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ABSTRACT

With the advent of smartphones, tablets, and other mobile devices, the user base
of software apps has grown tremendously and thus capturing the needs and expec-
tations of such diverse user groups is not straightforward for developers during the
mobile development release cycle. To handle such a complex situation, text min-
ing techniques have been adopted to distill useful information automatically from
a large volume of user reviews submitted to app marketplaces. In this thesis, first,
we evaluate simple and complex review classification models for finding useful
information in user reviews. Then, automatic app feature extraction techniques
for fine-grained analysis of user reviews are investigated. Finally, both review
classification and automatic app feature extraction techniques are combined to
develop a tool for competitive analysis.

For automatic review classification, we evaluated the performances of simple
to more complex machine learning models. Classification models using words in
the review text as features called Bag-of-Words (BoW) are easier to adapt to other
languages than the models using linguistic features because extracting linguistic
features requires language-specific NLP tools. On the other hand, deep learning
Convolutional Neural Network (CNN) architectures are more complex and harder
to interpret than the models using BoW and linguistic features but they do not
require manual feature engineering efforts. The results of our experiments show
that the simple BoW model can achieve almost the same performance as the more
complex models using rich linguistic features or CNN architecture.

The task of automatic app feature extraction is challenging because of the
informal nature of the review texts and the variability of the natural language.
Several methods including rule-based, unsupervised machine learning, and super-
vised machine learning, have been proposed for extracting app features from user
reviews. However, these methods have used either different labeled datasets or dif-
ferent evaluation methods making their performances uncomparable. To establish
a baseline performance, we evaluated the app feature extraction performance of
existing rule-based and supervised machine learning methods in the same experi-
mental setting. Our results show that the performances of both app feature extrac-
tion methods were low but the performance of a supervised learning method was
better than the rule-based method in terms of f1-score. The performance of su-
pervised machine learning methods depends on various aspects such as evaluation
method, feature extraction methods, annotated review dataset and the guidelines
used for the annotation of app features in a review dataset, also called annotation
guidelines (AGs). Although AGs and the size of annotated datasets can poten-
tially have a large effect on the evaluation results of supervised feature extraction
methods and their usefulness, their impact on the performance of supervised app
feature methods has been overlooked. To close this gap, we first analyze how the
simulated application of AGs impacts the performance of a supervised machine
learning method used to extract app features from user reviews. Then we explore
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the impact of the size of annotated datasets on app feature extraction performance.
Feature-level analysis performed on the reviews of a single app can also be

extended to multiple apps for competitive analysis. We propose an approach that
combines review classification and app feature extraction methods for comparing
competing apps. To validate our approach, we developed the proof-of-concept
tool REVSUM supports three typical use cases, i.e., viewing users’ sentiments
toward app features in competing apps (UC 1), viewing features that were men-
tioned in reviews classified as bug reports in competing apps (UC 2), and viewing
features that were requested by users in competing apps (UC 3). In a follow-
up qualitative evaluation, developers from industry have found REVSUM a use-
ful tool for extracting information from app reviews of competing apps that is
relevant for software maintenance and release planning. In summary, the thesis
has explored existing review classification and app feature extraction techniques
for finding developer-relevant information from user reviews and then combined
these approaches to develop the tool REVSUM for comparing competing apps to
support developers in software development activities.
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1. INTRODUCTION

Mobile app development companies operate in an increasingly competitive en-
vironment. The complexity of developing high-quality mobile applications has
increased manifold due to the vast diversity in their user base, variability in the
devices, and underlying operating system (OS) versions [31, 32]. Therefore, it is
important for companies to continuously evaluate the needs and expectations of
their users to gain or maintain their competitive edge[8]. A convenient and use-
ful source of information for this purpose is app reviews in which users express
their opinions on various aspects of an app. App reviews contain information such
as bug reports, feature requests, and feature evaluation, which is relevant for the
improvement of mobile apps in the highly competitive app market[18, 59, 46].

User feedback and involvement is at the heart of all activities carried out during
the software development lifecycle[25]. Prior studies have shown that integrating
user feedback into these activities helps in evaluating and improving software
quality[39, 16]. The usual channels adopted for collecting user feedback are bug
repositories (e.g., Bugzilla), crash reporting systems, online forums, and emails
[4]. In recent years, user reviews posted to app marketplaces are also regarded as
another essential channel, because they contain a rich source of information for
developers intending to improve their apps [4, 12, 59, 58]. A large volume of user
reviews received every day makes the option of manual inspection impractical.
Consequently, app review mining research has adopted text mining techniques to
distill useful information from user reviews. One of the commonly used text min-
ing technique for finding useful information in user reviews is training machine
learning (ML) based text classification models. The objective of ML-based text
classification models is to assign categories automatically to review text according
to its content [1]. For instance, a text classification model trained on app reviews
can help to classify review text into categories: feature evaluation, bug report,
feature request, and others, that are informative for developers.

Review classification models can help in finding informative reviews auto-
matically from a large collection of user reviews. However, some researchers
attempted to extract fine-grained app features and sentiments conveyed towards
them in user reviews [22, 18, 47]. Their motivation behind this task is to under-
stand users’ perception of app features delivered in one’s app. The same feature-
level sentiment analysis is also extended to multiple apps with the objective of
comparing competing apps called “competitive analysis” [8]. When summarizing
users’ opinions about app features, the accuracy of the method used for extract-
ing app features automatically from user reviews is crucial. The variability with
which users can express app features in user reviews makes automatic app fea-
ture extraction a very challenging problem. In the past, several techniques have
been used for extracting app features automatically from user reviews. However,
they have used different review datasets or evaluation methods, which makes the
performance/accuracy of these different techniques uncomparable.

15



This thesis evaluates simple and complex methods used for extracting high-
level information (e.g., classification of reviews into feature request, bug report,
and feature evaluation) and detailed information (i.e., app features) from user
reviews. Finally, we combine both methods to develop a tool for competitive
analysis.

1.1. Problem Areas

When classifying review information automatically, classification models used
simple to rich linguistic features1 for training [4, 18, 45]. However, it is not clear
that complex models have an advantage over simple models. This thesis tack-
les this problem and evaluates the performances of simple review classification
models and its complex counterparts.

The techniques used for extracting app features automatically from user re-
views have used different labeled datasets or evaluation methods and thus their
results are not directly comparable [18, 47, 28, 70]. To address this problem,
first, our thesis evaluates the performance of a simple rule-based feature extraction
method on different labeled review datasets. Then, the performance of supervised
ML method and its sensitivity to annotated datasets is investigated.

To perform competitive analysis, previous studies [73, 8] extracted app fea-
tures directly from user reviews of competing apps. This approach is vulnerable
to extract many false app features because app reviews contain information that is
unrelated to app features. To address this problem, our thesis combines app review
classification and app feature extraction methods when a competitive analysis is
performed.

The context of the problems identified in the areas of app review classification,
app feature extraction, and competitive analysis are explained in detail as follows.

1.1.1. App Review Classification

App review classification models assign categories automatically to review text
according to its content [1]. For the training and evaluation of such models, we
require labeled review data where humans have manually categorized the review
information into a mutually exclusive set of classes. Besides the quality of la-
beled data, the accuracy of the classification model relies on the set of textual
features used for the model’s training[45]. Review classification models devel-
oped in the previous studies[4, 18, 45] used textual features ranging from simple
to rich linguistic features[18]. For instance, extracting lexical features, also called
Bag-of-Words (BoW) is straightforward as it only involves counting the frequency
of each word, whereas extracting linguistic features requires using external Nat-
ural Language Processing (NLP) tools such as taggers and parsers. Compared to

1Rich linguistic features refer to the textual features extracted from part-of-speech tags, con-
stituency parse tree, and semantic dependency graph (See Glossary for the defination of each indi-
viual feature).
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classification models using rich linguistic features, a model with BoW features
are fast to train and their adaption to other languages is easy.

Over the past few years, a new family of machine learning models called Deep
Learning (DL) has been introduced that offers relief from manual feature en-
gineering efforts as these models can learn feature representation automatically
from labeled data[33]. Especially, a DL model known as Convolutional Neural
Network (CNN) has achieved encouraging results for various text classification
tasks, but its performance on app review datasets is not yet known. Compared to
traditional ML models, DL models are complex, difficult to interpret, and expen-
sive in terms of computational power[13]. Therefore, it is suggested to use DL
models only when their performance is significantly higher than other simple and
faster counterparts [13].

Our thesis evaluates the performance of review classification models with vary-
ing level of complexities. If simple BoW models can achieve performance at par
with more complex models then the use of complex models for review sentence
classification is hard to justify.

1.1.2. App Feature Extraction

App feature extraction from user reviews aims at automatic identification of app
features contained in the review text [28]. The quality of automatic app feature ex-
traction from app reviews depends on various aspects including feature extraction
method, training and evaluation datasets, and evaluation method. When creat-
ing a labeled review dataset for training or evaluation of app feature extraction
methods, annotation guidelines (AGs) direct human annotators which word or
sequence of words in a review constitutes an app feature. The exact annotation
procedure, operationalized via annotation guidelines, has potentially a large effect
on the evaluation results of feature extraction methods and their usefulness to app
developers, but this aspect has been commonly overlooked by researchers. To-
wards this direction, our thesis investigates the effects of AGs to the performance
and quality of app feature extraction method.

Previous research has used different approaches such as supervised ML [70],
unsupervised ML [22] or rule-based [18, 47, 28] for extracting app features from
app reviews. Extracting app features from user reviews using supervised ML
method require labeled reviews for both training and evaluation. Whereas unsu-
pervised or rule-based methods need labeled reviews only for evaluation purposes.
In case of supervised ML, an important practical concern is to understand how
much annotated data one needs to train a generalize and reliable model for app
feature extraction. Therefore, our thesis also investigates the impact of annotated
data size to the performance of supervised ML method.

A rule-based method is a simple alternative to supervised ML method for app
feature extraction as it does not need annotated reviews to extract app features
from user reviews of a new app. Our thesis, first, evaluates the performance of a
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simple rule-based approach SAFE [28]. Because the procedure used to evaluate
SAFE performance on user reviews in the original study was in part subjective.
After that, we evaluate the performance of supervised ML method for app fea-
ture extraction and compare it to the performance of simple rule-based approach.
Finally, our thesis explores the impact of AGs and annotated data size to the per-
formance of app features extracted through supervised ML method.

1.1.3. Competitive Analysis

App marketplace is very competitive and thus keeping an eye on competitors or
similar apps is vital for the success of one’s app. A recent study of Alsubaihin et
al.[2] has reported that developers utilize information from user reviews of com-
peting apps when performing software maintenance activities. Most of the prior
studies [4, 18, 22, 59, 53, 9] performed app review analysis on a single app. We
performed the first study[73] that compared competing apps based on users’ sen-
timents towards common app features mentioned in the user reviews. In a recent
study, Dalpiaz et al. [8] also performed analysis on user reviews of multiple apps
with the objective of competitive analysis.

Both studies [73, 8] extracted app features directly from user reviews for com-
paring competing apps, without discarding the irrelevant information from user
reviews. Since user reviews may contain many review sentences that do not men-
tion any app feature or useful information for software development, their feature
extraction approach is susceptible to the extraction of many false app features. To
overcome this problem, when comparing competing apps, similar to ARMINER

[4], first, we apply review classification model to filter out irrelevant informa-
tion from user reviews and then extract app features from only relevant review
sentences such as feature evaluation, bug report, and feaure request. Moreover,
our tool enables users to filter app features by frequency threshold or choose app
description as an alternative source for extracting app features.

1.2. Research Questions

For the problems identified in the previous section, we have formulated the fol-
lowing three high-level research questions (RQ) to guide our research.
RQ1: What linguistic features and models are more appropriate for enabling an

effective automated classification of review information?
Answering RQ1 involves:
• Comparing the performance of a simple BoW model with a more sophisti-

cated model using rich linguistic features;
• Comparing the performance of a simple BoW model with CNN models

proposed in the literature;
• Analyzing the trade-offs between simple and complex models;
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• Making suggestions to improve the performance of simple classification
models;

RQ2: How do annotation guidelines influence the performance of app feature
extraction from app reviews?

Answering RQ2 involves:
• Evaluating the performance of rule-based approach (i.e., SAFE) on review

datasets using different AGs;
• Establish the baseline performance of supervised ML method;
• Comparision of the performance between rule-based and supervised ML

method;
• Investigating the potential impact (via simulation) of AGs on the perfor-

mance and quality of feature extraction using the ML method;
• Analyzing the impact of annotated dataset size on the performance of fea-

ture extraction using the ML method;
RQ3: Can automatic app review classification and app feature extraction be com-

bined for comparing competing apps?
Answering RQ3 involves:
• Combining app review classification and app feature extraction to develop

prototypical tool for comparing competing apps;
• Validation (proof-of-concept) of the tool support based on typical use cases;
• Evaluation of the tool support based on feedback from test users in the

industry (survey);

1.3. Research Approach

The research method followed in this thesis is data-driven. To answer our first
research question RQ1, we obtained the labeled review dataset used in the previ-
ous study of Gu et al. [18] to compare the performances of simple classification
models against the model used in Gu et al.’s study using rich linguistic features.
To validate the review classification models, we used standard ML techniques
that split the dataset into train and test data and then performed 10-fold cross-
validation to estimate the model’s performance.

To answer RQ2, we acquire review datasets along with the annotation guide-
lines (AGs) from previous studies. During our experiments with supervised fea-
ture extraction models, we observed that the model performance on a German
review dataset annotated using guidelines of Sanger et al. [70] achieved better
performance than the review dataset annotated using the guidelines of Guzman
et al. [22]. Various factors could impact the model performance such as review
language, model features, review dataset, and AGs. Since we were interested
in investigating the potential impact of AGs on model performances when app
features are extracted automatically from English app reviews, we labeled a new
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English review dataset following the annotation guidelines used by Sanger et al.
[70]. First, we performed a replication study to evaluate the performance of the
feature extraction approach SAFE on user reviews. Then, we performed changes
in the annotation guidelines via simulation to investigate the impact of AGs on the
performance of the supervised ML method.

As part of answering RQ3, we made our developed tool online2 and conducted
a survey3 to evaluate the usefulness of this tool for app developers.

To ensure reproducibility, we made available all the source code4 required to
perform the experiments, with instructions for its use.

1.4. Contributions of the Thesis

The thesis makes three contributions to the field of app review mining as described
below:
Contribution 1: Simple vs complex machine learning models for finding developer-

relevant information in app reviews. We compare the performance of sim-
ple BoW model with the model using rich linguistic features for classifying
review sentences into types: feature evaluation, feature request, and bug
report. Additionally, the simple BoW model performance is also compared
with the performance of more powerful CNN models. The results of our
experiments show that a simple BoW model can achieve almost the same
performance as the complex models using rich linguistic features or CNN
model. Furthermore, our detailed analysis of misclassifications errors made
by the simple model and annotated data suggests that incorporating the con-
text information into classification models, extracted from the full review
text can further improve the performance of these models.

Contribution 2: Impact of annotated data and annotation guidelines on auto-
matic app feature extraction from user reviews. First, we evaluate a simple
approach SAFE (i.e., rule-based) for extracting app features from user re-
views that does not use ML. Our results show that the precision of SAFE
approach is strongly influenced by the density of the annotated app features
in a review dataset. Then, we evaluate the performance of a commonly
used supervised learning approach CRF using several training and evalu-
ation datasets and compare its performance to rule-based SAFE approach.
Next, we investigate the impact of annotation guidelines on the performance
of supervised ML model via simulation for extracting app features from
user reviews. Finally, we explore the impact of annotated data size on app
feature extraction performance using supervised ML model.

Contribution 3: Using app reviews for competitive analysis - tool support. We

2http://18.219.206.183:8088/
3https://forms.gle/QrfuCJsHFhF5Sh517
4https://bitbucket.org/faizalishah/
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proposed a method to assist developers in comparing competing apps that
combines a simple review classification model and app feature extraction
method. As a proof-of-concept, we developed a tool REVSUM based on
our method supporting three typical use cases to support mobile software
development activities. 10 developers from the industry have evaluated our
tool and found it useful for extracting information that is relevant for soft-
ware maintenance and release planning activities.

The above contributions have been documented in publications II-VII listed at
the end of the thesis (see "List of original publications")

1.5. Structure of the Thesis

This introduction has provided the context for the thesis, outlined research ques-
tions, presented our research approach, and has described contributions of the
thesis.

In Chapter 2, we give the background of how app reviews can assist different
software development activities and introduce the concepts and algorithms from
machine learning field that are relevant to this thesis.

Chapter 3 summarizes all related work to position our research in the area of
app review mining.

Chapter 4 tackles RQ1 of the thesis. In this chapter, we compare the perfor-
mances of simple models with the performance of the model using rich linguistic
features. Additionally, the simple lexical model performance is compared against
the performances of powerful deep learning models, i.e., the CNN model. Fur-
thermore, we performed a manual analysis of the classification errors made by
the simple model and annotated data, and pointed out a few directions to further
improve the model’s performance. This chapter is based on publications III and
V.

In Chapter 5, we answer RQ2 of the thesis. First, we perform an external eval-
uation of the rule-based approach SAFE for extracting app features from users
reviews and its performance is compared against the performance of supervised
ML model. Then, we explore the impact of annotation guidelines on supervised
ML model when extracting app features automatically from user reviews. Finally,
how the size and scope of the annotated data affect the model’s performance is in-
vestigated. The chapter is based on publications IV and VI. It also contains some
unpublished experimental results.

Chapter 6 answers RQ3 of the thesis. First, we describe the approach that
combined review classification model and app feature extraction to design a tool
for comparing one’s app with other competitor apps based on users’ feedback.
Next, we explain three use cases supported in our tool to assist developers in
software development activities. Finally, a survey study evaluating the usefulness
of the tool is presented along with its results. The chapter is based on publication
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II and VII, but the contents related to the design of the survey study and its results
have not been published.

Chapter 7 gives the concluding remarks and points out possible future re-
search directions.
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2. BACKGROUND

In this chapter, first, we explain the release cycle of mobile software development
and how user feedback can be used to facilitate software development activities.
Then, we introduced automatic text analysis techniques used in the thesis for ex-
tracting information from user feedback.

2.1. Mobile Development Release Cycle

Mobile development release cycle as shown in Figure 1 (Step 1 to Step 5) ensures
the timely delivery of an app from its planning to release stage. The release cycle
of mobile apps is usually shorter than traditional software. Therefore, develop-
ment teams often need to take important decisions such as feature prioritization,
release cycle duration, team organization, and testing requirements when planning
a next release (see Step 1 of Figure 1). These decisions trigger coding and main-
tenance activities (i.e., Step 2) in which developers modify and add the software
artifacts such as source code to fix a bug or to add new functionality. The changes
made in the source code by developers during maintenance are tested during the
testing activities to ensure that mobile application provides the intended functions
without any defect. For this, tester modifies or adds a new test code. Nowadays,
continuous delivery (CD) is one of the most used development practices (i.e., Step
4) in which source code changes are sent to server machines to automate all soft-
ware integration tasks required for the delivery. When this automated process
fails also known as “build failure”, developers go back to source code to discover
and fix the cause of the failure. Otherwise, the changes are released to produc-
tion (i.e., Step 5) and a new version of the app is distributed to users through app
marketplaces.

Figure 1. Overview of the mobile development release cycle (Inspired by [60])

Evaluating users’ needs and expectations continuously are key to gain or main-
tain a competitive advantage in app marketplaces [46]. For this purpose, the user
feedback available in various forms (as shown in see Step 6 of Figure 1) can be
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integrated into mobile development release cycle (as shown in Figure 1) for the
improvement of app quality [55]. Especially user reviews posted to app market-
places called “app reviews” have been considered an important channel in the
previous studies [61, 9, 8, 2, 56] as they contain information (e.g., bugs, feature
enhancements, feature evaluations) that can help in improving the mobile devel-
opment activities. For instance, development teams can decide which features to
include or improve in the next release cycle based on the following information:
users’ sentiments towards the delivered features, newly requested features, and
buggy features (shown as a blue line in Figure 1) extracted from user feedback.
Similarly, information related to buggy features can benefit both testing (i.e., Step
3) and maintenance activities (i.e., Step 2) (shown as a green line in Figure 1).
Furthermore, bug related information (i.e., buggy app features) extracted from
user reviews can be useful for improving test suites during the testing activities
(shown as a purple line).

2.2. Automatic Text Analysis

This section is based on material presented in [52, 86, 57, 33, 36].
A large volume of user reviews is being submitted to app marketplaces every

day. Thus, an automated mechanism is required to identify and extract impor-
tant information from user reviews to support different activities in the mobile
develoment release cycle. An example user review is shown in Figure 2 showing
important information for app improvement.

Figure 2. An example user review containing useful information for app improvement

A common automated technique used for extracting useful information from
user reviews is based on supervised machine learning (ML) classification [45, 4,
18]. A supervised machine learning algorithm learns a mapping function from

input-ouput pairs in a training set D =
{(

x
(

i
)
,y
(

i
))}N

i=1. In our example, the
training set D would consist of N user reviews in which each review sentence is

manually assigned a target class, i.e.,
(
x
(

i
)
,y
(

i
))

, where y
(

i
)

denotes caterogies
into which we want to classify sentences such as feature evaluation, bug report,
and feature request. In order to train a classification model, first, we count all
the unique words in training reviews and assign them unique numbers starting
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from zero. Then, we represent each review sentence xi in the dataset as vector
x = (xi1,xi2, .......,xim) of length m, where the element xi j in the vector denotes
that word j is present if its equal to 1. If the word is missing , the value is 0. This
approach is known as one-hot encoding.

The mapping function learned from training examples can be used to predict
the category of a review setence that was not seen during the training. For in-
stance, the trained model can be used to label review sentences of a review shown
in Figure 2, and the resulting output would be similar to what has been shown in
Figure 3 .

Figure 3. An example user review after the automatic classification of review text

Different from supervised learning, where the algorithm already knows the
types of linguistic patterns to look for because the mapping between the input fea-
tures and the output variable is in the review dataeset, the task of unsupervised
learning algorithms is to discover unknown but interesting patterns in the review

dataset. These algorithms take as input a set of feature vectors D =
{

x
(

i
)}N

i=1
without any corresponding target class. Unsupervised learning algorithms parti-
tion the input space into clusters c1,c2, ...,ck, where each cluster consists of in-
stances x that have some sort of similarity to each other. For instance, clustering
algorithms can be applied to group information that is similar in contents, e.g.,
mentioning the same bug [19, 9].

The review information extracted through classification models still require
manual inspection to discover the hidden themes or topics discussed therein. It
can be handled by first classifying the review information and then applying LDA
based topic modeling [12, 4, 19, 9]. Topic modeling is an unsupervised ML tech-
nique for discovering abtract topics – a cluster of similar words – that occur in
a collection of text documents [3]. Topic modeling technique is widely used to
summarize user reviews at the fine-grained level [12, 4], for instance, to find the
root causes of users’ complaints. However, the words (also called terms) extracted
through topic models often do not represent actual app features because develop-
ers view an app feature as the description of specific app functionality visible to
the user (e.g., uploading files, sending email, addding friends, follow, unfollow,
etc.) and it can also be the quality aspect of an app or specific app feature (such
as time needed to load file or storage size of an app) [22].
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2.2.1. Supervised Machine Learning Algorithms

In this section, we give an overview of the supervised machine learning algorithms
used later in this thesis for review classification and extraction of fine-grained app
features from user reviews.

a) Logistic Regression. Logistic regression is one of the fundamental classi-
fication algorithm for binary classification, which learns by modeling the output
variable through the linear combination of the input features. To make a predic-
tion for the input feature vector x =

(
x1, ..,xn

)
, the model computes a weighted

sum of the input features x1, ..,xn using the Equation 2.1.

ŷ = b+
n

∑
j=1

w j · x j (2.1)

In Equation 2.1, w j are the learnable weight coefficients corresponding to input
features x j and b is the bias term. The result of the Equation 2.1 is given to a sig-
moid function that outputs a value between 0 and 1. The weight coefficients and
bias term are learned by optimizing a loss function called cross entropy loss. The
cross entropy loss measures the performance of the model. The cross entropy loss
increases as the predicted probability of a sample deviates from the true value.
To avoid overfitting, a regularization term is often added to the cost function ei-
ther as a sum of the absolute values of the weights (L1 regularization) or as the
sum of their squares (L2 regularization). The regularization strength in a logistic
regression model is adjusted with a hyperparameter.

A review classification task with more than two classes (e.g., bug report, fea-
ture request, and feature evaluation) is called multiclass classification. Logistic re-
gression can be extended to multiclass classification by using a one-vs-rest scheme
or multinomial logistic regression. In the one-vs-rest scheme, the classification of
each class is posed as a binary classification problem. Whereas the multinomial
logistic regression uses softmax function to compute the probabilities of each tar-
get class over all possible target classes. Later the calculated probabilities help in
determining the target class for the given inputs.

b) Convolutional Neural Network. CNNs are comprised of four types of lay-
ers. These are embedding layer, convolutional layer, max-pooling layer, and fully-
connected layer [86, 33]. These layers are stacked together to form a CNN archi-
tecture.

The functionality of CNN can be split into following four key areas.
1. The embedding layer takes the indices wi ∈

{
1,2, ...,V

}
of the input words

in a review sentence and outputs the corresponding embedding vector vi ∈
RD. D represents the dimension size of the embedding vectors. V is the size
of the word vocabulary. The embedding layer is usually initialized with pre-
trained embeddings such as GloVe [64]. The words in an input sentence is
represented by a matrix through an embedding layer, X =

[
v1,v2, ...,vL

]
,

where L is the length of the sentence with padding.

26



2. The one-dimensional convolutional layer convolves the input X with mul-
tiple convolutional filters of different widths. Each filter acts as a linguistic
feature dectector which extracts n-gram patterns at different level of gran-
ularities. A convolutional filter Wc ∈ RD×K maps k words in the receptive
field to a single feature c. The filter slides across the whole sentence and ex-
tracts a sequence of new features c =

[
c1,c2, ....,cL

]
using the Equation 2.2.

ci = f
(
Xi:i+K ·Wc +bc

)
(2.2)

where bc ∈ R is the bias, f is a non-linear activation function such as tanh
function. If there are nk filters of the same width k, the output features form
a matrix C ∈ Rnk×Lk .

3. For each convolutional filter, the max-pooling layer takes the maximum
value among the generated convolutional features. The output of this oper-
ation is a fixed-size vector whose size is the same as the size of the filters,
i.e., nk.

4. Finally, the fully connected layer applies the softmax function on the output
of max-pool layer to predict the label of the input sentence.

c) Conditional Random Field. CRF is a sequence prediction model that has a
wide range of applications in NLP such as part of speech tagging, named entity
recognition, etc [48, 36]. Figure 4 shows that a user review also contains fine-
grained information at the level of app features (encirled in yellow). One can
use the CRF model to extract fine-grained app feature automatically from user
reviews.

In CRF, the input data is a sequence of words in a sentence, and the model takes
context of the predictions into account before making a prediction for each word.
This behavior can be modeled with a feature function defined in Equation 2.3.

Figure 4. An example user review containing information about indiviual app features

f
(
s, i, li−1, li

)
(2.3)

In Equation 2.3, s is a sentence, i is the position of a word in the sentence, li−1
is the label of the previous word at position i−1 and li is the label of the current
word at position i.
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When building a CRF model, each feature function f j is assigned a weight of
λ j, which is estimated using the Maximum Likelihood technique [54]. Gradient
descent algorithm [67] is used to update parameter values iteratively, with a small
step, until the values of λ j converge. Next, a score is assigned to each label
sequence l of s by adding up the weighted features over all words in the sentence
(see Equation 2.4).

score
(
l|s
)
=

m

∑
j=1

n

∑
i=1

λ j f j
(
s, i, li, li−1

)
(2.4)

Finally, these scores are transformed into probablities using the Equation 2.5.

p(l|s) =
exp

[
score(l|s)

]
∑l’

[
score(l’|s)

] (2.5)

Once the CRF model is trained and a new review sentence is given as input for
labeling app features, a simple way is to calculate p(l|s) for every possible label
sequence l and predict the label that maximizes this probability. However, this
approach would require to check an exponential number of labels because there
are km possible labels for a tag set of size k and sentence of length m. Alternatively,
CRF uses a polynomial-time dynamic programming algorithm to find the optimal
labels [11].

2.2.2. Machine Learning Model Evaluation and Selection

After training a machine learning model for review classification or app feature
extraction, it is critical to evaluate how good are the model predictions for unseen
data. For this objective, different evaluation measures can be used to assess the
model’s performance on a review test set. During the evaluation phase, the model
is given a task to predict the label for each example in the review test set. After
that, the model predictions are compared against the true class labels (i.e., ground
truth) to get an estimate of its performance on unseen data. In this section, first,
we describe commonly used evaluation measures for assessing the quality of a
machine learning model. Then, we discuss some best practices related to model
validation and selection.

a) Model Performance Measures. The performance of a machine learning model
can easily be described by constructing a confusion matrix (see Table 1) for a test
set. Each row of the matrix represents the instances in an actual class while each
column represents the instances in a predicted class. True positives (TP) are the
number of test examples where the actual label is positive and the model correctly
predicts the positive class. True negatives are the cases where the true label is
negative and the model correctly classified it as negative. False positives are test
examples where the actual outcome is negative but the model incorrectly predicts
the positive class. False negatives (FN) are the cases where the actual outcome is
positive but the model incorrectly predicts it as negative.

28



Table 1. Confusion matrix

Predicted
Positive Negative

A
ct

ua
l Positive # true positives (TP) # false negatives (FN)

Negative # false positives (FP) # true negatives (TN)

Based on the confusion matrix, the commonly used evaluation measures can
be defined as follows.

Accuracy =

(
T P+T N

)(
T P+T N +FP+FN

)
Precision =

T P(
T P+FP

)
Recall =

T P(
T P+FN

)
F1score =

2×Precision×Recall(
Precision+Recall

)
Accuracy is the simple evaluation metric and computes the overall proportion

of correctly classified instances. However, when the classes are imbalanced, i.e.,
where there are many more negative class labels than positive ones, accuracy can
be misleading as it gives a higher score to a model that always predicts the nega-
tive class. In a practial scenario, it would be much important to correctly classify
the infrequent positive examples. Thus, in such a case, it is recommended to use
precision and recall as evaluation metrics because precision measures the propor-
tion of positive predictions that are correct and recall measures the proportion of
all positives that are predicted by the model. With these measures, a model that
always predicts the positive class would achieve perfect recall but low precision.
Both precision and recall evaluate two different aspects of prediction quality that
complement each other, and they can be combined into a single measure called
F1score, which is the harmonic mean of these two measures.

b) Model Validation and Selection. The goal of supervised machine learning
is to train a model that can later be used to predict the class labels for unseen
review data. It would be trivial to validate the model’s performance for already
seen review examples because the model could memorize the training data. Thus,
the model must be evaluated to review data not part of the training for the estima-
tion of its generalization capabilities. To ensure this, the available labeled review
data is partitioned into two independent subsets: a training set and a test set. This
partitioning approach is called the holdout method because the test data is held
out from the training process and only used for evaluating the model’s general-
ization power. The most common way to split the data is random sampling. In
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some cases, stratification is used in combination with random sampling when the
proportion of class labels observed in the original data is required to be preserved
in the training and test sets.

Supervised learning algorithms have several hyperparameters to limit the com-
plexity of the resulting model. These parameters need to be specified manually
instead of being learned automatically. A very complex model is susceptible of
memorizing the whole training set and would show inferior performance to the
test set, such a situation is called overfitting. On the other hand, a too simplistic
model would not be able to capture the underlying relationships in the data, re-
sulting in an underfitting model. Models suffering with either overfitting or under-
fitting problem would yield a low performance to the test-set. Tuning the model
hyperparameters would ensure that the model shows its optimal generalization
performance on test data. To achieve this objective, we can train multiple models
with different hyperparameter configurations and evaluate their performances to a
test-set, and then choose the configuration that yielded the best performance.

Using the same test set for performing the model selection and then evaluating
the generalization performance of the model is not a valid approach. Because this
would provide an excessively optimistic evaluation of the generalization perfor-
mance. Therefore, a holdout method that partitions the data into three subsets: a
training, a validation, and a test set, is recommended. In this way, first, the train-
ing and validation sets are used to test different hyperparameter settings. Then,
the best hyperparameters are selected based on these results. After that, the train-
ing and validation sets are merged and the final model is trained with the best
hyperparameters on this combined set. Finally, the generalization performance of
the final model is evaluated on the independent test set.

A disadvantage of the holdout method is that by splitting the labeled data into
independent subsets we decrease the number of training examples, which can
result in a model with inferior performance. This is particularly a problem with
small datasets, where the number of training instances could become too small
to learn a reasonable model. To avoid this situation from happening, a method
called k-fold cross validation partitions the data into k independent groups and
builds k models such that each model is trained on k− 1 groups of the data and
tested on the remaining group. In other words, k-fold cross validation method
uses each example from the original data exactly once for testing and k−1 times
for training. To obtain a single evaluation score for model’s performance, all the
performance scores from the k folds are averaged.

Different approaches exist for choosing the hyperparameter configurations dur-
ing the model validation phase. One common approach is grid search in which
a set of values for each hyperparameter are specified and all possible combina-
tions of these values are tested. Another approach is random search in which only
the ranges and sampling distributions for each hyperparameter are specified rather
than a specific set of values.
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3. RELATED WORK

This chapter reviews existing work about automatic user review analysis done
to support various activities in the mobile development release cycle presented
in Chapter 2. To put our research into perspective, we organized the existing
literature along three directions pertinent to our research questions: (1) review
classification, (2) automatic app feature extraction, and (3) competitive analysis.

3.1. Review Classification

Previous studies have used text classification models to find useful information in
app reviews. Depending on the software development activity that one wants to
support through review classification, researchers proposed different taxonomies
to classify the review information. The summary of review classification mod-
els presented in Table 2 shows that most of the taxonomies used for review text
classification have focused on facilitating software maintenance and evolution ac-
tivities [61, 20, 9, 14, 45, 18], whereas some have focused on classifying review
information into functional requirements (FR) [35, 83] or non-functional require-
ments (NFR) to support requirements engineering activities performed during the
release planning phase [43, 26].

Table 2. Summary of machine learning models used for review text classification.

Reference Model(s) Textual features Taxonomy

Chen et al. [4] Naive Bayes Word n-grams informative, uninformative

Maalej et al. [45] Naive Bayes, LR, Word n-grams, sentiment, bug report, feature requests,
Decision tree review rating & length, user experiences, ratings

tense, lemmatization

Kurtanovic et al. [35] SVM n-grams, POS n-grams FR and NFR
% of nouns, verbs, & adj
% of adverbs,
parse tree height & length

Panichella et al. [61, 62] Naive Bayes, LR, SVM TF-IDF, sentiment feature request, opinion asking,
Decision trees NLP heurtistics problem discovery, solution proposal,

information seekiing, information giving

Ciurumelea et al. [5] Gradient Boosted TF-IDF, n-grams usage, resource, price
Regression Tree (GBRT) protection, complaint

Gu et al. [18] LR POS, char n-grams, feature evaluation, feature request,
constiuency parse tree, bug report, praise, others
semantic dependency graph,
root word

Guzman et al. [20] Naive Bayes, SVM, LR, TF-IDF, review rating, bug report, complaint, user request
Neural Network, Ensembles # of words and characters, feature shortcoming, usage scenario

ratio of +ve & -ve sentiment words, feature strength, noise, praise
# of spaces & exclamation marks

Lu et al. [44] Naive Bayes, Decision tree, word representation usability, reliablity, portability
Ensemble TF-IDF, n-grams performance

A review text can be classified at review-level or sentence-level. The study
of Maalej et al. [45] has performed classification at review-level. Since users
mention multiple types of information in a single review, the study of Mcilroy
et al.[49] has performed multi-label classification of reviews so that each review
could be assigned several labels. If a sentence is considered as a unit of informa-
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tion in user reviews, then not all sentences in a review are equally important for
developers. Therefore, several studies have performed classification at sentence-
level [4, 9, 61, 18, 14, 15].

Review classification models used a variety of textual features for training such
as Bag-of-Words (BoW) or Part-of-Speech (POS) tags (see Table 2). For instance,
the work of Maalej et al. [45] and Chen et al. [4] have performed review classifi-
cation using word n-gram features, i.e., Bag-of-Word (BoW) approach. Whereas
the study of Gu et al. [18] has trained a review classification model with a rich
set of lexical and linguistic features extracted using NLP tools such as taggers or
parsers. Gu et al. used lexical and linguistic features for model building and eval-
uation without comparing its performance to the model only using BoW features.
Thus, it is not clear from their results that using linguistic features, that require
external NLP tools for feature extraction, has any advantage over the simple BoW
approach for review sentence classification.

The manual feature engineering efforts involved in traditional machine learn-
ing models can be avoided by using a more complex neural model architecture
called deep learning. In the past few years, a plethora of deep learning models
has been proposed for classifying review information in other product domains
[34, 84, 40, 90, 33] and obtained encouraging results. However, their performance
for app review classification has not been evaluated.

Different from previous studies, we adopted the dataset from Gu et al.’s study
and compared their linguistic features set to the simpler BoW model. Instead of
training a separate model for each app like Gu et al. [18] has done, we trained
a single model incorporating sentences of all apps, thus building a more general
model with larger training set, which has an additional advantage that it is not de-
pendent on the existence of the labeled sentences of the apps the model is applied
to. Moreover, we evaluated the performance of deep learning architecture for app
review classification. For this, we adopted the simple Convolutional Neural Net-
work (CNNs) architecture from Kim’s study [33] and compared its performance
with the simple BoW models for classifying app review sentences.

3.2. Automatic App Feature Extraction

Extracting app features automatically from user reviews is necessary for the accu-
racy of system summarizing users’ reviews at the level of app features. In the past,
researchers have used different techniques, i.e., rule-based [28], unsupervised ML
[22], and supervised ML [70], for extracting app features automatically from user
reviews. The summary of these techiques is presented Table 3.

Rule-based approach is the simplest approach for automatic app feature ex-
traction from user reviews as it does not need labeled data. Some studies relied on
a very simple heuristic and extracted all nouns or noun phrases [30, 88, 27, 82] as
candidate app features. The study of Gu et al. [18] and Malik et al. [47] extracted
patterns from dependency parse tree to extract app features from review sentences.

32



Recently, the study of Johann et al. [28] proposed a rule-based approach called
SAFE for extracting app features from user reviews and app description. Their
SAFE approach uses 14 part-of-speech (POS) patterns and 5 sentence patterns
for extracting app features from review sentences.
Table 3. Summary of techniques extracting app features automatically from user reviews.

Reference Approach Textual features Review dataset Review AGs? Performance
used method available? language available? (f1-score)

Keertipati et al.[30] Rule-based Noun or Noun-phrase No English No -
Johann et al. [28] Rule-based POS No English No 36%
Gu et al. [18] Rule-based Parse tree No English No 85%

Guzman et al. [22] Topic model Collocations Yes English Yes 55%

Sanger et al. [70] Supervised CRF POS, polarity lexicons Yes German Yes 62%
tokens, context,
words embeddings

Unsupervised machine learning is another technique used for extracting app
features from user reviews. The approach of Guzman et al. [22] first used collo-
cation algorithm [48] to identify potential app features from user reviews and then
LDA based topic model [3] is applied to group semantically similar app features.
In another study, collocation algorithm is used by Harman et al.[23] for extracting
app features from app description. The results of SAFE study has reported that
SAFE approach is better than the topic modeling approach used by Guzman et al.
and collocation algorithm used by Herman et al. [23] for app feature extraction.

A large body of knowledge has been dedicated to extract features from product
reviews such as LAPTOP and RESTAURANT [68]. In these domains, the best results
for extracting product features from reviews have been achieved using supervised
ML approaches such as Conditional Random Fields (CRF) [65, 41, 80, 69] and
Recurrent Neural Network (RNN) [37, 41] . However, to the best of our knowl-
edge, the only study that has used CRF for automatic extraction of app features
from app reviews has been performed by Sanger et al. [70] on German app re-
views.

All of the aforementioned studies used different techniques for app feature ex-
traction, review datasets and/or annotation guidelines (AGs) (see Table 3). Thus,
the results reported in these studies are not directly comparable to each other. Jo-
hann et al. [28] have performed the first study in which the SAFE performance is
compared with the topic modeling approach and collocation algorithm. However,
the procedure used to evaluate the SAFE performance was in part subjective and
not repeatable. To have a reliable estimate of SAFE performance, we performed
an external replication of the SAFE approach and evaluated its performance on
different user review datasets. In the study of Sanger et al. [70], supervised CRF
model performs well on german app review dataset. To confirm its superior-
ity over SAFE approach for extracting app features from English app reviews,
we evaluated both feature extraction approaches on the same review datasets and
compared their performances.

The performance of automatic app feature extraction from app reviews de-
pends on several aspects such labeled datasets, annotation guidelines (AGs), eval-
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uation method, and feature extraction approach. Especially, AGs can have a large
effect on the performance of supervised ML models because these models used
annotated data for training. In all previous studies, the impact of AGs on the per-
formance of supervised ML method has been overlooked. We perform the first
study that investigated the impact of AGs on the performance of supervised ML
method for extracting app features from user reviews. The size of annotated data
is another practical concern for supervised ML method and thus its impact on app
feature extraction performance is also examined in our study.

3.3. Competitive Analysis

Fine-grained analysis at the level of app features can be useful to understand users’
satisfaction and needs after the release of a new app version. In Table 4, a sum-
mary of tools that can analyze user reviews at the level of app features is presented.

Table 4. Summary of the tools performing review analysis at the level of app features

Reference Tool name App feature extraction Irrelevant information Analysis scope Source supported
method filtered? for app feature

extraction?

Fu et al. [12] WISCOM Topic modeling No Multiple apps User reviews
Chen et al.[4] ARMINER Topic modeling No Single app User reviews
Gu et al.[18] SURMINER Rule-based Yes Singe app User reviews
Dalpiaz et al.[8] n/a Collocations No Multiple apps User reviews
Shah et al. [73] n/a Collocations No Multiple apps User reviews
Guzman et al. [22] n/a Collocations No Single app User reviews

Our tool REVSUM Rule based SAFE Yes Multiple apps User reviews
&

App description

The tool WISCOM [12] has used topic modeling technique to identify users’
major concerns and preferences from a large collection of user reviews belong to
either single app or multiple apps. The review summarization tool ARMINER [4]
categorizes review sentences into informative and uninformative classes and then
applied topic modeling to informative review sentences. The tool ARMINER aims
at extracting information that can assist developers in software maintenance and
evolution activities. Same as ARMINER, our tool through competitive analysis
can also help developers in maintenance and evolution activities.

Similar to ARMINER, our tool filters uninformative review sentences classi-
fied as praise and others. However, our tool classified informative review sen-
tences into fine-grained categories such as feature request (R), bug report (B), and
feature evaluation (E) rather than treating them as one category of informative
reviews. Moreover, instead of using the topic modeling technique, the technique
used in our tool extracts app features directly from review sentences categorized
as B, R, and E.

Instead of using the topic modeling technique [3], few studies [18, 22] have
performed a fine-grained analysis of user reviews for summarizing users’ senti-
ments about app features. These studies have performed such an analysis on user
reviews of a single app. Gu et al.’s approach [18] has performed sentence level
review classification and then summary of users’ sentiments about app features
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is generated from only those sentences that belong to category feature evaluation.
On the other hand, Guzman et al.’s approach [22] has performed sentiment anal-
ysis on app features extracted through collocation algorithm and clustered using
topic modeling technique.

Since the summary of users’ sentiments about app features can be extended to
multiple apps, Shah et al. [73] demonstrated the first tool that has analyzed user
reviews for comparing competing apps. Recently, the study of Dalpiaz et al.[8]
has also used feature level sentiment to perform SWOT (Strengths, Weaknesses,
Opportunities, and Threats) analysis on the user reviews of competing apps. The
study of Jian et al. [27] proposed a framework to generate summaries of users’
sentiments about app features from user reviews of competing products by select-
ing a pair of review sentences with specific product features.

All previous studies analyzing user reviews of competing apps at the level of
app features have extracted app features from a full review text. Since extracting
app features automatically from user reviews is very noisy, similar to the approach
of Gu et al. [18], the tool we proposed for competitive analysis discards irrele-
vant information from user reviews and extracts app features from only relevant
sentences. Although Gu et al.’s tool called SURMINER [18] extracts app features
from only those sentences evaluating app features, our proposed tool can also
extract app features from sentences mentioning bugs and new feature requests.
Additionally, our tool offers the following three options to its users to extract
more reliable app features from user reviews: (1) filter app features by number
of mentions in user reviews (i.e., frequency), (2) choose the app description as an
alternate source for extracting app features because the written text is formal and
explicitly mentions the app features supported by the app, and (3) revise the app
features extracted from the app description via manual annotation.

35



4. APP REVIEW CLASSIFICATION: EASY OVER
HARD

This chapter provides answers to RQ1 (defined in Section 1.2) on performance of
approaches classifying app reviews into categories that are relevant to software de-
velopers. We compare the performance of simple models against complex models
and provide a detailed analysis of misclassification errors of annotated data used
for model training. The chapter is partly based on publications III and V.

4.1. Introduction

Since changes in the software applications are inevitable, software managers and
developers look for information that helps them improving their apps after its
release[81]. Previous research has shown that user reviews submitted to app mar-
ketplaces contain information such as feature request, bug report, and feature
evaluation [59]. The presence of such important information makes app reviews
a valuable source for app developers in improving the quality of their apps [45].
As popular apps receive a large number of user reviews every day, manual identi-
fication of such information in user reviews is not feasible. Therefore, supervised
machine learning methods have been adopted for automatic classification of app
reviews [14, 18, 45, 9]. The study of Maalej et al. [45] performed automatic clas-
sification at the review level. However, a single app review might contain multiple
types of information or it might not at all contain information relevant for app de-
velopers [4]. To better cope with these situations, other studies have performed
automatic classification of reviews at sentence level [14, 18, 61, 4, 9].

The study by Gu et al. [18] used linguistic tools, such as taggers and parsers,
to extract features for classifying review sentences. However, the results in [45]
suggest that extracting such complex features might not be necessary and compa-
rable classification results could be obtained by using only simple lexical Bag-of-
Words (BoW) features. Moreover, using linguistic features instead of only lexical
features also make the model language dependent. Thus, when the model with
linguistic features needs to be trained on a different review language, a new set
of linguistic tools developed specifically for that language would be required. As
BoW model does not require any dedicated linguistic tools and its feature extrac-
tion approach is simple and review language independent, it would be an attrac-
tive approach for non-experts if its performance is on par with more sophisticated
feature sets. This perspective motivated us to find an answer to the following sub-
question formulated under RQ1:

RQ1-A: When classifying app review sentences, how does a model with sim-
ple BoW features compare with a model using the complex linguistic features
extracted via external NLP tools?
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To answer RQ1-A, we used the dataset of Gu and Kim [18] and trained a
Maximum Entropy (MaxEnt) model using both feature sets: BoW features and
the set of linguistic features proposed by [18]. Our results show that the simple
BoW is very competitive for review sentence classification both in terms of feature
extraction and computational complexity.

Recently, deep learning based models have gained popularity among researchers
as they can learn useful feature representations automatically from a large cor-
pus of labeled data without manual feature engineering effort. Specifically, a
deep learning model known as Convolutional Neural Network (CNN) has recently
achieved encouraging results for various text classification tasks [33]. A recent
study of Fu and Menzies[13] suggests researchers to always compare computa-
tionally expensive models with their efficient and straightforward counterparts.
Following this suggestion, we were interested in comparing the powerful deep
learning CNN model with the simple BoW model. Accordingly, we formulated
the second sub-question (RQ1-B) under the main RQ1 as follows:

RQ1-B: How does the deep learning based CNN classifier compare with the
simple BoW model for app review sentence classification?

To answer RQ1-B, we experimented with CNN-based models for review sen-
tence classification, adopting the model proposed by Kim [33]. A comparison
of the CNN model performance with that of the MaxEnt model with BoW fea-
tures shows that on average, the CNN-based model performs slightly worse than
the BoW model. However, for the review sentence types feature request and bug
report, which are the most informative sentence types to software developers,
CNN-based models obtain the highest precision.

Our results have shown that the performance of BoW models were almost the
same as complex models. Therefore, in order to investigate opportunities for per-
formance improvement, we performed a thorough analysis of the misclassification
errors made by the BoW model. In order to exclude the possibility that unreliable
(or inconsistent) labels in the annotated data are a source of confusion for the
machine learner, we also checked whether there were misclassifications in the an-
notated data. We observed that the largest proportion of confusions between the
model predictions and the annotations occured between the three most meaningful
sentence types (feature evaluation, feature request and bug report) and the sen-
tence type other, which is a residual category containing sentences that did not fit
to any other category. By analyzing the annotated data in the light of these errors,
we observe that in some cases individual sentences alone do not contain enough
information to make the correct categorization decision. Thus, we suggest that for
better app review sentence classification, the context in terms of other sentences
in the review should be taken into account.

The rest of the chapter is structured as follows. In Section 4.2, we describe
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Table 5. Definition of five review sentence types used by Gu and Kim [18].

Sentence type Definition Examples

Praise (P) Expressing emotions without Excellent!
specific reasons I love it!

Amazing!

Feature Expressing opinions about The UI is convenient.
Evaluation (E) specific features I like the prediction text.

Bug Report (B) Reporting bugs, glitches It always force closes
or problems when I click the ".com"

button.

Feature Suggestion or new feature It's a pity it doesn't
Request (R) requests support Chinese.

Other (O) Other categories defined I've been playing it
in [59] for three years.

the dataset used for this study. In Section 4.3, we provide the description of the
features and models used in this study. Section 4.4 details the experimental set-
ting. Section 4.5 presents the results followed by a discussion in Section 4.6. In
Section 4.7, threats to validity are examined.

4.2. Dataset and Pre-processing

For analyzing the performance of various app review sentence classification ap-
proaches in our study, we used the app review dataset contributed by Gu and Kim
[18]. The dataset contains manually labeled review sentences of 17 apps belong-
ing to different app categories such as games, communication, books, and music.
While labeling the review sentences of these apps, each review sentence is as-
signed a label from the following five mutually exclusive types: feature evaluation
(E), bug report (B), feature request (R), praise (P), and other (O). Table 5 presents
the definition for each type and an example review sentence for illustration.

The distribution of sentence types in each app is shown in Table 6. It is evident
that the distributing of sentences types is highly skewed. The highest number of
sentences belongs to the sentence type other followed by the sentence type praise.
The numbers of review sentences labeled as sentence types feature evaluation, bug
report and feature request are relatively smaller. However, these are exactly those
sentence types we are most interested in as they more likely contain information
that is useful to developers to improve their app.

User reviews contain many typos and contractions that can make the task of
automatic review classification challenging. To tackle this issue, we used the
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Table 6. App-wise distribution of sentence types in the dataset of Gu and Kim [18].

App Name App Category Review types
E R B P O Total

chase mobile finance 372 152 120 304 1051 1999
duolingo education 370 20 121 614 874 1999
swiftkey productivity 385 98 177 463 876 1999
google playbook books 254 152 198 413 982 1999
yelp food 435 44 54 348 1118 1999
google map map 354 273 141 312 919 1999
text plus social 354 138 75 537 1013 2117
wechat social network 231 132 71 612 953 1999
google calender productivity 466 119 463 109 842 1999
spotify calender music 231 87 90 714 877 1999
yahoo weather weather 493 71 85 508 842 1999
temple run 2 game 234 48 17 877 877 2053
medscape medical 464 82 83 522 848 1999
espn sports 472 287 128 161 951 1999
camera360 photography 178 67 24 928 928 2125
imdb entertainment 361 115 194 363 966 1999
kakotalk communication 220 69 77 768 865 1999
Total 5874 1954 2118 8553 15782 34281

collection of 60 typos and contractions1 identified by Gu and Kim [18] to correct
the words in the review dataset. For instance, “U” is replaced with “you” and
“plz” or “pls” is replaced with “please” etc.

4.3. Classification Models

This section describes the classification models designed to answer our research
questions RQ1-A and RQ1-B. First, we explain in detail the textual features used
to train two types of MaxEnt models – one uses simple Word N-grams features
(also called BoW) and other exploits complex linguistic features – for review
sentence classification. Then, the architecture of CNN model is explained that is
used to classify the same set of review sentences.

4.3.1. Word N-Grams (BoW)

Word n-grams, often called BoW, is a straightforward feature extraction method
that returns a contiguous sequence of n-words from a given review sentence.
For instance, 1 to 2 n-grams of a review sentence (“plz fix this feature”) are
’plz’,’fix’,’this’,’feature’,’plz fix’,’fix this’,’this feature’. In this method, first a
dictionary is built by extracting a contiguous sequence of n-words from the train-
ing corpus. Then, a feature matrix is maintained in which each row represents a

1https://guxd.github.io/srminer/appendix.html
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review sentence that stores the frequency of each n-gram in that review sentence.
The method doesn’t require any external linguistic tool for its usage, which makes
it very appealing to practitioners.

BoW features are useful when characterizing the review sentences into sen-
tence types. For instance, the words “awesome” and “great” mostly appear in
review sentences belong to type praise; while the words “bug”,“crash”,and “plz
fix” appears in review sentences where users mention a bug in an app. The study
of Maalej and Nabil [45] used BoW features to classify a full review text into dif-
ferent categories such as feature request and bug report etc. However, we used the
same features to classify reviews at the sentence level. Obviously, a full review
contains more information, but we believe that review sentences are more specific
and contain enough lexical information to classify them correctly.

4.3.2. Character N-Grams (BoC)

Like BoW, character n-grams (i.e., BoC) are all n-consecutive letter sequences
(without spaces) in the words or tokens of a review sentence. For example, the
character 3-grams for the sentence “The UI is Ok” are ’The’, ’heU’, ’eUI’, ’UIi’,
’Iis’, ’isO’, and ’sOk’. In previous studies [18], BoC features have been used
successfully in many applications such as malicious code detection and duplicate
bug report detection.

4.3.3. Linguistic Features

To train a MaxEnt model with rich linguistic features, we extracted the same set
of linguistic features used in the study of Gu and Kim [18]. Their set of linguis-
tic features also includes the BoC features explained in the previous section (i.e.
Section 4.3.2).

Linguistic features can be useful for classification of review sentences into its
types (see section 5) because review sentences in each category often follow a
distinct structural pattern. For instance, sentences belong to type feature evalua-
tion like “The search (NOUN) works pretty nice (ADJECTIVE)” or “It’s perfect
(ADJECTIVE) for storing notes (NOUN)” follow a pattern that is different from
the pattern of sentence type feature request such as “please add (VERB) look up
feature (NOUN)” or “it could (MODEL) be (VERB) improved by adding more
themes (NOUN)”.

In the following paragraphs, we explain the linguistic features used in our
study:

a) Part of Speech (POS). POS tagger marks up the type of each word in a sen-
tence. It also takes into account the context (i.e., relationship with the adjacent
and surrounding words) in which a particular word appears in a sentence. For
example, POS tags for the sentence “The user interface is elegant” are “DETER-
MINER NOUN NOUN VERB ADJECTIVE”. For this study, we extracted the PTB

40



POS tags2 with NLTK3 library. All the POS tags extracted from a review sentence
are concatenated and used as a feature for review classification.

b) Constituency Parse Tree. A constituency parse tree represents the gram-
matical structure of a sentence. Figure 5 shows the constituency parse tree for a
sample review sentence generated using Stanford CoreNLP library4. The parse
tree shows that the sentence node (S) composed of a noun phrase (NP) and a verb
phrase (VP) and the VP phrase is further decomposed into an adjective phrase
(ADJP). We traversed the parse tree in a breadth-first order, and labels of non-
terminal nodes of the first five nodes are concatenated and used as a feature.

Figure 5. Constituency parse tree for a review sentence “the user interface is not very
elegant”. The feature extracted from this tree is “ROOT-S-NP-VP-DT-NN” [74].

c) Semantic Dependency Graph (SDG). SDG is a directed graph that shows
the dependency relations between words in a sentence[18]. Nodes in the graph
represent words labeled with POS tags and edges represent dependency relations
between words. Figure 6 shows the dependency graph of a sample sentence gen-
erated using spaCy5 library. The word ’is’ is the ROOT node of the sentence as
it does not have any incoming edges. The root has three dependents with the fol-
lowing relationships: a noun subject (nsubj) ’interface’, a negation modifier (neg)
’not’, and adjectival complement (acomp) ’elegant’. The child node ’interface’
has two children: a determiner (det) ’the’ and a noun compound modifier (nn)
’user’. To extract the textual feature, the SDG is traversed in a breadth-first order
and the dependency relations labeling the edges and the POS tags of the words
in the nodes are concatenated. Leaf nodes that are not directly connected to the

2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
3http://www.nltk.org/
4https://stanfordnlp.github.io/CoreNLP/
5https://spacy.io/
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ROOT node are ignored. For example, the textual feature extracted from SDG of
a sentence shown in Figure 6 is “VBZ-nsubj-NN-neg-ADV-acomp-JJ”.

Figure 6. Semantic Dependence Graph of a sample review sentence “the user interface
is not elegant”. The feature extracted from this SGD is “VBZ-nsubj-NN-neg-ADV-acomp-
JJ” [74].

d) Trunk Word. The trunk word feature is simply the root word of a SDG. For
instance, the trunk word of the sentence “The user interface is not elegant” is ’is’.

4.3.4. Convolutional Neural Networks (CNNs)

CNN-based classification models have shown encouraging results on various tex-
tual classification tasks [6, 33]. We adopt the CNN architecture proposed by Kim
[33] to classify review sentences.

The architecture of the model is illustrated in Figure 7. The first layer of the
network embeds words into low dimensional vectors. The second layer performs
convolutions over the embedded word vectors using multiple filter sizes. The
output of these convolutions are max pooled into a long feature vector in the third
layer. The fourth layer is a dense layer with dropout applied. Finally, the results
are classified using a softmax layer. For more details see Section b).

Since neural network models have a large number of trainable parameters, they
typically require large training sets to learn properly. However, when the available
training sets are not very large, as is the case in this study, initializing CNN-based
model with pre-trained word embedding vectors, obtained from a unsupervised
neural language model might help to improve model performance [33, 79].

Therefore, we train CNN-models both with and without pre-trained word em-
beddings to assess the effect of using the externally trained word vectors for clas-
sifying app review sentences. We use the 300-dimensional Word2Vec embeddings
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Figure 7. CNN model architecture for sentence classification (Figure taken from [33])

[50] trained on 100 billion words from Google News.6

The words that are absent in the vocabulary of pre-trained embeddings are
initialized randomly. In particular, we experiment with three different models:

• CNN (rand): The CNN model in which all word vectors in the embedding
layer are randomly initialized and then modified during training.

• CNN (static): The CNN model is initialized with the pre-trained word vec-
tors but all words including the ones that are randomly initialized are kept
static and are not updated during training.

• CNN (non-static): Same as CNN (static) but the pre-trained vectors are
fine-tuned during model training for our classification task.

4.4. Experimental Setup

All models were trained and tested on the dataset described in Section 4.2. Then,
the performances of all classification models on test-set are compared by comput-
ing precision, recall, and f1-score (for details of these evaluation measures, refer
to Section 2.2.2) for each review sentence type.

For all experiments, labeled review sentences of all apps were merged into one
dataset (see Table 6). We trained 10 instances of each model to ensure that the
impact on accuracy due to variation in the data has been taken into account.

For each training instance, 80% of the data was randomly sampled as training
set and 20% as test set without fixing the seed value. During each run, a model was
trained on the training set and evaluated on the test set. The prediction accuracy
of the ten evaluations were averaged and reported as the final performance.

We trained three MaxEnt models (for details, see Section a)) by extracting the
different feature sets from review sentences. The first two models are variations
of the BoW model, one uses 1-word n-gram and the other draw on higher order

6https://code.google.com/archive/p/word2vec/
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Table 7. List of linguistic features with examples.

Linguistic feature name Example sentence Extracted textual feature

Part of Speech (POS) The user interface is elegant DETERMINER-NOUN-NOUN-VERB-ADJECTIVE

Consituency Parse Tree The user interface is not very elegant ROOT-S-NP-VP-DT-NN

Semantic Dependency Graph The user interface is not elegant VBZ-nsubj-NN-neg-ADV-acomp-JJ

Trunk Word The user interface is not elegant is

word n-grams. Whereas the third MaxEnt model uses the same set of linguistic
and lexical features used in the study of Gu and Kim [18]. The summary of these
models is provided as follow:

1. The unigram Bow model - BOW(1)
2. The BoW model with word unigrams, bigrams and trigrams - BOW(3).
3. The model uses character n-grams and all linguistic features (see Table 7) -

BOC+L
We used the scikit-learn python library7 to train, tune and evaluate the MaxEnt
models. The regularization hyper-parameter C was fine-tuned separately for each
model by performing 5-fold cross-validation on 80% of the randomly sampled
data. For the BOW(1) model, the regularization weight was fixed to 0.856 and for
the models with character n-grams and Gu’s features BOC+L, C was fixed to 1.0.
For the model with BOW(3) features, C was fixed to 0.4 and the parameter “class-
weight” was set to “balanced” to adjust the weight of each class so it would be
inversely proportional to their class frequencies. All the experiments were run on
a CPU cluster (2 x Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz) with resources
of one compute node and 16 GB RAM.

For the CNN model, a freely available implementation of Kim’s study[33]8

is used. The implementation is based on TensorFlow9 library in Python. The
original implementation performs binary classification so it is modified to work
with multi-classification task. Moreover, in the implementation, we enforced the
model to use early-stopping for its training. For each CNN model, the 80% train-
ing sample is further split into 70% training and 10% validation set. The model is
evaluation on the validation set after every 100 updates. Since the model uses the
early-stopping, the training was stopped when the average f1-score of the relevant
classes (i.e., E, B, and R) on development set had not improved further during the
next 1000 steps, compared to its last best performance. At the end, the best per-
forming model was used for the evaluation on- the test set. The hyper-parameters
used in the CNN model are: rectified linear units (ReLU), filter windows of sizes
2, 3 and 4 with 128 feature maps for each filter. The dropout rate of 0.6 and L2
regularization parameter of 0.1 was chosen by performing 5-fold cross-validation
on a training set. The model uses batch size of 256, trained for 50 epochs with
Adam optimizer.

7http://scikit-learn.org/stable/
8https://github.com/dennybritz/cnn-text-classification-tf
9https://www.tensorflow.org/
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4.5. Results

Table 8. The classification performance of all models on all sentence types. In each row,
the best result for MaxEnt and CNN models is in bold.

Sentence MaxEnt CNN
type BoW(1) BoW(3) BoC+L Rand Static Non-static

Feature Evaluation (E)
Precision 77.4±1.4 75.4±1.2 77.0±1.0 73.9±2.4 78.2±2.1 76.2±3.2
Recall 63.6±1.5 68.1±1.7 68.5±1.1 62.6±1.9 69.5±1.7 71.0±2.2
F1-score 69.8±1.3 71.6±1.3 72.5±0.8 67.7±0.8 73.5±1.0 73.5±1.1

Feature Request (R)
Precision 71.2±3.8 63.4±1.7 73.9±3.1 74.2±3.0 74.9±5.3 73.8±3.0
Recall 57.8±2.1 71.0±2.4 59.1±2.5 52.7±4.1 60.7±2.9 63.6±4.1
F1-score 63.8±2.3 67.0±1.5 65.6±2.0 61.5±2.3 66.9±2.2 68.2±1.6

Bug Report (B)
Precision 73.0±2.8 67.1±2.5 76.1±2.3 73.0±4.6 74.3±3.3 72.4±3.3
Recall 57.4±1.6 68.9±2.2 60.7±2.6 57.8±3.2 64.5±4.2 62.7±5.9
F1-score 64.2±1.6 67.9±1.6 67.5±1.8 64.3±1.7 68.9±2.5 67.0±3.2

Average (E+R+B)
Precision 73.9±1.7 68.7±1.0 75.7±1.6 73.7±2.4 75.8±2.0 74.2±2.4
Recall 59.6±1.1 69.3±1.1 62.7±1.0 57.7±2.3 64.9±1.8 65.8±2.8
F1-score 65.9±1.3 68.8±0.8 68.5±1.0 64.5±0.9 69.8±1.4 69.5±1.4

Praise (P)
Precision 83.1±1.0 81.9±0.7 85.8±0.7 76.7±1.1 80.1±1.6 80.9±0.9
Recall 85.7±1.3 88.0±1.2 87.1±0.7 86.0±1.4 85.9±1.5 84.0±2.3
F1-score 84.4±0.6 84.8±0.7 86.5±0.5 81.1±0.3 82.9±0.7 82.4±0.7

Others (O)
Precision 78.2±0.7 82.7±0.6 80.0±0.8 85.3±0.9 84.8±1.4 84.0±1.9
Recall 85.9±0.9 80.7±0.5 86.9±0.5 85.3±1.5 86.4±2.1 87.0±1.7
F1-score 81.9±0.6 81.6±0.4 83.3±0.5 85.3±0.8 85.6±0.7 85.4±0.6

Overall average (E+R+B+P+O)
Precision 76.6±1.2 74.1±0.7 78.6±0.9 76.6±1.3 78.5±1.3 77.5±1.5
Recall 70.1±0.7 75.3±0.7 72.5±0.6 68.9±1.3 73.4±1.2 73.7±1.4
F1-score 72.8±0.9 74.6±0.7 75.1±0.6 72.0±0.7 75.6±1.0 75.3±1.0

In this section, we present the results for research questions RQ1-A and RQ1-
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B. In Table 8, the average performances of all models for each sentence type over
10 runs are shown. The individual model performance for each run can be found
in Appendix A.The average performance (i.e., precision, recall and f1-score) for
sentence types feature evaluation (E), feature request (R) and bug report (B) is
separately shown as these categories are expected to give the most interesting
information for app improvement. The first three columns present the results of
the MaxEnt models. The last three columns give the results of the random, static,
and non-static CNN models. In each row, the best results for the MaxEnt and
CNN models, respectively, are printed in bold font. The results averaged over all
sentence types are shown in the last row of Table 8.

RQ1-A is concerned with the performance comparison of the three MaxEnt
models (columns two to four in Table 8). The first two models only use simple
BoW (i.e., word n-grams) features, while the last model uses both character n-
grams and, in addition, linguistic features (see Section 4.3.3). On average over all
sentence types on MaxEnt models, the model with linguistic features (BOC+L)
obtained the best precision and f1-score while the model with only BoW features
(i.e. 1 to 3 word n-gram features) achieves the best recall. However, the difference
in f1-scores between the BOC+L and BOW(3) models is less than one standard
deviation and thus not statistically significant.

Regarding the model performances for the relevant sentence types E, R and B,
the average recall of the model with BOW(3) features is better than the recall of
the BOC+L model with linguistic features by 6.6 percentage points. However,
the model with linguistic features has the best precision compared to the other
models. In terms of f1-score, the BOW(3) model is the best with 68.8, but the
difference to BOC+L with linguistic features is non-significant.

In relation to RQ1-A, we conclude that the simple MaxEnt model with 1 to 3
word n-gram features is computationally the fastest (see Table 9) and as competi-
tive as the MaxEnt model with complex linguistic features.

Table 9. Runtime of different classification models [74].

Model Average runtime for one run

MaxEnt BoW(1) 9 mins
MaxEnt BoW(3) 12 mins
MaxEnt BoC+L 22 mins
CNN (rand) 120 mins
CNN (non-static) 142 mins
CNN (static) 554 mins

RQ1-B studies the performance of deep learning based CNN model in compar-
ison with the MaxEnt model with BoW features. The performance of CNN(rand)
is lower than the performance of both the static and the non-static CNN models.
Although the static CNN seems to obtain better precision and the non-static mod-
els obtains higher recall, the performance of the individual model runs varies a lot
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and thus, the differences are not statistically significant. Thus, in terms of overall
averages, the performance of both the static and the non-static CNN models are
on the same level.

For the informative sentence types (i.e., E, R, and B), the performance of CNN
(rand) is lower compared to all MaxEnts models in terms of recall and f1-score;
the precision is only better than BoW(3) model by 5%. Although the CNN (static)
model is slightly better than both BOW(1) and BOW(3) in terms of f1-score,
but these differences are again not statistically significant. When comparing the
CNN (static) model to the BOW(3) model, the CNN (static) model obtains higher
precision, whereas the BOW(3) model has better recall.

Hence, we conclude with regards to RQ1-B that the CNN models (static and
non-static) achieve competitive performance in comparison to the MaxEnt models
(BOW(1) and BOW(3)) but the superiority of CNN models over BoW models is
not clear, but it is possible that with a larger training set, the CNN models would
gain a clearer advantage over the simple MaxEnt models with BoW features.

The main findings of Chapter 4 are:
• The simple MaxEnt model with 1 to 3 word n-gram features is com-

putationally the fastest and as competitive as the MaxEnt model with
complex linguistic features.

• CNN models (static and non-static) achieve competitive perfor-
mance in comparision to the MaxEnt models.

4.6. Discussion

The results presented in Section 4.5 indicate that the model performance for au-
tomatic classification of review sentences might have potential for improvement,
especially with regards to sentence types that contain useful information for de-
velopers (i.e. feature request (R), feature evaluation (E) and bug report (B)). The
performances of classification models reported in other similar studies [61, 20]
almost follow the same pattern for the classification of such information. Some
differences in their performances could be attributed to different taxonomies, re-
view datasets, and textual features used in other studies. In our study, to investi-
gate issues affecting the performance of a simple BoW model, we first performed
an error analysis of the BOW(3) model predictions. Then, we analyzed a random
sample of annotated reviews from Gu’s dataset to comprehend better the overall
procedure that was used to annotate reviews.

Since our first objective is to understand the reasons behind the prediction er-
rors made by the model, we started our analysis by looking at the confusion matrix
(shown in Table 10) of the reviews used for evaluation in one of the experimental
runs. Each column of the confusion matrix in Table 10 represents the instances
of a predicted sentence type while each row represents the instances of a true

47



(annotated) sentence type. All correct predictions are located in the diagonal of
the confusion matrix. The confusion matrix clearly shows that the classification
model is seriously confused about the prediction of a large number of review sen-
tences labeled as other (O). For instance, 26% (107 out of 411) of the sentences
with the true label other are wrongly predicted as bug report while 22.5% (86 out
of 382) of sentences with the true label bug report have been missed as they have
been falsely predicted as type other. Similar percentages of misclassifications also
occur for the feature request sentence type.

Table 10. The confusion matrix of model predictions on reviews in the evaluation-set.

Predicted label
E R B P O Total

True label

E 845 29 22 86 209 1191
R 24 295 14 10 76 419
B 16 11 265 4 86 382
P 45 5 3 1537 139 1729
O 202 117 107 205 2445 3076

Total 1132 457 411 1842 2995 6979

The classification performance presented in the form of the confusion matrix
indicates that a significant number of sentences annotated as other overlaps with
sentences annotated as classes feature evaluation, feature request, bug report and
praise. A manual analysis of misclassified review sentences in each sentence type
can help to investigate the reasons for these misclassifications. Therefore, we
manually analyzed the false positives (FPs) and false negatives (FNs) of the sen-
tences annotated as bug report because this class has the most substantial propor-
tion of misclassifications regarding sentence type other (the number of instances
analyzed are highlighted in Table 10).

It seems reasonable to assume that review sentences labeled as feature evalua-
tion, bug report or feature request should mention a functional or non-functional
aspect of an app. Based on the definitions of the sentence types given in Table 5,
this assumption should hold for review sentences labeled as feature evaluation and
feature request in Gu’s dataset. With sentence type bug report the definition given
in Table 5 is not so clear as it also includes glitches and problems which might be
general and not specific to a particular aspect of an app. Indeed, the examples of
some FNs (Sentence#1 to Sentence#5) presented in Table 11 show that there are
sentences annotated as bug reports that describe general problems or glitches that
the model predicts as belonging to the class other. Similarly, the examples of FPs
given in Table 11 (Sentence#6 to Sentence#10) show that there are very similar
sentences that have been annotated as others but that the model has predicted as
belonging to the class bug report. These examples demonstrate that differences
between sentences belonging to classes bug report and other are not always clear,
and this also confuses the model.

Another possibility is that the sentences annotated as bug reports in fact con-
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tained more specific complaints about the app compared to sentences labeled as
others, which would become evident if the rest of the app review from where the
sentence was taken from would be considered. Consider any of the sentences #1
to #5 in Table 11. It is possible that a previous review sentence or sentences might
describe more specifically what problem has been referred to. However, by con-
sidering these sentences in isolation from the rest of the review, it is impossible to
tell whether they are part of more specific complaints or not. We suggest that for
many of these sentences, the correct type of these sentences remains ambiguous
when treated in isolation without the context of the rest of the review.
Table 11. Examples of false negatives (FNs) and false positives (FPs) from sentence
type ’B’.

Sent# Review True Pred
sentence label label

False negatives (FNs)

1 Unfortunately stop B O
2 CAN YOU FIX THAT PROBLEMS? B O
3 I’d love to give this a 5 star again but not until that’s fixed B O
4 I uninstalled it because of this same glitch before B O
5 blank screen B O

False positives (FPs)

6 It won’t work offline anymore. O B
7 Can’t remove it. O B
8 The keyboard stals open on my lock screen. O B
9 I can only bookmark the pages. O B
10 fix it. O B

Table 12. Analysis of randomly selected 200 review sentences mentioning functional
aspect, non-functional aspect, or no aspect.

Sentence #Functional #Non-functional #No aspect Total
type aspect aspect

E 11 14 9 34
R 12 0 0 12
B 2 5 5 12

Subtotal 25 19 14 58

P 1 0 49 50
O 16 9 67 92

Total 42 28 130 200

To better understand how widespread the problem of ambiguity is for the given
dataset, we selected a stratified random sample of 200 review sentences from Gu’s
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dataset for manual re-annotation analysis. We started with the basic intuition that
in order for the review sentences of type feature request, feature evaluation and
bug report to be useful they must contain an app feature. Thus, we first counted
the number of review sentences in each sentence type in which a functional or a
non-functional aspect has been mentioned. The summary of this analysis is shown
in Table 12, showing that on average 24% of review sentences belonging to these
three types do not contain any aspect information (although there were none of
such sentences of type feature request in this random sample). In our opinion,
the review sentences that belong to type bug report but not mentioning any aspect
term should be labeled as type other while the review sentences belonging to type
feature evaluation that do not mention any aspect information should be either
labeled as type other (in the case of negative or neutral sentiment) or type praise
(in the case of positive sentiment).

Table 13. Comparison of Shah’s annotation against Gu’s annotation.

Shah’s label
E R B P O Total

Gu’s label

E 24 0 1 8 1 34
R 0 12 0 0 0 12
B 0 0 7 0 5 12
P 1 0 0 46 3 50
O 9 5 7 12 59 92

Total 34 17 15 66 68 200

Next, to quantify our disagreement with Gu’s annotations, we manually re-
annotated the same 200 randomly selected review sentences according to the prin-
ciples described above, and in the following we refer to these as Shah’s annotation.
The number of disagreements between Gu’s annotation and Shah’s annotation is
presented in the form of a confusion matrix in Table 13. We show the examples of
a few disagreements (Sentence#1 to Sentence#5 in Table 14) to demonstrate the
annotation differences that stem from our strict criteria about the presence of an
aspect term in sentences of types bug report and feature evaluation.10 Moreover,
in Gu’s annotations, the review sentences in which user praises the whole app
with words: “helpful”, “useful” and “effective” are labeled as feature evaluation,
however, in Shah’s annotation we labeled them as type praise (look at sentence#3
and sentence#5 in Table 14). Overall, 35% of review sentence annotated by Gu
as type other were relabeled as one of the other four types (feature evaluation,
feature request, bug report or praise) in Shah’s annotation, some examples are
shown in Table 14 (sentence#6 to sentence#10). Regardless of these disagree-
ments, we cannot rule out the possibility that annotators who labeled the reviews
in Gu’s dataset might have taken into account the context information when they
annotated these review sentences. Since the dataset we received from the authors

10There are no examples from the sentence type feature request because all sentences in our
sample annotated with that type contained an aspect term.
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only contains the review sentences without the context information, we did not
have access to this context information during our manual annotation.

The next logical step in the light of this knowledge would be to re-annotate the
whole dataset using the principles described. The sentence types feature evalua-
tion, feature request and bug report must contain a functional or non-functional
aspect term. Those sentences that do not contain an aspect term should be anno-
tated as praise when the sentiment of the sentence is positive towards the app and
the category other should contain all the remaining sentences. However, as the
dataset is quite large, we were not able to carry out the full re-annotation at this
point and thus, we can only hypothesize what effect such re-annotation could have
on the machine learning classifiers. We hypothesize that after such re-annotation
the boundaries between the three classes (i.e., E, B, and R) containing aspect terms
and the other class are more clear and that would improve the performance of the
machine learning classifiers.

Table 14. Example of annotations on which Gu and Shah have disagreements.

Sent# Sentence text Gu’s Shah’s
label label

1 Keeps crashing B O

2
I’ve tried more than five times it got stuck at 2%
58% 75% what shall i do? B O

3 It is very helpful! E P
4 it works great! E P
5 Effective! E P
6 Can’t make a deposit after last update. O B

7
It is so prone to mistakes and if we do not double
check the dates, we would end up missing the
events.

O B

8 WoW! O P

9
Is it possible to ad emojis and a name ’taging’
functionality (similar to facebook/instagram)
within the ap’s yelp talk forum?

O R

10
My husband and I frequently sync calendars
which is fuss free. O E

Our analysis suggested that context information might be important for classi-
fication of reviews at sentence level. To illustrate this idea, we present two sample
reviews in Table 15. In the table, the first sentence of Review#1 has a negative
sentiment word “issue” that, when looking at the sentence in isolation, hints that
the sentence belongs to type bug report but the word and sentence level informa-
tion is in fact feature request. Similarly, in the second review example, the second
sentence without broader context would be too vague to consider as bug report as
it does not contain an aspect term. However, the first sentence helps to resolve the
coreference and disambiguate the correct sentence type as bug report.

All examples in Table 14 could be annotated and classified on the review level.
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However, in this thesis, we addressed the review classification problem on sen-
tences level because some reviews can address several aspect types. According
to [49] between 22% and 30% of app reviews raise multiple issues in the same
review. Although these numbers cannot be directly generalized to our setting be-
cause [49] quantified the amount of multi-labeled reviews using an annotation set
consisting of 14 different labels as opposed to only 5 labels in our dataset, they
suggest that the issue of multiple labels per review cannot be overlooked. On
the other hand, as we have shown in our discussion, strictly sentence level anal-
ysis does not solve the problem either because the meaning of a sentence and to
which category it belongs might be dependent on the contextual sentences in the
review. Thus, we propose that further studies should explore categorizing review
sentences in the context of the rest of the review.
Table 15. Context information is useful in predicting the correct type of a review sentence.

Review# Review text

1
The main issue I have with this app
is that there isn’t a ’keep me logged in’ feature.
Please add and I will reward you greatly (with 5 stars)

2
I cannot view my XLS files on iPad.
Please fix this ASAP.
Thanks.

One option to utilize the context information would be to adopt neural mod-
els. Over the past few years, researchers have successfully utilized the context
information in neural models using the attention mechanisms[10, 42] in which
the model is allowed to focus to contextual information (i.e., previous and next
sentences) of the source sentence before generating a prediction. For instance,
[87] improved the performance for automatic classification of reviews (i.e., Yelp,
IMDB and Amazon) with neural networks by utilizing the word level and sen-
tence level context information. In conclusion, we suggest that future research
in app review classification should adopt datasets annotated on the sentence level
within the context of the full review and experiment with incorporating this con-
text information into CNN models or other neural text classification models.

4.7. Threats to Validity

The review dataset used by Gu et al. [18] has been collected from PlayStore and
was manually labeled. We do not know the extent to which the results of our
study are sensitive to the annotators and annotation guidelines used to label this
data. Moreover, the nature or language characteristics of the reviews in other
app marketplaces may be different from that of PlayStore. Therefore, we do not
claim the generalizability of our results to reviews from other platforms like, e.g.,
AppStore.

The CNN-based model has a large number of hyper-parameters that can be
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tuned to potentially improve the performance. This set of hyper-parameters in-
cludes the size of the embeddings, number and sizes of filters, the choice of the
optimizer with its parameters, various options for regularization, etc. Tuning all
these hyper-parameters is unfeasible in practice. Thus, we tuned the drop-out rate
and the strength of the L2-regularization. Still, tuning other hyper-parameters as
well might improve the model performance.

Our study experimented with BoW and linguistic features for classifying re-
view sentences. However, prior studies [61, 20, 44] have also used other types of
features such as rating, sentiment, and word vecctors for review classification. We
do not know what would be the performance of review classification models when
they are trained with other types of features besides BoW and linguistic features.
Moreover, it still needs to be determined to what extent the performance of the
models would affect when they are evaluated on other review datasets.

The noise (i.e., typos and contractions) in review data is problematic for ma-
chine learning models. We used 60 patterns identified in a previous study to cor-
rect misspellings and contractions. Since the language evolves and the use of
words also depends on geographic and context, these patterns might not be suffi-
cient. We believe representing words in reviews at the character level embeddings
might have offered a more generic solution to this problem.

Previous studies have shown that tuning the word vectors to the particular clas-
sification task (non-static CNN) improves model performance [33] , but in our ex-
periments, the performance difference between static and non-static CNN is not
significant. One possible reason for this can be that the textual domain of Google
News is too different from the texts of app reviews and thus embeddings trained
on Google News has not given a good enough starting point for our model. It
is possible that word embeddings pre-trained on a large number of app reviews
would perform better in our case.

The number of examples for each sentence type in the dataset is imbalanced.
To tackle this imbalance, we experimented with random oversampling and ran-
dom under-sampling techniques in MaxEnt models but did not observe any im-
provements in F1-score. There are many other techniques exist to handle class
imbalance and it is possible that using one of those would have made a difference
in the results. Also, we did not apply the class balancing techniques to neural
models where they potentially could have improved the results.

The manual analysis presented in Section 4.6 was performed by only one per-
son and thus might be biased. We tried to address this problem by having the
re-labeling decisions reviewed by the other two co-authors. There were only two
cases where the decisions were needed to be changed, but this happened in agree-
ment among all three authors.
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4.8. Replication Package

The source code and review dataset used for training and evaluating the models is
available at
https://bitbucket.org/faizalishah/appreview_classification.

54

https://bitbucket.org/faizalishah/appreview_classification


5. APP FEATURE EXTRACTION FROM USER
REVIEWS

This chapter provides answers to RQ2 (defined in Section 1.2) on evaluating the
impact of annotation guidelines (AGs) on the performance of app feature ex-
traction methods. First, we establish the baseline performance of two feature
extraction methods, rule based SAFE and supervised learning method CRF, on
labeled datasets annotated using different AGs. Then, a comparision of their per-
formances is presented. Finally, we investigate how annotation guidelines and
annotated data size impact the performance of a supervised ML method for the
task of app feature extraction. The chapter is based on publications IV and VI,
and it also contains some unpublished experimental results.

5.1. Introduction

The analysis of opinions expressed about different features of an app in user re-
views offers insights to both app users and app developers. For app developers,
it is useful to monitor the “health” of app features in the context of release plan-
ning and software evolution [46] as well as to evaluate product competitiveness
and quality [73]. From the users’ perspective, such information helps in deciding
which app to select from a wide range of competing apps. Both Apple’s App Store
and Google’s Play Store receive enormous amounts of reviews every day making a
manual analysis infeasible and demanding automated methods. One standard ap-
proach towards this goal is to generate sentiment summaries of a software product
at feature-level involving two steps [89]: 1) identification of app features (also
called aspect terms or opinion targets in the opinion mining literature) in user
reviews, and 2) determination and aggregation of sentiments expressed on app
features identified in the previous step.

Since identifying app features in user reviews is a crucial step for summarizing
users’ opinions about app features, several prior studies on app review analysis
have exclusively focused on this step. Previous work on app feature extraction
from user reviews uses techniques including rule-based, unsupervised topic mod-
eling [22], and supervised ML. The advantage of rule-based approach and unsu-
pervised topic modeling over supervised ML method for extracting app features
from user reviews is that it does not need labeled review datasets. Johaan et al.
used a rule-based approach SAFE [28] (Simple Approach for Feature Extraction)
that only uses manually extracted rules [28] for extracting app features from user
reviews. Proir to this study, Guzman et al. used topic modeling approach [22]
for the extraction of app features from user reviews. The performances of SAFE
and topic modeling approaches for app feature extraction reported in their studies
are summarized in the first two rows of Table 16. Although these results seem
to indicate that the topic modeling and the SAFE approach are complementary

55



Approach Precision Recall F-score

Topic modeling (1)
0.58 0.52 0.55

[22]
SAFE [28] 0.24 0.71 0.36
Topic modeling (2)

0.22 0.28 0.24
[28]
CRF [70] 0.69 0.56 0.62

Table 16. Performance obtained with different approaches to extract features from app
reviews.

with regards to precision and recall, they are not directly comparable because the
authors used different evaluation datasets and performance evaluation methods.
Johann et al.[28] compared the performance of a version of the topic modeling
approach on their set of app reviews using the same annotation guidelines and
evaluation procedure as in the SAFE approach. These results, shown in the 3rd
row of Table 16, indicate that the performance of the topic modeling approach is
much lower than reported in the original paper and also worse than that of the
SAFE approach, in particular with regards to recall.

Despite the superiority of SAFE over other approaches, the method used to
evaluate SAFE performance is partially subjective, because authors created a la-
beled dataset, in which app features have been manually annotated, to evaluate
the SAFE performance for app descriptions. However, they did not create such a
dataset to evaluate the performance of extracting app features from user reviews.
Instead, the authors of the original SAFE study used a coding tool that showed a
review text along with a list of SAFE-extracted app feature terms to coders who
then had to decide whether the extracted app features were true or false. In case
any true app features had not been extracted by SAFE (i.e., false negatives) from
a user review, coders had to add them manually by writing them in a correspond-
ing text box. This procedure to spot false negatives (FNs) is subjective and could
introduce researcher bias because coders might have accidentally skipped enter-
ing some true app features not extracted by SAFE, thus lowering the number of
false negatives and thus boosting performance.

In summary, the evaluation of the SAFE approach for user reviews as con-
ducted in the original study has the following two issues: (a) the evaluation is
not repeatable because the true app features in the user reviews were not reported
and (b) the evaluation procedure is potentially biased as it bases the identifica-
tion of true and false positives on subjective decisions of coders after the list of
SAFE-extracted app features has been shown to them. In order to validate the per-
formance of the SAFE, we conducted an external replication [29] of the SAFE
evaluation on user reviews, using an unbiased and repeatable procedure. Our goal
is to answer the following research question:
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RQ2-A: What is the expected performance of SAFE for extracting app features
from user reviews?

We answered RQ2-A in two steps. Since exact implementation of the SAFE
approach has not been published, we first implemented the SAFE method and
validated our implementation using the annotated app description dataset made
publicly available by the authors of the original SAFE study. This lead us to for-
mulate sub-question RQ2-A1.

RQ2-A1: Does our implementation of the SAFE approach have the same per-
formance as the original implementation of the SAFE approach when applied to
app descriptions?

After confirming that our SAFE implementation on the app description dataset
achieves a performance close to the one reported in the original SAFE study.
We applied SAFE to the five available review datasets that are both annotated
with features using different annotation guidelines: 1) English app review data
contributed by [22], which includes annotated reviews of seven apps from App
Store and Play Store (GUZMAN dataset) 2) English review dataset annotated by
two undergraduate students hired by us, each of them annotated independently
500 reviews of the seven apps contained in the GUZMAN dataset1 following the
annotation guidelines proposed by [70]. Because the inter-annotator agreement
between the two annotators on the newly annotated dataset is low (Dice index
= 0.28), we treat the annotations of the two annotators as two different datasets
(SHAH-I and SHAH-II). 3) In addition, we use two review datasets, from LAP-
TOP and RESTAURANT domains, that serve as standard aspect extraction bench-
mark datasets in the sentiment analysis community [80, 41].
The application of our SAFE implementation to the three app review datasets and
the datasets LAPTOP and RESTAURANT helped us answer RQ2-A2.

RQ2-A2: Does our implementation of the SAFE approach have the same per-
formance as the original implementation of the SAFE approach when applied to
review datasets?

Rule-based approaches such as SAFE are simple approaches for automatic ex-
traction of app features. Supervised ML offers more sophisticated approaches
for automatic extraction of app features as has been successfully demonstrated on
datasets comprising LAPTOP and RESTAURANT reviews [80, 41]. Its success
on LAPTOP and RESTAURANT domains has encouraged Sanger et al.[70] to
use supervise learning method of Conditional Random Fields (CRF) for extract-

1Although the reviews our students annotated are not the same as the ones used in GUZMAN

dataset.
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ing features from app reviews in German language. Again, the results of SAFE
and supervised CRF model[70], shown in the last row of Table 16, are not directly
comparable as they used different labeled review datasets and evaluation meth-
ods. Since supervised ML methods use labeled data for training, they might have
an advantage over simple rule-based method (such as SAFE) for extracting app
features from English app reviews. This motivated our second research question
(i.e., RQ2-B)

RQ2-B: How does the performance of supervised ML method compare with the
performance of rule-based approach SAFE for extracting app features from user
reviews?

To answer RQ2-B, we use the CRF approach as a representative for super-
vised ML methods. In our experiments, we use the same review datasets on
which SAFE performance was evaluated in RQ2-A2. Our app review dataset
contains reviews from several categories (such as Games, Productivity or Sports).
We expect that the annotated reviews of a particular app category are necessary
to learn a model that can extract app features from new reviews of the same app
category. Thus, we adopt a training procedure called APPCAT in which reviews
of each app category are treated as distinct datasets and 10-fold cross-validation
is performed over each of those data sets. CRF model performances on all app
categories in a review dataset are averaged to evaluate supervised ML method per-
formance on the app review dataset. While answering RQ2-A2, we also evaluated
SAFE performance on the product review domain. Similarly, we perform 10-fold
cross-validation on LAPTOP and RESTAURANT reviews. Finally, we compare the
performance Figure 8of the supervised CRF method against the performance of
SAFE approach on different labeled datasets.

There are several questions previous studies fail to answer when developing
systems for automatically extracting features from app reviews. The first question
is related to the annotation of app features: Which word or sequence of words
in a review constitutes a feature of an app? Training a feature extraction system
using supervised machine learning methods requires a training set where all fea-
ture instances are annotated2. Unsupervised or rule-based systems do not need
an annotated training set but they need an annotated test set to evaluate how well
the system performs. Clearly, the exact annotation procedure, operationalized via
annotation guidelines, has potentially a large effect on both the evaluation results
and the usefulness of those results to app developers. This motivates our third
research question:

RQ2-C: To what extent are supervised machine learning models for feature ex-
traction from app reviews sensitive to the used annotation guidelines?

2Note that we use the words annotated and labeled as synonyms in this article.
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To answer RQ2-C we use three English app review datasets (i.e., GUZMAN,
SHAH-I, and SHAH-II) annotated using two different annotation guidelines of
GUZMAN and SANGER. The same datasets are also used to answer RQ2-A2 and
RQ2-B. Additionally, we also used German app review data published by Sanger
et al. [70], which contains annotated reviews from eleven app categories from
Play Store (SANGER dataset).3 We train and evaluate supervised CRF models
on all datasets, i.e., the GUZMAN dataset, the SANGER dataset, and the datasets
(SHAH-I and SHAH-II) annotated by our student annotators.

As in the study of Sanger et al. [70], we use Cross-Category Validation (CCV)
procedure for training and evaluation of CRF models for app reviews. The CCV
procedure assumes that our dataset consists of app reviews from several categories
(such as Games, Productivity or Sports). In this procedure, first, we select to
hold out user reviews in one app category and train the model on the app reviews
of all other categories. Then, we test on the app reviews of the held-out app
category. The CCV procedure is repeated until all categories have been held out
in turn. We use the average feature extraction performance of all CRF models as
a proxy for the performance of supervised ML method. we used CCV procedure
for the training and evaluation of CRF models, but simulated several changes
in annotation guidelines and assessed their effect using the performance of the
predictive CRF modeling. Using this procedure, we were able to propose several
changes to the app feature annotation guidelines that improve the quality of the
annotated app reviews for both training and evaluation purposes.

Another important practical question is how much annotated data one needs to
train a generalizable and reliable model. The functional features can vary across
different apps while many apps may share a common set of non-functional fea-
tures. Does this common set of app features provide enough information for the
model so that it will generalize well enough also to the reviews of the apps for
which no annotated training data is available? Or is it necessary to restrict oneself
to app reviews of the same app category, and is it even necessary to annotate a
certain amount of reviews for every new app that we want to analyze? Perhaps
it would be enough to annotate reviews for every new app category and assume
that the apps of the same category share enough common features for the model
to be generalizable? In case there are annotated reviews available from other do-
mains (reviews of products and services), if and how much do these reviews help
to improve the accuracy of aspect extraction from app reviews? These questions
are summarized in the third research question:

RQ2-D: To what extent are supervised machine learning models for automatic
feature extraction from app reviews sensitive to the size and scope of the anno-
tated datasets used?

3The particular apps from which the reviews are taken are not known.
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To investigate RQ2-D we compare the performance of several training and eval-
uation procedures. These training and evaluation procedures serve as a proxy
to investigate the impact of size and scope of the annotated datasets on super-
vised model performance. The Cross-Category Validation (CCV) approach used
in RQ2-C assumes that the features of the apps belonging to different categories
are similar enough and thus the model to extract app features from one category
can be trained on the labeled app reviews belonging into different categories. Pos-
ing this assumption has two advantages: 1) we do not need annotated reviews for
feature extraction from reviews of a new app that does not yet have labeled data;
2) the size of the annotated dataset available for model training is larger, since we
typically have many app reviews from different app categories available.

In addition to Cross-Category Validation (CCV), we also employ other train-
ing and evaluation procedures. First, we restrict ourselves to reviews from apps in
the same category, similar to what we did when answering RQ2-B. The reason for
doing this is that we hope to achieve better performing models when we only use
annotated reviews from functionally similar apps (and the app under investigation
itself). The downside of this approach is that we might considerably decrease the
size of the available annotated data set. Secondly we perform Stratified Cross-
Validation training (SCV) and evaluation procedure where both training and test
folds contain a similar proportion of app features from every app category. In
Stratified Cross-Validation, we have the features of the same app category in both
training and test set and additionally, we have annotated reviews from other cate-
gories in the training set. Stratified Cross-Validation procedure is thus a mixture
of Cross-Category Validation used in RQ2-B and training separate models for each
app category. Our experiments show that having annotated training reviews from
the test app is not necessary, although including them into training set helps to
improve recall with a cost to precision.

Finally, we extend the scope of available annotated data as compared to the
situation in RQ2-C. There has been a lot of research on feature extraction from
product/service reviews such as RESTAURANT and LAPTOP reviews [80, 41, 69].
Although there are certainly differences between app reviews and these produc-
t/service reviews, there may be also many similarities which might enable us
to use those benchmark datasets to improve the feature extraction from app re-
views. Thus, we also experiment with both Cross-Category Validation and Strat-
ified Cross-Validation procedures by extending the training sets with annotated
reviews from the RESTAURANT and LAPTOP domains. There approaches are
named as CCV-EXT and SCV-EXT, respectively. Our results show that while
using external datasets helps to improve recall, it happens at the cost of significant
drop in precision.

Figure 8 shows how the various activities related to the sub-questions of RQ2
are related to each other. In RQ2-A, we started with the validation of rule-based
SAFE (i.e., RQ2-A1) and then the SAFE performance is evaluated on five review
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Figure 8. Overview of our research approach to RQ2

datasets in RQ2-A2. Next, to establish baseline performances of app feature ex-
traction methods, the performance of the supervised CRF method is evaluated and
compared with the SAFE performance in RQ2-B. Our results have shown that the
performance of supervised CRF was better than the rule-based SAFE in terms of
f1-score. Various factors can be investigated to further improve the performance
of supervised feature extraction methods (shown in a green box). Especially an-
notation guidelines (AGs) and annotated data (shown as blue boxes in RQ2-B)
are two factors that can potentially have a large impact on the performance of
the supervised feature extracted method but their impact on app feature extraction
performance has been overlooked. In RQ2-C, first, we performed simulation ex-
periments to assess the impact of AGs on the performance of supervised feature
extraction methods and then the effect of annotation data on app feature extraction
performance is investigated in RQ2-D.

The chapter is structured as follows. In Section 5.2 we give detailed descrip-
tions of all design variables used in this study. This is followed by Section 5.3 in
which we present the study design for both research questions. In Section 5.4, we
present the results of our experiments and answer the research questions. This is
followed by a detailed discussion in Section 5.5. In Section 5.6, limitations of our
study are examined.

5.2. Design Variables

We study four research questions (i.e, RQ2-A, RQ2-B, RQ2-C, and RQ2-D) with
the help of experiments using several review datasets with manual labeling. The
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experiments involve the independent variables listed in Table 17. Some of the
independent variables are given and some are manipulated. Below we describe
both given and manipulated variables in more detail.

GIVEN DESIGN VARIABLES

1. Annotation guidelines

a) SANGER annotation guidelines (German and English)
b) GUZMAN annotation guidelines (English)
c) SEMEVAL annotation guidelines (English)

2. Annotated review datasets

1) App review domain

1) SANGER dataset (German) [70], annotated using SANGER guidelines
2) SHAH dataset (English): annotated by two annotators using translated SANGER guidelines.

a) SHAH-I: SHAH dataset labeled by annotator I.
b) SHAH-II: SHAH dataset labeled by annotator II.

3) GUZMAN dataset (English) [22], annotated using GUZMAN guidelines

2) Product/service review domain (English)

a) LAPTOP review dataset annotated using SEMEVAL annotation guidelines.
b) RESTAURANT review dataset annotated using SEMEVAL annotation guidelines.

3. Feature extraction approaches

1) A rule-based approach SAFE[28] using 18 Part-of-Speech (POS) patterns and five sentence patterns.
2) A supervised machine learning approach using CRF model [36] with the following features extracted from the current word and its

context of two preceding and two following words:

a) the words themselves
b) POS of the words in the sentence
c) one to four character prefixes and suffixes of the words
d) the position of the words
e) the stylistics of each word (e.g. case, digit, symbol, alphanumeric)

4. Evaluation methods

a) Token-based exact match
b) Token-based partial match
c) Token-based subset match
d) Type-based exact match
e) Type-based partial match

MANIPULATED DESIGN VARIABLES

5. Data processing flow

Step 1 (Pre-processing): remove non-consecutive app features, remove app reviews with no annotated features
Step 2 (Simulation step I): Remove pseudo-features
Step 3 (Simulation step II): Remove app features that do not contain a NOUN
Step 4 (Simulation step III): Remove app features that are longer than three words

6. Training procedures

a) CCV: Cross-Category Validation on the full dataset
b) APPCAT: 10-fold cross-validation over single app Category
c) SCV: Stratified 10-fold Cross-Validation on the full dataset
d) CCV-EXT: Cross-Category Validation with External LAPTOP and RESTAURANT datasets
e) SCV-EXT: Stratified 10-fold Cross-Validation on the full dataset with External LAPTOP and RESTAURANT datasets

Table 17. The summary of design variables used in the experiments.
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5.2.1. Annotation Guidelines

Our experimental app review datasets (described more thoroughly in the next sub-
section) are annotated using two distinct set of annotation guidelines: GUZMAN

Annotation Guidelines and SANGER Annotation Guidelines. While the product
review dataset are annotated using SEMEVAL annotation guidelines.

GUZMAN Annotation Guidelines4 were developed by Guzman et al. [22] to
annotate their evaluation set. These annotation guidelines define an app feature as
a description of specific app functionality visible to the user (such as uploading
files or sending emails), a specific screen of the app, a general quality of the app
(such as time needed to load or size of storage) or a specific technical characteristic
(e.g. a network protocol or HTML5). The annotation guidelines encourage to
annotate the exact words used in the text but do not explicitly demand it. The
guidelines also explicitly allow the annotation of app features consisting of non-
consecutive words.

SANGER Annotation Guidelines5 were developed by Sanger et al. [70] to
annotate both app features, subjective phrases and relationships between them.
We translated these guidelines from German to English using Google Translate.
SANGER annotation guidelines define as an app feature “anything that is part of
the application or in some form connected with the app”. This includes existing
and requested app features, bugs and errors as well as entities referring to non-
functional features such as usability, design, price, license, permissions, advertise-
ments and updates. These guidelines explicitly instruct to annotate the mentions
of the app itself as a feature. Instructions also ask to annotated implicit features
represented by a single verb such as runs. Annotators are encouraged to keep
the annotated features as short as possible although a particular length limit is not
set. The SANGER guidelines specifically require not to include function words
into annotated app features, which probably also influences the length of the an-
notated app features. Although no explicit mention about annotating consecutive
vs non-consecutive words as features is made, all example features only consist
of consecutive words.

Although both annotation guidelines can be used to label the same information—
features in app reviews—they have several crucial differences which can influence
how well the data annotated with these guidelines can be used to train a model for
automatic aspect extraction.

1) Using feature annotations not comprised of exact words used in the review
text will make any automatic use of these annotations very difficult. Al-
though this practice is discouraged in GUZMAN guidelines, it is not directly
prohibited.

2) Annotating non-consecutive app features, allowed in GUZMAN guidelines,

4https://mast.informatik.uni-hamburg.de/wp-content/uploads/2014/03/
Coding_Guide.pdf

5available from http://www.romanklinger.de/scare/
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restricts the types of models that can be used. In particular, sequence tag-
ging models, such as Conditional Random Fields and Recurrent Neural
Networks which produce state-of-the-art results on the feature extraction
task by Liu et al. [41], can only process aspects that consist of consecutive
words.

3) The instruction in SANGER guidelines to annotate mentions and references
to the app itself is most probably motivated by the particular task of Sanger
et al.[70] to learn to extract both app features and their relations to subjec-
tive phrases. In the context of plain app feature extraction these features
can be considered pseudo-features, as they not give any useful information
to the app developers.

4) Similarly, the instruction in SANGER annotation guidelines to annotate stan-
dalone abstract verbs such as runs is also probably motivated by the joint
task of learning both app features and subjective phrases. In the context
of app feature extraction these aspects will likely cause problems because
they are difficult to distinguish from other generic verbs not labeled as app
features. Also, these very generic app features are likely of very little value
to the developers.

SEMEVAL Annotation Guidelines 6 instruct annotators to identify the aspect
category, opinion polarity, and opinion target expression (OTE) within product
or service reviews such as LAPTOP and RESTAURANT. First, annotators have to
identify aspect category in the form of entity E and attribute A pair towards which
a sentiment is expressed. E and A should be chosen from the pre-defined list of
entity types (e.g., restaurant, food, drinks) and attribute labels (e.g., prices, qual-
ity) depending on the domain. An entity can be assigned one or more attribute
labels based on the context of the review sentence they appear in. Next, each
identified entity and attribute pair, i.e., E#A, has to be assigned a polarity value
from a set of values {positive, negative, neutral}. Finally, an explicit reference to
the reviewed entity E of the E#A pair in a review has to be labeled. This refer-
ence can be a named entity, a common noun or a multi-word term. For example,
following the SEMEVAL annotation guidelines, the information extracted from a
review sentence “The lobster sandwich is good and the spaghetti with with Scal-
lops and Shrimp is great” is {FOOD#QUALITY, “lobster sandwich”, positive},
{FOOD#QUALITY and “spaghetti with Scallops and Shrimp”, positive}.

5.2.2. Annotated Datasets

We have at our disposal six annotated review datasets, four from the app re-
view domain and two belong to the product review domain. The datasets from
app review domain includes GUZMAN dataset, SANGER, two versions of SHAH

datasets. Whereas product review domain consists of reviews from LAPTOP and

6http://alt.qcri.org/semeval2016/task5/data/uploads/absa2016_
annotationguidelines.pdf
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RESTAURANT domains. Some characteristics of app review and product review
datasets are presented in Table 18 and Table 19, respectively. For app review
datasets, we do not show data per individual app but aggregated per app category.
Each review dataset is characterized using the following information:

a) the total number of reviews;
b) the total number of sentences in all reviews;
c) the total number of annotated app features in (tokens);
d) the number of distinct app features (types);
e) the number of app features consisting of a single word only;
f) the number of app features consisting of at least 2 to 4 words; and
g) the type-token ratio of annotated app features (the number of feature types

divided by the number of feature tokens).
h) Number of features (token) per app reviews;
i) Number of features (token) per sentences;
The GUZMAN dataset7 was used as an evaluation set in the study performed

by Guzman et al. [22]. It contains annotated app reviews in English language
from six different app categories. Most app categories contain reviews from one
app only: AngryBirds from Games category, TripAdvisor from Travel category,
PicsArt from Photography category, Pinterest from Social category and Whatsapp
from Communication category. The only exception is the Productivity category
which contains reviews from two apps: Dropbox and Evernote. According to
Guzman et al. [22], 400 reviews were annotated for each app. However, from
Table 18 it can be seen that the GUZMAN dataset includes less than 400 reviews
in each category. This is because the GUZMAN dataset only contains reviews with
at least one annotated app feature.8

The SANGER dataset9 was used in the study performed by Sanger et al. [70].
It contains reviews in German language. The SANGER dataset contains the same
number of reviews in each app category. The reviews in each category come from
10-15 different apps but the origin of each particular review is unknown to us. In
addition to app features, this dataset is also annotated with subjective phrases and
relations between features and subjective phrases. However, in our study we only
use the annotated app features and ignore the other annotations.

In addition to the two datasets available from other researchers, we created
the SHAH dataset. The app reviews included in this dataset were selected by ran-
domly sampling 500 reviews per app from the total pool of reviews assembled by
Guzman et al. [22] for their study. The app categories and apps in each category
are the same as in the GUZMAN dataset. Similar to Guzman et al. [22], since each
app has its own user rating distribution, we used a stratified sampling procedure to

7The dataset was obtained from the authors of [22]
8From the dataset we obtained from the authors of Guzman et al. [22] the reviews without any

annotated app features had been filtered out.
9also available from http://www.romanklinger.de/scare/
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sample the reviews using the distribution over ratings as stratum. For instance, as-
sume that the user rating distribution over the DropBox app reviews in our dataset
is as follows: 30% of the reviews have 5 stars, 40% of the reviews have 4 stars,
20% of the reviews have 3 stars, 8% of the reviews have 2 star, and 2% of the
reviews have 1 star. In this case, the stratified random sampling of 100 reviews
from a pool of 1000 reviews for the DropBox app randomly selects 30 reviews
from 5-star reviews, 40 from 4-star reviews, 20 from 3-star reviews, 8 from 2-star
reviews, and 2 from 1-star reviews. All reviews from the SHAH dataset were in-
dependently annotated by two annotators10 according to the SANGER guidelines
with both app features and subjective phrases, although for this study only the app
feature annotations are used. For measuring the inter-annotator agreement, we
adopted the Dice coefficient [63], which ranges between 0 and 1 where 1 means
total agreement and 0 total disagreement. The Dice coefficient value between the
two annotators was 0.28 which denotes a low agreement between the annotators.
Because of that, we decided to treat the annotations of both annotators as differ-
ent datasets. Thus, we have two annotated SHAH datasets: SHAH-I and SHAH-II
containing the annotations of the first and the second annotator respectively.

The LAPTOP and RESTAURANT review datasets11 are standard benchmark re-
view datasets contributed by the SEMEVAL research community12. Both datasets
have been used in studies that aimed at performing the task of feature extraction
(called "aspect terms") from user reviews and its evaluation[41, 66]. Both datasets
are distributed in predefined training and test splits, which is relevant in the con-
text of machine learning based methods. For our purpose, we merged the training
and test sets into single LAPTOP and RESTAURANT datasets, respectively.

Based on the statistics presented in Table 18 one can see several differences be-
tween the app review datasets. First of all, the GUZMAN dataset is quite different
from other review datasets as it has a significantly higher number of 2-4 word app
features (i.e., 53%) comparing to 32% single-word app features. Conversely, both
SHAH-II and SANGER datasets have more single-word features than 2-4 word
app features while in SHAH-I dataset these numbers are not extremely imbalance.
There can be several reasons for the difference in these numbers, including the
manner how each particular annotator interpreted the annotation guidelines given
to them, but we believe that this difference might also characterize the differences
in the annotation guidelines themselves.

The second main difference manifests itself in the average number of app fea-
tures per review (the last column in Table 18). This quantity is the largest for the
GUZMAN dataset and the smallest for the SHAH datasets with SANGER dataset
falling in between. We attribute this difference to fact that the GUZMAN dataset,
as explained above, only consists of reviews that contain at least one annotated app
feature while the other datasets may also contain reviews without any annotated

10Both annotators were software engineering bachelor students at the University of Tartu
11http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
12http://alt.qcri.org/semeval2018/
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Category
Number Number App App Single 2-4 Type- Features Features

of of feature feature word word token per per
reviews sents tokens types feats feats ratio review sents

a) GUZMAN dataset (English)

Games 238 718 381 254 112 213 0.67 1.60 0.53
Productivity 602 2069 1188 932 328 650 0.78 1.97 0.57
Travel 265 720 518 379 169 283 0.73 1.95 0.72
Photography 138 289 184 127 83 88 0.75 1.33 0.64
Social 146 379 257 192 98 132 0.75 1.76 0.68
Communication 90 192 137 114 60 55 0.83 1.52 0.71

Total 1479 4367 2665 1998 850 1421 0.75 1.80 0.64

b) SHAH-I dataset (English)

Games 500 901 283 84 167 92 0.30 0.57 0.31
Productivity 1000 2159 480 198 295 136 0.41 0.48 0.22
Travel 500 866 266 93 185 46 0.35 0.53 0.31
Photography 500 680 266 61 212 37 0.23 0.53 0.39
Social 500 790 286 66 242 31 0.23 0.57 0.36
Communication 500 574 159 34 133 10 0.21 0.32 0.21

Total 3500 5970 1740 536 1234 352 0.31 0.50 0.30

c) SHAH-II dataset (English)

Games 500 901 140 79 48 83 0.56 0.28 0.16
Productivity 1000 2159 469 295 217 196 0.63 0.47 0.22
Travel 500 866 185 119 89 72 0.64 0.37 0.21
Photography 500 680 81 53 46 31 0.65 0.16 0.12
Social 500 790 144 75 93 39 0.58 0.13 0.18
Communication 500 574 65 38 43 20 0.61 0.31 0.11

Total 3500 5970 1084 659 536 441 0.61 0.31 0.16

d) SANGER dataset (German)

Alarm Clocks 160 349 203 92 176 27 0.45 1.27 0.58
Fitness Tracker 160 270 194 107 153 41 0.55 1.21 0.72
Games 160 253 162 77 144 18 0.48 1.01 0.64
Instant Messengers 160 247 156 90 125 31 0.58 0.97 0.63
Music Player 160 304 213 108 179 34 0.51 1.33 0.70
Navigation 160 331 181 103 146 35 0.57 1.13 0.55
News 160 160 234 115 202 32 0.49 1.46 1.46
Office tools 160 348 219 132 171 48 0.60 1.37 0.63
Social Networks 160 237 119 59 107 12 0.50 0.74 0.50
Sport News 160 282 179 97 147 32 0.54 1.12 0.63
Weather 160 263 181 88 159 22 0.49 1.13 0.69

Total 1760 3044 2041 1068 1709 332 0.52 1.16 0.70

Table 18. Characteristics of the annotated app review datasets.
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Review Number Number App App Single 2-4 Type- Features Features
dataset of of feature feature word word token per per

reviews sents tokens types feats feats ratio review sents

Laptop - 3841 3012 1235 1857 1134 0.41 - 0.78
Restaurant - 3845 4827 1584 3604 1157 0.32 - 1.25

Table 19. Characteristics of the annotated review datasets from product domain (i.e.,
LAPTOP and RESTAURANT)

app features.
Thirdly, also the type-token ratio of app features the largest on the GUZMAN

dataset, which shows that the proportion of distinct app features is largest on this
dataset. This can be explained by the large number of multi-word app features
because the longer the features the more likely they consist of a unique sequence
of words.

The characteristics of the LAPTOP and RESTAURANT datasets in Table 19 show
that the ratio between the number of all annotated features and the number of
sentences is clearly higher than for the app review datasets.

5.2.3. Feature Extraction Approaches

This section describes the two app feature extraction approaches, SAFE and su-
pervised CRF model, used in our experiments for extracting app features from
user reviews. We used our implementation of the SAFE approach for answer-
ing research question RQ2-A, whereas supervised ML model is used to answer
research questions RQ2-B, RQ2-C, and RQ2-D. The details of both feature ex-
traction approaches are as follow.

a) SAFE Approach. The SAFE approach is a rule-based method recently pro-
posed by Johann et al. [28] for the extraction of app features from both app de-
scriptions and user reviews. The authors of the SAFE approach performed a man-
ual analysis of descriptions of 100 apps in Google Play Store and identified fre-
quent textual patterns which are used to denote app features of these apps. The 18
Part-of-Speech (POS) patterns found in the app descriptions are shown in Table 20
together with their frequencies. In addition, the authors also identified five sen-
tence patterns where the app features are mentioned as enumeration, conjunctions
and feature identifiers [28]. The exact specification of the five sentence patterns
was not presented in the original study. Therefore, we explain our interpretation
of these patterns in the paragraphs where we describe our implementation of the
SAFE approach.

As described in the original study, SAFE approach first applies a number of
pre-processing steps that remove sentences containing URLs, quotations, email
addresses, and explanations (text between brackets). Then some parts of the re-
maining sentences are removed, including subordinate clauses, stop words, bullet
points, and symbols such as “*” or “#”. Then SAFE POS and sentence patterns
are applied to sentences for the extraction of 2-to-4-word candidate app features.
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In the final step, the list of candidate app features is cleaned by removing dupli-
cates and noise such as identical words pairs, e.g., “document document”, which
may be extracted using a POS pattern 〈NOUN-NOUN〉.

Since the SAFE implementation used by the authors of the original study is not
publicly available, we created our own implementation of the SAFE approach13

based on the information detailed in [28]. Like the original study, we used the
Python programming language and the Natural Language ToolKit (NLTK)14 for
SAFE implementation. However, since not all details of the implementation of
the SAFE approach have been published in the original study, we had to make
some decisions on our own. The details of those decisions are discussed in the
following paragraphs.

# POS Pattern Freq # POS Pattern Freq
1 〈Noun-Noun〉 183 10 〈Adjective-Adjective-Noun〉 20
2 〈Verb-Noun〉 122 11 〈Noun-Preposition-Noun〉 18
3 〈Adjective-Noun〉 119 12 〈Verb-Determiner-Noun〉 14
4 〈Noun-Conjunction-Noun〉 98 13 〈Verb-Noun-Preposition-Noun〉 14
5 〈Adjective-Noun-Noun〉 70 14 〈Adjective-Noun-Noun-Noun〉 12
6 〈Noun-Noun-Noun〉 35 15 〈Adjective-Conjunction-Adjective〉 12
7 〈Verb-Pronoun-Noun〉 29 16 〈Verb-Preposition-Adjective-Noun〉 11
8 〈Verb-Pronoun-Noun〉 29 17 〈Verb-Pronoun-Adjective-Noun〉 11
9 〈Verb-Adjective-Noun〉 26 18 〈Noun-Conjunction-Noun-Noun〉 10

Table 20. List of SAFE POS patterns with frequency of occurrence [28]

After performing the pre-processing steps as described in the original study,
the SAFE implementation applies linguistic patterns to extract the candidate app
features. Following the original study, we first apply the sentence patterns and
then the POS patterns. Since the original study does not state in which order the
individual POS patterns shall be applied, we decided to apply them in the order
in which they are presented in Table 20 (see Section a)). Also, the original SAFE
study does not explicitly state the format of the sentence patterns. In Table 21,
we present the list of sentence patterns used in our SAFE implementation for
extracting app features.

The syntax of the patterns is following that of regular expressions. Once a
sentence pattern finds a match in the analyzed text, it extracts the app features
and represents them using one of the POS patterns. This might require deletion
of words found in the matching pattern. For example, conjunctions and commas
are always dropped. We indicate in Table 21 the words that are deleted with an
underscore.

All patterns have the format 〈LeftTerm1-Conj1-RightTerm1 : LeftTerm2-Conj2-
RightTerm2〉. The colon symbol “:” denotes where the right-hand side of the first
conjunction ends and the left-hand side of the subsequent conjunction begins.

13https://github.com/faizalishah/SAFE_REPLICATION
14https://www.nltk.org/
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# Sentence Pattern
1 〈Noun-Conj-Noun : Noun〉
2 〈Verb|Noun : (Noun-Comma)+-Conj-Noun〉
3 〈Verb|Noun-Conj-Noun|Verb : Noun-Conj-Noun〉
4 〈Verb-Noun-Noun-to-Adv-Verb-Conj-Verb-on-Noun-of-Noun-including

: (Noun-Noun-Comma)+-Noun-Conj-Noun〉
5 〈Verb-(Comma-Verb)+-Conj-Verb-Noun : IN (Noun-Comma)+-Conj-Noun-Noun〉

Table 21. List of SAFE sentence patterns [28]

Based on the sentence pattern, the following POS patterns are then generated by
taking the cross-product of the left-hand and right-hand terms of each conjunction,
i.e., the following set of POS patterns will be generated: 〈LeftTerm1, LeftTerm2〉,
〈LeftTerm1, RightTerm2〉, 〈RightTerm1, LeftTerm2〉, and 〈RightTerm1, LeftTerm2〉.
In the first two sentence patterns Conj1 and Conj2 are empty, respectively. In those
cases, the left-hand and right-hand terms of the missing conjunction fall together
and the cross-product is simplified accordingly.

An additional complication is introduced by the fact that several of the 18
POS patterns are overlapping. For instance, the shorter POS pattern 〈Verb-Noun〉
may overlap with some of the longer POS patterns such as 〈Verb-Noun-Noun〉
or 〈Verb-Noun-Preposition-Noun〉. Thus, applying these patterns in a sequential
order would extract overlapping candidate app features. Since we do not know
how this is handled in the original SAFE study, in our implementation, when
the overlapping features are extracted from a review sentence, only the longest
feature term is preserved. Since we only preserve the longest feature terms, the
results of feature extraction would not depend on the order in which POS patterns
were applied. Moreover, the original version of the SAFE implementation uses a
custom list of stop words which is not publicly available. Therefore, we use our
own list of custom stop words for our implementation 15.

b) Supervised Machine Learning. We adopt the Conditional Random Field
(CRF) [36] supervised learning method (for more details, see Section c)) to train
the models for all our experiments. CRF is a sequence tagging model which tags
each word in the app review text with a label. Similarly to Sanger et al. [70] we
use the BIO labeling scheme, where the tag B is used to annotate the first word
of each app feature, I labels the rest of the words inside the app feature and the
label O is used to tag all words that are outside of the app feature. We use an
implementation based on CRFSuite16 which was used as a CRF baseline by Liu
et al. [41] on LAPTOP and RESTAURANT product review datasets.

The hand-crafted features features used in the CRF model are the same as
used by Liu et al. [41], they are summarized in Table 17. The study by Liu et
al. [41] showed that using word embeddings—low-dimensional distributed vec-

15https://github.com/faizalishah/SAFE_REPLICATION/blob/master/SAFE/List_
StopWords

16https://github.com/pdsujnow/opinion-target
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tor representations of words [51]—as additional features in the CRF model im-
proves model performance. Therefore, we included word embeddings as features
in all the experiments. For the datasets in English language (GUZMAN and SHAH

datasets), we used SENNA embeddings [6].17 For the SANGER dataset in German
language, we used the embeddings18 trained on Wikipedia articles.

5.2.4. Evaluation Procedures

We evaluated all feature extraction method performances by computing the pre-
cision, recall and f1-score of the predicted app features. Because the app feature
annotations themselves can often be noisy and and ambiguous, which manifests
itself in low agreement between annotators (for instance Guzman et al. [22] re-
ported an agreement of 53% on annotated app features), we used both exact and
partial matching strategies. Since the original SAFE study does not give informa-
tion about how exactly the extracted and true features were matched to count True
Positives (TPs), False Positives (FPs), and False Negatives (FNs), we adopted
token-based subset matching strategy for the evaluation of SAFE approach (i.e.,
RQ2-A), which is more relaxed form of partial matching. We observed that token
based partial matching is slightly strict but a good approximation of token-based
subset matching strategy. Therefore, to answer research questions RQ2-B, RQ2-C
and RQ2-D, we only used token and type-based evaluation methods using both
exact and partial matching between predicted and human-annotated features. In
the following paragraphs, we explain each matching strategy used for evaluating
the feature extraction performance.

1) Exact match. requires the predicted and annotated app features to match
exactly. For instance, if the annotated feature is to upload video then in order to
count a match the predicted app feature must consist of exactly the same words.
If the model predicts upload video as feature leaving the particle to untagged the
prediction is counted as false positive under the exact match scheme.

2) Partial match. allows some mismatch when comparing the predicted app
features with the human-annotated features in the evaluation set. A difference
of one word is allowed. Under the partial match scheme, the predicted feature
upload video will be counted as true positive even when the human-annotated
feature is to upload video, whereas the predicted feature video would be counted
as false positive because it differs from the human-annotated feature in more than
one word. Similarly, a predicted feature failed to upload video would be counted
as true positive under partial match but an even longer predicted feature such as
failed to upload video to will be counted as false positive.

3) Subset match. is a partial matching strategy in which an extracted feature is
counted as true positive (TP) either when the extracted feature words are a subset
of the true feature words or the words of a true feature are a subset of the extracted

17https://ronan.collobert.com/senna/
18https://spinningbytes.com/resources/word-embeddings/
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feature words. For instance, when the extracted app feature is “create document”
and the true app feature annotated in a review text is “create new document” then
the extracted app feature “create document” would be counted as a TP because the
extracted app feature word-set {create, document} is a subset of the true app fea-
ture word-set {create, new, document}. In contrast to this, when the extracted app
feature is “create document” from a review sentence but the app feature “create
document” has not been annotated in the review sentence then the extracted app
feature “create document” would be counted as a false positive (FP). Finally, the
true features, which were not matched with any extracted features will be counted
as false negatives (FNs).

4) Token-based evaluation. counts and evaluates each instance of an app fea-
ture separately. This approach enables to distinguish between features and non-
features expressed with the same sequence of words. For instance, if an app fea-
ture upload video occurs several times in different reviews then each instance
of that feature will be counted separately. Moreover, it might also happen that
depending on context, not all upload video word bigrams are annotated as app
features. Token-based evaluation enables to penalize the wrongly predicted non-
features and foster the correctly predicted app features in each instance separately.

5) Type-based evaluation. counts and evaluates each app feature type only
once, regardless of how many times it occurs in the review texts. In order to
cluster together different instances of the same app feature type, the features are
first lemmatized using Snowball19 stemmer available in NLTK library and then
matched based on their lemmas. The type-based evaluation procedure is unbi-
ased by the frequencies of the single app feature types. While the token-based
evaluation measures can become artificially high when the annotated training and
test set contain a single high-frequency simple one-word app feature, the type-
based evaluation gives equal credit to all different app features, regardless of their
frequency.

5.2.5. Data Processing

The data processing flow is one of the manipulated design variable and includes
one preprocessing step and three steps for simulating the changes in annotation
guidelines.

1) The Preprocessing Step. is necessary to unify all experimental annotated
datasets to bring them to similar starting point. First of all, GUZMAN dataset
can also include annotations of non-consecutive app features. Because the CRF
model can only learn app features consisting of consecutive words, we remove
all non-consecutive app features from GUZMAN dataset because leaving them
in would put the GUZMAN datasets and GUZMAN annotation guidelines into a
disadvantaged position compared to the SANGER and SHAH datasets annotated
with SANGER guidelines where annotated app features always consist of only

19http://www.nltk.org/_modules/nltk/stem/snowball.html
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consecutive words. After that, we remove all reviews from the datasets that do not
contain any annotated app feature. We do this because the annotated GUZMAN

dataset we obtained from the authors of Guzman et al. [22] is a subset of all
the reviews originally annotated by Guzman et al.[22]—the annotated reviews
containing no app features have been left out. Although removing such reviews
biases the datasets doing so makes the SANGER and SHAH datasets comparable
to the GUZMAN dataset in terms of app feature distribution over reviews.

2) The Simulation Step I. removes all app features that refer to app itself either
by the app name or by explicitly using the words such as app or application and
other similar pseudo-features. This step simulates the change in the SANGER an-
notation guidelines such that the command to annotate the references to the app
itself are removed. Because GUZMAN annotation guidelines do not require to an-
notate such pseudo-features this simulation step only changes the annotations of
the SANGER and SHAH datasets. After this step, the reviews without any anno-
tated app features are removed again to ensure that the feature distributions over
all datasets are similar.

3) The Simulation Step II. removes all app features that do not contain a noun.
The rationale behind this simulation step is that useful app features should be
specific enough and this can only be achieved by requiring the presence of a noun
phrase. For instance, an app feature such as to upload, which consists of a particle
and a verb and does not include a noun, is too non-specific to understand what kind
to functionality the feature refers to. Thus, after this simulation step, these kinds
of word sequences are not considered as app features anymore, whereas a similar
word sequence to upload video, which specifies the action with a noun, will be
kept. This simulation step mostly removes short generic app features annotated
according to SANGER guidelines.

4) The Simulation Step III. removes all app features that are longer than three
words. We believe that useful features cannot be too long because otherwise they
become too specific and noisy. We attempt to simulate the change in annotation
guidelines that would limit the maximum length of an app feature to three words
with a very crude heuristic that just removes the longer features from the dataset.
Although a better heuristic would be to develop a set of rules to shorten the app
features appropriately we opted here for the simplest strategy, believing that it will
be good enough for our purpose of testing the potential effect of such a guideline.

5.2.6. Training Procedures

We only use cross-category validation procedure to study RQ2-B and RQ2-C, but
RQ2-D uses all three different training procedures: Cross-category validation,
10-fold cross-validation over single apps, and cross-category validation including
additional out-of-domain training data. The detail of each training procedure is
provided as follows.
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1) Cross-category validation (CCV):. The CCV training procedure assumes
that the annotated training data consists of app reviews belonging to several differ-
ent app categories. Then the reviews of each app category are held out in turn and
the model is trained on the reviews of the rest of the app categories. Finally the
trained model is evaluated on the held-out reviews. This training regime assumes
that the reviews of different app categories share enough common information
that a model trained on the reviews belonging to one set of apps or app categories
will generalize to the apps or app categories whose reviews the model has not seen
during training. We use cross-category validation instead of cross-app validation
because both in GUZMAN and SHAH datasets, with one exception we have the re-
views of just one app in each of the app categories. In SANGER dataset, although
each category contains reviews from several apps, we do not have the app name
annotations attached to each review and thus we could not separate the reviews of
different apps into different subsets.

2) 10-fold cross-validation over single app category (APPCAT):. In case the
different app categories do not share enough common app features, the model
trained using CCV would not be able to generalize to the reviews of a new app
category. Therefore, the training procedure APPCAT is designed with an expecta-
tion that the annotated reviews of a particular app category are necessary to learn
a model that is able to extract app features from new reviews of the same app cat-
egory. The APPCAT procedure treats the reviews of each app category as distinct
datasets and performs a 10-fold cross-validation over each of those data sets. In
10-fold cross-validation, the reviews of an app category are equally partitioned
into ten random samples of equal size. One sample is held out for testing, the
model is trained on the rest of the nine samples and evaluated on the held-out
sample. This procedure is repeated ten times until all samples are held out in turn
and then the obtained results are averaged.

The advantage of APPCAT compared to CCV is the fact that unlike CCV,
which always evaluates the models on the reviews of a different set of apps than
those used to train the model, APPCAT trains and evaluates the model on the re-
views of the same app category. This way there are more chances that the model
has seen the same or similar app features during training that it encounters during
testing. The main critique of this procedure is that the training data is now very
small, consisting of the reviews of a single app only, and when comparing these
results with CCV, it is highly likely that any differences are due to the difference
in training set sizes, rather than the fact that now training and testing sets contain
the reviews of the same app.

3) Stratified 10-fold cross-validation (SCV):. One possible option to improve
the APPCAT is to use stratified cross-validation on the whole training set instead,
using the app category as stratum. This way the sizes of the training folds would
be similar to those used in the CCV setting and at the same time, the reviews of all
apps would occur both in training and test folds. Naturally, the downside is that
annotations in all app categories are required for applying the SCV procedure.
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4) CCV with external LAPTOP and RESTAURANT datasets (CCV-EXT):. Su-
pervised machine learning approaches are expected to give better results when
supplied more training data. Because the amount of annotated app reviews is lim-
ited, we are interested in whether using additional annotated training data from
external domains would still be helpful. The CCV-EXT procedure is otherwise
identical to the CCV procedure described above with a difference that for train-
ing each model the external annotated datasets20 of LAPTOP and RESTAURANT

product reviews are included in the training set. Although product reviews and
app reviews are very different we hope there are some similarities that might help
in improving the model generalization capabilities.

5) SCV with external LAPTOP and RESTAURANT datasets (SCV-EXT):. To
check whether supplying more training data further improves the SCV procedure,
we include LAPTOP and RESTAURANT product reviews in the training set. This
is similar to what we do with the CCV procedure.

5.3. Study Design

We study research question RQ2-A in two parts defined as RQ-A1 and RQ-A2.
In the first part, i.e., RQ-A1, our SAFE implementation is validated on the app
description dataset. After the validation of our SAFE implementation, in the next
part (i.e., RQ2-A2), we evaluate the SAFE performance on all Engilsh review
datasets to answer our main research question (i.e., RQ2-A) using the variables
shown in Table 22. For studying RQ2-B, we evaluate the performance of su-
pervised ML method using APPCAT training procedure. To have a meaningful
performance comparison between SAFE and CRF method, first, we applied the
pre-processing step to unify all experimental annotated datasets. Then, Simula-
tion Step 1 is performed to remove all app features that are not very useful as they
refer to the app itself. In Table 22, we show a summary of the design variables
used to study both research questions RQ2-A and RQ2-B.

For studying the research question RQ2-C, we use all Given Design Variables
1-4 but only adopted supervised ML method CRF as a feature extraction method.
We used CCV as training procedure to explore the effects of the Data Processing
steps simulating the changes in the annotation guidelines. We rely on an assump-
tion that there is a correlation between the quality of the training data annotations
and the accuracy of the app feature extraction model. Thus, we use the model
accuracy on the test set to assess the usefulness of the proposed changes in the
annotation guidelines. In particular, we train and evaluate CRF-based app feature
extraction models on all annotated app review datasets after each Data Processing
steps and assess their accuracies to approximate how each step affects the quality
of the annotations.

For studying the research question RQ2-D, we start with the simulated anno-

20http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
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tations obtained as a result of RQ2-C, i.e. all datasets have been processed with
all Data Processing steps. We again evaluated the CRF-based model on English
annotated review datasets (i.e., Varaibles 1 to 4), but now varying the training
procedures (6a-6e) to assess how the amount and scope of training data affects
the app feature extraction performance. Table 22 summarizes the design variables
used to study both Research Questions RQ2-C and RQ2-D.

Design Variable RQ2-A RQ2-B RQ2-C RQ2-D

1. AGs
GUZMAN,
SANGER,
SEMEVAL

GUZMAN,
SANGER,
SEMEVAL

GUZMAN,
SANGER

Simulated annotations
obtained as a
result of the
Simulation Step III

2. Initial datasets All review datasets
(English)

All review datasets
(English)

App review datasets
(English and German)

App review datasets
(English)

3. Feature extraction
method

SAFE SAFE and CRF CRF CRF

4. Evaluation proce-
dures • Subset match (token)

• Partial match (token)
• Partial match (type)

• Partial match (token)
• Partial match (type)

• Exact match (token)
• Exact match (type)
• Partial match (token)
• Partial match (type)

• Exact match (token)
• Exact match (type)
• Partial match (token)
• Partial match (type)

5. Data Processing
• Preprocessing Step
• Simulation Step I

• Preprocessing Step
• Simulation Step I

• Preprocessing Step
• Simulation Step I
• Simulation Step II
• Simulation Step III

• Preprocessing Step
• Simulation Step I
• Simulation Step II
• Simulation Step III

6. Training procedures -
• APPCAT • CCV • CCV

• APPCAT

• SCV
• CCV-EXT

• SCV-EXT

Table 22. Summary of the experimental design used to study four Research Questions.

5.4. Results

In this section, we present the results of our experiments (as described in Sec-
tions 5.2 and 5.3) and answer the research questions: RQ2-A, RQ2-B, RQ2-C, and
RQ2-D. For better readability, we only show aggregated results for each dataset.
The detailed results of our experiments at app category level can be found in Ap-
pendix B (RQ2-A), Appendix C (RQ2-B), Appendix D (RQ2-C), and Appendix
E to F (RQ2-D), respectively.

5.4.1. RQ2-A: What is the expected performance of SAFE approach
for extracting features from user reviews?

In this section, we present the results to our research question RQ2-A in two steps.
First we present and discuss the results related to sub-question RQ2-A1, then we
present and discuss the results to sub-question RQ2-A2.
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a) Validation of SAFE Implementation (RQ2-A1). The correctness of our SAFE
implementation can be validated by applying it on the same evaluation set used in
the original SAFE study. We contacted the main author of the original study and
learned that in the original study, only the dataset containing the app descriptions
had annotated app features but not the dataset containing the app reviews. Since
the authors of the original study shared their annotated dataset of app descrip-
tions, we were at least able to apply our SAFE implementation to the same app
description dataset and thus validate our implementation.

Table 23 shows the evaluation results on the annotated app description dataset
of our SAFE implementation (on the right) as well as the evaluation results re-
ported by Johann et al. (on the left). Our SAFE implementation achieves exactly
the same precision and recall as the original SAFE implementation only for one
app description (Google Docs). On two app descriptions (Forest and Dropbox),
we achieve higher precision and recall than the original SAFE implementation.
For Google Drive app description, we achieve identical recall but higher precision
compared to the original SAFE implementation. On the rest of the six app de-
scriptions, we obtain lower precision and recall than the original implementation
of SAFE. These differences in performance between the two implementations
might be related to the unspecified details brought out in Section a). Additionally,
there could be differences in matching the extracted app features with true app
features that can lead to different results (see Section 5.2.4).

Based on the results of individual app descriptions we cannot claim that our
SAFE implementation is the same as the original SAFE method. On average
over all app descriptions, our SAFE implementation achieves only slightly lower
precision and recall than the original SAFE implementation. Since based on the
average f1-score the difference between the two implementations is only 1.1%,
we believe that we can still perform useful analyses with our implementation.

Original SAFE Our SAFE
Implementation Implementation

App Name Precision Recall F1 score Precision Recall F1 score
Forest: Stay focused, be present 46.2 40.0 42.9 63.6 46.7 53.8
Yahoo Mail 73.7 38.9 50.9 68.0 43.6 53.1
Printer Pro 21.4 25.0 23.1 19.0 33.3 24.2
Gmail 71.4 40.0 51.3 61.1 52.4 56.4
Google Drive 87.5 38.9 53.8 100 38.9 56.0
CloudApp Mobile 72.2 48.1 57.8 47.8 42.3 44.9
Google Docs 66.7 46.2 54.5 66.7 46.2 54.5
Dropbox 30.0 30.0 30.0 40.0 33.3 36.4
Fantastical 2 for iPhone 50.0 69.7 58.2 30.2 50.0 37.7
iTranslate Voice 50.0 27.8 35.7 31.6 28.6 30.0
Average 55.9 43.4 45.8 52.8 41.5 44.7

Table 23. Comparison of results obtained with the original SAFE implementation and
our SAFE implementation on app description dataset.
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b) Evaluation of SAFE Approach (RQ2-A2). In this section, we answer the
sub-question RQ2-A2 of our research question RQ2-A by comparing the perfor-
mance reported in the original SAFE study with the performance achieved with
our implementation of the SAFE approach on three app review datasets and two
product review datasets described in Section 5.2.2.

The performance of our implementation of the SAFE approach is evaluated
separately against 2-to-4-word features and against all features. The SAFE per-
formance evaluated for 2-to-4 word features and all features is shown in Table 24
and Table 25, respectively. In both tables, the results of SAFE performance for
app review datasets are shown on the top and its performance for product review
datasets is shown in the bottom. Besides evaluating the SAFE performance us-
ing subset matching strategy, we have shown performance results with slightly
strict evaluation settings, i.e., partial token and partial type, as well (see details in
Section 5.2.4).

Dataset Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

App Reviews

GUZMAN 20.8 36.1 26.1 21.5 39.7 27.5 23.0 39.8 28.7
SHAH-I 32.6 46.8 38.2 32.0 49.2 38.5 36.7 52.7 42.9
SHAH-II 16.1 34.6 21.9 15.5 35.2 21.4 18.0 38.5 24.4

Average 23.2 39.2 28.7 23.0 41.4 29.1 25.9 43.7 32.0

Product Reviews

LAPTOP 31.2 46.4 37.3 24.3 49.3 32.5 33.0 49.0 39.4
RESTAURANT 25.0 53.1 34.0 22.6 57.0 32.3 26.8 56.9 36.4

Average 28.1 49.8 35.7 23.5 53.2 32.4 29.9 53.0 37.9

Table 24. Evaluation of SAFE extracted features on 2-4 word features in annotated
review datasets (i.e., app reviews and product reviews)

Dataset Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

App Reviews

GUZMAN 31.1 25.2 27.1 32.7 33.0 32.1 42.8 35.0 37.6
SHAH-I 38.3 30.5 33.9 39.1 37.4 38.3 50.3 39.9 44.4
SHAH-II 22.5 23.8 22.8 22.2 29.5 25.2 29.7 30.9 29.9

Average 30.6 26.5 27.9 31.3 33.3 31.9 40.9 35.3 37.3

Product Reviews

LAPTOP 47.7 26.7 34.2 35.9 48.8 41.4 56.9 31.8 40.8
RESTAURANT 49.8 25.4 33.6 32.2 50.8 39.4 62.3 31.7 42.1

Average 48.8 26.1 33.9 34.1 49.8 40.4 59.6 31.8 41.5

Table 25. Evaluation of extracted features on all features in annotated review datasets
(i.e., app reviews and product reviews)

The original SAFE study used only 2-to-4-word app features for evaluation
since the POS and sentence patterns defined in the SAFE approach can only ex-
tract app features composed of two to four words. The original study reported
precision and recall of 23.9% and 70.9%, respectively, for the SAFE approach
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[28]. As shown in Table 24, The recall of our SAFE implementation with all
evaluation strategies on each of our evaluation datasets when evaluating on 2-
to-4-word features varies but is consistently lower than the recall reported in the
original study. Since subset matching is a relax matching strategy than partial
token and type strategies, the average recall, i.e., 43.7% obtained on app review
datasets is 43.7%. Interestingly, the average recall achieved on product review
datasets (i.e., 53%) with the subset matching strategy is better than app review
datasets.

When comparing the precision of our SAFE implementation with that reported
in the original study, one observes that the precision on all review datasets varies
alot but the average precision is slightly higher than the reported precision of
23.9% in the original study. The variation in precision could be attributed to
different density score of the annotated features in review datasets. The sensitivity
of SAFE precision to features density is also clearly visible when we look at the
evaluation results using all annotated features in Table 25. Also, the fact that the
evaluation results when using all features has consistently higher precision values
supports the hypothesis that higher features density yields higher precision when
using the SAFE approach.

When looking at the recall values, the interpretation is less straightforward than
for precision. The highest recall of 56.9% when evaluating on 2-to-4-word app
features with the subset matching strategy is obtained for the RESTAURANT
dataset but it is still considerably lower than the recall of 70.9% reported in the
original study. However, it is less clear why the recall values for the datasets
belong to product review domain are relatively high.

When comparing the precision of 2-to-4-word features with the precision of
all features, Table 25 shows that the precision values consistently improve while
the recall values go down. This happens because in each dataset the set of 2-to-
4-word features is a strict subset of all features. As a consequence, some of the
extracted features counted as false positives (FPs) when evaluated against 2-to-4-
word features might be counted as true positives (TPs) due to the partial matching
strategy that we use to match the extracted features with the true features. The
impact is stronger on review datasets where the number of annotated features is
higher, such as RESTAURANT, LAPTOP, and GUZMAN.

5.4.2. RQ2-B: How compares the performance of the CRF model to
the performance of the SAFE approach?

This section answers the research question RQ2-B by comparing the performances
of the SAFE approach (evaluated in Section b)) and supervised CRF method for
extracting features from user reviews.

The performances of both feature extraction methods, supervised CRF and
SAFE, on three app review datasets and two product review datasets are shown in
Table 26. The left-hand side of the table shows the performance of the supervised
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CRF model and the right-hand side of the table presents the SAFE performance
evaluated for all features. The upper part of the table shows the feature extraction
performances for the app review domain whereas the lower part shows the feature
extraction performances for the product review domain. Compare to subset-based
matching, partial token and type matching strategy is not too relaxed. Thus, we
have shown results with only these two strategies.

Dataset
Supervised CRF model Rule-based approach SAFE

Partial Match (Token) Partial Match (Type) Partial Match (Token) Partial Match (Type)

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

App Reviews

GUZMAN 51.8 22.3 30.9 62.4 26.4 36.8 31.1 25.2 27.1 32.7 33.0 32.1
SHAH-I 62.3 30.2 40.5 66.8 31.8 42.9 38.3 30.5 33.9 39.1 37.4 38.3
SHAH-II 48.9 23.1 31.3 51.1 25.8 34.2 22.5 23.8 22.8 22.2 29.5 25.2

Average 54.3 25.2 34.2 60.1 28.0 38.0 30.6 26.5 27.9 31.3 33.3 31.9

Product Reviews

LAPTOP 83.9 70.8 76.8 87.3 74.9 80.7 47.7 26.7 34.2 35.9 48.8 41.4
RESTAURANT 85.5 81.5 83.5 85.9 79.6 82.6 49.8 25.4 33.6 32.2 50.8 39.4

Average 84.7 76.2 80.2 86.6 77.3 81.7 48.8 26.1 33.9 34.1 49.6 40.4

Table 26. Comparision of performance between supervised CRF method and SAFE
approach for extracting features from user reviews (i.e., app reviews and product reviews)

In Table 26, the results of feature extraction methods for app reviews show
that the supervised CRF model obtains better precision than SAFE with both
matching strategies (i.e., partial token and type). The recall of SAFE approach
is better than the supervised CRF model by almost 5.3% with the partial type
matching and 1.3% with the partial token matching. The average f1-score of the
CRF model is higher than the SAFE approach by almost 6 percentage points with
both matching strategies.

Compared to the app review domain, both app feature extraction methods have
shown better performance for the product review domain. Especially, the super-
vised CRF model has shown remarkable performance for the product review do-
main. In addition to the high feature density and lower type-to-token ratio in the
product review domain, we speculate other factors also have an impact on su-
pervised learning performance, e.g., the nature of AGs used and the subjective
interpretation of the AGs by the coders.

To answer RQ2-B, we conclude that the performance of the supervised learn-
ing model for the product review domain is extremely higher than the app review
domain. For the app review domain, the performance of rule-based SAFE and
supervised CRF is complementary with regards to precision and recall, especially
with the partial type matching strategy. However, in terms of f1-score, the perfor-
mance of the CRF model is better than the SAFE approach.
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5.4.3. RQ2-C: How sensitive is supervised learning approach for
feature extraction from app reviews to the used annotation

guidelines?

Figure 9 shows how the characteristics of the labeled datasets used in our study
change step-by-step from the starting situation (Baseline) to Step Simulation III-
3, i.e., after all data processing steps have been performed and the best perfor-
mance has been achieved with training procedure CCV (Cross-Category Valida-
tion). The details about the data processing steps as well as the training procedure
CCV have been described in Sections 5.2.5 and 5.2.6, respectively.

The annotated datasets at the Baseline correspond to those described in Sec-
tion 5.2.2. Several phenomena can be observed when comparing evolution of the
datasets’ characteristics from Baseline to Step 3. Due to the nature of the data
processing steps, the number of app features steadily decrease in all datasets both
token-wise and type-wise. Also, several of the characteristics of the four datasets
converge. For example, at the Baseline, the type-token ratio of app features varies
in the range [0.31, 0.75], while after Step 3, the variation is reduced to the range
[0.69, 0.79]. In other words, in Step 3, most of the feature instances occur only
once or twice in each of the datasets. Similarly, the average number of features
per review, which initially varies in the range [0.31, 1.80], reduces to a range of
[0.31, 1.06] after the Step 3. For the GUZMAN, SHAH-I, and SHAH-II datasets the
portion of single-word features converges from variation in range [0.32, 0.71] to
variation in range [0.31, 0.37]. Only for the SANGER dataset, the portion of single-
word features stays high (with a small reduction from 0.84 to 0.76). One explana-
tion for the high portion of single-word features in the SANGER dataset could be
that the German language allows for noun compositions replacing multiple-word
noun phrases.

In the following, we present the performance corresponding to Steps 0, 1, 2,
and 3 in Table 27. For each experiment, the table shows the precision, recall and
F1-measure of our models when applying the four different evaluation procedures
EXACT MATCH (TOKEN), PARTIAL MATCH (TOKEN), EXACT MATCH (TYPE),
and PARTIAL MATCH (TYPE) as described in Section 5.2.4.

The first row in each section of the Table 27 (Pre-processing) shows the per-
formance after filtering out non-consecutive app features and removing reviews
that do not mention app features. On all datasets precision is consistently better
than recall for all evaluation procedures, and partial matching, as expected, yields
better performance than exact matching for both token- and type-based evalua-
tion. In particular for token-based evaluation, performance varies largely between
datasets. The models built using the GUZMAN and SHAH-II datasets clearly per-
form worse than those built using the SHAH-I and SANGER datasets. When look-
ing at the dataset characteristics, one sees the following similarities between the
datasets on which the models perform better as compared to the datasets where
the models perform worse:
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Figure 9. Series of modifications performed on the labeled datasets

• The SHAH-I and SANGER datasets have a larger share of single-word app
features (71% and 84%) than the GUZMAN and SHAH-II datasets (36% and
49%).

• The SHAH-I and SANGER datasets have a lower type-token ratio (0.31 and
0.52) than the GUZMAN and SHAH-II datasets (0.74 and 0.62).

After Step 0, it seems that the language used in the review datasets (German
in the case of the SANGER dataset and English in the case of the SHAH-I dataset)
does not have a distinguishing impact on model performance. The impact of the
two annotation guidelines seems to be mixed. Even though we used the translated
SANGER Annotation Guidelines when annotating the SHAH dataset, the perfor-
mances of SHAH-I-based and SHAH-II-based models are very different. The per-
formance of the SHAH-II-based model is even worse than the performance of
the GUZMAN-based model where a different annotation guideline was used. We
speculated that one possible reason for the difference in performance could be
that the SANGER Annotation Guidelines explicitly instruct annotating references
to the app itself as a feature. Following this instruction automatically increases the
number of single-word features and lowers the type-token ratio as the repeated
mentioning of the app itself increases the token count but not the type count.
When inspecting the SHAH-II dataset, we noticed that the annotator seemed to
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Processing Exact Tokens Partial Tokens Exact Types Partial Types
Step Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) GUZMAN dataset:

Pre-processing 39.5 12.9 18.9 52.9 17.7 25.8 45.5 14.6 21.4 68.9 26.2 37.2
Simulation I 39.6 12.6 18.6 53.3 17.4 25.5 44.5 14.0 20.7 68.1 25.4 36.1
Simulation II 39.6 11.6 17.2 48.6 14.4 21.1 43.3 13.0 19.1 66.5 23.2 33.1
Simulation III-3 38.9 12.2 17.8 51.7 16.7 24.2 48.0 15.4 22.5 74.9 29.9 41.8

b) SHAH-I dataset:

Pre-processing 75.5 48.4 57.9 80.9 51.6 61.7 60.1 27.6 37.4 80.0 42.3 55.0
Simulation I 42.8 10.8 16.8 47.4 12.1 18.8 50.5 13.2 20.5 69.5 22.5 33.6
Simulation II 57.6 12.1 19.7 62.2 13.2 21.5 58.6 12.9 20.9 78.8 22.1 34.1
Simulation III-3 55.2 13.5 21.4 59.5 14.7 23.3 60.2 15.2 24.1 82.0 25.8 39.0

c) SHAH-II dataset:

Pre-processing 33.7 11.1 16.6 38.1 12.6 18.9 46.0 14.3 21.4 64.2 21.3 31.5
Simulation I 44.9 12.6 18.7 48.8 14.0 20.8 48.9 12.4 18.8 68.2 17.2 25.9
Simulation II 38.2 14.2 19.8 41.8 15.7 21.9 40.4 13.2 19.2 56.6 17.7 25.9
Simulation III-3 50.2 13.9 21.0 55.0 15.6 23.5 57.8 14.2 22.3 68.0 18.5 28.4

d) SANGER dataset:

Pre-processing 70.3 49.9 57.9 76.4 54.4 63.1 63.5 38.9 47.7 74.7 49.6 59.2
Simulation I 58.9 32.8 41.6 65.3 36.5 46.3 60.8 32.1 41.4 71.8 40.7 51.3
Simulation II 52.6 31.5 39.1 59.0 35.4 43.9 54.8 32.0 40.0 66.5 40.9 50.3
Simulation III-3 54.5 30.4 38.6 60.1 33.7 42.7 57.2 30.6 39.5 68.5 39.0 49.3

Table 27. Model performance on all datasets after all data processing steps.

have ignored this instruction. Since the frequent annotation of references to the
app itself in a review seems to artificially boost the performance of the feature
extraction models, while it does not have any practical value to correctly predict
the occurrence of a feature referring to the app itself, we decided to remove the
annotations of app-references in our datasets.

The second row in each section of Table 27 (Simulation I) shows the perfor-
mance after filtering out app features referring to the app itself. This corresponds
to Step 1 of our data processing steps. It is a simulation of a change in the an-
notation guidelines, i.e., the explicit mentioning that references to the app itself
should not be annotated. The effect on the datasets of retrospectively applying this
rule can be seen in Figure 9. In Step 1, all datasets have a high type-token ratio
in the range [0.68, 0.78]. All English datasets have a low share of single-word
features in the range [35%, 38%], while the one German dataset (SANGER) still
has a relatively large portion of single-word features (77%). As expected, all re-
sults on datasets with previously high performance (SHAH-I and SANGER) drop
considerably, especially the recall on the SHAH-I dataset.

The third row in each section of Table 27 (Simulation II) shows the perfor-
mance of our models after removing app features that do not contain a noun. This
corresponds to Step 2 of our data processing steps. This step was motivated by
the assumption that app features not containing a noun (such as running or runs)
are too unspecific to be useful for the developers. Since the SANGER annotation
guidelines instruct to annotate implicit features represented by a single verb, we
expected a significant drop of the number of app features for the SANGER and
SHAH datasets and also an over-proportional reduction of the number of single-
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word app features. Surprisingly, it turned out that the number of app features
dropped equally strongly for the GUZMAN dataset, and for all datasets the portion
of single-word app features also significantly decreased but not much as compared
to Step 1 (Simulation I), while the type-token ratio slightly increased. The Ger-
man dataset SANGER still has a high portion of single-word app features (now
74%). The average number of app features per review narrows down after this
step to the range [0.39,1.42] and is decreasing for all the datasets.

Overall, compared to the performance obtained after Step 1 (Simulation I), the
recall remains roughly the same for all datasets. In terms of precision, we ex-
pected it to improve. If the annotated feature set contains short and vague verbal
aspects that also would be used as non-aspect terms in the text (e.g. using or up-
dating), it might be very difficult for the model to detect certain instances of these
words as features. We expected that removing such features from the annotated
set would thus improve precision. The results show, however, that the precision
increases only on the SHAH-I dataset while on all other datasets it dropped. This
can happen if the short and vague-meaning verbal features share the same char-
acteristics with the self-references—the distinct number of such features is small
but their frequency is high, in which case it is relatively simple for the model to
spot them and removing these features from the annotations causes the precision
to drop.

The performance results shown for Steps 0 to 2 were achieved with annota-
tions of app features (aspects) consisting of any number of words. Since long
aspects potentially have a negative effect on model performance, we investigated
whether imposing a maximum length could achieve better performance. Figure 10
summarizes the outcomes of our experiments. For the SANGER dataset, the per-
formance was uniform across all choices of cutoffs. Therefore, we only show the
average performances of the three English datasets. Each of the four plots shown
in Figure 10 shows the minimum, maximum, and average F1-score for app fea-
tures containing a number of words not greater than 1, 2, 3, 4 and with infinite
length (from left to right). The plot in the upper left corner corresponds to exact
token-based evaluation, followed by the plot for partial token-based evaluation
(upper right corner), exact type-based evaluation (lower left corner), and partial
type-based evaluation (lower right corner). In three plots out of four, the best aver-
age performance is achieved when the app features consisting of more than three
words are removed—only in the exact tokens setting restricting the length of app
features to four words is slightly better. The performance of our models after lim-
iting the number of words in app features to a maximum of three words is shown
in the last row of each section in Table 27 (Simulation III-3). This corresponds
to Step 3 of our data processing steps. The effect on performance is uniformly
positive for all datasets. The precision for partial type-based evaluation is in the
range [68%,82%].

To answer RQ2-C, we can state that by simulating the application of modified
annotation guidelines we achieve a feature prediction precision which is compa-

84



Figure 10. Average f1-score for different evaluation types (exact tokens, partial tokens,
exact types and partial types) when applying different cut-offs to the number of words in
app features. The results are averaged over three English datasets, showing also minimum
and maximum values.

rable to that received after the application of the original GUZMAN and SANGER

guidelines.
The advantage of the models created based on annotated datasets achieved

by simulating the modified guidelines is that the predicted app features are more
useful for developers since they are crisper (only one to three words of length)
and correlate better with actual app features than with pseudo-features such as
references to the app itself. The new rules included in the modified (improved)
guidelines are summarized as follows:

• Only annotate app features consisting of consecutive words;
• Do not annotate references to the app itself;
• Only annotate app features containing a noun;
• Restrict the length of the annotated app features to maximum three words.

5.4.4. RQ2-D: How sensitive is supervised learning approach for
feature extraction from app reviews to the size and scope of the

annotated datasets used?

In order to investigate how sensitive the performance trained on the datasets an-
notated with simulated annotation guidelines (cf. rows Simulation III-3 in Ta-
ble 27) is regarding to variations in size and scope of available annotated datasets
is, we compared five training procedures: 1) Cross-category validation (CCV),
2) 10-fold cross-validation over single app category (APPCAT, 3) Stratified 10-fold
cross-validation (SCV), 4) Cross-category validation with external LAPTOP and
RESTAURANT datasets (CCV-EXT) 5) Stratified 10-fold cross-validation over
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Procedure Exact Tokens Partial Tokens Exact Types Partial Types
and size Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) GUZMAN dataset:

APPCAT S 36.2 14.1 20.0 45.8 17.8 25.3 43.9 16.2 23.5 61.8 24.1 34.3
CCV M 38.9 12.2 17.8 51.7 16.7 24.2 48.0 15.4 22.5 74.9 29.9 41.8
SCV M 40.6 18.3 25.2 52.9 23.5 32.6 48.2 21.1 29.3 71.1 33.9 45.9
CCV-EXT L 24.0 17.7 19.8 34.5 25.2 28.4 31.1 22.4 25.6 55.4 43.4 48.2
SCV-EXT L 29.0 18.9 22.8 40.9 26.6 32.2 36.3 23.0 28.2 59.1 38.8 46.9

b) SHAH-I dataset:

APPCAT S 43.4 13.0 19.8 47.0 14.6 22.0 47.4 14.4 21.9 52.8 19.6 28.2
CCV M 55.2 13.5 21.4 59.5 14.7 23.3 60.2 15.2 24.1 82.0 25.8 39.0
SCV M 66.2 30.4 41.7 70.5 32.4 44.4 68.5 30.6 42.3 81.8 38.8 52.7
CCV-EXT L 17.9 21.8 19.2 21.8 26.4 23.2 24.5 30.7 26.9 40.6 52.1 45.3
SCV-EXT L 31.4 28.3 29.8 34.9 31.6 33.2 34.4 31.6 32.9 45.1 43.2 44.2

c) SHAH-II dataset:

APPCAT S 18.2 5.7 8.6 21.6 6.9 10.2 24.3 7.8 11.7 29.6 9.3 14.0
CCV M 50.2 13.9 21.0 55.0 15.6 23.5 57.8 14.2 22.3 68.0 18.5 28.4
SCV M 39.7 13.6 20.2 46.8 16.1 24.0 50.9 15.8 24.1 65.6 21.1 31.9
CCV-EXT L 16.8 21.4 18.6 20.2 25.8 22.5 21.6 24.5 22.8 34.6 40.2 37.0
SCV-EXT L 28.3 25.3 26.7 32.0 28.3 30.0 29.2 24.8 26.8 37.6 31.8 34.4

d) SANGER dataset:

APPCAT S 56.3 21.0 30.3 63.4 23.6 33.9 59.4 22.5 32.3 66.1 26.0 36.9
CCV M 54.5 30.4 38.6 60.1 33.7 42.7 57.2 30.6 39.5 68.5 39.0 49.3
SCV M 56.0 34.8 42.9 62.9 39.2 48.3 55.2 32.9 41.2 65.4 39.9 49.6

Table 28. Results of various training procedures that differ in size and scope on all
datasets. The second column shows the size of the training set in procedure according to
a three-value scale: small (S), medium (M) and large (L). APPCAT stands for the cross-
validated training procedure trained on one app category data only; CCV means Cross-
Category Validation; SCV is Stratified Cross Validation; CCV-EXT is Cross-Category
Validation with External data; and SCV-EXT is Stratified Cross Validation with External
data.
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merged app categories with external LAPTOP and RESTAURANT datasets (SCV-EXT).
These training procedures were described in subsection 5.2.6.

The five training procedures can be classified with regards to size and scope as
follows:

• Small size and scope: APPCAT – scope: reviews from one app category;
size: number of app features (tokens) in the range [17, 605];

• Medium size and scope: CCV and SCV – scope: reviews from all app
categories; size: number of app features (tokens) in the range [486, 1435];

• Large size and scope: CCV-EXT and SCV-EXT – scope: reviews from
all app categories plus LAPTOP and RESTAURANT; size: number of app
features (token) in the range [8325, 9274].

The performances of the models resulting from the different training proce-
dures are shown in Table 28. Figure 11 shows in a more compact representation
the minimum, maximum, and average f1-score for the five training procedures
for the various datasets using partial type-based evaluation procedure. The other
evaluation metrics follow the same pattern.

As expected, all models using the APPCAT training procedure have the lowest
performance for all evaluation measures. The most probable explanation for this
result is the small size of the training sets as each model is trained on the annotated
reviews of one app category only.

The best performing models with regard to precision are those resulting from
the training procedures CCV and SCV. The training procedure CCV is signif-
icantly better in terms of precision than SCV. In terms of recall, the procedure
SCV is consistently better than CCV on all datasets, leading also to consistently
higher f1-scores. However, this improvement is bought with the necessity to have
annotated app reviews available in all app categories, while CCV procedure ap-
plies the trained model on reviews from app categories that were not seen during
training time.

Since the LAPTOP and RESTAURANT datasets are in English, they cannot be
combined with the SANGER dataset and we only have performance evaluations in-
cluding those external datasets for GUZMAN and both SHAH datasets. The evalua-
tion results show that widening the scope and using non-app reviews as additional
training data improves the recall but reduces precision (with an improvement of
the f1-score) when comparing CCV-EXT to CCV. Comparing SCV-EXT to SCV
shows that adding external datasets improves recall but as the drop in precision is
in most cases large, the f1-score of SCV-EXT increases less than in the case of
CCV (GUZMAN and SHAH-II datasets) or even drops (SHAH-I dataset).

Thus, to answer RQ2-D, we can state that to extract features from a particular
app category The training procedure CCV, which uses annotated reviews from
other app categories, achieves the highest precision. While SCV, the training
procedure that uses reviews from the same app category, yields better recall at
the cost of a drop in precision. In addition, we can say that using annotated app
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Figure 11. Average precision, recall and f1-score for partial types evaluation when ap-
plying different training procedures.

reviews from other app categories to increase the training set does improve the
overall performance (APPCAT vs CCV/SCV). While complementing annotated
app review datasets with external datasets from different domains helps to increase
recall, it also brings along a large drop in precision. Since software developers
usually would be interested in more precise app feature predictions (at the cost
of lower recall), dataset extension by adding non-app features might not be the
recommended direction to follow.

The main findings of Chapter 5 are:
• The recall of our SAFE implementation on all review datasets is

lower than the recall reported in the original study.
• The performance of rule-based SAFE and supervised CRF is com-

plementary with regards to precision and recall.
• Simulating the application of modified AGs has achieved a feature

prediction precision comparable to that received with the existing
AGs but the predicted app features would be more useful for devel-
opers.

• The training procedure CCV, which uses annotated reviews from
other app categories, achieves the highest precision.

5.5. Discussion

In this section, we explain the usefulness of our proposed new annotation guide-
lines (AGs) to app developers, that is the outcome of RQ2-C. In the end, we dis-
cuss limitations of our study.

The main goal of reearch questions (RQ2-C and RQ3-D) was to investigate
the impact of annotation guidelines and annotated data on extracting app features
from app reviews and to improve existing AGs such that (1) the performance of
the app feature extraction task gets better in terms of f1 score and (2) the set of
extracted app features is more useful to software developers.

Section 5.4.3 (Results) presented the step-by-step impact to the performance of
the app feature extraction when simulating the effects of changing the used AGs.
It turned out that with our proposed new AGs, a small performance improvement
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over the baseline situation could be achieved. However, this is not the only advan-
tage of our new AGs. In the following we argue that not only the performance of
the app feature extraction task can be improved but that the set of annotated and
extracted app features itself is more relevant for software developers when using
our new AGs.

We will illustrate what we mean by “more relevant for software developers”
in two steps with the help of examples. In the first step, we demonstrate that
the simulated application of our new AGs actually produces an annotated dataset
that contains a larger share of annotated app features that are useful to software
developers. In the second step, we demonstrate that this positive effect of our new
annotation guidelines also propagates to the set of extracted app features.

Table 29 shows samples of app features in the original labeled datasets and
in the annotated datasets after the simulated application of our new AGs. We
randomly picked one app category from each of the English datasets, i.e., in cat-
egories ‘Photography’ (GUZMAN), ‘Social’ (SHAH-I), and ‘Game’ (SHAH-II).
We manually classified each app feature as either ‘useful’ or ‘not useful’ and then
compared how the numbers of useful and not useful app features change when
simulating the application of our new AGs. In Table 29, not useful app features
are shown in bold text.

We consider an app feature to be useful when it seems to be related to actual
functionality of an app. For example capture full resolution, decorating pictures
and online scrapbooking seem to be clearly referencing to some functionality in
the app of categories ‘Photography’ and ‘Social’. Aspects are not useful when
they are too generic to be connected with a specific functionality (e.g., share or
version 1.5.1). As shown by the study [17], non-functional aspects of an app
(e.g, easy to use) can be identified with high precision using language patterns.
Therefore, our concern in this study is to extract app functional aspects.

The app features in the upper part of Table 29 correspond to a random sam-
ple of those app features that remained in the set of app features after simulated
application of the new AGs. The numbers behind each app feature correspond to
the token count before and after the simulated application of the new AGs. Note
that in some cases, the token number changed. The app features in the lower part
of Table 29 correspond to those app features that were completely removed from
the set of app features after the simulated application of the new AGs. Again,
Table 29 only shows a random sample of the removed app features.

The ideal impact of the simulated application of our new AGs corresponds to
removing all useless app features and keeping only the useful app features. We
calculated the impact of our AGs based on the numbers of manually classified
‘useful’ and ‘not useful’ app features in three app categories before and after the
simulation of new AGs (see Table 30). The actual numbers (based on token and
type count) for each of the three apps are as follows:

• Category ‘Photography’ (GUZMAN): the token and type percentage of use-
ful app features kept equals 70% and 53%, respectively; the token and type
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Table 29. A random sample of app features from three app categories: photography
(GUZMAN), social (SHAH-I), and game (SHAH-II). The upper part of the table shows app
features kept or partially removed during the simulation of our AGs; while the lower part
shows the app features removed by the AGs. The app features shown in bold are not
useful from developer’s prospective.

Photography (GUZMAN) Social (SHAH-I) Game (SHAH-II)

editing [13,5] pinning [7,4] new levels [12,12]
edit [9,4] ideas [5,3] most recent update [1,1]
easy to use [6,3] works [4,1] new version [1,1]
free [3,1] update [2,2] sound [1,1]
filters [3,3] block pins[1,1] new pink bird [1,1]
photoshop [2,2] login [1,1] version 1.5.1 [1,1]
effects [1,1] pin videos [1,1] new gameplay [1,1]
capture full resolution [1,1] search results [1,1] indigo bird [1,1]
free pack [1,1] share interests [1,1] new powerups [1,1]
enhancing photos [1,1] move pin button [1,1] tapping and aiming [1,1]
more frames [1,1] online scrapbooking [1,1] red’s might feathers [1,1]
share [1,1] uploading [1,1] trajectory line [1,1]
customize a photo [1,1] find pins [1,1] pop ups [1,1]
nexus 5 [1,1] explore [1,1] physics engine [1,1]
textfonts [1,1] organize your interests [1,1] newest update [1,1]
decorating pictures [1,1] search function [1,1] new format [1,1]
edit pics [1,1] send pins [1,1] turn off cartoons [1,1]
customised jpeg file [1,1] image searcher [1,1] mighty eagle [1,1]
add more frame [1,1] change cover photo [1,1] tower defense [1,1]
red eye optn [1,1] random pin button [1,1] birds reload [1,1]

update [1,0] app [140,0] game [26,0]
explore [1,0] pinterest [42,0] angry birds [7,0]
save [1,0] apps [3,0] app [4,0]
upload [1,0] pin [2,0] play [3,0]
download [1,0] runs [2,0] games [1,0]
user friendly [1,0] application [1,0] delete[1,0]
little slow [1,0] navigate [1,0] most of the levels [1,0]
edited [1,0] quotes [1,0] runs [1,0]
navigate [1,0] loads [1,0] open [1,0]
add more clip arts [1,0] view someone elses board [1,0] icould support [1,0]
add other output formats [1,0] change the privacy settings on boards [1,0] make your own levels [1,0]
edit pictures in a high quality [1,0] update on the news feed [1,0] replay an awesome shot [1,0]
takes forever to apply effects [1,0] sorting functionality in board section [1,0] more levels with pink bird [1,0]
selection tool to edit and work making sub folder or subcategories super hero angry birds [1,0]
with image parts [1,0] within boards [1,0]

Table 30. The number of app features (token and type) manually classified as either
‘useful’ or ‘not useful’ in app categories Photography (GUZMAN), Social (SHAH-I) and
Game (SHAH-II), before and after the simulation of AGs.

App Before Useful Not useful Useful Not useful Total Total
category or app features app features app features app features app features app features

after simulation (token) (token) (type) (type) (token) (type)

Photography Before simulation 79 95 50 77 174 127
After simulation 55 45 37 41 100 78

Social Before simulation 69 217 47 19 286 66
After simulation 52 15 36 8 67 44

Game Before simulation 81 59 57 22 140 79
After simulation 73 12 49 13 85 62

percentage of useless app features removed equals 53% and 47%, respec-
tively; the ratio between useful and useless app features improved from
79/95=0.83 (token-based) and 50/77=0.65 (type-based) before the applica-
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tion of our new AGs to 55/45=1.22 (token-based) and 37/41=0.90 (type-
based) afterwards;

• Category ‘Social’ (SHAH-I): the token and type percentage of useful app
features kept equals 75% and 77%, respectively; the percentage of use-
less app features removed equals 93% and 58%, respectively; the ratio be-
tween useful and useless app features improved from 69/217=0.32 (token-
based) and 47/19=2.47 (type-based) before the application of our new AGs
to 52/15=3.47 (token-based) and 36/8=4.50 (type-based) afterwards;

• Category ‘Game’ (SHAH-II): the token and type percentage of useful app
features kept equals 90% and 86%, respectively; the percentage of use-
less app features removed equals 80% and 41%, respectively; the ratio be-
tween useful and useless app features improved from 81/59=1.37 (token-
based) and 57/22=2.59 (type-based) before the application of our new AGs
to 73/12=6.08 (token-based) and 49/13=3.77 (type-based) afterwards.

The data shows for each of the three sample cases that the ratio between the
number of useful and useless app features is increasing for both token and type-
based analyses when applying our new AGs. This is the effect that we expected
to see.

We computed the percentages based on both token and type counts of app
features because there can be cases like, for example, the app feature editing. The
app feature editing occurred 13 times in the app of category ‘Photography’ before
the simulated application of our new AGs and five times afterwards. We assume
that eight occurrences of editing were removed due to the guideline ‘Only annotate
app features containing a noun’, i.e., because after simulating the application of
our new AGs editing was predicted to be an app feature when it was used as a
noun. Note that the word editing when used as a verb is not helpful for software
developers because it does not provide information about the purpose or object of
editing and thus it is difficult to decide whether the mentioning of editing is related
to the edit functionality as such or just a special situation in which something was
edited. On the other hand, if editing is mentioned in the grammatical form of
noun, it is more probable that whatever is said in the sentence containing the word
editing is referring to the edit functionality in general. A similar case is pinning
mentioned in the reviews of the app in category ‘Social’. Here three of the seven
original app feature predictions disappeared after simulating the application of our
new AGs.

After we convinced ourselves that the simulated application of new AGs actu-
ally results in more useful app feature annotations, we checked whether this effect
also propagates to set of extracted app features.

Table 31 shows the impact on the number of useful and useless app features in
model’s extracted app features, when training CRF models with the original an-
notated datasets and when training CRF models using the annotated datasets after
the simulated application of our new AGs. We picked the same app categories
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as before from each of the English datasets, i.e., from categories ’Photography’
(GUZMAN), ’Social’ (SHAH-I), and ’Game’ (SHAH-II). We manually classified
each app feature as either ’useful’ or ’not useful’ and then compare how the num-
bers of useful and not useful app features change when simulating the application
of our new AGs. The actual numbers (based on token and type count) for each of
the three apps are as follows:

• Category ‘Photography’ (GUZMAN): the ratio between useful and use-
less app features improved from 30/31=0.97 (token-based) and 21/25=0.84
(type-based) before the application of our new AGs to 24/10=2.4 (token-
based) and 17/10=1.7 (type-based) afterwards;

• Category ‘Social’ (SHAH-I): the ratio between useful and useless app fea-
tures improved from 26/167=0.16 (token-based) and 17/18=0.94 (type-based)
before the application of our new AGs to 15/7=2.14 (token-based) and
8/6=1.33 (type-based) afterwards;

• Category ‘Game’ (SHAH-II): the ratio between useful and useless app fea-
tures improved from 22/27=0.81 (token-based) and 11/21=0.52 (type-based)
before the application of our new AGs to 24/18=1.33 (token-based) and
13/14=0.93 (type-based) afterwards.

Table 31. Model’s extracted app features (token and type) are manually classified as
either ‘useful’ or ‘not useful’ in app categories Photography (GUZMAN), Social (SHAH-I)
and Game (SHAH-II), before and after the simulation of AGs.

App Before Useful Not useful Useful Not useful Total Total
category or app features app features app features app features app features app features

after simulation (token) (token) (type) (type) (token) (type)

Photography Before simulation 30 31 21 25 61 46
After simulation 24 10 17 10 27 34

Social Before simulation 26 167 17 18 193 35
After simulation 15 7 8 6 22 14

Game Before simulation 22 27 11 21 49 32
After simulation 24 18 13 14 42 27

Figure 12 summarizes our results and expectations with regards to the effec-
tiveness of our new AGs (based on token-wise analysis of the three selected app
categories). Each of the six rectangles corresponds to the total set of annotated
(upper row) and extracted (lower row) app features. The blue portion in each
rectangle corresponds to the share of useful app features (UFs) while the orange
portion corresponds to the share of useless app features (¬UFs). The calculated
ratios between UFs and ¬UFs clearly show an improvement for the simulated ap-
plication of our new AGs not only in the annotated datasets but also in the set of
extracted features. This strengthens our expectation that a real application of the
new AGs, which presumably yields exclusively useful features in the annotated
dataset (thus an exclusively blue rectangle on the right in the upper row of Fig-
ure 12) would result in an even further improved ratio between UFs and ¬UFs in
the set of extracted app features when comparing to the baseline and the simu-
lated application of our new AGs (as indicated by the small portion of orange in
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the rectangle on the right in the lower row of Figure 12).

Figure 12. Ratios between useful and useless app features (annotated and extracted) for
the three analyzed app categories (token-based).

5.6. Limitations of the Study

While answering research question RQ2-A, the main threat to the validity of our
study is that we were not able to exactly replicate the evaluation results of our
SAFE implementation on the app description dataset provided by the authors of
[28]. This means that although we have carefully checked our implementation but
our implementation of the SAFE approach is not exactly the same as used in the
original study.

One likely reason for the differences in the performance measures is that we
might have decided certain implementation details, which were not specified in
the SAFE paper (described in Section a)), differently than the original authors.
For instance, we might have interpreted the sentence patterns differently than in-
tended by the original authors and thus implemented them differently. Similarly,
the proposers of the SAFE approach use a custom list of stop words in their
SAFE implementation. This list has not been published. Thus, we had to define
our own list of custom stop words and the impact of our choice on the achieved
performance values is not known. We intend to make our implementation as well
as the custom list of stop words publicly available so that others could replicate
and validate our results.

The differences in performance measures might also stem from a different
way of counting TPs, FPs and FNs. The authors of the original SAFE study
do not explain the matching strategy (exact match or partial match) used to match
the SAFE extracted app features against the true app features. In our study, we
adopted multiple matching strategies (partial token and type) including the more
relaxed token-based subset matching for the evaluation of SAFE on user reviews.
It is possible that in the original study, the matching was performed differently.
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The validity of our results depends partly on the reliability of the annotations
of the review datasets. Since we not only used our own annotations (i.e., datasets
SHAH-I and SHAH-II) but applied SAFE implementation to other review datasets
published in the literature; so we believe that the existing limitations of reliability
for the mentioned tasks is not a major threat to validity of our results.

In relation to research question RQ2-C, in some cases it is not fully clear why
an app feature was removed or kept. These cases could be due to inaccuracies of
the POS tagger used in Step 2 of the simulated application of our new AGs. For
example, it is unclear why only two out of three occasions of free were removed
in category ‘Photography’ as it is hard to imagine a context in which free could be
considered to be a noun in a review text. Overall, our new AGs removed most of
the useless app features in app categories ‘Social’ (SHAH-I) and ‘Game’ (SHAH-
II). When removing the not useful app features, the lower performance (53%) on
app category ‘Photography’ (GUZMAN) is due to a large number of annotations
referring to mobile devices, app versions, app updates and non-functional app
features.

Note that we only simulated the application of our new AGs on the labeled
datasets. We expect that the application of the new AGs by actual people could
have resulted in more useful annotations of app features in the first place. The ap-
plication of our new AGs automatically removes app features that are longer than
3-words. However, in the direct application of our new AGs, a longer app fea-
ture might simply have been annotated with fewer words rather than completely
been removed as we did in Simulation Step 3. For instance, a 5-word app fea-
ture sorting functionality in board section annotated in app category ‘Social’ of
the SHAH-I dataset could be labeled as an admissible 2-word app feature sorting
functionality.

Our study is restricted to the use of the CRF model which limits app features
to be annotated as consecutive words. Therefore, when limiting annotations to a
maximum 3-word app features, it might be impossible to annotate app features
consisting of consecutive words; in such cases CRF (or any other sequences tag-
ging model) cannot be applied or we would have to drop those app features (or
soften the rule of having maximum 3-words app features). For instance, a 5-
word app feature edit pictures in a high quality can be reduced to the following
two meaningful representations of 3-word app features: edit high quality or edit
picture quality. However, both 3-word app feature representations are not consec-
utive.

We only found two published annotation guidelines associated with publicly
available annotated app review datasets. The problem we encounter is that ei-
ther annotated datasets were not published or when they had been published it
is unclear what annotation rules/guidelines were applied. In other domains, e.g.,
LAPTOP and RESTAURANT, the standard guidelines and benchmark datasets are
contributed by the research community SEMEVAL to perform the task of product
feature extraction and its evaluation. Similar to the SEMEVAL research commu-
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nity, the app review mining research community could contribute standardized
guidelines and benchmark datasets to help researchers in the development of sys-
tems performing fine-grained sentiment analysis at app feature-level.

We created two new labeled datasets SHAH-I and SHAH-II in English, using
the English translated version of the German SANGER annotation guidelines. The
translation from German to English of SANGER guidelines is performed using
Google translation service. In order to make sure that the translated guidelines
have sufficient quality to be used for the annotation of reviews in English lan-
guage, one of the author of this paper, who is a native German speaker and have a
full command of the English language, read the English translated version of the
annotation guidelines and found it adequately accurate for the annotation task.

The validity of our results depends to some degree on the reliability of the
annotations of the SHAH-I and SHAH-II datasets. In addition, the assessment
of the usefulness of the results produced when using our simulated AGs depends
on the reliability of the subjective classification of annotated and extracted app
features into ‘useful’ and ‘not useful’ for software developers. Since each of these
tasks was performed by one person, reliability might be limited. However, since
we not only used our own annotations (i.e., datasets SHAH-I and SHAH-II) but
applied our analyses also to datasets published in the literature and the trend of our
results was similar for all our used datasets, we believe that the existing limitations
of reliability for the mentioned tasks is not a major threat to validity of our results.

5.7. Replication Package

The source code and annotated review datasets used for the evaluation of SAFE
approach and for simulating the impact of annotated data and annotation guide-
lines (AGs) on supervised learning model (i.e., CRF) performance is available at
https://bitbucket.org/faizalishah/appfeature_extraction.

95

https://bitbucket.org/faizalishah/appfeature_extraction


6. USING APP REVIEWS FOR COMPETITIVE
ANALYSIS - TOOL SUPPORT

In this chapter, we answer research question RQ3 defined in Section 1.2 of the
thesis. First, we explain the method that combines review classification and app
feature extraction for competitive analysis. Based on this method, a prototypi-
cal version of the tool is presented that supports three typical use cases for app
developers. Finally, a survey is conducted to evaluate the usefulness of the tool
from users in the industry. The chapter is based on publications II and VII, but the
survey study evaluating tool’s usefulness has not been published.

6.1. Introduction

App marketplaces emerge as a channel of communication that directly connect
users to developers and exemplify transparency by making the information pub-
lic such as app description, features, price, rating, and user feedback[2, 56, 24].
The transparency offered by app marketplaces and their low barrier to entry for
smaller companies has rapidly increase the number of offered apps that make the
competition fierce for apps offering similar features[4, 9]. To cope with this highly
competitive environment, app developers turn to public information of competitor
apps, especially user feedback, when performing software development activi-
ties such as software maintenance and evolution activities[2]. Since popular apps
receive a large number of user reviews every day, the manual analysis of user
reviews of competitive apps is not possible.

Many commercial tools such as Google Analytics 1, AppAnnie 2, and App
Radar 3 have been available that support competitor analysis. These tools compare
the selected apps based on the number of reviews each app has received along
with the distribution of positive and negative sentiments in those reviews. Instead
of identifying exact app features mentioned in those reviews, these tools show
the keywords that are commonly mentioned in user reviews of the selected apps
or/and summarize users’ sentiments towards a pre-defined list of terms/concepts
such as GUI, interface, usability, performance, etc.

Previous research studies have adopted LDA-based topic models to summarize
useful information automatically extracted from user reviews [4, 9]. Few studies
[22, 18] have focused on summarizing reviews at the level of granularity of app
features. In these studies, automatic analysis of user reviews was performed on
a single app. Recently, Dalpiaz et al. [8] demonstrated a tool performing a more
fine-grained analysis of reviews of competitive apps with the objective of prior-
tizing users’ requiremets. The goal of our study is to develop a method and tool

1https://analytics.google.com
2https://www.appannie.com
3https://appradar.com
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support for developers comparing their apps with other competitve apps based on
users’ feedback, which in turns faciliate them in different software development
activities. In particular, we aim at answering the following research question:

RQ3: Can automatic app review classification and app feature extraction be com-
bined for comparing competing apps?

To answer our RQ3, first, we developed a method supported by the tool named
REVSUM4 that combines review sentence classification and app feature extrac-
tion methods to compare competing apps based on users’ feeback. Different from
REVSUM, the tool developed by Dalpiaz et al. [8] extracts app features directly
from a full review text, but not all review sentences in a user review contain in-
formation that is relevant for app developers (ADs). Figure 13 shows an example
review where the relevant sentence containing useful information about an app
feature is marked in blue and irrelevant sentences expressing additional sentiment
tone but not much extra information are marked in pink. Filtering out irrelevant
review sentences may improve the automatic extraction of app features from user
reviews as this could reduce the number of false positives (FPs)5 in the set of
automatically extracted app features. Different from previous tool by Dalpiaz et
al. [8], REVSUM used the simplest sentence classification model with lexical fea-
tures developed in Chapter 4 to classify review sentences into the five types feature
evaluation (E), bug report (B), feature request (R), praise (P), and other (O), and
then automatically extracts app features from review sentences of types E, B, and
R that we believe contain the most relevant information for ADs when perform-
ing software develpoment activities such as software maintenance and evaluation.
The tool SURMINER [18] classifies review sentences into the same classes as
REVSUM but it only produces a summary of users’ sentiments about app features
from review sentences belonging to type E containing feature evaluations. Addi-
tionally, our tool REVSUM also generates feature-level summaries of the reported
bugs as well as new features requested by users (i.e., missing features). Futher-
more, our tool also supports functionality by which app developers can compare
the features of their app with the same features of competitor apps that can help
developers identifying the unwanted features or features missing in his app but
loved by users of other competitor apps.

Another difference between our tool REVSUM and the previous approaches
lies in the method of extracting app features from user reviews. While Dalpiaz
et al.[8] and Guzman et al.[22] used a collocation algorithm for app feature ex-
traction, we adopt the recently proposed rule-based approach SAFE [28] for this
purpose. Our decision is based on the evaluation results of Chapter 5 where we
compared the performance of supervised CRF method against the SAFE perfor-

4the name was derived as an acronym from the phrase REView SUMmary
5FP is an app feature automatically extracted from a review text which turns out not to be a true

app feature.
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Figure 13. Example of a review text containing relevant (blue color) and irrelevant (pink
colour) review sentences.

mance. Our evaluation results have shown that the performances of both feature
extraction methods have not been very encourging. We selected SAFE over su-
pervised CRF for this study just because SAFE does not need labeled data for
extracting app features from user reviews of any app. Although SAFE is more
restrictive in extracting app features than the collocation extraction method, it
still suffers from relatively low precision due to a high FP rate (see Section b) of
Chapter 5). REVSUM provides several options to overcome the noise stemming
from low precision of SAFE: (1) tool user has the ability to filter SAFE extracted
features by frequency threshold, (2) the precision of SAFE is higher on features
extracted from app descriptions compared to features extracted from user reviews;
therefore, the tool user is given an option to choose the app description as an al-
ternate source to extract app features. In this scenario, the app features extracted
from app description will be searched in the review sentences for further analysis.
(3) REVSUM also enables users to manually revise the app features extracted by
SAFE from the app description.

To help developers in different software development activities, REVSUM sup-
ports the following three main use cases (UCs) for comparing a reference app with
its competitor app:

UC 1: Summarize users’ sentiments towards app features.
UC 2: Summarize app features mentioned in bug related reviews.
UC 3: Summarize new app features requested by app users.

To evaluate the usefulness of our developed tool to app developers, ten real app
developers accessed our online tool REVSUM and executed the above mentioned
use cases on their apps and provided their feedback. Most developers found the
tool useful and exciting for comparing the features of their app with other com-
petitor apps based on users’ sentiments (i.e., UC 1). Concerning UC 2, develop-
ers have not seen it much useful because they complained about misclassfication
errors and some mentioned that issues reported in user reviews lack context in-
formation. When viewing the summary of app features requested by users (i.e.,
UC 3), developers found the use case helpful for the improvement of their apps
even though they noticed false cases of app features extracted through rule-based
approach SAFE.

The rest of the chapter is structured as follows. In Section 6.2, we describe the
approach combining review sentence classification and app feature extraction to
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analyze the user reviews of competing apps. In Section 6.3, the description of use
cases supported by our tool REVSUM is presented. Section 6.4 demonstrates
the application of these use cases. Section 6.5 describes the study conducted
to evaluate usefulness of the tool for app develpopers. Section 6.6 answers the
research question followed by a discussion in Section 6.7. In Section 6.8, threats
to validity are examined.

6.2. Approach

This section describes the approach we used for the development of the tool for
comparing apps. As shown in Figure 14, our proposed tool REVSUM comprises
of the following five main components: (a) apps selection, (b) review collection,
(c) review classification and feature extraction, (d) feature level analysis of the
selected apps, and (e) visualization. The order in which the steps are performed
in each component are numbered in Figure 14. In the following subsections, the
functionality of each component is explained in detail.

Figure 14. REVSUM approach for comparing apps at the level of app features.

6.2.1. Apps Selection

This component collects the names of the reference app and its competitor apps
that the tool user6 wants to analyze. In step 1 (see Figure 14), the user inputs the
name of the reference app and based on this input, the system invokes a call to the
RESTful API7 (step 2) which retrieves a list of similar apps (steps 3 and 4) from
Google Play Store and presents them to the user (step 5). In the final step 6, the

6In the following, we use the term user to refer to the user of the tool and not to the end user of
the app itself.

7https://github.com/facundoolano/google-play-scraper
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user selects the desired competitor apps from the retrieved list. Further analyses
are performed as comparisons between the reference and the selected apps.

6.2.2. Review Data Collection

This component collects user reviews of the reference app and its competitor apps
selected in the previous component (i.e. apps selection). For each selected app,
the sub-component “collect reviews” fetches the most recent 400 reviews, calling
the RESTful API, and saves them in the database for later use.

6.2.3. Review Classification and Feature Extraction

This component is responsible for finding information from app user reviews rel-
evant for the tool user. First, review sentences are classified, then app features are
automatically extracted.

To automatically classify review sentences, user reviews collected by the pre-
vious component are retrieved from the database (step 1). Then, each review is
segmented into sentences (step 2) using Stanford CoreNLP library8. In the pre-
processing step 3, the review sentences are cleaned by replacing some typos and
contractions. For this, we use the list9 of words proposed by [18]. In step 4, the
simple bag-of-word classification model developed in Chapter 4 is used to classify
review sentences into the following five types: feature evaluation (E), bug report
(B), feature request (R), praise (P) and other (O). The analysis proceeds with the
sentence types E, B and R. Sentences of types P and O are discarded.

Steps 5, 6 and 7 extract app features from categorized review sentences using
the rule-base SAFE method. We used our own implemenation of SAFE approach
(see Chapter 5) for this purpose. The last step 8 clusters the extracted feature terms
by stemming, i.e. by reducing each word into to their root form. For this task we
used the SnowballStemmer10 available in NLTK library. As a result, feature terms
such as uploading pictures, uploads picture, uploaded pictures are mapped onto
the same feature term upload picture.

The performance of the SAFE method improves when app features are ex-
tracted from app descriptions and not from user reviews. Therefore, in our tool,
we also allow the user to select app description as a source for extracting app
features instead of user reviews.

6.2.4. App Feature Level Analysis

This component performs feature-wise analysis on the review sentences of the
reference app and its competitor apps. This analysis is performed separately for
sentences of type E, B and R (steps 1, 4 and 6, respectively).

8https://stanfordnlp.github.io/CoreNLP/
9https://guxd.github.io/srminer/appendix.html

10https://www.nltk.org/_modules/nltk/stem/snowball.html
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Step 2 performs sentiment analysis on review sentences of type E containing
feature evaluations using Standford CoreNLP Library. For an input review sen-
tence, the CoreNLP library outputs the sentiment score between [0,4] where 0
means “very negative” and 4 means “very positive”, and 2 denotes “neural”. For
better readability, we scale the sentiment score to the range [-2, +2]; now -2 means
“very negative”, +2 represents “very positive” and 0 is “neutral”. Similar to [18],
we also used review ratings to improve the accuracy of the sentiment analysis
adjusting the sentiment score in case where the score predicted by the sentiment
analyser and the review rating score fully contradict each other. For instance, if
the review rating is 5 or 4 but the predicted sentiment score is -1 or -2 then the
sentiment score is adjusted by +1. Similarly, if the review rating is 1 or 2 and the
predicted sentiment score is +2 or +1 then the sentiment score is adjusted by -1.

Given the set of app features F =
{

f1, f2, ..., fn
}

mentioned in app review sen-
tences R =

{
r1,r2, .....,rm

}
, the average sentiment score FSi of the app feature fi

is calculated using Equation (6.1):

FSi =
1

C( fi)

m

∑
j=1

Si, j, (6.1)

where, Si, j is the sentiment score of the sentence r j mentioning feature fi and
C( fi) is the total number of review sentences mentioning the feature fi. In other
words, the sentiment score FSi of the app feature fi is the average sentiment score
of the review sentences that mention this feature.

6.2.5. Visualization

This component visualizes the feature-wise review analyses of the reference app
and its competitor apps. For review sentences containing feature evaluations (type
E), the plot displays app features on the horizontal axis and their corresponding
sentiment scores as app icons on the vertical axis (step 3). The size of the icons
corresponds to the frequency of each app feature in the reviews. For review sen-
tences categorized as bug reports and feature requests (types B and R), the vertical
axis of the plot displays the frequency of each app feature for each app (steps 5
and 7).

6.3. Use Cases

This section presents three main use cases that are implemented in REVSUM to
help app developers to improve their apps.

UC 1: View users’ sentiments towards app features - The usage of the
UC 1 is for app developers to compare their app (i.e. the reference app) with
other competitor apps by monitoring the users’ sentiments conveyed towards app
features. Table 32 describes the main and alternative flow of this use case.

UC 2: Find buggy app features - The primary usage of UC 2 is to visual-
ize the app features mentioned in bug related reviews of the selected apps. The
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Table 32. Use Case 1: View users’ sentiments towards app features

Role App Developer (AD)

Description View users’ sentiments towards the app features of competitor apps

Trigger AD is interested in finding the strengths and weakness of his app.

Pre-conditions AD has already selected the reference app and its competitor apps

Post-conditions AD views users’ sentiments towards the app features of competitor apps.

Normal flow

(1) AD selects the sentence type category feature evaluation from the list of
sentence types.

(2) For the selected apps, AD sees the list of app features extracted from the
review sentences of type ’E’ with their frequencies (the default threshold
for app feature frequency>=5) [A1][A2]

(3) For the selected apps, AD sees the plot showing the app-features on x-axis
and users’ sentiments and feature frequency distribution on y-axis.

Alternate flow

A1. AD changes the default frequency threshold for app features automati-
cally extracted from review sentences:

1. AD changes the frequency threshold for app features using the
slider control.

2. AD sees the updated list of app features fulfilling the selected fre-
quency threshold criteria.

3. For the selected apps, PD views the plot showing users’ sentiments
towards app features.

A2. AD selects APP DESCRIPTION as a source for extracting app features:

1. AD sees the list of app features extracted from app description using
SAFE approach.

2. AD sees the list of app features fulfilling the frequency threshold
criteria.

3. AD manually revises the list of extracted features either by anno-
tating new app features in app description or removing the FPs ex-
tracted from app description.

4. For the selected apps, AD sees the plot showing users’ sentiments
conveyed on app features.

description of the Use Case 2 is presented in Table 33. The flow of alternate use
cases (i.e., [A1][A2]) is the same as described in UC 1; therefore, they are not
repeated here.

UC 3: Find users’ requested features - The usage of UC 3 is to view which
new app features were requested by the app users in the reviews of the selected
apps. The description of the UC 3 is shown in Table 34. The flow of alternate
use cases (i.e., [A1]) is the same as described in UC 1; thus, they are not repeated
here.

6.4. Application of the Use Cases

This section demonstrates the application of the three use cases described in Sec-
tion 6.3. We only demonstrate the normal flow of these use cases but the tool
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Table 33. Use Case 2: Find buggy features

Role App Developer (AD)

Description Show which app features were mentioned in bug related reviews.

Trigger AD is interested in finding out the app features mentioned in bug related reviews.

Pre-conditions AD has already selected his app and competitor apps .

Post-conditions For the selected apps, AD views the app features mentioned in bug related reviews.

Normal flow

(1) AD selects the sentence type category BUG REPORT from the list of sen-
tence types.

(2) AD sees the list of app features extracted from review sentences of the
selected apps with their frequencies (default threshold for app feature fre-
quency >=2) [A1][A2]

(3) For the selected apps, AD sees the plot showing app-features on the x-axis
and the frequency of each app feature is shown on the y-axis.

Table 34. Use Case 3: Find users’ requested features

Role App Developer (AD)

Description View which new app features were requested by users in the reviews of competitor apps.

Trigger AD wants to find out new features requested by users.

Pre-conditions AD has already selected his app and its competitor apps.

Post-conditions AD views the summary of newly requested features in the reviews of competitor apps.

Normal flow

(1) AD selects the sentence type category FEATURE REQUEST from the list
of sentence types.

(2) AD sees the list of app features extracted from review sentences of the se-
lected apps along with their frequencies (default threshold for app feature
frequency >=2) [A1]

(3) For the selected apps, AD sees the plot showing newly requested features
on the x-axis and the frequency of each app feature on the y-axis.

REVSUM and its manual11 are available online.12 The pre-condition for all three
use cases is that the tool user has already selected the reference app and the com-
petitor apps. For demonstration purposes, we selected NIKE RUN CLUB as the
reference app and RUN KEEPER GPS RUNNING and MAP MY RIDE as its com-
petitor apps. In the following sub-sections, we demonstrate the application of
each use case.

6.4.1. Use Case 1: View user’s sentiments towards app features

As described in Section 6.3, the purpose of the UC 1 is to view users’ senti-
ments (i.e., positive, negative, or neutral) towards app features of the reference
app and its competitor apps. The approach used to extract this information from
user reviews is described in detail in Section 6.2. For the selected apps NIKE

RUN CLUB, MAP MY RIDE, and RUN KEEPER, the top plots (labeled as “a” and
“b”) in Figure 15 shows the output of UC 1. The plot, labeled as “a”, shows for

11http://bit.ly/tool_manual
12http://18.219.206.183:8088/

103

http://bit.ly/tool_manual
http://18.219.206.183:8088/


each extracted app feature its average sentiment score. Each app is represented
by its icon and the size the icon corresponds to the frequency of the app feature
in the reviews of this app. Feature-level sentiment summary in the top-left plot
of Figure 15 automatically generated from user reviews can help app developers
to understand the strengths and weaknesses of their app. For instance, the app
feature “voic feedback” is mentioned more frequently in the reviews of the refer-
ence app NIKE RUN CLUB compared to the competitor apps RUN KEEPER and
MAP MY RIDE. However, the average sentiment score of this feature is lower for
the reference app, reaching to the negative side of the sentiment scale, whereas
for the competitor apps, the average sentiment score is higher and in the positive
range. Based on that information, developers of the app NIKE RUN CLUB can
look in more detail what the app users do not like about this particular feature
in the NIKE RUN CLUB and what they do like about it in the competitor apps.
Clicking on the icon of the respective app lists the review sentences mentioning
this app feature together with their sentiment scores. A sample view of the output
is shown on the top right of Figure 15 (labeled as “b”). Inspecting these sentences
can help to find out how to improve the app feature “voic feedback” to remain
competitive in the app market.

6.4.2. Use Case 2: Find buggy app features

Experiencing bugs in apps are the main cause of frustration for app users. UC
2 enables app developers to find app features that were mentioned in the review
sentences classified as bug reports. The middle plot in Figure 15 (labeled as “c”)
shows an example output of the UC 2, where extracted app features are shown
on the horizontal axis while the frequency of these app features are shown on
the vertical axis. As can be seen from Figure 15, the app feature “gps signal” is
mentioned approximately 15 times in the NIKE RUN CLUB app and its competitor
app RUN KEEPER. The frequent mentioning of this app feature in bug-related
review sentences hints that there might be something that needs to be fixing about
this feature. Similar to the Use case 1, by clicking on the app icon corresponding
to the app feature, the tool user can read all bug-related review sentences where
this particular app feature was mentioned. A sample view of it is shown in the
middle-right plot of Figure 15 (labeled as “d”).

6.4.3. Use Case 3: Find users’ requested features

App reviews can also contain information about new features requested by users.
Extracting and using this information to guide decisions about what to include in
next releases can improve the competitiveness of an app. The goal of UC 3 is to
summarize the information about new requested features automatically extracted
from review sentences classified as feature requests. These extracted app features
are shown to the tool user along with their frequencies. An example output of UC
3 is shown in the bottom-left plot of Figure 15 (labeled as “e”). The extracted app
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Figure 15. Demonstration of all three use cases

features are shown on the x-axis and the frequency with which they occur in each
app is shown on the y-axis. High frequency of requests for an app feature could
be a hint for the AD to prioritize this particular app feature for the next release
cycle. For instance, the app features “shuffle playlist” and “voice feedback” are
requested by app users in the example reference app NIKE RUN CLUB at least
ten times, making them good candidates for inclusion in the next release cycle.
Requests for these features were not found in the reviews of the competitor apps
but this does not tell anything about the presence or absence of these features in
the competitor apps. However, the user can proceed with UC 1 and search for
these features and their evaluations from the user reviews of competitor apps.

Similar to UC 1 and UC 2, the tool user can read all review sentences where
a particular app feature was requested by clicking on the app icon corresponding
to that app feature. A sample output of it is shown in the bottom-right plot of
Figure 15 (labeled as “f”).
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6.5. Tool Evaluation

We performed a preliminary evaluation aimed to determine how developers find
the REVSUM tool supportive for software development activities through com-
petitive analysis. In particular, we designed a survey study to assess the following
three aspects of our developed tool REVSUM.

1. Perceived usefulness of the use cases supported by the tool.
2. Preceived accuracy of functions available in the tool.
3. Predicting the potential of using this tool in the future.
We first performed a pilot study through which participants who appeared in a

startup camp13 were asked to fill in the survey. A total of fifteen participants with
a background in the field of computer science or software engineering reviewed
the questionnaire and given their feedback. Many participants complained that
few questions are a bit longer. Based on that feedback, we made those questions
shorter and concise. Two questions were deemed unclear and therefore rephrased.
The final questionnaire contains 3 sections with 12 questions. The questions’
answers are 5 Likert items on the Likert scale that represent degrees of agreement,
interest, or importance.

The final survey14 was disseminated to 25 app developers working in different
companies via email. The app developers were selected based on convenience
sampling. We ensured that these app developers represent a mobile app on Google
Play Store that has 3+ competing apps. All app developers were provided a link
to the tool prepared with reviews concerning the participants company’s app and
its competitors. The user reviews were collected from Google Play Store between
May 2019 and July 2019. A tool manual is provided to each developer to make
them familiar with the scenarios that need to be evaluated.

Ten app developers participated in our survey study. Those participants exe-
cuted the given scenarios (demonstrated in Section 6.4) against their apps using
our tool and provided their feedback by filling in the questionnaire. For confiden-
tiality reasons, we pseudonymize the app names evaluated through our tool and
only revealed their category names in Table 35. During the execution of these
use cases, participants have had the choice to select competing apps of their own
choice. There was no time-limit imposed on participants to execute the given use
cases. We also conducted follow-up interviews with three developers (i.e., travel-
app#1, prod-app, and edu-app) to better understand their experiences with the tool
and its pros and cons.

13The event arranged with the collaboration of Garage48 and University of Tartu, Estonia
14https://forms.gle/QrfuCJsHFhF5Sh517

106

https://forms.gle/QrfuCJsHFhF5Sh517


Main app App Category

travel-app#1 Maps and Navigation
travel-app#2 Maps and Navigation
prod-app Productiity
finance-app Finance
travel-app#3 Maps and Navigation
edu-app Books and References
bank-app#1 Finance
bank-app#2 Finance
travel-app#4 Maps and Navigation
travel-app#5 Maps and Navigation

Table 35. Apps (i.e., names anonymized) with their categories evaluated through our tool

6.6. Results

As mentioned in Section 6.5, our survey study evaluated three different aspects
of our developed tool to answer our research question RQ3. In this section, we
present the results of each aspect, one by one in the following sections:

6.6.1. Perceived Usefulness

Eight participants out of ten agree (i.e., two strongly agree) that the functionality
of viewing users’ sentiment towards app features (i.e., UC 1) is a useful feature of
the tool (see Figure 16), and two particpants remained neutral. According to the
three interviewees, the possibility to sift through negative feedback mentioning a
particular feature from a large volume of reviews provides valuable information
for the improvement of their apps. They also said that, the tool helped them in
discovering the app features that were the main strength of their app.

Concerning the tool functionality for finding app features from bug-related
user reviews (i.e., UC 2), five participants agreed on its usefulness (see Figure 16).
However, three participants remained neutral, and two expressed their disagree-
ment. Two interviewees who were the developers of “travel-app#1” and “prod-
app” pointed out that they found review sentences conveying negative opinions
towards some app features misclassified as a bug report. The interviewee of app
“edu-app” stated that reading a full review via tool sometimes helps in under-
standing the context, but it was hard to prepare a concrete plan to fix the problem
mentioned in the user review based on this information.

Seven participants agreed (one strongly agreed) that the tool is useful for find-
ing newly requested app features by the users (i.e., UC 3), but three remained
neutral (see Figure 16). All interviewees mentioned that only lowering the feature
frequency threshold showed them the results instead of using the default feature
frequency threshold (i.e., 5). Developers of apps “travel-app#1” and “prod-app”
stated that app features extracted automatically from review sentences related to
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Figure 16. Perceived usefulness of the use cases supported by the tool REVSUM

feature requests were not accurate, but we still found the review informtion clas-
sified as feature request useful for improving our apps. The developer of app
“edu-app” found review sentences evaluating the app feature (i.e., search) posi-
tively but incorrectly classified as feature request. The example quoted was “Pls
u guys should not change from your good ways, i love the search feature and its
accuracy”.

6.6.2. Perceived Accuracy

Seven participants have shown their satisfaction with the accuracy of automatic
review classification (see Figure 17). Two participants remained neutral, and one
expressed his disapproval. Interviewees reported cases in which review sentences
mentioning an app feature positively or negatively, but they misclassified as either
bug report or feature request. Regarding the accuracy of automatic app feature
extraction task, only three participants in case of user reviews expressed their
agreement, which clearly shows the weaknesses in the accuracy of this task. We
allow users to select “app description” as an alternative source for extracting app
features automatically, but only four participants have shown their agreement with
its accuracy. The developer of “prod-app” stated that many false app features were
extracted from review sentences related to feature request such as “add feature”,
“old version”, “wish option”. Other two interviewees complained about similar
problems when app features were automatically extracted from sentences of type
bug report and feature evaluation. Finally, seven participants agree, and three
remained neutral with the accuracy of sentiment analysis. Interviewees mentioned
cases in which review sentences with neutral sentiments were classified as positive
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sentiments.

Figure 17. Perceived accuracy of each indiviual functionality supported by the tool
REVSUM

6.6.3. Future Usage

Eight out of ten participants have shown their intent (two strongly agreed) to use
this tool in the future, and only the opinion of two participants were neutral (see
Figure 18). In terms of the functionality, seven participants showed their inten-
tions of using this tool for use cases: UC 1 and UC 3, and three particpants re-
mained neutral. For the use case UC 2, five participants have shown their will-
ingness to use it in the future, three remained neutral, and two expressed their
disagreement. The developers of apps “travel-app#1” and “prod-app” have shown
their intention of using the tool because they see the manual investigation of this
information from user reviews a cumbersome job. Despite some inaccuracies of
the tool, they see the tool useful in finding out relevant information from reviews
of his app and its competitive apps. The developer of “edu-app” stated that there
is no real advantage to use the tool unless a notification mechanism is supported
that informs software development teams about the changes in users’ sentiment
towards app features.

In answer to our research question RQ3, we conclude that when using our tool
seven out of ten app developers have found the use cases: UC 1 (i.e., view user’
sentiments towards app features) and UC 3 (i.e., find users’ requested features)
useful for improving the quality of their apps. While half of the developers (five
out of ten developers) consider the use case UC 2 (i.e., find buggy features) sup-
portive for software development activities.
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Figure 18. Self-predicted future ussage of the tool REVSUM

The main finding of Chapter 6 is:
• App developers have found the use cases: UC 1 (i.e., view user’ sen-

timents towards app features) and UC 3 (i.e., find users’ requested
features) of our tool useful for improving the quality of their apps.

6.7. Discussion

The usefulness of the REVSUM approach mainly depends on the accuracy of three
components: (a) the classification model that automatically categorizes review
sentences, (b) the approach used for extracting app features automatically from
review sentences and (c) the sentiment analysis tool that predicts the sentiment
of review sentences. Therefore, the following paragraphs discuss the accuracy of
each component in detail.

Since the reviews of any app can be input to our tool for analysis, the model
used for review sentence classification needs to be app agnostic. The model we
use for our tool is trained and validated on the labeled review sentences of all apps
in the [18] dataset. We performed the internal evaluation of the review classifi-
cation model in Chapter 4 of the thesis. Our results had shown that the model
used can categorize the review sentences of types feature evaluation, bug report,
and feature request with a precision of 75.4%, 67.1%, 63.4% and recall of 68.1%,
68.9%, 71.0%, respectively. During the evaluation of the tool’s usefulness for
developers, we seek their feedback regarding the accuracy of the review classifi-
cation model. Based on the results in Section 6.6, seven out of ten app developers
expressed thier satisfaction about its accuracy. The participants of our evaluation
study reported many false positives (FPs) in review sentences classified as bug
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report. This observation is consistant with the results of our manual analysis per-
formed on model predictions in Chapter 4. In the labeled data used for model
building, we found many review sentences manually classified as bug report but
there was no feature mentioned in that review sentence. We believe, there is a
room in improving the model accuracy if annotators are instructed to classify re-
view sentence as bug report only when the app feature is mentioned in that review
sentence. The model often predicted a review sentence evaluating an app feature
negatively as bug report. If the model uses the context information from previous
and next sentences of the source sentence, this might help the model in predicting
the correct class of a review sentence.

We use the rule-based approach SAFE for extracting app features automat-
ically from user reviews. Our evaluation of SAFE approach in Chapter 5 has
shown an average precision of 40.9% and recall of 35.3% on different app review
datasets, which objectively is quite low. However, compared to SAFE, the perfor-
mance of supervised machine-learning methods such as CRF, which need labeled
data for training, were not very encouraging either when used for app feature
extraction from app reviews in the same chapter. Therefore, we opted for SAFE
approach, mostly because of its simplicity. To improve its precision, we allow tool
users to filter SAFE extracted app features by frequency threshold. For instance,
by setting the threshold to a higher frequency will show only those app features
that are mentioned frequently in user reviews and thus reduces the number of FPs.
The review classification step which is applied before app feature extraction filters
out irrelevant review sentences and that also helps to reduce the number of FPs
extracted by the SAFE method. Despite these steps for improving precision at the
cost of a lower recall, app developers reported weaknesses in the automatic feature
extraction approach during the evaluation of the tool. Though we used stemming
for merging some features, developers observed cases in which extracted feature
words were semantically similar, but they were not clustered together and instead
presented as a distinct app feature. Since extracting app features automatically
from app description using SAFE achieved better precision at the cost of a recall,
the tool offers an option to extract app features from app description instead of
user reviews. In this case, the tool user also has a choice to revise the extracted
list of app features by manually annotating them in the app description or by re-
moving the false app features extracted from the app description. In follow-up
interviews, we recognized that developers always preferred to extract features di-
rectly from users reviews instead of app description, and none of them used the
option to revise features extracted from app description through manual annota-
tion.

For predicting the sentiment scores of review sentences, we used the library
available in the Stanford CoreNLP tool that has a reported accuracy15 of 80%.
App reviews are outside its domain because the model is trained and evaluated on

15https://www.aclweb.org/anthology/D13-1170
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movie reviews. To improve the sentiment analysis accuracy on out-of-domain app
review data, following Gu et al. [18], we used the review ratings to adjust the pre-
dicted sentiment score when the score predicted by the CoreNLP fully contradicts
with the review rating score (see Section 6.2.4). To estimate our tool’s accu-
racy for the sentiment prediction task, two persons16 manually and independently
assigned sentiment labels (i.e., positive, negative, and neutral) to 100 randomly
selected review sentences. There were only four cases where the two annotators
assigned conflicting labels and these cases were resolved after discussion. Then,
the same review sentences were input to our tool for sentiment prediction. Using
human labels as ground truth, the estimated accuracy of the sentiment analysis
tool was 71%. We noticed that most of the 19% of the wrongly predicted cases
were because of the tool’s confusion between the neutral and positive classes.
Although sentiment prediction is a tremendously difficult task, seven out of ten
developers still expressed their satisfaction, and three remained neutral on its ac-
curacy during the evaluation of the tool’s usefulness. We believe, supplementing
the training data with app reviews would help the model to learn the vocabulary of
domain-specific emotional words such as freeze, halt, and hang, which can further
improve its accuracy.

6.8. Threats to Validity

The use cases presented in this paper were not proposed by app developers (ADs)
but by the authors attempting to put themselves into the shoes of ADs. Therefore,
the use cases presented in this paper may not represent the real viewpoint of ADs.
However, to mitigate this threat, we discussed these use cases with few ADs who
confirmed that these use cases make sense to them. Moreover, we currently design
a survey to more thoroughly study the usefulness of the tool for ADs.

We hypothesize that classifying review texts into five sentence types corre-
sponding to feature evaluation, bug report, feature request, praise and other and
filtering out sentences of type praise and other helps to get rid of irrelevant infor-
mation and thus improves the precision of app feature extraction with the SAFE
method. However, this assumption still needs to be confirmed.

In app marketplaces, users submit reviews against a specific app version. As
our review analysis do not take app version or release into consideration, there is
a chance that our tool extracts a bug that has already been fixed.

To find competing apps similar to the reference app, we rely on the Play Store
API not knowing the exact algorithm how this API finds the set of similar apps
and to what extent the results returned by the API are correct.

Before this, participants of our evaluation study didn’t analyze app reviews
for competitive analysis; this could be the reason for their positive evaluation of
our tool. The number of participants (N=10) is selected based on convenience

16One of them was the main author of this paper.
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sampling, and the sample size is also insufficient to draw definite conclusions.
Moreover, the selection of apps and their categories can also have an impact on
the evaluation results.

Our survey focused on evaluating the usefulness of the use cases supported
by the tool in terms of their functional accuracy. However, it did not evaluate
non-functional aspects of the tool such as learnability, usability, performance, etc.

6.9. Replication Package

The source code of the tool REVSUM developed in Node.js is available at
https://bitbucket.org/faizalishah/reviewanalysistool.
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7. CONCLUSION AND FUTURE WORK

For app developers, user reviews are an important information source to continu-
ously evaluate users’ needs and expectations to gain or maintain their competitive
advantage. In this thesis, we have explored different text analysis techniques for
finding information in user reviews that can facilitate various acitvities such as re-
lease planning, software maintenance and testing in mobile development release
cycle.

In the following sections, we summarize the main contributions and findings
and opportunities of future research.

7.1. Contributions and Findings

In this section, we summarize our contributions and findings in the areas of app
review classification, app feature extraction, and competitive analysis.

7.1.1. Review Classification Model

App reviews contain useful information, i.e., feature evaluation, bug report, and
feature request, that is valuable for the improvement of apps. Nowadays, the use
of machine learning for classifying review information becomes the prevailing
method. For software practitioners, there is a myriad of machine learning models
ranging from simple to complex, which makes it extremely difficult for them to
select a model that is appropriate for classifying app review information.

In this thesis, we compare the performance of text classification models us-
ing simple BoW features to the models using rich linguistic features or models
built on powerful deep learning architectures such as CNN. Our results indicate
that simple BoW models are very competitive and have the power to achieve re-
sults quite competitive to the models using rich linguistics features or those using
deep learning architecture. Since software practitioners do not have specialized
knowledge of linguistic tools or deep learning architectures, they can still rely on
traditional classification models using BoW features to find useful information in
user reviews. Finally, we performed a manual analysis of misclassification er-
rors, which reveals that using the context information from the previous or next
sentences of a user review could further improve the performance of review clas-
sification models.

7.1.2. App Feature Extraction

Extracting app features automatically from user reviews is an important step for
the extraction of app features from app reviews. Several techniques have been
proposed for extracting app features automatically from user reviews. These tech-
niques include (a) rule-based methods, (b) unsupervised topic modeling, and (c)
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supervised machine learning approaches. Previous studies in app feature extrac-
tion have used different review datasets, annotation guidelines, feature extraction
methods and/or evaluation methods, which makes the results of these different
studies uncomparable.

This thesis evaluated the app feature extraction performance of a recently pro-
posed rule-based approach SAFE and supervised learning method CRF on the
same review datasets. Our study has confirmed the superiority of the CRF model
for extracting features from the product review domain. Nonetheless, for the app
review domain, our results show that both feature extraction methods are comple-
mentary with regards to precision and recall. SAFE yields better recall over the
precision while the supervised CRF model obtains high precision at the cost of
a lower recall. In terms of f1-score, the performance of the CRF model is bet-
ter than the SAFE approach. Overall, both feature extraction methods have not
shown encouraging results for the app review domain.

Supervised ML methods rely on annotated data for extracting app features
from user reviews. Therefore, their performance is more affected by the guidelines
used for the annotation of app features in user reviews. In this direction, our thesis
performs the first study that investigates the impact of annotation guidelines on the
performance of the supervised feature extraction method by controlling the other
design parameters as much as possible. We used four different labeled datasets
annotated with two different AGs. For the app feature extraction technique, we
adopted the supervised CRF method and investigated the impact of annotation
guidelines and labeled datasets on extracting app features from user reviews. As
a result of our study, we proposed several changes to the existing AGs to avoid
the annotation of useless app features and evaluated the effect of their simulated
application using the evaluation results of the CRF modeling. When applying
the simulated guidelines, we were able to retain the precision of the app feature
extraction. However, as after simulation the annotated features in both training
and test sets are more informative and less noisy, the modeling result now better
reflects the real app feature extraction performance.

The other aspect our thesis examined is how the size and scope of the train-
ing data affect the performance of app feature extraction. For this, we experi-
mented with several ways of using annotated data, exploring whether the training
set should include annotated app reviews from test app categories or if the linguis-
tic patterns indicating app features are general enough so that the model trained on
the reviews of one set of app categories can then be applied to successfully extract
app features from new app categories. We found that in general, it is not necessary
to have annotated training data in the test app categories. However, having anno-
tated app reviews in the training set from the test app category enables to improve
the recall at the cost of the drop in precision. Additionally, we explored whether
utilizing additional training data in the form of annotated product reviews would
help to improve the performance of app feature extraction. We found that while
adding external training data helps to improve the recall, it causes a substantial
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drop in precision.

7.1.3. Competitive Analysis

We develop a review analysis tool REVSUM in which we combined review clas-
sification and automatic feature extraction methods evaluated in the previous two
contributions. The tool can help developers in comparing competing apps at the
level of app features. Based on our results in this thesis, both app feature extrac-
tion methods do not perform well for extracting app features from the app review
domain. We adopted SAFE approach for automatic app feature extraction be-
cause of its simplicity. To reduce the number of false features extracted through
SAFE, our tool for competitive analysis discards irrelevant information from user
reviews and extracts app features from only relevant sentences. Additionally, our
tool offers the following three options to its users to extract more reliable app
features from user reviews.

1. Filter app features by number of mentions in user reviews (i.e., frequency)
2. Choose the app description as an alternate source for extracting app features

because the written text is formal and explicitly mentions the app features
supported by the app.

3. Revise the app features extracted from the app description via manual an-
notation.

Figure 19. Mobile development release cycle after the integration of our review analysis
tool REVSUM (inspired by [60])

Figure 19 shows how our tool REVSUM (i.e. Step 7) and its generated com-
petitive analysis summaries (shown in pink) can be integrated into mobile devel-
opment release cycle presented in Chapter 2. Our tool REVSUM supports three
main use cases: UC 1 - View users’ sentiments towards app features, UC 2 - View
which app features were mentioned in bug related reviews, and UC 3 - View
which new app features were requested by users. All the information extracted
through three use cases of REVSUM (shown as a blue line) can be useful for
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various tasks performed during the release planning. For instance, the summary
of users’ sentiments about app features (i.e., UC 1) can help development teams in
deciding which features to improve for the next release. Moreover, the provision
of information related to newly requested features (i.e., UC 2) and buggy features
(i.e., UC 3) can aid development teams in the tasks of feature prioritization and
test planning (i.e., Step 1). As shown in Figure 19, the summary information
extracted through UC 2 and UC 3 can be fed into maintenance activities to help
developers (shown as a green line) in minor bug fixing and enhancements. Fi-
nally, the information extracted through UC 3 can be given to testers (shown as a
purple line) for enhancing their test suite during the testing activities. In the pre-
liminary evaluation of our tool REVSUM, developers have found the tool useful
for extracting information that is relevant for software maintenance and release
planning activities.

7.2. Opportunities for Future Work

This work opens up multiple opportunties for future resarch, which we outline
below.

7.2.1. Incorporating Context Information to Improve Sentence Level
Classification of App Reviews

From the manual analysis of annotated reviews and classification errors, we gather
that classifying review sentences in the context of the rest of the reviews could
help to improve the performance of the review classifier. Since Gu’s dataset in-
cludes labeled review sentences without information about the full review text,
we could not perform experiments to validate this hypothesis. In the future, one
can confirm it by first creating a new review-level labeled dataset in which each
review sentence is assigned a label. Then, a classification model is trained that
utilizes the contextual information extracted from the previous and next review
sentences of a source sentence before predicting its label.

Such an experiment can be performed with either simple traditional ML mod-
els or deep learning models. In the case of a simple BoW model, extracting n-
grams from the previous and next review sentences of a source review sentence
can guide the BoW model in deciding the correct class of the sentence. For deep
learning models, recent studies [10, 42] have already utilized the context informa-
tion successfully using the attention mechanisms in which the model is allowed to
focus to contextual information (i.e., previous and next sentences) of the source
sentence before generating a prediction. For instance, Yang et al. [87] improved
the performance for automatic classification of reviews (i.e., Yelp, IMDB and
Amazon) with neural networks by utilizing the word level and sentence level con-
text information.
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7.2.2. Incorporating Functional Aspects in AGs

Our study investigates the impact of AGs on the performance and usefulness of
supervised ML method for app feature extraction. For that, we performed simu-
lation of the new AGs on the labeled review datasets which resulted in removing
a number of app features rather than reformulating them according to the new
guidelines. We believe that the real application of the new AGs by human anno-
tators would have produced a set of app features that are useful and refer to the
functional aspects of an app. However, this hypothesis is yet to be confirmed by
evaluating the proposed AGs by giving them to real human annotators for labeling
app features in user reviews.

7.2.3. Jointly Model the SubTasks of Feature Level Sentiment
Analysis

Traditionally, the task of feature-level sentiment analysis is broken into two sub-
tasks, namely, app feature extraction and its sentiment classification. For our
competitive analysis tool REVSUM, we perform an additional subtask of review
sentence classification before performing these two subtasks. A labeled review
dataset in which all information about each review sentence including its type
(i.e., bug report or feature request), app features and sentiments, is not available.
Thus, we adopted a pipeline solution and performed all three subtasks indepen-
dent from each other.

Nonetheless, recent studies have used supervised ML models to jointly trained
two sub-tasks (i.e., feature extraction and their sentiment classification) [71, 38,
7] and obtained encouraging results on product review domain. Since all three
subtasks which we performed for app feature-level sentiment analysis have strong
couplings, it would be an interesting direction to explore whether an integrated
model achieves better performance than a pipeline solution used in our thesis.

7.2.4. Analyzing User Feeback from Other Channels

The intention of writing a review is to update developers or other users about the
quality of an app. For this reason, this thesis has focused on analyzing app reviews
(shown as 6a in Figure 19) to aid software development activities. However, a sim-
ilar analysis can be extended to feedback received through other channels such as
twitter, discussion forums, and blogs (shown as 6b to 6d in Figure 19). In the
case of twitter, the feedback targeted to a particular app can be collected through
hashtags. Recently, two studies [21, 85] have applied automatic approaches to
twitter data for finding information related to software requirements and evolu-
tion activities. In these studies, the analysis is performed at a coarse-grained level
but there is still a need to perform this analysis at the level of app features. Differ-
ent from reviews and tweets, analyzing discussion forums and blogs for finding
developer-relevant information can be more challenging because the text in blogs
and forums is written with mix intentions and not available at one central place.
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Nonetheless, to have a holistic view of the users’ opinions about the quality of a
given software, current tools analyzing user reviews should consider integrating
the information from twitter and other channels.
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Appendix A. DETAILED RESULTS OF REVIEW
CLASSIFICATION MODELS

Table 36. The performance of BoW model with unigram features for 10 runs.

Iteration Feature Evaluation Praise Feature Request Bug Report Others Average (E+R+B) Overall average
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

1 76.3 64.3 69.8 83.7 86.2 84.9 73.6 56.5 63.9 69.2 56.3 62.1 78.9 86.1 82.3 73.1 59.0 65.3 76.3 69.9 72.6
2 76.4 63.6 69.4 82.5 85.0 83.7 67.4 59.0 62.9 70.0 55.4 61.8 77.7 84.3 80.9 71.3 59.3 64.7 74.8 69.5 71.7
3 78.1 63.8 70.2 82.6 85.7 84.1 73.9 61.5 67.1 75.6 58.1 65.7 78.9 86.7 82.6 75.8 61.1 67.7 77.8 71.2 74.0
4 80.4 66.1 72.5 85.1 84.6 84.8 71.3 56.5 63.0 77.5 59.2 67.2 77.8 87.6 82.4 76.4 60.6 67.6 78.4 70.8 74.0
5 77.7 62.9 68.7 83.5 86.6 85.0 68.3 58.3 62.9 71.9 58.5 64.5 77.6 85.0 81.2 72.6 59.9 65.7 75.8 70.3 72.6
6 76.6 61.8 68.4 82.1 87.6 84.8 79.6 58.9 67.7 71.8 59.2 64.9 79.4 85.8 82.5 75.7 60.3 67.1 77.7 70.9 73.7
7 76.4 61.8 68.4 81.9 85.1 83.5 69.0 54.3 60.8 70.5 58.7 64.0 77.5 85.1 81.1 72.0 58.3 64.4 75.1 69.0 71.6
8 76.4 62.5 68.7 83.8 83.8 83.8 70.3 58.8 64.0 76.3 56.9 65.1 77.4 86.7 81.7 74.3 59.4 66.0 76.8 69.7 72.7
9 77.9 65.7 71.3 83.6 85.1 84.3 71.3 58.8 64.5 73.5 56.8 64.1 77.9 85.9 81.7 74.3 60.4 66.6 76.9 70.4 73.2
10 79.0 62.0 69.4 82.1 87.7 84.8 67.3 55.4 60.7 73.8 55.0 63.0 78.8 86.3 82.4 73.3 57.4 64.4 76.2 69.3 72.1

Average 77.4 63.6 69.8 83.1 85.7 84.4 71.2 57.8 63.8 73.0 57.4 64.2 78.2 85.9 81.9 73.9 59.6 65.9 76.6 70.1 72.8
Std.Dev 1.4 1.5 1.3 1.0 1.3 0.6 3.8 2.1 2.3 2.8 1.6 1.6 0.7 0.9 0.6 1.7 1.1 1.3 1.2 0.7 0.9

Table 37. The performance of BoW model with 1 to 3 word n-gram features for 10 runs.

Iteration Feature Evaluation Praise Feature Request Bug Report Others Average (E+R+B) Overall average
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

1 74.0 68.7 71.2 82.1 88.2 85.1 65.6 69.6 67.6 66.3 72.4 69.2 83.5 80.5 82.0 68.6 70.2 69.3 74.3 75.9 75.0
2 76.5 69.1 72.6 81.8 88.4 84.9 64.5 77.0 70.2 70.5 65.6 67.9 82.5 80.3 81.4 70.5 70.6 70.2 75.1 76.1 75.4
3 77.0 68.6 72.5 82.6 88.6 85.5 63.9 72.3 67.8 67.6 70.7 69.1 83.0 80.9 81.9 69.5 70.5 69.8 74.8 76.2 75.4
4 74.0 66.3 69.9 82.3 89.5 85.8 64.4 68.6 66.4 72.3 69.7 71.0 82.8 81.6 82.2 70.2 68.2 69.1 75.2 75.1 75.1
5 76.3 71.0 73.5 81.0 87.2 84.0 60.7 70.6 65.3 65.9 67.3 66.6 83.2 80.1 81.6 67.6 69.6 68.5 73.4 75.2 74.2
6 76.1 69.1 72.4 82.1 85.3 83.7 60.8 69.9 65.0 66.9 66.3 66.6 81.6 81.1 81.3 67.9 68.4 68.0 73.5 74.4 73.8
7 75.6 68.2 71.7 81.9 89.2 85.4 64.3 72.5 68.1 65.3 69.6 67.3 83.5 80.3 81.9 68.4 70.1 69.1 74.1 76.0 74.9
8 74.1 64.8 69.2 80.4 88.2 84.1 64.4 69.7 67.0 64.5 68.4 66.4 82.2 80.2 81.2 67.7 67.6 67.5 73.1 74.3 73.6
9 76.7 66.9 71.5 81.8 87.6 84.6 62.0 71.1 66.2 66.8 71.3 69.0 82.6 81.1 81.9 68.5 69.8 68.9 74.0 75.6 74.6
10 74.2 68.1 71.0 82.6 87.8 85.2 64.0 68.8 66.3 64.9 67.3 66.1 81.9 80.3 81.1 67.7 68.1 67.8 73.5 74.5 73.9

Average 75.4 68.1 71.6 81.9 88.0 84.8 63.4 71.0 67.0 67.1 68.9 67.9 82.7 80.7 81.6 68.7 69.3 68.8 74.1 75.3 74.6
Std.Dev 1.2 1.7 1.3 0.7 1.2 0.7 1.7 2.5 1.5 2.5 2.3 1.6 0.6 0.5 0.4 1.1 1.1 0.9 0.7 0.7 0.7

Table 38. The performance of BoW model with 2 to 4 char n-gram and linguistic features
for 10 runs.

Iteration Feature Evaluation Praise Feature Request Bug Report Others Average (E+R+B) Overall average
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

1 77.7 69.8 73.6 84.7 86.5 85.6 77.7 58.8 66.9 81.7 62.5 70.8 80.6 87.5 83.9 79.0 63.7 70.4 80.5 73.0 76.2
2 77.5 69.2 73.1 85.3 87.1 86.2 74.9 59.4 66.2 75.3 57.8 65.4 79.9 86.9 83.3 75.9 62.1 68.3 78.6 72.1 74.8
3 75.5 68.0 71.5 84.9 88.2 86.5 77.9 59.9 67.7 76.9 61.5 68.4 80.4 86.2 83.2 76.8 63.1 69.2 79.1 72.7 75.5
4 77.8 66.9 71.9 85.9 87.4 86.6 69.8 61.7 65.5 75.3 61.0 67.4 80.0 86.6 83.2 74.3 63.2 68.3 77.8 72.7 74.9
5 76.4 67.5 71.7 85.5 86.6 86.1 73.4 55.8 63.4 76.7 59.8 67.2 79.0 86.5 82.6 75.5 61.1 67.5 78.2 71.3 74.2
6 76.3 68.8 72.4 85.8 85.9 85.9 77.4 61.4 68.5 76.4 59.0 66.6 79.6 87.4 83.3 76.7 63.1 69.1 79.1 72.5 75.3
7 76.3 67.9 71.9 86.3 87.4 86.8 70.2 55.9 62.3 73.9 61.9 67.4 80.4 86.8 83.5 73.5 61.9 67.2 77.4 72.0 74.4
8 77.7 67.2 72.1 86.0 86.9 86.5 71.5 62.7 66.8 76.1 56.1 64.6 79.1 86.9 82.8 75.1 62.0 67.9 78.1 72.0 74.6
9 78.6 68.8 73.4 87.0 86.8 86.9 72.0 59.2 65.0 73.8 64.9 69.0 79.9 87.0 83.3 74.8 64.3 69.1 78.3 73.4 75.5
10 76.3 70.3 73.2 86.9 88.1 87.5 74.1 55.7 63.6 74.4 62.5 68.0 81.6 87.6 84.5 75.0 62.9 68.3 78.7 72.9 75.4

Average 77.0 68.5 72.5 85.8 87.1 86.5 73.9 59.1 65.6 76.1 60.7 67.5 80.0 86.9 83.3 75.7 62.7 68.5 78.6 72.5 75.1
Std.Dev 1.0 1.1 0.8 0.7 0.7 0.5 3.1 2.5 2.0 2.3 2.6 1.8 0.8 0.5 0.5 1.6 1.0 1.0 0.9 0.6 0.6

Table 39. The performance of CNN model with randomly initialized embeddings for 10
runs.

Iteration Feature Evaluation Praise Feature Request Bug Report Others Average (E+R+B) Overall average
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

1 70.8 64.1 67.3 77.6 84.3 80.8 74.1 54.9 63.1 75.0 60.7 67.1 84.9 86.1 85.4 73.3 59.9 65.8 76.5 70.0 72.7
2 72.1 65.0 68.4 76.5 86.1 81.0 77.3 46.8 58.3 69.6 54.7 61.3 85.6 84.3 85.0 73.0 55.5 62.7 76.2 67.4 70.8
3 78.0 59.6 67.5 75.3 88.8 81.5 77.2 49.3 60.2 77.9 54.3 64.0 86.3 85.2 85.7 77.7 54.4 63.9 78.9 67.4 71.8
4 77.4 59.5 67.3 75.5 87.2 81.0 75.0 52.3 61.6 77.6 54.0 63.6 83.9 86.2 85.0 76.7 55.3 64.2 77.9 67.8 71.7
5 75.7 63.6 69.1 78.4 84.0 81.1 67.2 57.3 61.9 65.3 63.6 64.4 84.8 86.5 85.6 69.4 61.5 65.1 74.3 71.0 72.4
6 74.6 62.2 67.9 77.4 85.7 81.3 74.0 54.5 62.8 69.2 60.6 64.6 86.2 86.4 86.3 72.6 59.1 65.1 76.3 69.9 72.6
7 73.7 64.0 68.5 77.9 85.5 81.5 74.6 56.6 64.4 71.6 56.7 63.3 85.7 87.2 86.4 73.3 59.1 65.4 76.7 70.0 72.8
8 72.0 63.8 67.7 75.3 86.9 80.7 75.8 45.6 56.9 77.8 58.5 66.8 86.3 82.0 84.1 75.2 56.0 63.8 77.4 67.4 71.2
9 72.9 62.1 67.1 76.8 85.9 81.1 71.5 56.0 62.8 76.6 56.5 65.1 84.2 84.4 84.3 73.7 58.2 65.0 76.4 69.0 72.1
10 72.1 61.8 66.5 76.6 85.4 80.8 75.2 54.0 62.8 68.9 58.1 63.0 85.1 84.4 84.7 72.1 58.0 64.1 75.6 68.7 71.6

Average 73.9 62.6 67.7 76.7 86.0 81.1 74.2 52.7 61.5 73.0 57.8 64.3 85.3 85.3 85.3 73.7 57.7 64.5 76.6 68.9 72.0
Std.Dev 2.4 1.9 0.8 1.1 1.4 0.3 3.0 4.1 2.3 4.6 3.2 1.7 0.9 1.5 0.8 2.4 2.3 0.9 1.3 1.3 0.7

128



Table 40. The performance of CNN model with static embeddings for 10 runs.

Iteration Feature Evaluation Praise Feature Request Bug Report Others Average (E+R+B) Overall average
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

1 74.7 71.6 73.1 81.1 83.6 82.3 69.2 59.4 63.9 76.0 65.5 70.3 84.8 88.1 86.4 73.3 65.5 69.1 77.2 73.6 75.2
2 76.4 71.5 73.8 79.4 86.7 82.9 72.9 60.5 66.1 77.8 60.0 67.8 87.0 84.6 85.8 75.7 64.0 69.2 78.7 72.7 75.3
3 76.4 68.3 72.2 79.7 86.6 83.0 77.3 61.3 68.4 75.0 65.2 69.7 85.6 85.2 85.4 76.2 64.9 70.1 78.8 73.3 75.7
4 78.9 69.6 74.0 82.1 85.4 83.8 83.1 60.4 70.0 69.2 66.7 68.0 82.9 89.2 86.0 77.1 65.6 70.7 79.2 74.3 76.4
5 77.4 70.9 74.0 81.3 85.4 83.3 72.6 62.3 67.0 74.4 64.8 69.3 84.4 87.1 85.7 74.8 66.0 70.1 78.0 74.1 75.9
6 78.5 70.7 74.4 81.8 86.7 84.2 79.2 62.9 70.0 77.9 68.0 72.6 85.0 88.0 86.5 78.5 67.2 72.4 80.5 75.3 77.6
7 80.9 68.5 74.2 78.0 88.1 82.8 79.6 58.1 67.2 73.5 70.9 72.2 86.9 82.0 84.4 78.0 65.8 71.2 79.8 73.5 76.2
8 80.5 69.3 74.5 77.6 86.6 81.9 71.6 58.0 64.1 77.6 55.7 64.8 85.1 85.4 85.2 76.6 61.0 67.8 78.5 71.0 74.1
9 80.5 67.8 73.6 79.2 86.1 82.5 77.0 57.3 65.7 68.6 63.0 65.7 82.6 86.3 84.9 75.4 62.7 68.3 77.8 72.1 74.5
10 77.4 66.3 71.6 80.7 83.4 82.0 66.1 66.9 66.5 73.2 65.3 69.0 83.0 87.7 85.3 72.2 66.2 69.0 76.1 73.9 74.9

Average 78.2 69.5 73.5 80.1 85.9 82.9 74.9 60.7 66.9 74.3 64.5 68.9 84.8 86.4 85.6 75.8 64.9 69.8 78.5 73.4 75.6
Std.Dev 2.1 1.7 1.0 1.6 1.5 0.7 5.3 2.9 2.2 3.3 4.2 2.5 1.4 2.1 0.7 2.0 1.8 1.4 1.3 1.2 1.0

Table 41. The performance of CNN model with non-static embeddings for 10 runs.

Iteration Feature Evaluation Praise Feature Request Bug Report Others Average (E+R+B) Overall average
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

1 79.8 70.5 74.9 79.0 88.8 83.6 78.7 56.9 66.0 75.1 61.5 67.6 87.6 83.9 85.7 77.9 63.0 69.5 80.0 72.3 75.6
2 69.7 73.9 71.8 81.5 80.4 81.0 68.5 72.3 70.3 73.4 60.5 66.3 83.9 85.2 84.5 70.5 68.9 69.5 75.4 74.5 74.8
3 75.8 70.0 72.8 80.8 84.0 82.4 74.2 63.4 68.4 73.4 52.0 60.8 82.7 89.5 86.0 74.5 61.8 67.3 77.4 71.8 74.1
4 78.9 68.3 73.2 80.4 85.1 82.7 75.0 60.5 67.0 73.0 68.4 70.6 83.5 86.9 85.2 75.6 65.7 70.3 78.1 73.8 75.7
5 79.1 69.8 74.2 80.6 86.0 83.2 73.1 66.2 69.5 77.2 66.1 71.2 85.3 86.7 86.0 76.5 67.4 71.6 79.1 75.0 76.8
6 78.0 70.1 73.9 81.6 83.0 82.3 72.8 64.0 68.1 73.5 57.5 64.5 80.4 89.3 84.6 74.8 63.9 68.8 77.3 72.8 74.7
7 74.2 73.7 73.9 82.3 82.1 82.2 74.9 66.5 70.4 68.5 73.2 70.8 84.9 86.5 85.7 72.6 71.1 71.7 77.0 76.4 76.6
8 78.6 70.0 74.0 81.0 84.2 82.6 71.1 62.1 66.3 70.1 62.3 66.0 83.8 88.3 86.0 73.3 64.8 68.8 76.9 73.4 75.0
9 74.3 69.1 71.6 80.8 82.4 81.6 72.2 61.9 66.7 66.0 64.9 65.4 82.9 86.9 84.8 70.8 65.3 67.9 75.2 73.0 74.0
10 73.9 74.5 74.2 81.3 84.1 82.7 77.8 62.5 69.3 73.7 60.8 66.7 84.9 86.7 85.8 75.1 65.9 70.1 78.3 73.7 75.3

Average 76.2 71.0 73.5 80.9 84.0 82.4 73.8 63.6 68.2 72.4 62.7 67.0 84.0 87.0 85.4 74.2 65.8 69.5 77.5 73.7 75.3
Std.Dev 3.2 2.2 1.1 0.9 2.3 0.7 3.0 4.1 1.6 3.3 5.9 3.2 1.9 1.7 0.6 2.4 2.8 1.4 1.5 1.4 1.0
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Appendix B. DETAILED RESULTS OF SAFE AND
CRF PERFORMANCES FOR EXTRACTING APP

FEATURES FROM USER REVIEWS

App Category Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Game 22.5 49.7 30.9 21.5 56.0 31.1 24.1 53.4 26.1
Productivity 17.4 38.6 24.0 19.4 43.8 26.9 19.0 42.0 26.1
Travel 20.0 39.6 26.6 21.0 42.3 28.1 22.9 45.4 30.4
Photography 25.2 35.9 29.6 25.5 37.9 30.5 27.9 39.7 32.8
Social 15.7 23.3 18.8 17.6 28.6 21.8 19.6 29.1 23.4
Communication 24.2 29.4 26.5 24.2 29.4 26.5 24.2 29.4 26.5
Average 20.8 36.1 26.1 21.5 39.7 27.5 23.0 39.8 28.7

Table 42. Evaluation of SAFE extracted features on all 2-4 word app features in GUZMAN
review dataset at the level of app category.

App Category Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Game 27.0 31.1 28.9 27.5 39.2 32.3 37.4 43.1 40.0
Productivity 21.5 24.9 23.1 25.2 34.3 29.0 31.6 36.7 34.0
Travel 27.3 28.1 27.7 28.9 36.5 32.2 39.1 40.2 39.6
Photography 46.8 30.1 36.6 41.8 34.7 38.0 61.3 39.3 47.9
Social 26.8 18.3 21.8 31.1 28.6 29.8 39.2 26.8 31.8
Communication 37.1 18.4 24.6 41.9 24.8 31.1 48.4 24.0 32.1
Average 31.1 25.2 27.1 32.7 33.0 32.1 42.8 35.0 37.6

Table 43. Evaluation of SAFE extracted features on all features in GUZMAN review
dataset at the level of app category.

App Category Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Game 55.6 59.5 57.5 48.6 58.1 52.9 60.0 64.3 62.1
Productivity 31.5 47.5 37.9 30.0 48.9 37.1 34.1 51.5 41.0
Travel 33.9 52.1 41.1 33.0 50.7 40.0 35.7 54.8 43.2
Photography 30.4 45.2 36.4 30.4 46.7 36.8 32.6 48.4 39.0
Social 29.2 53.8 37.8 28.6 58.8 38.5 30.6 56.4 39.6
Communication 15.2 22.7 18.2 21.2 31.8 25.5 27.3 40.9 32.7
Average 32.6 46.8 38.2 32.0 49.2 38.5 36.7 52.7 42.9

Table 44. Evaluation of SAFE extracted features on all 2-4 word app features in SHAH-I
review dataset at the level of app category.
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App Category Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Game 55.6 49.0 52.1 51.4 50.0 50.7 60.0 52.9 56.2
Productivity 36.4 29.9 32.8 39.7 39.9 39.8 51.3 42.1 46.3
Travel 38.4 29.5 33.3 38.7 36.0 37.3 50.0 38.4 43.4
Photography 43.5 34.5 38.5 43.5 39.2 41.2 50.0 39.7 44.2
Social 37.5 24.8 29.8 37.1 36.1 36.6 54.2 35.8 43.1
Communication 18.2 15.4 16.7 24.2 23.5 23.9 36.4 30.8 33.3
Average 38.3 30.5 33.9 39.1 37.5 38.3 50.3 39.9 44.4

Table 45. Evaluation of SAFE extracted features on all features in SHAH-I review dataset
at the level of app category.

App Category Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Game 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Productivity 26.0 40.7 31.7 23.0 41.2 29.5 29.1 45.7 35.6
Travel 23.3 55.6 32.8 26.6 58.0 36.5 24.0 57.4 33.9
Photography 18.0 42.6 25.3 16.7 44.4 24.2 19.8 46.8 27.8
Social 21.2 50.0 29.8 19.2 51.7 28.0 23.7 55.9 33.3
Communication 8.6 18.8 11.8 8.6 18.8 11.8 11.4 25.0 15.7
Average 16.2 34.6 21.9 15.7 35.7 21.7 18.0 38.5 24.4

Table 46. Evaluation of SAFE extracted features on all 2-4 word app features in SHAH-II
review dataset at the level of app category.

App Category Partial Match (Token) Partial Match (Type) Subset Match (Token)

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Game 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Productivity 29.9 26.2 27.9 29.5 33.3 31.3 40.2 35.2 37.5
Travel 29.5 28.4 28.9 32.1 41.2 36.1 37.2 35.8 36.5
Photography 26.1 40.8 31.9 25.0 45.2 32.2 30.6 47.9 37.4
Social 32.5 27.1 29.5 29.5 36.5 32.6 47.5 39.6 43.2
Communication 17.1 20.0 18.5 17.1 20.7 18.8 22.9 26.7 24.6
Average 22.5 23.8 22.8 22.2 29.5 25.2 29.7 30.9 29.9

Table 47. Evaluation of SAFE extracted features on all features in SHAH-II review
dataset at the level of app category.
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Appendix C. DETAILED RESULTS OF CRF
PERFORMANCE FOR EXTRACTING APP

FEATURES FROM USER REVIEWS

App Category Partial Match (Token) Partial Match (Type)

Precision Recall F1-Score Precision Recall F1-Score
Game 57.0 29.0 38.0 70.0 32.0 44.0
Productivity 43.0 21.0 28.0 56.0 29.0 38.0
Travel 54.0 28.0 37.0 65.0 33.0 44.0
Photography 60.0 28.0 38.0 61.0 26.0 37.0
Social 43.0 15.0 22.0 68.0 23.0 34.0
Communication 53.0 14.0 22.0 55.0 15.0 24.0
Average 52.0 22.0 31.0 62.0 26.0 37.0

Table 48. Evaluation of CRF extracted features on all features in GUZMAN review
dataset at the level of app category.

App Category Partial Match (Token) Partial Match (Type)

Precision Recall F1-Score Precision Recall F1-Score
Game 87.0 46.0 60.0 88.0 41.0 56.0
Productivity 54.0 32.0 41.0 59.0 37.0 45.0
Travel 55.0 28.0 37.0 56.0 30.0 39.0
Photography 68.0 28.0 40.0 68.0 28.0 40.0
Social 65.0 29.0 40.0 74.0 36.0 49.0
Communication 45.0 18.0 26.0 55.0 20.0 29.0
Average 62.0 30.0 41.0 67.0 32.0 43.0

Table 49. Evaluation of CRF extracted features on all features in SHAH-I review dataset
at the level of app category.

App Category Partial Match (Token) Partial Match (Type)

Precision Recall F1-Score Precision Recall F1-Score
Game 0.0 0.0 0.0 0.0 0.0 0.0
Productivity 67.0 34.0 45.0 71.0 39.0 50.0
Travel 72.0 39.0 51.0 77.0 40.0 53.0
Photography 93.0 41.0 57.0 95.0 48.0 64.0
Social 61.0 24.0 34.0 63.0 27.0 38.0
Communication 0.0 0.0 0.0 0.0 0.0 0.0
Average 49.0 23.0 31.0 51.0 26.0 34.0

Table 50. Evaluation of CRF extracted features on all features in SHAH-II review dataset
at the level of app category.

132



Appendix D. DETAILED RESULTS OF CRF MODEL
PERFORMANCE ON REVIEW DATASETS FOR

EXTRACTING APP FEATURES USING TRAINING
PROCEDURE CCV

App Exact Tokens Partial Tokens Exact Types Partial Types
Category Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) Pre-processing:

Game 46.8 8.8 14.8 64.5 12.1 20.4 54.1 8.9 15.3 79.2 18.8 30.3
Productivity 29.2 16.3 20.9 40.2 22.5 28.9 40.3 20.2 26.9 69.4 40.0 50.7
Travel 49.6 13.5 21.2 61.1 16.6 26.1 57.7 15.7 24.7 78.7 25.8 38.8
Photography 36.1 13.8 19.9 52.5 20.0 29.0 37.8 16.2 22.7 59.1 24.8 34.9
Social 51.0 12.6 20.2 58.8 14.5 23.3 60.0 14.1 22.8 78.6 22.1 34.6
Communication 24.6 12.4 16.5 40.4 20.4 27.1 23.1 12.5 16.2 48.1 26.0 33.8
Average 39.5 12.9 18.9 52.9 17.7 25.8 45.5 14.6 21.4 68.9 26.2 37.2

b) Simulation I:

Game 48.3 8.5 14.4 67.2 11.8 20.1 51.4 8.0 13.9 76.6 16.1 26.6
Productivity 29.2 15.8 20.5 40.9 22.1 28.7 40.8 19.9 26.8 70.2 39.5 50.6
Travel 50.0 13.6 21.4 60.7 16.5 26.0 57.1 15.4 24.3 78.3 25.3 38.2
Photography 33.9 12.5 18.3 50.8 18.8 27.4 34.1 14.3 20.1 55.8 22.9 32.4
Social 51.0 12.6 20.2 58.8 14.5 23.3 60.0 14.1 22.8 78.6 22.1 34.6
Communication 25.0 12.7 16.9 41.1 20.9 27.7 23.5 12.6 16.4 49.0 26.3 34.2
Average 39.6 12.6 18.6 53.3 17.4 25.5 44.5 14.0 20.7 68.1 25.4 36.1

c) Simulation II:

Game 53.7 9.6 16.3 64.8 11.6 19.7 53.1 8.2 14.2 79.5 15.0 25.2
Productivity 26.1 19.3 22.2 35.6 26.4 30.3 31.7 22.3 26.2 59.0 42.8 49.6
Travel 42.0 8.3 13.9 55.1 10.9 18.2 44.3 10.8 17.3 72.9 24.7 36.9
Photography 31.2 8.8 13.7 37.5 10.5 16.4 37.0 11.6 17.7 51.9 16.3 24.8
Social 43.2 10.7 17.1 56.8 14.0 22.5 51.9 11.6 18.9 74.2 19.0 30.3
Communication 41.7 13.0 19.8 41.7 13.0 19.8 41.7 13.3 20.2 61.5 21.3 31.7
Average 39.6 11.6 17.2 48.6 14.4 21.1 43.3 13.0 19.1 66.5 23.2 33.1

d) Simulation III-3:

Game 46.0 11.4 18.3 66.7 16.5 26.5 62.9 14.3 23.3 92.6 32.5 48.1
Productivity 26.5 19.0 22.1 38.8 27.8 32.4 37.8 24.5 29.7 78.0 55.1 64.6
Travel 53.5 8.0 13.9 60.5 9.0 15.7 61.1 11.5 19.4 88.5 28.3 42.9
Photography 26.5 9.3 13.7 41.2 14.4 21.4 38.5 14.5 21.1 68.0 24.6 36.2
Social 43.6 14.3 21.5 59.0 19.3 29.1 50.0 15.6 23.7 75.0 23.3 35.6
Communication 37.5 11.3 17.4 43.8 13.2 20.3 37.5 11.8 17.9 47.1 15.7 23.5
Average 38.9 12.2 17.8 51.7 16.7 24.2 48.0 15.4 22.5 74.9 29.9 41.8

Table 51. Model performance on GUZMAN dataset after all processing steps.

133



App Exact Tokens Partial Tokens Exact Types Partial Types
Category Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) Pre-processing:

Game 70.5 20.0 31.2 80.8 22.9 35.7 71.0 26.5 38.6 88.2 36.1 51.3
Productivity 61.0 37.1 46.1 64.9 39.4 49.1 55.1 21.3 30.7 75.5 36.6 49.3
Travel 69.4 42.7 52.9 73.8 45.4 56.2 54.1 21.7 31.0 76.2 34.8 47.8
Photography 85.5 68.1 75.8 88.5 70.5 78.5 66.7 28.1 39.5 88.2 52.6 65.9
Social 86.5 61.2 71.7 88.1 62.3 73.0 58.8 32.3 41.7 72.2 41.9 53.1
Communication 79.8 61.5 69.5 89.4 68.9 77.8 55.0 35.5 43.1 80.0 51.6 62.7
Average 75.5 48.4 57.9 80.9 51.6 61.7 60.1 27.6 37.4 80.0 42.3 55.0

b) Simulation I:

Game 68.9 21.8 33.2 75.6 23.9 36.4 69.2 22.8 34.3 83.9 32.9 47.3
Productivity 36.9 15.7 22.0 42.3 18.0 25.3 42.2 18.2 25.5 62.8 30.7 41.3
Travel 50.0 9.6 16.1 61.5 11.9 19.9 57.9 12.8 21.0 77.3 19.8 31.5
Photography 62.5 7.0 12.7 62.5 7.0 12.7 71.4 9.4 16.7 85.7 22.6 35.8
Social 38.5 10.8 16.8 42.3 11.8 18.5 62.5 15.9 25.3 73.7 22.2 34.1
Communication 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3 6.9 11.4
Average 42.8 10.8 16.8 47.4 12.1 18.8 50.5 13.2 20.5 69.5 22.5 33.6

c) Simulation II:

Game 80.0 19.2 31.0 86.7 20.8 33.5 75.0 21.1 33.0 88.0 31.0 45.8
Productivity 46.5 15.4 23.2 50.7 16.8 25.3 48.1 14.9 22.8 67.7 25.3 36.8
Travel 57.9 10.2 17.3 63.2 11.1 18.9 57.1 9.5 16.3 81.2 15.5 26.0
Photography 71.4 8.2 14.7 71.4 8.2 14.7 71.4 10.4 18.2 92.9 27.1 41.9
Social 64.7 14.9 24.2 76.5 17.6 28.6 75.0 16.4 26.9 92.9 23.6 37.7
Communication 25.0 4.8 8.0 25.0 4.8 8.0 25.0 5.0 8.3 50.0 10.0 16.7
Average 57.6 12.1 19.7 62.2 13.2 21.5 58.6 12.9 20.9 78.8 22.1 34.1

d) Simulation III-3:

Game 83.3 16.8 28.0 91.7 18.5 30.8 78.6 16.4 27.2 95.0 28.4 43.7
Productivity 45.5 15.3 22.9 49.1 16.6 24.8 51.3 16.5 25.0 71.1 26.4 38.6
Travel 60.0 14.5 23.3 65.0 15.7 25.2 56.2 15.3 24.0 78.9 25.4 38.5
Photography 63.6 12.5 20.9 63.6 12.5 20.9 77.8 16.3 26.9 100.0 34.9 51.7
Social 45.5 15.9 23.5 54.5 19.0 28.2 64.3 20.5 31.0 80.0 27.3 40.7
Communication 33.3 5.9 10.0 33.3 5.9 10.0 33.3 6.2 10.5 66.7 12.5 21.1
Average 55.2 13.5 21.4 59.5 14.7 23.3 60.2 15.2 24.1 82.0 25.8 39.0

Table 52. Model performance on SHAH-I dataset after all processing steps.
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App Exact Tokens Partial Tokens Exact Types Partial Types
Category Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) Pre-processing:

Game 38.8 14.1 20.7 46.9 17.0 25.0 51.7 20.0 28.8 64.5 26.7 37.7
Productivity 31.9 11.4 16.7 38.0 13.5 20.0 43.0 14.4 21.6 71.2 26.5 38.6
Travel 40.9 10.9 17.2 47.7 12.7 20.1 46.7 12.7 20.0 63.9 20.9 31.5
Photography 33.3 9.0 14.1 33.3 9.0 14.1 50.0 7.5 13.1 62.5 9.4 16.4
Social 40.0 13.2 19.9 42.2 14.0 21.0 48.4 20.5 28.8 59.4 26.0 36.2
Communication 17.2 7.9 10.9 20.7 9.5 13.0 36.4 10.5 16.3 63.6 18.4 28.6
Average 33.7 11.1 16.6 38.1 12.6 18.9 46.0 14.3 21.4 64.2 21.3 31.5

b) Simulation I:

Game 48.7 19.6 27.9 56.4 22.7 32.4 50.0 15.3 23.4 66.7 22.2 33.3
Productivity 37.1 14.1 20.4 42.1 15.9 23.1 46.2 14.8 22.4 69.4 23.4 35.0
Travel 51.4 13.5 21.4 60.0 15.8 25.0 50.0 12.4 19.8 65.5 18.1 28.4
Photography 50.0 1.8 3.4 50.0 1.8 3.4 50.0 2.0 3.8 100.0 4.0 7.7
Social 44.4 19.2 26.8 46.7 20.2 28.2 46.9 21.1 29.1 57.6 26.8 36.5
Communication 37.5 7.5 12.5 37.5 7.5 12.5 50.0 8.6 14.6 50.0 8.6 14.6
Average 44.9 12.6 18.7 48.8 14.0 20.8 48.9 12.4 18.8 68.2 17.2 25.9

c) Simulation II:

Game 42.6 26.1 32.4 48.1 29.5 36.6 43.8 21.2 28.6 58.1 27.3 37.1
Productivity 44.0 14.8 22.2 48.0 16.2 24.2 49.3 13.7 21.5 70.3 20.4 31.6
Travel 46.9 13.2 20.5 56.2 15.8 24.7 44.4 12.1 19.0 58.6 17.2 26.6
Photography 33.3 2.4 4.4 33.3 2.4 4.4 33.3 2.6 4.8 66.7 5.1 9.5
Social 40.5 20.8 27.5 43.2 22.2 29.4 42.9 21.1 28.2 57.1 28.1 37.6
Communication 22.2 8.0 11.8 22.2 8.0 11.8 28.6 8.3 12.9 28.6 8.3 12.9
Average 38.2 14.2 19.8 41.8 15.7 21.9 40.4 13.2 19.2 56.6 17.7 25.9

d) Simulation III-3:

Game 45.2 22.6 30.2 54.8 27.4 36.5 44.0 17.7 25.3 70.8 27.4 39.5
Productivity 50.0 16.1 24.4 54.4 17.5 26.5 56.8 14.8 23.5 70.8 20.1 31.3
Travel 61.9 16.0 25.5 71.4 18.5 29.4 60.0 13.6 22.2 76.5 19.7 31.3
Photography 66.7 5.9 10.8 66.7 5.9 10.8 66.7 6.5 11.8 66.7 6.5 11.8
Social 52.6 17.5 26.3 57.9 19.3 28.9 69.2 21.4 32.7 73.3 26.2 38.6
Communication 25.0 5.3 8.7 25.0 5.3 8.7 50.0 11.1 18.2 50.0 11.1 18.2
Average 50.2 13.9 21.0 55.0 15.6 23.5 57.8 14.2 22.3 68.0 18.5 28.4

Table 53. Model performance on SHAH-II dataset after all processing steps.
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App Exact Tokens Partial Tokens Exact Types Partial Types
Category Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) Pre-processing:

Weather Apps 72.9 62.1 67.1 80.6 68.6 74.1 68.3 51.2 58.5 78.8 61.9 69.3
Sport News 69.2 50.3 58.2 76.7 55.8 64.6 56.8 27.8 37.3 73.5 40.0 51.8
Social Networks 71.8 56.0 62.9 77.6 60.6 68.0 61.9 47.3 53.6 72.7 58.2 64.6
Office Tools 66.7 45.2 53.9 73.0 49.5 59.0 61.3 36.8 46.0 75.3 46.4 57.4
News Apps 63.7 53.5 58.2 69.5 58.4 63.5 57.5 44.6 50.3 65.9 53.6 59.1
Navigation Apps 63.9 57.2 60.4 69.0 61.8 65.2 54.1 45.5 49.5 63.6 55.4 59.3
Music Players 69.6 41.8 52.3 72.0 43.3 54.1 61.4 33.3 43.2 71.6 45.7 55.8
Instant Messengers 68.9 49.0 57.3 81.1 57.7 67.5 64.4 32.2 43.0 81.5 48.9 61.1
Games 73.8 31.4 44.0 76.9 32.7 45.9 68.8 30.1 41.9 76.9 41.1 53.6
Fitness Tracker 81.1 52.9 64.1 86.1 56.1 68.0 74.0 34.9 47.4 81.8 42.5 55.9
Alarm Clocks 72.1 49.5 58.7 78.3 53.7 63.7 70.4 43.7 53.9 80.4 51.7 62.9
Average 70.3 49.9 57.9 76.4 54.4 63.1 63.5 38.9 47.7 74.7 49.6 59.2

b) Simulation I:

Weather Apps 54.1 38.5 44.9 63.5 45.2 52.8 61.5 41.0 49.2 72.2 50.0 59.1
Sport News 56.8 34.7 43.1 66.2 40.5 50.3 46.8 26.2 33.6 62.0 36.9 46.3
Social Networks 57.1 43.8 49.6 64.3 49.3 55.8 48.6 32.7 39.1 61.1 42.3 50.0
Office Tools 51.3 25.3 33.9 57.9 28.6 38.3 54.1 27.7 36.7 68.8 37.0 48.1
News Apps 55.0 32.0 40.4 60.0 34.9 44.1 57.4 36.4 44.6 66.2 45.8 54.1
Navigation Apps 57.4 40.3 47.4 62.8 44.0 51.8 53.7 38.3 44.7 65.3 50.0 56.6
Music Players 60.3 29.7 39.8 64.7 31.9 42.7 57.4 27.6 37.2 64.6 31.6 42.5
Instant Messengers 66.7 27.7 39.2 78.6 32.7 46.2 60.0 19.5 29.4 81.5 28.6 42.3
Games 69.7 23.7 35.4 69.7 23.7 35.4 86.4 27.1 41.3 88.9 34.3 49.5
Fitness Tracker 55.9 28.9 38.2 64.4 33.3 43.9 68.4 39.4 50.0 78.7 48.5 60.0
Alarm Clocks 63.5 35.7 45.7 66.7 37.5 48.0 75.0 37.5 50.0 81.0 42.5 55.7
Average 58.9 32.8 41.6 65.3 36.5 46.3 60.8 32.1 41.4 71.8 40.7 51.3

c) Simulation II:

Weather Apps 51.4 40.9 45.5 60.8 48.4 53.9 60.8 44.9 51.7 68.5 53.6 60.2
Sport News 60.8 34.1 43.7 66.7 37.4 47.9 55.2 24.2 33.7 66.7 33.3 44.4
Social Networks 63.9 46.9 54.1 66.7 49.0 56.5 64.0 43.2 51.6 72.0 48.6 58.1
Office Tools 50.0 26.2 34.3 57.4 30.0 39.4 54.5 28.6 37.5 70.2 38.1 49.4
News Apps 50.9 36.4 42.5 56.5 40.4 47.1 48.1 38.1 42.5 57.8 49.5 53.3
Navigation Apps 48.1 33.6 39.6 56.8 39.7 46.7 46.9 35.7 40.5 59.4 45.2 51.4
Music Players 50.0 23.6 32.1 55.8 26.4 35.8 48.8 25.3 33.3 59.1 31.3 40.9
Instant Messengers 46.9 23.1 30.9 56.2 27.7 37.1 39.1 17.0 23.7 60.0 28.3 38.5
Games 48.6 25.4 33.3 51.4 26.9 35.3 64.0 32.7 43.2 74.1 40.8 52.6
Fitness Tracker 52.4 23.4 32.4 59.5 26.6 36.8 63.4 32.5 43.0 72.7 40.0 51.6
Alarm Clocks 55.3 33.3 41.6 61.7 37.2 46.4 58.1 30.0 39.6 71.4 41.7 52.6
Average 52.6 31.5 39.1 59.0 35.4 43.9 54.8 32.0 40.0 66.5 40.9 50.3

d) Simulation III-3:

Weather Apps 52.8 42.2 46.9 61.1 48.9 54.3 62.5 45.5 52.6 68.6 53.0 59.8
Sport News 64.6 34.8 45.3 70.8 38.2 49.6 61.5 25.0 35.6 72.4 32.8 45.2
Social Networks 64.5 42.6 51.3 67.7 44.7 53.8 66.7 40.0 50.0 76.2 45.7 57.1
Office Tools 46.3 24.6 32.1 56.7 30.2 39.4 51.8 28.7 36.9 70.2 39.6 50.6
News Apps 54.6 36.1 43.4 57.7 38.1 45.9 53.0 37.6 44.0 59.7 46.2 52.1
Navigation Apps 49.3 28.9 36.5 58.2 34.2 43.1 46.9 28.0 35.1 63.5 40.2 49.3
Music Players 55.8 22.0 31.6 58.1 22.9 32.9 55.9 23.2 32.8 63.2 29.3 40.0
Instant Messengers 53.1 27.4 36.2 59.4 30.6 40.4 47.8 22.0 30.1 62.5 30.0 40.5
Games 45.5 22.4 30.0 48.5 23.9 32.0 60.0 30.6 40.5 70.4 38.8 50.0
Fitness Tracker 58.1 20.2 30.0 61.3 21.3 31.7 67.7 28.0 39.6 76.5 34.7 47.7
Alarm Clocks 54.5 33.3 41.4 61.4 37.5 46.6 55.6 27.8 37.0 70.0 38.9 50.0
Average 54.5 30.4 38.6 60.1 33.7 42.7 57.2 30.6 39.5 68.5 39.0 49.3

Table 54. Model performance on SANGER dataset after all processing steps.
136



Appendix E. DETAILED RESULTS OF CRF MODEL
PERFORMANCE ON REVIEW DATASETS FOR

EXTRACTING APP FEATURES USING TRAINING
PROCEDURE CCV-EXT

App Exact Tokens Partial Tokens Exact Types Partial Types
Category Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) GUZMAN:

Game 27.5 16.2 20.4 35.6 20.9 26.4 42.9 25.3 31.8 71.0 57.1 63.3
Productivity 20.3 28.9 23.8 27.8 39.6 32.7 31.1 35.0 32.9 56.5 64.3 60.2
Travel 21.2 11.5 14.9 30.8 16.7 21.6 31.7 16.8 22.0 60.0 39.5 47.6
Photography 29.2 20.0 23.8 44.6 30.5 36.2 29.6 23.9 26.4 53.2 37.3 43.9
Social 27.8 18.5 22.2 38.0 25.2 30.3 29.5 20.0 23.8 49.2 35.6 41.3
Communication 18.2 11.1 13.8 30.3 18.5 23.0 21.9 13.5 16.7 42.4 26.9 32.9
Average 24.0 17.7 19.8 34.5 25.2 28.4 31.1 22.4 25.6 55.4 43.4 48.2

b) SHAH-I:

Game 24.8 22.7 23.7 26.6 24.4 25.4 31.5 34.3 32.9 50.6 59.7 54.8
Productivity 15.0 33.3 20.7 16.7 37.1 23.0 20.1 39.8 26.7 34.5 64.4 45.0
Travel 14.3 19.3 16.4 16.1 21.7 18.5 19.4 22.0 20.6 36.4 40.7 38.4
Photography 26.4 25.0 25.7 34.0 32.1 33.0 30.4 32.6 31.5 48.0 55.8 51.6
Social 19.7 19.0 19.4 26.2 25.4 25.8 33.3 36.4 34.8 48.0 54.5 51.1
Communication 7.4 11.8 9.1 11.1 17.6 13.6 12.5 18.8 15.0 26.1 37.5 30.8
Average 17.9 21.8 19.2 21.8 26.4 23.2 24.5 30.7 26.9 40.6 52.1 45.3

c) SHAH-II:

Game 18.4 21.7 19.9 21.4 25.3 23.2 26.6 27.9 27.2 46.4 52.5 49.2
Productivity 19.8 29.3 23.6 23.7 35.1 28.3 29.0 36.5 32.4 45.3 55.1 49.7
Travel 17.6 26.2 21.1 21.0 31.2 25.1 23.0 26.2 24.5 40.3 44.6 42.3
Photography 15.2 20.6 17.5 21.7 29.4 25.0 19.0 25.8 21.9 34.1 48.4 40.0
Social 21.2 19.3 20.2 25.0 22.8 23.9 22.2 19.0 20.5 31.6 28.6 30.0
Communication 8.3 11.1 9.5 8.3 11.1 9.5 9.5 11.8 10.5 10.0 11.8 10.8
Average 16.8 21.4 18.6 20.2 25.8 22.5 21.6 24.5 22.8 34.6 40.2 37.0

Table 55. Model performance on datasets for the training procedure CCV-EXT.
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Appendix F. DETAILED RESULTS OF CRF MODEL
PERFORMANCE ON REVIEW DATASETS FOR

EXTRACTING APP FEATURES USING TRAINING
PROCEDURE APPCAT

App Exact Tokens Partial Tokens Exact Types Partial Types
Category Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

a) GUZMAN:

Game 56.4 28.2 37.6 69.0 34.6 46.1 69.1 31.2 43.0 84.1 43.0 56.9
Productivity 40.1 16.7 23.6 53.4 21.7 30.9 47.7 19.5 27.6 73.4 32.9 45.4
Travel 44.3 18.7 26.3 53.0 22.4 31.5 57.4 22.3 32.1 80.5 31.8 45.6
Photography 31.8 10.9 16.2 45.1 14.5 21.9 39.5 12.3 18.8 71.7 20.6 32.0
Social 44.5 10.0 16.4 49.3 11.7 18.9 50.0 12.0 19.4 55.8 14.6 23.2
Communication 0.0 0.0 0.0 5.0 1.7 2.5 0.0 0.0 0.0 5.0 1.7 2.5
Average 36.2 14.1 20.0 45.8 17.8 25.3 43.9 16.2 23.5 61.8 24.1 34.3

b) SHAH-I:

Game 77.2 29.2 42.3 83.7 31.8 46.1 80.8 32.3 46.2 89.2 43.7 58.7
Productivity 71.2 20.5 31.8 76.8 22.2 34.5 76.2 20.3 32.0 86.9 27.7 42.0
Travel 54.2 11.7 19.3 54.2 11.7 19.3 60.0 15.0 24.0 61.7 18.5 28.5
Photography 47.5 15.6 23.5 57.5 20.6 30.4 57.5 18.0 27.4 69.2 26.3 38.1
Social 10.0 1.1 2.0 10.0 1.1 2.0 10.0 1.1 2.0 10.0 1.1 2.0
Communication 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Average 43.4 13.0 19.8 47.0 14.6 22.0 47.4 14.4 21.9 52.8 19.6 28.2

c) SHAH-II:

Game 43.8 17.7 25.2 48.6 22.1 30.4 67.0 26.0 37.5 77.5 29.6 42.9
Productivity 37.1 10.5 16.3 42.5 12.1 18.8 45.7 13.0 20.2 56.6 17.4 26.6
Travel 28.3 6.0 9.9 38.3 7.1 12.0 28.3 6.4 10.5 38.3 7.5 12.6
Photography 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Social 0.0 0.0 0.0 0.0 0.0 0.0 5.0 1.1 1.8 5.0 1.1 1.8
Communication 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Average 18.2 5.7 8.6 21.6 6.9 10.2 24.3 7.8 11.7 29.6 9.3 14.0

d) SANGER:

Weather Apps 72.2 36.9 48.8 76.7 40.7 53.1 72.2 38.7 50.4 78.1 44.0 56.3
Sport News 54.4 22.4 31.7 60.8 25.2 35.6 58.8 22.0 32.1 65.5 25.0 36.2
Social Networks 92.5 37.0 52.8 92.5 37.0 52.8 98.0 40.2 57.0 98.0 40.2 57.0
Office Tools 37.1 14.3 20.7 45.9 17.1 24.9 40.0 16.8 23.6 53.6 23.3 32.5
News Apps 57.4 18.5 28.0 61.9 20.5 30.7 64.2 21.4 32.2 68.1 23.6 35.0
Navigation Apps 59.3 30.2 40.1 65.3 33.5 44.3 61.4 31.6 41.7 67.3 35.2 46.2
Music Players 46.3 14.9 22.6 53.3 16.5 25.2 50.2 15.9 24.2 55.7 17.5 26.6
Instant Messengers 31.7 8.3 13.1 51.7 11.9 19.4 41.7 12.6 19.3 51.7 16.3 24.7
Games 65.0 14.1 23.1 70.0 16.1 26.1 65.0 14.8 24.1 70.0 16.8 27.1
Fitness Tracker 31.2 12.6 17.9 46.2 18.6 26.5 30.4 12.1 17.3 45.4 18.3 26.1
Alarm Clocks 72.7 22.2 34.0 72.7 22.2 34.0 71.7 21.5 33.0 74.2 25.7 38.2
Average 56.3 21.0 30.3 63.4 23.6 33.9 59.4 22.5 32.3 66.1 26.0 36.9

Table 56. Model performance on datasets for the training procedure APPCAT.
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GLOSSARY

Term Defination

App feature App functionality visible to the user such as uploading files,
screen of an app, quality of an app, technical characteristic.

App marketplace A type of digital distribution platform for mobile
applications.

Bag-of-Word Textual features extracted from words in a review
also called n-grams.

Bug report Reporting of bugs, glitches, or problems in an app.
Constituency parse tree A tree representing the grammatical structure of a sentence.

Feature density The number of distinct app features divided by the total
number of app features.

Feature evaluation Expressing opinions about existing app features.

Feature reqeust Users wish/request/desire/suggest about a new feature in
an app.

Semantic dependency graph A directed graph showing the relations between words
in a sentence.

Softare maintenance A process of modifying a software product after it has been
delivered to the customer.
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SUMMARY

Rakenduste kasutajaarvustustest informatsiooni
kaevandamine tarkvara arendustegevuste soodustamiseks

Nutitelefonide, tahvelarvutite ja muude mobiilseadmete levikuga on mobiilira-
kenduste kasutajate hulk tohutult kasvanud ning selliste mitmekülgsete kasutaja-
gruppide vajadustest ja ootustest aru saamine ei ole tarkvaraarendajate jaoks liht-
ne. Sellise keerulises olukorras on rakendatud tekstikaevemeetodeid, mille abil
on võimalik leida kasutajate arvustustest automaattöötluse teel kasulikku infor-
matsiooni. Käesolevas doktoritöös võrdlesime kõigepealt lihtsaid ja keerukamaid
tekstiklassifitseerimise mudeleid kasuliku info leidmiseks kasutajate arvustustest.
Seejärel uurisime automaatseid tekstikaevetehnikaid arvustuste tekstidest raken-
duse funktsionaalsuse kohta käiva detailsema info leidmiseks. Lõpuks kombi-
neerisime tekstiklassifitseerimise mudelid ja rakenduse funktsioonide automaatse
kaevandamise tehnikad tööriistas, mis võimaldab mobiilirakenduste konkurentsi-
võimelisust analüüsida.

Kasutajaarvustuste automaatse klassifitseerimise osas võrdlesime lihtsate ja
keerukamate masinõppe mudelite klassifitseerimistäpsuseid. Mudeleid, mis ka-
sutavad tunnustena sõnu tekstis (nn sõnahulga mudel) on lihtne adapteerida eri-
nevatesse keeltesse võrreldes lingvistilisi tunnuseid kasutavate mudelitega, mille
jaoks on vajalik keele-spetsiifiliste loomuliku keele töötluse tööriistade kasuta-
mine. Teisest küljest on süvaõppe konvolutsioonilise tehisnärvivõrgu arhitektuu-
rid keerukamad võrreldes sõnahulga ja lingivistiliste tunnustega mudelidega ning
nende sisemist toimimisest on keerulisem aru saada. Erinevalt lingvistiliste tun-
nustega mudelist ei vaja aga tehisnärvivõrkude kasutamine tunnuste arendamist.
Meie eksperimentide tulemused näitasid, et lihtne sõnahulga mudel saavutab pea-
aegu sama klassifitseerimisetulemuse nagu keerukamad mudelid, mis kasutavad
rikkalikke lingvistilisi tunnuseid või konvolutsioonilise tehisnärvivõrgu arhitek-
tuuri.

Mobiilirakenduste funktsionaalsuse automaatne kaevandamine kasutajaarvus-
tustest on keeruline nii arvustuste tekstide mitteformaalse keelekasutuse kui ka
loomuliku keele kasutuse mitmekesisuse tõttu. Rakenduste funktsionaalsuse au-
tomaatseks kaevandamiseks kasutajaarvustustest on välja pakutud mitmeid mee-
todeid, mis hõlmavad nii reeglipõhiseid meetodeid, juhendamiseta masinõpet kui
ka juhendatud masinõpet. Neid meetodeid on aga rakendatud kas erinevatele mär-
gendatud andmestikele või on nende tulemuslikkuse hindamiseks kasutatud erine-
vaid hindamismeetodeid, mistõttu pole eelnevad tulemused üksteisega võrrelda-
vad. Baastaseme kindlaksmääramiseks hindasime esmalt reeglipõhiste ja juhenda-
tud masinõppemeetodite täpsust rakenduste funktsionaalsuse kaevandamises sa-
madel eksperimentaalsetel alustel. Selgus, et mõlema meetodi tulemused olid kül-
lalt madalad, kuid juhendatud masinõpe oli f1-skoori osas reeglipõhisest meeto-
dist siiski parem. Juhendatud masinaõppe tulemused võivad sõltuda erinevatest
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aspektidest, nagu näitks tulemuse hindamismeetod, rakenduste funktsionaalsu-
se kaevandamise meetod, kasutatud treening- ja testandmestiku omadused ja ka
andmete märgendamisel kasutatud annoteerimisjuhised. Kuigi nii annoteerimis-
juhised kui ka treeningandmestiku suurus võivad avaldada suurt mõju juhenda-
tud masinõpet kasutavale rakenduste funktsionaalsuse kaevandamise meetodi tu-
lemustele, ei ole nende mõju selles vallas seni uuritud. Seega analüüsisime kõige-
pealt simulatsioonide abil, kuidas erinevad annoteerimisjuhised mõjutavad juhen-
datud masinõppe abil rakenduse funktsionaalsuste kaevandamise tulemusi. Seejä-
rel uurisime treeningandmestiku suuruse mõju rakenduste funktsionaalsuste kae-
vandamise tulemustele.

Ühe mobiilirakenduse arvustuste põhjal tehtud funktsionaalsuse analüüsi saab
konkurentsianalüüsi jaoks laiendada ka mitmele rakendusele. Pakkusime raken-
duste võrdlemiseks välja lahenduse, mis kombineerib arvustuste klassifitseerimise
ning rakenduste funktsionaalsuse kaevandamise meetodid. Oma lähenemise vali-
deerimiseks arendasime tööriista REVSUM prototüübi, mis toetab kolme tüüpilist
kasutusjuhtu: konkureerivate rakenduste funktsionaalsuste suhtes kasutajate meel-
susest ülevaate saamine (KJ 1); ülevaate saamine nendest rakenduse funktsionaal-
sustest konkureerivates rakendustes, mida mainiti vearaportiteks klassifitseeritud
arvustustes (KJ 2); kasutajate poolt konkureerivate rakenduste arvustustes küsitud
uute funktsionaalsuste kohta ülevaate saamine (KJ 3). Läbiviidud kvalitatiivses
uuringus raporteerisid tarkvaraarendajad, et REVSUM on kasulik vahend kon-
kureerivate rakenduste arvustustest informatsiooni kaevandamiseks, millest võib
olla kasu tarkvara hoolduses ja perioodiliste uuenduste kavandamisel. Kokkuvõt-
tes uurisime käesolevas doktoritöös olemasolevaid mobiilirakenduste arvustuste
klassifitseerimise ja funktsionaalsuse kaevandamise tehnikaid, mille abil leida ka-
sutajaarvustustest arendaja jaoks olulist informatsiooni, ning seejärel kombinee-
risime need lähenemisviisid REVSUM tööriistas, mis võimaldab konkureerivate
rakenduste võrdlemise abil arendajaid tarkvara arendustegevustes toetada.
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