39 shows that overall, negative emotion (14%+55%=69%) was
greater than positive emotion (13%+5%=18%). Based on this, we concluded that
the end users are not satisfied with the three existing (competitor) apps.

c1r.2) Table 40 shows that the number of review text lines related to the six
features of interest accounted for more than 75% (84/110*100%) of the total re-
view text. This indicates that the users’ concern regarding the six features was
much greater than that for other features. Based on this, we concluded that our
analysis is relevant.

c1r.3) From Table 40, we see that the negative emotions related to the six fea-
tures was greater than the positive emotions. This shows that the dissatisfaction
with the six features was the main reason for end users’ dissatisfaction with the
three apps. Especially for the features "Nautical chart", "Port (report)", "Update",

94

Table 39. Overall sentiment distribution

Features
Number of
Text Lines

Proportion
Very Negative Negative Neutral Positive Very Positive

Overall 110 14% 55% 14% 13% 5%

Table 40. Sentiment distribution of features

Features
Number of
Text Lines

Proportion
Very Negative Negative Neutral Positive Very Positive

Berth 11 0% 64% 9% 27% 0%
Login 14 7% 57% 0% 36% 0%

Nautical chart 4 0% 75% 0% 25% 0%
Port (report) 10 20% 70% 0% 0% 10%

Update 37 11% 68% 8% 8% 5%
Visa 8 25% 50% 0% 0% 25%
Total 84 - - - - -

and "Visa", the proportion of negative emotions (Very Negative + Negative) was
even higher than the proportion of overall negative emotions (See Table 40, num-
bers in red). Based on this, we concluded that the identified six features of interest
were either not well implemented or unwanted by the end users.

c1r.4) We found that the features we extracted were very different from the
main twelve features proposed by C1. Only the feature "Nautical chart" and "lo-
gin" were the same. Due to the limited amount of data, it was difficult to detect
new features that would increase the end users’ satisfaction with the planned app.
However, based on the analysis, we were able to tell C1 which features would dis-
satisfy the end users. Thus, these negatively perceived features in the competing
apps should either be avoided or improved/redesigned in such a way that they are
perceived positively. We also suggested that C1 should consider other features
offered by the three existing competing products.

Step 8: Collect stakeholder feedback, translate feedback into English, and
summarize. We presented the analysis report to C1 and discussed the results. We
summarize the feedback from C1 as follows:

c1s.1) C1 could see Tables 39 and 40 as part of the report. C1 appreciated that,
unlike previous reports on requirements analysis, our report was quantitative and
not qualitative. This made our report more "convincing" to C1. C1 perceived the
analysis report to be "professional" and "reliable".

c1s.2) According to C1, the results of the analysis seemed to be reasonable.
Features having many user reviews represent a higher degree of concern among
users. Based on this, C1 considered the analysis results c1r.1, c1r.2, and c1r.3 to
be reasonable.

c1s.3) C1 agreed with the analysis result c1r.4 and considered it as useful input
to reflect upon their company’s own ideas about the features to include in the
planned app.

c1s.4) C1 would have liked to see new ideas that existing applications do not
provide. However, since we were only able to retrieve a small set of relevant
reviews, no feature requests were found among them.

Case 2: Fitness Application. Stakeholder C2 was co-founder of a fitness com-
pany with two fitness centers and more than 400 regular clients. C2 believed that
fitness activities should not be confined to fitness centers but could happen in ev-
eryday life, for example while hiking, boating, and even shopping. Recording
a user’s activity at any time helps to analyze the user’s fitness data. C2 thought
that developing a fitness application would help their company serve existing cus-
tomers and attract new ones at the same time.

C2 shared their ideas about features they planned to have in a new app:
c2f.1) Record sports tracks.
c2f.2) Analyze sports data, record changes.
c2f.3) Record and analyze health data, such as heart rate.
c2f.4) Store all data online.
c2f.5) Provide online sports courses.

95

c2f.6) Teach fitness knowledge.
c2f.7) Help users develop a scientific fitness training plan.
In the following, we will describe what happened during the eight steps of the

case study procedure for Case 2.
Step 1: Identify existing competitors. We chose Codoon10 as the existing main

competitor app. In China, Codoon is a well-known sports application. The num-
ber of users exceeds 150 million. In 2015, the market share of Codoon in the
industry was above 50%.

Step 2: Collect Chinese review data. To get the input data, we downloaded
reviews of Codoon from the Chinese app-monitoring platform Kuchuan. Includ-
ing all reviews of Codoon from the Apple store in the past 180 days, we collected
32,610 lines of reviews in total.

Step 3: Identify features. On Codoon’s official website, there is a very detailed
description of its functions. For this case, in addition to considering the potential
features proposed by C2, we browsed the introductory description of Codoon on
the official website to identify features.

C2 provided seven potential features, i.e., the Chinese words corresponding to
"Sport tracks", "Sports data", "Health data", "Online storage", "Sports courses",
"Fitness knowledge", and "Training plan". We manually extracted 16 additional
features from the app descriptions, namely the Chinese words corresponding to
"GPS / tracking", "Online shopping mall /shopping", "Social networking", "On-
line Marathon", "Guidance / demonstration", "Red packets /rewards", "Running
shoes", "Map", "Trajectory", "Interface / layout", "Heart rate", "Sports data / in-
dex", "Video / audio", "Step counter", "Training courses", and "Sports knowl-
edge". Next, we combined similar features. For example, "Sports tracks" and
"GPS / tracking" are similar features.

At the end of this step, we had identified 17 features, i.e., "GPS / track-
ing", "Online shopping mall /shopping", "Social networking", "Online marathon",
"Guidance / demonstration", "Red packets / rewards", "Running shoes", "Map",
"Training plan", "Trajectory", "Interface / layout", "Heart rate", "Sports data /
index", "Video / audio", "Step counter", "Training courses", and "Sports knowl-
edge".

Step 4: Extract feature related text from reviews. Then we manually did pattern-
matching on the original 32,610 lines of reviews and kept only those sentences that
contained any of the 17 features. This left us with 494 lines of text. These lines
of text were used as the input data for further analysis. Next, we translated the
Chinese feature-related text into English using an online translator11.

Step 5: Select analysis function. We extracted more features than C2 had pro-
posed. In order not to increase future software development costs too much, C2
wanted to confirm which features were most effective in improving end users’

10https://www.codoon.com/ (accessed: 15-October-2018)
11https://fanyi.baidu.com/ (accessed: 15-October-2018)

96

satisfaction. In view of this, we decided that the "Kano-like analysis" function
would provide the desired results.

Step 6: Process data and generate analysis results. In this step, we used the
"Kano- like analysis" function to classify the 17 features into the Kano classifica-
tion.

Input: 17 files with 494 text lines relating to the 17 extracted features. Of the
494 text lines, 449 text lines were related to exactly one feature, 44 text lines were
wrelated to two features, and one text line was related to three features.

Approach: We first cleaned the data. We changed all capital letters to low-
ercase and removed punctuations and other strange characters, such as "@:(".
Then we used the "Kano-like analysis" function of OIRE-S (Component 1-3 of
the OIRE method) to process the inputs.

Output: Table 41 shows the Kano-like category classification after we applied
the "Kano-like analysis" function to the input. In Table 41, we arranged the 17
features in descending order according to the value of column "O". In Table 41,
features marked in red are those proposed by the customer. We see from Table
41 that the probability of features F12, F8, F17, F11, F10, and F9 being classified
into category "O" is higher than that of being classified into other categories. The
probability of features F4 and F14 being classified into category "M" is higher
than their probability of being classified into other categories. The probability of
features F13, F15, F1, F2, F16, F6, and F7 being classified into category "R" is
higher than their probability of being classified into other categories.

We also see from Table 41 that features F3 and F5 are not classified into any
category. To investigate the reason for this, we checked the sentiment distributions
of F3 and F5 (see Table 42). According to the "Kano-like analysis" function,
when the sentiment polarity of both functional and dysfunctional types of input is
Positive or Very Positive at the same time, the input data is treated as contradictory
and is discarded (cf. Section 6.3.2). We see from Table 42 that the text lines
related to F3 and F5 were all identified as Very Positive or Positive. This is why
the Kano-like model did not categorize these two features. In addition, we see that
the number of positive reviews of F3 of the functional type (1+7=8) equals that of
those of the dysfunctional type (3+5=8). The number of positive reviews of F5 of
the functional type (7+22=29) is higher than that of those of the dysfunctional type
(5+9=14). Therefore, we think that the users’ satisfaction and dissatisfaction with
F3 is more balanced, and that users consider the existence of F5 more satisfying.

Step 7: Present analysis results. Based on the data shown in Tables 41 and
42, we summarized the analysis results and generated a report as feedback to C2.
This report was translated into Chinese and formed the basis for our discussions
with C2. Below we list the key findings c2r.1 to c2r.5 communicated to C2:

c2r.1) From Table 41, we see that four features proposed by C2, i.e., F1, F13,
F15, and F16, were classified into category "R".

c2r.2) Features classified into category "R" should not be developed. These
features are F1, F2, F6, F9, F13, F15, and F16. Implementing these features may

97

lead to high dissatisfaction among users. By checking users’ reviews further, we
found that the existence of F2 caused users to be dissatisfied, while the dissatis-
faction with other features was due to poor performance. Hence, when developing
these features, C2 should be very careful and strictly guarantee the quality of de-
velopment; also, F2 should not be developed.

c2r.3) Features classified into category "O" should be developed first. These
are F8, F9, F10, F11, F12, and F17. The existence or good performance of these
features is of great help to improve product satisfaction. If these features are
missing or perform badly, the degree of product dissatisfaction will increase sig-
nificantly.

c2r.4) Features classified into category "A" should be developed as much as
possible if funds allow. These features are F4 and F14. The existence and good
performance of these features are essential for improving product satisfaction.

c2r.5) Features F3 and F5 could not be categorized automatically. When in-
specting the results of the sentiment polarity analysis (in Table 42), we believe
that the existence of F3 would not help improve user satisfaction. The existence
of F5, on the other hand, may improve user satisfaction. Thus, we recommended
developing F5, but not giving priority to the development of F3.

Step 8: Collect stakeholder feedback, translate feedback into English, and
summarize. We presented the analysis report to C2 and discussed the results. We
summary C2’s feedback as follows:

c2s.1) Since C2 did not have any knowledge about the traditional Kano model,
we had to explain the meaning of the analysis results. When C2 understood the

98

Table 41. Kano-like category classification

Feature ID Feature Name
Number of
Text Lines

Probability (%)
O A M I R

F 3 Social networking 16 NA NA NA NA NA
F 5 Guidance / demonstration 43 NA NA NA NA NA
F 12 Heart rate 12 83.3 0 0 0 16.7
F 8 Map 15 60.6 0 24.2 0 15.2
F 17 Sports knowledge 21 60 0 10 0 30
F 11 Interface / layout 60 51.4 0 4.2 0 44.4
F 10 Trajectory 68 48 19.2 10.4 4.2 18.2
F 9 Training plan 16 47.4 0 5.3 0 47.3
F 13 Sports data / index 20 33.3 0 6.7 0 60
F 15 Step counter 100 28.9 11.6 4.4 1.8 53.3
F 1 GPS/ tracking 25 28.3 16.2 7.1 4 44.4
F 14 Video / audio 39 21.8 36.4 3.6 6.1 32.1

F 2
Online shopping mall

/shopping
7 20 0 0 0 80

F 16 Training courses 61 15.9 23.9 4 6 50.2
F 4 Online marathon 15 0 100 0 0 0
F 6 Red packets /rewards 13 0 27.3 0 9.1 63.6
F 7 Running shoes 9 0 0 0 0 100

Table 42. Sentiment distribution of F3 and F5

Feature ID Feature Name Type
Very

Negative
Negative Neutral Positive

Very
Positive

F 3 Social networking
Functional 0 0 0 1 7

Dysfunctional 0 0 0 3 5

F 5
Guidance /

demonstration
Functional 0 0 0 7 22

Dysfunctional 0 0 0 5 9

exact meaning of the analysis results, they qualified our analysis as "professional"
and also said that this analysis result was "definitely useful" for software develop-
ment.

c2s.2) C2 said that the analysis results were partly "beyond their expectations".
For example, they had never considered the feature "Online marathon" before.

c2s.3) C2 said that our analysis pointed out important features that had been
overlooked. For example, they agreed that the feature "Interface" was important,
but had not been thought of before.

c2s.4) C2 was eager to find new features that were not provided in other similar
applications. However, based on our analysis report, we could not tell which
features already existed and which were completely new features.

c2s.5) C2 mentioned that they did not feel that they would have to fully comply
with our suggestions, but believed that our suggestions should definitely be taken
into account.

7.2.2. Interview Study

We interviewed two other stakeholders, M and P. M and P were not involved in the
case study, but agreed to be interviewed to help us understand the problems that
product managers and small software company owners are facing. We were also
interested in the difference between the existing requirements analysis processes
used in the companies of the interviewees and the use of the OIRE method. We
hoped to get meaningful feedback from them. In the following, we will present
the results of each interview step (cf. Section 7.1.3). The three main interview
questions were: 1) In the process of software development, what difficulties or
problems do you face? 2) After knowing about the OIRE method, what do you
think about the OIRE method? Do you think that the OIRE method would help
you to solve the above problems, and why? 3) After knowing the case study
results, how do you evaluate the OIRE method?

Interview 1: Interview with P.
Step 1: Introduce the OIRE method. In this step, we introduced the OIRE

method to P, including the purpose, functions, and components of the OIRE method.
P could ask us questions about the OIRE method at any time during the interview,
and we answered any questions until they said they understood the OIRE method.

Step 2: Show the case study results that were developed with C1 and C2 (in
Chinese). In this step, we showed the case study reports (in Chinese) to P and
explained the content. P could ask us questions about the report at any time during

99

the interview, and we answered any questions until they said they understood the
content of the reports.

Step 3: Interview participants collect participants’ responses, translate the re-
sponses into English, summarize. In this step, we interviewed P by asking several
open questions derived from the three main interview questions. We collected and
translated the answers and summarize them as follows:

i1a.1) P indicated that end users and salespeople had so much initiative that
they sometimes voiced unreasonable requirements on a product regardless of whether
this was valuable or not. P even said that "customers are not reliable".

i1a.2) P indicated that frequent changes in the requirements engineering pro-
cess of their company caused duplication of work. Changes in internal require-
ments could usually be avoided through timely communication. However, when
changes come from the external market, such as upgrading and updating of com-
peting products, P believed changes in requirements to be inevitable, resulting in
waste of time, waste of money, and prolonged product development cycles.

i1a.3) P indicated that, by implementing the OIRE method, product managers
could reject some meaningless requirements, such as those relating to poorly per-
forming features existing in other products. Product managers could directly ad-
vise users to give up meaningless ideas.

i1a.4) P indicated that implementing the OIRE method could speed up the
requirements prioritization process and shorten the development cycle.

i1a.5) P believed that it would be easier for a report with "numbers" to win the
trust of users. This was considered a big advantage of OIRE analysis reports.

i1a.6) P told us that the existing requirements analysis process required sev-
eral product managers to form a team. Each manager in this team conducted user
surveys, competitor analyses, or data analyses separately. At least one team meet-
ing was needed to discuss ideas, and each complete requirements analysis process
might take a whole week. P believed that the OIRE method would require less
manpower and less time than the existing requirements analysis processes. This
would be helpful for enterprises to save money and time.

i1a.7) Although P believed the OIRE method to be useful, they insisted that
user comments were "unreliable". According to their experience, it was very
common for software companies to make fake comments in order to improve
their software ratings. Therefore, the foundation for the use of the OIRE method
might be flawed. P believed that the existing requirements analysis process had an
advantage in terms of reliability, although it was time-consuming and laborious.
However, P agreed that the OIRE method could be an effective complement to
existing requirements analysis methods (interviews, questionnaires, log mining,
brainstorm, etc.), especially for start-ups with limited resources.

i1a.8) P suggested that the analysis of log records was now an important part
of the requirements analysis process and that it would be very useful if the OIRE
method could help with log analysis.

i1a.9) At the end of the interview, P said that the OIRE method was very in-

100

teresting. P assumed that, in the context of the rapid development of machine
learning and artificial intelligence techniques, the idea of the OIRE method may
have potential extensions in many other fields, for example in human resources
management.

Answers i1a.1 and i1a.2 relate to the first main interview question. Answers
i1a.3 and i1a.4 relate to the second main interview question. Answers i1a.5 to
i1a.9 relate to the third interview question.

Interview 2: Interview with M.
Step 1: Introduce the OIRE method. In this step, we introduced the OIRE

method to M, including the purpose, functions, and components of the OIRE
method. M could ask us questions about the OIRE method at any time during
the interview, and we answered any questions until they said they understood the
OIRE method.

Step 2: Show the case study results that were developed with C1 and C2 (in
Chinese). In this step, we showed the case study report (in Chinese) to M and ex-
plained the content. M could ask us questions about the report at any time during
the interview, and we answered any questions until they said they understood the
content of the reports.

Step 3: Interview participants collect participants’ responses, translate the re-
sponses into English, summarize. In this step, we interviewed M by asking several
open questions derived from the three main interview questions. We collected and
translated the answers and summarize them as follows:

i2a.1) M indicated that small companies are not rich in resources or funds.
Therefore, it is difficult for their company to conduct large-scale surveys or face-
to-face interviews to obtain user needs. Hence, "copying ideas is easy and happens
frequently, so that not many new ideas are proposed."

i2a.2) M indicated that most of the product managers and decision makers in
start-ups do not have enough experience or extensive product knowledge to sup-
port them in making the right decisions. For example, a product manager might
have to handle products from various domains but they might only be deeply fa-
miliar with one specific domain.

i2a.3) M said that the idea of the OIRE method was quite new to them. M
discovered that the OIRE method used reviews available online as the input data
source. This saves time and money otherwise needed for conducting interviews,
and also makes it possible to identify new ideas.

i2a.4) M appreciated that the OIRE method solves the problem of product
managers (partly) lacking domain knowledge. For example, when users feel very
positive about a specific feature in reviews, then this feature should be considered
regardless of whether the product manager agrees with or understands the reasons
for this assessment.

i2a.5) M believed that quantitative reports are more convincing than qualitative
reports and are helpful for persuading users to give up worthless features.

i2a.6) M found the "Sentiment analysis" function of the OIRE method with

101

its two-dimensional analysis (functional and dysfunctional) to be a creative idea.
Users do not only express their feelings about existing features but also about
features that do not exist or that exist but do not perform well.

i2a.7) M indicated that in start-ups, due to the lack of resources, it is difficult
to conduct large-scale requirements elicitation and analysis in the same way as
large enterprises do. M thought that applying the OIRE method required fewer
resources than the existing requirements analysis processes. This could benefit
start-ups.

Answers i2a.1 and i2a.2 relate to the first main interview question. Answers
i2a.3 and i2a.4 relate to the second main interview question. Answers i2a.5 to
i2a.7 relate to the third interview question.

7.3. Discussion

In our research question Qu 7.0, we asked whether the OIRE method is useful
to decision-makers in industry. In our discussions with C1, C2, P, and M, we
received positive feedback.

C1 perceived the analysis results produced by the OIRE method to be valu-
able. They indicated that the analysis results were "professional", "reliable", and
"convincing". They said that the analysis results supported their own ideas about
the features they planned to have in a new application. They expected the OIRE
method to identify new features. However, in Case 1, we were unable to discover
new features due to the limited amount of data, which slightly disappointed C1.

C2 perceived the OIRE method to be useful. They said that the analysis results
were "absolutely useful" and "beyond expectations". They indicated that they
were willing to consider the analysis results. However, they thought that other
factors not included in the analysis results needed to be considered as well. They
expected the OIRE method to identify new features or new ideas. In Case 2,
although the analysis results showed features that C2 had never thought of before,
like C1, C2 was not fully satisfied. They had expected more.

P said that the OIRE method was very interesting and the analysis results were
reliable. They indicated that the OIRE method required less manpower and less
time than the existing requirements analysis processes used in their company.
They believed that the OIRE method could speed up the requirements analysis
process and shorten the development cycle. They agreed that the OIRE method
can be an effective complement to the existing requirements analysis processes,
especially for start-up companies with limited resources. However, for their own
company, they preferred the existing requirements analysis processes. Currently,
they are using log analysis to monitor the usage of their apps. P believed this to be
more objective and reliable, though less explicit, user feedback. They suggested
combining the OIRE method with log analysis. They also thought that the idea of
the OIRE method could be extended to many other fields. These suggestions gave
us new ideas for our future research.

102

Unlike P, M was from a start-up, and their company lacks funds and human
resources (e.g., product managers). M said the OIRE method was a new and
interesting idea for them. They believed that applying the OIRE method could
benefit their company.

According to the feedback from the stakeholders, we observed that they an-
swered the questions from their context-specific point of view. For example, P
worked for a large software company. Their company has sufficient funds and
human resources. This made it hard for P to understand the difficulties of small
companies that lack resources. Therefore, although P evaluated the OIRE method
as positive, they still preferred the existing requirements analysis methods cur-
rently in use. Unlike P, M worked for a start-up company with limited resources,
which is why they showed more interest in the OIRE method.

In summary, although the OIRE method was perceived to be useful by all
stakeholders, we believe that the OIRE method is more useful for decision-makers
in small companies.

7.4. Threats to Validity

To analyze threats to validity, we followed the guideline proposed by Engström
and Runeson [28]. We identified several threats to validity – to construct validity,
internal validity, and external validity.

7.4.1. Construct Validity

When a researcher makes an assumption and uses interviewees’ responses to con-
firm that assumption, the researcher is subconsciously more willing to accept an-
swers that support their assumptions than answers that are unfavorable (researcher
bias) [73]. This attitude may influence the wording of the questions, which may
lead the interviewees to give a favorable answer. The inadequacy of the communi-
cation and the deviation of the understanding would affect the interviewees. The
interviewees may feel the researcher’s attitude and give the answers that meet the
researcher’s expectations best. Since we were aware of this potential bias, we de-
liberately asked control questions during the interviews that helped us re-evaluate
the interviewees’ answers and challenge wrong pre-conceptualizations.

7.4.2. Internal Validity

When the amount of input data is limited, the amount of training data that can be
used in Component 1 of the OIRE method is also limited. To solve this problem,
we used data that we had already validated in one of our published papers [109] as
a sufficiently large default training data set in the design of the OIRE-S prototype.
This means that the machine learning algorithm used in Component 1 of OIRE-S
was trained better; however, since the training data and the predicted data were

103

collected from different sets of data, this may have affected the performance of
the machine learning algorithms.

In this evaluation study, we only used one machine learning algorithm, SVM,
as the default algorithm of OIRE-S. In our previously published paper [109], SVM
appeared to be the best choice. However, there is no guarantee that other machine
learning algorithms might not have performed better in the context of this evalua-
tion study.

Although we used real-world data, there is a possibility that the data itself
was already biased, making the OIRE method produce misleading output. For
example, according to Afnan’s research [3], 38% of developers they interviewed
add "call-to-action" functionality to their app, asking end users for feedback, and
56% of developers only direct those end users who give a high app rating to the
app store. This may bias app ratings and reviews towards favorable feedback. For
example, those users who need to use an app often will presumably give more
positive ratings.

In the case study, the input text was in Chinese. Since OIRE-S uses English-
language analysis tools, the Chinese-language feature-related text needed to be
translated into English by an online translator, Baidu Fanyi. The accuracy of the
translation may affect that of the analysis results. We reviewed existing research
papers on Baidu Fanyi. In Hu’s research [99], a study was conducted on the trans-
lation quality of Baidu Fanyi based on several examples. Hu concluded that "the
translation result is accurate." In Wang’s research [37], the performance of sev-
eral online translation tools was compared: Google Translate12, Youdao Fanyi13,
Bing Microsoft Translator14, and Baidu Fanyi. Wang compared the translation
accuracy of the above tools at three levels: words, sentences, and articles. By an-
alyzing many translation results, Wang concluded that when translating complex
sentences, "Google translation is not accurate enough"; "the details of translation
by Bing are not perfect"; "Baidu Fanyi provides a very satisfactory translation
result." Based on their research, we think that the accuracy of Baidu Fanyi is rel-
atively high, especially for translating complex sentences. This could reduce the
negative impact of the translation process.

Finally, to ensure that the stakeholders would not be worried about us disclos-
ing information or making statements that could shed a negative light on them-
selves or their company, we agreed to anonymize the identity of the interviewees
and their companies.

7.4.3. External Validity

We contacted multiple companies and stakeholders, but for various reasons, most
of them refused to cooperate with us. Eventually, we found two customers (C1

12https://translate.google.com
13https://fanyi.youdao.com
14https://www.bing.com/translator

104

and C2), one product manager (P), and one start-up company manager (M), who
were willing to participate in our research. However, we understand that their
views might not represent the views of many other companies and stakeholders.
This may affect the generalizability of the conclusions of this evaluation study.

We interviewed four stakeholders who had different work experience and back-
grounds. We believe that this helped us to collect feedback from different angles,
and thus made the evaluation of the OIRE method more comprehensive.

In Case 1 and Case 2, we chose the competitor apps according to the informa-
tion provided by C1 and C2. These choices might not have been representative
(or comprehensive), and thus might have limited the representativeness of the pre-
selected features.

7.5. Conclusion

In Chapter 7, we presented an evaluation of the OIRE method by means of a case
study and an interview study.

First, we interviewed two stakeholders, C1 and C2, from two Chinese com-
panies. Since the companies were not software companies, C1 and C2 acted as
potential customers of a software app developer who had to communicate their
needs to the app developers. We designed one case study with two cases analyzing
the development needs of C1 and C2. To support the analysis of the development
needs following the OIRE method, we used OIRE-S as tool support. We analyzed
real input data collected from an online source and produced analysis results. By
discussing the analysis results with C1 and C2, we collected their feedback about
the OIRE method. According to their feedback, their evaluation of the OIRE
method was positive, although both C1 and C2 had higher expectations regarding
the OIRE method. Both C1 and C2 indicated that the analysis results of the OIRE
method were useful. Both also mentioned that the OIRE method would be more
valuable if it had a better capability of discovering new features.

Next, we interviewed two other stakeholders (P and M) from two Chinese
software companies. We collected their views about the OIRE method. Both P
and M gave positive evaluations of the OIRE method. According to P and M, the
application of the OIRE method could benefit small companies, especially start-
ups. P and M agreed that the OIRE method could be an effective complement
to existing requirements analysis methods. P said that the OIRE method had the
potential to be applied in other fields. P thought that online reviews may contain
fake content and therefore preferred the existing requirements analysis processes.
M showed more interest than P. M believed the OIRE method to be useful for their
company.

In summary, C1, C2, M, and P all agreed that the OIRE method is able to
provide useful information to support their decision-making.

105

7.6. Summary

In this chapter, we evaluated the OIRE method using OIRE-S. Based on the results
of the case study and the interview study, we conclude that the OIRE method pro-
vides helpful information for stakeholders, and thus is useful to decision-makers
in industry, in particular as a complement to existing requirements analysis activ-
ities.

106

8. CONCLUSION AND FUTURE WORK

In this research, we conducted a systematic mapping study to survey the state of
the art of Open Innovation (OI) in the sub-fields of software engineering, espe-
cially in requirements engineering. We found that quite a few studies had been
done during a 15-year period (from the year 2003 to 2016). We also found that
there was a lack of published research on the use of OI strategies in specific RE
activities, i.e., prioritization and validation, as well as a lack of reported tool sup-
port. Therefore, we believe that our research can fill these gaps.

8.1. Summary of Contributions

To (semi-)automatically classify user reviews collected from online open sources,
we propose the OIRE method. The OIRE method is the first major contribution
of this research. The OIRE method comprises four components. For Component
1, we found a solution by applying machine learning to determine whether a text
line potentially corresponds to an answer to a functional or dysfunctional ques-
tion asked in the Kano model. For Component 2, we designed a dictionary-based
method to classify the sentiment of each state such that we could assign an an-
swer value to each text line previously classified as functional or dysfunctional.
The dictionary-based method classifies text lines into five sentiment classifica-
tions, from Very Negative to Very Positive. We used machine learning methods
together with the dictionary-based method to transfer the raw input text data into
a format that can be used as the input for the Kano model. Based on the results
of our application experiment, we found that the overall accuracy of Component
1 and Component 2 was 65%. We consider this performance to be acceptable.
For Component 3, to find a method that produces results resembling those of the
traditional Kano model, we proposed two Kano-like models, i.e., the Half-Kano
model and the Deformed-Kano model, for dealing with unpaired answers to func-
tional and dysfunctional questions. In order to analyze the performance of the two
proposed models compared to that of the traditional Kano model, we ran several
simulations with synthetic data. According to the simulation results, we found
that the results of using the Deformed-Kano model were always close to the re-
sults of the traditional Kano model. Hence, we think that this Kano-like model
can be used as an approximation of the traditional Kano model in situations where
the input to the Kano model is unpaired or partly missing. Component 4 visualizes
the outputs of Components 1 to 3.

The second major contribution of this research is the validation of the OIRE
method. We first discussed the selection of the input source. We found that the
input collected from app reviews was most suitable for the OIRE method. Next,
we presented three typical use cases and a proof-of-concept of the OIRE method
demonstrating the applicability of the OIRE method using real-world data col-
lected from the Internet. We found that the overall accuracy of the OIRE method

107

was between 50% and 61%. For the selected use cases, the OIRE method had the
potential of helping software engineers and managers make better-informed RE
decisions. We also demonstrated that the OIRE method can produce results for
typical use cases of product managers and product owners.

We integrated the dictionary-based method and machine learning techniques
with the Kano-like model. Using the R and PHP languages, we designed a web-
based prototypical system, OIRE-S. In the final stage of this research, we inter-
viewed industry people and completed a case study and an interview study to
evaluate the OIRE method using OIRE-S. This is the third major contribution of
this research. According to our evaluation results, we found that the OIRE method
can be implemented not only for product managers and software company owners
but also for customers with software development needs. The industry people we
interviewed considered the analysis results of the OIRE method convincing, and
they agreed that the OIRE method could be an effective supplement to traditional
requirement analysis methods, especially for start-ups with limited resources. In
summary, although the OIRE method was perceived to be useful by all stakehold-
ers, we believe that the OIRE method is most useful for decision-makers in small
companies.

8.2. Future Work

Our research opens up a number of directions for the improvement of the OIRE
method. In the following, we will outline a few of these possibilities.

In this research, we used several existing machine learning algorithms for sen-
tence classification. We observed that existing classification methods did not per-
form well in this specific classification process. We believe that better algorithms
could improve the accuracy of sentence classification and the effectiveness of the
OIRE model as a whole.

In this research, we designed a new dictionary-based algorithm for sentiment
analysis. We think that there is room for improving the accuracy of this algorithm.

The Kano-like model is a completely new method that has the potential to be
applied in multiple fields. The application of the Kano-like model in other fields
(e.g., business, management) could be one direction for our future research.

The OIRE method is part of a unique decision-support system that provides
information to stakeholders that otherwise could only be obtained manually (and
thus too costly) through methods such as the traditional Kano model. We see
potential for integrating the OIRE method with other automated analysis methods,
such as methods that automatically analyze usage logs.

108

BIBLIOGRAPHY

[1] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri Mahrin.
A systematic literature review of software requirements prioritization re-
search. Information and software technology, 56(6):568–585, 2014.

[2] Mack W Alford. Software requirements engineering methodology (srem)
at the age of two. In The IEEE Computer Society’s Second International
Computer Software and Applications Conference, 1978. COMPSAC’78.,
pages 332–339. IEEE, 1978.

[3] Afnan AlSubaihin, Federica Sarro, Sue Black, Licia Capra, and Mark Har-
man. App store effects on software engineering practices. IEEE Transac-
tions on Software Engineering, 2019.

[4] Mohamed Aly. Survey on multiclass classification methods. Neural net-
works, 19:1–9, 2005.

[5] Berander PA Andrews. Requirements prioritization, engineering and man-
aging software requirements, a. aurum and c. wohlin, eds, 2005.

[6] Charles Berger. Kano’s methods for understanding customer-defined qual-
ity. Center for quality management journal, 2(4):3–36, 1993.

[7] Tanmay Bhowmik. Stakeholders’ social interaction in requirements engi-
neering of open source software. In 2014 IEEE 22nd International Re-
quirements Engineering Conference (RE), pages 467–472. IEEE, 2014.

[8] Mattia Bianchi, Alberto Cavaliere, Davide Chiaroni, Federico Frattini, and
Vittorio Chiesa. Organisational modes for open innovation in the bio-
pharmaceutical industry: An exploratory analysis. Technovation, 31(1):22–
33, 2011.

[9] Yuri Borgianni and Federico Rotini. Towards the fine-tuning of a predic-
tive kano model for supporting product and service design. Total Quality
Management & Business Excellence, 26(3-4):263–283, 2015.

[10] Randall D Brandt. A procedure for identifying value-enhancing service
components using customer satisfaction survey data. Add Value to Your
Service, Chicago: American Marketing Association, pages 61–65, 1987.

[11] Ernest R Cadotte and Normand Turgeon. Dissatisfiers and satisfiers: sug-
gestions from consumer complaints and compliments. Journal of consumer
satisfaction, Dissatisfaction and Complaining Behavior, 1(1):74–79, 1988.

[12] Abhijit Chakraborty, Mrinal Kanti Baowaly, Ashraful Arefin, and
Ali Newaz Bahar. The role of requirement engineering in software develop-
ment life cycle. Journal of emerging trends in computing and information
sciences, 3(5):723–729, 2012.

[13] Chun-Chih Chen and Ming-Chuen Chuang. Integrating the kano model
into a robust design approach to enhance customer satisfaction with product

109

design. International journal of production economics, 114(2):667–681,
2008.

[14] Betty HC Cheng and Joanne M Atlee. Research directions in requirements
engineering. In 2007 Future of Software Engineering, pages 285–303.
IEEE Computer Society, 2007.

[15] Henry Chesbrough and Adrienne Kardon Crowther. Beyond high tech:
early adopters of open innovation in other industries. R&d Management,
36(3):229–236, 2006.

[16] Henry Chesbrough, Wim Vanhaverbeke, and Joel West. Open innovation:
Researching a new paradigm. Oxford University Press on Demand, 2006.

[17] Henry William Chesbrough. Open Innovation: The New Imperative for
Creating and Profiting from Technology. Harvard Business Press, 2003.

[18] John W Creswell. Research design: Qualitative, quantitative, and mixed
methods approaches. Canadian Journal of University Continuing Educa-
tion, 35(2), 2009.

[19] Sanjiv Das and Mike Chen. Yahoo! for amazon: Extracting market senti-
ment from stock message boards. In Proceedings of the Asia Pacific finance
association annual conference (APFA), volume 35, page 43. Bangkok,
Thailand, 2001.

[20] Sajib Dasgupta and Vincent Ng. Mine the easy, classify the hard: a semi-
supervised approach to automatic sentiment classification. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2, pages 701–709. Association for Computa-
tional Linguistics, 2009.

[21] Koen De Backer, Vladimir López-Bassols, and Catalina Martinez. Open
innovation in a global perspective: what do existing data tell us? OECD
Science, Technology and Industry Working Papers, 2008(4):0_1, 2008.

[22] Dian Retno Sari Dewi, Joana Debora, and Martinus Edy Sianto. Dealing
with dissatisfaction in mathematical modelling to integrate qfd and kano’s
model. In IOP Conference Series: Materials Science and Engineering,
volume 277, page 012009. IOP Publishing, 2017.

[23] Zhendong Dong. Hownet knowledge database. http://www.keenage.
com/html/e_index.html. Accessed February 2, 2017.

[24] Henry Edison, Nauman Bin Ali, and Richard Torkar. Towards innovation
measurement in the software industry. Journal of Systems and Software,
86(5):1390–1407, 2013.

[25] Fatma İpek Ek and Şeniz Çıkış. Integrating the kano model into architec-
tural design: quality measurement in mass-housing units. Total Quality
Management & Business Excellence, 26(3-4):400–414, 2015.

110

http://www.keenage.com/html/e_index.html
http://www.keenage.com/html/e_index.html

[26] Sascha El-Sharkawy and Klaus Schmid. A heuristic approach for support-
ing product innovation in requirements engineering: a controlled experi-
ment. In International Working Conference on Requirements Engineering:
Foundation for Software Quality, pages 78–93. Springer, 2011.

[27] Charles R Emery and Robert G Tian. Schoolwork as products, professors
as customers: a practical teaching approach in business education. Journal
of Education for Business, 78(2):97–102, 2002.

[28] Emelie Engström, Per Runeson, and Andreas Ljung. Improving regres-
sion testing transparency and efficiency with history-based prioritization–
an industrial case study. In 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation, pages 367–376. IEEE, 2011.

[29] Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch. Commod-
ity eats innovation for breakfast: a model for differentiating feature real-
ization. In International Conference on Product-Focused Software Process
Improvement, pages 517–525. Springer, 2016.

[30] Donald Firesmith. Prioritizing requirements. Journal of Object Technology,
3(8):35–48, 2004.

[31] Samuel A Fricker, Ernest Wallmüller, and Ina Paschen. Requirements en-
gineering as innovation journalism: a research preview. In 2016 IEEE 24th
International Requirements Engineering Conference (RE), pages 335–340.
IEEE, 2016.

[32] Margareta Friman and Bo Edvardsson. A content analysis of complaints
and compliments. Managing Service Quality: An International Journal,
13(1):20–26, 2003.

[33] Cecilia Garibay, Humberto Gutiérrez, and Arturo Figueroa. Evaluation of a
digital library by means of quality function deployment (qfd) and the kano
model. The Journal of Academic Librarianship, 36(2):125–132, 2010.

[34] Deepa Gopal, Aron Lindberg, and Kalle Lyytinen. Attributes of open
source software requirements–the effect of the external environment and
internal social structure. In 2016 49th Hawaii International Conference on
System Sciences (HICSS), pages 4982–4991. IEEE, 2016.

[35] Eduard C Groen, Joerg Doerr, and Sebastian Adam. Towards crowd-based
requirements engineering a research preview. In International Working
Conference on Requirements Engineering: Foundation for Software Qual-
ity, pages 247–253. Springer, 2015.

[36] Eduard C Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Do-
err, Emitza Guzman, Mahmood Hosseini, Jordi Marco, Marc Oriol, Anna
Perini, et al. The crowd in requirements engineering: The landscape and
challenges. IEEE software, 34(2):44–52, 2017.

[37] Wang Hai. A comparative study on the most frequently used online trans-
lation dictionaries. Social Science Theory, (3):140–143, 2017.

111

[38] Elad Harison and Heli Koski. Applying open innovation in business strate-
gies: Evidence from finnish software firms. Research Policy, 39(3):351–
359, 2010.

[39] Frederic Herzberg, Bernard Mausner, and Barbara B Snyderman. The mo-
tivation to work. Wiley, 1959.

[40] Mokter Hossain and Ilkka Kauranen. Open innovation in smes: a system-
atic literature review. Journal of Strategy and Management, 9(1):58–73,
2016.

[41] Mahmood Hosseini, Keith Phalp, Jacqui Taylor, and Raian Ali. The four
pillars of crowdsourcing: A reference model. In 2014 IEEE Eighth Interna-
tional Conference on Research Challenges in Information Science (RCIS),
pages 1–12. IEEE, 2014.

[42] Minqing Hu and Bing Liu. Mining and summarizing customer reviews.
In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 168–177. ACM, 2004.

[43] Jianxin Jiao and Chun-Hsien Chen. Customer requirement management in
product development: a review of research issues. Concurrent Engineering,
14(3):173–185, 2006.

[44] Ding Junwu, Yang Dongtao, and Bao Zhenqiang. Research on capturing
of customer requirements based on innovation theory. Physics Procedia,
24:1868–1880, 2012.

[45] Andreas Stefan Kain, Rafael Johannes Kirschner, Alexander Lang, Udo
Lindemann, et al. Facing the open innovation dilemma–structuring input at
the company’s border. In DS 68-1: Proceedings of the 18th International
Conference on Engineering Design (ICED 11), Impacting Society through
Engineering Design, Vol. 1: Design Processes, Lyngby/Copenhagen, Den-
mark, 15.-19.08. 2011, pages 487–498, 2011.

[46] N. KANO. Attractive quality and must-be quality. Hinshitsu (Quality, the
Journal of Japanese Society for Quality Control), 14:39–48, 1984.

[47] Joachim Karlsson and Kevin Ryan. A cost-value approach for prioritizing
requirements. IEEE software, 14(5):67–74, 1997.

[48] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An evaluation of
methods for prioritizing software requirements. Information and software
technology, 39(14-15):939–947, 1998.

[49] Barbara Kitchenham, Pearl Brereton, and David Budgen. Mapping study
completeness and reliability-a case study. 2012.

[50] Eric Knauss, Daniela Damian, Alessia Knauss, and Arber Borici. Open-
ness and requirements: opportunities and tradeoffs in software ecosystems.
In 2014 IEEE 22nd International Requirements Engineering Conference
(RE), pages 213–222. IEEE, 2014.

112

[51] Lun-Wei Ku, Tung-Ho Wu, Li-Ying Lee, and Hsin-Hsi Chen. Construction
of an evaluation corpus for opinion extraction. In Proceedings of the 5th
NTCIR Workshop Meeting, December 6-9, pages 513–520, 2005.

[52] Jaison Kuriakose and Jeffrey Parsons. How do open source software (oss)
developers practice and perceive requirements engineering? an empirical
study. In 2015 IEEE Fifth International Workshop on Empirical Require-
ments Engineering (EmpiRE), pages 49–56. IEEE, 2015.

[53] Katja Landgraf and Roland Jochem. Innovation management needs an
interoperable requirements management. In International IFIP Working
Conference on Enterprise Interoperability, pages 5–19. Springer, 2012.

[54] Dean Leffingwell and Don Widrig. Managing software requirements: a
unified approach. Addison-Wesley Professional, 2000.

[55] Laura Lehtola, Marjo Kauppinen, and Sari Kujala. Requirements prior-
itization challenges in practice. In International Conference on Product
Focused Software Process Improvement, pages 497–508. Springer, 2004.

[56] Shugang Li and Yueming Li. A sentiment analysis of online reviews based
on the word alignment model: A product improvement perspective. In 2018
2nd IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), pages 2226–2231. IEEE,
2018.

[57] Zhai Li-li, Hong Lian-feng, and Sun Qin-ying. Research on requirement
for high-quality model of extreme programming. In 2011 International
Conference on Information Management, Innovation Management and In-
dustrial Engineering, volume 1, pages 518–522. IEEE, 2011.

[58] Johan Linåker, Björn Regnell, and Hussan Munir. Requirements engineer-
ing in open innovation: a research agenda. In Proceedings of the 2015
International Conference on Software and System Process, pages 208–212.
ACM, 2015.

[59] Johan Linåker and Krzysztof Wnuk. Requirements analysis and manage-
ment for benefiting openness. In 2016 IEEE 24th International Require-
ments Engineering Conference Workshops (REW), pages 344–349. IEEE,
2016.

[60] Sonia M Lo, Han-Ping Shen, and James C Chen. An integrated approach to
project management using the kano model and qfd: an empirical case study.
Total Quality Management & Business Excellence, 28(13-14):1584–1608,
2017.

[61] Dario Lorenzi and Cristina Rossi. Assessing innovation in the software
sector: proprietary vs. foss production mode. preliminary evidence from
the italian case. In IFIP International Conference on Open Source Systems,
pages 325–331. Springer, 2008.

113

[62] Neil Maiden. User requirements and system requirements. IEEE Software,
25(2):90–91, 2008.

[63] Elsa Marcelino-Jesus, Joao Sarraipa, Carlos Agostinho, and Ricardo
Jardim-Goncalves. A requirements engineering methodology for techno-
logical innovations assessment. In ISPE CE, pages 577–586, 2014.

[64] Kurt Matzler and Hans H Hinterhuber. How to make product development
projects more successful by integrating kano’s model of customer satisfac-
tion into quality function deployment. Technovation, 18(1):25–38, 1998.

[65] Josip Mikulić and Darko Prebežac. A critical review of techniques for
classifying quality attributes in the kano model. Managing Service Quality:
An International Journal, 21(1):46–66, 2011.

[66] Francesca Montagna. How should requirements be defined to have real
innovation? Procedia CIRP, 21:527–532, 2014.

[67] Satoshi Morinaga, Kenji Yamanishi, Kenji Tateishi, and Toshikazu
Fukushima. Mining product reputations on the web. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 341–349. ACM, 2002.

[68] Tobias Müller-Prothmann. Give lead users the lead. integration of require-
ments engineering into innovation processes. Journal of Bone & Mineral
Research the Official Journal of the American Society for Bone & Mineral
Research, 27(3):2773–2783, 2012.

[69] Hussan Munir, Krzysztof Wnuk, and Per Runeson. Open innovation in
software engineering: a systematic mapping study. Empirical Software
Engineering, 21(2):684–723, 2016.

[70] Paula Nascimento, Rodrigo Aguas, Daniel Schneider, and Jano De Souza.
An approach to requirements categorization using kano’s model and
crowds. In Proceedings of the 2012 IEEE 16th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), pages 387–
392. IEEE, 2012.

[71] Tetsuya Nasukawa and Jeonghee Yi. Sentiment analysis: Capturing favor-
ability using natural language processing. In Proceedings of the 2nd inter-
national conference on Knowledge capture, pages 70–77. ACM, 2003.

[72] Kateryna Neulinger, Anna Hannemann, Ralf Klamma, and Matthias Jarke.
A longitudinal study of community-oriented open source software devel-
opment. In International Conference on Advanced Information Systems
Engineering, pages 509–523. Springer, 2016.

[73] Raymond S Nickerson. Confirmation bias: A ubiquitous phenomenon in
many guises. Review of general psychology, 2(2):175–220, 1998.

[74] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software En-
gineering, pages 35–46. ACM, 2000.

114

[75] Richard L Oliver. Satisfaction: A Behavioral Perspective on the Consumer.
ME Sharpe, 2010.

[76] Barbara Paech and Bernd Reuschenbach. Open source requirements engi-
neering. In 14th IEEE International Requirements Engineering Conference
(RE’06), pages 257–262. IEEE, 2006.

[77] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?:
sentiment classification using machine learning techniques. In Proceed-
ings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, pages 79–86. Association for Computational Lin-
guistics, 2002.

[78] Anna Perini, Angelo Susi, and Paolo Avesani. A machine learning ap-
proach to software requirements prioritization. IEEE Transactions on Soft-
ware Engineering, 39(4):445–461, 2012.

[79] Kai Petersen and Nauman Bin Ali. Identifying strategies for study selec-
tion in systematic reviews and maps. In 2011 International Symposium on
Empirical Software Engineering and Measurement, pages 351–354. IEEE,
2011.

[80] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In Ease, volume 8, pages
68–77, 2008.

[81] Andrew J Reagan, Brian Tivnan, Jake Ryland Williams, Christopher M
Danforth, and Peter Sheridan Dodds. Benchmarking sentiment analysis
methods for large-scale texts: a case for using continuum-scored words
and word shift graphs. arXiv preprint arXiv:1512.00531, 2015.

[82] Björn Regnell, Martin Höst, Fredrik Nilsson, and Henrik Bengtsson. A
measurement framework for team level assessment of innovation capability
in early requirements engineering. In International Conference on Product-
Focused Software Process Improvement, pages 71–86. Springer, 2009.

[83] Clotilde Rohleder, Jing Lin, Indra Kusuma, and Gülru Özkan. Business
analytics in innovation and product lifecycle management: poster paper. In
IEEE 7th International Conference on Research Challenges in Information
Science (RCIS), pages 1–2. IEEE, 2013.

[84] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineer-
ing, 14(2):131, 2009.

[85] Thomas L Saaty. What is the analytic hierarchy process? In Mathematical
models for decision support, pages 109–121. Springer, 1988.

[86] Walt Scacchi. Understanding requirements for open source software. In
Design requirements engineering: A ten-year perspective, pages 467–494.
Springer, 2009.

115

[87] Alexander Schroll and Andreas Mild. A critical review of empirical
research on open innovation adoption. Journal für Betriebswirtschaft,
62(2):85–118, 2012.

[88] AMM Sharif Ullah and Jun’ichi Tamaki. Analysis of kano-model-based
customer needs for product development. Systems Engineering, 14(2):154–
172, 2011.

[89] Chris J Skinner. Probability proportional to size (pps) sampling. Wiley
StatsRef: Statistics Reference Online, pages 1–5, 2014.

[90] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D
Manning, Andrew Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natural language processing,
pages 1631–1642, 2013.

[91] Ian Sommerville. Software engineering 9th edition. ISBN-10137035152,
2011.

[92] Huaming Song, Chao Chen, and Qin Yu. Research on kano model based on
online comment data mining. In 2018 IEEE 3rd International Conference
on Big Data Analysis (ICBDA), pages 76–82. IEEE, 2018.

[93] Stephen V Stehman. Selecting and interpreting measures of thematic clas-
sification accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[94] Richard M Tong. An operational system for detecting and tracking opinions
in on-line discussion. In Working Notes of the ACM SIGIR 2001 Workshop
on Operational Text Classification, volume 1, 2001.

[95] Gerson Tontini. Integrating the kano model and qfd for designing new
products. Total Quality Management, 18(6):599–612, 2007.

[96] Peter D Turney. Thumbs up or thumbs down?: semantic orientation applied
to unsupervised classification of reviews. In Proceedings of the 40th an-
nual meeting on association for computational linguistics, pages 417–424.
Association for Computational Linguistics, 2002.

[97] Terry G Vavra. Improving your measurement of customer satisfaction: A
guide to creating, conducting, analyzing, and reporting customer satisfac-
tion measurement programs. ASQ quality press, 1997.

[98] Chong Wang, Maya Daneva, Marten van Sinderen, and Peng Liang. A sys-
tematic mapping study on crowdsourced requirements engineering using
user feedback. Journal of Software: Evolution and Process, page e2199,
2019.

[99] Hu wei. Baidu translation english-chinese translation quality improvement
strategy. China Science and Technology Information, (z4):133–134, 2015.

[100] Janyce Wiebe et al. Learning subjective adjectives from corpora. Aaai/iaai,
20(0):0, 2000.

116

[101] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Require-
ments engineering paper classification and evaluation criteria: a proposal
and a discussion. Requirements engineering, 11(1):102–107, 2006.

[102] Theresa Wilson, Janyce Wiebe, and Rebecca Hwa. Just how mad are you?
finding strong and weak opinion clauses. In aaai, volume 4, pages 761–
769, 2004.

[103] Krzysztof Wnuk, Dietmar Pfahl, David Callele, and Even-André Karlsson.
How can open source software development help requirements manage-
ment gain the potential of open innovation: an exploratory study. In Pro-
ceedings of the ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 271–280. ACM, 2012.

[104] Krzysztof Wnuk and Per Runeson. Engineering open innovation–towards
a framework for fostering open innovation. In International Conference of
Software Business, pages 48–59. Springer, 2013.

[105] K. Yang. Voice of the Customer: Capture and Analysis. Six sigma opera-
tional methods series. McGraw-Hill Education, 2007.

[106] Huishi Yin. A study plan: open innovation based on internet data mining in
software engineering. In Proceedings of the 2015 International Conference
on Software and System Process, pages 192–193. ACM, 2015.

[107] Huishi Yin and Dietmar Pfahl. A preliminary study into research about
open innovation with focus on the field of computer science. In Proceed-
ings of the 2015 International Conference on Software and System Process,
pages 204–207. ACM, 2015.

[108] Huishi Yin and Dietmar Pfahl. Evaluation of kano-like models defined for
using data extracted from online sources. In International Conference on
Product-Focused Software Process Improvement, pages 539–549. Springer,
2016.

[109] Huishi Yin and Dietmar Pfahl. A method to transform automatically
extracted product features into inputs for kano-like models. In Inter-
national Conference on Product-Focused Software Process Improvement,
pages 237–254. Springer, 2017.

[110] Huishi Yin and Dietmar Pfahl. Open innovation in software requirements
engineering: A mapping study. In 2017 8th IEEE International Conference
on Software Engineering and Service Science (ICSESS), pages 5–10, Nov
2017.

[111] Huishi Yin and Dietmar Pfahl. A preliminary study on the suitability of
stack overflow for open innovation in requirements engineering. In Pro-
ceedings of the 3rd International Conference on Communication and In-
formation Processing, pages 45–49. ACM, 2017.

[112] Huishi Yin and Dietmar Pfahl. The oire method - overview and initial
validation(accept*). In 25th APSEC 2018. ACM, 2018.

117

[113] Hong Yu and Vasileios Hatzivassiloglou. Towards answering opinion ques-
tions: Separating facts from opinions and identifying the polarity of opinion
sentences. In Proceedings of the 2003 conference on Empirical methods in
natural language processing, pages 129–136. Association for Computa-
tional Linguistics, 2003.

[114] He Yubing. The review and prospect of open innovation re-search. Science
of Science and Management of S. & T, 36(3):3–12, 2015.

[115] Daniel Zacarias. The complete guide to the kano model-prioritizing
customer satisfaction and delight. https://foldingburritos.com/
kano-model/. Accessed June 15, 2016.

[116] Fang Lan Zhang, Chen Xi Jia, and Yanshan University. Products innovation
method based on classification and importance evaluation of user needs.
Packaging Engineering, 2017.

118

https://foldingburritos.com/kano-model/
https://foldingburritos.com/kano-model/

Appendix A. COLLECTION OF THE LINKS TO
RESEARCH MATERIALS

A.1. Code

Source code of OIRE-S:
https://figshare.com/s/9bc19c086449be76ed90

A.2. Document

Feature-related texts used in Chapter 6:
https://figshare.com/s/64dbc8e3538e704efb22

119

ACKNOWLEDGEMENT

I spent some precious years at the beautiful University of Tartu. I completed my
PhD studies, increased my knowledge and learning ability, and gained a wealth
of valuable life experience. The help and support from my supervisor, my family,
and close friends made it possible for me to successfully complete my studies.

First of all, I sincerely thank my supervisor, Professor Dietmar Pfahl. It was my
good fortune to have such a good supervisor. Without his guidance and careful
and timely feedback, I would not have had a chance to complete and publish
my studies. I have benefited from his immense knowledge, rigorous academic
attitude, and unremitting dedication to doing research.

Besides my supervisor, I would like to express my appreciation to Professor
Marlon Dumas for his insightful comments and encouragement, but also for all
his help which motivated me to widen my research in many ways.

Furthermore, I am extremely grateful to my family for supporting me spiritu-
ally throughout this research and my life in general.

In the past years, I suffered from depression. When I was extremely pes-
simistic, my supervisor encouraged me to move forward. My parents and my dear
friends, especially Dr. Chen, took care of me when I was not feeling well. I am
deeply thankful to all those who gave me help and encouragement. Their help was
akin to a lifeguard rescuing a drowning person from the deep sea.

120

SUMMARY

Kano-sarnase mudeli kasutamine avatud innovatsiooni
saavutamiseks nõuete analüüsi protsessis

Kui viiakse läbi nõuete analüüsi (inglise k Requirements Engineering, lühend
RE), siis sageli järjestatakse nõuded nende olulisuse alusel (inglise k require-
ments prioritization), et saada selgust, milliste välja pakutud nõuetega funktsioon
peaks tarkvaral olemas olema, seega sõltub tarkvara analüüsist tarkvara majan-
dusliku väärtuse suurendamisega seotud otsuste tegemine. Tänapäeval arenevad
tooted väga kiiresti ning ka nõuete olulisuse alusel järjestamine (inglise k require-
ments prioritization) on muutunud kiiremaks. Ettevõtted sooviksid saada kasuta-
jatelt kiiret tagasisidet selle kohta, mis peaks olema järgmises mudelis olemas.
Üks häid lahendusi sellele on Kano mudel (inglise k Kano model). Kano mudel
selgitab välja kasutajate rahulolu ja toodete tunnuste vahelise suhte. See meetod
liigitab kasutajate eelistused nende tähtsuse järjekorras, seega toetab see ka nõuete
olulisuse järjekorra moodustamist. Aga Kano mudeli rakendamine on kallis ja ae-
ganõudev ning seda ei saa kiiresti korrata. Veelgi enam – see mudel on keeruline
väikeste ettevõtete jaoks, sest neil ei tarvitse olla piisavalt rahalisi jm vahendeid, et
kasutajatega ühendust võtta ja neid intervjueerida. See omakorda paneb väikesed
ettevõtted, eriti just idufirmad, ebavõrdsesse olukorda suurte ettevõtetega.

Et sellele probleemile lahendust leida ja Kano mudeli kasutuselevõttu liht-
samaks ning odavamaks teha, arvame, et Kano mudelit tuleks arendada kahel
viisil. Esiteks tuleks kasutada tasuta võrgus leiduvaid kirjalikke andmeid, mi-
da saaks asendada intervjueeritavatelt kogutud vastustega. Teiseks – selleks, et
hakkama saada võrgust kogutud kirjalike andmete suure mahuga, ning et kaasa ai-
data korrapärastele analüüsidele, peaks andmete analüüsimine olema automaatne.

Selle uurimuse eesmärk on välja pakkuda meetodeid, et kasutajate avamusi,
mis on võrgus saadavatest vabadest allikatest kogutud, (semi-)automaatselt liig-
itada, ja seda selleks, et aidata otsustajatel otsustada, millised tarkvara nõuded
järgmises mudelis kindlasti olemas peaksid olema. Et seda uurimuse eesmär-
ki saavutada, pakume me välja avatud innovatsiooni nõuete analüüsi (inglise k
Open Innovation in Requirements Engineering, lühend OIRE) meetodi, mille abil
saavad tarkvarafirmad parema ülevaate kasutajate vajadustest ja sellest, kuivõrd
rahul on nad olemasolevate toodetega. Põhiline OIRE meetodi puhul on Kano
mudelile sarnane mudel (inglise k Kano-like model). See mudel matkib tradit-
sioonilist Kano mudelit erinedes ainult selle poolest, et ta kasutab võrgust lei-
tud ülevaateid selle asemel, et kasutada fookus- gruppidega tehtud intervjuusid.
Kasutame masinõpet ja tundmusanalüüsi meetodit, et analüüsida tekstiridu, mis
vastavad Kano mudelile sarnasele mudeli sisendile.

OIRE meetodi eesmärk on aidata tarkvaraarendajatel mõista, kui palju lõppka-
sutajad võiksid hinnata hetkel-arenduses-olevat tarkvara toodet. Samuti alandab
pooleldi automatiseeritud lähenemine RE kulusid. Me arvame, et OIRE meetod

121

IN ESTONIANi i

on kasulikum just väikestele firmadele, millel on väiksed meeskonnad ning väike
müügi ja ostjate uurimisega seotud eelarve.

Panustame selle uurimusega ka sellega, et esitleme kolme tüüpilist kasutusvi-
isi ja OIRE meetodi idee tõendamine näitlikustab OIRE meetodi rakendatavust
Internetist kogutud päris-maailma andmetele. Võtame vaatluse alla ka võimalike
sisendandmete sobivuse OIRE meetodiga.

Kolmas selle uurimuse panus seisneb prototüüpse veebipõhise süsteemi, OIRE
Süsteemi (inglise k OIRE System, lühend OIRE-S) disainimises ja rakendamises,
ning OIRE meetodi hindamises kasutades OIRE Süsteemi. Me oleme juhtinud üht
uurimustööd koos kahe Hiina ettevõttega ja üht intervjuu-uurimust koos kahe teise
asjaosalisega. Uurimustöö ja intervjuude-uurimuse tulemused näitasid, et OIRE
meetodit peeti kõikide asjaosaliste poolt kasulikuks, ning et seda peeti kasulikuks
just väikeste ettevõtete otsustajatele.

122

CURRICULUM VITAE

Personal data

Name: Huishi Yin
Date of birth: 07.10.1981
Citizenship: Chinese

Education

2015–2019 University of Tartu, Faculty of Science and Technology,
doctoral studies, specialty: Computer Science.

2012–2014 University of Tartu, Faculty of Mathematics and Computer
Science, master studies, specialty: Software Engineering.

2001–2005 Hebei University of Technology, China, bachelor studies,
specialty: Information System and Information Manage-
ment

Employment

2005–2010 Network System Engineer, Network Research Center of
Tsinghua University (China Educational Reach Network
Center)

Scientific work

Main fields of interest:
• Requirements engineering
• Sentiment analysis
• Data mining

123

ELULOOKIRJELDUS

Isikuandmed

Nimi: Huishi Yin
Sünniaeg: 07.10.1981
Kodakondsus: Hiina

Haridus

2015–2019 Tartu Ülikool, loodus- ja täppisteaduste valdkond, dok-
toriõpe, eriala: informaatika.

2012–2014 Tartu Ülikool, matemaatika-informaatikateaduskond, mag-
istriõpe, eriala: tarkvaratehnika.

2001–2005 Hebei Tehnikaülikool, Hiina, bakalaureuseõpe, eriala: In-
formation System and Information Management

Teenistuskäik

2005–2010 Network System Engineer, Network Research Center of
Tsinghua University (China Educational Reach Network
Center)

Teadustegevus

Peamised uurimisvaldkonnad:
• Nõuete analüüs
• Sentiment-analüüs
• Andmekaeve

124

LIST OF ORIGINAL PUBLICATIONS

1. Yin H. A Study Plan: Open Innovation Based on Internet Data Mining in
Software Engineering. Proceedings of the 2015 International Conference
on Software and System Process. ACM, 2015: 192-193.

2. Yin H, Pfahl D. A Preliminary Study into Research about Open Innovation
with Focus on the Field of Computer Science. Proceedings of the 2015
International Conference on Software and System Process. ACM, 2015:
204-207.

3. Yin H, Pfahl D. Evaluation of Kano-like Models Defined for Using Data Ex-
tracted from Online Sources. Product-Focused Software Process Improve-
ment: 17th International Conference, PROFES 2016, Trondheim, Norway,
November 22-24, 2016, Proceedings. Springer International Publishing,
2016: 539-549.

4. Yin H, Pfahl D. A Method to Transform Automatically Extracted Product
Features into Inputs for Kano-Like Models. International Conference on
Product-Focused Software Process Improvement. Springer, Cham, 2017:
237-254.

5. Yin H, Pfahl D. A Preliminary Study on the Suitability of Stack Overflow
for Open Innovation in Requirements Engineering. Proceedings of the 3rd
International Conference on Communication and Information Processing.
ACM, 2017: 45-49.

6. Yin H, Pfahl D. Open Innovation in Software Requirements Engineering:
A Mapping study. 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS). IEEE, 2017: 5-10.

7. Yin H, Pfahl D. The OIRE Method-Overview and Initial Validation. 2018
25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018:
1-10.

125

126

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

127

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

128

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

	Introduction
	Research Approach
	OIRE Method
	Contributions
	Outline

	Background
	Open Innovation
	Requirements Engineering
	Kano Model

	State of the Art
	OI in All Research Fields
	Introduction
	Goal and Data Collection
	Results and Analysis
	Discussion and Conclusion

	OI in Software Requirements Engineering
	Introduction
	Systematic Mapping Study Process
	Results and Analysis
	Discussion
	Conclusion
	Threats to Validity

	Summary

	OIRE Method
	Component 1 - Sentence Classification
	Algorithm Design
	Application Example for Component 1

	Component 2 - Sentiment Mining
	Algorithm Design
	Application Example for Component 2
	Overall Performance of Component 1 and Component 2

	Component 3 - Kano-like Processing
	Half-Kano Model
	Deformed-Kano Model
	Simulation of Kano-like Models

	Component 4 - Visualization
	Work Process
	Summary

	OIRE Tool Support
	Structure
	Implementation
	Function "Upload file"
	Function "Sentiment analysis"
	Function "Kano-like analysis"

	Summary

	Validation
	Task-Adequacy of Input Source
	Use Cases
	Use Case 1
	Use Case 2
	Use Case 3

	Application of the Use Cases
	Application of Use Case 1
	Application of Use Case 2
	Application of Use Case 3

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Discussion
	Conclusion
	Summary

	Evaluation
	Study Design
	Research Question
	Case Study Design
	Interview Study Design

	Results
	Case Study
	Interview Study

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography
	Collection of the links to research materials
	Code
	Document

	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

