
1
Tartu 2020

ISSN 2613-5906
ISBN 978-9949-03-290-7

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS
15

A
D

R
IA

N
O

 A
U

G
U

STO
	

A
ccurate	and	Efficient	D

iscovery	of	Process	M
odels	from

	Event	Logs

ADRIANO AUGUSTO

Accurate	and	Efficient	Discovery
of	Process	Models	from	Event	Logs

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

15

DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS

15

ADRIANO AUGUSTO

Accurate and Efficient Discovery
of Process Models from Event Logs

Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor
of Philosophy (PhD) in informatics on February 11, 2020 by the Council of the
Institute of Computer Science, University of Tartu.

Supervisor

Prof. Marlon Dumas
University of Tartu, Estonia

Prof. Marcello La Rosa
University of Melbourne, Australia

Opponents

Assoc. Prof. Benoit Depaire
Hasselt University, Belgium

Assoc. Prof. Remco Dijkman
Eindhoven University of Technology, The Netherlands

The public defense will take place on March 23, 2020 at 10:15 at Delta Building,
Narva mnt 18, Room 1020.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright c© 2020 by Adriano Augusto

ISSN 2613-5906
ISBN 978-9949-03-290-7 (print)
ISBN 978-9949-03-291-4 (pdf)

University of Tartu Press
http://www.tyk.ee/

http://www.tyk.ee/

Ad maiora.

ABSTRACT

Everyday, organizations deliver services and products to their customers by enact-
ing their business processes, the quality and efficiency of which directly influence
the customer experience. In competitive business environments, achieving a great
customer experience is fundamental to be a successful company. For this rea-
son, companies rely on programmatic business process management in order to
discover, analyse, improve, automate, and monitor their business processes.

One of the core activities of business process management is process discov-
ery. The goal of process discovery is to generate a graphical representation of a
business process, namely business process model, which is then used for analy-
sis and optimization purposes. Traditionally, process discovery has been a time-
consuming activity performed either by interviewing relevant process stakehold-
ers and employees, or by observing process participants in action, or analysing
process reference documentation. However, with the diffusion of information sys-
tems, and specialised software in organizational settings, a new form of process
discovery is slowly emerging, which goes by the name of automated process dis-
covery.

Automated process discovery allows business analysts to exploit process’ exe-
cution data (recorded into so-called event logs) to automatically generate process
models. Discovering high-quality process models is extremely important to re-
duce the time spent to enhance them and avoid mistakes during process analysis.
The quality of a discovered process model depends on both the input data and the
automated process discovery approach (APDA) that is applied. In this thesis, we
provide a systematic literature review (SLR) and benchmark of the state-of-the-art
APDAs. Our SLR analyses 34 APDAs, while our benchmark evaluates six repre-
sentative APDAs on more than 20 real-life datasets and seven quality measures.
Our SLR and benchmark highlight that existing APDAs are affected by one (or
more) of the following three limitations: (i) they achieve limited accuracy; (ii)
they are computationally inefficient to be used in practice; (iii) they discover syn-
tactically incorrect process models. To address these limitations, we propose a
novel APDA, namely Split Miner, that we assessed through our benchmark. The
results of our evaluation show that Split Miner outperforms the state-of-the-art
APDAs over multiple quality dimensions.

Most of the APDAs we assessed in our benchmark, including Split Miner,
require a number of input parameters. The quality of the discovered models de-
pends on how these parameters are tuned. We have found that automated hyper-
parameters optimization leads to considerable improvements in the quality of the
models produced by an APDA (including Split Miner). The quality improvement
APDAs achieve via hyper-parameters optimization comes, however, at the cost
of longer execution times and higher computational requirements, due to the in-
efficiency of existing accuracy measures for APDAs (in particular precision) and
the lack of efficient solution-space exploration techniques available for APDAs.

6

This thesis tackles the problem of APDAs optimization in two parts. First, we
propose a set of accuracy measures based on Markovian abstractions, and show
that our Markovian accuracy measures are faster than existing accuracy measures
and fulfil a set of desirable properties that state-of-the-art measures do not. Next,
we propose an optimization framework powered by single-solution-based meta-
heuristics, which employ our Markovian accuracy measures to efficiently explore
the solution-space of APDAs based on directly-follows graphs (DFGs), in order
to discover a process model with the highest accuracy. The evaluation of our op-
timization framework highlights its effectiveness in optimizing DFG-based AP-
DAs, showing that it allows APDAs to explore their solution-space beyond the
boundaries of hyper-parameter optimization and most of the times in a faster man-
ner, ultimately discovering more accurate process models in less time, compared
to hyper-parameters optimization.

In order to foster reproducibility and reuse, all the artifacts designed and de-
veloped for this thesis are publicly available as open-source Java command-line
applications. Split Miner, our core contribution to the field of automated pro-
cess discovery, has also been integrated into Apromore, an open-source business
process analytics platform used by academics and practitioners worldwide.

7

CONTENTS

1. Introduction 15
1.1. Research Area . 15
1.2. Research Problem . 18
1.3. Research Method . 20
1.4. Contributions to the Research Area 22
1.5. Thesis Structure . 23

2. Background 24
2.1. Business Processes . 24
2.2. Business Process Modelling Languages 26

2.2.1. Business Process Model and Notation (BPMN) 26
2.2.2. Petri Nets . 33
2.2.3. Other Process Modelling Languages 34

2.3. Process Discovery . 36

3. State of the Art 39
3.1. Automated Process Discovery 39
3.2. Methodology . 40

3.2.1. SLR Research Questions 40
3.2.2. Search String Design . 41
3.2.3. Study Selection . 42

3.3. Classification of the Studies . 43
3.3.1. Model Type and Language (RQ1.2) 44
3.3.2. Procedural Language Constructs (RQ1.3) 49
3.3.3. Implementation (RQ1.4) 49
3.3.4. Evaluation Data and Domains (RQ1.5) 49

3.4. Threats to Validity . 50
3.5. Summary . 51

4. Benchmark 53
4.1. APDAs Selection . 53
4.2. Evaluation Measures . 55
4.3. Setup and Datasets . 57
4.4. Benchmark Results . 59
4.5. Threats to Validity . 68
4.6. Related Work . 70
4.7. Summary . 70

8

5. Split Miner 72
5.1. Approach . 72

5.1.1. Directly-Follows Graph and Short-Loops Discovery 73
5.1.2. Concurrency Discovery 75
5.1.3. Filtering . 75
5.1.4. Filtered PDFG to BPMN Process Model 81
5.1.5. Splits Discovery . 81
5.1.6. Joins Discovery . 88
5.1.7. OR-joins Minimization 90
5.1.8. Time Complexity . 94

5.2. Semantic Properties of the Discovered Model 94
5.2.1. Preliminaries . 95
5.2.2. Proofs . 96

5.3. Evaluation . 98
5.3.1. Evaluation Results . 99

5.4. Summary . 109

6. Markovian Accuracy 111
6.1. Fitness and Precision in Automated Process Discovery 112

6.1.1. Fitness Measures . 112
6.1.2. Precision Measures . 113
6.1.3. Fitness Propositions . 115
6.1.4. Precision Propositions . 116

6.2. Kth-order Markovian Abstraction 118
6.2.1. Generating the Mk-abstraction of an Event Log 120
6.2.2. Generating the Mk-abstraction of a Process 122

6.3. Comparing Markovian Abstractions 123
6.3.1. Markovian Abstraction-based Fitness 125
6.3.2. Proofs of the 7-Propositions of Fitness 125
6.3.3. Markovian Abstraction-based Precision 127
6.3.4. Proofs of the 8-Propositions of Precision 128

6.4. Evaluation . 132
6.4.1. Qualitative Evaluation Dataset 132
6.4.2. Qualitative Evaluation of MAFk 134
6.4.3. Qualitative Evaluation of MAPk 135
6.4.4. Quantitative Evaluation Setup 139
6.4.5. Quantitative Evaluation of MAFk 139
6.4.6. Quantitative Evaluation of MAPk 140
6.4.7. The Role of k . 146

6.5. Summary . 147

9

7. Optimized Automated Process Discovery 149
7.1. Optimization Metaheuristics . 150
7.2. Metaheuristic Optimization Framework 152

7.2.1. Preliminaries . 152
7.2.2. Approach Overview . 153
7.2.3. Adaptation of the Optimization Metaheuristics 153
7.2.4. Framework Instantiation 156

7.3. Evaluation . 159
7.3.1. Dataset and Experimental Setup 159
7.3.2. Results . 160
7.3.3. Statistical Analysis . 168
7.3.4. Discussion . 169

7.4. Summary . 170

8. Conclusion 171
8.1. Summary of Contributions . 171
8.2. Future Work . 172

Bibliography 174

Acknowledgement 189

Summary in Estonian 190

Curriculum Vitae 192

Elulookirjeldus (Curriculum Vitae in Estonian) 193

List of original publications 194

10

LIST OF FIGURES

1. Business Process Management lifecycle [1] 16
2. Example of a process model in BPMN notation. 17
3. Amazon order-to-cash business process (customer perception). . . 27
4. Examples of events. 28
5. Examples of activities. 28
6. Collapsed and expanded subprocess (resp. above and below). . . . 30
7. Samples of gateways. 31
8. Example of proper and improper use of XOR gateways. 31
9. Example of proper and improper use of AND gateways. 32

10. Example of proper and improper use of OR gateways. 32
11. Example of Petri net elements, and firing transition. 34
12. Amazon order-to-cash business process (customer perception), as a

Petri net. 35
13. Number of studies over time. 43
14. Overview of the proposed approach. 73
15. Processing of the directly-follows graph. 74
16. Best incoming and outgoing edges selected by Algorithm 2 and 3

from the PDFG. 80
17. Processing of the BPMN model. 81
18. Splits discovery example. 86
19. Joins discovery examples. 89
20. OR-joins minimization example. 90
21. OR-joins minimization algorithm. 92
22. Examples of processes in the BPMN language. 119
23. From left to right: the M1-abstraction of the Flower Process, Process-

Y, Process-X and the event log L∗. 120
24. From left to right, the M2-abstraction of the Flower Process, Process-

Y, Process-X and the event log L∗. 120
25. Qualitative evaluation artificial models as in [2]. 133
26. Model discovered by IM from the SEPSIS log. 146
27. Model discovered by SM from the SEPSIS log. 146
28. Overview of our approach. 153
29. BPIC14f models discovered with SIMAsm (above) and SM (below). 163
30. RTFMP models discovered with SIMAsm (above) and SM (below). 163

11

LIST OF TABLES

1. Example of an event log. 17
2. APDAs assessed by De Weerdt et al. [3] (left) and the respective

successors (right). 42
3. Overview of the 34 primary studies resulting from the search (or-

dered by year and author). 52
4. Descriptive statistics of public logs. 58
5. Descriptive statistics of proprietary logs. 59
6. Default parameters evaluation results for the BPIC logs. 60
7. Default parameters evaluation results for the public logs. 61
8. Default parameters evaluation results for the proprietary logs - Part

1/2. 61
9. Default parameters evaluation results for the proprietary logs - Part

2/2. 62
10. Best score frequencies for each quality dimension (default parame-

ters evaluation). 63
11. Scores of the models with the best F-score discovered with hyper-

parameter optimization (public logs). 65
12. Scores of the models with the best F-score discovered with hyper-

parameter optimization (proprietary logs). 66
13. Best scores achieved in hyper-parameter evaluation by each approach

on each quality dimension (public logs). 67
14. Best scores achieved in hyper-parameter evaluation by each approach

on each quality dimension (proprietary logs). 67
15. Filtering algorithm example. 80
16. Splits discovery example. 87
17. Split Miner default parameters evaluation results for the public logs

– Part 1/2. 99
18. Split Miner default parameters evaluation results for the public logs

– Part 2/2. 100
19. Split Miner default parameters evaluation results for the proprietary

logs - Part 1/2. 101
20. Split Miner default parameters evaluation results for the proprietary

logs - Part 2/2. 102
21. Best score frequencies for each quality dimension (default parame-

ters evaluation, inc. Split Miner). 103
22. Scores of the models with the best F-score discovered with hyper-

parameter optimization (public logs), inc. Split Miner. 105
23. Scores of the models with the best F-score discovered with hyper-

parameter optimization (proprietary logs), inc. Split Miner. 106
24. Best scores achieved in hyper-parameter evaluation by each approach

on each quality dimension (public logs), inc. Split Miner. 107

12

25. Best scores achieved in hyper-parameter evaluation by each approach
on each quality dimension (proprietary logs), inc. Split Miner. . . 108

26. Fitness propositions fulfiled by existing fitness measures (according
to [4]). 116

27. Precision propositions fulfiled by existing precision measures (ac-
cording to [4]), including the Axioms 1-5 (A1-A5) as discussed in [5]. 117

28. Log L∗. 119
29. Precision propositions [4] and axioms [5] fulfiled by MAPk, and for

which value of k. 128
30. Test log [2]. 133
31. Values of the fitness measures over the synthetic dataset. 135
32. Model ranking induced by the fitness measures over the synthetic

dataset. 136
33. Values of the precision measures over the synthetic dataset. 137
34. Model rankings induced by the precision measures over the syn-

thetic dataset. 137
35. Comparison of fitness measures over the 20 real-life logs. 141
36. Models ranking yielded by fitness measures over the 20 real-life logs. 142
37. Time performance (in seconds) of fitness measures using the twelve

public logs. 143
38. Time performance (in seconds) of fitness measures using the eight

proprietary logs. 143
39. Comparison of precision measures over 20 real-life logs. 144
40. Models ranking yielded by precision measures over 20 real-life logs. 145
41. Time performance (in seconds) of precision measures using the twelve

public logs (’+’ indicates a result obtained on a subset of the twelve
logs, due to some of the measurements not being available). 146

42. Time performance (in seconds) of precision measures using the eight
proprietary logs. 146

43. Comparative evaluation results for the public logs - Split Miner. . . 161
44. Comparative evaluation results for the proprietary logs - Split Miner. 162
45. Comparative evaluation results for the public logs - Fodina. 165
46. Comparative evaluation results for the proprietary logs - Fodina. . 166
47. Comparative evaluation results for the public and proprietary logs -

Inductive Miner. 167
48. Summary of the Mann-Whitney U-tests [6]. 169

13

LIST OF ABBREVIATIONS

Automated Process Discovery Approach APDA

Business Process Management BPM

Business Process Model and Notation BPMN

Directly-follows Graph DFG

Evolutionary Tree Miner ETM

Fodina Miner FO

Heuristics Miner HM

Hyper-Parameter Optimization HPO

Inductive Miner IMd

Inductive Miner Infrequent IM

Information System IS

Markovian Abstraction-based Fitness MAF

Markovian Abstraction-based Precision MAP

Process Modelling Guidelines PMG

Research Question RQ

Single-entry Single-exit SESE

Structured Heuristics Miner SHM (S-HM6)

Split Miner SM

Systematic Literature Review SLR

14

1. INTRODUCTION

1.1. Research Area

Everyday, people take part in one or more processes even simultaneously: some-
times as resources, sometimes as customers, sometimes as data. Often, people
do not notice it, for they do not realize they are acting within a process or they
are just not interested in insights about the process they are temporarily involved
in. Differently, companies and industries are growing their interest in studying
and understanding their processes, since these the soul of their business. Indeed,
quality of services, quantity of revenue, amount of costs, customers satisfaction,
and ultimately the overall company success depend on a company’s business pro-
cesses. In this context, the discipline of Business Process Management (BPM)
was born with the aim of helping companies to analyse, assess and monitor their
business processes and improve them, regardless of the type of organization, its
provided services, characteristics and targets [1]. Figure 1 shows the BPM life-
cycle [1]: the diagram formally explains how business stakeholders and informa-
tion technology (IT) specialists collaborate through each distinct phase to achieve
business improvement. Here, we give a brief description of each phase.

- process identification: it is necessary to produce a process architecture,
which captures all the processes of the organization and their relationships.

- process discovery: a business process is selected from the process archi-
tecture and its model is discovered (either manually or automatically). A
process model is a graphical representation of the business process, which
should clearly capture its workflow. The representation of the process at
this stage is called as-is process model.

- process analysis: the IT specialists analyse the as-is process model using
a set of analysis techniques. The outcome of this analysis is a list of issues
and weaknesses of the process, as well as an assessment of their impact on
process performance

- process redesign: to solve the identified issues and weaknesses, possible
changes are evaluated. Successively, the chosen changes are applied to the
as-is process model. The process is redesigned and a new model is drawn,
namely the to-be process model.

- process implementation: the to-be process model is put into effect in the
organization workflow. This can entail: the changing of the process struc-
ture (e.g. swapping resources, splitting or merging activities, adding paral-
lel activities etc.); the adoption of process automation; the deployment (or
upgrade) of IT systems to monitor the effectiveness of the changes.

- process monitoring and controlling: the process is monitored, and its data
is continuously collected, typically using IT systems. IT specialists can
perform on-line and off-line analysis of the new process, for assessing the

15

Process
Discovery

Process
Analysis

Process
Redesign

Process
Implementation

Process
Monitoring and

Controlling

Process
Identification

Process architecture

As-is process

model

Insights on

weaknesses

and their impact

To-be process

model

Executable

process

model

Conformance and

performance

insights

Figure 1: Business Process Management lifecycle [1]

adherence of the enacted process to the new process design. Any deviation
may give rise to another execution of the BPM lifecycle.

Our research project sits on the second phase of the BPM lifecycle: process
discovery. Process discovery rapidly evolved over the last two decades, moving
from manual methods such as employees’ interviews, workshops, observations,
and documents analysis, to automated process discovery from event logs. How-
ever, automated process discovery is not yet an established practice, as this field
of research has been experiencing a tremendous evolution in the last decade.

Modern IT systems allow companies to easily collect detailed information
about their business processes, including records of their execution events, such
as the creation of a case or the execution of an activity within an ongoing case.
These records are known as event logs. We can picture an event log as a file
recording what happened and how within a company (e.g. activities performed
by employees, their chronological order, their execution times, their associated
data), in other words, an event log contains a detailed history of process execu-
tions. As an example, Figure 2 and Table 1 show (respectively) a process model
(in the BPMN language) and an event log recorded during its execution. Given
the huge amount of data stored into event logs, the most efficient way to exploit its
concealed information is via the application of automated techniques. In this set-
ting, the discipline of Process Mining was born to provide data-driven automated
support along various phases of the BPM lifecycle, especially those phases where
the data analysis plays a central role. Process mining encompasses techniques that
can be grouped into two major families: operational techniques and tactical tech-

16

Figure 2: Example of a process model in BPMN notation.

niques. The former family groups techniques whose goal is to generate insights in
real-time during the process execution, such as estimating the remaining process
execution time; or the probability of a negative event to happen; or the likelihood
of a specific process outcome. The latter family groups techniques whose goal is
to help analysts to discover, analyse, and periodically monitor the process execu-
tion in order to understand how the process is performed, what are its weaknesses,
and how the process can be improved.

Case ID Event Name Timestamp · · ·
01 Enter Loan Application 2007-11-09 T 11:20:10 · · ·
01 Compute Instalments 2007-11-09 T 11:25:15 · · ·
02 Enter Loan Application 2007-11-09 T 11:30:40 · · ·
01 Retrieve Applicant Data 2007-11-09 T 11:40:50 · · ·
02 Retrieve Applicant Data 2007-11-09 T 11:50:00 · · ·
02 Compute Instalments 2007-11-09 T 12:00:30 · · ·
02 Notify Eligibility 2007-11-09 T 12:10:45 · · ·
03 Enter Loan Application 2007-11-09 T 13:23:15 · · ·
03 Compute Instalments 2007-11-09 T 13:30:35 · · ·
01 Notify Rejection 2007-11-09 T 14:45:00 · · ·
02 Approve Simple Application 2007-11-09 T 15:00:30 · · ·
· · · · · · · · · · · ·

Table 1: Example of an event log.

This thesis focuses on tactical process mining techniques, which can be clas-
sified into four categories [1, 7]

- process discovery techniques, address the problem of automated process
discovery. Techniques belonging to this category take as input an event log
and output a process model whose behaviour closely matches the behaviour
observed in the event log.

- conformance checking techniques, aim to compare process models against
event logs in order to identify mismatches and highlight behavioural differ-
ences. For example, a process model might tell us that after checking the
plausibility of a loan application, we must check the credit history, whilst in
the event log, after the plausibility check, we sometimes do not observe the
credit history check. Behavioural mismatches between the process model
and the event log can be due to an error or, more often than not, due to an

17

exception that is not captured in the process model. In general, techniques
belonging to this family are helpful during the process analysis phase of the
BPM lifle-cycle, and can also be used to assess the quality of automated
process discovery techniques.

- performance mining techniques, which take as input a process model (ei-
ther designed manually or automatically discovered) and its event log and
output a version of the process model enriched with performance statistics.
For example, these can be mean execution times, waiting times, costs, de-
fects rates.

- variants analysis techniques, aim to compare two or more variants of the
same business process, via their process executions, in order to understand
and/or analyse any execution difference (and its root causes). These tech-
niques take as input two or more event logs (corresponding to the process
variants) and output a description of the differences between the event logs.
For example, given two event logs, the first may contain all the process exe-
cutions where the customer was satisfied, while the second one may contain
all the executions leading to customer complaints. In this scenario, variants
analysis techniques allow us to understand what is done differently in those
cases where the customer complains, in order to understand why such com-
plaints arise in the first place.

This thesis focuses on automated process discovery techniques, as well as con-
formance checking techniques insofar as the latter are used to evaluate the quality
of the process models discovered via automated process discovery.

1.2. Research Problem

In the past two decades, many research studies addressed the problem of auto-
mated discovery of business process models from event logs [8–12]. Despite the
richness of proposals, the state-of-the-art automated process discovery approaches
(APDAs) struggle to systematically discover accurate process models. When the
input event log is simple, some state-of-the-art APDAs can output accurate and
simple process models, however, as the complexity of the input data increases,
the quality of the discovered process models can worsen quickly. Given that the
majority of the real-life event logs highly complex (i.e. containing noise and in-
complete data), state-of-the-art APDAs turn to be unreliable and not purposeful.
More specifically, they suffer from at least one of the following three limitations
when receiving as input large and complex event logs [13] (i) they achieve limited
accuracy (i.e. low scores of fitness and/or precision); (ii) they are computationally
inefficient to be used in practice; (iii) they discover syntactically incorrect process
models.

Automatically discovered process models (and in turn APDAs) can be assessed
via four quality dimension [7]:

18

- Fitness (a.k.a. recall) estimates the amount of behaviour observed in the
event log that can be found in the process model.

- Precision estimates the amount of behaviour captured in the process model
that can be found in the event log.

- Generalization assesses to what extent the process model captures be-
haviour that, despite not being present in the event log, can eventually be
produced by the (original) process under observation.

- Complexity assesses the structure and understandability of the process model
via several metrics (e.g. size, control flow complexity, model structured-
ness) [14].

Along these four quality dimensions, a fifth property ensures the semantic correct-
ness of the process model, namely, soundness. The notion of soundness has been
defined on Workflow nets [15] as a proxy for assessing their syntactic correctness,
but can be adapted to BPMN process models as follows. A BPMN process model
with one start and one end event is sound if and only if the following three prop-
erties hold altogether: (i) any arbitrary process execution can reach the end event
(option to complete); (ii) no end events can be triggered more than once during a
process execution (proper completion); (iii) for each activity of the process, there
exists at least one process execution that triggers the activity (no dead activities).

Achieving in a robust and scalable manner the best trade-off between the four
quality dimensions, while ensuring soundness, has proved elusive. In particular,
we can identify two kinds of APDAs: those focusing more on the simplicity, the
soundness and either the precision [10] or the generalization [9] of the discovered
process model, and those focusing more on its fitness and its precision at the cost
of simplicity and/or soundness [8, 11, 12].

The goal of our research project is to investigate the state-of-the-art APDAs,
identify and assess their strengths and limitations, and design a novel effective
and efficient APDA such that: it overtakes the limitations of the existing APDAs,
and sums their strengths up to solve the problem of automated process discovery.

In line with our goal, we formulated the following research questions:
RQ1. What are the state-of-the-art automated process discovery approaches, their

strengths and limitations?
RQ2. How to strike a trade-off between the various quality dimensions in auto-

mated process discovery in an effective and efficient manner?
RQ3. How can the accuracy of an automated process discovery approach be effi-

ciently optimized?
Whilst RQ2 synthesises the main research problem and the main purpose of our

research project, answering RQ1 is a fundamental preliminary step to investigate
(and ultimately answer) RQ2. Lastly, RQ3 is necessary to understand whether the
outcome of RQ2 leaves (or does not) space for further improvements, and in a
positive case how to efficiently achieve such improvements.

19

To answer RQ1 an extensive literature review is required. A consistent, co-
herent, and reproducible benchmark must be designed to asses the state-of-the-art
APDAs thoroughly, fairly, and equally. The results of the benchmark will allow
us to identify the strengths and the weaknesses of the state-of-the-art APDAs. The
outcome of RQ1 is the starting point for setting the quality criteria of the solution
for our main research problem, summarised in RQ2. In the latter, we use the term
effective to highlight that an APDA should output as accurate and simple as pos-
sible process models (regardless of the input data) within acceptable execution
time, i.e. efficiently. We can synthesise into three criteria the quality of the APDA
we will search for in our research project:

- Accurate: the discovered process models should score high values of fit-
ness and precision, such that their F-score is equal or greater than 80% on
average, since this a difficult milestone for the state-of-the-art APDAs.

- Simple: the discovered process models should be small in size and exhibit
low control flow complexity, with respect to (w.r.t.) process models discov-
ered by state-of-the-art APDAs.

- Efficient: the APDA should discover process models in real time, i.e. within
one second.

1.3. Research Method

Given that our research area within the field of Information Systems (IS), to an-
swer our research questions and achieve our research goal, we followed the De-
sign Science in IS research method [16]. Hevner et al. [16] propose the following
seven guidelines (G1-G7) to address a research problem in the IS field.
G1. Design as an Artifact. The ultimate outcome of the research project should

be one (or more) novel and purposeful artifact(s).
G2. Problem Relevance. As, in G1, the term purposeful highlights, the artifacts

produced as outcome of the research project should address (and solve) one
(or more) relevant problem(s) in the research area. The term relevant means
that the problem has not been addressed before or the proposed solutions
available in the state of the art leave space for improvements.

G3. Design Evaluation. Each of the produced artifacts should be evaluated ap-
propriately, according to their type. The evaluation results should prove the
quality, the utility, and the efficacy of the designed artifacts.

G4. Research Contributions. As, in G1, the term novel highlights, the produced
artifacts should provide an innovative solution for the addressed research
problem. The innovation can be of two types: (i) the artifacts solve an
unsolved problem; or (ii) the artifacts solve more efficiently and/or more
effectively a problem already solved.

G5. Research Rigor. All the produced artifacts should be rigorously defined in
a formal way, to ensure reproducibility, consistency, and coherence.

20

G6. Design as a Search Process. Each of the artifacts should be designed ap-
plying a search process. A problem space should be defined and a set of
solution criteria identified. Once a possible solution is designed, its qual-
ity should be verified using the criteria initially set, and the solution should
be improved if necessary. This iterative flow is fundamental to reach an
optimal or quasi-optimal solution to the problem.

G7. Communication of Research. All the results and outcomes of the research
project should be delivered/presented to both academics and practitioners.
During our research project, we published three conference papers and two
journal articles, whilst two more journal articles are currently under review.

In this thesis, we implemented the above guidelines as follows. (G2) To ensure
our work would focus on relevant research problems and we could deliver novel
purposeful artifacts, we began our project by reviewing and analysing the studies
related to our research area. Given that the latest literature review of automated
process discovery was dated 2012 [3], we performed a systematic literature review
to cover also the recent years. The insights derived from such a preliminary work
allowed us to identify four research gaps/problems, precisely: (i) the lack of a
documented and reproducible benchmark for APDAs; (ii) three major limitations
affecting the state-of-the-art APDAs; (iii) the low efficiency of accuracy measures
for assessing the quality of automatically discovered process models; and (iv) the
lack of a general optimization method for APDAs. (G1) Accordingly, we set to
deliver four novel artifacts to our research community: (i) a modular benchmark
for assessing APDAs; (ii) an APDA that would overcome the current limitations;
(iii) a family of efficient accuracy measures; and (iv) an optimization framework
for APDAs. (G5) We ensured that each of the artifacts we designed as part of
this thesis is formally described. Where algorithms were designed, we rigorously
justified all the design choices, we reported the pseudo-code and discussed it in a
procedural manner to guarantee transparency and understandability. Furthermore,
we meticulously described the setup of all the evaluations carried-on to assess our
artifacts and released the source code and data used in our experiments, so that
they could be easily reproduced. (G3-G4) We assessed all the artifacts we pro-
duced by performing one or more empirical evaluations based on large real-life
datasets and where necessary employing also artificial datasets. Our evaluations
allowed us to analyse the quality and properties of our artifacts, highlighting their
ability to solve the identified research problems more efficiently and/or more ef-
fectively than available baselines. (G6) Finally, the artifacts we introduce in this
thesis are the outcomes of a long iterative design flow, which ultimately led to their
final (optimal) versions. This is clearly documented for three out of the four arti-
facts, whose earlier versions have reached the research community as conference
proceedings, before the latest version was published in a journal. (G7) In fact, all
our research work has been presented to conferences and published in journals.
The rank of the conferences and journals that accepted our research work ensure

21

that our results and artifacts will be at reach of both the research community and
the practitioners in the area of BPM and process mining. Furthermore, our novel
APDA, Split Miner, was integrated into Apromore: the open-source web-based
platform for business process analytics developed by the BPM Research Team
at the University of Melbourne. 1 Apromore is known to practitioners and aca-
demics, and it was recently added to the Gartner’s Market Guide for Process
Mining.

1.4. Contributions to the Research Area

This thesis presents five major contributions to the identified research area of au-
tomated process discovery. Our first major contribution is a systematic literature
review (SLR) of the state-of-the-art APDAs [13]. Our SLR covers more than
80 research studies addressing the problem of automated process discovery, pub-
lished between 2012 and 2017, and it reports on the features characterizing more
than 30 existing APDAs. To assess the performance of the existing APDAs, and
analyse their strengths and weaknesses, we designed and implemented a bench-
mark framework to evaluate in an automated manner the existing APDAs. The
design of our benchmark allows academics and practitioners to extend the auto-
mated evaluation including new APDAs and/or new type of measurements [13].
The benchmark framework represents our second major contribution, which com-
bined with our SLR allowed us to answer RQ1. The insights gained by answering
RQ1 helped us to design a novel APDA, namely Split Miner [17, 18], that satis-
fies the quality criteria we described in Section 1.2. The algorithms Split Miner
stands on address our RQ2, whilst Split Miner (as an artifact) is our third and most
important contribution to the research area.

Similarly to the vast majority of the existing APDAs, the accuracy of Split
Miner can be fine-tuned via its input parameters. To perform such a tuning, it
is necessary to rely on techniques that measure the accuracy of the discovered
process models during the tuning process. Unfortunately, such techniques are
inefficient and ultimately lead to inefficient parameters tuning. Moreover, exist-
ing conformance checking techniques do not fulfil basic formal properties that
one would expect from accuracy measures. To address this shortcoming, we pro-
pose our fourth contribution: the Markovian accuracy, a novel technique for ap-
proximate fast computing of process model accuracy with respect to an event
log [19,20]. Employing our Markovian accuracy, we explore several optimization
metaheuristics to fine-tune the accuracy of the process models discovered by the
most reliable APDAs (including Split Miner), at the expense of the execution time.
This leads to our fifth contribution: an optimization framework for APDAs, pow-
ered by metaheuristics optimization adapted to the context of automated process
discovery [21].

1https://apromore.org/

22

https://apromore.org/

1.5. Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 provides an overview
of business process modelling and the available modelling languages, and we for-
mally introduce the problem of process discovery. Chapter 3 reports an extensive
literature review in automated process discovery. Chapter 4 presents our bench-
mark for assessing the state-of-the-art APDAs, shows the results of the evaluation,
and highlights the strengths and weaknesses of the assessed APDAs. Chapter 5
formally describes our novel APDA, Split Miner, focusing on its properties and
its performance when compared to the state-of-the-art APDAs. Chapter 6 in-
troduces two new methods to compute fitness and precision, which allow us to
assess the accuracy of automatically discovered process models in a fast, yet ap-
proximate, manner. Chapter 7 proposes a novel optimization framework based on
metaheuristics to optimize the F-score of fitness and precision of a specific class
of APDAs, which includes Split Miner. Chapter 8 draws the conclusions of the
thesis, summarising the core contributions and providing future work avenues.

23

2. BACKGROUND

In this chapter, we draw the starting line of our research project. First, in Sec-
tion 2.1, we introduce the concept of business process with the help of a simple
real-life case. In Section 2.2, we explain why it is important to represent business
processes through models, and what are the most popular modelling languages
to capture business processes, giving an overview of their graphical elements and
semantics. Lastly, in Section 2.3, we introduce the problem of process discovery.

2.1. Business Processes

“Business processes are what companies do whenever they deliver a service or a
product to customers.” [1]

To understand the meaning of this sentence, let us consider a simplified view
of the the process for handling orders (also known as an order-to-cash process) at
a popular online retailer, namely Amazon. 1 2 The process starts when an Ama-
zon customer, after having filled the digital cart with a certain number of items,
wants to checkout. At the click of the button checkout the process is triggered,
so that we can identify the checkout request as the starting event of the process.
What follows next is a sequence of well defined activities: the user is asked for
the shipping address; for the shipping type (standard, express, etc.); and for the
payment method and details. Then, Amazon checks the validity of the payment
details, and (i) if everything is correct and valid, Amazon sends an order confir-
mation email; otherwise (ii) Amazon rejects the order, ending the process at this
point with the event order aborted. Assuming the order is not rejected, after the
confirmation email, the items are prepared for the shipping, and when ready the
payment is charged. If the payment is unsuccessful, the order would be aborted
as in the case of wrong payments details. Instead, if the payment is successful the
items are shipped, and the receipt is sent to the user via email. In the latter case,
the process would reach the end event order fulfilled, and the customer would
soon receive the purchased items.

This simple example of order-to-cash process shows the activities between the
customer checkout request and the fulfilment of the customer order. The name
order-to-cash summarizes the input and the output of the process, which are (re-
spectively) the customer order and the money Amazon receives for fulfilling it.
Whilst the service and the product(s) delivered by Amazon are (respectively) the
e-shopping experience and the items purchased by the customer.

Other examples of common business processes are the following [1]:

1The process description is simplified. It only considers the viewpoint of the customer (and not
the numerous activities that take place inside the company) nor does it consider any rework that
occurs when there is a defect in the execution of the process.

2The model is a simplified version of the customer perception of the process, e.g. no rework is
performed in the case something goes wrong.

24

- Quote-to-Order. This process is frequent in all the companies that sell
products or services. It is triggered by the request of a third-party for buying
or acquiring a product or a service. The supplier provides a quote to the
other party, who can then accept or reject it (in the simplest scenario). When
the quote is accepted, an order is generated and what follows next is the
order-to-cash process. The sequence of quote-to-order and order-to-cash
processes is also known as quote-to-cash process.

- Issue-to-Resolution. This business process is common within the compa-
nies providing products warranty and/or customer support. It starts when
a customer requests assistance because he is experiencing an issue with a
previously purchased item or he needs support for accessing a service. The
process ends when (hopefully) the issue is solved.

- Application-to-Approval. Everyone took part to this process at least once
in his life, indeed, it is the classic scenario of a customer applying for re-
ceiving a service or product. It may be the application for enrolling in a
higher education institution; the application for receiving a home loan; or
the application for renting an apartment. The process may end either with
the approval or rejection of the submitted application. The latter case veri-
fies (usually) when some mandatory criteria for granting the acceptance of
the application are not met.

- Procure-to-Pay. This is another business process present in most of the
companies as well as public organizations.. It is triggered when an em-
ployee needs to purchase a product or a service from a third-party supplier.
It follows the request of a quote from the procurement department to any
available supplier. Then, when one or more quotes are received, the best is
selected and the order placed. The process ends when the product or service
is (paid and) delivered to the employee who requested it. For each procure-
to-pay process, usually a quote-to-cash process executes within the supplier
company.

Given the above examples, we can define a business process as follows.
Definition 2.1.1 (Business Process). A business process is a sequence of activities
performed within an organization to deliver value to the customer, who can be
either an internal or external entity. The sequence of activities is triggered by
a specific event (bound to a certain input) and leads to a different specific event
(bound to a certain output), respectively start event and end event.

For most of the business processes the identification of the input and the output
is straightforward, but, unfortunately, what happens in between is not easy to
determine. Indeed, depending on the company, the sequence of activities leading
from the start event to the end event of a specific business process (e.g. order-to-
cash) may drastically vary, and along with it the quality of the product and/or the
service delivered by the company. This explains why certain companies are more
successful than their competitors, even providing the same type of products and/or

25

services to their customers, and standing on the same type of business processes.
Business Process Management (BPM) allows a company to: identify their pro-

cesses; discover how they execute; analyse their quality; improve them; imple-
ment the improvements; and finally monitor the processes performance. These
six activities compose the BPM lifecycle we introduced in Chapter 1 (Figure 1).
However, to discover how a process executes, to analyse its quality, to improve
it, to implement it, and even to monitor its performance, it is necessary to have
a description of the process either in natural language or graphical representa-
tion. Being the latter far more compact and unambiguous,it is most of the times
preferred over the former. Consequently, business process models have become
valuable artifacts for the companies willing to check and (possibly) improve the
quality of their business processes applying the BPM lifecycle.

2.2. Business Process Modelling Languages

In order to perform any sort of analysis of a business process, it is necessary to
start from either its natural language description, its execution data (i.e. the pro-
cess event log), or its graphical representation. Usually, the last type of represen-
tation is preferred over the previous two for it is simpler and unambiguous. Whilst
the former feature is not a guarantee, but rather one of the objectives of process
modelling, the latter is always ensured when the process model is drawn using a
standardized process modelling language, which relies on a formally defined set
of syntax and semantic rules.

In the following, we introduce the two most popular and widely accepted
process modelling languages, precisely: Business Process Model and Notation
(BPMN) [22]; and Petri nets [23–25]. The former is mostly used by practition-
ers in industry, whilst the latter is widely adopted by academics in their research
studies because of its simple and well-defined semantics.

It is important to mention that several other modelling languages are available
to graphically represent a process, and depending on the process characteristics
and on the type of analysis to perform, some of them could be preferred over
the others. Indeed, different modelling languages have different expressiveness
power, which ultimately affects the difficulty of the modelling phase and the sim-
plicity of the final model. However, concerning our research project, BPMN and
Petri nets are the only two modelling languages that we refer to.

2.2.1. Business Process Model and Notation (BPMN)

BPMN is a modelling language roughly based on classical flowcharts. Its core
graphical elements are: events, activities, gateways, and sequence flows. The
semantic power of BPMN allows the modelling of the vast majority of business
process executions, including complex control flows (i.e. concurrency, inclusive
choice, and exclusive choice), data flows, and resources interactions. Figure 3
shows the BPMN representation of the process discussed in Section 2.1. For the

26

Figure 3: Amazon order-to-cash business process (customer perception).

purpose of our project, in this section, we introduce only the BPMN core elements,
leaving the extended set of BPMN elements and further details to the BPMN 2.0
specifications [22].

Events. An event represents an expected (or unexpected) happening during a
process execution. Events are modelled as circles, and they are characterised by
type, direction, and trigger. The type and the trigger of an event are defined by the
border of the circle and the inner symbol, figure 4 shows some common events in
BPMN.

Depending on when an event materialises during the execution of a process,
we identify three types of events:

- Start event, which triggers the process execution;
- Intermediate event, which happens during the process execution;
- End event, which ends the process execution.

Depending on where an event originates, one of the following two directions
is assigned to the event:

- catching, for events whose source is outside the organisation (e.g. a mes-
sage is received from a customer);

- throwing, for events whose source is inside the organisation (e.g. a confir-
mation email is sent to a customer).

Start events are only catching events, whilst end events are only throwing events.
Finally, the trigger of an event is identified by a symbol capturing the cause of

the event. The most common triggers are:
- Message, it is used to represent the receiving (catching) or the sending

(throwing) of a message, its marker is an envelope;
- Timer, it is used to synchronise the process execution with an exact date

(time), once the date (time) is reached (elapsed) the event triggers. This
trigger is for catching usage only, and its marker is a clock;

- Error, it is used to model an error occurred while executing a process, its
usage can be either catching or throwing depending on the context, and its
marker is a thunderbolt;

- Terminate, it is used only for end events, it represents the immediate termi-
nations of all the activities still executing within the process; its marker is a
black bold circle;

- None, it is used to represent a non-specific event, when the information/data
is insufficient to determine the real cause of the event. It is often used for

27

Figure 4: Examples of events.

Figure 5: Examples of activities.

start and end events, especially in the context of automated process discov-
ery. It has no marker.

Type, direction, and trigger of an event define its semantics. When the trigger
of the event materialises, the event is triggered and immediately consumed, whilst
the process execution flow either starts, continues, or ends (depending on the event
type).

Activities. An activity allows us to represent a task executed within the pro-
cess by a resource, this latter can be either a human being, a department, or an
information system. To model an activity, we use a labelled box (with rounded
corners). The label describes the task’s goal, and it usually adheres to the naming
convention: an imperative verb followed by a noun, e.g. send invoice. Special
activity markers define the type of the activity, and provide further details about
the activity execution. We distinguish the following types of activity (depicted in
Figure 5, from left to right):

- Simple Task, it is used to capture an activity that is intended to be performed
as a single unit of work, by a single participant in the process (also called
resource). We note that the term activity may refer either to a (simple)
task (i.e. an atomic unit of work) or to an entire subprocess, consisting of

28

multiple tasks.
- Parallel Multi-Instance, this type of activity captures the scenario where a

given task (or subprocess) needs to be executed in multiple “copies” (called
instances). Conceptually, this type of activity takes as input a collection of
objects (e.g. a collection of line items in a purchase order), and it is executed
once for each object in the input collection (i.e. once for each line item in
the purchase order). The instances of the activity spawned in this way are
executed concurrently. Figure 5 shows as an example the assessment of
witnesses, the task can be performed in parallel on different witnesses.

- Sequential Multi-Instance, this type of activity is similar to the parallel
multi-instance, with the only difference that the instances of the activity
are executed one after the other (sequentially) instead of concurrently. Each
activity (of the sequence) is carried on by the same type of resource. Fig-
ure 5 shows an example of the student assignments marking, the teacher
marks an assignment after the other until all are marked.

- Simple Loop, it is used to model an activity that can be executed poten-
tially an unlimited number of times before the process execution contin-
ues with the next activity. Unlike the sequential multi-instance activity, the
simple loop activity does not take as input a collection of objects. Instead,
the simple loop activity is executed until a certain condition becomes true,
also called loop exit-condition. Figure 5 shows the example of choosing an
available username when registering an account online, the user is asked to
enter an username until the chosen one is available.

- Collapsed Subprocess, it is used to model a place holder for a process nested
within the main process, which is called subprocess. A collapsed subpro-
cess is not a single activity but a process itself, with its own start and end
events. It is usually represented collapsed either for enhancing the process
model simplicity or for lack of information (i.e. it is not known what hap-
pens inside the subprocess). Figure 6 shows two views of the same process
model: the first (above) having a collapsed subprocess; and the second (be-
low) having the expanded subprocess. Also, a collapsed subprocess may be
simple, parallel multi-instance, sequential multi-instance, or simple loop.

Differently from the events, an activity (regardless of its type) is triggered as
soon as the process execution flow reaches it, whilst its execution is not immedi-
ate.

Sequence Flows. They allow us to define the order in which activities (events)
are executed (consumed). The sequence flow shape is an arrow connecting any
two BPMN elements (e.g. two activities, an activity and an event, etc.), namely
source of the sequence flow and target of the sequence flow. Sequence flows can
also be labelled to highlight data conditions in the case of exclusive (or inclusive)
choices, as we have seen in Figure 3. Furthermore, a sequence flow can be ac-
tive or inactive. A sequence flow is active if: (i) its source has been triggered

29

Figure 6: Collapsed and expanded subprocess (resp. above and below).

and executed (consumed) completely; and (ii) its target is not yet been triggered.
Otherwise, the sequence flow is inactive.

Gateways. A gateway is a control flow element, and it can be used to model
several process behaviors: concurrent executions; tasks synchronization; exclu-
sive choices; and inclusive choices. The gateway shape is a diamond, whose inner
symbol identifies the behaviour captured by the gateway. The number of its in-
coming and outgoing sequence flows determines whether the gateway is a split or
a join. Specifically, a gateway is a split if the number of its outgoing sequence
flows is two or more; or a join if the number of its incoming sequence flows is two
or more. Figure 7 shows some common gateways in BPMN.

- XOR Gateways, they are used to model exclusive choices, their symbol is
×. The XOR-split represents an exclusive choice, and only one outgoing
sequence flow can be activated to continue the process execution flow, the
choice is usually based on data conditions (captured as labels of the out-
going sequence flows). The XOR-join is used to merge incoming sequence
flows, and it lets the process execution flow continue as soon as one incom-
ing sequence flow is active.

- AND Gateways, they are used to model concurrent behaviour, their symbol
is +. The AND-split starts a parallel execution of activities, all its outgoing
sequence flows are activated at the same time and the process execution flow
continues concurrently on all the outgoing sequence flows. The AND-join
is used to synchronize incoming sequence flows, and it lets the execution
continue only when all the incoming sequence flows are active.

- OR Gateways, they are used to model inclusive choices, their symbol is©.
The OR-split represents an inclusive choice, and it allows the concurrent ac-
tivation of any of its outgoing sequence flows (from just one to all of them),
the choice is driven by data, similarly to the XOR-split case. The OR-join
is used to synchronize incoming sequence flows, and it lets the execution
continue only when all the incoming sequence flows that can eventually be

30

Figure 7: Samples of gateways.

(a) Sound process. (b) Unsound process, no option to complete.

Figure 8: Example of proper and improper use of XOR gateways.

activated are active.
Gateways play an important role for the soundness of the process model. A

BPMN process model with one start and one end event is sound if and only if the
following three properties hold altogether:
◦ Option to complete: any arbitrary process execution can reach the end

event;
◦ Proper completion: no end events can be triggered more than once during

a process execution;
◦ No dead activities: for each activity of the process, there exists at least one

process execution that triggers the activity.
If one of the three properties is violated, the process is unsound and ultimately
incorrect. If the gateways are used incorrectly they can generate lack of synchro-
nization and deadlocks, producing unsound models. In the following, we report a
few examples of correct and incorrect use of gateways.

Figure 8a shows a sound process model, whose possible executions are:
〈start,A,end〉; and 〈start,B,end〉. Instead, Figure 8b shows a process model vio-
lating the option to complete property, due to a deadlock. The AND-join will wait
forever to synchronize the activities A and B, which are mutually exclusive.

31

(a) Sound process. (b) Unsound process, no proper completion.

Figure 9: Example of proper and improper use of AND gateways.

(a) Sound process.

?

(b) Unsound process.

Figure 10: Example of proper and improper use of OR gateways.

Figure 9a shows a proper use of the AND gateways, which allow the concur-
rent execution of the activities A and B, in this case the possible process execu-
tions are:
〈start,A,B,end〉; and 〈start,B,A,end〉. Instead, the process in Figure 9b is un-
sound because it violates the proper completion property. Indeed, when the end
event is reached, either activity A or activity B will still be executing because of
the lack of synchronization.

The last example takes into account the OR gateways. In Figure 10a, we have
a sound process that allows the following executions:
〈start,A,B,end〉; 〈start,B,A,end〉; 〈start,A,end〉; and 〈start,B,end〉. In Fig-
ure 10b, instead, we left a blank join gateway to show that regardless of its type
(either AND or XOR) the process would be unsound. If the join is an AND the
process would have a deadlock every time the OR-split activates only one of its
outgoing sequence flows. If the join is an XOR the process would have a lack of
synchronization every time the OR-split activates both outgoing flows.

The remaining BPMN elements such as pools, swimlanes, data objects, mes-
sage flows, and annotations, are used to model respectively: organizations, re-
sources, documents, communications, and notes. Since these elements (and some
extensions of the core elements) are not of interest for our research project, we
won’t provide further details. Instead, we redirect to the BPMN 2.0 specifica-
tions [22].

32

2.2.2. Petri Nets

Petri nets (PNs) take their name from their creator, Carl Adam Petri, who initially
designed them to describe chemical processes. Over the last century, Petri nets
have been used in different contexts to model anything from algorithms to busi-
ness processes. Hereinafter, we assume PNs represent business processes, and we
describe them accordingly, postponing any formal definition to the chapters that
require it.

The PNs graphical elements are only four: places, transitions, arcs, and tokens
(Figure 11a shows all of them). A place allows us to model a state of the process,
its shape is a blank circle. A transition represents an activity of the process, its
shape is a rectangle. A transition can be either visible (if it has a label) or invisible,
the latter is usually represented with a black rectangle. Arcs connect transitions
to places and vice-versa but they cannot connect two places or two transitions.
Lastly, tokens are used to mark the current state of the process, a token shape is a
black large dot. At any time one or more places may contain one or more tokens,
the current state of the process is captured by the number of tokens in each place,
such information is known as marking. A marking is a tuple of positive integers
having size equal to the number of places of the PN, each integer of the tuple
captures the number of tokens in a specific place of the PN. A PN should always
have one initial marking and one final marking, which represent the initial state of
the process and the final state of the process. As an example, the initial marking
of the PN in Figure 11 is: (1,1,0,0); whilst, its final marking is: (0,0,1,1).

Tokens are fundamental for the execution of a Petri net. In order for a transi-
tion (activity) to fire (be executed), it must be enabled. A transition is said to be
enabled if and only if there is at least one token in each place of the transition’s
pre-set. The pre-set of a transition is the set containing the places connected to
the transition with an outgoing arc, in Figure 11a the pre-set of the transition T
is {P1,P2}. When a transition is fired, one token is removed from each place of
the transition’s pre-set, and one token is added to each place of the transition’s
post-set. The post-set of a transition is the set containing the places connected
to the transition with an incoming arc, in Figure 11a the post-set of the transition
T is {P3,P4}. When a transition is fired, the marking of the Petri net (usually)
changes, as well as the state of the process. Figure 11 shows the states (i.e. mark-
ings) of a Petri net before and after the transition T is fired.

Even having fewer and simpler elements, PNs have the same semantic power
of BPMN models (if not greater), and allow the representation of almost any kind
of process behavior. However, the complexity of the processes modelled as PNs is
usually higher than BPMN process models, because to represent complex behav-
ior, PNs requires more graphical elements than BPMN. As a supporting example
for this latter statement, we report in Figure 12 the PN representation of the Ama-
zon order-to-cash process previously showed in Figure 3, noting that 50% more
graphical elements were necessary to model the process with a PN.

33

(a) Petri net, initial state. (b) Petri net, final state.

Figure 11: Example of Petri net elements, and firing transition.

Furthermore, whilst in the case of the BPMN models the process execution
flow is driven by the semantic of the BPMN elements, in the case of PNs, the
process execution flow is driven by an overarching execution semantic defined on
the PNs’ graphical elements.

Finally, the notion of soundness is defined also for processes represented as
PNs. A PN with an initial marking i and a final marking o is sound if and only if
the following three properties hold altogether:
◦ Option to complete: starting from the initial marking i, any arbitrary pro-

cess execution can reach the final marking o;
◦ Proper completion: none of the allowed process executions can reach

markings (i.e. states of the process) having more than one token in a sin-
gle place;
◦ No dead transitions: for each transition of the PN, there exists a marking

(i.e. a state of the process) where the transition is enabled;
As for BPMN process models, any process represented as a PN should be sound.

2.2.3. Other Process Modelling Languages

Even though BPMN and PNs are the most popular modelling languages for busi-
ness processes, they are not the only available. Especially in the context of auto-
mated process discovery, processes are often represented as directed graphs (ma-
trices), trees, or behavioral rules (i.e. declarative models).

Directly-Follows Graphs (DFGs) are widely employed in commercial tools3

Celonis,4 Minit,5 and myInvenio.6 and by many APDAs [8, 12] to capture the
process behavior recorded in its execution data (i.e. its event log) in the form of a

3http://fluxicon.com/disco
4http://www.celonis.com
5http://minitlabs.com/
6http://www.my-invenio.com

34

http://fluxicon.com/disco
http://www.celonis.com
http://minitlabs.com/
http://www.my-invenio.com

Fi
gu

re
12

:A
m

az
on

or
de

r-
to

-c
as

h
bu

si
ne

ss
pr

oc
es

s
(c

us
to

m
er

pe
rc

ep
tio

n)
,a

s
a

Pe
tr

in
et

.

35

directed graph. Each node of the DFG represents an event recorded in the event
log. Whilst each edge of the DFG connects two events that were observed in
at least one process execution as consecutive events, the preceding event being
the source of the edge and the succeeding event being the target of the edge.
However, despite being very simple and intuitive, this process representation does
not provide any execution semantic. Also, as we will see later in this thesis, DFGs
are a highly lossy representation of event logs (cf. Chapter 6).

Process Trees capture the processes in a structured manner. Each leaf of the
tree represents an activity (event), while each node of the tree represents a group
of activities with a specific execution semantic, e.g. sequential or parallel execu-
tion, exclusive or inclusive choice. Differently than DFGs, process trees represent
clearly and unambiguously the process execution semantic. However, the inter-
pretation of the process trees graphical representation is not intuitive so that it
is convenient to convert them into either PNs or BPMN models, such conver-
sion is straightforward and deterministic. Indeed, process trees are equivalent
to so-called block-structured BPMN process models with only XOR and AND
gateways. Specifically a block-structured BPMN model is one where every split
gateway has a corresponding join gateway, such that the fragment of the process
model between the split gateway and the join gateway is a Single-Exit Single-Exit
(SESE) region [26]. Consequently, process trees are sound by construction.

Declare Models capture the processes’ behavior through a set of rules, also
known as (Declare) constraints. Each constraint describes a specific detail of the
process behavior, for example: activity X is executed always after activity Y; or
every time activity X is performed, activity Z is not. Declare constraints can either
be listed in natural language or modelled with ad-hoc graphical elements, usually
the former representation is preferred because when the number of constraints is
high, a graphical representation would be complex to navigate. Even though each
Declare constrain is precise, capturing the whole process behavior in a Declare
model can be very difficult, especially because Declare models do not give any
information about “undeclared” behavior, e.g. any behavior that does not break
the Declare constraint is allowed behavior. Declarative models belong to the im-
perative modelling languages category, as opposed to all the modelling languages
we mentioned above, which belong to the procedural modelling languages cate-
gory.

2.3. Process Discovery

Process discovery is an important phase of the BPM lifecycle, since to perform
any sort of process analysis it is necessary to start from a process representation,
e.g. a process model, that needs to be discovered [1]. However, process discovery
is not synonymous of process modelling, but it is a longer operation that evolves
over four macro steps [1]. The first step is the setup, the company willing to dis-
cover one (or more) of its business processes should build a team of domain ex-

36

perts (e.g. employees involved in the process execution), who should collaborate
with the BPM analysts. The domain experts aid is fundamental, since the BPM
analysts may not be confident with the company environment and business. The
second step is the data collection, information about the process is gathered, this
may include process documentation (either written or verbal) and/or the process
execution data recorded in the company IS. The third step is the process mod-
elling, the data collected in the previous step is used by the BPM analysts to draw
the process model. Lastly, the fourth step is the quality check, the process model
is presented to the stakeholders to verify its compliance and quality.

Process discovery can be performed applying different methodologies, the
most popular are the following three [1].

- Interview-based discovery: the BPM team schedules a series of interviews
with the domain experts and the employees involved in the process, to un-
derstand the process dynamics and its execution. Successively, the informa-
tion gathered during the interviews is used to draw the process model. This
latter is ultimately validated by the interviewees.

- Workshop-based discovery: the BPM team, the process owners, the domain
experts, and the employees involved in the process, gather together for one
(or more) workshops. Each workshop is a team effort for understanding
and drawing the process, and checking its quality. This approach ensures a
real-time contribution by all the stakeholders, who can share their process’
perspectives and give immediate feedback to the BPM team output.

- Evidence-based discovery consists in analysing concrete evidences of the
process execution in order to discover its model. Evidences usually belong
to one of the following categories: (i) written process documentation; (ii)
direct observation of the process execution (or role playing within the pro-
cess execution); (iii) process execution data.

- Written process documentation is most of the times available, how-
ever, it could be outdated or it may reflect the ideal process execution,
i.e. showing only how the process should execute.

- Direct observation is frequently biased by the fact that employees tend
to act differently when observed (i.e. Hawthorne effect), and only the
best scenarios may materialise. Playing a role within the process ex-
ecution (e.g. acting as a customer) is extremely useful to understand
the process dynamics and performance, however, it provides only one
perspective of the whole process.

- Process execution data is exploited in automated process discovery,
which is usually quicker and more objective than other process dis-
covery methodologies, since the process model is discovered through
a software application that automatically generates the process model
from the observed business process execution data.

37

attracted the greatest interest in the past decades, as we shall see in the next chap-
ter. However, even though automated process discovery brings many benefits and
facilitates the process discovery phase of the BPM lifecycle, such a methodology
is not free of drawbacks, which pose big challenges to those who want to overtake
them.

38

Out of all these methodologies, automated process discovery is the one that

3. STATE OF THE ART

Process mining allows analysts to exploit event logs of historical executions of
business processes to extract insights regarding the quality, compliance, and per-
formance of these processes. One of the most widely studied process mining op-
erations is automated process discovery. This Chapter 1 is centred on automated
process discovery, we discuss what is the goal of this operation, why our research
project focuses on it, and we report an extensive literature review, covering the
last seven years of research studies addressing the problem of automated process
discovery.

3.1. Automated Process Discovery

Automated process discovery is not only a process discovery methodology but
also one of the cornerstone operations of tactical process mining. An automated
process discovery approach (APDA) is an implementation of such an operation,
which takes as input the execution data of a business process, and it outputs a
process model that captures the control-flow relations between the events that are
observed in the input data.

The execution data of a business process is (usually) stored in the form of an
event log. Formally, an event log is a chronological sequence of events observed
during the process executions. In the context of this thesis, the chronological
sequence of events produced by the same process instance is referred as trace.
An event recorded in the event log represents the happening of something, e.g.
an activity is performed, an email is received. An event must have at least three
attributes: the identifier of the process case, namely case ID; the event name; and
the timestamp. However, the data associated to an event can go far beyond these
three attributes. For example, an event can also report the resource that generated
it, the department of the resource, or the cost associated. There is, indeed, no limit
to the type and number of attributes attached to an event, and they can change
depending on the context. In general, the more information is collected in an
event log, the more insights can be extracted.

To be useful, automatically discovered process models should reflect the be-
haviour recorded in the event log. Specifically, according to van der Aalst [27],
the process model discovered from an event log should be able to: (i) generate
each trace of the event log; (ii) generate traces that even not being recorded in
the event log are likely to be produced by the process that generated the event
log; and (iii) not generate other traces. The first property is called fitness, the sec-
ond generalization, and the third precision. In addition, the discovered process
model should be as simple as possible, a property that is usually quantified via
complexity measures, and, most important, the model should be sound. Fitness,

1Corresponding to [13].

39

precision, generalization, complexity, and soundness are measures that allow us
to quantify the quality of the discovered process model without the help of the
domain experts.

The problem of automated discovery of process models from event logs has
been intensively researched in the past two decades. Despite a rich set of pro-
posals, state-of-the-art APDAs suffer from at least one of the following three lim-
itations when receiving in input large and complex event logs: (i) they achieve
limited accuracy (i.e. low scores of fitness and/or precision); (ii) they are com-
putationally inefficient to be used in practice; (iii) they discover unsound process
models. In the following, we address our RQ1 (what are the state-of-the-art AP-
DAs, their strengths and limitations?), reporting our review of the state-of-the-art
APDAs, and showing their features, strengths, and weaknesses by analysing them
and (in Chapter 4) by comparing them through the benchmark we designed.

3.2. Methodology

In order to identify and analyse research studies addressing the problem of auto-
mated (business) process discovery from event logs, we conducted a Systematic
Literature Review (SLR) through a scientific, rigorous and replicable approach as
specified by Kitchenham [28]. First, we formulated a set of research questions to
scope the search, and developed a list of search strings. Next, we ran the search
strings on different academic databases. Finally, we applied inclusion criteria to
select the studies retrieved through the search.

3.2.1. SLR Research Questions

The objective of our SLR is to identify and analyse research studies addressing
the problem of automated (business) process discovery from event logs. Stud-
ies related to event log filtering, enhancement, and decomposition are orthogonal
to automated process discovery, therefore, we hold them out of our SLR. With
this aim, we formulated the following research questions, which can be seen as a
break-down of our RQ1:

RQ1.1 What approaches exist for automated (business) process discovery from
event logs?

RQ1.2 What type of process models can be discovered by these APDAs, and in
which modeling language?

RQ1.3 Which semantics can be captured by a model discovered by these APDAs?
RQ1.4 What tools are available to support these APDAs?
RQ1.5 What type of data has been used to evaluate these APDAs, and from which

application domains?
RQ1.1 is the core research question, which aims at identifying existing AP-

DAs. The other questions allow us to identify a set of classification criteria.
Specifically, RQ1.2 categorizes the output of an APDA on the basis of the type of

40

process model discovered (i.e., procedural, declarative or hybrid), and the spe-
cific modeling language employed (e.g., Petri nets, BPMN, Declare). RQ1.3
delves into the specific semantic constructs supported by an APDA (e.g., exclu-
sive choice, parallelism, loops). RQ1.4 explores what tools support the different
APDAs, while RQ1.5 investigates how the APDAs have been evaluated and in
which application domains.

3.2.2. Search String Design

To identify the research studies that would allow us to answer our research ques-
tions, we designed four search strings as follows. First, we determined that the
term “process discovery” is central in our search. In fact, the research community
of process mining and business process management, as well as two of the most
cited academic reference books [1, 7], agree that the ability of an algorithm or
approach to discover a process model from any source of information regarding
the process execution (e.g. an event log) is referred to as process discovery. In
light of this, we set “process discovery” as first and main search string, as the
most general term it would allow us to identify the majority of the APDAs. Then,
we selected “learning” and “workflow” as synonyms of “discovery” and “pro-
cess” (respectively). The term workflow because it is used to refer to a procedure
executed within a business environment, the term is also known for the corre-
sponding modelling language: workflow charts. The term learning because it is
used in computer science referring to algorithms and techniques that can mock
the cognitive function of human beings to derive knowledge, in our context the
capacity of discovering/modelling a process model. This led to the following four
search strings: (i) “process discovery”, (ii) “workflow discovery”, (iii) “process
learning”, (iv) “workflow learning”.

We intentionally excluded the terms “automated”, “automating”, “event log”
and “log" from the search strings, because these terms are often not explicitly
used. However, this led to retrieving many more studies than those actually focus-
ing on automated process discovery, e.g., studies on process discovery via work-
shops or interviews. Thus, if a query on a specific data source returned more
than one thousand results, we refined it by combining the selected search string
with the term “business” or “process mining” to obtain more focused results, e.g.,
“process discovery AND process mining” or “process discovery AND business”.
According to this criterion, the final search strings used for our search were the
following:

i. “process discovery AND process mining”
ii. “process learning AND process mining”

iii. “workflow discovery”
iv. “workflow learning”
First, we applied each of the four search strings to Google Scholar, retriev-

ing studies based on the occurrence of one of the search strings in the title, the

41

keywords or the abstract of a paper. Then, we used the following six popular aca-
demic databases: Scopus, Web of Science, IEEE Xplore, ACM Digital Library,
SpringerLink, ScienceDirect, to double check the studies retrieved from Google
Scholar. We noted that this additional search did not return any relevant study that
was not already discovered in our primary search. The search was completed in
December 2017.

3.2.3. Study Selection

As a last step, as suggested by [29–32], we defined inclusion criteria to ensure an
unbiased selection of relevant studies. To be retained, a study must satisfy all the
following inclusion criteria.
IN1 The study proposes an approach for automated (business) process discovery

from event logs. This criterion draws the borders of our search scope and it
is direct consequence of RQ1.1.

IN2 The study proposes an APDA that has been implemented and evaluated.
This criterion let us exclude APDAs whose properties have not been evalu-
ated nor analysed.

IN3 The study is published in 2011 or later. Earlier studies have been reviewed
and evaluated by De Weerdt et al. [3], therefore, we decided to focus only
on the successive studies. Nevertheless, we performed a mapping of the
studies assessed in 2011 [3] and their successors (where applicable), cf.
Table 2.

IN4 The study is peer-reviewed. This criterion guarantees a minimum reason-
able quality of the studies included in this SLR.

IN5 The study is written in English.

α , α
+, α

++ [33–35] α$ [36]
AGNEs Miner [37] —

(DT) Genetic Miner [38, 39] Evolutionary Tree Miner [10]
Heuristics Miner [40, 41] Heuristics Miner [8, 42–44]

ILP Miner [45] Hybrid ILP Miner [46]

Table 2: APDAs assessed by De Weerdt et al. [3] (left) and the respective succes-
sors (right).

Inclusion criteria IN3, IN4 and IN5 were automatically applied through the
configuration of the search engines. After the application of the latter three in-
clusion criteria, we obtained a total of 2,820 studies. Then, we skimmed title and
abstract of these studies to exclude those studies that were clearly not compliant
with IN1. As a result of this first iteration, we obtained 344 studies.

Then, we assessed each of the 344 studies against the inclusion criteria IN1 and
IN2. The assessment of IN1 was based on the accurate reading of the abstract,
introduction and conclusion. On the other hand, to determine whether a study

42

fulfilled IN2, we relied on the findings reported in the evaluation of the studies. As
a result of the iterations, we found 86 studies matching the five inclusion criteria.

However, many of these studies refer to the same APDA, i.e., some studies are
either extensions, optimization, preliminaries or generalization of another study.
For such reason, we decided to group the studies by either the last version or the
most general one: the one capturing the main idea of the APDA, rather than a
specific variant, extension, or adaptation. At the end of this process, as shown
in Table 3, 34 main groups of discovery algorithms were identified. Figure 13
shows how the studies are distributed over time. We can see that the interest in
the topic of automated process discovery grew over time with a sharp increase
between 2013 and 2014, and lately reducing to the average number of studies per
year.

2011 2013 2015 2017

3

7

11

16

28

Publication Year

#
St

ud
ie

s

Figure 13: Number of studies over time.

3.3. Classification of the Studies

Driven by the research questions defined in Section 3.2.1, we identified the fol-
lowing classification dimensions to survey the APDAs described in the primary
studies:

1. Model type (procedural, declarative, hybrid) and model language (e.g., Petri
nets, BPMN, Declare) — RQ1.2

2. Semantic captured in procedural models: parallelism (AND), exclusive choice
(XOR), inclusive choice (OR), loop — RQ1.3

3. Type of implementation (standalone or plug-in, and tool accessibility) —
RQ1.4

4. Type of evaluation data (real-life, synthetic or artificial log, where a syn-
thetic log is one generated from a real-life model while an artificial log is
one generated from an artificial model) and application domain (e.g., insur-
ance, banking, healthcare) — RQ1.5

This information is summarized in Table 3. Each entry in this table refers to
the main study of the 34 groups found. Also, we cited all the studies that relate

43

to the main one. Collectively, the information reported by Table 3 allows us to
answer RQ1.1, i.e. “what APDAs exist?”

In the remainder, we proceed with surveying each main study along the above
classification dimensions, to answer the other research questions.

3.3.1. Model Type and Language (RQ1.2)

The majority of the APDAs (25 out of 34) produce procedural models. Six ap-
proaches [48,55,67,70,96,106] discover declarative models in the form of Declare
constraints, whereas [77] produces declarative models using the WoMan formal-
ism. The approaches in [83, 89] discover hybrid models as a combination of Petri
nets and Declare constraints.

Regarding the modeling language of the automatically discovered process mod-
els, we notice that Petri nets is the predominant one. However, more recently, we
have seen the appearance of APDAs that produce models in BPMN, which is more
practice-oriented and less technical than Petri nets. Other technical languages
employed, besides Petri nets, include Causal nets, State machines and simple Di-
rected Acyclic Graphs, while Declare is the most commonly-used language when
producing declarative models.

Petri nets. In [47], the authors describe an algorithm to extract block-structured
Petri nets from event logs. The algorithm works by first building an adjacency
matrix between all pairs of tasks and then analyzing the information in it to ex-
tract block-structured models consisting of basic sequence, choice, parallel, loop,
optional and self-loop structures as building blocks. The approach has been im-
plemented in a standalone tool called HK.

The APDA presented in [36] is based on the α$ algorithm, which can discover
invisible tasks involved in non-free-choice constructs. The algorithm is an exten-
sion of the well-known α algorithm, one of the very first algorithms for automated
process discovery, originally presented in [122].

In [114], the authors propose a generic divide-and-conquer framework for the
discovery of process models from large event logs. The approach consists in par-
titioning the event log into smaller logs and discovering a model from each of
them. The output is then assembled from all the models discovered from the
sublogs. This APDA aims to produce high quality models by reducing the over-
all complexity. A range of preliminary studies [115–119] widely illustrate the
idea of splitting a large event log into a collection of smaller logs to improve the
performance of a discovery algorithm.

van Zelst et al. [46,120,121] propose an improvement of the ILP miner imple-
mented in [45], their approach is based on hybrid variable-based regions. Through
hybrid variable-based regions, it is possible to vary the number of variables used
within the ILP problems being solved. Using a different number of variables has
an impact on the average computation time for solving the ILP problem.

In [98, 99], the authors propose an approach that allows the discovery of Petri

44

nets using the theory of grammatical inference. The algorithm has been imple-
mented as a standalone application called RegPFA.

The approach proposed in [108] is based on the observation that activities with
no dependencies in an event log can be executed in parallel. In this way, this
algorithm can discover process models with concurrency even if the logs fail to
meet the completeness criteria. The APDA has been implemented in a tool called
ProM-D.

In [76], the authors propose the use of numerical abstract domains for dis-
covering Petri nets from large logs while guaranteeing formal properties of the
discovered models. The APDA guarantees the discovery of Petri nets that can re-
produce every trace in the log and that are minimal in describing the log behavior.

The approach introduced in [109] addresses the problem of discovering sound
Workflow nets from incomplete logs. The method is based on the concept of
invariant occurrence between activities, which is used to identify sets of activities
(named conjoint occurrence classes) that can be used to infer the behaviors not
exhibited in the log.

In [104], the authors leverage data carried by tokens in the execution of a busi-
ness process to track the state changes in the so-called token logs. This informa-
tion is used to improve the performance of standard discovery algorithms.

Process trees. The Inductive Miner [60] and the Evolutionary Tree Miner [10] are
both based on the extraction of process trees from an event log. Concerning the
former, many different variants have been proposed during the last years, but its
first appearance was in [61]. Successively, since the original approach was unable
to deal with infrequent behavior, an improvement was proposed in [60], which
efficiently drops infrequent behavior from logs, still ensuring that the discovered
model is behaviorally correct (sound) and highly fitting. Another variant of the
Inductive Miner is presented in [9]. This variant can minimize the impact of in-
completeness of the input logs. In [63], the authors discuss ways of systematically
treating lifecycle information in the discovery task. They introduce a process dis-
covery technique that is able to handle lifecycle data to distinguish between con-
currency and interleaving. The approach proposed in [62] provides a graphical
support for navigating the discovered model, whilst the one described in [66] can
deal with cancelation or error-handling behaviors (i.e., with logs containing traces
that do not complete normally). Finally, the variant presented in [64] and [65]
combines scalability with quality guarantees. It can be used to mine large event
logs and produces sound models.

In [10], Buijs et al. introduce the Evolutionary Tree Miner. This APDA is
based on a genetic algorithm that allows the user to drive the discovery process
based on preferences with respect to the four quality dimensions of the discovered
model: fitness, precision, generalization and complexity. The importance of these
four dimensions and how to address their balance in process discovery is widely
discussed in the related studies [71–75].

45

Causal nets. Greco et al. propose an APDA that returns causal nets [90, 91]. A
causal net is a net where only the causal relation between activities in a log is
captured. This approach encodes causal relations gathered from an event log and
if available, background knowledge in terms of precedence constraints over the
topology of the resulting model. A discovery algorithm is formulated in terms of
reasoning problems over precedence constraints.

In [92], the authors propose an APDA using Maximal Pattern Mining where
they discover recurrent sequences of events in the traces of the log. Starting from
these patterns they build process models in the form of causal nets.

ProDiGen, a standalone APDA by Vazquez et al. [94, 95], allows users to dis-
cover causal nets from event logs using a genetic algorithm. The algorithm is
based on: (i) a fitness function that takes into account completeness, precision,
and complexity; and (ii) ad-hoc crossover and mutation operators.

Another approach that produces causal nets is the Proximity Miner, presented
in [110, 111]. This APDA extracts behavioral relations between the events of the
log which are then enhanced using inputs from domain experts.

Finally, in [113], the authors propose an approach to discover causal nets that
optimizes the scalability and interpretability of the outputs. The process under
analysis is decomposed into a set of stages, such that each stage can be mined
separately. The proposed technique discovers a stage decomposition that maxi-
mizes modularity.

State machines. The CSM Miner, discussed in [102, 103], discovers state ma-
chines from event logs. Instead of focusing on the events or activities that are
executed in the context of a particular process, this approach concentrates on
the states of the different process perspectives and discover how they are re-
lated with each other. These relations are expressed in terms of Composite State
Machines (CSM). The CSM Miner provides an interactive visualization of these
multi-perspective state-based models.

BPMN models. In [101], Conforti et al. present the BPMN Miner, an APDA
for discovering BPMN models containing sub-processes, activity markers such as
multi-instance and loops, and interrupting and non-interrupting boundary events
(to model exception handling). The approach has been subsequently improved
in [100] to make it robust to noise in event logs.

Another APDA for discovering BPMN models has been presented in [93]. In
this approach, a hierarchical view on process models is formally specified and an
evolution strategy is applied on it. The evolution strategy, which is guided by the
diversity of the process model population, efficiently finds the process models that
best represent a given event log.

A further approach to discover BPMN models is the Dynamic Constructs Com-
petition Miner [84,86,87]. This APDA extends the Constructs Competition Miner
presented in [85], and it is based on a divide-and-conquer algorithm which discov-
ers block-structured process models from logs.

46

In [8], the authors present the Flexible Heuristics Miner. This approach can
discover process models containing non-trivial constructs, but with a low degree
of block structuredness. The discovered models are a specific type of Heuris-
tics nets where the semantics of splits and joins is represented using split/join
frequency tables. This results in easy to understand process models even in the
presence of non-trivial constructs and log noise. The discovery algorithm is based
on the original Heuristics Miner [41]. Flexible Heuristics Miner was later im-
proved, as anomalies were found concerning the validity and completeness of the
resulting process model. The implementation of the improvements led to the Up-
dated Heuristics Miner [44]. Successively, a data-aware version of the Heuristics
Miner that takes into consideration data attached to events in a log was presented
in [43]. Whilst, in [11, 42], the authors propose an improvement for Heuristics
Miner based on the idea of separating the objective of producing accurate models
and that of ensuring their structuredness and soundness. Instead of directly dis-
covering a structured process model, the approach first discovers accurate, possi-
bly unstructured (and unsound) process models, and then transforms the resulting
process model into a structured (and sound) one.

Fodina [12, 112] is an APDA based on the Heuristics Miner [41]. However,
differently from the latter, Fodina is more robust to noisy data, it is able to dis-
cover duplicate activities, and allows for flexible configuration options to drive the
discovery according to end user inputs.

Declarative models. In [49], the authors present the first basic approach for min-
ing declarative process models expressed using Declare constraints [123, 124].
This approach was improved in [48] using a two-phase approach. The first phase
is based on an apriori algorithm used to identify frequent sets of correlated ac-
tivities. A list of candidate constraints is built on the basis of the correlated ac-
tivity sets. In the second phase, the constraints are checked by replaying the log
on specific automata, each accepting only those traces that are compliant to one
constraint. Those constraints satisfied by a percentage of traces higher than a
user-defined threshold, are discovered. Other variants of the same approach are
presented in [50–54]. The technique presented in [50] leverages apriori knowl-
edge to guide the discovery task. In [51], the approach is adapted to be used
in cross-organizational environments in which different organizations execute the
same process in different variants. In [52], the author extends the approach to
discover metric temporal constraints, i.e., constraints taking into account the time
distance between events. Finally, in [53, 54], the authors propose mechanisms to
reduce the execution times of the original approach presented in [48].

MINERful [55–57] discovers Declare constraints using a two-phase approach.
The first phase computes statistical data describing the occurrences of activities
and their interplay in the log. The second one checks the validity of Declare con-
straints by querying such a statistic data structure (knowledge base). In [58, 59],
the approach is extended to discover target-branched Declare constraints, i.e. con-

47

straints in which the target parameter is the disjunction of two or more activities.
The approach presented in [67] is the first for the discovery of Declare con-

straints with an extended semantics that take into consideration data conditions.
The data-aware semantics of Declare presented in this paper is based on first-order
temporal logic. The approach presented in [96,97] is based on the use of discrim-
inative rule mining to determine how the characteristics of the activity lifecycles
in a business process influence the validity of a Declare constraint in that process.

Other approaches for the discovery of Declare constraints have been presented
in [70, 106]. In [70], the authors present the Evolutionary Declare Miner that im-
plements the discovery task using a genetic algorithm. The SQLMiner, presented
in [106], is based on a discovery approach that directly works on relational event
data by querying a log with standard SQL. By leveraging database performance
technology, the discovery procedure is extremely fast. Queries can be customized
and cover process perspectives beyond control flow [107].

The WoMan framework, proposed by Ferilli in [77] and further extended in the
related studies [78–82], is based on an algorithm that learns and refines process
models from event logs by discovering first-order logic constraints. It guarantees
incrementality in learning and adapting the models, the ability to express triggers
and conditions on the process tasks and efficiency.

Further approaches. In [68, 69], the authors introduce a monitoring framework
for automated process discovery. A monitoring context is used to extract traces
from relational event data and attach different types of metrics to them. Based on
these metrics, traces with certain characteristics can be selected and used for the
discovery of process models expressed as directly-follows graphs.

Vasilecas et al. [88] present an approach for the extraction of directed acyclic
graphs from event logs. Starting from these graphs, they generate Bayesian belief
networks, one of the most common probabilistic models, and use these networks
to efficiently analyze business processes.

In [105], the authors show how conditional partial order graphs, a compact
representation of families of partial orders, can be used for addressing the problem
of compact and easy-to-comprehend representation of event logs with data. They
present algorithms for extracting both the control flow as well as relevant data
parameters from a given event log and show how conditional partial order graphs
can be used to visualize the obtained results. The approach has been implemented
as a Workcraft plug-in and as a standalone application called PGminer.

The Hybrid Miner, presented in [83], puts forward the idea of discovering a
hybrid model from an event log based on the semantics defined in [125]. Ac-
cording to such semantics, a hybrid process model is a hierarchical model, where
each node represents a sub-process, which may be specified in a declarative or
procedural way. Petri nets are used for representing procedural sub-processes and
Declare for representing declarative sub-processes.

[89] proposes an approach for the discovery of hybrid models based on the

48

semantics proposed in [126]. Differently from the semantics introduced in [125],
where a hybrid process model is hierarchical, the semantics defined in [126] is
devoted to obtain a fully mixed language, where procedural and declarative con-
structs can be connected with each other.

3.3.2. Procedural Language Constructs (RQ1.3)

All the 25 APDAs that discover a procedural model can detect the basic control-
flow structure of sequence. Out of these, only four can also discover inclusive
choices, but none in the context of non-block-structured models. In fact, [10,
60] are able to directly identify block-structured inclusive choices (using process
trees), while [100, 114] can detect this construct only when used on top of [10]
or [60] (i.e. indirectly).

The remaining 21 APDAs can discover constructs for parallelism, exclusive
choice and loops, with the exception of: [68], which can detect exclusive choice
and loops but not parallelism; [105], which can detect parallelism and exclusive
choice but not loops; and [88], which can discover exclusive choices only.

3.3.3. Implementation (RQ1.4)

Over 50% of the APDAs (18 out of 34) provide an implementation as a plug-
in for the ProM platform. 2 The reason behind the popularity of ProM can be
explained by its open-source, platform-independent, and adaptable framework,
which allows researchers to easily develop and test new discovery algorithms.
Furthermore, ProM was the first software tool for process mining resulting in the
older and most known framework. One of the approaches which has a ProM
implementation [55] is also available as standalone tool. The works [42,100,113]
provide both a standalone implementation and a further implementation as a plug-
in for Apromore,3 which is an online process analytics platform also available
under an open-source license. Finally, one APDA [105] has been implemented as
a plug-in for Workcraft,4 a platform for designing concurrent systems.

We note that 21 tools out of 34 are made publicly available to the community,
leaving out 4 ProM plug-ins and 9 standalone tools.

3.3.4. Evaluation Data and Domains (RQ1.5)

The surveyed APDAs have all been evaluated using one or more of the follow-
ing three types of event logs: (i) real-life logs, i.e. real-life processes execution
data; (ii) synthetic logs, generated by replaying real-life process models; and (iii)
artificial logs, generated by replaying artificial models.

We found that the majority of the APDAs (30 out of 34) were tested using real-
life logs. Among them, 11 approaches (cf. [12, 42, 47, 48, 55, 88–90, 96, 98, 108])

2http://promtools.org
3http://apromore.org
4http://workcraft.org

49

http://promtools.org
http://apromore.org
http://workcraft.org

were further tested against synthetic logs. Whilst 13 approaches (cf. [10, 36, 42,
76,77,84,89,92,93,100,104,105,114]) against artificial logs. Finally, one APDA
was tested both on synthetic and artificial logs only (cf. [94]), while [46,109] were
tested on artificial logs and [70] on synthetic logs only. Among the approaches
tested on real-life logs, we observed a growing trend in using publicly-available
logs, as opposed to private logs which hamper the replicability of the results.

Concerning the application domains of the real-life logs, we note that several
methods used a selection of the event logs made available by the Business Process
Intelligence Challenge (BPIC), which is held annually as part of the BPM Con-
ference series. These logs are publicly available at the 4TU Centre for Research
Data,5 and cover domains such as healthcare (used by [42, 55, 60, 67, 92, 106]),
banking (used by [42,55,60,83,88,93,98,102,106,114]), IT support management
in automotive (cf. [42,96,98]), and public administration (cf. [10,48,60,76,114]).
A public log recording a process for managing road traffic fines (also available
at the 4TU Centre for Research Data) was used in [42]. In [105], the authors
use logs from various domains available at http://www.processmining.be/
actitrac/.

Besides these publicly-available logs, a range of private logs were also used,
originating from different domains such as logistics (cf. [108, 110]), traffic con-
gestion dynamics [90], employers habits (cf. [77, 102]), automotive [36], health-
care [42, 93], and project management and insurance (cf. [68, 100]).

3.4. Threats to Validity

The greatest threat to validity refers to the potential selection bias inaccuracies in
data extraction and analysis typical of literature reviews. We tried to minimize
such issues by adhering to the guidelines outlined by Kitchenham [28], nonethe-
less, the inclusion criteria design and the consequently selection of the studies
remains prone to subjectiveness. The latter should be considered as a limitation
of our work, even though, to the best of our knowledge (and the reviewers of our
work knowledge), we believe no fundamental study was left aside. Yet, while we
cannot guarantee it, we showed that we used well-known literature sources and
libraries in information technology to extract relevant studies on the topic of au-
tomated process discovery. We performed a backward reference search to avoid
the exclusion of potentially relevant papers, and, to avoid that our review was
threatened by insufficient reliability, we ensured that the search process could be
replicated by other researchers. However, the search may produce different results
as the algorithm used by source libraries to rank results based on relevance may
be updated (see, e.g. Google Scholar).

5https://data.4tu.nl/repository/collection:event_logs_real

50

http://www.processmining.be/actitrac/
http://www.processmining.be/actitrac/
https://data.4tu.nl/repository/collection:event_logs_real

3.5. Summary

In this chapter, we formally introduced the problem of automated process discov-
ery, and we reported an extensive systematic literature review of the state-of-the-
art APDAs.

Our review highlights a growing interest in the field of automated process dis-
covery, and confirms the existence of a wide and heterogeneous number of pro-
posals. Between 2012 and 2017 more than 80 studies proposing an automated
process discovery approach have been published. We grouped these studies into
34 groups, each referring to a specific APDA and we described their features, such
as: the type of model they can discover, semantic they are able to represent, type of
implementation and available artifacts and tools, and type of evaluation. Despite
the variety of proposals, we could clearly identify two main streams: approaches
that output procedural process models, and approaches that output declarative pro-
cess models. Furthermore, while the latter ones only rely on declarative state-
ments to represent a process, the former provide various language alternatives,
although most of these methods output Petri nets. The predominance of Petri
nets is driven by the semantic power of this language, and by the requirements of
the methods used to assess the quality of the discovered process models (chiefly,
fitness and precision).

The information gathered in our SLR allowed us to answer the first part of our
RQ1 (what are the state-of-the-art APDAs?), in the next chapter, starting from the
outcome of our SLR, we will address the second part of our RQ1, focusing on
identifying the strengths and the weakness of the state-of-the-art APDAs.

51

M
et

ho
d

M
ai

n
st

ud
y

Ye
ar

R
el

at
ed

st
ud

ie
s

M
od

el
ty

pe
M

od
el

la
ng

ua
ge

Se
m

an
tic

C
on

st
ru

ct
s

Im
pl

em
en

ta
tio

n
E

va
lu

at
io

n
A

N
D

X
O

R
O

R
L

oo
p

Fr
am

ew
or

k
A

cc
es

si
bl

e
R

ea
l-

lif
e

Sy
nt

h.
A

rt
.

H
K

H
ua

ng
an

d
K

um
ar

[4
7]

20
12

Pr
oc

ed
ur

al
Pe

tr
in

et
s

X
X

X
St

an
da

lo
ne

X
X

D
ec

la
re

M
in

er
M

ag
gi

et
al

.[
48

]
20

12
[4

9–
54

]
D

ec
la

ra
tiv

e
D

ec
la

re
Pr

oM
X

X
X

M
IN

E
R

fu
l

D
iC

ic
ci

o,
M

ec
el

la
[5

5]
20

13
[5

6–
59

]
D

ec
la

ra
tiv

e
D

ec
la

re
Pr

oM
,S

ta
nd

al
on

e
X

X
X

In
du

ct
iv

e
M

in
er

-I
nf

re
qu

en
t

L
ee

m
an

s
et

al
.[

60
]

20
13

[9
,6

1–
66

]
Pr

oc
ed

ur
al

Pr
oc

es
s

tr
ee

s
X

X
X

X
Pr

oM
X

X
D

at
a-

aw
ar

e
D

ec
la

re
M

in
er

M
ag

gi
et

al
.[

67
]

20
13

D
ec

la
ra

tiv
e

D
ec

la
re

Pr
oM

X
X

Pr
oc

es
s

Sk
el

et
on

iz
at

io
n

A
be

,K
ud

o
[6

8]
20

14
[6

9]
Pr

oc
ed

ur
al

D
ir

ec
tly

-f
ol

lo
w

s
gr

ap
hs

X
X

St
an

da
lo

ne
X

E
vo

lu
tio

na
ry

D
ec

la
re

M
in

er
va

nd
en

B
ro

uc
ke

et
al

.[
70

]
20

14
D

ec
la

ra
tiv

e
D

ec
la

re
St

an
da

lo
ne

X
E

vo
lu

tio
na

ry
Tr

ee
M

in
er

B
ui

js
e

al
.[

10
]

20
14

[7
1–

75
]

Pr
oc

ed
ur

al
Pr

oc
es

s
tr

ee
s

X
X

X
X

Pr
oM

X
X

X
A

im
C

ar
m

on
a,

C
or

ta
de

lla
[7

6]
20

14
Pr

oc
ed

ur
al

Pe
tr

in
et

s
X

X
X

St
an

da
lo

ne
X

X
W

oM
an

Fe
ri

lli
[7

7]
20

14
[7

8–
82

]
D

ec
la

ra
tiv

e
W

oM
an

St
an

da
lo

ne
X

X
H

yb
ri

d
M

in
er

M
ag

gi
et

al
.[

83
]

20
14

H
yb

ri
d

D
ec

la
re

+
Pe

tr
in

et
s

Pr
oM

X
X

C
om

pe
tit

io
n

M
in

er
R

ed
lic

h
et

al
.[

84
]

20
14

[8
5–

87
]

Pr
oc

ed
ur

al
B

PM
N

X
X

X
St

an
da

lo
ne

X
X

D
ir

et
ed

A
cy

cl
ic

G
ra

ph
s

V
as

ile
ca

s
et

al
.[

88
]

20
14

Pr
oc

ed
ur

al
D

ir
ec

te
d

ac
yc

lic
gr

ap
hs

X
St

an
da

lo
ne

X
X

Fu
si

on
M

in
er

D
e

Sm
ed

te
ta

l.
[8

9]
20

15
H

yb
ri

d
D

ec
la

re
+

Pe
tr

in
et

s
Pr

oM
X

X
X

X
C

N
M

in
in

g
G

re
co

et
al

.[
90

]
20

15
[9

1]
Pr

oc
ed

ur
al

C
au

sa
ln

et
s

X
X

X
Pr

oM
X

X
X

al
ph

a$
G

uo
et

al
.[

36
]

20
15

Pr
oc

ed
ur

al
Pe

tr
in

et
s

X
X

X
Pr

oM
X

X
X

M
ax

im
al

Pa
tte

rn
M

in
in

g
L

ie
sa

pu
tr

a
et

al
.[

92
]

20
15

Pr
oc

ed
ur

al
C

au
sa

ln
et

s
X

X
X

Pr
oM

X
X

D
G

E
M

M
ol

ka
et

al
.[

93
]

20
15

Pr
oc

ed
ur

al
B

PM
N

X
X

X
St

an
da

lo
ne

X
X

Pr
oD

iG
en

V
az

qu
ez

et
al

.[
94

]
20

15
[9

5]
Pr

oc
ed

ur
al

C
au

sa
ln

et
s

X
X

X
Pr

oM
X

X
N

on
-A

to
m

ic
D

ec
la

re
M

in
er

B
er

na
rd

ie
ta

l.
[9

6]
20

16
[9

7]
D

ec
la

ra
tiv

e
D

ec
la

re
Pr

oM
X

X
X

R
eg

PF
A

B
re

uk
er

et
al

.[
98

]
20

16
[9

9]
Pr

oc
ed

ur
al

Pe
tr

in
et

s
X

X
X

St
an

da
lo

ne
X

X
X

B
PM

N
M

in
er

C
on

fo
rt

ie
ta

l.
[1

00
]

20
16

[1
01

]
Pr

oc
ed

ur
al

B
PM

N
X

X
X

X
A

pr
om

or
e,

St
an

da
lo

ne
X

X
X

C
SM

M
in

er
va

n
E

ck
et

al
.[

10
2]

20
16

[1
03

]
Pr

oc
ed

ur
al

St
at

e
m

ac
hi

ne
s

X
X

X
Pr

oM
X

X
TA

U
m

in
er

L
ie

ta
l.

[1
04

]
20

16
Pr

oc
ed

ur
al

Pe
tr

in
et

s
X

X
X

Pr
oM

X
X

PG
m

in
er

M
ok

ho
v

et
al

.[
10

5]
20

16
Pr

oc
ed

ur
al

Pa
rt

ia
lo

rd
er

gr
ap

hs
X

X
St

an
da

lo
ne

,W
or

kc
ra

ft
X

X
X

SQ
L

M
in

er
Sc

hö
ni

g
et

al
.[

10
6]

20
16

[1
07

]
D

ec
la

ra
tiv

e
D

ec
la

re
St

an
da

lo
ne

X
X

Pr
oM

-D
So

ng
et

al
.[

10
8]

20
16

Pr
oc

ed
ur

al
Pe

tr
in

et
s

X
X

X
St

an
da

lo
ne

X
X

C
oM

in
er

Ta
pi

a-
Fl

or
es

et
al

.[
10

9]
20

16
Pr

oc
ed

ur
al

Pe
tr

in
et

s
X

X
X

Pr
oM

X
Pr

ox
im

ity
M

in
er

Y
ah

ya
et

al
.[

11
0]

20
16

[1
11

]
Pr

oc
ed

ur
al

C
au

sa
ln

et
s

X
X

X
Pr

oM
X

X
H

eu
ri

st
ic

s
M

in
er

A
ug

us
to

et
al

.[
42

]
20

17
[8

,1
1,

43
,4

4]
Pr

oc
ed

ur
al

B
PM

N
X

X
X

A
pr

om
or

e,
St

an
da

lo
ne

X
X

X
X

Fo
di

na
va

nd
en

B
ro

uc
ke

et
al

.[
12

]
20

17
[1

12
]

Pr
oc

ed
ur

al
B

PM
N

X
X

X
Pr

oM
X

X
X

St
ag

e
m

in
er

N
gu

ye
n

et
al

.[
11

3]
20

17
Pr

oc
ed

ur
al

C
au

sa
ln

et
s

X
X

X
A

pr
om

or
e,

St
an

da
lo

ne
X

X
D

ec
om

po
se

d
Pr

oc
es

s
M

in
er

V
er

be
ek

,v
an

de
rA

al
st

[1
14

]
20

17
[1

15
–1

19
]

Pr
oc

ed
ur

al
Pe

tr
in

et
s

X
X

X
X

Pr
oM

X
X

X
H

yb
ri

dI
L

PM
in

er
va

n
Z

el
st

et
al

.[
46

]
20

17
[1

20
,1

21
]

Pr
oc

ed
ur

al
Pe

tr
in

et
s

X
X

X
Pr

oM
X

X

Ta
bl

e
3:

O
ve

rv
ie

w
of

th
e

34
pr

im
ar

y
st

ud
ie

s
re

su
lti

ng
fr

om
th

e
se

ar
ch

(o
rd

er
ed

by
ye

ar
an

d
au

th
or

).

52

4. BENCHMARK

The majority of the APDAs we surveyed in our SLR have been assessed in an
ad-hoc manner, with different authors employing different evaluation datasets,
experimental setups, evaluation measures, and baselines. Such a variety in the
evaluations of the APDAs leads to incomparable conclusions and sometimes un-
reproducible results, due to the use of non-publicly available datasets.

In this chapter,1 we try to fill this gap by providing a benchmark framework
designed to enable researchers to empirically compare new APDAs against ex-
isting ones in a unified setting. The benchmark is provided as an open-source
command-line Java application allowing researchers to replicate the reported ex-
periments with minimal configuration effort. Starting from the outcome of our
SLR, the classified inventory of APDAs, we employed our benchmark frame-
work to assess six implementations of representative APDAs, covering twelve
publicly-available real-life event logs, twelve proprietary real-life event logs, and
nine quality measures covering four quality dimensions for automatically discov-
ered process models: fitness, precision, generalization and complexity; as well
as soundness and execution time. The results of our evaluation will allow us to
identify the existing APDAs strengths and limitations.

The rest of the chapter is structured as follows. Section 4.1 presents the AP-
DAs we selected for our benchmark out of the APDAs identified in our SLR.
Section 4.2 formally introduces the quality measures we use to assess the APDAs
in our benchmark. Section 4.3 describes the event logs included in our bench-
mark, while Section 4.4 reports the results of our benchmark. Finally, Section 4.7
summarises the chapter.

4.1. APDAs Selection

Assessing all the APDAs that resulted from the search would not be feasible in a
single study due to the heterogeneous nature of the inputs required and the outputs
produced, which would force us to set up different type of evaluations (e.g. for
declarative process models and procedural process models) that would be time
demanding and not cross-comparable. Hence, we decided to focus on the largest
subset of comparable APDAs. The APDAs considered were the ones satisfying
the following criteria:

i an implementation of the APDA is publicly accessible;
ii the output of the APDA is a BPMN model or a Petri net.
APDAs that produce BPMN models were retained because it is a de facto and

de jure standard for process modelling, while APDAs that produce Petri nets were
also included due to the fact that a large number of existing APDAs produce Petri
nets as discussed in Chapter 2.

1Corresponding to [13].

53

The application of these criteria resulted in an initial selection of the follow-
ing APDAs (corresponding to one third of the total studies): α$ [36], Induc-
tive Miner [61], Evolutionary Tree Miner [10], Fodina [12], Structured Heuristic
Miner 6.0 [42], Hybrid ILP Miner [121], RegPFA [98], Stage Miner [113], BPMN
Miner [100], Decomposed Process Mining [118].

A posteriori, we excluded the latter four due to the following reasons: Decom-
posed Process Mining, BPMN Miner, and Stage Miner were excluded as such
APDAs follow a divide-and-conquer approach which could be applied on top of
any other APDA to improve its results; on the other hand, we excluded RegPFA
because its output is a graphical representation of a Petri net (DOT), which could
not be seamlessly serialized into the standard PNML format. 2

We also considered including commercial process mining tools in the bench-
mark. Specifically, we investigated Disco,3 Celonis,4 Minit,5 and myInvenio.6

Disco and Minit are not able to produce business process models from event logs.
Instead, they can only produce directly-follows graphs (DFGs), which do not have
an execution semantics. Indeed, when a given node of the DFG has several incom-
ing arcs, the DFG does not tell us whether or not the task in question should wait
for all its incoming edges to be active, or just for one of them, or a subset of them.
A similar remark applies to split points in the DFG. Given their lack of execution
semantics, it is not possible to directly translate a DFG into a BPMN model or a
Petri net. Instead, one has to determine what is the intended behavior at each split
and join point, which is precisely what several of the APDAs based on DFGs do
(e.g., the Inductive Miner or Fodina).

Celonis and myInvenio can produce BPMN process models but all they do is to
insert OR (inclusive) gateways at the split and join points of the process map. To
the best of our knowledge, there is no existing technique for measuring precision
and fitness for BPMN models with OR-joins. When the model does not contain
OR-joins, or when the OR-joins are arranged in block-structured topologies, it is
possible to translate the BPMN models to Petri nets using existing mappings from
BPMN to Petri nets [127]. Once the model is translated as a Petri net, it becomes
possible to use existing techniques for assessing fitness and precision available for
Petri nets. But when OR-joins appear in arbitrary topologies, including unstruc-
tured cycles, this approach cannot be applied.

In conclusion, the final selection of methods for the benchmark contained: α$,
Inductive Miner (IM), Evolutionary Tree Miner (ETM), Fodina (FO), Structured
Heuristic Miner 6.0 (S-HM6), and Hybrid ILP Miner (HILP).

2The XML Petri net format.
3http://fluxicon.com/disco
4http://www.celonis.com
5http://minitlabs.com/
6http://www.my-invenio.com

54

http://fluxicon.com/disco
http://www.celonis.com
http://minitlabs.com/
http://www.my-invenio.com

4.2. Evaluation Measures

For all the selected APDAs, we measured the following accuracy and complexity
measures: fitness, precision, generalization, complexity, and soundness.

Fitness measures the ability of a model to reproduce the behavior contained in
a log. Under trace semantics, a fitness of 1 means that the model can reproduce
every trace in the log. In our benchmark, we use the fitness measure proposed by
Adriansyah et al. [128], which measures the degree to which every trace in the
log can be aligned (with a small number of errors) with a trace produced by the
model. In other words, this measures tells us how close on average a given trace
in the log can be aligned with a trace that can be generated by the model.

Precision measures the ability of a model to generate only the behavior found
in the log. 7 A score of 1 indicates that any trace produced by the model is con-
tained in the log. In our benchmark, we use the precision measure defined by
Adriansyah et al. [129], which is based on similar principles as the above fitness
measure. Recall and precision can be combined into a single measure known as F-

score, which is the harmonic mean of the two measurements
(

2 · Fitness ·Precision
Fitness+Precision

)
.

Generalization refers to the ability of an automated discovery algorithm to dis-
cover process models that generate traces that are not present in the log but that
can be produced by the business process under observation. In other words, an
APDA has a high generalization on a given event log if it is able to discover a
process model from the event log, which generates traces that: (i) are not in the
event log, but (ii) can be produced by the business process that produced the event
log. Note that, in the context of this thesis, unlike fitness and precision, general-
ization is a property of an APDA on an event log, and not a property of the model
produced by an APDA when applied to a given event log. In line with the above
definition, we use k-fold cross-validation [130] to measure generalization. This
k-fold cross-validation approach to measure the ability of an APDA to generalize
the behavior observed in the event log, has been advocated in several studies in the
field of automated process discovery [27,131–133]. Concretely, we divide the log
into k parts, we discover a process model from k− 1 parts (i.e., we hold-out one
part), and measure the fitness of the discovered model against the part held out.
This is repeated for every possible part held out. Generalization is the mean of the
fitness values obtained for each part held out. A generalization of one means that
the discovered model produces traces in the observed process, even if those traces
are not in the log from which the model was discovered. We remark that this
definition of generalisation is slightly different than the one given in Section 3.1,
since it assesses a quality of the APDA rather than a quality of the process model.

The algorithm we implemented to measure the generalization computes the
folds of each log randomly, i.e. starting from the complete log a random set of

7We note that this definition of precision slightly differ from the one given in Section 3.1, due
to its operationalization.

55

traces is selected to compose each fold. To compare the generalization of different
APDAs, we ensured that the folds given as input to each APDA were always the
same. In the results reported below, we use a value of k = 3 (as opposed to the
traditional value of k = 10) for the following two reasons. First, for a matter of
performance, since the fitness calculation for most of the model-log pairs is slow,
and repeating it 10 times for every APDA-log combination is costly. Second, for
a matter of effectiveness, since the higher the number of folds the lower is the
chance that the test-fold (1 out of K) contains traces not observed in the training
folds (K-1 out of K).

Complexity refers to how difficult it is to understand a model. Several com-
plexity metrics have been empirically shown to be (inversely) related to the under-
standability of process models [14]. These and other empirical findings on process
model understandability are distilled in the seven Process Modeling Guidelines
(7PMG) compiled by Mendling et al. [134] :

PMG1: Use as few model elements as possible; this guideline relates to the Size of
the process model, which measures the number of nodes.

PMG2: Minimize the routing paths per element; this guideline relates to the Control-
Flow Complexity (CFC) metric [135], which measures the amount of branch-
ing induced by the split gateways in a process model.

PMG3: Use one start event for each trigger and one end event for each outcome.
PMG4: Model as structured as possible; this guideline tells us that for every split

gateway in a process model, there should be a corresponding join gateway,
such that the sub-graph between the split and the join gateway is a single-
entry, single-exit region. This guideline relates to the structuredness metric,
i.e. the percentage of nodes directly located inside a single-entry single-exit
fragment. The more nodes in a process model are located outside such
fragments, the lower is the value of the structuredness measure.

PMG5: Avoid OR gateways where possible.
PMG6: Use verb-object activity labels.
PMG7: Decompose a model with more than 30 elements.

In our benchmark, we include the complexity measures that directly relate to
guidelines PMG1, PMG2, and PMG4. Guidelines PMG3 and PMG5 are dis-
cussed only when they are violated, while guidelines PMG6 and PMG7 are not
applicable to our context. Indeed, PMG6 refers to the labelling style of activities:
in our case, we take the activity labels directly from the event log. PMG7 only
applies to approaches that discover hierarchical process models, while in our case
we discover flat models.

In the following we provide the individual formulas used to compute the three
complexity measures:
◦ Size: SN(G) = |N|, where N is the set of nodes of the process model G;
◦ CFC: CFC(G) = ∑

c∈Sand

1 + ∑
c∈Sxor

|cxor•|+ ∑
c∈Sor

2|cor•| − 1, where Sand,Sxor,

56

and Sor are (respectively) the sets of AND, XOR, and OR gateways of the
process model G, and • identifies the activities that are targets of the outgo-
ing sequence flows of the gateways;

◦ Structuredness: Φ = 1− SN(G′)
SN(G)

, where G is the original process model and

G′ is the reduced process model.
Lastly, soundness assesses the behavioral correctness of a process model by

reporting whether the model violates one of the three soundness criteria [136]: (i)
option to complete; (ii) proper completion; and (iii) no dead transitions.

4.3. Setup and Datasets

To guarantee the reproducibility of our benchmark and to provide the community
with a tool for comparing new APDAs with the ones evaluated in this thesis,
we developed a command-line Java application that performs measurements of
accuracy and complexity measures on the APDAs selected above against all the
event logs used in our benchmark. The only exception was ETM, which we could
not embed in our tool due to its complex configuration settings, hence we relied
on its ProM implementation.

Our benchmark tool can be easily extended to incorporate new event logs.
Moreover, one can include additional APDAs and quality measures by implement-
ing two predefined interfaces. This is possible through the use of Java reflection,
which allows the tool to automatically detect the presence of new APDAs and
measures. More information about the interfaces to implement, how to include
them in the benchmark, and the benchmark source code structure are available in
the readme files provided with the tool.8

For our evaluation, we used two datasets. The first is the collection of real-life
event logs publicly available at the 4TU Centre for Research Data as of March
2017.9 Out of this collection, we considered the BPI Challenge (BPIC) logs, the
Road Traffic Fines Management Process (RTFMP) log, and the SEPSIS Cases
log. These logs record executions of business processes from a variety of do-
mains, e.g., healthcare, finance, government and IT service management. For our
evaluation we held out those logs that do not explicitly capture business processes
(i.e., the BPIC 2011 and 2016 logs), and those contained in other logs (e.g., the
Environmental permit application process log). Finally, in seven logs (i.e., the
BPIC14, BPIC15 collection, and BPIC17 logs), we applied the filtering technique
proposed in [137] to remove infrequent behavior.10 This filtering step was nec-

8The tool and its source code are available at https://doi.org/10.5281/zenodo.1219321.
9https://data.4tu.nl/repository/collection:event_logs_real

10This technique uses a parameter called “percentile” which refers to the percentile of the distri-
bution of the frequency of the arcs in the directly-follows graph extracted from the log, to automat-
ically determine the frequency threshold for the filtering. We set this parameter to its default value
of 12.5%.

57

https://doi.org/10.5281/zenodo.1219321
https://data.4tu.nl/repository/collection:event_logs_real

Log Total Dist. Total Dist. Tr. length
Name traces traces (%) events events min avg max

BPIC12 13,087 33.4 262,200 36 3 20 175
BPIC13cp 1,487 12.3 6,660 7 1 4 35
BPIC13inc 7,554 20.0 65,533 13 1 9 123
BPIC14f 41,353 36.1 369,485 9 3 9 167
BPIC151f 902 32.7 21,656 70 5 24 50
BPIC152f 681 61.7 24,678 82 4 36 63
BPIC153f 1,369 60.3 43,786 62 4 32 54
BPIC154f 860 52.4 29,403 65 5 34 54
BPIC155f 975 45.7 30,030 74 4 31 61
BPIC17f 21,861 40.1 714,198 41 11 33 113
RTFMP 150,370 0.2 561,470 11 2 4 20
SEPSIS 1,050 80.6 15,214 16 3 14 185

Table 4: Descriptive statistics of public logs.

essary since all the models discovered by the considered APDAs exhibited very
poor accuracy (F-score close to 0 or not computable) on the above logs, making
the comparison useless.

Table 4 reports the characteristics of the twelve logs used. These logs are
widely heterogeneous ranging from small to very large, with a log size ranging
from 681 traces (for the BPIC152f log) to 150,370 traces (for the RTFMP log). A
Similar variety can be observed in the percentage of distinct traces, ranging from
0.2% to 80.6%, and the number of event classes (i.e., activities executed within the
process), ranging from 7 to 82. Finally, the length of a trace also varies from very
short, with traces containing only one event, to very long with traces containing
185 events.

The second dataset is composed of twelve proprietary logs sourced from sev-
eral companies around the world. Table 5 reports the characteristics of these logs.
Also in this case, the logs are quite heterogeneous, with the number of traces (and
the percentage of distinct traces) ranging from 225 (of which 99.9% distinct) to
787,657 (of which 0.01% distinct). The number of recorded events varies between
4,434 and 2,099,835, whilst the number of event classes ranges from 8 to 310.

We performed two types of evaluations. In the first evaluation, we compared
all the APDAs using their default parameters. In the second one, we analysed
to what extent each APDA could improve its output using grid-search-based (i.e.
brute-force) hyper-parameter optimization. We decided to apply a grid-search-
based hyper-parameter optimization in order to exhaustively explore the solution
space of an APDA. We note that there are no ad-hoc hyper-parameter optimization
approaches for all the APDA included in this evaluation. However, due to the
extremely-long execution times, it was prohibitive to hyper-parameter optimize
α$ and ETM, so we held them out from the second evaluation. Additionally, we

58

Log Total Dist. Total Dist. Tr. length
Name traces traces (%) events events min avg max
PRT1 12,720 8.1 75,353 9 2 5 64
PRT2 1,182 97.5 46,282 9 12 39 276
PRT3 1,600 19.9 13,720 15 6 8 9
PRT4 20,000 29.7 166,282 11 6 8 36
PRT5 739 0.01 4,434 6 6 6 6
PRT6 744 22.4 6,011 9 7 8 21
PRT7 2,000 6.4 16,353 13 8 8 11
PRT8 225 99.9 9,086 55 2 40 350
PRT9 787,657 0.01 1,808,706 8 1 2 58
PRT10 43,514 0.01 78,864 19 1 1 15
PRT11 174,842 3.0 2,099,835 310 2 12 804
PRT12 37,345 7.5 163,224 20 1 4 27

Table 5: Descriptive statistics of proprietary logs.

excluded HILP since we did not find any input parameters which could be used
to optimize the F-score of the models produced. For the remaining three APDAs,
we explored the following input parameters: the two filtering thresholds required
as input by S-HM6, the only filtering threshold required as input by IM, and the
filtering threshold and the boolean flag required as input by FO. All the thresholds
ranged from 0.0 to 1.0, though to appreciate variance in the discovered process
models, we used steps of 0.05 for IM, steps of 0.10 for the thresholds of FO, and
steps of 0.20 for S-HM6. For FO, we considered all the possible combinations of
the filtering threshold and the boolean flag. In terms of event logs, in the second
evaluation we considered all logs except PRT11, because all the APDAs failed to
generate a model from this log (except ETM), as evidenced by the results of the
first evaluation with default parameters.

We performed the first evaluation on a 6-core Intel Xeon CPU E5-1650 v3 @
3.50GHz with 128GB RAM running Java 8. We allocated a total of 16GB to the
heap space and 10GB to the stack space. We enforced a timeout of four hours for
the discovery phase and one hour for measuring each of the quality measures. We
ran the second evaluation on a 6-core Intel Xeon CPU E5-2699 v4 @ 2.20GHz
with 128GB RAM running Java 8, and we increased the heap and stack spaces
to 25GB and 15GB respectively, using a timeout of 24 hours for each APDA-log
evaluation.

4.4. Benchmark Results

The results of the default parameters evaluation are shown in Tables 6, 7, 8, and 9.
In the tables, we used “-” to report that a given accuracy or complexity measure-
ment could not be reliably obtained due to syntactical or behavioral issues in the

59

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.50 0.66 0.98 59 37 1.00 yes 6.60

ETM 0.44 0.82 0.57 t/o 67 16 1.00 yes 14,400
BPIC12 FO - - - - 102 117 0.13 no 9.66

S-HM6 - - - - 88 46 0.40 no 227.80
HILP - - - - 300 460 - no 772.20

α$ - - - - 18 9 - no 10,112.60
IM 0.82 1.00 0.90 0.82 9 4 1.00 yes 0.10

ETM 1.00 0.70 0.82 t/o 38 38 1.00 yes 14,400
BPIC13cp FO - - - - 25 23 0.60 no 0.06

S-HM6 0.94 0.99 0.97 0.94 15 6 1.00 yes 130.0
HILP - - - - 10 3 - yes 0.10

α$ 0.35 0.91 0.51 t/o 15 7 0.47 yes 4,243.14
IM 0.92 0.54 0.68 0.92 13 7 1.00 yes 1.00

ETM 1.00 0.51 0.68 t/o 32 144 1.00 yes 14,400
BPIC13inc FO - - - - 43 54 0.77 no 1.41

S-HM6 0.91 0.96 0.93 0.91 9 4 1.00 yes 0.80
HILP - - - - 24 9 - yes 2.50

α$ 0.47 0.63 0.54 t/o 62 36 0.31 yes 14,057.48
IM 0.89 0.64 0.74 0.89 31 18 1.00 yes 3.40

ETM 0.61 1.00 0.76 t/o 23 9 1.00 yes 14,400
BPIC14f FO - - - - 37 46 0.38 no 27.73

S-HM6 - - - - 202 132 0.73 no 147.40
HILP - - - - 80 59 - no 7.30

α$ 0.71 0.76 0.73 t/o 219 91 0.22 yes 3,545.9
IM 0.97 0.57 0.71 0.96 164 108 1.00 yes 0.60

ETM 0.56 0.94 0.70 t/o 67 19 1.00 yes 14,400
BPIC151f FO 1.00 0.76 0.87 0.94 146 91 0.25 yes 1.02

S-HM6 - - - - 204 116 0.56 no 128.10
HILP - - - - 282 322 - no 4.40

α$ - - - - 348 164 0.08 no 8,787.48
IM 0.93 0.56 0.70 0.94 193 123 1.00 yes 0.70

ETM 0.62 0.91 0.74 t/o 95 32 1.00 yes 14,400
BPIC152f FO - - - - 195 159 0.09 no 0.61

S-HM6 0.98 0.59 0.74 0.97 259 150 0.29 yes 163.2
HILP - - - - - - - - t/o

α$ - - - - 319 169 0.03 no 10,118.15
IM 0.95 0.55 0.70 0.95 159 108 1.00 yes 1.30

ETM 0.68 0.88 0.76 t/o 84 29 1.00 yes 14,400
BPIC153f FO - - - - 174 164 0.06 no 0.89

S-HM6 0.95 0.67 0.79 0.95 159 151 0.13 yes 139.90
HILP - - - - 433 829 - no 1,062.90

α$ - - - - 272 128 0.13 no 6,410.25
IM 0.96 0.58 0.73 0.96 162 111 1.00 yes 0.7

ETM 0.65 0.93 0.77 t/o 83 28 1.00 yes 14,400
BPIC154f FO - - - - 157 127 0.14 no 0.50

S-HM6 0.99 0.64 0.78 0.99 209 137 0.37 yes 136.90
HILP - - - - 364 593 - no 14.7

α$ 0.62 0.75 0.68 t/o 280 126 0.10 yes 7,603.19
IM 0.94 0.18 0.30 0.94 134 95 1.00 yes 1.50

ETM 0.57 0.94 0.71 t/o 88 18 1.00 yes 14,400
BPIC155f FO 1.00 0.71 0.83 1.00 166 125 0.15 yes 0.56

S-HM6 1.00 0.70 0.82 1.00 211 135 0.35 yes 141.90
HILP - - - - - - - - t/o

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.70 0.82 0.98 35 20 1.00 yes 13.30

ETM 0.76 1.00 0.86 t/o 42 4 1.00 yes 14,400
BPIC17f FO - - - - 98 82 0.25 no 64.33

S-HM6 0.95 0.62 0.75 0.94 42 13 0.97 yes 143.20
HILP - - - - 222 330 - no 384.50

Table 6: Default parameters evaluation results for the BPIC logs.
60

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.99 0.70 0.82 0.99 34 20 1.00 yes 10.90

ETM 0.99 0.92 0.95 t/o 57 32 1.00 yes 14,400
RTFMP FO 1.00 0.94 0.97 0.97 31 32 0.19 yes 2.57

S-HM6 0.98 0.95 0.96 0.98 163 97 1.00 yes 262.70
HILP - - - - 57 53 - no 3.50

α$ - - - - 146 156 0.01 no 3,883.12
IM 0.99 0.45 0.62 0.96 50 32 1.00 yes 0.40

ETM 0.83 0.66 0.74 t/o 108 101 1.00 yes 14,400
SEPSIS FO - - - - 60 63 0.28 no 0.17

S-HM6 0.92 0.42 0.58 0.92 279 198 1.00 yes 242.70
HILP - - - - 87 129 - no 1.60

Table 7: Default parameters evaluation results for the public logs.

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ - - - t/o 45 34 - no 11,168.54
IM 0.90 0.67 0.77 0.90 20 9 1.00 yes 2.08

ETM 0.99 0.81 0.89 t/o 23 12 1.00 yes 14,400
PRT1 FO - - - - 30 28 0.53 no 0.95

S-HM6 0.88 0.77 0.82 0.88 59 39 1.00 yes 122.16
HILP - - - - 195 271 - no 2.59

α$ - - - - 134 113 0.25 no 3,438.72
IM ex ex ex ex 45 33 1.00 yes 1.41

ETM 0.57 0.94 0.71 t/o 86 21 1.00 yes 14,400
PRT2 FO - - - - 76 74 0.59 no 0.88

S-HM6 - - - - 67 105 0.43 no 1.77
HILP - - - - 190 299 - no 21.33

α$ 0.67 0.76 0.71 0.67 70 40 0.11 yes 220.11
IM 0.98 0.68 0.80 0.98 37 20 1.00 yes 0.44

ETM 0.98 0.86 0.92 t/o 51 37 1.00 yes 14,400
PRT3 FO 1.00 0.86 0.92 1.00 34 37 0.32 yes 0.50

S-HM6 1.00 0.83 0.91 1.00 40 38 0.43 yes 0.67
HILP - - - - 343 525 - no 0.73

α$ 0.86 0.93 0.90 t/o 21 10 1.00 yes 13,586.48
IM 0.93 0.75 0.83 0.93 27 13 1.00 yes 1.33

ETM 0.84 0.85 0.84 t/o 64 28 1.00 yes 14,400
PRT4 FO - - - - 37 40 0.54 no 6.33

S-HM6 1.00 0.86 0.93 1.00 370 274 1.00 yes 241.57
HILP - - - - 213 306 - no 5.31

α$ 1.00 1.00 1.00 1.00 10 1 1.00 yes 2.02
IM 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.03

ETM 1.00 1.00 1.00 1.00 10 1 1.00 yes 2.49
PRT5 FO 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.02

S-HM6 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.11
HILP 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.05

α$ 0.80 0.77 0.79 0.80 38 17 0.24 yes 40.10
IM 0.99 0.82 0.90 0.99 23 10 1.00 yes 2.30

ETM 0.98 0.80 0.88 t/o 41 16 1.00 yes 14,400
PRT6 FO 1.00 0.91 0.95 1.00 22 17 0.41 yes 0.05

S-HM6 1.00 0.91 0.95 1.00 22 17 0.41 yes 0.42
HILP - - - - 157 214 - no 0.13

Table 8: Default parameters evaluation results for the proprietary logs - Part 1/2.

61

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

α$ 0.85 0.90 0.88 0.85 29 9 0.48 yes 143.66
IM 1.00 0.73 0.84 1.00 29 13 1.00 yes 0.13

ETM 0.90 0.81 0.85 t/o 60 29 1.00 yes 14,400
PRT7 FO 0.99 1.00 0.99 0.99 26 16 0.39 yes 0.08

S-HM6 1.00 1.00 1.00 1.00 163 76 1.00 yes 249.74
HILP - - - - 278 355 - no 0.27

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.33 0.49 0.93 111 92 1.00 yes 0.41

ETM 0.35 0.88 0.50 t/o 75 12 1.00 yes 14,400
PRT8 FO - - - - 228 179 0.74 no 0.55

S-HM6 - - - - 388 323 0.87 no 370.66
HILP t/o t/o t/o t/o t/o t/o t/o t/o t/o

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.90 0.61 0.73 0.89 28 16 1.00 yes 63.70

ETM 0.75 0.49 0.59 0.74 27 13 1.00 yes 1,266.71
PRT9 FO - - - - 32 45 0.72 no 42.83

S-HM6 0.96 0.98 0.97 0.96 723 558 1.00 yes 318.69
HILP - - - - 164 257 - no 51.47

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.96 0.79 0.87 0.96 41 29 1.00 yes 2.50

ETM 1.00 0.63 0.77 t/o 61 45 1.00 yes 14,400
PRT10 FO 0.99 0.93 0.96 0.99 52 85 0.64 yes 0.98

S-HM6 - - - - 77 110 - no 1.81
HILP - - - - 846 3130 - no 2.55

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM t/o t/o t/o t/o 549 365 1.00 yes 121.50

ETM 0.10 1.00 0.18 t/o 21 3 1.00 yes 14,400
PRT11 FO - - - - 680 713 0.68 no 81.33

S-HM6 ex ex ex ex ex ex ex ex ex
HILP t/o t/o t/o t/o t/o t/o t/o t/o t/o

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 1.00 0.77 0.87 1.00 32 25 1.00 yes 3.94

ETM 0.63 1.00 0.77 t/o 21 8 1.00 yes 14,400
PRT12 FO - - - - 87 129 0.38 no 1.67

S-HM6 - - - - 4370 3191 1.00 yes 347.57
HILP - - - - 926 2492 - no 7.34

Table 9: Default parameters evaluation results for the proprietary logs - Part 2/2.

62

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Time (sec)

α$ 0 1 0 0 1 2 1 0
IM 9 1 2 12 7 5 24 7

Frequency ETM 5 15 9 0 10 13 24 0
Absolute FO 5 4 6 4 4 0 0 16

Best S-HM6 10 5 8 10 2 1 9 0
HILP 0 0 0 0 0 1 0 1

α$ 0 4 2 0 1 2 1 0
IM 12 9 10 9 14 15 0 13

Frequency ETM 6 0 5 0 3 5 0 0
Second FO 2 2 1 2 4 4 12 5

Best S-HM6 3 7 5 4 3 1 11 1
HILP 0 0 0 0 1 0 0 6

α$ 0 5 2 0 2 4 2 0
IM 21 10 12 21 21 20 24 20

ETM 11 15 14 0 13 18 24 0
Total FO 7 6 7 6 8 4 12 21

S-HM6 13 12 13 14 5 2 20 1
HILP 0 0 0 0 1 1 0 7

Table 10: Best score frequencies for each quality dimension (default parameters
evaluation).

discovered model (i.e., a disconnected model or an unsound model). In particu-
lar, a “-” in generalization means that one or more of the 3-folds did not yield a
reliable fitness result. Additionally, to report the occurrence of a timeout or an
exception during the execution of an APDA we used “t/o” and “ex”, respectively.
We highlighted in bold the best score for each measure on each log, we underlined
the second-best score, and we summarized these achievements in Table 10.

The first evaluation shows the absence of a clear winner among the APDAs
tested, although almost each of them clearly showed specific benefits and limita-
tions.

HILP experienced severe difficulties in producing useful outputs, regardless of
the input event log (except the case of PRT5). Over all, HILP performance was
consistent throughout the dataset, producing disconnected models or models con-
taining multiple end places without providing information about the final marking
(a well defined final marking is required in order to measure fitness and precision).
Due to these difficulties, we could only assess model complexity for HILP, except
for the simplest event log (the PRT5), where HILP had performance comparable
to the other methods.

α$ suffered of scalability issues, timing out in eight event logs (33% of the
times) and being the approach with the highest rate of time outs. It is not clear the
cause of this issue, however, we record that α$ is the second slowest approach,
behind ETM. While for the latter, the lack of efficiency is counterbalanced by the
quality of the discovered models, the models discovered by α$ do not stand out
in accuracy or in complexity. Nevertheless, α$ produced models striking a good
balance between fitness and precision (except for the BPIC13inc log).

FO struggled to deliver sound models, discovering one sound model out of
three. This makes FO unreliable when it comes to discovering sound models,

63

however, when it does discover a sound model, it is usually highly fitting. Indeed,
FO scored the best fitness five times out of 24, or five times out of eight, if we
consider only the subset of sound models discovered by FO.

S-HM6 performed better than FO, even though its discovered models were also
often unsound. Out of the 16 sound models discovered, ten scored the best fitness
and generalization, making S-HM6 one of the best APDAs for these two quality
dimensions along with IM (see Table 10). Precision varied according to the input
event log, demonstrating that the performance of S-HM6 is bound to the type of
input log. Whilst it was not the absolute best in F-score, S-HM6 achieved most of
the times good results, placing itself as the second best APDA for F-score.

The remaining two APDAs, namely IM and ETM, consistently performed very
well across the whole evaluation, excelling either in fitness, precision, F-score or
generalization, and simultaneously striking the highest simplicity for the discov-
ered process models. IM scored 20 times a fitness greater than 0.90 (of which 9
times the highest), and it achieved similar results for generalization. Despite this,
IM did not stand out for its precision, nor for its F-score. ETM, instead, achieved
respectively 19 times a precision greater than 0.80, and it was the best 15 times.
However, ETM scored high precision at the cost of lower fitness, this can be due
to the design of ETM. We remind that ETM is a genetic algorithm, it starts from
a very simple model (including little behaviour from the log) and it improves the
model (adding new behaviour) slowly at each generation. ETM performed well
also with its F-score (along with S-HM6), achieving an F-score above 0.80 9 times
out of 24, outperforming the other APDAs.

In terms of complexity, IM and ETM stood out among all the APDAs (see Ta-
ble 10). IM and ETM always discovered sound and fully block-structured models
(structuredness equal to 1.00). ETM and IM discovered the smallest or second-
smallest model for more than 50% and 80% of the logs respectively. These models
also had low CFC, and were the ones with the lowest CFC on 13 logs (ETM) and
on five logs (IM). On the execution time, FO was the clear winner, followed by
IM. The former was the fastest discovery approach 16 times out of 24, discover-
ing a model in less than a second for 13 logs. In contrast, ETM was the slowest
APDA, reaching the timeout of four hours for 22 logs.

The results of the hyper-parameter optimization evaluation are shown in Ta-
bles 11–14. Here we marked with a “*” the discovery approaches that were not
able to complete the exploration of the solution space within 24 hours of timeout
time. The purpose of this second evaluation was to understand if the APDAs can
achieve higher F-score when optimally tuned, and what price they pay for such an
improvement, i.e. at the cost of which other quality dimension. In line with our
goal, Tables 11 and 12 report the accuracy and complexity scores of the discov-
ered models with the highest F-score. We note that some of the insights gained
from the default parameters evaluation do not hold anymore. FO and S-HM6 were
almost always able to discover sound models from each log for at least one input
configuration. FO outperformed IM in fitness, by scoring the best fitness 15 times.

64

Discovery Accuracy Gen. Complexity
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct.

IM 0.90 0.69 0.78 0.91 69 46 1.00
BPIC12 FO* 1.00 0.07 0.14 - 112 1369 1.00

S-HM6 0.96 0.67 0.79 0.96 97 110 0.63
IM 0.99 0.98 0.98 0.99 11 5 1.00

BPIC13cp FO 0.00 0.42 0.00 - 19 16 1.00
S-HM6 0.96 0.92 0.94 0.96 20 14 0.80

IM 0.90 0.87 0.89 0.90 13 5 1.00
BPIC13inc FO 0.00 0.36 0.00 - 42 76 0.88

S-HM6 0.93 0.98 0.96 0.93 16 10 1.00
IM 0.75 0.97 0.85 0.75 19 4 1.00

BPIC14f FO 0.97 0.81 0.88 0.31 27 34 0.56
S-HM6 0.91 0.84 0.88 0.91 178 117 0.97

IM 0.81 0.68 0.74 0.83 140 70 1.00
BPIC151f FO 1.00 0.76 0.87 0.94 146 91 0.26

S-HM6 0.88 0.89 0.89 0.58 1576 550 1.00
IM 0.71 0.76 0.74 0.69 141 61 1.00

BPIC152f FO 0.99 0.63 0.77 0.99 195 164 0.09
S-HM6 0.99 0.62 0.76 0.99 246 167 0.19

IM 0.65 0.99 0.79 0.63 73 8 1.00
BPIC153f FO 0.99 0.60 0.75 0.99 162 163 0.07

S-HM6 0.81 0.77 0.79 0.81 231 77 0.97
IM 0.73 0.84 0.78 0.75 108 42 1.00

BPIC154f FO 1.00 0.67 0.80 1.00 155 128 0.14
S-HM6 0.99 0.66 0.79 0.99 217 145 0.36

IM 0.64 0.88 0.74 0.65 105 34 1.00
BPIC155f FO 1.00 0.71 0.83 1.00 166 125 0.15

S-HM6 0.82 0.94 0.87 0.81 610 166 0.96
IM 1.00 0.70 0.82 1.00 39 24 1.00

BPIC17f FO* - - - - - - -
S-HM6 0.97 0.70 0.81 0.97 51 25 1.00

IM 0.94 0.98 0.96 0.94 28 10 1.00
RTFMP FO 1.00 0.94 0.97 0.84 31 32 0.19

S-HM6 0.95 0.99 0.97 0.95 82 30 1.00
IM 0.62 0.98 0.76 0.76 31 14 1.00

SEPSIS FO 0.96 0.36 0.53 0.30 51 109 0.33
S-HM6 0.80 0.39 0.52 0.86 299 187 1.00

Table 11: Scores of the models with the best F-score discovered with hyper-
parameter optimization (public logs).

65

Discovery Accuracy Gen. Complexity
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct.

IM 0.91 0.89 0.90 0.91 24 11 1.00
PRT1 FO 0.98 0.92 0.95 0.99 25 29 0.72

S-HM6 0.95 0.97 0.96 0.95 37 29 0.92
IM - - - - - - -

PRT2 FO 1.00 0.17 0.30 1.00 55 241 0.93
S-HM6 - - - - - - -

IM 0.87 0.93 0.90 0.87 27 8 1.00
PRT3 FO 1.00 0.86 0.92 1.00 34 37 0.32

S-HM6 0.99 0.85 0.91 0.96 40 34 0.48
IM 0.86 1.00 0.92 0.86 21 5 1.00

PRT4 FO 1.00 0.87 0.93 - 32 41 0.50
S-HM6 0.93 0.96 0.95 0.93 66 55 0.77

IM 1.00 1.00 1.00 1.00 12 1 1.00
PRT5 FO 1.00 1.00 1.00 0.95 10 1 1.00

S-HM6 1.00 1.00 1.00 1.00 12 1 1.00
IM 0.90 1.00 0.95 0.90 17 2 1.00

PRT6 FO 1.00 0.91 0.95 0.96 22 17 0.41
S-HM6 0.98 0.96 0.97 0.98 24 15 0.46

IM 0.88 1.00 0.93 0.88 23 5 1.00
PRT7 FO 0.99 1.00 0.99 0.99 26 16 0.39

S-HM6 1.00 1.00 1.00 1.00 165 76 1.00
IM* 1.00 0.09 0.16 0.99 95 86 1.00

PRT8 FO - - - - - - -
S-HM6 0.93 0.42 0.58 0.89 221 422 0.83

IM 0.93 0.71 0.80 0.93 28 14 1.00
PRT9 FO - - - - - - -

S-HM6 0.99 0.99 0.99 0.99 41 59 0.68
IM 1.00 0.81 0.89 1.00 47 33 1.00

PRT10 FO 0.99 0.93 0.96 - 52 85 0.64
S-HM6 0.98 0.83 0.90 0.98 1440 972 1.00

IM 0.93 0.92 0.93 0.93 37 26 1.00
PRT12 FO 1.00 0.80 0.89 0.94 60 237 0.87

S-HM6 0.88 0.67 0.76 0.88 3943 2314 1.00

Table 12: Scores of the models with the best F-score discovered with hyper-
parameter optimization (proprietary logs).

66

Discovery BPIC Logs
Metric Method 12 13cp 13inc 14f 151f 152f 153f 154f 155f 17f RTFMP SEPSIS

IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fitness FO 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00

S-HM6 0.96 1.00 0.93 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.80
IM 0.92 1.00 0.89 1.00 0.97 1.00 0.99 0.91 0.99 0.89 0.98 0.98

Prec. FO 0.07 0.42 0.36 0.81 0.76 0.63 0.60 0.67 0.71 - 0.94 0.36
S-HM6 0.67 0.92 0.98 0.84 0.89 0.78 0.77 0.66 0.94 0.70 0.99 0.39

IM 0.78 0.98 0.89 0.85 0.74 0.74 0.79 0.78 0.74 0.82 0.96 0.76
F-score FO 0.14 0.00 0.00 0.88 0.87 0.77 0.75 0.80 0.83 - 0.97 0.53

S-HM6 0.79 0.94 0.96 0.88 0.89 0.76 0.79 0.79 0.87 0.81 0.97 0.52
IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gen. FO - - 0.00 0.96 1.00 1.00 1.00 1.00 1.00 - 0.90 0.94
(3-Fold) S-HM6 0.96 0.99 0.93 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.86

IM 15 9 9 17 63 30 17 25 32 23 11 14
Size FO 112 19 39 27 113 137 114 111 117 - 23 40

S-HM6 87 8 16 13 74 246 207 139 232 22 82 299
IM 8 2 3 2 10 7 8 9 9 6 5 9

CFC FO 1369 16 54 34 47 57 53 46 44 - 13 35
S-HM6 65 0 10 0 0 167 77 35 140 0 30 187

IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Struct. FO 1.00 1.00 1.00 1.00 1.00 0.29 1.00 1.00 1.00 - 1.00 1.00

S-HM6 0.77 1.00 1.00 0.97 1.00 0.99 0.98 0.37 0.96 1.00 1.00 1.00

Table 13: Best scores achieved in hyper-parameter evaluation by each approach
on each quality dimension (public logs).

Discovery Proprietary (PRT) Logs
Metric Method # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 12

IM 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fitness FO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - 1.00 1.00

S-HM6 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.88
IM 0.89 - 0.93 1.00 1.00 1.00 1.00 0.09 0.89 0.95 0.99

Prec. FO 0.92 0.17 0.89 0.94 1.00 0.91 1.00 - - 0.96 0.80
S-HM6 0.97 - 0.85 0.96 1.00 0.96 1.00 0.42 0.99 0.83 0.67

IM 0.90 - 0.90 0.92 1.00 0.95 0.93 0.16 0.80 0.89 0.93
F-score FO 0.95 0.30 0.92 0.93 1.00 0.95 0.99 - - 0.96 0.89

S-HM6 0.96 - 0.91 0.95 1.00 0.97 1.00 0.58 0.99 0.90 0.76
IM 1.00 - 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Gen. FO 1.00 1.00 1.00 - 0.95 0.96 1.00 - - - 0.94
(3-Fold) S-HM6 1.00 - 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.88

IM 14 - 27 21 12 17 23 95 16 27 25
Size FO 22 55 30 30 10 22 21 - - 48 60

S-HM6 13 - 37 66 12 24 40 59 41 23 3943
IM 4 - 8 5 1 2 5 86 2 10 18

CFC FO 16 74 24 33 1 17 7 - - 44 66
S-HM6 0 - 27 55 1 15 15 0 58 0 2314

IM 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Struct. FO 0.77 0.93 0.57 0.54 1.00 0.41 0.81 - - 0.81 0.87

S-HM6 1.00 - 0.72 1.00 1.00 0.50 1.00 0.85 1.00 1.00 1.00

Table 14: Best scores achieved in hyper-parameter evaluation by each approach
on each quality dimension (proprietary logs).

67

IM performed better in precision (being 13 times the best). Further, IM delivered
the simplest model for size, CFC and structuredness 20 times. S-HM6 turned to
be the most balanced discovery approach, scoring the highest F-score most of the
times (13 out of 23), at the cost of complexity, indeed, S-HM6 was never the best
for size or CFC. Only the results for generalization got mixed, with S-HM6 scor-
ing the best generalization 11 times, followed very closely by FO (nine times) and
by IM (five times).

Finally, Tables 13 and 14 report the best score that each discovery approach
can achieve in each dimension. FO and IM are always able to maximally opti-
mize fitness, scoring always 1.00 as their best score. S-HM6 performs slightly
worse in fitness, being always in the range 0.90-1.00. Similar are the results for
generalization, with FO and IM leading again, and S-HM6 following closely. As
for precision, FO and S-HM6 get over 0.80 66% of the times only, whilst IM
strikes better results, being always in the range 0.90-1.00 (excluding the two out-
lier models from the logs PRT2 and PRT8). Finally, F-score results reveal the
ability of the discovery approaches to properly balance fitness and precision. We
note that IM lacks such an ability, reaching an F-score above 0.90 only 30% of the
times, with values below 0.80 35% of the times. These results are as such despite
IM can reach very high values both in fitness and in precision, individually. FO
follows IM as worst performer in F-score with similar outcomes, whilst S-HM6
distinguished itself with scores in the range 0.80-1.00 and often over 0.90 (more
than 50% of the times). As for model simplicity, IM leads the way. Whilst FO
and S-HM6 struggle to optimize both size and CFC.

In conclusion, an approach outperforming all others across all measures could
not be identified. Despite this, when it comes to default parameters IM and ETM
showed to be the most effective approaches when the focus is either on fitness,
precision, or F-score, and these APDAs all yield simple process models. However,
even these two methods suffer from a common weakness, which is their inability
to handle large-scale real-life logs, as reported for the PRT11 log in our evaluation.
On the other hand, the hyper-parameter optimization exercise showed that also FO
and S-HM6 can perform well, though at the expenses of long execution times (up
to 24 hours for some logs) and powerful computational resources.

The complete results of the hyper-parameter optimization evaluation are avail-
able online11 and include excel sheets reporting for each APDA (IM, FO, SM,
and S-HM6) the results obtained for each input configuration on each event log
tested.

4.5. Threats to Validity

The experimental evaluation is limited in scope to techniques that produce Petri
nets (or models in languages such as BPMN or Process Trees, which can be di-

11At https://doi.org/10.5281/zenodo.1219321

68

https://doi.org/10.5281/zenodo.1219321

rectly translated to Petri nets). Also, it only considers main studies identified in
our SLR (reported in Chapter 2) with an accessible implementation. In order to
compensate for these shortcomings, we published the benchmark framework as
open-source software in order to enable researchers both to reproduce the results
herein reported and to run the same evaluation for other APDAs, or for alternative
configurations of the evaluated APDAs.

Another limitation derives from the measurements of fitness, precision, and
generalization, which assume that the input event log is noise-free. We remark
that it is not possible to determine whether an event log contains behavioural
inconsistencies (i.e. noise) without having a reference model to compare with,
and even more complex would be to detect such inconsistencies. However, even
though the event logs are not noise-free, any possible measurement error would
not discriminate a single APDA, but rather affect equally all of them as a system-
atic bias.

The precision measure we used in our benchmark [129] does not totally adhere
to the original definition of precision as given in Section 3.1. This may pose a
threat to the interpretation of the results. On the other hand, all the state-of-the-
art precision measures [4, 5] have their drawbacks and flaws, and none of those
applicable to real-life event logs operationalizes transparently and genuinely the
original definition of precision. Therefore, our choice of precision measure should
be seen as a design choice with its inherited limitations.

The random selection of the folds of each log when computing the 3-fold gen-
eralization should be considered as a limitation as well. We did check the fitness
values obtained for the three folds of each algorithm, and found variations in these
values ranging from 1 to 3 percentage points, suggesting that the algorithms did
produce different results for different folds. Nevertheless, given that the folds
were generated randomly, we have no guarantee that there is sufficient difference
between the folds. To attenuate this threat, we selected a small number of folds
in order to ensure that the test-fold would contain additional traces with respect
to the union of the training folds. Indeed, in our context, the higher the number
of folds the lower is the chance that the test-fold (1 out of K) contains traces not
observed in the training folds (K-1 out of K).

Finally, one could argue that the use of 24 event logs limits to a certain extend
the generalizability of the conclusions. However, the event logs included in the
evaluation are all real-life logs of different sizes and features, including different
application domains. Also, to the best of our knowledge and according to the
studies analysed in Chapter 3, our benchmark dataset is so far the largest real-life
dataset employed to assess APDAs. To mitigate this limitation, we have struc-
tured the released benchmark framework in such a way that the benchmark can be
seamlessly rerun with additional datasets.

69

4.6. Related Work

A previous survey and benchmark of automated process discovery methods has
been reported by De Weerdt et al. [3]. This survey covered 27 approaches, and it
assessed seven of them. We used it as starting point for our study.

The benchmark reported by De Weerdt et al. [3] includes seven approaches,
namely AGNEsMiner, α+, α++, Genetic Miner (and a variant thereof), Heuris-
tics Miner and ILP Miner. In comparison, our benchmark includes α$ (which
is an improved version of α+ and α++), Structured Heuristics Miner (which is
an extension of Heuristics Miner), Hybrid ILP Miner (an improvement of ILP),
Evolutionary Tree Miner (which is a genetic algorithm postdating the evaluation
of De Weerdt et al. [3]). Notably, we did not include AGNEsMiner due to the very
long execution times (as suggested by the authors in a conversation over emails
exchanged during this work).

Another difference with respect to the previous survey [3], is that in our study
we based our evaluation both on public and proprietary real-life event logs, whilst
the evaluation of De Weerdt et al. [3] is solely based on artificial event logs and
closed datasets, due to the unavailability of public datasets at the time of that
study.

In terms of results, De Weerdt et al. [3] found that Heuristics Miner achieved
a better F-score than other approaches and generally produced simpler models,
while ILP achieved the best fitness at the expense of low precision and high model
complexity. Our results show that ETM and IM excelled for precision and fitness
(respectively), while at the same time discovering simple process models.

Another previous survey in the field is outdated [138] and a more recent one is
not intended to be comprehensive [139], but rather limits on plug-ins available in
the ProM toolset. Finally a related effort is CoBeFra – a tool suite for measuring
fitness, precision and model complexity of automatically discovered process mod-
els [140], however it does not providing a set of event logs to use as benchmark.

4.7. Summary

In this chapter we addressed the second part of our RQ1: what are the state-of-
the-art APDAs’ strengths and limitations?

To assess the strengths and the limitations of the state-of-the-art APDAs, we
designed and implemented a benchmark framework which allows reproducible
evaluations of APDAs on a set of twelve publicly available real-life event logs.
Our benchmark framework integrates all the existing and most important evalua-
tion measures: fitness, precision, F-score, generalization, complexity, soundness,
and execution time (for assessing scalability). However, the accuracy and com-
plexity measures were designed only for procedural process models. Such a lim-
itation can be seen as a limitation of the existing measurements or as a limitation
of the APDAs that output declarative process models. As a consequence, we were

70

forced to restrict our evaluation to APDAs that output procedural process models,
precisely, Petri nets and any type of process models that can be converted into a
Petri nets in a deterministic manner (e.g. BPMN models, process trees). We de-
cided to focus our evaluation and comparison on the procedural APDAs because
they have a higher practical relevance than their declarative counterparts, and be-
cause of the lack of accuracy measures that allow to assess declarative process
models and compare their quality against the procedural ones. On top of this, we
note that the great majority of the state-of-the-art APDAs do not have a working
or accessible implementation, this hampers their systematic evaluation, so that we
can only rely on the results reported in the respective papers.

The results of our benchmark give an overview of the benefits of the procedu-
ral APDAs, as well as their limitations. The latter include: (i) strong differences
across the various quality measures in the output models; (ii) lack of scalability
for large logs; (iii) difficulties in discovering sound process models. The majority
of the assessed APDAs are not able to systematically excel in accuracy (fitness,
precision, F-score, and generalization at the same time), nor they can guarantee
to discover sound process models. The exceptions were only IM and ETM, who
clearly represent the state of the art in automated process discovery. IM and ETM
proved to be above the average, indeed, these two approaches were the only to
consistently perform very well in at least one quality dimension, respectively, fit-
ness (IM) and precision (ETM). As a by-product of their quality, often IM or
ETM could achieve also the best F-scores among the other APDAs. Neverthe-
less, IM and ETM rarely achieved outstanding F-score values, highlighting their
inability to efficiently balance fitness and precision. Furthermore, our evaluation
shows that even IM and ETM can fail when challenged with large-scale unfiltered
real-life events logs, as shown in the case of the PRT11 log. Among the other AP-
DAs tested, S-HM6 performed well in several accuracy measures, but it was im-
paired by its inability to systematically discover sound models. Lastly, regarding
the complexity of the discovered process models, IM and ETM stood out again,
thanks to their guarantee of discovering fully structured process models. How-
ever, such hard constraint showed in our benchmark and in previous studies [42]
to be a limitation when the process model to discover is not fully structured itself,
resulting in the inability to achieve both high fitness and high precision scores and
the necessity to trade one of the two for the other.

To conclude, for those approaches we assessed, we could not identify a unique
winner, since the best APDAs showed to either maximize fitness or precision.
Nevertheless, it can be noted that there has been significant progress in this field in
the past five years. Indeed, IM and ETM outperformed the discovery approaches
developed in the previous decade, as well as their extensions (i.e., AGNEs Miner
and S-HM6), yet leaving space for further improvements. Specifically, the desir-
able APDA would be the one able to balance fitness and precision achieving high
F-scores without compromising the complexity or the soundness of the discovered
process model. Designing such an APDA is the major goal of this thesis.

71

5. SPLIT MINER

In this chapter, 1 we focus on our RQ2: how to strike a trade-off between the
various quality dimensions in automated process discovery in an effective and
efficient manner?

The results we discussed in our SLR and benchmark (respectively Chapter 3
and 4) highlighted the lack of a process discovery approach that efficiently (i.e. in
terms of execution time) discovers procedural process models having a balanced
fitness and precision and achieving high F-scores, while maintaining the model as
simple as possible and guaranteeing soundness.

We address such a gap by proposing an APDA specifically designed to produce
simple process models, while balancing fitness and precision. Our proposal com-
bines a novel approach to filter the directly-follows graph (DFG) induced by an
event log, with an approach to identify combinations of split gateways that capture
the concurrency, conflict and causal relations between neighbouring nodes in the
DFG. Given this focus on discovering split gateways, we named our novel process
discovery approach Split Miner. In its basic variant, Split Miner generates BPMN
process models with OR-join gateways. Empirical studies have shown that OR-
join gateways induce higher cognitive overload on process models users than the
alternative AND-join and XOR-join gateways, which have a simpler semantics.
Hence, well-accepted guidelines for process modeling (introduced in Section 4.2)
recommend that OR-join gateways should be used sparingly [134]. Accordingly,
Split Miner incorporates an algorithm to replace OR-join gateways with AND-
join or XOR-join gateways, while guaranteeing that the resulting process model
remains sound (in the case of acyclic process models), and deadlock-free in all
cases. According to the results of our SLR and benchmark, Split Miner is the
first APDA that produces process models that are guaranteed to be deadlock-free,
while not restricted to producing block-structured process models only.

The rest of the chapter is structured as follows. Section 5.1 presents Split Miner
and its underlying algorithms, while Section 5.2 formally analyses the semantic
properties (deadlock-freedom and soundness) of the process models discovered
by Split Miner. Section 5.3 discusses the empirical evaluation of Split Miner,
which relies on the benchmark framework we presented in Chapter 4. Finally,
Section 5.4 summarises the chapter.

5.1. Approach

Starting from a log, Split Miner produces a BPMN model in six steps (cf. Fig. 14).
Like the Heuristics Miner and Fodina, the first step is to construct the DFG, but
unlike these latter, Split Miner does not immediately filter the DFG. Instead, it an-
alyzes it to detect self-loops and short-loops (which are known to cause problems

1Corresponding to [17, 18].

72

in DFG-based process discovery methods) and to discover concurrency relations
between pairs of tasks. In a DFG, a concurrency relation between two tasks, e.g. a
and b, shows up as two arcs: one from a to b and another from b to a, meaning that
causality and concurrency are mixed up. To address this issue, whenever a likely
concurrency relation between a and b is discovered, the arcs between these two
tasks are pruned from the DFG. The result is called: pruned DFG (PDFG). In the
third step, a filtering algorithm is applied on the PDFG to strike a balance between
fitness and precision maintaining low control-flow complexity. In the fourth step,
split gateways are discovered for each task in the filtered PDFG with more than
one outgoing arc. Similarly, in the fifth step, join gateways are discovered from
tasks with multiple incoming arcs. Lastly, if any OR-joins were discovered, they
are removed (whenever possible).

Event
Log

DFG and
Loops Discovery

Concurrency
Discovery

Filtering
Splits

Discovery
Joins

Discovery
OR-joins

Minimization
BPMN
Model

Figure 14: Overview of the proposed approach.

5.1.1. Directly-Follows Graph and Short-Loops Discovery

Split Miner takes as input an event log defined as follows.
Definition 5.1.1 (Event Log). Given a set of events Ξ, an event log L is a multiset
of traces as T , where a trace t ∈ T is a sequence of events t = 〈ξ1,ξ2, . . . ,ξn〉,
with ξi ∈ Ξ,1≤ i≤ n. Additionally, each event has a label l ∈ L and it refers to a
task executed within a process, we retrieve the label of an event with the function
λ : Ξ→ L, using the notation ξ

l = λ (ξ).
For the remaining, we assume all the traces of an event log have the same start

event and the same end event. This is guaranteed by a simple pre-processing of
the event log, to be compliant with the third of the 7PMG (Section 4.2), i.e. “use
one start event for each trigger and one end event for each outcome”.

Given the set of labels L = {a,b,c,d,e, f ,g,h}, a possible log is:
L = {〈a,b,c,g,e,h〉10,〈a,b,c, f ,g,h〉10,〈a,b,d,g,e,h〉10,〈a,b,d,e,g,h〉10,
〈a,b,e,c,g,h〉10,〈a,b,e,d,g,h〉10,〈a,c,b,e,g,h〉10,〈a,c,b, f ,g,h〉10,
〈a,d,b,e,g,h〉10,〈a,d,b, f ,g,h〉10}; this log contains 10 distinct traces, each of
them recorded 10 times.

Starting from a log, we construct a DFG in which each arc is annotated with a
frequency, based on the following definitions.
Definition 5.1.2 (Directly-Follows Frequency). Given an event log L , and two
events labels l1, l2 ∈L, the directly-follows frequency between l1 and l2 is |l1→ l2|=|
{(ξi,ξ j) ∈ Ξ×Ξ | ξ l

i = l1∧ξ
l
j = l2∧∃t ∈L | ∃ξx ∈ t[ξx = ξi∧ξx+1 = ξ j]]} |.

Definition 5.1.3 (Directly-Follows Graph). Given an event log L , its Directly-
Follows Graph (DFG) is a directed graph G = (N,E), where N is the non-empty
set of nodes2, for which a bijective function l : N 7→ L exists, where nl retrieve

2Each node of the graph represents a task.

73

a b

c

d

e

f

g h
60

20

20

20

20
40

20

20
2010

20

10 20

10

10

30 20

30

20
80

(a) Initial state.

a b

e

f

c

d

g h
60

20

20

40

20

20

10

20

10

20

30 80

(b) After pruning.

a b f

e

d

c

g h
60

20

20

40

20

20
20

20

30
80

(c) After filtering.

Figure 15: Processing of the directly-follows graph.

the label of n, and E is the set of edges E = {(a,b) ∈ N ×N |
∣∣al→ bl∣∣ > 0}.

Moreover, given a node n ∈ N we use the operator •n = {(a,b) ∈ E | b = n}
and n• = {(a,b) ∈ E | a = n} to retrieve (respectively) the set of incoming and
outgoing edges.

Given the DFG, we then detect self-loops and short-loops (i.e. loops involving
only one and two tasks resp.) since these are known to cause problems when
detecting concurrency [141]. A self-loop exists if a node has an arc towards itself
in the DFG: |a→ a|. Short-loops and their frequencies are detected in the log as
follows.
Definition 5.1.4 (Short-Loop Frequency). Given an event log L , and two events
labels l1, l2 ∈L, we define the number of times a short-loop pattern occurs |l1↔ l2|=
|{(ξi,ξ j,ξk) ∈ Ξ×Ξ×Ξ | ξ

l
i = l1 ∧ ξ

l
j = l2 ∧ ξ

l
k = l1 ∧ ∃t ∈ L | ∃ξx ∈ t[ξx =

ξi∧ξx+1 = ξ j ∧ξx+2 = ξk]}|.
In the following, with abuse of notation, given a,b ∈ N we use |a→ b| instead

of
∣∣al→ bl∣∣ and |a↔ b| instead of

∣∣al↔ bl∣∣.
Given two tasks a and b, a short-loop (a� b) exists iff the following conditions

hold:

|a→ a|= 0 ∧ |b→ b|= 0 (5.1)

|a↔ b|+ |b↔ a| 6= 0 (5.2)

Condition 5.1 guarantees that neither a nor b are in a self-loop, otherwise the
short-loop evaluation may not be reliable. Indeed, if we consider a model con-
taining a concurrency between a self-loop a and a normal task b, traces recorded
during the execution of the process may contain the sub-trace 〈a,b,a〉 (which also
characterize a � b). Discarding this latter case fulfilling Condition 5.1, we use
Condition 5.2 to ensure a� b.

Self-loop are trivially removed from the DFG and restored in the output BPMN
model at the end. Fig. 15a shows the DFG built from the example event log L .
In this log, there are no self-loops nor short-loops.

74

5.1.2. Concurrency Discovery

Given a DFG and two tasks a and b, such that neither a nor b is a self-loop3, we
postulate a and b are concurrent (a‖b) iff three conditions hold:

|a→ b|> 0 ∧ |b→ a|> 0 (5.3)

|a↔ b|+ |b↔ a|= 0 (5.4)

||a→ b|− |b→ a||
|a→ b|+ |b→ a|

< ε (ε ∈ [0,1]) (5.5)

Condition 5.3 captures the basic requirement for a‖b. Indeed, the existence of
edges e1 = (a,b) and e2 = (b,a) entails that a and b can occur in any order. How-
ever, this is not sufficient to postulate concurrency since this relation may hold
in three cases: (i) a and b form a short-loop; (ii) a and b are concurrent; or (iii)
e1 or e2 occurs highly infrequently and can thus be ignored. Case (i) is avoided
by Condition 5.4. Since this latter is the opposite of Condition 5.2, it guarantees
¬a � b. This leaves us with cases (ii) and (iii). We use Condition 5.5 to disam-
biguate between the two cases: if the condition is true we assume a‖b, otherwise
we fall into case (iii). The intuition behind Condition 5.5 is that two tasks are
concurrent the values of |a→ b| and |b→ a| should be as close as possible, i.e.
both interleavings are observed with similar frequency. Therefore, the smaller is
the value of ε the more balanced have to be the concurrency relations in order to
be captured. Reciprocally, setting ε to 1 would catch all the possible concurrency
relations.

Whenever we find a‖b, we remove e1 and e2 from E, since there is no causality
but instead there is concurrency. On the other hand, if we find that either e1 or e2
represents infrequent behavior we remove the least frequent of the two edges. The
output of this step is a pruned DFG.
Definition 5.1.5 (Pruned DFG). Given a DFG G =(N,E), a Pruned DFG (PDFG)
is a connected graph Gp = (N,Ep), where Ep is the set of edges Ep = E \{(a,b)∈
E | a‖b∨ (¬a‖b∧ (b,a) ∈ E ∧|a→ b|< |b→ a|)}.

In the example in Fig. 15a, we can identify four possible cases of concurrency:
(b,c), (b,d), (d,e), (e,g). Setting ε = 0.2, we capture the following concurrency
relations: b‖c, b‖d, d‖e, e‖g. The resulting PDFG is shown in Fig. 15b.

5.1.3. Filtering

In order to derive a sound, simple, and accurate BPMN process model from a
PDFG, the latter must satisfy three properties. First, each node of the PDFG must
be on a path from the single start node (source) to the single end node (sink).
This property is necessary to ensure a sound process model (no deadlocks and
no lack of synchronization). Second, for each node, its path from source to sink

3We favor self-loops over concurrency.

75

must be the one having maximum capacity. In our context, the capacity of a path
is the frequency of the least frequent edge of the path. This property is meant
to maximize fitness, since the capacity of a path matches the number of traces
that can be replayed on that path. Third, the number of edges of the PDFG must
be minimal. This property minimizes CFC and maximizes precision, since the
number of edges is proportional to the branching factor (used to calculate the
CFC) and to the amount of allowed behavior.

To satisfy these three properties, we designed a variant of Dijkstra’s short-
est path algorithm [142]. The main differences between Dijkstra’s algorithm and
ours are the following: (i) during the exploration of the graph we do not prop-
agate the length of the paths, but their capacities; (ii) Dijkstra solves a problem
of minimization, whilst we solve a problem of maximization. Additionally, since
we want to guarantee that each node is reachable from the source and can reach
the sink (i.e. on a path from source to sink), we perform a double breadth-first
exploration: forward (source to sink) and backward (sink to source). During the
forward exploration, for each node of the PDFG we discover its maximum source-
to-node capacity (forward capacity), and its incoming edge granting such forward
capacity (best incoming edge). Similarly, during the backward exploration, we
discover maximum node-to-sink capacities (backward capacities), and outgoing
edges (best outgoing edge). Through this algorithm we satisfy the first and sec-
ond property, and we set a limit to the maximum number of edges retained in our
PDFG, which is always less than 2 |T | (i.e. each node will have at most one incom-
ing and one outgoing edge). However, the limited number of edges may reduce
the amount of behaviour that the final model can replay, and consequently its fit-
ness. To strike a trade-off between fitness and precision, we introduce a frequency
threshold which let the user balance the two metrics. Precisely, we compute the η

percentile over the frequencies of the most frequent incoming and outgoing edges
of each node, and we retain those edges with a frequency exceeding the threshold.
It is important to notice, that the percentile is not taken over the frequencies of all
the edges in Ep since otherwise we would simply retain η percentage of all the
edges.

Algorithm 1 shows in detail how we achieve the objectives listed above. Given
as input a PDFG Gp = (T,Ep) and a percentile value η , we detect the source (i)
and the sink (o) of Gp. We initialize the forward and backward capacities of each
node to 0, except for the source and the sink, which are supposed infinite (line 3
to 13). Simultaneously, for each node we collect the highest frequency among
its incoming edges (fi) and the highest frequency among its outgoing edges (fo),
which are used to estimate the η percentile (line 14).

After the initialization, we perform the breadth-first forward exploration of Gp

starting from the source i. We use a queue (Q) in order to store the nodes to
explore, which at the beginning contains only i, and a set (U) for the unexplored
nodes containing all the nodes in T (except for i). Finally, the map Ei will store
the best incoming edge of each visited node.

76

Algorithm 1: Generate Filtered PDFG
input : PDFG Gp = (T,Ep), percentile value η

output: Filtered PDFG G f = (i,o,T,E f)

1 i← the source node of Gp

2 o← the sink node of Gp;
3 Create a map C f : T → Z+;
4 Create a map Cb : T → Z+;
5 Create a set F ←∅;
6 for t ∈ T do
7 C f [t]← 0;
8 Cb[t]← 0;
9 fi← the highest frequency of the incoming edges of t;

10 fo← the highest frequency of the outgoing edges of t;
11 add fi and fo to F ;

12 C f [i]← inf;
13 Cb[o]← inf;
14 fth← the η percentile on the values in F ;

15 Create a map Ei : T → Ep;
16 Create a map Eo : T → Ep;
17 DiscoverBestIncomingEdges(Gp, i, C f , Ei);
18 DiscoverBestOutgoingEdges(Gp, o, Cb, Eo);

19 Create a set E f ←∅;
20 for e ∈ Ep do
21 if (∃te | Ei[te] = e∨Eo[te] = e)∨ (fe > fth) then add e to E f ;

22 return G f = (i,o,T,E f);

77

Algorithm 2: Discover Best Incoming Edges
input : PDFG Gp = (T,Ep), Source i, Forward Capacities Map C f , Best

Incoming Edges Map Ei

1 Create a queue Q;
2 Create a set U ← T \{i};
3 Add i to Q;
4 while Q 6=∅ do
5 p← first node in Q;
6 remove p from Q;
7 for e ∈ p• do
8 n← target of e;
9 fe← frequency of e;

10 Cmax←Min(C f [p], fe);
11 if Cmax >C f [n] then
12 C f [n]←Cmax;
13 Ei[n]← e;
14 if n /∈ Q∪U then add n to U ;

15 if n ∈U then
16 remove n from U ;
17 add n to Q;

78

Algorithm 3: Discover Best Outgoing Edges
input : PDFG Gp = (T,Ep), Sink o, Backward Capacities Map Cb, Best

Outgoing Edges Map Eo

1 Add o to Q;
2 U ← T \{o};
3 while Q 6=∅ do
4 n← first node in Q;
5 remove n from Q;
6 for e ∈ •n do
7 p← source of e;
8 fe← frequency of e;
9 Cmax←Min(Cb[n], fe);

10 if Cmax >Cb[p] then
11 Cb[p]←Cmax;
12 Eo[p]← e;
13 if p /∈ Q∪U then add p to U ;

14 if p ∈U then
15 remove p from U ;
16 add p to Q;

Using a FIFO4 policy, we start the exploration of the nodes in Q. When a
node p is removed from Q, we analyse its outgoing edges (line 7) and their targets
(successors of p). Specifically, for each successor n we evaluate the possible
maximum capacity (Cmax), line 10, that is the minimum between the capacity of its
predecessor p (C f [p]) and the frequency of the incoming edge (fe). Successively,
we update the best incoming edge of n (Ei[n]) and its current maximum capacity
(C f [n]) if Cmax is greater than C f [n], line 11.

Since a change of C f [n] may entail a change of n successors’ maximum capac-
ities, we mark n as unexplored if previously explored (n is added to U , line 14).
Finally, if n is unexplored, we add it to the tail of Q (line 17). We then perform
the backward exploration starting from o (line 1 to 16). The algorithm concludes
retaining the best incoming and outgoing edges, and those with a frequency above
the threshold fth (line 21).

Though the third property (i.e. |E f |< 2 | T |) can only be guaranteed for η = 1,
the usage of η is meant to balance fitness and precision. Since, the lower is the
value of η the more edges may be retained, resulting in a higher fitness at the cost
of lower precision and higher control-flow complexity.

Figure 15c shows the output of the filtering algorithm when applied to the
PDFG previously obtained (Figure 15b). The results of the forward and backward

4First-in first-out.

79

Node C f Ei Cb Eo

a ∞ - 20 (a,b)
b 60 (a,b) 20 (b,e)
c 20 (a,c) 20 (c,g)
d 20 (a,d) 20 (d,g)
e 40 (b,e) 20 (e,h)
f 20 (b, f) 30 (f ,g)
g 20 (f ,g) 80 (g,h)
h 20 (g,h) ∞ -

Table 15: Filtering algorithm example.

a b

e

f

c

d

g h
60

20

20

40

20

20

10

20

10

20

30 80

(a) PDFG.

a b

e

f

c

d

g h
60

20

20

40

20 30 80

(b) Selection of Algorithm 2.

a b

e

f

c

d

g h
60

40

20

20

20

30 80

(c) Selection of Algorithm 3.

Figure 16: Best incoming and outgoing edges selected by Algorithm 2 and 3 from
the PDFG.

explorations (mappings C f , Ei, and Cb, Eo) are shown in Table 15. As consequence
of retaining the best incoming and outgoing edges for each node, the filtering
algorithm would drop the edges: (e,c) and (c, f). Regardless of the value assigned
to η , only these two edges would be removed. This is due to the design of our
filtering algorithm, which cannot remove any incoming (outgoing) edge that is the
only incoming (outgoing) edge of a node. In our working example, Algorithm 2
makes a selection only for the incoming edges of the nodes: c (from a and e);
f (from b and c); g (from c, d, and f); h (from e and g). While, Algorithm 3
makes a decision only for the outgoing edges of the nodes: a (to b, c, and d);
b (to f and e); c (to f and g); e (to c and h). During the forward breadth-first
exploration, Algorithm 2 selects the edges (a,c); (b, f); (f ,g); (g,h); ensuring the
forward capacity of c, f , g, and h are maximal (20, 20, 20, 20). If we would
keep only the edges selected by Algorithm 2, the filtered PDFG would be the one
in Figure 16b, where some nodes (c, d, and e) are not on a path from source to
sink. This is the reason why a backward breadth-first exploration is required, and
implemented via Algorithm 3, which selects the additional edges (see Figure 16c)
required to guarantee that each node is on a path from source to sink, with path
capacity (i.e. the minimum of forward and backward capacities) maximal. The
union of the edges selected by Algorithm 2 and 3 is the final output, as shown in
Figure 15b.

80

we_start

A C

D

B F

G H

E

(a) Initial state.we_nojoins

A C

D

B F

G H

E

(b) After splits discovery.

we_joins

A C

D

B F

G H

E

(c) After joins discovery.

Figure 17: Processing of the BPMN model.

5.1.4. Filtered PDFG to BPMN Process Model

Once the processing of the DFG is completed, we can start the conversion from
the filtered PDFG to the BPMN process model.
Definition 5.1.6 (BPMN process model). A BPMN process model (or BPMN
model) is a connected graph M = (i,o,T,G,Em), where i is the start event, o
is the end event, T is a non-empty set of tasks, G = G+ ∪G× ∪G◦ is the union
of the set of AND gateways (G+), the set of XOR gateways (G×) and the set of
OR gateways (G◦), and Em ⊆ (T ∪G∪{i})× (T ∪G∪{o}) is the set of edges.
Further, given g∈G, g is a split gateway if it has more than one outgoing edge, i.e.
| g• |> 1, or a join gateway if it has more than one incoming edge, i.e. | •g |> 1.

Algorithm 4 highlights the main parts of the conversion. Specifically, we create
a start and an end event (lines 1 and 2). Then, we initialize the set of tasks and
edges, respectively as the set of nodes of the filtered PDFG, and as the set of the
edges of the filtered PDFG plus two new edges: one connecting the start event
with the former source of the DFG, and one connecting the former sink of the
DFG to the end event (line 6). Lastly, an empty set of gateways is created, which
will be filled through the following three steps: split discovery, join discovery
and ORs replacement. Figure 17a shows the initialization of the BPMN model
obtained from the filtered PDFG of Figure 15c.

5.1.5. Splits Discovery

To generate the split gateways, we rely on the concurrency relations identified dur-
ing the second step of our approach (section 5.1.2). The splits discovery is based
on the idea that tasks directly following (successors of) the same split gateway
are concurrent to the same set of tasks which do not directly follow such gateway.
With a reference to Figure 18b, given that tasks c and d are successors of the gate-
way and1, they are both concurrent to tasks e, f , g, due to gateway and3 (i.e. c‖e,

81

Algorithm 4: Filtered PDFG to BPMN process model
input : Filtered PDFG G f = (N,E f)
output: BPMN process model M = (i,o,G,T,Em)

1 Create a start event i;
2 Create an end event o;
3 Create a set T ← N;
4 s← t ∈ T | |•t|= 0;
5 e← t ∈ T | |t•|= 0;
6 Create a set Em← E f ∪{(i,s),(e,o)};
7 Create a set G←∅;
8 Create a BPMN process model M ← (i,o,T,G,Em);
9 DiscoverSplits(M);

10 DiscoverJoins(M);
11 ReplaceORs(M);
12 return M ;

Algorithm 5: Discover Splits
input : BPMN process model M = (i,o,T,G,Em)

1 for t ∈ T do
2 if | t• |> 1 then
3 Create a set S← d-successors of t;
4 Create a map C : S→ 2S;
5 Create a map F : S→ 2S;
6 for s1 ∈ S do
7 C[s1]←{s1};
8 F [s1]←∅;
9 for s2 ∈ S do

10 if (s2 6= s1∧ s2‖s1) then add s2 to F [s1];
11 ;

12 remove from Em the outgoing edges of t ;
13 while |S|> 1 do
14 discoverXORsplits(M ,S,C,F);
15 discoverANDsplits(M ,S,C,F);

16 s← unique element of S;
17 add an edge from t to s;

82

Algorithm 6: Discover XOR-splits
input : BPMN M , Set S, Map C, Map F

1 do
2 Create a set X ←∅;
3 for s1 ∈ S do
4 Create a set Cu←C[s1];
5 for s2 ∈ S do
6 if F [s1] = F [s2]∧ s1 6= s2 then
7 add s2 to X ;
8 Cu←Cu∪C[s2];

9 if X 6=∅ then
10 add s1 to X ;
11 break;

12 if X 6=∅ then
13 Create an XOR gateway g×;
14 add g× to G×;
15 for s ∈ X do
16 add an edge from g× to s;
17 remove s from S;

18 add g× to S;
19 F [g×]← F [s1];
20 C[g×]←Cu;

21 while X 6=∅;

83

Algorithm 7: Discover AND-splits
input : BPMN M , Set S, Map C, Map F

1 do
2 Create a set A←∅;
3 for s1 ∈ S do
4 Create a set Cu←C[s1];
5 Create a set Fi← F [s1];
6 Create a set CFs1 ←C[s1]∪F [s1];
7 for s2 ∈ S do
8 Create a set CFs2 ←C[s2]∪F [s2];
9 if CFs1 = CFs2 ∧ s1 6= s2 then

10 add s2 to A;
11 Cu←Cu∪C[s2];
12 Fi← Fi∩F [s2];

13 if A 6=∅ then
14 add s1 to A;
15 break;

16 if A 6=∅ then
17 Create an AND gateway g+;
18 add g+ to G+;
19 for s ∈ A do
20 add an edge from g+ to s;
21 remove s from S;

22 add g+ to S;
23 C[g+]←Cu;
24 F [g+]← Fi;

25 while A 6=∅;

84

c‖ f , c‖g, and d‖e, d‖ f , d‖g). Similarly, since tasks a and b are successors of the
gateway xor1, they share the same empty set of concurrent relations, because a,
b and all the other tasks are mutually exclusive due to gateway xor3. Knowing
which tasks are successors of the same gateway, we can identify the gateway’s
type by checking whether its successors are concurrent or mutually exclusive, e.g.
c and d are concurrent (i.e. c‖d), whilst a and b are mutually exclusive (i.e. ¬ a‖b).

Before explaining in details how we discover a hierarchy of splits, we need to
define the following concepts.
Definition 5.1.7 (Split-task). Given a BPMN model M = (i,o,T,G,Em), a split-
task is a task t ∈ T , such that |t•|> 1.
Definition 5.1.8 (P-successor of a Split-task). Given a BPMN model M =(i,o,T,G,Em)
and a split-task t ∈ T , a p-successor of t is a task or gateway s ∈ T ∪G such that
there exists a path from t to s. Further, if s ∈ T we say s is a t-successor, whilst if
s ∈ G, s is a g-successor.
Definition 5.1.9 (D-successor of a Split-task). Given a BPMN model M =(i,o,T,G,Em)
and a split-task t ∈ T , a d-successor of t is a task s ∈ T ∪G such that there exists
an edge from t to s. A d-successor is always a p-successor, but not vice-versa.
Definition 5.1.10 (Successor Cover). Given a BPMN model M = (i,o,T,G,Em),
a split-task t ∈ T and a p-successor s of t, the cover of s is the subset Cs of the
t-successors of t such that for each c ∈Cs there exists a path from t to c that visits
s. The following properties are always true: s ∈Cs and Cs∩G =∅.

Intuitively, given a split-task and a p-successor, the cover of the p-successor is
a set containing all the tasks that can be visited on the paths from the split-task to
the p-successor (including the p-successor itself).
Definition 5.1.11 (Successor Future). Given a BPMN model M = (i,o,T,G,Em),
a split-task t ∈ T and a p-successor s, the future of s is the subset Fs of the t-
successors of t such that f ∈ F iff f‖c,∀c ∈Cs.

Intuitively, given a split-task and a p-successor s, the future of the p-successor
is the set containing all the other p-successors of the split-task that can be executed
in the same process instance of s.

To describe how Algorithm 5 discovers a hierarchy of splits we use the exam-
ple in Figure 18, assuming the concurrency relations showed in Figure 18b. Given
as input a BPMN model to Algorithm 5, we look for split-tasks (line 1), e.g. z (Fig-
ure 18a). We retrieve the d-successors of z (line 3), and for each d-successor, e.g.
e, we detect its cover and its future (maps C[s] and F [s], lines 4 and 5). In our
example, the cover and the future of e are the sets {e} and {c,d, f}, respectively
(since we assumed e‖c, e‖d and e‖ f). Table 16 shows how the sets C[s] and F [s]
evolves during the execution of the algorithm. After computing cover and future
of each d-successor (line 6 to 10), we use them to discover XOR-splits and AND-
splits in two phases (lines 14 and 15). In the first phase – Algorithm 6 – we look
for all the d-successors sharing the same future (line 6). Whenever we find any
(line 9), we introduce an XOR-split preceding these p-successors, which replaces

85

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(a) Before

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(b) After

Figure 18: Splits discovery example.

them as d-successor of z. This gateway has as future the same shared future of
the selected d-successors, and as cover the union of their covers. This is in-line
with our initial idea, since d-successors having the same future are successors of
the same gateway and are not concurrent. Otherwise, if they were concurrent,
they would be in each other futures and their futures would differ.5 We repeat this
operation until no further XOR-splits are identified (line 21). Once all possible
XOR-splits are discovered, we move toward the second phase, i.e. the discovery
of AND-splits – Algorithm 7.

Unlike the XOR-splits, to identify AND-splits we cannot rely only on the d-
successors’ futures. Instead, we select the d-successors having the same set of
nodes resulting from the union of their cover and future (line 9 to 15). Then, an
AND-split is introduced before these d-successors. This AND-split has as future
the intersection of the futures of the set of the selected d-successors and as cover
the union of their covers. Likewise for the XOR-split, the AND-split becomes a
new d-successor replacing the p-successors that will now belong to its cover. The
discovery of the AND-splits is still in-line with our initial idea. Indeed, given a
set of candidate AND-split successors (i.e. d-successors having a common subset
of their futures), and removing the common subset from their futures, the genuine
AND-split successors will be those for which their cover is contained in the future
of each other candidate successor of the AND-split (i.e. successors of the same
AND-split must be concurrent each others). In our example (Table 16), c and d
have as shared future the subset Fs = {e, f ,g}. If we remove this subset, we would
see that the cover of c matches the future of d and vice-versa (i.e. c‖d and d‖c).
The fact that we look for d-successors having the same union of their cover and
future is a mere computational optimization, since by construction the intersection
of the covers of two different d-successors is always empty, and the intersection
between the cover and the future of a d-successor is always empty.

We repeat Algorithms 6 and 7 until the split-task becomes a normal task, hav-

5This happens because by construction a task cannot belong to its own future.

86

D-successor C F
a a -
b b -
c c d, e, f, g
d d c, e, f, g
e e f, c, d
f f e, c, d
g g c, d

xor1 a, b -
and1 c, d e, f, g

e e f, c, d
f f e, c, d
g g c, d

xor1 a, b -
and1 c, d e, f, g
and2 e, f c, d

g g c, d
xor1 a, b -
and1 c, d e, f, g
xor2 e, f, g c, d
xor1 a, b -
and3 c, d, e, f, g -
xor3 a, b, c, d, e, f, g -

Table 16: Splits discovery example.

87

ing just one d-successor (Algorithm 5, line 13). Figure 17b shows the output
of this step for our working example, when we give as input to Algorithm 5 the
BPMN models showed in Figure 17a.

5.1.6. Joins Discovery

Once all the split gateways have been placed, we can discover the join gateways.
To do so, we rely on the Refined Process Structure Tree (RPST) [143] of the
current BPMN model. The RPST of a process model is a tree where its nodes rep-
resent the single-entry single-exit (SESE) fragments of the process model and its
edges denote a containment relation between SESE fragments. Specifically, the
children of a SESE fragment are its directly contained SESE fragments, whilst
SESE fragments on different branches of the tree are disjoint. Since each SESE
fragment is a subgraph of the process model, and the partition of the process
model into SESE fragments is made in terms of edges, a single node (of the pro-
cess model) can be shared by multiple SESE fragments. Further, each SESE frag-
ment can be of one of the four types: a trivial fragment consists of a single edge;
a polygon is a sequence of fragments; a bond is a fragment where all the chil-
dren fragments share two common nodes, one being the entry and the other being
the exit of the bond; any other fragment is a rigid. Lastly, each SESE can be
classified as homogeneous if the gateways it contains (and are not contained in
any of its SESE children) are all of the same type (e.g. only XOR-gateways), or
heterogeneous if such gateways have different types.

To explain Algorithm 8, we need to introduce the concept of loop-join.
Definition 5.1.12 (Loop-edge and Loop-joins). Given a BPMN model M =(i,o,T,G,Em),
and an edge e = (a,b) ∈ Em, e is a loop-edge iff a is a node topologically deeper
than b and there exists a path from b to a. Further, if |•b| > 1, we refer to b as
loop-join.

The first step of Algorithm 8 is to generate the RPST of the input BPMN
model. Then, we add all the RPST nodes to a queue (Q) ordering the nodes
bottom-up, i.e. leaves to root (line 2), and we analyse each of these nodes (which
are the SESE fragments composing the BPMN model). Precisely, for each task (t)
having multiple incoming edges within the SESE fragment, we create a new join
gateway (g) and we redirect all the incoming edges of t to g, line 12. Finally, we
set the type of g according to the following rules: if g is a loop-join, it is turned
into a XOR; else if t is within a homogeneous SESE fragment we match the type
of the homogeneous SESE fragment, otherwise the type is set to OR. These rules
guarantee soundness for acyclic models and deadlock-freedom for cyclic models
as discussed below.

Figure 19 shows how our approach works for bonds (Fig. 19a), for homoge-
neous rigids (Fig. 19b), and for all other cases, i.e. heterogeneous rigid (Fig. 19c).

Considering the working example in Fig. 17b, we detect three joins. The first
one is the XOR-join at the exit of the bond containing tasks c, d and g. Given that

88

Algorithm 8: Discover Joins
input : BPMN process model M = (i,o,T,G,Em)

1 generate the RPST from M ;
2 Create a queue Q← nodes of the RPST bottom-up ordered;
3 while Q 6=∅ do
4 n← first node in Q;
5 remove n from Q;
6 Create a set Tn← tasks composing n;
7 Create a set En← edges composing n;
8 for t ∈ Tn do
9 if | • t ∩En |> 1 then

10 create a gateway g;
11 add an edge from g to t;
12 for e ∈ • t ∩En do set target of e to g;
13 ;
14 if •g contains backedges then
15 set the type of g to XOR;
16 else
17 if n is homogeneous then
18 set the type of g equal to the type of n;
19 else
20 set the type of g to OR;

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(a) Bond.

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(b) Homogeneous Rigid.

hmp_patterns

z

a
b
c
d
e
f
g

z b
a

c
d

e

xor1

and3

xor2 and2

f
g

xor3

and1

a

b
j

a

b
j

a

b
j

a

b
j

a

b

j

i

k

d

a

b

j

i

k

d

c

c

b

a c

d

e

f

g

b

a c

d
f

e

b

a c

d
f

e

(c) Generic case.

Figure 19: Joins discovery examples.

89

orjoins_max

A

C

B

H

F

GE

D

(a) Before.orjoins_min

A

C

B

H

F

GE

D

(b) After.

Figure 20: OR-joins minimization example.

the entry of this bond is an XOR-split, the bond is XOR-homogeneous, so that
the type of the joins is set to XOR. The remaining two joins are within the parent
SESE fragment of the bond, which is a heterogeneous rigid, hence, we use two
OR-joins. The resulting model is shown in Fig. 17c.

5.1.7. OR-joins Minimization

The approach described in Section 5.1.6 avoids the placement of trivial OR-joins
within bonds and homogeneous rigids, but it does not prevent an abuse of OR-
joins in case of heterogeneous rigids. Since we aim to be compliant with the
7PMG [134] (Section 4.2), according to the fifth guideline, we should avoid the
use of OR gateways where possible. To achieve this goal, we designed an algo-
rithm able to minimize the use of the OR-joins opportunely replacing the trivial
ones6 with XOR or AND joins. Since the algorithm is centred on the concept of
minimal dominator, we introduce it formally.
Definition 5.1.13 (Minimal Dominator). Given a BPMN model M =(i,o,T,G,Em),
an OR-join j◦ ∈ G◦, and a split gateway d ∈ G, d is a dominator of j◦ iff all the
paths from i to j◦ visit d. Furthermore, d is the minimal dominator of j◦ iff none
of the paths from d to j◦ visits other dominators of j◦.

The procedure for the OR-joins minimization detects the trivial OR-joins of
the input BPMN model, and replaces them with XOR or AND joins according to
their semantics (proof in Section 5.2). Figure 20 shows an example of the OR-
joins minimization. We describe the idea behind this procedure before presenting
the algorithm.

Given a BPMN model M = (i,o,T,G,Em), an OR-join j◦, and its minimal
dominator d ∈G, we know that all tokens that may arrive to one or more incoming
edge of j◦ (incoming tokens) are generated by d.

6An OR-join is said trivial when its semantic is equivalent to the semantic of an XOR or AND
join.

90

Algorithm 9: Check OR-join Semantic
input : A BPMN model M = (i,o,T,G,Em), Gateway j◦ ∈ G◦

output: Semantic of j◦

1 d← minimal dominator of j◦;
2 Create a set Gs← split gateways in any path from d to j◦;
3 Create a set Es← outgoing edges of all the gateways in Gs;
4 Create a map T : Es→ 2• j◦ ;
5 semantic← null;

6 for e≡ (gs,x) ∈ Es do
7 T [e]←{ei j ∈ • j◦ | ∃ a path from x to ei j};
8 if T [e] =∅∧ semanticOf(gs) = XOR then semantic = XOR;
9 ;

10 for g ∈ Gs do
11 for e1 ∈ g• do
12 for e2 ∈ g• do
13 I← T [e1]∩T [e2];
14 S1← T [e1]\ I;
15 S2← T [e2]\ I;
16 if S1 6=∅∧S2 6=∅ then
17 if semantic ! = null ∧ semantic ! = semanticOf(g) then
18 return OR;
19 else
20 semantic← semanticOf(g);

21 return semantic;

91

orjoins_or1

or_3D

g_2

g_1 or_1

or_2

1
1

22

(a) Replacing of OR1 and OR2.
orjoins_or3

or_3D

g_2

g_1 or_1

or_2

3

4

3

4

3

4

3,4

3,4

(b) Replacing of OR3.
orjoins_or3_or

or_3D

g_2

g_1 or_1

or_2

3

4

3

4

3

4

3,4

3,4

(c) Non-trivial OR3.

Figure 21: OR-joins minimization algorithm.

92

By checking the semantic of all the split gateways visited by the incoming to-
kens in all the paths from d to j◦, we identify how the incoming tokens split (split
relations), i.e. mutually exclusive or concurrently. Finally, if the split relations
between the incoming tokens of j◦ are all the same, j◦ is a trivial OR-join, and it
can be replaced with an XOR-join if the split relations are of mutually exclusive
type or an AND-join if concurrent. Otherwise, the OR-join is not trivial, and its
replacement must be handled differently. Algorithm 9 shows in details how we
check the semantic of an OR-join, to decide if we can replace it. Given a BPMN
model M = (i,o,T,G,Em) and an OR-join j◦, we retrieve the minimal dominator
of j◦ (d, line 1). We create a set (Gs) containing all the split gateways visited on
the paths from d to j◦; and a set (Es) containing all the outgoing edges of the split
gateways in Gs. Then, for each edge e ≡ (gs,x) ∈ Es, we initialize a set (T [e])
containing the edges ei j ∈ • j◦ such that there exists a path from x to ei j (i.e. T [e]
contains the incoming edges of j◦ that may receive a token from e). During this
initialization, we may find an empty set T [e]. In such case, if gs (source of e) is an
XOR-split, the empty set T [e] indicates that an incoming token of j◦ may escape
on gs from e. Therefore, since there exists a case where j◦ does not receive a
token on one of its incoming edges, j◦ cannot be a trivial AND-join. We record
this occurrence setting the possible trivial semantic of the OR-join as exclusive
(XOR, line 9). Initialized the sets T [e], we can check the split relations between
the incoming tokens of j◦. Precisely, for each split gateway g ∈ Gs, and for each
pair of its outgoing edges (e1 and e2, lines 10 to 12), we compute the intersec-
tion of T [e1] and T [e2]. This intersection (I) contains the edges of • j◦ that may
receive incoming tokens either from e1 or e2 (i.e. incoming tokens for the edges
in I do not split between e1 and e2). By removing I from T [e1] and T [e2] (sets S1
and S2, lines 14 and 15), we detect the incoming tokens that split between e1 and
e2, i.e. S1 (S2) contains the incoming edges of j◦ that cannot receive tokens from
e2 (e1). If S1 and S2 are both not empty, we identified a split relation between
the incoming tokens of the edges in S1 and the incoming tokens of the edges in
S2. Consequently, the incoming tokens that split between e1 and e2 may arrive
to different incoming edges of j◦ with the same semantic of gs (i.e. the gateway
where they split). Therefore, j◦ is trivial only if all the incoming tokens match
that semantic (line 17). Figure 21, shows graphically how Algorithm 9 works
on each OR-join of the model in Figure 20a. Specifically, Figure 21a highlights
where the incoming tokens of the OR-join OR1 split. The minimal dominator of
OR1 (as well for OR2 and OR3) is the XOR-gateway D. By running Algorithm 9
on OR1, we detect that the two incoming tokens (namely 1 and 2) split only on D.
Since the semantic of D is exclusive, we can replace OR1 with an XOR-join. The
semantic check for OR2 is equivalent to the one of OR1. For OR3 (Figure 21b), its
incoming tokens (namely 3 and 4) may split on g1 and g2, but they do not split on
D. Since g1 and g2 are both AND-splits, we can replace OR3 with and AND-split.
In such example, all three OR-joins were trivial. Differently, if g2 is an XOR-split
(figure 21c), OR1 and OR2 would still be replaced with XOR-joins, whilst OR3

93

would remain an OR-join. This would happen because the incoming tokens of
OR3 split on g2 (now XOR) and on g1 (still AND), meaning that their semantics
may be either exclusive or concurrent, according to where they would split during
the execution of the process model (either on g1 or g2).

5.1.8. Time Complexity

Let n be the number of events in the log and m be the number of tasks (distinct
nodes of the DFG). The DFG construction is in O(n), since we sequentially read
each event and generate the respective node in the graph, simultaneously incre-
menting the directly-follows and short-loop frequencies. The self-loops discovery
is linear on the number of nodes of the DFG, hence in O(m). The short-loops dis-
covery is done on pairs of tasks, so this step is performed in O(m2). The filtering
complexity is dominated by the forward (backward) exploration. It explores each
node a number of times equal at most to the number of edges of the graph, and
for each node exploration it loops on the outgoing (incoming) edges. In the worst
scenario, the maximum number of edges is equal to m2 (e.g. an edge for each
pair of nodes), consequently, the filtering is in O(m4). The split discovery is in
O(m4), because we may run Algorithm 5 for each node, which executes m times
Algorithm 6 and 7, and these latter have two nested loops on m. The join discov-
ery complexity is dominated by the three nested loops: the one on the number of
nodes of the RPST, the one on the number of tasks, and the one on the number of
edges. Since the RPST contains a number of nodes equal at most to the number of
edges of the model, the join discovery is in O(m5). For the OR-minimization, we
run Algorithm 9 for each OR-join – m times, i.e. one join for each task. The com-
plexity of Algorithm 9 is dominated by its three nested loops. The outer loop is on
the number of split gateways – bound by m, i.e. one split for each task –, whilst
the two inner loops are on the number of edges. Therefore, the OR-minimization
is in O(m6). We can conclude that Split Miner is in O(n+m6).

5.2. Semantic Properties of the Discovered Model

In this section, we provide formal proofs of some semantic properties of the
BPMN process model discovered by Split Miner. Precisely, we show that in the
case of acyclic BPMN process models, Split Miner guarantees soundness and the
absence of any trivial OR-joins. Moreover, for cyclic BPMN process models, it is
not possible to guarantee the soundness, but only deadlock-freedom. This latter
result is ensured by the semantic of the OR-joins [144].

In the following, we refer to the BPMN process model as workflow graph.
Definition 5.2.1 (Workflow graphs). A workflow graph is a triple G := (V,E, l),
where (V,E) is a finite directed graph consisting of a set V of nodes and a set
E ⊆V ×V of edges, and l : V →{AND,XOR,OR} is a partial mapping such that:

1. there is exactly one source node, where a node v ∈V is a source if and only

94

if it has exactly one outgoing edge and no incoming edges,
2. there is at least one sink node, where a node v ∈V is a sink if and only if it

has exactly one incoming edge and no outgoing edges,
3. If l(v), v ∈V , is defined, then v is neither the source nor a sink,
4. If v ∈V is a gateway, then l(v) is defined, and
5. every node v ∈V is on a directed path from the source to some sink.
We chose this formalism to ease the readability of the proofs and their sym-

bolism. It is important to notice that by definition a workflow graph G := (V,E, l)
is equivalent to a BPMN process model M = (i,o,T,G,Em). Where {i}∪{o}∪
T ∪G ≡ V , Em ≡ E, i and o are the only source and sink of the workflow graph,
and the type of the gateways is identified by the function l.

5.2.1. Preliminaries

Let G := (V,E, l) be a workflow graph. A state of G is a mapping s : E→ N0.7

Definition 5.2.2 (Semantics of workflow graphs). A state transition of a workflow
graph G := (V,E, l) is a triple (s1,v,s2), also written as s1[v〉s2, where s1 and s2
are states of G, v ∈V , and one of these three conditions holds:

1. l(v) 6∈ {XOR,OR} and

s2(e) =

s1(e)+1 e ∈ E is an outgoing edge of v
s1(e)−1 e ∈ E is an incoming edge of v
s1(e) otherwise.

2. l(v) = XOR and there exists an incoming edge e1 ∈ E of v and an outgoing
edge e2 ∈ E of v such that:

s2(e) =

s1(e)+1 e ∈ E and e = e2

s1(e)−1 e ∈ E and e = e1

s1(e) otherwise.

3. l(v) = OR for each edge e′ ∈ E and each incoming edge e ∈ E of v such
that s1(e′)≥ 1 and s1(e) = 0 there is no directed path from e′ to e, and there
exists a nonempty set F of outgoing edges of v such that:

s2(e) =

s1(e)+1 e ∈ F
s1(e)−1 e ∈ E is an incoming edge of v such that s1(e)≥ 1
s1(e) otherwise.

Let e be the only outgoing edge of the source of a workflow graph G := (V,E, l).
Then, state s of G for which it holds that s(e) = 1 and for every e′ ∈ E such that
e′ 6= e it holds that s(e′) = 0 is the initial state of G. Let s0 be the initial state of
G. A state s is a reachable state of G if and only if s = s0 or there is a sequence
of nodes σ := 〈v1, . . . ,vn〉 ∈V ∗, n ∈ N, such that for every position i of σ it holds

7By N0, we denote the set of all natural numbers including zero.

95

that si−1[vi〉si is a state transition of G, and s = sn. A state s is a final state of G
if and only if for every v ∈ V there exists no state s′ of G such that (s,v,s′) is a
state transition of G. A final state s of G is a deadlock if and only if there is an
edge e ∈ E such that s(e) > 0 and e is not an incoming edge of some sink of G.
A state s of G is safe if and only if for all e ∈ E it holds that s(e) ≤ 1; otherwise
s is unsafe. A workflow graph G := (V,E, l) is safe if and only if all its reachable
states are safe; otherwise G is unsafe.
Definition 5.2.3 (Sound worfklow graphs). A workflow graph G is sound if and
only if G is safe and has no reachable deadlocks.
Given a node v ∈V of a workflow graph G := (V,E, l), by •v we denote the set of
all incoming edges of v. Whereas by v•, we denote the set of all outgoing edges
of v. In what follows, without loss of generality, we assume that for every vertex
v of every workflow graphs it does not hold that | • v| > 1 and |v • | > 1. A node
v ∈ V is a gateway if and only if it holds that | • v| > 1 or |v • | > 1. A gateway
v ∈ V is a split if and only if | • v| > 1. A gateway v ∈ V is a join if and only if
|v• |> 1. Hence, every gateway is either a split or a join, but not both.

Let G := (V,E, l) be a triple, where (V,E) is a finite directed graph consisting
of a set V of nodes and a set E ⊆V ×V of edges, and l : V →{AND,XOR,OR} is
a partial mapping. A prefix of G is a triple G′ := (V ′,E ′, l′), denoted by G′ v G,
where V ′ ⊆ V is such that if v ∈ V ′ then for every v′ ∈ V for which (v′,v) ∈ E
it holds that v′ ∈ V ′, E ′ ⊆ E is such that (V ′,E ′) is a connected graph, and l′ :=
l|dom(l)∩V ′ . We write G′ @ G if and only if G′ v G and G′ 6= G.

Let G := (V,E, l) be a prefix of a workflow graph and let X ⊆ V be all the
nodes of G such that for every x ∈ X it holds that x• = /0. A completion of G is
a triple G′ := (V ′,E ′, l), where V ′ := V ∪Y , Y ∩V = /0, |X | = |Y |, and there is a
bijection b from X to Y , and E ′ := E ∪b.

5.2.2. Proofs

It is easy to see that a completion of a workflow graph is again a workflow graph.
Corollary 5.2.1 (Completion is a workflow graph). A completion of a prefix of a
workflow graph is a workflow graph.
Corollary 5.2.1 follows immediately from its definition.

Split Miner produces models with OR-joins and then applies Algorithm 9 to
replace trivial OR-joins with AND- and XOR-joins. Next, we demonstrate that an
acyclic workflow graph in which all joins are OR-joins is guaranteed to be sound.
Lemma 5.2.1 (Sound acycic workflow graphs). If a workflow graph G := (V,E, l)
is acyclic, i.e., E is irreflexive, such that for every split v ∈ V it holds that l(v) 6=
OR and for every join v ∈V it holds that l(v) = OR, then G is sound.

Proof. (Sketch) By Noetherian induction on prefixes of G, we show that a com-
pletion of G is sound. Let G be the set of all prefixes of G. Then, (G ,v) is a
well-founded set.

96

- Induction basis: A completion of (s, /0, /0), where s ∈ V is the source of
G, is sound. Clearly, a workflow graph ({s,x},{(s,x)}, /0), where s 6= x, is
sound.

- Induction step: Let G′ := (V ′,E ′, l′) ∈ G be a prefix of G. Assume that for
every G′′ ∈ G such that G′′ @ G′ it holds that a completion of G′′ is sound.
Let Ĝ := (V̂ , Ê, l̂) @ G′ be such that E ′ \ Ê = {e}, e ∈ E. We distinguish
these two cases:

1. The target node v of e is in V̂ . Then, v is a join for which it holds that
l(v)=OR; indeed, for every join j∈V it holds that l(j)=OR. By def-
inition of the semantics of workflow graphs, refer to Definition 5.2.2,
and because G and, thus, G′ are acyclic, it holds that a completion of
G′ is sound. The only interesting case here is when for the source v′

of e it holds that l(v′) = XOR and |v′ • | > 1. In this case, one cannot
reach a deadlock or unsafe state from a state s of a completion of G′

for which s(e) = 1 because for every join j that can be reached from
v′ via a directed path it holds that l(j) = OR.

2. The target node v of e is not in V̂ . Then, v is not a join and, clearly, a
completion of G′ is sound. Note that a deadlock or unsafe reachable
marking in a workflow graph can be introduced only via a fresh join.

Hence, a completion of G is sound. It is easy to see that if a completion of G
is sound, then G is also sound.

Before showing that a replacement of a trivial OR-join preserves soundness of an
acyclic workflow graph, we define this transformation formally.
Definition 5.2.4 (Replacement of OR join). Let G := (V,E, l) be a workflow
graph, such that for every split v ∈ V it holds that l(v) 6= OR. Let v ∈ V be a
join, such that l(v) = OR. Let s be the result of Algorithm 9 for the input of G and
v. The result of replacement of v in G is a workflow graph G′ := (V,E, l′), where
l′ := {(x,y) ∈ l | x 6= v}∪{(v,s)}
Next, we demonstrate that replacement of an OR-join in a sound acyclic workflow
graph results in a sound workflow graph.
Lemma 5.2.2 (Replacement of OR join). Let G := (V,E, l) be a sound acyclic
workflow graph such that for every split v ∈V it holds that l(v) 6= OR. Let v ∈V
be a join, such that l(v) = OR. If G′ := (V,E, l′) is the result of replacement of v
in G, then G′ is sound.

Proof. (Sketch) By definition of Algorithm 9. We distinguish three cases:
◦ l′(v) = OR. It holds that G′ = G and, thus G′ is sound.
◦ l′(v) = AND. According to Algorithm 9, it holds that for all the splits on all

the paths from the minimal dominator d of v to v are AND-splits. Also, it
holds that no two distinct outgoing edges of a split on a path from v to d lead
to the same incoming edge of v. Hence, it holds that from every reachable

97

state that marks an incoming edge of v one can reach a state that marks all
the incoming edges of v. Hence, the sets of all the reachable states of G and
G′ are the same. Thus, G′ is sound.
◦ l′(v) = XOR. According to Algorithm 9, it holds that for all the splits on all

the paths from the minimal dominator d of v to v are XOR-splits. Also, it
holds that no two distinct outgoing edges of a split on a path from v to d lead
to the same incoming edge of v. Hence, it holds that from every reachable
state that marks exactly one incoming edge of v one cannot reach a state
that marks two incoming edges of v. Hence, the sets of all the reachable
states of G and G′ are the same. Thus, G′ is sound.

Clearly, one can apply replacements to all the OR-joins to obtain a sound acyclic
workflow graph without trivial OR-joins.
Theorem 5.2.1. Replacement of OR joinsLet G := (V,E, l) be a sound acyclic
workflow graph such that for every split v ∈ V it holds that l(v) 6= OR. Let f :
V ′→ {XOR,AND,OR}, where V ′ is the set of all joins v of G for which it holds
that l(v) = OR, and f (v), v ∈ V ′, is the result of Algorithm 9 for the input of G
and v. If G′ := (V,E, l′), where l′ := {(x,y) ∈ l | y 6= OR} ∪ {(x, f (x)) ∈ V ′×
{XOR,AND,OR} | x ∈V ′}, then G′ is sound.
The proof of Theorem 5.2.1 follows immediately from Lemma 5.2.2 and the ob-
servation that the order of replacements of OR joins in a sound acyclic workflow
graph does not influence the result. The latter fact holds (i) because G and G′ have
the same structure, i.e., the same nodes and edges, and (ii) because replacements
of OR joins preserve the semantics of splits, i.e., for every v∈V such that |v•|> 1
it holds that l(v) = l′(v); note that the result of Algorithm 9 depends only on these
two factors.

5.3. Evaluation

We implemented Split Miner (hereafter SM) as a standalone Java application.8

The tool takes as input an event log in MXML or XES format and the values
for the thresholds ε and η , and it outputs a BPMN process model. Using this
implementation, we plugged SM in our benchmark (introduced in Chapter 4) and
we empirically compared SM against the state-of-the-art APDAs. The dataset
and the experimental setup we used to assess SM are the same we used in our
benchmark, while for the hyper-parameter optimization of SM we used steps of
0.10 for both its filtering thresholds (η) and its parallelism threshold (ε). In the
following, we report the benchmark results, now including SM, and we discuss
them. However, given that we already extensively discussed the results of α$,
IM, ETM, FO, S-HM6, and HILP in Chapter 4, in this section we mostly focus on

8Available at http://apromore.org/platform/tools

98

http://apromore.org/platform/tools

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.50 0.66 0.98 59 37 1.00 yes 6.60

ETM 0.44 0.82 0.57 t/o 67 16 1.00 yes 14,400
BPIC12 FO - - - - 102 117 0.13 no 9.66

S-HM6 - - - - 88 46 0.40 no 227.80
HILP - - - - 300 460 - no 772.20
SM 0.97 0.72 0.83 0.97 63 43 0.73 yes 0.58
α$ - - - - 18 9 - no 10,112.60
IM 0.82 1.00 0.90 0.82 9 4 1.00 yes 0.10

ETM 1.00 0.70 0.82 t/o 38 38 1.00 yes 14,400
BPIC13cp FO - - - - 25 23 0.60 no 0.06

S-HM6 0.94 0.99 0.97 0.94 15 6 1.00 yes 130.0
HILP - - - - 10 3 - yes 0.10
SM 0.99 0.93 0.96 0.99 13 7 1.00 yes 0.03
α$ 0.35 0.91 0.51 t/o 15 7 0.47 yes 4,243.14
IM 0.92 0.54 0.68 0.92 13 7 1.00 yes 1.00

ETM 1.00 0.51 0.68 t/o 32 144 1.00 yes 14,400
BPIC13inc FO - - - - 43 54 0.77 no 1.41

S-HM6 0.91 0.96 0.93 0.91 9 4 1.00 yes 0.80
HILP - - - - 24 9 - yes 2.50
SM 0.98 0.92 0.95 0.98 15 10 1.00 yes 0.23
α$ 0.47 0.63 0.54 t/o 62 36 0.31 yes 14,057.48
IM 0.89 0.64 0.74 0.89 31 18 1.00 yes 3.40

ETM 0.61 1.00 0.76 t/o 23 9 1.00 yes 14,400
BPIC14f FO - - - - 37 46 0.38 no 27.73

S-HM6 - - - - 202 132 0.73 no 147.40
HILP - - - - 80 59 - no 7.30
SM 0.77 0.91 0.84 0.78 24 15 1.00 yes 0.59
α$ 0.71 0.76 0.73 t/o 219 91 0.22 yes 3,545.9
IM 0.97 0.57 0.71 0.96 164 108 1.00 yes 0.60

ETM 0.56 0.94 0.70 t/o 67 19 1.00 yes 14,400
BPIC151f FO 1.00 0.76 0.87 0.94 146 91 0.25 yes 1.02

S-HM6 - - - - 204 116 0.56 no 128.10
HILP - - - - 282 322 - no 4.40
SM 0.90 0.88 0.89 0.89 114 43 0.48 yes 0.48
α$ - - - - 348 164 0.08 no 8,787.48
IM 0.93 0.56 0.70 0.94 193 123 1.00 yes 0.70

ETM 0.62 0.91 0.74 t/o 95 32 1.00 yes 14,400
BPIC152f FO - - - - 195 159 0.09 no 0.61

S-HM6 0.98 0.59 0.74 0.97 259 150 0.29 yes 163.2
HILP - - - - - - - - t/o
SM 0.77 0.90 0.83 0.75 124 41 0.32 yes 0.25

Table 17: Split Miner default parameters evaluation results for the public logs –
Part 1/2.

SM results and how it compares against the other APDAs, and specially those that
showed to be above average, such as: IM and ETM, as well as FO, and S-HM6.

5.3.1. Evaluation Results

Default Parameters. The results of the default parameters evaluation are shown
in Tables 17, 18, 19, and 20. As in Chapter 4, also in this case we used “-” to report
that a given accuracy or complexity measurement could not be reliably obtained
due to syntactical or behavioral issues in the discovered model (i.e., a discon-

99

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

α$ - - - - 319 169 0.03 no 10,118.15
IM 0.95 0.55 0.70 0.95 159 108 1.00 yes 1.30

ETM 0.68 0.88 0.76 t/o 84 29 1.00 yes 14,400
BPIC153f FO - - - - 174 164 0.06 no 0.89

S-HM6 0.95 0.67 0.79 0.95 159 151 0.13 yes 139.90
HILP - - - - 433 829 - no 1,062.90
SM 0.78 0.94 0.85 0.78 92 29 0.61 yes 0.36
α$ - - - - 272 128 0.13 no 6,410.25
IM 0.96 0.58 0.73 0.96 162 111 1.00 yes 0.7

ETM 0.65 0.93 0.77 t/o 83 28 1.00 yes 14,400
BPIC154f FO - - - - 157 127 0.14 no 0.50

S-HM6 0.99 0.64 0.78 0.99 209 137 0.37 yes 136.90
HILP - - - - 364 593 - no 14.7
SM 0.73 0.91 0.81 0.74 98 31 0.31 yes 0.25
α$ 0.62 0.75 0.68 t/o 280 126 0.10 yes 7,603.19
IM 0.94 0.18 0.30 0.94 134 95 1.00 yes 1.50

ETM 0.57 0.94 0.71 t/o 88 18 1.00 yes 14,400
BPIC155f FO 1.00 0.71 0.83 1.00 166 125 0.15 yes 0.56

S-HM6 1.00 0.70 0.82 1.00 211 135 0.35 yes 141.90
HILP - - - - - - - - t/o
SM 0.79 0.94 0.86 0.78 105 30 0.33 yes 0.27
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.70 0.82 0.98 35 20 1.00 yes 13.30

ETM 0.76 1.00 0.86 t/o 42 4 1.00 yes 14,400
BPIC17f FO - - - - 98 82 0.25 no 64.33

S-HM6 0.95 0.62 0.75 0.94 42 13 0.97 yes 143.20
HILP - - - - 222 330 - no 384.50
SM 0.96 0.81 0.88 0.96 39 21 1.00 yes 2.53
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.99 0.70 0.82 0.99 34 20 1.00 yes 10.90

ETM 0.99 0.92 0.95 t/o 57 32 1.00 yes 14,400
RTFMP FO 1.00 0.94 0.97 0.97 31 32 0.19 yes 2.57

S-HM6 0.98 0.95 0.96 0.98 163 97 1.00 yes 262.70
HILP - - - - 57 53 - no 3.50
SM 1.00 0.97 1.00 1.00 25 18 0.40 yes 1.25
α$ - - - - 146 156 0.01 no 3,883.12
IM 0.99 0.45 0.62 0.96 50 32 1.00 yes 0.40

ETM 0.83 0.66 0.74 t/o 108 101 1.00 yes 14,400
SEPSIS FO - - - - 60 63 0.28 no 0.17

S-HM6 0.92 0.42 0.58 0.92 279 198 1.00 yes 242.70
HILP - - - - 87 129 - no 1.60
SM 0.76 0.77 0.77 0.77 39 25 0.82 yes 0.05

Table 18: Split Miner default parameters evaluation results for the public logs –
Part 2/2.

100

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound Time(s)

α$ - - - t/o 45 34 - no 11,168.54
IM 0.90 0.67 0.77 0.90 20 9 1.00 yes 2.08

ETM 0.99 0.81 0.89 t/o 23 12 1.00 yes 14,400
PRT1 FO - - - - 30 28 0.53 no 0.95

S-HM6 0.88 0.77 0.82 0.88 59 39 1.00 yes 122.16
HILP - - - - 195 271 - no 2.59
SM 0.98 0.99 0.98 0.98 27 16 1.00 yes 0.47
α$ - - - - 134 113 0.25 no 3,438.72
IM ex ex ex ex 45 33 1.00 yes 1.41

ETM 0.57 0.94 0.71 t/o 86 21 1.00 yes 14,400
PRT2 FO - - - - 76 74 0.59 no 0.88

S-HM6 - - - - 67 105 0.43 no 1.77
HILP - - - - 190 299 - no 21.33
SM 0.81 0.70 0.75 0.81 38 28 0.87 yes 0.31
α$ 0.67 0.76 0.71 0.67 70 40 0.11 yes 220.11
IM 0.98 0.68 0.80 0.98 37 20 1.00 yes 0.44

ETM 0.98 0.86 0.92 t/o 51 37 1.00 yes 14,400
PRT3 FO 1.00 0.86 0.92 1.00 34 37 0.32 yes 0.50

S-HM6 1.00 0.83 0.91 1.00 40 38 0.43 yes 0.67
HILP - - - - 343 525 - no 0.73
SM 0.82 0.92 0.87 0.84 29 13 0.76 yes 0.17
α$ 0.86 0.93 0.90 t/o 21 10 1.00 yes 13,586.48
IM 0.93 0.75 0.83 0.93 27 13 1.00 yes 1.33

ETM 0.84 0.85 0.84 t/o 64 28 1.00 yes 14,400
PRT4 FO - - - - 37 40 0.54 no 6.33

S-HM6 1.00 0.86 0.93 1.00 370 274 1.00 yes 241.57
HILP - - - - 213 306 - no 5.31
SM 0.83 1.00 0.91 0.88 31 19 0.77 yes 0.45
α$ 1.00 1.00 1.00 1.00 10 1 1.00 yes 2.02
IM 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.03

ETM 1.00 1.00 1.00 1.00 10 1 1.00 yes 2.49
PRT5 FO 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.02

S-HM6 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.11
HILP 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.05
SM 1.00 1.00 1.00 1.00 10 1 1.00 yes 0.02
α$ 0.80 0.77 0.79 0.80 38 17 0.24 yes 40.10
IM 0.99 0.82 0.90 0.99 23 10 1.00 yes 2.30

ETM 0.98 0.80 0.88 t/o 41 16 1.00 yes 14,400
PRT6 FO 1.00 0.91 0.95 1.00 22 17 0.41 yes 0.05

S-HM6 1.00 0.91 0.95 1.00 22 17 0.41 yes 0.42
HILP - - - - 157 214 - no 0.13
SM 0.94 1.00 0.97 0.94 15 4 1.00 yes 0.02

Table 19: Split Miner default parameters evaluation results for the proprietary logs
- Part 1/2.

101

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Sound? Time (sec)

α$ 0.85 0.90 0.88 0.85 29 9 0.48 yes 143.66
IM 1.00 0.73 0.84 1.00 29 13 1.00 yes 0.13

ETM 0.90 0.81 0.85 t/o 60 29 1.00 yes 14,400
PRT7 FO 0.99 1.00 0.99 0.99 26 16 0.39 yes 0.08

S-HM6 1.00 1.00 1.00 1.00 163 76 1.00 yes 249.74
HILP - - - - 278 355 - no 0.27
SM 0.91 1.00 0.95 0.92 29 10 0.48 yes 0.06
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.98 0.33 0.49 0.93 111 92 1.00 yes 0.41

ETM 0.35 0.88 0.50 t/o 75 12 1.00 yes 14,400
PRT8 FO - - - - 228 179 0.74 no 0.55

S-HM6 - - - - 388 323 0.87 no 370.66
HILP t/o t/o t/o t/o t/o t/o t/o t/o t/o
SM 0.97 0.41 0.57 0.93 241 322 0.82 yes 1.28
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.90 0.61 0.73 0.89 28 16 1.00 yes 63.70

ETM 0.75 0.49 0.59 0.74 27 13 1.00 yes 1,266.71
PRT9 FO - - - - 32 45 0.72 no 42.83

S-HM6 0.96 0.98 0.97 0.96 723 558 1.00 yes 318.69
HILP - - - - 164 257 - no 51.47
SM 0.92 1.00 0.96 0.92 29 19 1.00 yes 9.11
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 0.96 0.79 0.87 0.96 41 29 1.00 yes 2.50

ETM 1.00 0.63 0.77 t/o 61 45 1.00 yes 14,400
PRT10 FO 0.99 0.93 0.96 0.99 52 85 0.64 yes 0.98

S-HM6 - - - - 77 110 - no 1.81
HILP - - - - 846 3130 - no 2.55
SM 0.97 0.95 0.96 0.97 60 49 0.75 yes 0.47
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM t/o t/o t/o t/o 549 365 1.00 yes 121.50

ETM 0.10 1.00 0.18 t/o 21 3 1.00 yes 14,400
PRT11 FO - - - - 680 713 0.68 no 81.33

S-HM6 ex ex ex ex ex ex ex ex ex
HILP t/o t/o t/o t/o t/o t/o t/o t/o t/o
SM - - - - 712 609 0.12 no 19.53
α$ t/o t/o t/o t/o t/o t/o t/o t/o t/o
IM 1.00 0.77 0.87 1.00 32 25 1.00 yes 3.94

ETM 0.63 1.00 0.77 t/o 21 8 1.00 yes 14,400
PRT12 FO - - - - 87 129 0.38 no 1.67

S-HM6 - - - - 4370 3191 1.00 yes 347.57
HILP - - - - 926 2492 - no 7.34
SM 0.96 0.97 0.97 0.96 78 65 0.78 yes 0.36

Table 20: Split Miner default parameters evaluation results for the proprietary logs
- Part 2/2.

102

Discovery Accuracy Gen. Complexity Exec.
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct. Time (sec)

α$ 0 0 0 0 1 2 0 0
IM 9 1 0 9 5 2 24 1

Frequency ETM 5 11 2 0 10 13 24 0
Absolute FO 4 1 2 4 1 0 0 0

Best S-HM6 9 2 4 9 1 1 8 0
HILP 0 0 0 0 0 1 0 0
SM 2 10 17 5 4 4 7 23
α$ 0 3 0 0 1 1 1 0
IM 8 2 3 9 9 13 0 6

Frequency ETM 3 4 7 0 1 2 0 0
Second FO 2 2 5 2 4 0 6 17

Best S-HM6 1 4 6 2 1 1 7 1
HILP 0 0 0 0 1 0 0 0
SM 10 9 3 8 9 7 11 0
α$ 0 3 0 0 2 3 1 0
IM 17 3 3 18 14 15 24 7

ETM 8 15 9 0 11 15 24 0
Total FO 6 3 7 6 5 0 6 17

S-HM6 10 6 10 11 2 2 15 1
HILP 0 0 0 0 1 1 0 0
SM 12 19 20 13 13 11 18 23

Table 21: Best score frequencies for each quality dimension (default parameters
evaluation, inc. Split Miner).

nected model or an unsound model). Additionally, to report the occurrence of
a timeout or an exception during the execution of a discovery method we used
“t/o” and “ex”, respectively. We highlighted in bold the best score for each mea-
sure on each log, we underlined the second-best score, and we summarized these
achievements in Table 21.

SM systematically performed very good across the whole evaluation. It showed
to have the capabilities to excel in fitness, precision, or generalization, and it per-
formed the best on F-score. At the same time, SM achieved often the highest
(or second highest) simplicity with its discovered process models. While IM re-
mained the best APDA in terms of discovering fitting process models, it fell be-
hind SM in terms of precision and F-score. ETM and SM achieved respectively
19 and 21 times a precision greater than 0.80, and scored the highest precision 11
and 10 times (respectively). However, as highlighted already in our benchmark
results, ETM scores high precision at the cost of lower fitness. SM, not being
affected by this drawback, was able to maintain balanced high scores of fitness
and precision, which allowed it to stand out for its F-score. SM achieved 20 times
out of 24 an F-score above 0.80, outperforming all the other approaches 17 times,
and being the runner up for 3 times.

To strengthen our conclusions we used the Mann-Whitney U-test [6] to statis-
tically validate the following hypothesis: (i) IM significantly outperforms ETM
in terms of fitness (U=148, n1 = 22, n2 = 24, Z=2.55, P<0.02); (ii) IM signifi-
cantly outperforms SM in terms of fitness (U=150.5, n1 = 22, n2 = 23, Z=2.33,
P<0.02); (iii) ETM significantly outperforms IM in terms of precision (U=98.5,

103

n1 = 22, n2 = 23, Z=3.64, P<0.01); (iv) SM significantly outperforms IM in terms
of precision (U=68, n1 = 22, n2 = 23, Z=4.20, P<0.01); (v) SM significantly out-
performs IM in terms of F-score (U=88.5, n1 = 22, n2 = 23, Z=3.74, P<0.01); (vi)
SM significantly outperforms ETM in terms of F-score (U=113, n1 = 22, n2 = 23,
Z=3.47, P<0.01). Such results summarise our discussion above showing that: IM
excels in fitness, ETM and SM in precision, and SM in F-score.

In terms of complexity, SM joined the outstanding results of IM and ETM (see
Table 21). SM discovered 7 times fully block-structured models (structuredness
equal to 1.00), and 11 times highly structured models, being just behind IM and
ETM, that discover fully block-structured models by design. SM also placed itself
ahead of S-HM6, which strives for discovering block-structured models. ETM and
SM discovered the smallest or second-smallest model for more than 50% of the
times. These models also had low CFC, and were the ones with the lowest CFC
13 times (ETM) and four times (SM).

On the execution time, SM was the clear winner. It outperformed all the other
approaches, regardless of the input. It was the fastest APDA 23 times out of 24,
discovering a model in less than a second for 19 logs. In contrast, ETM was the
slowest approach, reaching the timeout of four hours for 22 logs, highlighting that
the quality of its discovered process models is paid in execution time.

Despite the remarkable results of SM, we remind that it does not guarantee
soundness (except in the case of acyclic process models), as a consequence, it
produced one unsound model out of 24 (from the PRT11 log). We note that, for
the remaining 23 logs, SM was able to discover sound models, some of which
containing loops. This latter result shows that SM is well ahead than other ap-
proaches that do not guarantee soundness, such as FO and S-HM6. Indeed, by
comparison, FO discovered only 8 sound models, while S-HM6 discovered 18
sound models.

Hyper-parameter Optimization. The results of the hyper-parameter optimiza-
tion evaluation are shown in Tables 22–25. We marked with a “*” the discovery
approaches that were not able to complete the exploration of the solution space
within 24 hours of timeout time. The purpose of this second evaluation was to
understand whether the F-score of the models discovered by SM can be improved
even further when fine-tuning its input parameters, what price SM pays if such an
improvement materialises (i.e. at the cost of which other quality dimension), and
how its results compare to the other APDAs.

In line with our goal, Tables 22 and 23 report the accuracy and complexity
scores of the discovered models with the highest F-score. SM remained the most
accurate APDA in precision (12 times out of 23), followed by IM (being it the
best 8 times). Also, SM confirmed to be the most balanced discovery approach,
scoring the highest F-score most of the times (18 out of 23), while discovering
very simple models along with IM, the latter delivered 14 times the simplest model
(for size, CFC and structuredness), followed by SM (six times). The results for
generalization show SM achieving the best generalization eight times, followed

104

Discovery Accuracy Gen. Complexity
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct.

IM 0.90 0.69 0.78 0.91 69 46 1.00
FO* 1.00 0.07 0.14 - 112 1369 1.00

BPIC12 S-HM6 0.96 0.67 0.79 0.96 97 110 0.63
SM 0.97 0.72 0.83 0.97 63 43 0.73
IM 0.99 0.98 0.98 0.99 11 5 1.00
FO 0.00 0.42 0.00 - 19 16 1.00

BPIC13cp S-HM6 0.96 0.92 0.94 0.96 20 14 0.80
SM 0.99 0.93 0.96 0.99 13 7 1.00
IM 0.90 0.87 0.89 0.90 13 5 1.00
FO 0.00 0.36 0.00 - 42 76 0.88

BPIC13inc S-HM6 0.93 0.98 0.96 0.93 16 10 1.00
SM 0.98 0.92 0.95 0.98 15 10 1.00
IM 0.75 0.97 0.85 0.75 19 4 1.00
FO 0.97 0.81 0.88 0.31 27 34 0.56

BPIC14f S-HM6 0.91 0.84 0.88 0.91 178 117 0.97
SM 0.85 0.86 0.86 0.85 30 22 0.70
IM 0.81 0.68 0.74 0.83 140 70 1.00
FO 1.00 0.76 0.87 0.94 146 91 0.26

BPIC151f S-HM6 0.88 0.89 0.89 0.58 1576 550 1.00
SM 0.95 0.86 0.90 0.95 122 51 0.45
IM 0.71 0.76 0.74 0.69 141 61 1.00
FO 0.99 0.63 0.77 0.99 195 164 0.09

BPIC152f S-HM6 0.99 0.62 0.76 0.99 246 167 0.19
SM 0.81 0.86 0.83 0.81 141 58 0.31
IM 0.65 0.99 0.79 0.63 73 8 1.00
FO 0.99 0.60 0.75 0.99 162 163 0.07

BPIC153f S-HM6 0.81 0.77 0.79 0.81 231 77 0.97
SM 0.78 0.94 0.85 0.78 92 29 0.61
IM 0.73 0.84 0.78 0.75 108 42 1.00
FO 1.00 0.67 0.80 1.00 155 128 0.14

BPIC154f S-HM6 0.99 0.66 0.79 0.99 217 145 0.36
SM 0.77 0.90 0.83 0.78 102 35 0.34
IM 0.64 0.88 0.74 0.65 105 34 1.00
FO 1.00 0.71 0.83 1.00 166 125 0.15

BPIC155f S-HM6 0.82 0.94 0.87 0.81 610 166 0.96
SM 0.84 0.92 0.88 0.82 108 36 0.22
IM 1.00 0.70 0.82 1.00 39 24 1.00

FO* - - - - - - -
BPIC17f S-HM6 0.97 0.70 0.81 0.97 51 25 1.00

SM 0.94 0.83 0.88 0.94 37 19 1.00
IM 0.94 0.98 0.96 0.94 28 10 1.00
FO 1.00 0.94 0.97 0.84 31 32 0.19

RTFMP S-HM6 0.95 0.99 0.97 0.95 82 30 1.00
SM 1.00 0.97 0.98 1.00 25 18 0.40
IM 0.62 0.98 0.76 0.76 31 14 1.00
FO 0.96 0.36 0.53 0.30 51 109 0.33

SEPSIS S-HM6 0.80 0.39 0.52 0.86 299 187 1.00
SM 0.76 0.77 0.77 0.77 39 25 0.82

Table 22: Scores of the models with the best F-score discovered with hyper-
parameter optimization (public logs), inc. Split Miner.

105

Discovery Accuracy Gen. Complexity
Log Method Fitness Precision F-score (3-Fold) Size CFC Struct.

IM 0.91 0.89 0.90 0.91 24 11 1.00
FO 0.98 0.92 0.95 0.99 25 29 0.72

PRT1 S-HM6 0.95 0.97 0.96 0.95 37 29 0.92
SM 0.98 0.98 0.98 0.98 27 16 1.00
IM - - - - - - -
FO 1.00 0.17 0.30 1.00 55 241 0.93

PRT2 S-HM6 - - - - - - -
SM 0.81 0.70 0.75 0.81 38 28 0.87
IM 0.87 0.93 0.90 0.87 27 8 1.00
FO 1.00 0.86 0.92 1.00 34 37 0.32

PRT3 S-HM6 0.99 0.85 0.91 0.96 40 34 0.48
SM 0.95 0.89 0.92 0.95 33 24 0.55
IM 0.86 1.00 0.92 0.86 21 5 1.00
FO 1.00 0.87 0.93 - 32 41 0.50

PRT4 S-HM6 0.93 0.96 0.95 0.93 66 55 0.77
SM 0.97 0.93 0.95 0.97 36 32 0.56
IM 1.00 1.00 1.00 1.00 12 1 1.00
FO 1.00 1.00 1.00 0.95 10 1 1.00

PRT5 S-HM6 1.00 1.00 1.00 1.00 12 1 1.00
SM 1.00 1.00 1.00 1.00 10 1 1.00
IM 0.90 1.00 0.95 0.90 17 2 1.00
FO 1.00 0.91 0.95 0.96 22 17 0.41

PRT6 S-HM6 0.98 0.96 0.97 0.98 24 15 0.46
SM 0.94 1.00 0.97 0.94 15 4 1.00
IM 0.88 1.00 0.93 0.88 23 5 1.00
FO 0.99 1.00 0.99 0.99 26 16 0.39

PRT7 S-HM6 1.00 1.00 1.00 1.00 165 76 1.00
SM 0.93 1.00 0.96 0.92 34 16 0.29
IM* 1.00 0.09 0.16 0.99 95 86 1.00
FO - - - - - - -

PRT8 S-HM6 0.93 0.42 0.58 0.89 221 422 0.83
SM 0.77 0.58 0.66 0.76 214 176 0.93
IM 0.93 0.71 0.80 0.93 28 14 1.00
FO - - - - - - -

PRT9 S-HM6 0.99 0.99 0.99 0.99 41 59 0.68
SM 0.99 1.00 0.99 0.99 41 34 0.68
IM 1.00 0.81 0.89 1.00 47 33 1.00
FO 0.99 0.93 0.96 - 52 85 0.64

PRT10 S-HM6 0.98 0.83 0.90 0.98 1440 972 1.00
SM 0.98 0.95 0.97 0.98 64 55 0.66
IM 0.93 0.92 0.93 0.93 37 26 1.00
FO 1.00 0.80 0.89 0.94 60 237 0.87

PRT12 S-HM6 0.88 0.67 0.76 0.88 3943 2314 1.00
SM 0.97 0.97 0.97 0.97 80 75 0.76

Table 23: Scores of the models with the best F-score discovered with hyper-
parameter optimization (proprietary logs), inc. Split Miner.

106

Discovery BPIC Logs
Metric Method 12 13cp 13inc 14f 151f 152f 153f 154f 155f 17f RTFMP SEPSIS

IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fitness FO 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00

S-HM6 0.96 1.00 0.93 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.80
SM 0.98 1.00 1.00 0.85 0.97 0.95 0.81 0.83 0.92 0.96 1.00 0.98
IM 0.92 1.00 0.89 1.00 0.97 1.00 0.99 0.91 0.99 0.89 0.98 0.98

Prec. FO 0.07 0.42 0.36 0.81 0.76 0.63 0.60 0.67 0.71 - 0.94 0.36
S-HM6 0.67 0.92 0.98 0.84 0.89 0.78 0.77 0.66 0.94 0.70 0.99 0.39

SM 0.80 0.93 0.92 0.91 0.92 0.92 0.94 0.93 0.96 0.83 1.00 0.81
IM 0.78 0.98 0.89 0.85 0.74 0.74 0.79 0.78 0.74 0.82 0.96 0.76

F-score FO 0.14 0.00 0.00 0.88 0.87 0.77 0.75 0.80 0.83 - 0.97 0.53
S-HM6 0.79 0.94 0.96 0.88 0.89 0.76 0.79 0.79 0.87 0.81 0.97 0.52

SM 0.83 0.96 0.95 0.86 0.90 0.83 0.85 0.83 0.88 0.88 0.98 0.77
IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gen. FO - - 0.00 0.96 1.00 1.00 1.00 1.00 1.00 - 0.90 0.94
(3-Fold) S-HM6 0.96 0.99 0.93 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.95 0.86

SM 0.98 1.00 1.00 0.85 0.97 0.94 0.82 0.85 0.91 0.96 1.00 0.98
IM 15 9 9 17 63 30 17 25 32 23 11 14

Size FO 112 19 39 27 113 137 114 111 117 - 23 40
S-HM6 87 8 16 13 74 246 207 139 232 22 82 299

SM 53 13 15 23 107 117 92 92 103 36 22 36
IM 8 2 3 2 10 7 8 9 9 6 5 9

CFC FO 1369 16 54 34 47 57 53 46 44 - 13 35
S-HM6 65 0 10 0 0 167 77 35 140 0 30 187

SM 28 7 10 15 35 34 28 27 28 19 10 21
IM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Struct. FO 1.00 1.00 1.00 1.00 1.00 0.29 1.00 1.00 1.00 - 1.00 1.00
S-HM6 0.77 1.00 1.00 0.97 1.00 0.99 0.98 0.37 0.96 1.00 1.00 1.00

SM 1.00 1.00 1.00 1.00 0.48 0.41 0.62 0.35 0.33 1.00 0.54 0.92

Table 24: Best scores achieved in hyper-parameter evaluation by each approach
on each quality dimension (public logs), inc. Split Miner.

107

Discovery Proprietary (PRT) Logs
Metric Method # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 12

IM 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fitness FO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - 1.00 1.00

S-HM6 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.88
SM 1.00 0.83 1.00 0.97 1.00 0.94 0.93 0.99 0.99 1.00 1.00
IM 0.89 - 0.93 1.00 1.00 1.00 1.00 0.09 0.89 0.95 0.99

Prec. FO 0.92 0.17 0.89 0.94 1.00 0.91 1.00 - - 0.96 0.80
S-HM6 0.97 - 0.85 0.96 1.00 0.96 1.00 0.42 0.99 0.83 0.67

SM 0.98 0.71 0.92 1.00 1.00 1.00 1.00 0.58 1.00 0.95 0.98
IM 0.90 - 0.90 0.92 1.00 0.95 0.93 0.16 0.80 0.89 0.93

F-score FO 0.95 0.30 0.92 0.93 1.00 0.95 0.99 - - 0.96 0.89
S-HM6 0.96 - 0.91 0.95 1.00 0.97 1.00 0.58 0.99 0.90 0.76

SM 0.98 0.75 0.92 0.95 1.00 0.97 0.96 0.66 0.99 0.97 0.97
IM 1.00 - 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

Gen. FO 1.00 1.00 1.00 - 0.95 0.96 1.00 - - - 0.94
(3-Fold) S-HM6 1.00 - 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.88

SM 1.00 0.83 1.00 0.97 1.00 0.94 0.92 0.94 0.99 1.00 0.99
IM 14 - 27 21 12 17 23 95 16 27 25

Size FO 22 55 30 30 10 22 21 - - 48 60
S-HM6 13 - 37 66 12 24 40 59 41 23 3943

SM 27 33 29 29 8 13 21 210 29 52 66
IM 4 - 8 5 1 2 5 86 2 10 18

CFC FO 16 74 24 33 1 17 7 - - 44 66
S-HM6 0 - 27 55 1 15 15 0 58 0 2314

SM 16 24 13 18 0 3 6 176 19 39 49
IM 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Struct. FO 0.77 0.93 0.57 0.54 1.00 0.41 0.81 - - 0.81 0.87
S-HM6 1.00 - 0.72 1.00 1.00 0.50 1.00 0.85 1.00 1.00 1.00

SM 1.00 1.00 0.76 0.77 1.00 1.00 0.76 0.93 1.00 0.89 0.90

Table 25: Best scores achieved in hyper-parameter evaluation by each approach
on each quality dimension (proprietary logs), inc. Split Miner.

108

very closely by FO (seven times) and by S-HM6 (six times), with IM achieving
the highest generalization in four cases only.

Finally, Tables 24 and 25 report the best score that each discovery approach
can achieve in each dimension.9 We note that SM is not always able to maximally
optimize fitness, regardless of the input parameters chosen its fitness scores are
in the range 0.80-1.00. Similar are the results for generalization, with FO and
IM leading, and S-HM6 and SM following. As for precision, SM strikes better
results, being always in the range 0.90-1.00 (excluding the outliers: PRT2 and
PRT8). Finally, in F-score SM distinguished itself again, with scores in the range
0.80-1.00 and often over 0.90 (more than 50% of the times), while S-HM6 is the
runner up with a similar performance. As for model simplicity, IM retains its
leading role, followed by SM.

To conclude, the hyper-parameter optimization evaluation showed that SM is
able to push even further the quality of its models, similarly to the other APDAs.
However, SM reaches the upper limits of fitness and generalization earlier than
the upper limits of precision and F-score, indicating that SM is more likely to
discover precise models rather than general ones, as opposed to IM, that tends to
achieve higher fitness and generalisation.

5.4. Summary

In this chapter, we addressed our RQ2 10 presenting a new APDA, namely Split
Miner, whose underlying algorithms were designed to discover process models
from event logs in an effective and efficient manner, striving for the best trade-
off between the four quality dimensions: fitness, precision, generalization, and
soundness.

Split Miner operates over six steps: DFG and loops discovery; concurrency
discovery; filtering; splits discovery; joins discovery; and OR-joins minimization.
Each of these steps plays a fundamental role in the discovery of a highly fitting and
precise process model, that is at the same time simple and deadlock-free. About
the latter property, we formally proved that Split Miner guarantees to discover
sound acyclic process models, and deadlock-free cyclic process models. Differ-
ently than other APDAs that guarantee soundness, Split Miner does not achieve
such a result enforcing full structuredness on its discovered process models (as
opposed to IM or ETM), making SM the very first11 APDA that guarantees to
discover sound (or deadlock-free) process models that are not fully structured.
Furthermore, we showed that the time complexity of Split Miner is polynomial,
guaranteeing efficiency in terms of execution times during the process discovery.

9Full results of the hyper-parameter optimization evaluation are included in the zip file available
at https://doi.org/10.5281/zenodo.1219321

10How to strike a trade-off between the various quality dimensions in automated process discov-
ery in an effective and efficient manner?

11According to our literature review and benchmark, respectively Chapter 3 and 4.

109

https://doi.org/10.5281/zenodo.1219321

Finally, we empirically evaluated SM using our benchmark. As we expected
from the theoretical grounds, the results of the evaluation highlighted that SM
performs better than the state-of-the-art APDAs, achieving higher F-scores, bal-
ancing fitness and precision, and maintaining a low complexity in its discovered
process models. The empirical evaluation also allowed us to note that despite SM
cannot guarantee soundness for cyclic process models, SM is yet able to discover
sound cyclic process models. Lastly, SM proved to be the fastest APDA, discov-
ering process models in less than a second regardless of the input event logs.

To conclude, the algorithms we presented in this chapter, which combined
together form Split Miner, allowed us to strike a trade-off between the various
quality dimensions in automated process discovery in an effective and efficient
manner.

110

6. MARKOVIAN ACCURACY

The results of our benchmark (see Chapter 2) showed that the input parameters
of an APDA play an important role in the discovery of the process model and
ultimately on its quality. In particular, the hyper-parameter optimization evalua-
tion highlighted that all the existing APDAs can achieve better results when their
input parameters are finely tuned. However, such a tuning is expensive in terms
of computational power and time, sometimes requiring up to 24 hours to discover
a process model as opposed to seconds (or minutes) when choosing default pa-
rameters. This inefficiency is the direct consequence of two different problems:
(i) low scalability of the accuracy measures, especially precision; and (ii) a blind
exploration of the solution space. Addressing both problems is our strategy to
tackle our RQ31. In this chapter, we focus on the former problem.

Several measures of fitness and precision have been proposed and empirically
evaluated in the literature [145]. Existing precision measures (and to a lesser
extent also fitness measures) suffer from scalability issues when applied to models
discovered from real-life event logs. In addition, Tax et al. [5] have shown that
none of the existing precision measures fulfils a set of five intuitive properties,
namely precision axioms. These axioms were recently revised by Syring et al. [4],
who also proposed a set of desirable properties of fitness measures, namely fitness
propositions, showing that only the latest fitness and precision measures designed
by Polyvyanyy et al. [146] can fulfil the proposed properties.

In this chapter, 2 we present a family of fitness and precision measures based
on the idea of comparing the kth-order Markovian abstraction of a process model
against that of an event log. We show that the proposed fitness and precision
measures can fulfil all aforementioned properties for a suitable k dependent on
the log. In other words, when measuring fitness and precision, we do not need to
explore the entire state space of a process model behaviour but only its state space
up to a certain memory horizon, reducing in this way the computational power
and time required.

We empirically evaluate exemplars of the proposed family of measures using:
(i) a synthetic collection of models and logs previously used to assess the suitabil-
ity of precision measures (applicable also to fitness measures); and (ii) a set of
models discovered from 20 real-life event logs using IM, SM, and SHM.

The chapter is structured as follows. Section 6.1 gives an overview of the
state-of-the-art fitness and precision measures, and examines them with respect
to the theoretical properties postulated by Tax et al. [5] and van der Aalst [147].
Section 6.2 describes the Markovian abstractions and how to generate them start-
ing from a process model and an event log. Section 6.3 defines the fitness and
precision measures based on the Markovian abstractions, and shows that these

1How can the accuracy of an automated process discovery approach be efficiently optimized?
2Corresponding to [19, 20].

111

measures fulfil the theoretical properties. Finally, Section 6.4 reports the empiri-
cal evaluation, and Section 6.5 summarises the chapter.

6.1. Fitness and Precision in Automated Process Discovery

In this section, we provide an overview of existing measures of fitness and pre-
cision. We then introduce a collection of theoretical properties for fitness and
precision measures introduced in previous research studies, and we discuss the
limitations of existing fitness and precision measures with respect to these prop-
erties.

6.1.1. Fitness Measures

One of the earliest and simplest measures of fitness is token-based fitness [148].
Given an event log and a process model, represented as a Workflow net3, token-
based fitness is equal to one minus a normalized count of the number of tokens that
need to be added or deleted when replaying every trace of the event log against the
Workflow net. If while replaying a trace, we reach a state (a.k.a. marking) where
the next event in the trace does not match any enabled transition, then tokens are
added to the Workflow net in order to enable (and fire) the transition corresponding
to the event. When we finish replaying a trace, if any tokens are left behind in any
place other than the end place of the Workflow net, these tokens are deleted. This
fitness measure was successively extended by De Medeiros [149] in the context
of automated process discovery using genetic algorithms, proposing two variants:
the continuous parsing and the improved continuous semantics fitness, which op-
timize the computational efficiency of token-based fitness at the cost of exact-
ness. Another variant of token-based fitness was proposed by vanden Broucke et
al. [150]. The idea of this latter approach is to decompose the Workflow net into
single-entry single-exit regions and to analyse each region independently, so as
to increase scalability and to provide a more localised feedback. While computa-
tionally efficient, especially with the aforementioned optimizations, token-based
fitness measures have been criticized as being arbitrary, because they make “local
decisions” when deciding how to fix a replay error.

Adriansyah et al. [151] argue that a more robust approach to measuring fitness
is to compute, for each trace in the log, the closest trace recognized by the process
model, and to measure fitness based on the minimal number of error-corrections
required to align these two traces (a.k.a. minimal alignment cost). This observa-
tion underpins the alignment-based fitness measure [151], which is equal to one
minus a normalized sum of the minimal alignment cost between each trace in the
log and the closest corresponding trace recognized by the model. While concep-
tually sound, alignment-based fitness measures sometimes suffer from scalability

3A Workflow net is a Petri net with one single start place, one single end place, and such that
every transition is on a path from the start to the end place.

112

issues when applied to real-life event logs, due to the need to compute the optimal
alignment between the process model and each trace in the log.

In a recent study, Leemans et al. [152] proposed the projected conformance
checking (PCC) fitness measure. The idea of PCC fitness is to construct an au-
tomaton from the process model (namely Am) and from the event log (Al). To
control the size of these automata, the PCC fitness focuses on a subset of the ac-
tivities in the event log, by ignoring the less frequent activities. The two automata
Am and Al are then used to generate a third automaton, namely Al,m, capturing
their common behavior. The fitness value is then computed as the ratio between
the number of outgoing edges of each state in Al,m and the number of outgoing
edges of the corresponding state(s) in Al . As we will observe in Section 6.4 , PCC
fitness suffers from similar (and sometimes more pronounced) scalability issues
as alignment-based fitness.

Lastly, Polyvyanyy et al. [146] proposed a fitness measure based on the con-
cept of topological entropy [153] (i.e. Entropy-based fitness, EBF). Topological
entropy can be used to compute the cardinality of an irreducible language. In our
context, the behavior recorded in an event log (or captured in a process model)
can be considered as a language defined over the alphabet represented by the
set of the process activity labels. The cardinality of the event log (or process
model) language would correspond to the (non necessarily finite) number of dis-
tinct traces recorded in the event log (or observed in the process model). There-
fore, Polyvyanyy et al. propose to compute fitness as the ratio of the topological
entropy of the intersection of the event log and the process languages over the
topological entropy of the event log language. This is done encoding the lan-
guages as deterministic finite automata (DFA), short-circuiting the DFA in order
to turn the encoded languages irreducible, and using the DFA adjacency matrixes
to compute the topological entropy of each language [153].

6.1.2. Precision Measures

Greco et al. [154] define the precision of a (model, log) pair as the set difference
(SD) between the set of traces recognized by the process model and the set of
traces in the event log. This measure is a direct operationalization of the concept
of precision, but it is not applicable to models with cycles since the latter have an
infinite set of traces.

Rozinat and van der Aalst [155] proposed the advanced behavioral appro-
priateness (ABA) precision measure. ABA precision is based on the comparison
between the sets of activity pairs that sometimes but not always follow each other,
and the set of activity pairs that sometimes but not always precede each other.
The comparison is performed on the sets of activity pairs extracted both from the
model and the log behaviors. The ABA precision measure does not scale to large
models and it is undefined for process models without concurrency or conflict
relations [5].

113

De Weerdt et al. [156] proposed the negative events precision measure (NE).
This method works by inserting inexistent (so-called negative) events to enhance
the traces in the log. A negative event is inserted after a given prefix of a trace
if this event is never observed preceded by that prefix anywhere in the log. The
traces extended with negative events are then replayed on the model. If the model
can parse some of the negative events, it means that the model has additional be-
havior. This approach is however heuristic: it does not guarantee that all additional
behavior is identified.

Muñoz-Gama and Carmona [157] proposed the escaping edges (ETC) preci-
sion measure. This approach starts by building a prefix automaton from the event
log. It then replays the process model behavior on top of this prefix automation
and counts the number of times that the model can perform a move that the prefix
automaton cannot. Each of these mismatches is called an escaping edge. The orig-
inal ETC precision measure assumes that the process model perfectly fits the log.
An extension of ETC precision applicable to logs containing non-fitting traces,
namely alignments-based ETC precision (herein ETCa), in proposed in [158].
ETC and ETCa are not very accurate, since they only count the escaping edges
without taking into account how much the process model behavior diverges from
the log behavior after each escaping edge.

More recently, van Dongen et al. [2] proposed the anti-alignment precision
(AA). This measure analyses the anti-alignments of the process model behavior
to assess the model’s precision. An anti-alignment of length n is a trace in the
process model behavior of length at most equal to n, which maximizes the Leven-
shtein distance from all traces in the log. The major drawback of AA precision is
that it cannot be applied in a real-life context due to its scalability issues and the
difficulties in tuning its input parameters [2].

Alongside the PCC fitness measure outlined above, Leemans et al. [152] pro-
posed a dual measure of precision, namely PCC precision. This latter measure is
computed in a similar way as PCC fitness, with the difference that PCC precision
is the ratio between the number of outgoing edges of each state in Al,m and the
number of outgoing edges of the corresponding states occurring in Am.

As for the case of PCC, alongside the Entropy-based fitness (EBF), Polyvyanyy
et al. [146] proposed a precision measure based on the concept of topological en-
tropy [153]. To compute the Entropy-based precision (EBP), the authors propose
to use the ratio of the topological entropy of the intersection of the event log and
the process languages over the topological entropy of the process language.

We note that PCC and Entropy-based conformance checking (ECC) are the
only of the above approaches where fitness and precision measures are computed
based on the same abstraction of the model and the log behavior, specifically
automata-based abstractions. We follow up on this idea by proposing fitness and
precision measures based on a unified behavioral abstraction, but designed to be
more scalable than PCC and ECC, yet fulfilling a set of desirable theoretical prop-
erties for fitness and precision measures, exposed in the following.

114

6.1.3. Fitness Propositions

Syring et al. [4, 147] proposed seven propositions to capture intuitive properties
behind the concept of fitness in automated process discovery. Before introducing
these propositions, we formally define the notions of process model behavior and
event log behavior, as well as the auxiliary concepts of trace and sub-trace.
Definition 6.1.1. [Trace] Given a set of activity labels Ω, we define a trace on Ω

as a sequence τΩ = 〈t1, t2, . . . , tn−1, tn〉, such that ∀1≤ i≤ n, ti ∈Ω. 4 Furthermore,
we denote with τi the activity label in position i, and we use the symbol ΓΩ to refer
to the universe of traces on Ω. With abuse of notation, hereinafter we refer to any
t ∈Ω as an activity instead of an activity label.
Definition 6.1.2. [Subtrace] Given a trace τ = 〈t1, t2, . . . , tn−1, tn〉, with the nota-
tion τ

i→ j, we refer to the subtrace 〈 ti, ti+1, . . . , t j−1, t j 〉, where 0 < i < j ≤ n. We
extend the subset operator to traces, i.e., given two traces τ and τ̂ , τ̂ is contained
in τ , shorthanded as τ̂ ⊂ τ , if and only if (iff) ∃i, j ∈ N | τ i→ j = τ̂ .
Definition 6.1.3. [Process Model Behavior] Given a process model P (regardless
of its representation) and being Ω the set of its activities. We refer to the model
behavior as BP ⊆ ΓΩ, where ∀〈t1, t2, . . . , tn−1, tn〉 ∈BP there exists an execution
of P that allows to execute the sequence of activities 〈t1, t2, . . . , tn−1, tn〉, where t1
is the first activity executed, and tn the last. 5

Definition 6.1.4. [Event Log and Event Log Behavior] Given a set of activities
Ω, an event log L is a finite multiset of traces defined over Ω. The event log
behavior of L is defined as BL = support(L).6

Given the above definitions, the seven fitness propositions are spelled out be-
low.
Definition 6.1.5. [Fitness Propositions]
◦ Proposition-1F. A fitness measure is a deterministic function fit : L ×P→

[0,1]∩R, where L is the universe of event logs, and P is the universe of
processes.
◦ Proposition-2F. Given two process models P1,P2 and a log L, if the behavior

of P1 is equal to the behavior of P2, the fitness value of P1 must be equal to
the fitness value of P2. Formally, if BP1 = BP2 =⇒ fit(L,P1) = fit(L,P2).
◦ Proposition-3. Given two process models P1,P2 and a log L, if the behavior

of P1 is contained in the behavior of P2, the fitness value of P2 must be
equal to or greater than the fitness value of P1. Formally, if BP1 ⊆BP2 =⇒
fit(L,P2)≥ fit(L,P1).

4For the sake of simplicity, we refer to τΩ as τ where there is no ambiguity.
5When BP = ΓΩ, we say that P is a flower model. Intuitively, a flower model is a process model

that recognizes any trace consisting of any number of occurrences of a given set of tasks, in any
order.

6The support of a multiset is the set of distinct elements of the multiset.

115

Fitness Measure Propositions
Name Label 1F 2F 3 4 5 6 7

Token-based fitness Token × × ×
√

×
√ √

Alignment-based fitness Align
√ √ √ √

×
√ √

PCC fitness PCCf
√ √ √ √

×
√ √

Entropy-based fitness EBF
√ √ √ √ √ √ √

Table 26: Fitness propositions fulfiled by existing fitness measures (according
to [4]).

◦ Proposition-4. Given a process model P and two event logs L1,L2, if the
behavior of L2 is contained in the behavior of P, the fitness value of the
model measured over the union of L1 and L2 must be equal to or greater
than the fitness value measured over L1. Formally, if BL2 ⊆BP =⇒ fit(L1∪
L2,P)≥ fit(L1,P).
◦ Proposition-5. Given a process model P and two event logs L1,L2, if none

of the behavior of L2 is contained in the behavior of P, the fitness value
of the model measured over L1 must be equal to or greater than the fitness
value measured over the union of L1 and L2. Formally, if BL2∩BP =∅=⇒
fit(L1,P)≥ fit(L1∪L2,P).
◦ Proposition-6. Given a process model P and an event log L, altering the

frequencies of the traces recorded in L without altering their distribution
should not alter the fitness value. Formally, let n ∈ N and Ln =

⋃
n

L =⇒

fit(L,P) = fit(Ln,P).
◦ Proposition-7. Given a process model P and a log L, if the behavior of L

is contained in the behavior of P, the fitness value of P must be equal to 1.
Formally, if BL ⊆BP =⇒ fit(L,P) = 1.

Syring et al. [4] also assessed the existing fitness measures against these propo-
sitions, we report in Table 26 the assessment results.

6.1.4. Precision Propositions

Syring et al. [4, 147] proposed also eight propositions to capture intuitive proper-
ties behind the concept of precision in automated process discovery. These propo-
sitions extend and generalise the axioms proposed by Tax et al. [5], though ruling
out Axiom-3, which instead we integrate in the following.7

Definition 6.1.6. [Precision Propositions]
◦ Proposition-1P. A precision measure is a deterministic function prec : L ×

P → R, where L is the universe of event logs, and P is the universe of
processes.
◦ Proposition-2P. Given two process models P1,P2 and a log L, if the behavior

of P1 is equal to the behavior of P2, the precision value of P1 must be equal

7We kept the same numbering for propositions and axioms as in the former studies [4, 5].

116

Precision Measure Propositions
Name Label 1P = A1 2P = A4 8 ⊃ A2 9 = A5 10 11 12 13 A3

Set Difference SD ×
√ √ √ √ √ √ √

×
Advanced Behavioral Appropriateness ABA × × ×

√
×

√ √ √
×

Negative Events NE × × × × ×
√ √ √

?
Alignment-based ETC (one-align) ETC × × × × ×

√
× × ×

PCC precision PCCp
√ √

× × ×
√ √ √

?
Anti-alignment AA

√ √ √
× ×

√ √ √
?

Entropy-based Precision EBP
√ √ √ √ √ √ √ √

?

Table 27: Precision propositions fulfiled by existing precision measures (accord-
ing to [4]), including the Axioms 1-5 (A1-A5) as discussed in [5].

to the precision value of P2. Formally, if BP1 = BP2 =⇒ prec(L,P1) =
prec(L,P2).
◦ Proposition-8. Given two process models P1,P2 and a log L, if the behavior

of P1 is contained in the behavior of P2, and the intersection between the
behavior of log and the behavior of P2 not contained in the behavior of
P1 is empty, the precision value of P1 must be equal to or greater than the
precision value of P2. Formally, if BP1 ⊆ BP2 and BL ∩ (BP2 \BP1) =
∅=⇒ prec(L,P1)≥ prec(L,P2).
◦ Proposition-9. Given a process model P and two event logs L1,L2, if the

behavior of L1 is contained in the behavior of L2, and the behavior of L2 is
contained in the behavior of P, the precision value of the model measured
over L2 must be equal to or greater than the precision value measured over
L1. Formally, if BL1 ⊆BL2 ⊆BP =⇒ prec(L2,P)≥ prec(L1,P).
◦ Proposition-10. Given a process model P and two event logs L1,L2, if the

behavior of L1 is contained in the behavior of L2, and none of the behavior
of L2 not contained in the behavior of L1 can is contained in the behavior
of P, the precision value of P over L1 must be equal to the precision value
of P over L2. Formally, if BL1 ⊆ BL2 and BP ∩ (BL2 \BL1) = ∅ =⇒
prec(L1,P) = prec(L2,P).
◦ Proposition-11. Given a process model P and an event log L, altering the

frequencies of the traces recorded in L without altering their distribution
should not alter the precision value. Formally, let n ∈ N and Ln =

⋃
n

L =⇒

prec(L,P) = prec(Ln,P).
◦ Proposition-12. Given a process model P and a log L, if the behavior of P

is equal to the behavior of L, the precision value of P must be equal to 1.
Formally, if BP = BL =⇒ prec(L,P) = 1.
◦ Proposition-13. Given a process model P and a log L, if the behavior of P

is contained (or equal) in the behavior of L, the precision value of P must
be equal to 1. Formally, if BP ⊆BL =⇒ prec(L,P) = 1.
◦ Axiom-3. Given two process models P1,P2 and a log L, if the behavior of L

is contained in the behavior of P1, and P2 is the flower model, the precision
value of P1 must be greater than the precision value of P2. Formally, if

117

BL ⊆BP1 ⊂BP2 = ΓΩ =⇒ prec(L,P1)> prec(L,P2).
Table 26 shows which precision measures fulfil which propositions according

to [4], what precision measures fulfil Axiom-3 as discussed in [5], and the rela-
tions between propositions and axioms.

6.2. Kth-order Markovian Abstraction

A kth-order Markovian abstraction (Mk-abstraction) is a graph composed of a set
of states (S) and a set of edges (E ⊆ S× S). In an Mk-abstraction, every state
s ∈ S represents a (sub)trace of at most length k, e.g. s = 〈b,c,d〉, and every state
of an Mk-abstraction is unique, i.e. there are no two states representing the same
(sub)trace. Two states s1,s2 ∈ S are connected via an edge e = (s1,s2) ∈ E iff s1
and s2 satisfy the following three properties: i) the first activity of the (sub)trace
represented by s1 can occur before the (sub)trace represented by s2, ii) the last ac-
tivity of the (sub)trace represented by s2 can occur after the (sub)trace represented
by s1, and iii) the two (sub)traces represented by s1 and s2 overlap with the excep-
tion of their first and last activity, e.g. e = (〈b,c,d〉 ,〈c,d,e〉). An Mk-abstraction
is defined w.r.t. a given order k, which defines the length of the (sub)traces en-
coded in the states. An Mk-abstraction contains a special state (denoted as −)
representing the source and sink of the Mk-abstraction. Intuitively, every state
represents either a trace of length less than or equal to k or a subtrace of length
k, whilst every edge represents an existing subtrace of length k+ 1 or a trace of
length less than or equal to k+1. Thus, Mk-abstraction captures how all the traces
of the input behavior evolve in chunks of length k. The definitions below show
the construction of an Mk-abstraction from a given BX .
Definition 6.2.1. [kth-order Markovian Abstraction] Given a set of traces BX ,
the k-order Markovian Abstraction is the graph Mk

X = (S,E) where S is the set of
states and E ⊆ S×S is the set of edges, such that
◦ S= {−} ∪{τ : τ ∈BX ∧ |τ| ≤ k} ∪ {τ i→ j : τ ∈BX ∧ |τ|> k ∧

∣∣τ i→ j
∣∣=

k}
◦ E = {(−,τ) : τ ∈ S ∧ |τ| ≤ k} ∪ {(τ,−) : τ ∈ S ∧ |τ| ≤ k} ∪
{(−,τ) : ∃τ̂ ∈BX s.t. τ = τ̂

1→k} ∪ {(τ,−) :∃τ̂ ∈BX s.t. τ = τ̂
(|τ̂|−k+1)→|τ̂|} ∪

{(τ ′,τ ′′) : τ
′,τ ′′ ∈ S ∧ τ

′⊕ τ
′′
|τ ′′| = τ

′
1⊕ τ

′′ ∧ ∃τ̂ ∈BX s.t. τ
′
1⊕ τ

′′ ⊆ τ̂} 8

A fundamental property of Markovian abstractions (valid for any order k) is
the following.
Theorem 6.2.1. [Equality and Containment Inheritance] Given two sets of traces
BX and BY , and their respective Mk-abstractions Mk

X = (SX ,EX) and Mk
Y =

(SY ,EY), any equality or containment relation between BX and BY is inherited
by EX and EY . Formally, if BX =BY then EX =EY , or if BX ⊂BY then EX ⊆EY .

8The operator ⊕ is the concatenation operator.

118

Traces
〈a,a,b〉
〈a,b,b〉

〈a,b,a,b,a,b〉
Table 28: Log L∗.

(a) Flower Proc. (b) Process Y (c) Process X

Figure 22: Examples of processes in the BPMN language.

Proof. (Sketch) This follows by construction. Specifically, every edge e ∈ EX

represents either a subtrace τ
x→y : τ ∈BX ∧ |τx→y| = k+ 1, or a trace τ : τ ∈

BX ∧ |τ|< k+1. It follows that from the same sets of traces the corresponding
Mk-abstractions contain the same sets of edges.

It should be noted that nothing can be said about traces in BY \BX , i.e. adding
new traces to BX does not imply that new edges are added to EX . As a result the
relation BX ⊂BY only guarantees EX ⊆ EY .

Moreover, an M1-abstraction is equivalent to a directly-follows graph (used as
starting point by many process discovery approaches [8, 12, 159], including Split
Miner). Instead, when k approaches infinity then M∞-abstraction is equivalent to
listing all the traces. The order of a Markovian abstraction, i.e. k, allows us to
play with the level of behavioral approximation. For example, let us consider the
event log L∗ as in Tab. 28, and the Process-X (Px) in Fig. 22c. Their respective
M1-abstractions: M1

L∗ and M1
Px

are shown in Fig. 23d and 23c. We can observe
that M1

L∗ = M1
Px

, though BPx is infinite whilst BL∗ is not.
This is an example of how the M1-abstraction can over-approximate the orig-

inal behavior. Increasing k reduces the over-approximation, thus allowing us to
detect more behavioral differences, e.g. increasing k to 2, the differences between
L∗ and Px emerge as shown in Figs. 24d and 24c. We note that for k equal to the
length of the longest trace in the log, the Markovian abstraction of the log is exact.
A similar statement cannot be made for the Markovian abstraction of the model,
since the longest trace of a model may be infinite.

Markovian Property. We note that the term Markovian is traditionally used
to describe something relating to a Markov process. However, in its essence, the
Markovian property simply declares that given the current state of a process, its
future state is independent of its past, i.e. independent of how the current state
was reached [160]. The adjective Markovian in our behavioural abstractions re-
calls this general property characterising all the Markov models, indeed, given a
state of our Markovian abstraction, the future state is independent of the previ-

119

−

a b

(a)

−

a b

(b)

−

a b

(c)

−

a b

(d)

Figure 23: From left to right: the M1-abstraction of the Flower Process, Process-
Y, Process-X and the event log L∗.

−

a b

aa bb

ab ba

(a)

−

a b

aa bb

ab ba

(b)

−

aa bb

ab ba

(c)

−

aa bb

ab ba

(d)

Figure 24: From left to right, the M2-abstraction of the Flower Process, Process-Y,
Process-X and the event log L∗.

ously traversed ones. Finally, we remark that while our Markovian abstraction
is not intended to be a Markov model, it could be turned into one by adding the
corresponding probabilities to its edges. However, while in the case of a Marko-
vian abstraction generated from an event log these probabilities could be extracted
from the event log, the same could not be seamlessly achieved for Markovian ab-
stractions generated from process models. In fact, process models are usually not
annotated with probabilities.

6.2.1. Generating the Mk-abstraction of an Event Log

Given an event log, it is always possible to generate its Mk-abstraction in poly-
nomial time, since the log behavior is a finite set of traces. Algorithm 10 shows
how we build the Mk-abstraction abstraction given as inputs: an event log L and
the order k. First, we create the set of states (S) and the sets of edges (E) of the
Mk-abstraction (lines 1 and 2). Then, we initialize the source/sink state s0 = −.
Finally, we iterate over all the traces recorded in the log as follows. For each
trace τ with length less or equal to k, we add τ to S, and two new edges (s0,τ)
and (τ,s0), lines 7 to 9. For each trace τ with length greater than k, we read the
trace using a sliding window of size k, moving this latter one activity forward per
iteration (lines 15 to 18). The sliding window (in Algorithm 10, depicted by the
state sw) is initialised as the prefix of τ , and the edge (s0,sw) is added to the set E
(lines 11 to 13). Then, at each iteration, sw slides over τ , adding a new state to the
set S and a new edge to the set E. When sw becomes the suffix of τ , the iteration
is over and a final edge is added to the set E (line 19).

120

Algorithm 10: Calculating Mk-abstraction of an Event Log
input : Event Log L
input : Order k
Result: Mk-abstraction Mk

L

1 Set S←∅;
2 Set E←∅;
3 State s0←−;
4 add s0 to S;

5 for τ ∈ L do
6 if |τ| ≤ k then
7 add τ to S;
8 add (s0,τ) to E;
9 add (τ,s0) to E;

10 else
11 State sw← τ

1→k;
12 add sw to S;
13 add (s0,sw) to E;
14 for i ∈ [1, |τ|− k] do
15 State sx← sw;
16 sw← τ

(1+i)→(k+i);
17 add sw to S;
18 add (sx,sw) to E;

19 add (sw,s0) to E;

20 Mk
L← (S,E);

21 return Mk
L

121

Time Complexity. Algorithm 10 iterates over each activity of each trace of
the input event log L. Consequently, the time complexity is polynomial on the

total number of activities recorded in the event log, O

(
∑
τ∈L
|τ|
)

.

6.2.2. Generating the Mk-abstraction of a Process

Given a process P, its behavior BP can be finite or infinite. While in theory, for
processes with finite behavior we could use Algorithm 10 this will not work for
processes with infinite behaviour. To address this problem, we represent BP as a
behavioral automaton (Definition 6.2.2), and we replay this latter to generate the
Mk-abstraction of the process.
Definition 6.2.2. [Behavioral Automaton of a Process] Given a process P, its
behavioral automaton is a graph R = (N,A), where N is the set of nodes and
A ⊆ N×N×Ω is the set of arcs. A node n ∈ N represents a Process Execution
State (PES), whilst an arc (n1,n2, t) ∈ A represents the possibility to move from
PES n1 to the PES n2 via the execution of activity t. Furthermore, we define n0 ∈N
as the initial PES, such that: ∀(n1,n2, t) ∈ A⇒ n2 6= n0.

Algorithm 11 shows the steps required to generate the Mk-abstraction for a
given process P. First, we initialize the set S and the set E of the Mk-abstraction,
and we add the source/sink state s0 = − to S. Then, we generate the behavioral
automaton of the process (R), we retrieve its initial state (n0), and we initialize
all the necessary data structures to perform its replay as follows (lines 5 to 16).
We create a queue Q and we add n0 to it. This queue stores the PESs that have
to be explored. We create a map V , to store for each PES the set of (sub)traces
whose execution led to the PES and progression needs to be explored (all these
sets are initialized as empty, see line 13). We create a map X , to store for each
PES the set of (sub)traces whose execution led to the PES and progression have
been explored (all these sets are initialized as empty, see line 14). Finally, we add
an empty (sub)trace (〈〉) to the set of (sub)traces whose execution led to n0 and
progression needs to be explored (lines 17 and18), this empty (sub)trace will be
the starting point of the automaton replay.

To explore the automaton behavior we pull the first element of the queue (n̂),
we retrieve its set of (sub)traces to explore (Vn̂), and its set of outgoing arcs (i.e.
all the arcs of the automaton (n1,n2, t) s.t. n1 = n̂), see lines 20 to 22. For each
(sub)trace τ̂ whose execution led to n̂ and whose progression needs to be explored,
we perform the following operations. We make a copy of τ̂ (τ , line 24). If n̂ has no
outgoing arcs (O =∅), τ is either a full-trace (if its length is less than k, line 26)
or a trace suffix, 9 accordingly, we add to E the edges (τ,s0) and (s0,τ) (this latter
only in case of τ full-trace).

If O 6=∅, for each outgoing arc (n̂,nt , t), we execute the following operations.

9I.e. no more activities can be executed because n̂ is a final PES, being O =∅.

122

We update τ appending the activity t (line 32), this represents one of the possible
progressions of the (sub)trace τ̂ . At this point three possible situations may occur:
i) τ length is less than k, this means we did not observe enough activities to add
τ as a state in S; ii) τ length is exactly k, this means τ is a prefix as it reached the
length k after we appended the activity t, as a consequence we add τ to S and the
edge (s0,τ) to E (lines 33 to 35); iii) τ length is greater than k, and consequently
we add τ

2→(k+1) to S and
(

τ
1→k,τ2→(k+1)

)
to E (lines 37 to 39). Once S and E

have been updated, we retrieve the set of (sub)traces explored from nt (Xnt), if the
set does not contain τ

2→(k+1), we add this latter to the set of (sub)traces to explore
from nt (Vnt), and we add nt to Q, if this latter does not already contain it (lines 40
to 44).

We repeat these steps for all the outgoing arcs of n̂, then, we update Vn̂ and Xn̂,
moving the (sub)trace τ̂ from Vn̂ to Xn̂ (lines 45 to 47). We iterate over these steps
until Q is empty, after which Mk

P is completed.

Time Complexity. Algorithm 11 iterates on all the PES of the automaton,
up to the number of incoming arcs of a PES (this is 2|Ω| in a behavioral au-
tomaton). At each iterations two nested loops are executed. The outer one,
on the outgoing arcs of the PES, the inner one, on the (sub)traces to explore
from the PES. Since in the worst case, each PES can have a number of outgo-
ing arcs equal to the number of activities executable (|Ω|), and the number of
(sub)traces to explore from each PES is capped by the number of combinations of
length k over the alphabet Ω, i.e. k|Ω|. The time complexity of Algorithm 11 is
O
(

2|Ω| · |Ω| · k|Ω|
)
= O

(
|Ω| ·2k|Ω|

)
.

6.3. Comparing Markovian Abstractions

In this section, we introduce our accuracy measures, the Markovian Abstraction-
based fitness and precision. Both measures rely on the comparison of the pro-
cess and the event log Mk-abstractions. Given that the abstractions are graphs,
it is possible to compare them applying either a structural comparator (e.g. a
graph edit distance) or a simulation-based comparator. However, since the latter
is computational expensive, we decided to opt for the former and to compare the
Mk-abstractions using a weighted edge-based graph matching algorithm.
Definition 6.3.1. [Weighted Edge-based Graph Matching Algorithm (GMA)]
A Weighted Edge-based Graph Matching Algorithm (GMA) is an algorithm that
receives as input two graphs G1 = (N1,E1) and G2 = (N2,E2), and outputs a
mapping function IC : E1 → (E2∪{ε}). The function IC maps pairs of edges
matched by the GMA or, if no mapping was found, the edges in E1 are mapped to ε ,
i.e., ∀e1,e2 ∈E1 : IC(e1) = IC(e2)⇒ (e1 = e2) ∨ (IC(e1) = ε ∧ IC(e2) = ε).
A GMA is characterised by an underlying cost function C : E1× (E2 ∪ {ε})→
[0,1], s.t. ∀e1 ∈E1 and ∀e2 ∈E2 =⇒C(e1,e2)∈ [0,1] and ∀e1 ∈E1 =⇒C(e1,ε)=

123

Algorithm 11: Calculating Mk-abstraction of a Process
input : Process P
input : Order k
Result: Mk-abstraction Mk

P

1 Set S←∅;
2 Set E←∅;
3 State s0←−;
4 add s0 to S;
5 Graph R← generateAutomaton(P);
6 Set N← getPESs(R);
7 Node n0← getInititalPES(R);
8 Queue Q←∅;
9 add n0 to Q;

10 Map V ←∅;
11 Map X ←∅;
12 for n ∈ N do
13 Set Vn←∅;
14 Set Xn←∅;
15 put (n,Vn) in V ;
16 put (n,Xn) in X ;

17 Set Vn0 ← getMapValue(V ,n0);
18 add 〈〉 to Vn0 ;

19 while Q 6=∅ do
20 n̂← poll(Q);
21 Vn̂← getMapValue(V , n̂);
22 Set O← getOutgoingArcs(R, n̂);
23 for τ̂ ∈Vn̂ do
24 Subtrace τ ← τ̂;
25 if O =∅ then
26 if |τ|< k then
27 add τ to S;
28 add (s0,τ) to E;

29 add (τ,s0) to E;
30 else
31 for (n̂,nt , t) ∈ O do
32 τ ← τ⊕ t;
33 if |τ|= k then
34 add τ to S;
35 add (s0,τ) to E;
36 else
37 if |τ|> k then
38 add τ

2→(k+1) to S;

39 add
(

τ
1→k,τ2→(k+1)

)
to E;

40 Xnt ← getMapValue(X ,nt);
41 if τ

2→(k+1) 6∈ Xnt then
42 Vnt ← getMapValue(V ,nt);
43 add τ

2→(k+1) to Vnt ;
44 if nt 6∈ Q then add nt to Q ;

45 remove τ̂ from Vn̂;
46 Xn̂← getMapValue(X , n̂);
47 put τ̂ in Xn̂;

48 Mk
P← (S,E);

49 return Mk
P

124

1. Hereinafter, we refer to any GMA as its mapping function IC.
The GMA implemented in our measures is the Hungarian Algorithm [161,

162], which matches edges of E1 to edges of E2 to minimize the total cost of the
matching, i.e. Σe1∈E1C(e1,IC(e1)) is minimum. Furthermore, the time complex-
ity of the Hungarian Algorithm is polynomial [163], excluding time complexity
for computing the matching costs, i.e. ∀e1 ∈ E1 and ∀e2 ∈ E2, C(e1,e2) is known.
We note that, the underlying cost function plays a relevant role both in the time
complexity and the accuracy of the comparison. We propose two alternative cost
functions. The first is a boolean cost function, Cb : E1× (E2∪{ε})→ {0,1}, s.t.
Cb(e1,e2) = 0⇐⇒ e1 = e2 otherwise Cb(e1,e2) = 1. The time complexity of Cb
is constant: O(1). The second cost function is the Levenshtein distance [164]
normalised on [0,1], we refer to it with the symbol Cl . We remind that in an Mk-
abstraction each edge represents a (sub)trace of length k+1 (see Definition 6.2.1),
therefore, we can compute the Levenshtein distance between the (sub)traces rep-
resented by two edges. The time complexity of Cl is O

(
k2) [165]. However, the

difference between Cb and Cl is not only on their time complexity, the latter is
more robust to noise, whilst the former is very strict.

In the following, we show how to compute the Markovian Abstraction-based
fitness and precision, and the properties they fulfil. For the remaining part of the
section, let Lx be a log, Px be a process model, and Mk

Lx
= (SLx ,ELx) and Mk

Px
=

(SPx ,EPx) be the Mk-abstractions of the log and the model, respectively.

6.3.1. Markovian Abstraction-based Fitness

Given the GMA ICb , an event log L and a process P as inputs, we compute the kth-
order Markovian abstraction-based fitness (hereby MAFk) applying Equation 6.1.

MAFk(L,P) = 1− Σe∈ELCb(e,ICb(e)) ·Fe

Σe∈ELFe
(6.1)

Where Fe represents the frequency of the edge e ∈ EL. Computing Fe is trivial
while calculating the Mk-abstraction of the event log.10 Furthermore, we decided
to adopt Cb as underlying cost function for our Markovian-abstraction Fitness
because choosing Cl would not guarantee the fulfilment of the Proposition-5 for
fitness measures.

6.3.2. Proofs of the 7-Propositions of Fitness

In the following, we show that our Markovian abrastraction-based fitness measure
fulfils the propositions presented in Section 6.1.
◦ Proposition-1F. MAFk(L,P) is a deterministic function. Given a log L and

a process P, The construction of Mk
L and Mk

P is fully deterministic for BP

and BL (see Definition 6.2.1). Furthermore, since the graph matching al-
gorithm ICb is deterministic, as well as the MAFk(L,P) function of EL, EP

10This does not influence the time complexity of Algorithm 10.

125

and ICb (see Equation 6.1), it follows that MAFk(L,P) is also deterministic
with codomain [0,1] by definition.
◦ Proposition-2F. Given two process models P1,P2 and a log L, if BP1 =

BP2 =⇒ MAFk(L,P1) = MAFk(L,P2). From Theorem 6.2.1 the following
relation holds: EP1 = EP2 . Since MAFk(L,P) is function of EL, EP and ICb

(see Equation 6.1), it follows straightforward MAFk(L,P1) = MAFk(L,P2).
◦ Proposition-3. Given two process models P1,P2 and a log L, if BP1 ⊆

BP2 =⇒ MAFk(L,P2) ≥MAFk(L,P1). From Theorem 6.2.1 the following
relation holds: EP1 ⊆ EP2 .
Then, we distinguish two possible cases:

1. if EP1 =EP2 , then MAFk(L,P1)=MAFk(L,P2) follows straightforward
(see Proposition-2 proof and Equation 6.1).

2. if EP1 ⊂ EP2 , then the GMA would find matchings for either the same
or a larger number of edges when applied on Mk

L and Mk
P2

than when
applied on Mk

L and Mk
P1

. Thus, a smaller or equal number of edges will
be mapped to ε in the case of MAFk(L,P2), not increasing the total
matching cost Σe∈ELCb(e,ICb(e))·Fe, and guaranteeing MAFk(L,P2)≥
MAFk(L,P1).

◦ Proposition-4. Given a process model P and two event logs L1,L2, if BL2 ⊆
BP =⇒MAFk(L1∪L2,P)≥MAFk(L1,P).
Let L3 = L1 ∪ L2, EL3 = EL2 ∪EL1 , and Ed = EL3 \EL1 , it follows that if
e∈Ed =⇒ e∈EL2 \EL1 . Given that BL2 ⊆BP, ∀e2 ∈EL2∃ê∈EP s.t. e2 = ê
(see Theorem 6.2.1). Consequently, the relation Ed ⊆ EP holds. Taking into
account this latter result, we prove that MAFk(L3,P)≥MAFk(L1,P).

1−
Σe∈EL3

Cb(e,ICb(e)) ·Fe

Σe∈EL3
Fe

≥ 1−
Σe∈EL1

Cb(e,ICb(e)) ·Fe

Σe∈EL1
Fe

We rewrite the relation.

Σe∈EL1
Cb(e,ICb(e)) ·Fe +Σe∈EdCb(e,ICb(e)) ·Fe

Σe∈EL1∪Ed Fe
≤

Σe∈EL1
Cb(e,ICb(e)) ·Fe

Σe∈EL1
Fe

We note that, Σe∈EdCb(e,ICb(e)) ·Fe = 0, because ∀e ∈ Ed =⇒ e ∈ EL2 and
∃ê∈ EP s.t. e = ê and Cb(e,ICb(e)) = 0. Removing the zero value from the
relation, we obtain:

Σe∈EL1
Cb(e,ICb(e)) ·Fe

Σe∈EL1∪Ed Fe
≤

Σe∈EL1
Cb(e,ICb(e)) ·Fe

Σe∈EL1
Fe

126

This latter is always true, because Σe∈EL1
Fe < Σe∈EL1∪Ed Fe .

◦ Proposition-5. Given a process model P and two event logs L1,L2, if BL2∩
BP =∅=⇒MAFk(L1,P)≥MAFk(L1∪L2,P). Let L3 = L1∪L2 and Ed =
EL3 \EL1 , two scenarios can materialise:

1. Ed ∩EP = ∅, this case occurs when none of the (sub)traces of length
k+ 1 in BL2 can be found among the (sub)traces in BP. It follows
that ∀e ∈ Ed , Cb(e,ICb(e)) = 1, because no matching edges can be
found in the set EP. Consequently, Σe∈EL1∪ EdCb(e,ICb(e)) ·Fe will be
greater than Σe∈EL1

Cb(e,ICb(e)) ·Fe, and MAFk(L1,P)> MAFk(L1∪
L2,P).

2. Ed ∩EP 6=∅, this case occurs when there exists at least one (sub)trace
of length k+1 in BL2 that can be found among the (sub)traces in BP.
in this case we cannot prove MAFk(L1,P)≥MAFk(L1∪L2,P) for any
k, but only for k > k∗, where k∗ is the length of the longest (sub)trace in
BL2 that can be found among the (sub)traces in BP. Indeed, choosing
k > k∗, we would fall in the first scenario. In the worst case, k∗ is the
length of the longest trace in L2.

◦ Proposition-6. Given a process model P and an event log L, let n ∈ N
and Ln =

⋃
n

L =⇒MAFk(L,P) = MAFk(Ln,P). The factor n alters the fre-

quency of all the traces in L, but not its behavior, i.e. BL =BLn . Given that
the Mk-abstraction construction is only function of the behavior Mk

L = Mk
Ln ,

i.e. SL = SLn and EL = ELn . However, MAFk is function of the frequencies
of the Mk-abstraction edges, and these frequencies will be affected by a fac-
tor n, s.t. ∀e ∈ EL and ê ∈ ELn | ê = e =⇒ Fê = Fe · n. Nevertheless, n will
not alter the value of MAFk, as shown below.

MAFk(Ln,P) =
Σe∈EL1

Cb(e,ICb(e)) ·Fe ·n
Σe∈ELFe ·n

=

n ·Σe∈EL1
Cb(e,ICb(e)) ·Fe

n ·Σe∈ELFe
= MAFk(L,P)

It follows MAFk(Ln,P) = MAFk(L,P).
◦ Proposition-7. Given a process model P and a log L, if BL ⊆ BP =⇒

MAFk(L,P) = 1. From Theorem 6.2.1 the following relation holds: EL ⊆
EP, it follows that ∀e ∈ EL =⇒Cb(e,ICb(e)) = 0, because for any e in EL

there exists an equal matching edge in EP. Consequently, Σe∈ELCb(e,ICb(e))·
Fe = 0 and MAFk(L,P) = 1.

6.3.3. Markovian Abstraction-based Precision

Given the GMA ICl , an event log L and a process P as inputs, we can compute
the kth-order Markovian abstraction-based precision applying Equation 6.2.

127

Propositions and Axioms
1P = A1 2P = A4 8 ⊃ A2 9 = A5 10 11 12 13 A2 A3

MAPk w/ Cb
√

(∀k)
√

(k̂)
√

(∀k)
√

(k̂)
√

(∀k)
√

(k∗)
MAPk w/ Cl

√
(∀k) ×

√
(∀k)

√
(k̂)

√
(∀k)

√
(k∗)

Table 29: Precision propositions [4] and axioms [5] fulfiled by MAPk, and for
which value of k.

MAPk
ICl

(L,P) = 1− Σe∈EPCl(e,ICl (e))
|EP|

(6.2)

However, while this measure can fulfil all the precision Axioms proposed
in [5], as we showed in a previous study [19], it cannot fulfil Proposition-8. There-
fore, similarly to the case of MAFk, we need to set the GMA to ICb and define
the kth-order Markovian abstraction-based precision as Equation 6.3.

MAPk(L,P) = 1− Σe∈EPCb(e,ICb(e))
|EP|

(6.3)

Recollecting the BPMN models shown in Figure 22 and their respective Marko-
vian abstractions (for k = 1 and k = 2, Figures 23a-23c and 24a-24c). We can
observe that by increasing k the quality of the behavioral abstractions increases,
capturing more details. Consequently, our MAPk outputs a finer result. Note that,
our proposed precision measure fulfils the properties of an ordinal scale. Specif-
ically, given an event log L and a k, MAPk induces an order over the possible
process models that fit log L . This property is desirable given that the purpose
of a precision measure is to allow us to compare two different process models in
terms of their extra behavior.

6.3.4. Proofs of the 8-Propositions of Precision

In the following, we show that our Markovian abrastraction-based precision mea-
sure fulfils the propositions presented in Section 6.1, as well as Axiom-3.
◦ Proposition-1P. MAPk(L,P) is a deterministic function. Given a log L and a

process P, The construction of Mk
L and Mk

P is fully deterministic for BP and
BL (see Definition 6.2.1). Furthermore, since the graph matching algorithm
ICb is deterministic, as well as the MAPk(L,P) function of EL, EP and ICb

(see Equation 6.3), it follows that MAPk(L,P) is also deterministic with
codomain [0,1] by definition.
◦ Proposition-2P. Given two processes P1,P2 and an event log L, s.t. BP1 =

BP2 then MAPk(L,P1) = MAPk(L,P2). If BP1 = BP2 , then EP1 = EP2 (see
Theorem 6.2.1). It follows straightforward that MAPk(L,P1) =MAPk(L,P2)
(see proof Proposition-1P and Equation 6.3).
◦ Proposition-8. Given two processes P1,P2 and a log L, if BP1 ⊆BP2 and

BL ∩ (BP2 \BP1) = ∅, then MAPk(L,P1) ≥ MAPk(L,P2). The relation
EP1 ⊆ EP2 holds for Theorem 6.2.1, and we distinguish two possible cases:

128

1. EP1 = EP2 . In this case, it follows straightforward MAPk(L,P1) =
MAPk(L,P2) (see Proposition-1P proof and Equation 6.3).

2. EP1 ⊂ EP2 . Let EP2 = EP1 ∪Ex, then:

MAPk(L,P1)−MAPk(L,P2) =

1−
Σe∈EP1

Cb(e,ICb(e))

|EP1 |
−1+

Σe∈EP2
Cb(e,ICb(e))

|EP2 |
=

Σe∈EP1
Cb(e,ICb (e))+Σe∈ExCb(e,ICb (e))∣∣EP1

∣∣+ |Ex|
−

Σe∈EP1
Cb(e,ICb (e))∣∣EP1

∣∣
We prove that MAPk(L,P1)−MAPk(L,P2)≥ 0 by negating it.

Σe∈EP1
Cb(e,ICb (e))+Σe∈ExCb(e,ICb (e))∣∣EP1

∣∣+ |Ex|
−

Σe∈EP1
Cb(e,ICb (e))∣∣EP1

∣∣ < 0(
1− |EP1 |+ |Ex|

|EP1 |

)
Σe∈EP1

Cb(e,ICb(e))+Σe∈ExCb(e,ICb(e))< 0

Σe∈ExCb(e,ICb(e))−
|Ex|
|EP1 |

Σe∈EP1
Cb(e,ICb(e))< 0 (6.4)

By definition, the following two relations always hold:

0≤ Σe∈ExCb(e,ICb(e))≤ |Ex|

0≤ Σe∈EP1
Cb(e,ICb(e))≤ |EP1 |

Relation 6.4 is always false when Σe∈ExCb(e,ICb(e)) = |Ex|, i.e. when
none of the edges in Ex can be found in EL (Ex ∩EL = ∅). In gen-
eral, the latter does not hold for any k, because Ex captures all the
(sub)traces of BP2 \BP1 , some of which could be found in BL. How-
ever, similarly to the case 2 of Proposition-5, to fulfil Ex∩EL =∅ (and
consequently Proposition-8), it is sufficient to set k > k∗. Where k∗ is
the length of the longest (sub)trace in BL that can be found among the
(sub)traces in BP2 \BP1 . In the worst scenario, k∗ is the length of the
longest trace in L.

◦ Proposition-9. Given two event logs L1,L2 and a process P, s.t. BL1 ⊆
BL2 ⊆BP, then MAPk(L2,P)≥MAPk(L1,P). Consider the two following
cases:

1. if BL1 = BL2 , then EL1 = EL2 (see Theorem 6.2.1).
It follows MAPk(L2,P) = MAPk(L1,P), because MAPk(L,P) is a de-
terministic function of EL, EP and ICb (see Proposition-1P proof and
Equation 6.3).

129

2. if BL1 ⊂BL2 , then EL1 ⊆ EL2 (see Theorem 6.2.1). In this case, the
graph matching algorithm would find matchings for either the same
number or a larger number of edges between Mk

P and Mk
L2

, than be-
tween Mk

P and Mk
L1

(this follows from EL1 ⊆ EL2). Thus, a smaller or
equal number of edges will be mapped to ε in the case of MAPk(L2,P)
not decreasing the value for the precision, i.e., MAPk(L2,P)≥MAPk(L1,P).

◦ Proposition-10. Given a process model P and two event logs L1,L2, s.t.
BL1 ⊆BL2 and BP∩ (BL2 \BL1) =∅, then MAPk(L1,P) = MAPk(L2,P).
Let us consider the following two sets: Ei = EP∩EL2 and Eo = EP \EL2 , we
can compute MAPk(L2,P) as follows:

MAPk(L2,P) = 1− Σe∈EPCb(e,ICb(e))
|EP|

=

1− Σe∈EiCb(e,ICb(e))+Σe∈EoCb(e,ICb(e))
|EP|

= 1− |Eo|
|EP|

Σe∈EiCb(e,ICb(e)) = 0
holds by construction, because ∀e ∈ Ei =⇒ Cb(e,ICb(e)) = 0, since for
each edge in Ei there exists an equal edge in EL2 . The equality Σe∈EoCb(e,ICb(e))=
|Eo| holds by construction because ∀e ∈ Eo =⇒ Cb(e,ICb(e)) = 1, since
none of the edges in Eo can be matched to any edge in EL2 . Similarly, if we
consider Ex = EP∩EL1 and Ey = EP \EL1 , we can compute MAPk(L1,P) =

1−
|Ey|
|EP|

Let Ed = EL2 \EL1 , and EL2 = EL1 ∪Ed , two scenarios can materialise:

1. EP∩Ed =∅.
In this case, Eo = EP \ (EL1 ∪Ed) = EP \ EL1 = Ey. It follows that
MAPk(L1,P) = MAPk(L2,P).

2. EP∩Ed 6=∅, this case occurs when there exists at least one (sub)trace
of length k + 1 in BP that can be found among the (sub)traces in
BL2 \BL1 . In this case we cannot prove MAPk(L1,P) = MAPk(L2,P)
for any k, but only for k > k∗, where k∗ is the length of the longest
(sub)trace in BL2 that can be found among the (sub)traces in BL2 \
BL1 . Indeed, choosing k > k∗, we would fall in the first scenario. In
the worst case, k∗ is the length of the longest trace in L2 \L1.

◦ Proposition-11. Given a process model P and an event log L, let n ∈ N
and Ln =

⋃
n

L, then MAPk(L,P) = MAPk(Ln,P). This proposition holds

straightforward since BL = BLn and EL = ELn for Theorem 6.2.1, while
MAPk(L,P) is a deterministic function of EL, EP, and ICb .
◦ Proposition-12. Given a process model P and a log L, if BP = BL, then

MAPk(L,P) = 1. The relation EP = EL holds for Theorem 6.2.1, it follows

130

that ∀e∈EP =⇒Cb(e,ICb(e)) = 0, since for each edge in EP there exists an
equal edge in EL. Then, by definition, MAPk(L,P) = 1 (see Equation 6.3).
◦ Proposition-13. Given a process model P and a log L, if BP ⊆BL, then

MAPk(L,P) = 1. If BP ⊆ BL, then EP ⊆ EL (see Theorem 6.2.1). As
in Proposition-12, ∀e ∈ EP =⇒ Cb(e,ICb(e)) = 0, since for each edge in
EP there exists an equal edge in EL. It follows that MAPk(L,P) = 1 (see
Equation 6.3).
◦ Axiom-3. Given two processes P1,P2 and an event log L, s.t. BL ⊆BP1 ⊂

BP2 = ΓΩ then MAPk(L,P1) > MAPk(L,P2). The relation MAPk(L,P1) ≥
MAPk(L,P2) holds for Proposition-8. The case MAPk(L,P1) =MAPk(L,P2)
occurs when Mk

P2
over-approximates the behavior of P2, i.e. BP1 ⊂ BP2

and EP1 = EP2 . Nevertheless, for any BP1 there always exists a k∗ s.t.
EP1 ⊂ EP2 . This is true since BP1 is strictly contained in BP2 , there ex-
ists a trace τ̂ ∈ BP2 s.t. τ̂ 6∈ BP1 . Choosing k∗ = |τ̂|, the Mk∗

P2
would

produce an edge ê = (−, τ̂) ∈ EP2 s.t. ê 6∈ EP1 because τ̂ 6∈BP1 (see also
Definition 6.2.1).11 Consequently, for any k ≥ k∗, we have EP1 ⊂ EP2 and
MAPk(L,P1)>MAPk(L,P2) holds, since this latter is the case 2 of Axiom-2.

In Axiom-3 we showed that there exists a specific value of k, namely k∗, for
which MAPk∗(Lx,Px) satisfies Axiom-3 and we identified such value as k∗ = |τ̂|,
where τ̂ can be any trace of the set difference ΓΩ \BPx . In the following, we show
how to identify the minimum value of k∗. To identify the lowest value of k∗, we
have to consider the traces τ̂ ∈ ΓΩ such that does not exists a τ ∈BPx where τ̂ ⊆ τ .
If a trace τ̂ ∈ ΓΩ that is not a sub-trace of any other trace of the process model
behavior (BPx) is found, by setting k∗= |τ̂|would mean that in the Mk∗-abstraction
of ΓΩ there will be a state ŝ = τ̂ and an edge (−, τ̂) that are not captured by the
Mk∗-abstraction of BPx . This difference will allow us to distinguish the process Px

from the flower model (i.e. the model having a behavior equal to ΓΩ), satisfying
in this way the Axiom-3. At this point, considering the set of the lengths of all the
subtraces not contained in any trace of BPx , Z = {|τ̂| : τ̂ ∈ ΓΩ ∧ 6 ∃ τ ∈BPx | τ̂ ⊆
τ}, we can set the lower-bound of k∗ ≥ min(Z).

Note that the value of k∗ is equal to 2 for any process model with at least one
activity that cannot be executed twice in a row. If we have an activity t̂ that cannot
be executed twice in a row, it means that

∣∣〈t̂, t̂〉∣∣ ∈ Z and thus we can set k∗ = 2.
In practice, k∗ = 2 satisfies Axiom-3 in real-life cases, since it is very common to
find process models that have the above topological characteristic.

Table 29 summarises the propositions and axioms fulfilled by MAPk when
adopting a GMA with Cb or Cl and for which value of k, where k̂ represents the
length of the longest trace in the event log, and k∗ the lower bound of the set Z (as
discussed above).

11Formally, ∃τ̂ ∈BP2 \BP1 , s.t. for k∗ = |τ̂|=⇒∃(−, τ̂) ∈ EP2 \EP1 .

131

6.4. Evaluation

In this section, we report on a two-pronged evaluation we performed in order
to: (i) compare the fitness and precision results yielded by our measures to those
yielded by the state-of-the-art measures; (ii) assess to what extend our measures
outperform the time performance of the state-of-the-art measures; and (iii) anal-
yse the role of the order k. We set up a qualitative evaluation based on artificial
data to understand whether our measures yield results that are in-line with or more
intuitive than those of the state-of-the-art measures. At the same time, the qual-
itative evaluation allow us to comprehend the value of the fitness and precision
measures properties (introduced in Section 6.1). On the other hand, for assessing
the time performance of our measures, we set up a quantitative evaluation based
on real-life data. This latter evaluation is the most crucial in our context, given
that our main goal is the designing of scalable accuracy measures.

To do so, we implemented the Markovian Abstraction-based Fitness and Preci-
sion (MAFk and MAPk) in a standalone open-source tool12 and used it to carry out
a qualitative evaluation on synthetic data and a quantitative evaluation on real-life
data.13

All the experiments were executed on an Intel Core i5-6200U @2.30GHz with
16GB RAM running Windows 10 Pro (64-bit) and JVM 8 with 12GB RAM (8GB
Stack and 4GB Heap). For each measurement we set a timeout of two hours.

6.4.1. Qualitative Evaluation Dataset

In a previous study, van Dongen et al. [2] showed that their anti-alignment preci-
sion was able to generate more intuitive rankings of model-log pairs than existing
state-of-the-art precision measures using a synthetic dataset of model-log pairs.
Table 30 shows the synthetic event log used in [2], while Figure 25a shows the
“original model” that was used in that paper to derive eight process model variants.
The set of models includes a single trace model capturing the most frequent trace,
Fig. 25b; a model incorporating all separate traces, Fig. 25c; a flower model of
all activities in the log, Fig. 25d; a model with activities G and H in parallel (Opt.
G || Opt. H, see Fig. 25e); one with G and H in self-loop (G, 	H, Fig. 25f); a
model with D in self-loop (D, Fig. 25g); a model with all activities in parallel
(All parallel, Fig. 25h); and a model where all activities are in round robin (Round
robin, Fig. 25i).

To evaluate the MAFk fitness measures, we generated from each of the above
models, an event log containing the whole behavior of the process model. In
doing so, we capped the number of times each cycle in the model was executed
to two iterations each. We held out the Flower model because we were unable to
generate its corresponding event log, given that this model has almost one million

12Available at http://apromore.org/platform/tools
13The public data used in the experiments can be found at http://doi.org/10.6084/M9.

FIGSHARE.7397006.V1

132

http://apromore.org/platform/tools
http://doi.org/10.6084/M9.FIGSHARE.7397006.V1
http://doi.org/10.6084/M9.FIGSHARE.7397006.V1

Traces #
〈A,B,D,E, I〉 1207

〈A,C,D,G,H,F, I〉 145
〈A,C,G,D,H,F, I〉 56
〈A,C,H,D,F, I〉 23
〈A,C,D,H,F, I〉 28

Table 30: Test log [2].

(a) Original model. (b) Single trace. (c) Separate traces.

(d) Flower model. (e) Opt. G || Opt. H model. (f) 	G, 	H model.

(g) 	D model. (h) All parallel model. (i) Round robin model.

Figure 25: Qualitative evaluation artificial models as in [2].

133

unique traces if each cycle is executed at most twice. This led to a total of eight
model-log pairs.

Below, we evaluate the proposed fitness and precision measures using the
above model-log pairs.

6.4.2. Qualitative Evaluation of MAFk

Using the original model (Figure 25a), we measured the fitness of the eight logs
synthetized from the process model variants. We compared our fitness measure
MAFk to the fitness measures discussed in Section 6.1, namely: token-based fit-
ness (Token), alignment-based fitness (Alignment), PCC fitness, with projections
size equal to 10 (PCC10), 14 and entropy-based fitness both exact [146] (EBF) and
partial matching [166] (EBFp) variants.

Table 31 gives the numerical results of the fitness measurements. We note that
some of the fitness values returned by the Token measure are counter-intuitive.
For example, for the log generated from the original model, this measure scores a
value different than 1 while this model fully fits this log. As such, this result brakes
Proposition-7 of fitness. Other counter-intuitive values are returned for the logs
generated from the separate traces and the all parallel models, respectively 0.951
and 0.556. The former should also be 1 as per Proposition-7, whilst the latter,
given that none of the log traces are contained in the original model behavior, it
should return a value close to 0.

Alignment, PCC10, and EBFp also return high values of fitness for the all paral-
lel log, respectively 0.464, 1.0, and 0.658. These results are also counter-intuitive
if we consider that the all parallel log contains more than 350 thousand different
traces and none of them is contained in the original model behavior. A similar
reasoning can be done for the fitness values of Token, Alignment, and EBFp on the
log generated from the round robin model. This latter log contains no traces of
the original process behavior, yet the fitness values yielded by the three measures
are very high (respectively 0.655, 0.501, and 0.638). These results, at a glance
counter-intuitive, can be attributed to the fact that the three fitness measures allow
for partial matching, i.e. they do not penalise traces in the event log that are sim-
ilar (up to a certain degree) to one or more traces in the process behavior. On the
other hand, EBF, not allowing for partial matching, returns a fitness value of 0 for
both the all parallel and the round robin logs.

As for our fitness measure MAFk, we note that the numeric values for all the
logs generated from the acyclic models stabilize at k equal to 4, whilst the values
for the logs generated from the three cyclic models (1: 	G, 	H, 2: 	D and 3:
Round robin) tend to 0 as we increase k. This is expected as the higher the k, the
larger the behavior captured in the Mk-abstractions, and consequently the more
precise the measurement. In line with Proposition-7, MAFk returns a fitness value

14We chose a size of 10 for PCC because this was the highest value for which we were able to
obtain more than 50% of measurements.

134

Log Token Align. PCC10 EBF EBFp
Original model 0.960 1.000 1.000 1.000 1.000

Single trace 1.000 1.000 1.000 1.000 1.000
Separate traces 0.951 1.000 1.000 1.000 1.000

Opt. G || Opt. H 0.920 0.956 0.500 0.908 0.987
	G, 	H 0.880 0.918 0.231 0.853 0.958
	D 0.781 0.873 0.171 0.839 0.978

All parallel 0.556 0.464 1.000 0.000 0.658
Round robin 0.655 0.501 0.000 0.000 0.638

Log MAF1 MAF2 MAF3 MAF4 MAF5 MAF6 MAF7

Original model 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Single trace 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Separate traces 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Opt. G || Opt. H 0.889 0.679 0.563 0.500 0.500 0.500 0.500
	G, 	H 0.889 0.633 0.409 0.259 0.167 0.143 0.200
	D 0.889 0.633 0.419 0.250 0.138 0.094 0.109

All parallel 0.222 0.038 0.006 0.001 < 0.001 < 0.001 0.000
Round robin 0.444 0.000 0.000 0.000 0.000 0.000 0.000

Table 31: Values of the fitness measures over the synthetic dataset.

of 1 for all the logs fully fitting the original model (first three rows of Table 31).
In contrast with the state of the art, MAFk is able to identify the large difference
between the behavior of the original model and that recorded in the all parallel
log, as it returns a value close to 0 already for k equal to 2, similarly to the round
robin log. The only measures that return a value close to 0 for the round robin log
are PCC10 and EBF, besides our measure.

Since each fitness measure assesses the fitness of a log over a model in a dif-
ferent way, it is useful to analyse the ranking yielded by each measure for the set
of logs in question. This is shown in Table 32, where we report also a reference
ranking generated by applying the strict definition of fitness given in Section 3.1.
The reference ranking is derived by ordering the fitness values of each pair log-
model computed as the ratio of the number of traces in the log that belong to the
model behaviour over the number of traces in the log. We note that the rankings
yielded by Token and PCC10 differ the most from the reference one. Alignment
and MAFk (with k between 4 and 6) assign the highest rank to the fully fitting logs,
followed by the partially fitting logs with acyclic behavior (i.e. Opt. G || Opt. H),
then by the logs containing cyclic behavior (G, 	H, and 	D) and finally by the
two completely unfitting logs (all parallel and round robin). Except for the all
parallel and round robin logs, the rankings yielded by Alignment and MAFk (with
k between 4 and 6) match the reference ranking. Lastly, EBF and MAF7] agree
with the reference ranking, highlighting that the two measures operationalize the
strict definition of fitness.

6.4.3. Qualitative Evaluation of MAPk

Using the original log (as in Table 30), we measured the precision of the nine
model variants (shown in Fig. 25a-25i), and compared our precision measure
MAPk (with Cl) against the baseline measures discussed in Section 6.1, specifi-

135

Log Reference Token Align. PCC10 EBF EBFp
Original model 6 7 6 5 6 6

Single trace 6 8 6 5 6 6
Separate traces 6 6 6 5 6 6

Opt. G || Opt. H 5 5 5 4 5 5
	G, 	H 4 4 4 3 4 3
	D 3 3 3 2 3 4

All parallel 1 1 1 5 1 2
Round robin 1 2 2 1 1 1

Log Reference MAP1 MAF2 MAF3 MAF4 MAF5 MAF6 MAF7

Original model 6 6 6 6 6 6 6 6
Single trace 6 6 6 6 6 6 6 6

Separate traces 6 6 6 6 6 6 6 6
Opt. G || Opt. H 5 2 5 5 5 5 5 5
	G, 	H 4 2 3 3 4 4 4 4
	D 3 2 3 4 3 3 3 3

All parallel 1 1 2 2 2 2 2 1
Round robin 1 5 1 1 1 1 1 1

Table 32: Model ranking induced by the fitness measures over the synthetic
dataset.

cally trace-set difference precision (SD), alignment-based ETC precision (ETCa),
negative events precision (NE), projected conformance checking with its projec-
tions size equal to 2 (PCC2), 15 anti-alignment precision (AA), and entropy-based
precision both exact [146] (EBP) and partial matching [166] (EBPp) variants. We
left out advanced behavioral appropriateness (ABA) as it is undefined for some of
the models in this dataset. We limited the order k to 7, because it is the length of
the longest trace in the log. Setting an order greater than 7 would only (further)
penalise the cyclic behavior of the models.

Table 33 reports the results of our qualitative evaluation.To discuss these re-
sults, we use three precision measures as reference. The first one is SD, as it
closely operationalizes the definition of precision (as given in Section 3.1) by
capturing the exact percentage of model behavior that cannot be found in the log.
Though, as discussed in Section 6.1, SD can only be computed for acyclic mod-
els, and uses by design a value of zero for cyclic models. To have a reference
for cyclic models, we considered AA and EBPp. The former (AA) because it has
been shown [2] to be intuitively more accurate than other precision measures. The
latter (EBPp), the most recent precision measure, because it has been shown to be
mostly in line with AA [166], while also fulfilling the precision propositions.

From the results in Table 33, we can observe that MAP1 does not penalise
enough the extra behavior of some models, such as the original model, which
cannot be distinguished from the single trace and the separate traces models (all
have a precision of 1). Also, the values of MAP1 are far from those of SD (with the
exception of the simplest models, i.e. single trace and separate traces), yet close
to those of both AA and EBPp. As we increase k, MAPk tends to SD. We note that,

15We chose size 2 for PCC since this is the highest value for which we were able to obtain more
than 50% of the measurements.

136

Process Variant Traces (#) SD ETCa NE PCC2 AA EBP EBPp
Original model 6 0.833 0.900 0.995 1.000 0.871 0.979 0.998

Single trace 1 1.000 1.000 0.893 1.000 1.000 1.000 1.000
Separate traces 5 1.000 1.000 0.985 1.000 1.000 1.000 1.000
Flower model 986,410 0.000 0.153 0.117 0.509 0.000 0.125 0.479

Opt. G || Opt. H 12 0.417 0.682 0.950 0.991 0.800 0.889 0.986
	G, 	H 362 0.000 0.719 0.874 0.889 0.588 0.568 0.933
	D 118 0.000 0.738 0.720 0.937 0.523 0.758 0.970

All parallel 362,880 0.000 0.289 0.158 0.591 0.033 0.000 0.656
Round robin 27 0.000 0.579 0.194 1.000 0.000 0.000 0.479

Process Variant Traces (#) MAP1 MAP2 MAP3 MAP4 MAP5 MAP6 MAP7

Original model 6 1.000 0.895 0.833 0.786 0.778 0.833 0.833
Single trace 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Separate traces 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Flower model 986,410 0.176 0.021 0.002 t/o t/o t/o t/o

Opt. G || Opt. H 12 0.889 0.607 0.469 0.393 0.389 0.417 0.417
	G, 	H 362 0.800 0.370 0.134 0.041 0.011 0.003 0.001
	D 118 0.889 0.515 0.273 0.128 0.055 0.028 0.021

All parallel 362,880 0.222 0.034 0.005 0.005 t/o t/o t/o
Round robin 27 0.600 0.467 0.425 0.340 0.267 0.200 0.213

Table 33: Values of the precision measures over the synthetic dataset.

Process Variant SD ETCa NE PCC2 AA EBP EBPp
Original model 7 7 9 6 7 7 7

Single trace 8 8 6 6 8 8 8
Separate traces 8 8 8 6 8 8 8
Flower model 1 1 1 1 1 3 1

Opt. G || Opt. H 6 3 7 5 6 6 6
	G, 	H 1 5 5 3 5 4 4
	D 1 6 4 4 4 5 5

All parallel 1 2 2 2 3 1 3
Round robin 1 4 3 6 1 1 1

Process Variant MAP1 MAP2 MAP3 MAP4 MAP5 MAP6 MAP7

Original model 7 7 7 7 7 7 7
Single trace 7 8 8 8 8 8 8

Separate traces 7 8 8 8 8 8 8
Flower model 1 1 1 1 1 1 1

Opt. G || Opt. H 5 6 6 6 6 6 6
	G, 	H 4 3 3 3 3 3 3
	D 5 5 4 4 4 4 4

All parallel 2 2 2 2 2 2 2
Round robin 3 4 5 5 5 5 5

Table 34: Model rankings induced by the precision measures over the synthetic
dataset.

137

the main difference between the values of MAPk, SD, AA, and EBPp is captured
by the manner these measures penalise the extra cyclic behavior allowed by a
model. MAPk tends to zero quickly as we increase k, SD harshly penalise cyclic
models returning precision values of zero, while AA and EBPp do not penalise
beyond a certain level, with EBPp being the most forgiven. In this respect, let us
consider the cyclic models in our datasets: i) the flower model, ii) the 	G, 	H
model (Fig. 25f), iii) the 	D model (Fig. 25g), and iv) the round robin (Fig. 25i).
The value of our precision measure immediately drops to zero in the flower model
(k= 3) because this latter model allows the greatest amount of cyclic behavior, due
to all the possible combinations of activities being permitted. This is consistent
with both SD and AA, while EBPp returns the highest value of precision among
the reference measures (precisely, 0.479).

On the contrary, MAPk tends to zero slower in the round robin model because
this model is very strict on the order in which activities can be executed, despite
having infinite behavior. In fact, it only allows the sequence 〈A,B,C,D,F,G,H, I〉
to be executed, with the starting activity and the number of repetitions being vari-
able. This is taken into account by our measure, since even with k = 7 we do not
reach a value of zero for this model, as opposed to SD and AA. This allows us to
discriminate the round robin model from other models with very large behavior
such as the flower model. This is not possible with SD, AA, and EBPp, indeed SD
and AA returns a precision of zero for both models, while in contrast EBPp returns
a precision of 0.479 for both models.

As for the other two cyclic models in our dataset, MAPk tends to zero with
speeds between those of the flower model and the round robin model, with the
	G, 	H model dropping faster than the 	D, due to the former allowing more
cyclic behavior than the latter. Similar considerations as above apply to these
two models. Even for k = 7, their precision does not reach zero, allowing us to
distinguish the precision of these two models. Instead, SD sets the precision of the
two models to zero by design. If we consider AA, we note that it assigns precision
values well above zero to the two models, with the	G,	H model having a higher
precision than the 	D model (0.588 vs. 0.523). This result is counter-intuitive,
since the former model allows more behavior not permitted by the log (in terms of
number of different traces) than the latter model does. In addition, AA penalizes
more the round robin model, despite this latter has less behavior than the two
models with self-loop activities.

Similarly to AA also EBPp is generous in assessing the precision of the 	G,
	H model and the 	D model, setting their precision at 0.933 and 0.970 (respec-
tively), very close to the original model precision. As for the case of EBFp, this is
due to the partial matching nature of EBPp. Indeed, we note that its exact variant
(EBP) does penalise more the behavioral mismatches.

Altogether, these precision results show that the higher the k, the more the
behavioral differences our measure can catch and penalise. Furthermore, in line
with the time complexity analysis of MAPk, we can see that when k increases,

138

the execution time increases faster for those models allowing a huge amount of
behavior, timing out for k > 3 and k > 4 on the flower and all parallel models
(respectively).

In terms of ranking (see Table 34), our measure is the most consistent with the
ranking of the models yielded by both SD (for acyclic models), AA (for all mod-
els), and EBPp, than all other measures. As discussed above, the only differences
are in the swapping of the order of the two models with self loops, and in the
order of the round robin model. Note that given that both the round robin and the
flower model have a value of zero in AA (and of 0.479 in EBPp), the next model
in the ranking (all parallel) is assigned a rank of 3 instead of 2 in MAPk. This
is just the way the ranking is computed and is not really indicative of a ranking
inconsistency between the two measures. Another observation is that the ranking
yielded by our precision measure remains the same for k > 2. This indicates that
as we increase k, while the extent of behavioral differences we can identify and
penalize increases, this is not achieved at the price of changing the ranking of the
models.

6.4.4. Quantitative Evaluation Setup

In our second evaluation, we used the same public dataset of our benchmark (12
event logs) and eight proprietary logs sourced from several companies in the edu-
cation, insurance, IT service management and IP management domains. For each
of these 20 event logs, we automatically discovered three process models using
SM, IM, and (SHM), totalling 60 log-model pairs that we used for our quantitative
evaluation.

6.4.5. Quantitative Evaluation of MAFk

We measured our MAFk on each of the 60 log-model pairs, varying k in the range
2–5. For our comparison, we retained the Alignment fitness and PCC2 fitness.
For PCC we used a projections size of 2 as this was the highest value for which
we were able to obtain more than 50% of the measurements. We held out Token
fitness and EBF (both exact and partial matching variants), since they do not scale
to real-life models, and we used Alignment as a baseline for our comparison, since
it is to date the most-scalable and widely-accepted fitness measure for automated
process discovery in real-life settings [13].

Table 35 and 36 show respectively the numerical values of each measurement
and the fitness ranking of the models discovered by SM, IM and SHM for each
log. 16 Also in this evaluation, we can observe that the values of MAFk reduce
as we increase the order k. This is by design, since the higher the k the more are
the behavioral details captured by the measure, and the more are the mismatches
identified by our measure. Furthermore, we recall that our MAFk is very strict
since it uses a boolean function to penalise behavioral mismatches.

16A “–” symbol is used to report a failed measurement due to either a time-out or an exception.

139

In Table 35, we can see that for the models discovered by SM from the logs
PRT1 and PRT6, the values of MAFk quickly drop when moving from k = 3 to k =
4. The results of Alignment and MAF2 for the model of SM discovered from the
log PRT9, are also interesting: Alignment returns a value of 0.915, suggesting an
almost fully-fitting model, while our MAFk returns a low value of fitness (0.197)
already at k = 2. This can be linked to the fact that Alignment is sometimes too
accommodative leading to counter-intuitive results, as shown in the qualitative
evaluation.

If we look at the ranking yielded by the measures, MAFk agrees with Alignment
more than 30% of the times at k = 3 and k = 5, and more than 25% of the times
at k = 2 and k = 4. Instead, PCC2 agrees with Alignment only 10% of the times.
Increasing k for our MAPk does not alter frequently the ranking yielded: indeed
50% of the times the ranking was stable already at k = 2 and 75% at k = 3.

Finally, Tables 37 and 38 report the time performance of MAFk, Alignment
and PCC2.17 We separated the results by public and proprietary logs to allow
the reproducibility of the experiments for the set of public logs. We note that
PCC2 underperforms Alignment, despite this measure was designed to be more
efficient. Instead, MAFk is significantly faster than Alignment in the majority of
the log-model pairs, especially when the input model has a reasonable state space
as that produced by SM and SHM (i.e. when flower-like constructs are absent).
On the other hand, by increasing k the performance of MAFk reduces sharply for
flower-like models, as those produced by IM.

For the sake of measuring the time performance of Alignment we also consid-
ered the alternative implementation reported in [167]. However, this latter imple-
mentation consistently performed worse than the standard implementation for the
majority of log-model pairs used in our evaluation.

6.4.6. Quantitative Evaluation of MAPk

Similarly, we assessed our MAPk against each real-life log-model pair while vary-
ing the order k in the range 2–5. Unfortunately, we were not able to use any of the
reference measures used in the qualitative evaluation, because SD does not work
for cyclic models (all models discovered by IM were cyclic) while AA and EBP
(both exact and partial matching variants) do not scale to real-life models [2,166].
Furthermore, we excluded NE precision, since we were not able to perform the
measurements for more than 50% of the log-model pairs within the two-hour time-
out. Thus, we resorted to ETCa and PCC2 as two baselines.

Table 39 shows the results of the quantitative evaluation. In line with the for-
mer evaluation, the value of MAPk decreases when k increases. However, being
the behavior of the real-life models more complex than that of the artificial mod-
els, for some logs (e.g. the BPIC15 logs), it was not possible to compute MAP4

17Highlighted in bold the best scores, underlined the second best scores.

140

Log BPIC12 BPIC13cp BPIC13inc BPIC14f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.970 0.990 - 0.989 0.820 0.940 0.977 0.920 0.910 0.767 0.890 -
PCC2 0.043 0.043 0.687 0.480 0.308 0.696 0.000 0.035 0.000 0.407 0.106 0.261
MAF2 0.400 0.840 0.896 0.636 0.364 0.636 0.667 0.667 0.583 0.441 0.971 1.000
MAF3 0.308 0.834 0.715 0.565 0.217 0.478 0.548 0.613 0.419 0.338 0.796 0.972
MAF4 0.267 0.834 0.416 0.568 0.091 0.364 0.429 0.586 0.271 0.212 0.626 0.903
MAF5 0.257 0.370 0.197 0.537 0.061 0.256 0.356 0.557 0.188 0.154 0.465 0.788

Log BPIC151f BPIC152f BPIC153f BPIC154f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.900 0.970 - 0.773 0.948 0.981 0.780 0.950 0.950 0.731 0.955 0.991
PCC2 0.598 0.266 0.000 0.015 0.087 0.013 0.523 0.024 0.016 0.000 0.000 0.007
MAF2 0.758 0.960 0.992 0.538 0.853 0.919 0.413 0.894 0.894 0.543 0.921 0.974
MAF3 0.614 0.949 0.990 0.335 0.793 0.885 0.224 0.804 0.811 0.329 0.842 0.959
MAF4 0.510 0.934 0.983 0.226 0.688 0.855 0.147 0.643 0.734 0.230 0.558 0.938
MAF5 0.434 0.535 0.901 0.168 0.307 0.825 0.105 0.290 0.678 0.169 0.372 0.916

Log BPIC155f BPIC17f RTFMP SEPSIS
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.791 0.937 1.000 0.962 0.979 0.954 1.000 0.980 0.980 0.763 0.991 0.920
PCC2 0.005 0.301 0.016 0.244 0.466 0.013 0.000 0.062 0.757 0.000 0.129 0.296
MAF2 0.591 0.922 0.987 0.935 0.935 0.903 0.257 0.843 0.957 0.226 0.930 0.757
MAF3 0.371 0.874 0.982 0.923 0.885 0.769 0.187 0.743 0.930 0.155 0.953 0.678
MAF4 0.263 0.347 0.981 0.904 0.843 0.675 0.151 0.655 0.889 0.164 0.962 0.654
MAF5 0.191 0.135 0.982 0.909 0.818 0.606 0.125 0.576 0.882 0.187 0.647 0.631

Log PRT1 PRT2 PRT3 PRT4
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.977 0.902 0.883 0.811 - - 0.824 0.975 1.000 0.833 0.927 1.000
PCC2 0.276 0.225 0.883 0.000 0.000 0.802 0.264 0.420 0.056 0.082 0.309 0.318
MAF2 0.459 0.730 0.811 0.291 0.987 0.747 0.581 0.977 0.977 0.541 0.892 1.000
MAF3 0.318 0.418 0.691 0.111 0.880 0.637 0.291 0.882 0.976 0.284 0.622 1.000
MAF4 0.258 0.154 0.585 0.071 0.803 0.640 0.185 0.807 0.982 0.154 0.318 1.000
MAF5 0.223 0.035 0.502 0.077 0.354 0.684 0.131 0.778 0.985 0.084 0.118 1.000

Log PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 0.943 0.989 1.000 0.910 1.000 1.000 0.915 0.900 0.964 0.969 0.964 -
PCC2 0.632 0.320 0.503 0.426 0.385 0.533 0.780 0.011 0.990 0.327 0.623 -
MAF2 0.545 1.000 1.000 0.605 1.000 1.000 0.197 0.818 0.833 0.471 0.966 -
MAF3 0.220 0.898 1.000 0.243 1.000 1.000 0.106 0.596 0.652 0.374 0.925 -
MAF4 0.082 0.776 1.000 0.161 1.000 1.000 0.074 0.312 0.476 0.343 0.934 -
MAF5 0.044 0.716 1.000 0.141 1.000 1.000 0.055 0.127 0.349 0.343 0.852 -

Table 35: Comparison of fitness measures over the 20 real-life logs.

141

Log BPIC12 BPIC13cp BPIC13inc BPIC14f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 2 3 - 3 1 2 3 2 1 2 3 -
PCC2 1 1 2 2 1 3 1 2 1 3 1 2
MAF2 1 2 3 3 1 3 3 3 2 1 2 3
MAF3 1 3 2 3 1 2 2 3 1 1 2 3
MAF4 1 3 2 2 1 2 2 3 1 1 2 3
MAF5 2 3 1 3 1 2 2 3 1 1 2 3

Log BPIC151f BPIC152f BPIC153f BPIC154f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 2 3 - 1 2 3 2 3 3 1 2 3
PCC2 3 2 1 2 3 1 3 2 1 1 1 2
MAF2 1 2 3 1 2 3 2 3 3 1 2 3
MAF3 1 2 3 1 2 3 1 2 3 1 2 3
MAF4 1 2 3 1 2 3 1 2 3 1 2 3
MAF5 1 2 3 1 2 3 1 2 3 1 2 3

Log BPIC155f BPIC17f RTFMP SEPSIS
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 1 2 3 2 3 1 3 2 2 1 2 3
PCC2 1 3 2 2 3 1 1 2 3 1 2 3
MAF2 1 2 3 3 3 1 1 2 3 1 3 2
MAF3 1 2 3 3 2 1 1 2 3 1 3 2
MAF4 1 2 3 3 2 1 1 2 3 1 3 2
MAF5 2 1 3 3 2 1 1 2 3 1 3 2

Log PRT1 PRT2 PRT3 PRT4
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 3 2 1 - - - 1 2 3 1 2 3
PCC2 2 1 3 1 1 2 2 3 1 1 2 3
MAF2 1 2 3 1 3 2 1 3 3 1 2 3
MAF3 1 2 3 1 3 2 1 2 3 1 2 3
MAF4 2 1 3 1 3 2 1 2 3 1 2 3
MAF5 2 1 3 1 2 3 1 2 3 1 2 3

Log PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM

Alignment 1 2 3 2 3 3 2 1 3 3 2 -
PCC2 3 1 2 2 1 3 2 1 3 1 2 -
MAF2 2 3 3 1 3 3 1 2 3 2 3 -
MAF3 1 2 3 1 3 3 1 2 3 2 3 -
MAF4 1 2 3 1 3 3 1 2 3 2 3 -
MAF5 1 2 3 1 3 3 1 2 3 2 3 -

Table 36: Models ranking yielded by fitness measures over the 20 real-life logs.

142

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total
Alignment 30.1 217.8 0.5 361.0 33.7 155.2 0.5 404.8 37.2 174.4 0.7 335.0

PCC2 77.1 685.1 0.1 925.4 138.9 1344.9 0.1 1667.1 152.1 1378.8 0.1 1825.1
MAF2 0.2 2.0 >0.1 2.7 0.3 1.1 >0.1 4.2 0.9 4.6 >0.1 10.7
MAF3 0.1 0.3 >0.1 0.7 108.2 890.9 >0.1 1298.1 4.2 27.9 >0.1 50.4
MAF4 0.1 0.3 >0.1 0.9 1386.2 4383.9 >0.1 16634.9 14.1 84.7 >0.1 169.4
MAF5 0.1 0.6 >0.1 1.3 1612.4 5365.6 >0.1 19348.6 39.1 214.4 >0.1 469.2

Table 37: Time performance (in seconds) of fitness measures using the twelve
public logs.

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total
Alignment 12.4 40.6 0.4 98.9 5.9 29.9 0.4 41.6 144.2 813.2 0.5 865.1

PCC2 154.2 1226.2 >0.1 1233.3 257.0 2048.9 >0.1 2056.3 287.3 1960.2 >0.1 2010.8
MAF2 0.2 1.0 >0.1 1.3 2.1 15.8 >0.1 17.2 0.7 2.1 >0.1 4.8
MAF3 0.1 0.3 >0.1 0.6 8.7 66.2 >0.1 69.4 1.5 6.0 >0.1 10.4
MAF4 0.1 0.4 >0.1 0.6 80.7 597.0 >0.1 645.2 12.5 52.6 >0.1 87.8
MAF5 0.1 0.5 >0.1 0.7 352.8 2792.9 >0.1 2822.6 21.8 90.5 >0.1 152.7

Table 38: Time performance (in seconds) of fitness measures using the eight pro-
prietary logs.

and MAP5 for the models discovered by IM. This was due to scalability issues,18

as the models discovered by IM exhibit flower-like behavior (with more than 50
distinct activities per flower construct), which is already identified by MAP2 and
MAP3, whose values are very low for these models. We recall that by design, for
small values of k, MAPk compares small chunks of the model behavior to small
chunks of the log behavior. Thus, low values of MAP2 and MAP3 already indicate
poorly-precise models.

ETCa and MAP5 agree on the precision ranking 50% of the times (cf. Table 40),
whilst ETCa and PCC2 agree on the 30% of the rankings. Also, in-line with the
former evaluation, ETCa is tolerant to infinite model behavior, regardless of the
type of such behavior. An example that illustrates this flaw is the SEPSIS log. The
models discovered by IM and SM are shown in Fig. 26 and 27. We observe that
more than the 80% of the activities in the IM model are skippable and over 60% of
them are inside a long loop, resembling a flower construct with some constraints,
e.g. the first activity is always the same. Instead, the model discovered by SM,
even if cyclic, does not allow many variants of behavior. Consequently, for the
IM model, the value of MAPk drastically drops when increasing k from 2 to 3,
whilst it remains 1 for the SM model. In contrast, ETCa gives a precision of 0.445
for IM, which is counter-intuitive considering its flower-like structure.

Finally, Tables 41 and 42 report the time performance of MAPk, PCC2 and
ETCa.15 Similarly to the quantitative evaluation of fitness, we separated the results
by public and proprietary logs to allow the reproducibility of the experiments
for the public logs. The results are consistent with those obtained for fitness:

18The allocated RAM was not enough to complete the measurements.

143

Log BPIC12 BPIC13cp BPIC13inc BPIC14f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.762 0.502 - 0.974 1.000 0.992 0.979 0.558 0.978 0.673 0.646 -
PCC2 1.000 0.902 0.919 0.935 0.347 0.703 1.000 0.588 0.938 0.990 0.744 0.991
MAP2 1.000 0.399 0.316 1.000 1.000 0.708 1.000 1.000 1.000 1.000 0.786 0.500
MAP3 0.826 0.083 0.073 0.952 0.944 0.682 0.965 0.955 0.976 1.000 0.701 0.274
MAP4 0.640 0.013 0.027 0.931 0.917 0.638 0.919 0.898 0.911 1.000 0.656 0.164
MAP5 0.362 - 0.015 0.907 0.925 0.626 0.893 0.828 0.883 1.000 0.631 0.162

Log BPIC151f BPIC152f BPIC153f BPIC154f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.880 0.566 - 0.901 0.556 0.594 0.939 0.554 0.671 0.910 0.585 0.642
PCC2 0.995 0.885 1.000 1.000 0.912 1.000 0.979 0.974 1.000 1.000 1.000 1.000
MAP2 1.000 0.144 0.054 1.000 0.160 0.995 1.000 0.196 1.000 1.000 0.121 1.000
MAP3 0.969 0.019 0.016 0.972 0.022 0.835 0.986 0.032 0.787 0.963 0.015 0.789
MAP4 0.932 - - 0.930 - 0.588 0.967 - 0.502 0.920 - 0.531
MAP5 0.896 - - 0.878 - 0.356 0.939 - 0.275 0.877 - 0.321

Log BPIC155f BPIC17f RTFMP SEPSIS
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.943 0.179 0.687 0.846 0.699 0.620 1.000 0.700 0.952 0.859 0.445 0.419
PCC2 0.998 0.913 1.000 0.939 0.600 0.911 1.000 0.831 0.793 1.000 0.745 0.689
MAP2 1.000 0.092 1.000 1.000 0.843 0.347 1.000 0.939 0.745 1.000 0.603 0.521
MAP3 0.964 0.006 0.817 0.705 0.566 0.151 0.955 0.492 0.309 0.954 0.210 0.193
MAP4 0.917 - 0.577 0.482 0.370 0.069 0.862 0.182 0.087 0.895 0.048 0.062
MAP5 0.858 - 0.366 0.340 0.245 0.034 0.756 0.070 0.025 0.831 - -

Log PRT1 PRT2 PRT3 PRT4
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 0.985 0.673 0.768 0.737 - - 0.914 0.680 0.828 0.995 0.753 0.865
PCC2 0.970 0.607 0.793 1.000 0.788 0.617 0.945 0.716 0.996 0.955 0.705 0.822
MAP2 1.000 0.868 0.842 1.000 0.975 1.000 1.000 0.913 1.000 1.000 0.917 1.000
MAP3 0.966 0.729 0.655 0.995 0.960 0.992 0.907 0.878 0.954 1.000 0.979 1.000
MAP4 0.939 0.677 0.467 0.995 0.631 0.895 0.839 0.763 0.631 1.000 0.977 1.000
MAP5 0.917 0.658 0.309 0.979 0.442 0.410 0.775 0.560 0.293 0.998 0.982 0.968

Log PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 1.000 0.822 0.908 0.999 0.726 0.998 0.999 0.611 0.982 0.972 0.790 -
PCC2 0.800 0.694 0.832 0.857 0.743 0.857 0.927 0.658 0.738 1.000 0.804 -
MAP2 1.000 0.957 1.000 1.000 0.927 1.000 1.000 0.991 0.958 1.000 0.387 -
MAP3 1.000 0.873 0.983 1.000 0.920 0.972 0.971 0.526 0.542 0.814 0.061 -
MAP4 1.000 0.830 0.950 1.000 0.699 0.725 0.913 0.207 0.208 0.639 0.007 -
MAP5 1.000 0.574 0.632 1.000 0.543 0.645 0.853 0.076 0.064 0.435 - -

Table 39: Comparison of precision measures over 20 real-life logs.

144

Log BPIC12 BPIC13cp BPIC13inc BPIC14f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 2 - 1 3 2 3 1 2 3 2 -
PCC2 3 1 2 3 1 2 3 1 2 2 1 3
MAP2 3 2 1 3 3 2 3 3 3 3 2 1
MAP3 3 2 1 3 2 1 2 1 3 3 2 1
MAP4 3 1 2 3 2 1 3 1 2 3 2 1
MAP5 3 - 2 2 3 1 3 1 2 3 2 1

Log BPIC151f BPIC152f BPIC153f BPIC154f
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 2 - 3 1 2 3 1 2 3 1 2
PCC2 2 1 3 3 2 3 2 1 3 3 3 3
MAP2 3 2 1 3 1 2 3 2 3 3 2 3
MAP3 3 2 1 3 1 2 3 1 2 3 1 2
MAP4 - - - 3 - 2 3 - 2 3 - 2
MAP5 - - - 3 - 2 3 - 2 3 - 2

Log BPIC155f BPIC17f RTFMP SEPSIS
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 1 2 3 2 1 3 1 2 3 2 1
PCC2 2 1 3 3 1 2 3 2 1 3 2 1
MAP2 3 2 3 3 2 1 3 2 1 3 2 1
MAP3 3 1 2 3 2 1 3 2 1 3 2 1
MAP4 3 - 2 3 2 1 3 2 1 3 1 2
MAP5 3 - 2 3 2 1 3 2 1 - - -

Log PRT1 PRT2 PRT3 PRT4
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 1 2 - - - 3 1 2 3 1 2
PCC2 3 1 2 3 2 1 2 1 3 3 1 2
MAP2 3 2 1 3 2 3 3 2 3 3 2 3
MAP3 3 2 1 3 1 2 2 1 3 3 2 3
MAP4 3 2 1 3 1 2 3 2 1 3 2 3
MAP5 3 2 1 3 2 1 3 2 1 3 2 1

Log PRT6 PRT7 PRT9 PRT10
Miner SM IM SHM SM IM SHM SM IM SHM SM IM SHM
ETCa 3 1 2 3 1 2 3 1 2 3 2 -
PCC2 2 1 3 3 2 3 3 1 2 3 2 -
MAP2 3 2 3 3 2 3 3 2 1 3 2 -
MAP3 3 1 2 3 1 2 3 1 2 3 2 -
MAP4 3 1 2 3 1 2 3 1 2 3 2 -
MAP5 3 1 2 3 1 2 3 2 1 - - -

Table 40: Models ranking yielded by precision measures over 20 real-life logs.

145

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total

ETCa 60.0 351.9 0.3 720.3 84.2 642.7 0.1 1009.8 34.0+ 101.4+ 0.2+ 305.9+

PCC2 145.8 1482.8 0.1 1749.6 157.3 1598.3 0.1 1887.3 164.8 1530.4 0.1 1977.8
MAP2 0.1 0.8 >0.1 1.6 0.9 3.3 >0.1 10.9 1.1 5.7 >0.1 12.9
MAP3 0.1 0.4 >0.1 1.5 323.2 2844.0 >0.1 3878.9 8.4 43.2 >0.1 100.4
MAP4 0.2 0.6 >0.1 1.9 818.5+ 4377.6+ >0.1+ 5729.3+ 49.8 340.2 >0.1 547.6
MAP5 0.7 3.2 >0.1 8.7 - - - - 97.2+ 357.4+ >0.1+ 972.4+

Table 41: Time performance (in seconds) of precision measures using the twelve
public logs (’+’ indicates a result obtained on a subset of the twelve logs, due to
some of the measurements not being available).

Split Miner Inductive Miner Struct. Heuristics Miner
Precision avg max min total avg max min total avg max min total

ETCa 16.1 106.5 0.2 129.1 16.4 99.2 0.2 114.9 74.3 350.2 0.7 520.1
PCC2 184.8 1468.9 >0.1 1478.8 152.7 1213.9 >0.1 1221.3 242.6 1649.4 >0.1 1698.5
MAP2 0.1 0.4 >0.1 0.6 2.1 15.9 >0.1 16.7 0.7 2.3 >0.1 4.7
MAP3 0.1 0.2 >0.1 0.5 7.0 47.0 >0.1 55.9 2.7 12.6 >0.1 19.1
MAP4 0.1 0.4 >0.1 0.7 146.2 1131.2 >0.1 1169.9 29.4 120.0 >0.1 205.9
MAP5 0.8 5.8 >0.1 6.8 55.5 332.6 0.1 388.2 77.8 329.4 0.1 544.4

Table 42: Time performance (in seconds) of precision measures using the eight
proprietary logs.

PCC2 is the slowest measure while MAPk is overall the fastest measure, especially
for those models that do not exhibit flower-like structures (SM and SHM), while
ETCa outperforms our measure when the state space of the model is very large (in
the case of models discovered by IM, for high values of k).sepsis_yam

Leucocytes
Release B

IV Liquid

ER Triage

Admission
NC

Admission
IC

IV
Antibiotics

Release C

Release D

CRP

ER
Registrati

on

ER Sepsis
Triage

Release A

LacticAcid

Release E

Return ER

Figure 26: Model discovered by IM from the SEPSIS log.
sepsis_sm-wg

Release E

CRPER
Registration

Release B

Release D

IV Liquid IV Antibiotics Return ERLeucocytesER Triage Admission
NC

ER Sepsis
Triage

Admission IC

Release C

Release A

LacticAcid

Figure 27: Model discovered by SM from the SEPSIS log.

6.4.7. The Role of k

As expected, the results of both the qualitative and the quantitative evaluation
show that the order k directly influences how our Markovian fitness and precision
measures penalise behavioral mismatches between log and model, and ultimately
how they rank process models by accuracy. Furthermore, k plays an important

146

role on the time performance of our proposed measures. Indeed, while for low
k’s MAFk and MAPk scale well to large real-life logs, outperforming the state of
the art, for high k’s, the time performance in some cases deteriorates even dramat-
ically. However, we showed that in practice a low value of k does approximate
well the fitness and precision ranking that would be obtained with hight k values,
over a set of automatically discovered process models.

We remind that k + 1 defines the size of the subtraces in the log and in the
process model that we compare with each other to detect mismatches. Bearing
this in mind, we advise that whenever possible k should be set to the length of the
longest trace recorded in the log, in order to obtain the most accurate results.

6.5. Summary

In this chapter, we presented a family of fitness and precision measures to as-
sess the accuracy of process models automatically discovered from event logs.
The Markovian fitness and precision measures compare the kth-order Markovian
abstraction of a process model and that of an event log using a graph matching
algorithm. We showed that the fitness measures fulfill six out of the seven fitness
properties proposed by Syring et al. [4] for any value of k and all seven properties
for a suitably chosen value of k dependent on the log. Similarly, the precision
measures fulfil seven of the ten precision properties proposed by Tax et al. [5] and
Syring et al. [4] for any value of k and all ten properties for a value of k dependent
on the log.

While fulfilling the proposed properties is a desirable quality, it does not guar-
antee that the proposed measures provide intuitive results in practice. To validate
the intuitiveness of the proposed measures, we compared the ranking they induce
against those induced by existing fitness and precision measures using a collec-
tion of model-log pairs proposed by van Dongen et al. [2] (extended to cover
fitness in addition to precision). For k ≥ 4, the proposed fitness measures induce
rankings that coincide with alignment-based fitness – a commonly used fitness
measure. Meanwhile, for k≥ 3, the proposed precision measures induce rankings
consistent with those of the anti-alignment precision measure, which has been
previously posited as a ground-truth for precision measures.

A second evaluation using real-life event logs showed that the execution times
of the proposed fitness measures (for k ≤ 5) are considerably lower than existing
fitness measures, except when applied to process models that contain flower struc-
tures, in which case alignment-based fitness offers the best performance. Simi-
larly, the execution times of the proposed precision measures (for k ≤ 5) are con-
siderably lower than existing precision measures, except for models that contain
flower structures in which case ETCa precision provides the best performance.

Despite such a result may limit the Markovian fitness and precision and their
applicability in a conformance checking scenario, we recall that our goal was to
design scalable accuracy measures for improving the exploration of the solution

147

space of an APDA when we aim at optimizing the accuracy of its discovered
process model. In the latter setting, the Markovian fitness and precision perform
very well (as we show in the next chapter), because regardless of the value of k, the
comparison between the process model and the event log Markovian abstractions
allows us to identify the behaviour to add to (remove from) the process model
in order to improve its fitness (precision). Indeed, such information is encoded
in the edges of the event log Markovian abstraction that cannot be found in the
process model Markovian abstraction (and viceversa), and it is independent from
the value of k and not prone to approximation by design.

148

7. OPTIMIZED AUTOMATED PROCESS DISCOVERY

The results of our benchmark (see Chapter 4) suggested that the accuracy of AP-
DAs can be enhanced via hyper-parameter optimization. On the other hand, such
an exercise is computationally heavy, requiring execution times in the order of
hours when applied to real-life logs. As we mentioned in the previous chapter,
this inefficiency relates to two different problems: (i) low scalability of the ac-
curacy measures, especially precision; and (ii) a blind exploration of the solution
space. While in the previous chapter we designed fast accuracy measures to tackle
the former problem, in this chapter we present a general framework that allows an
APDA to efficiently explore its solution space, with the precise goal of answering
our RQ3.1

In order to discover optimal2 process models, early research studies proposed
APDAs based on population-based metaheuristics, chiefly genetic algorithms [149,
168], and single-solution-based metaheuristics such as simulated annealing [169,
170], which are less computationally demanding. However, these studies did not
address the problem of optimizing the accuracy of an APDA, but rather they pro-
posed a new APDA based on optimization metaheuristics.

In this chapter, 3 we introduce a flexible framework to enhance APDAs by ap-
plying different optimization single-solution-based metaheuristics. The core idea
is to perturb the intermediate representation of an event log used by the majority
of the available APDAs, namely the Directly-follows Graph (DFG). Specifically,
we consider perturbations that add or remove edges with the aim of improving fit-
ness or precision, and allowing the underlying APDA to discover a process model
from the perturbed DFG.

We instantiated our framework for three state-of-the-art APDAs: Split Miner,
Fodina, and Inductive Miner, and using a benchmark of 20 real-life logs, we com-
pared the accuracy gains yielded by four optimization metaheuristics relative to
each other and relative to the hyper-parameter optimized APDA. The experimen-
tal evaluation also considers the impact of metaheuristic optimization on model
complexity measures as well as on execution times.

The remaining of this chapter is structured as follows. Section 7.1 gives an
overview of the state-of-the-art optimization metaheuristics and their application
to the problem of automated process discovery. Section 7.2 presents the proposed
metaheuristic optimization framework and its instantiations. Section 7.3 reports
on the empirical evaluation of the three instantiation of our framework. Finally,
Section 7.4 summarises the chapter.

1How can the accuracy of an automated process discovery approach be efficiently optimized?
2In terms of maximizing one or more quality dimensions.
3Corresponding to [21].

149

7.1. Optimization Metaheuristics

The term optimization metaheuristics refers to a parameterized algorithm, which
can be instantiated to address a wide range of optimization problems. Metaheuris-
tics are usually classified into two broad categories [171]: i) single-solution-based
metaheuristics, or S-metaheuristics, which explore the solution space one solution
at a time starting from a single initial solution of the problem; and ii) population-
based metaheuristics, or P-metaheuristics, which explore a population of solu-
tions generated by mutating, combining, and/or improving previously identified
solutions. S-metaheuristics tend to converge faster towards an optimal solution
(either local or global) than P-metaheuristics, since the latter by dealing with a set
of solutions require more time to assess and improve the quality of each single
solution. P-metaheuristics are computationally heavier than S-metaheuristics, but
they are more likely to escape local optima. Since an exhaustive discussion on all
the available metaheuristics is beyond the scope of this thesis, in the following,
we focus only on the S-metaheuristics that are relevant to our context.

Iterated Local Search [172] starts from a (random) solution and explores the
neighbouring solutions (i.e. solutions obtained by applying a change to the current
solution) in search of a better one. When a better solution cannot be found, it
perturbs the current solution and starts again. The perturbation is meant to avoid
local optimal solutions. The exploration of the solution-space ends when a given
termination criterion is met (e.g. maximum iterations, timeout).

Tabu Search [173] is a memory-driven local search. Its initialization includes
a (random) solution and three memories: short, intermediate, and long term. The
short-term memory keeps track of recent solutions and prohibits to revisit them.
The intermediate-term memory contains criteria driving the search towards the
best solutions. The long-term memory contains characteristics that have often
been found in many visited solutions, to avoid revisiting similar solutions. Using
these memories, the neighbourhood of the initial solution is explored and a new
solution is selected accordingly. The solution-space exploration is repeated until
a termination criterion is met.

Simulated Annealing [174] is based on the concepts of Temperature (T , a pa-
rameter chosen arbitrarily) and Energy (E, the objective function to minimize).
At each iteration the algorithm explores (some of) the neighbouring solutions and
compares their energies with the one of the current solution. This latter is updated
if the energy of a neighbour is lower, or with a probability that is function of T and

the energies of the current and candidate solutions, usually e−
|E1−E2|

T . The temper-
ature drops over time, thus reducing the chance of updating the current solution
with a higher-energy one. The algorithm ends when a termination criterion is met,
which often relates to the energy or the temperature (e.g. energy below a threshold
or T = 0).

Evolutionary (Genetic) Algorithms [175, 176] are inspired by Darwin’s theory
of evolution. Starting from a set of (random) solutions, a new solution is gener-

150

ated by mixing characteristics of two parents selected from the set of the current
solutions, such an operation is known as crossover. Subsequently, mutations are
applied to the new solutions to introduce randomness and avoid local optimal so-
lution. Finally, the solutions obtained are assessed and a subset is retained for the
next iteration. The algorithm continues until a stop criterion is met.

Swarm Particle Optimization [177] starts from a set of (random) solutions,
referred to as particles. Each particle is identified using the concepts of posi-
tion and velocity. The position is a proxy for the particle qualities and it embeds
the characteristics of the solution, while the velocity is used to alter the position
of the particles at each iteration. Furthermore, each particle has memory of its
best position encountered during the roaming of the search space, as well as the
best position encountered by any other particle. At each iteration, the algorithm
updates the particles positions according to their velocities and updates the best
positions found. When a termination condition is met, the algorithm returns the
particle having the absolute best position among the whole swarm.

Imperialist Competitive Algorithm [178] is inspired by the historical colonial
period. It starts from a (random) set of solutions, called countries. Each country is
assessed via an objective function, and a subset is selected as imperialistic coun-
tries (the selection is based on their objective function scores). All the countries
left (i.e. those having low objective function scores) are considered colonies of the
closest (by characteristics) imperialistic country. Then, each colony is altered to
resemble its imperialistic country, the objective function scores are re-computed,
and the colonies that became better than their imperialistic country are promoted
to imperialistic countries and vice-versa. When a termination condition is met, the
country with the highest objective function score is selected as the best solution.

Optimization metaheuristics have been considered in a few previous studies on
automated process discovery. An early attempt to apply P-metaheuristics to auto-
mated process discovery was the Genetic Miner proposed by De Medeiros [149],
subsequently overtaken by the Evolutionary Tree Miner [168]. Other applications
of P-metaheuristics to automated process discovery are based on the imperialist
competitive algorithm [179] and the particle swam optimization [180]. In our
context, the main limitation of P-metaheuristics is that they are computationally
heavy due to the cost of constructing a solution (i.e. a process model) and evalu-
ating its accuracy. This leads to execution times in the order of hours, to converge
to a solution that in the end is comparable to those obtained by state-of-the-art
APDAs that do not rely on optimization metaheuristics (see Chapter 4). Finally,
a handful of studies have considered the use of S-metaheuristics in our context,
specifically simulated annealing [169, 170], but these proposals are preliminary
and have not been compared against state-of-the-art approaches on real-life logs.

151

7.2. Metaheuristic Optimization Framework

This section outlines our framework for optimizing APDAs by means of S-metaheuristics
(cf. Section 7.1). First, we give an overview of the framework and its core com-
ponents. Next, we discuss the adaptation of the S-metaheuristics to the problem
of process discovery. Finally, we describe the instantiations of our framework for
Split Miner, Fodina, and Inductive Miner.

7.2.1. Preliminaries

In order to discover a process model, an APDA takes as input an event log and
transforms it into an intermediate representation from which a process model is
derived. In many APDAs, such an intermediate representation is the DFG, which
can be represented as a numerical matrix as formalized below.
Definition 7.2.1. [Event Log] Given a set of activities A , an event log L is a
multiset of traces where a trace t ∈L is a sequence of activities t = 〈a1,a2, . . . ,an〉,
with ai ∈A ,1≤ i≤ n.
Definition 7.2.2. [Directly-Follows Graph (DFG) of an Event Log] Given an
event log L , its Directly-Follows Graph (DFG) is a directed graph GL = (N,E),
where: N is the set of nodes, N = {a ∈ A | ∃t ∈ L ∧ a ∈ t}; and E is the
set of edges E = {(x,y) ∈ N×N | ∃t = 〈a1,a2, . . . ,an〉, t ∈ L ∧ ai = x∧ ai+1 =
y [1≤ i≤ n−1]}.
Definition 7.2.3. [Refined DFG] Given an event log L and its DFG GL =
(N,E), a Refined (DFG) is a directed graph G = (N′,E ′), where: N′ ⊆ N and
E ′ ⊆ E. If N′ = N and E ′ = E, the refined DFG is equivalent to the event log
DFG.
Definition 7.2.4. [DFG-Matrix] Given a refined DFG G = (N,E) and a function
θ : N→ [1, |N|],4 the DFG-Matrix is a squared matrix XG ∈ [0,1]∩N|N|×|N|, where
each cell xi, j = 1⇐⇒∃(a1,a2) ∈ E | θ(a1) = i∧θ(a2) = j, otherwise xi, j = 0.

We say that an APDA is DFG-based if it first generates the DFG of an event
log, then applies one or more algorithms to analyse and/or manipulate the DFG
(e.g. a filtering algorithm), and finally exploits the refined DFG to produce the
final process model. Examples of DFG-based APDAs are Inductive Miner [152],
Heuristics Miner [8, 42], Fodina [12], and Split Miner (see Chapter 5).

Different DFG-based APDAs can extract different refined DFGs from the same
log. Also, a DFG-based APDA may discover different refined DFGs from the
same log depending on its hyperparameter settings (e.g. a filtering threshold). The
algorithm(s) used by a DFG-based APDA to discover the refined DFG from the
event log and convert it into a process model may greatly affect the accuracy of an
APDA. Accordingly, our framework focuses on optimizing the discovery of the
refined DFG rather than its conversion into a process model.

4
θ maps each node of the DFG to a natural number.

152

For simplicity, in the remainder of this chapter, when using the term DFG we
refer to the refined DFG.

7.2.2. Approach Overview

Figure 28: Overview of our approach.

As shown in Figure 28, our approach takes three inputs (in addition to the
log): i) the optimization metaheuristics; ii) the objective function to be optimized
(e.g. F-score); iii) and the DFG-based APDA to be used for discovering a process
model.

Algorithm 12 describes how our approach operates. First, the input event log
is given to the APDA, which returns the discovered DFG and its corresponding
process model (lines 1 and 2). This DFG becomes the current DFG, whilst the
process model becomes the best process model (so far). This process model’s
objective function score (e.g. the F-score) is stored as the current score and the
best score (lines 3 and 4). The current DFG is then given as input to the func-
tion GenerateNeighbours, which applies changes to the current DFG to generate
a set of neighbouring DFGs (line 6). The latter ones are given as input to the
APDA, which returns the corresponding process models. The process models are
assessed by the objective function evaluators (line 9 to 13). When the metaheuris-
tic receives the results from the evaluators (along with the current DFG and its
score), it chooses the new current DFG and updates the current score (lines 14
and 15). If the new current score is higher than the best score (line 16), it updates
the best process model and the best score (lines 17 and 18). After the update, a
new iteration starts, unless a termination criterion is met (e.g. a timeout, a max-
imum number of iterations, or a minimum threshold for the objective function).
In the latter case, the framework outputs the best process model identified, i.e. the
process model scoring the highest value for the objective function.

7.2.3. Adaptation of the Optimization Metaheuristics

To adapt Iterative Local Search (ILS), Tabu Search (TABU), and Simulated An-
nealing (SIMA) to the problem of automated process discovery, we need to define

153

Algorithm 12: Optimization Approach
input : Event Log L , Metaheuristic ω , Objective Function F , DFG-based APDA α

1 CurrentDFG Gc← DiscoverDFG(α , L);
2 BestModel m̂← ConvertDFGtoProcessModel(α , Gc);
3 CurrentScore sc← AssessQuality(F , m̂);
4 BestScore ŝ← sc;

5 while CheckTerminationCriteria() = FALSE do
6 Set V ← GenerateNeighbours(Gc);
7 Map S←∅;
8 Map M←∅;
9 for G ∈V do

10 ProcessModel m← ConvertDFGtoProcessModel(α , G);
11 Score s← AssessQuality(F , m);
12 add (G , s) to S;
13 add (G , m) to M;

14 Gc← UpdateDFG(ω , S, Gc, sc);
15 sc← GetMapElement(S, Gc);
16 if ŝ < sc then
17 ŝ← sc;
18 m̂← GetMapElement(M, Gc);

19 return m̂;

the following three concepts: i) the problem solution space; ii) a solution neigh-
bourhood; iii) the objective function. These design choices influence how each
of the metaheuristics navigates the solution space and escapes local minima, i.e.
how to design the Algorithm 12 functions: GenerateNeighbours and UpdateDFG,
resp. lines 6 and 14.

Solution Space. Since our goal is the optimization of APDAs, we are forced
to choose a solution space that fits well our context regardless the selected APDA.
If we assume that the APDA is DFG-based (that is the case for the majority of
the available APDAs), we can define the solution space as the set of all the DFG
discoverable from the event log. Indeed, any DFG-based APDA can generate
deterministically a process model from a DFG.

Solution Neighbourhood. Having defined the solution space as the set of all
the DFG discoverable from the event log, we can refer to any element of this so-
lution space as a DFG-Matrix. Given a DFG-Matrix, we define its neighbourhood
as the set of all the matrices having one different cell value (i.e. DFGs having one
more/less edge). In the following, every time we refer to a DFG we assume it is
represented as a DFG-Matrix.

Objective Function. It is possible to define the objective function as any func-
tion assessing one of the four quality dimensions for discovered process models
(introduced in Chapter 2). However, given that we are interested in optimizing the
APDAs to discover the most accurate process model, in our optimization frame-
work instantiations we refer to the objective function as the F-score of fitness and
precision. Nonetheless, we remark that our approach can operate also with ob-
jective functions that take into account multiple quality dimensions striving for a
trade-off, e.g. F-score and model complexity.

154

Having defined the solution space, a solution neighbourhood, and the objective
function, we can turn our attention to how ILS, TABU, and SIMA navigate the so-
lution space. ILS, TABU, and SIMA share similar traits in solving an optimization
problem, especially when it comes to the navigation of the solution space. Given
a problem and its solution space, any of these three S-metaheuristics starts from
a (random) solution, discovers one or more neighbouring solutions, and assesses
them with the objective function to find a solution that is better than the current
one. If a better solution is found, it is chosen as the new current solution and
the metaheuristic performs a new neighbourhood exploration. If a better solution
is not found, e.g. the current solution is locally optimal, the three metaheuristics
follow different approaches to escape the local optimum and continue the solution
space exploration. Algorithm 12 orchestrates and facilitates the parts of this pro-
cedure shared by the three metaheuristics. However, we must define the functions
GenerateNeighbours (GNF) and UpdateDFG (UDF).

The GNF receives as input a solution of the solution space, i.e. a DFG, and it
generates a set of neighbouring DFGs. By definition, GNF is independent from
the metaheuristic and it can be as simple or as elaborate as we demand. An ex-
ample of a simple GNF is a function that randomly selects neighbouring DFGs
turning one cell of the input DFG-Matrix to 0 or to 1. Whilst, an example of an
elaborate GNF is a function that accurately selects neighbouring DFGs relying on
the feedback received from the objective function assessing the input DFG, as we
show in Section 7.2.4.

The UDF is at the core of our optimization, and it represents the metaheuris-
tic itself. It receives in input the neighbouring DFGs, the current DFG, and the
current score, and it selects among the neighbouring DFGs the one that should be-
come the new current DFG. At this point, we can differentiate two cases: i) among
the input neighbouring DFGs there is at least one having a higher objective func-
tion score than the current; ii) none of the input neighbouring DFGs has a higher
objective function score than the current. In the first case, UDF always outputs
the DFG having the highest score (regardless the selected metaheuristic). In the
second case, the current DFG may be a local optimum, and each metaheuristic
escapes it with a different strategy.

Iterative Local Search applies the simplest strategy, it perturbs the current
DFG. The perturbation is meant to alter the DFG in such a way to escape the
local optimum, e.g. randomly adding and removing multiple edges from the cur-
rent DFG. The perturbed DFG is the output of the UDF.

Tabu Search relies on its three memories to escape a local optimum. The short-
term memory (a.k.a. Tabu-list), containing DFG that must not be explored further.
The intermediate-term memory, containing DFGs that should lead to better results
and, therefore, should be explored in the near future. The long-term memory, con-
taining DFGs (with characteristics) that have been seen multiple times and, there-
fore, not to explore in the near future. TABU updates the three memories each
time the UDF is executed. Given the set of neighbouring DFGs and their respec-

155

tive objective function scores (see Algorithm 12, map S), TABU adds each DFG
to a different memory. DFGs worsening the objective function score are added to
the Tabu-list. DFGs improving the objective function score, yet less than another
neighbouring DFG, are added to the intermediate-term memory. DFGs that do not
improve the objective function score are added to the long-term memory. Also, the
current DFG is added to the Tabu-list, since it is already explored. When TABU
does not find a better DFG in the neighbourhood of the current DFG, it returns
the latest DFG added to the intermediate-term memory. If the intermediate-term
memory is empty, TABU returns the latest DFG added to the long-term memory.
If both these memories are empty, TABU requires a new (random) DFG from the
APDA, and outputs its DFG.

Simulated Annealing avoids getting stuck in a local optimum by allowing the
selection of DFGs worsening the objective function score. In doing so, SIMA
explores areas of the solution space that other S-metaheuristics do not. When a
better DFG is not found in the neighbourhood of the current DFG, SIMA analyses
one neighbouring DFG at a time. If this latter does not worsen the objective
function score, SIMA outputs it. Instead, if the neighbouring DFG worsens the
objective function score, SIMA outputs it with a probability of e−

|sn−sc|
T , where sn

and sc are the objective function scores of (respectively) the neighbouring DFG
and the current DFG, and the temperature T is an integer that converges to zero
as a linear function of the maximum number of iterations. The temperature is
fundamental to avoid updating the current DFG with a worse one if there would
be no time to recover from the worsening (i.e. too few iterations left for continuing
the exploration of the solution space from the worse DFG).

7.2.4. Framework Instantiation

To assess our framework, we instantiated it for three APDAs: Split Miner, Fod-
ina, and Inductive Miner. These three APDAs are all DFG-based, and they are
representatives of the state-of-the-art (see Chapter 4 and 5).

To complete the instantiation of our framework for any concrete DFG-based
APDA, it is necessary to implement an interface that allows the metaheuristics
to interact with the APDA (as discussed above). Such an interface should pro-
vide four functions: DiscoverDFG and ConvertDFGtoProcessModel (see Algo-
rithm 12), the Restart Function (RF) for TABU, and the Perturbation Function
(PF) for ILS.

The first two functions, DiscoverDFG and ConvertDFGtoProcessModel, are
inherited from the DFG-based APDA, in our case Split Miner, Fodina, and Induc-
tive Miner. We note that, Split Miner and Fodina receive as input hyperparameter
settings that can vary the output of the DiscoverDFG function. Precisely, Split
Miner has two hyperparameters: the noise filtering threshold, used to drop infre-
quent edges in the DFG, and the parallelism threshold, used to determine which
potential parallel relations between activities are used when discovering the pro-

156

cess model from the DFG. Whilst Fodina has three hyperparameters: the noise
filtering threshold, similar to the one of Split Miner, and two threshold to detect
respectively self-loops and short-loops in the DFG. Instead, the variant of Induc-
tive Miner [152] we used in our optimization framework5 does not have any input
hyperparameters.

To discover the initial DFG (Algorithm 12, line 1) with Split Miner we use
its default parameters. We removed the randomness for discovering the initial
DFG because most of the times, the DFG discovered by Split Miner with default
parameters is already a good solution (see Chapter 5), and starting the solution
space exploration from this latter can reduce the total exploration time.

Similarly, if Fodina is the selected APDA, the initial DFG (Algorithm 12,
line 1) is discovered using the default parameters of Fodina, even though there is
no guarantee that the default parameters allow Fodina to discover a good starting
solution (see 2). Yet, this design choice is less risky than randomly choose input
hyperparameters to discover the initial DFG, because it is likely Fodina would
discover unsound models when randomly tuned, given that it does not guarantee
soundness.

On the other hand, Inductive Miner (in its simplest variant [152]) does not
apply any manipulation to the discovered initial DFG, in this case, we (pseudo)
randomly generate an initial DFG. Differently than the case of Fodina, this is a
suitable design choice for Inductive Miner, because it always guarantees block-
structured sound process models, regardless of the DFG.

Function RF is very similar to DiscoverDFG, since it requires the APDA to
output a DFG, the only difference is that RF must output a different DFG every
time it is executed. We adapted the DiscoverDFG function of Split Miner and
Fodina to output the DFG discovered with default parameters the first time it is
executed, and a DFG discovered with (pseudo)random parameters for the follow-
ing executions. The case of Inductive Miner is simpler, because the DiscoverDFG
function always returns a (pseudo)random DFG. Consequently, we mapped RF to
the DiscoverDFG function.

Finally, function PF can be provided either by the APDA (through the inter-
face) or by the metaheuristic. However, PF can be more effective when not gen-
eralised by the metaheuristic, allowing the APDA to apply different perturbations
to the DFGs, taking into account how the APDA converts the DFG to a process
model. We chose a different PF for each of the three APDAs.
Split Miner PF. We invoke Split Miner’s concurrency oracle to extract the possi-
ble parallelism relations in the log using a randomly chosen parallelism threshold.
For each new parallel relation discovered (not present in the current solution), two
edges are removed from the DFG, whilst, for each deprecated parallel relation,
two edges are added to the DFG.
Fodina PF. Given the current DFG, we analyse its self-loops and short-loops re-

5By direct suggestion of the main author of Inductive Miner.

157

Algorithm 13: Generate Neighbours Function (GNF)
input : CurrentDFG Gc, CurrentMarkovianScore sc, Integer sizen

1 if getFitnessScore(sc) > getPrecisionScore(sc) then
2 Set Em← getEdgesForImprovingPrecision(sc);
3 else
4 Set Em← getEdgesForImprovingFitness(sc);

5 Set N←∅;
6 while Em 6=∅∧|N| 6= sizen do
7 Edge e← getRandomElement(Em);
8 NeighbouringDFG Gn← copyDFG(Gc);
9 if getFitnessScore(sc) > getPrecisionScore(sc) then

10 if canRemoveEdge(Gn, e) then add Gn to N;
11 ;
12 else
13 addEdge(Gn, e);
14 add Gn to N;

15 return N;

lations using random loop thresholds. As a result, a new DFG is generated where
a different set of edges is retained as self-loops and short-loops.
Inductive Miner PF. Since Inductive Miner does not perform any manipulation
on the DFG, we could not determine an efficient way to perturb the DFG, and we
set PF = RF, so that instead of perturbing the current DFG, a new random DFG is
generated. This variant of the ILS is called Repetitive Local Search (RLS). In the
evaluation (reported in Section 7.3), we use only RLS for Inductive Miner, and
both ILS and RLS for Fodina and Split Miner.

To complete the instantiation of our framework, we only need to set the objec-
tive function. Given that our goal is the optimization of the accuracy of the AP-
DAs, we chose as objective function the F-score of fitness and precision. Among
the existing measures of fitness and precision, we selected the Markovian fitness
and precision (defined in Chapter 6), the boolean function variant with order k = 5.
The rationale for this choice is that these measures of fitness and precision are the
fastest to compute among state-of-the-art measures (as shown in Chapter 6). Fur-
thermore, the Markovian fitness (precision) provides a feedback that tells us what
edges could be added to (removed from) the DFG to improve the fitness (preci-
sion). This feedback allows us to design an effective GNF. In the instantiation
of our framework, the objective function’s output is a data structure composed
of: the Markovian fitness and precision of the model, the F-score, and the mis-
matches between the model and the event log identified during the computation of
the Markovian fitness and precision, i.e. the sets of the edges that could be added
(removed) to improve the fitness (precision).

Given this objective function’s output, our GNF is described in Algorithm 13.
The function receives as input the current DFG (Gc), its objective function score
(the data structure sc), and the number of neighbours to generate (sizen). If fitness
is greater than precision, we retrieve (from sc) the set of edges (Em) that could
be removed from Gc to improve its precision (line 2). Conversely, if precision is

158

greater than fitness, we retrieve (from sc) the set of edges (Em) that could be added
to Gc to improve its fitness (line 4). The reasoning behind this design choice is
that, given that our objective function is the F-score, it is preferable to increase
the lower of the two measures (precision or fitness). i.e. if the fitness is lower,
we increase fitness, and conversely if the precision is lower. Once we have Em,
we select randomly one edge from it, we generate a copy of the current DFG
(Gn), and we either remove or add the randomly selected edge according to the
accuracy measure we want to improve (precision or fitness), see lines 7 to 14. If
the removal of an edge generates a disconnected Gn, we do not add this latter to
the neighbours set (N), line 11. We keep iterating over Em until the set is empty
(i.e. no mismatching edges are left) or N reaches its max size (i.e. sizen). We then
return N.

The algorithm ends when the maximum execution time is reached or and the
maximum number of iterations it reached (in the experiments below, we set them
by default to 5 minutes and 50 iterations).

7.3. Evaluation

7.3.1. Dataset and Experimental Setup

We implemented our optimization framework as a Java command-line applica-
tion6 integrating Split Miner, Fodina, and Inductive Miner as the underlying AP-
DAs, and the Markovian accuracy F-score as the objective function (cf. Sec-
tion 7.2.4).

Using the same public dataset of our benchmark (12 event logs) and eight pro-
prietary logs sourced from several companies in the education, insurance, IT ser-
vice management, and IP management domains, we discovered from each log 16
models by applying the following techniques: Split Miner with default parameters
(SM); Split Miner with hyper-parameter optimization7(HPOsm); Split Miner opti-
mized with our framework using the following optimization metaheuristics, RLS
(RLSsm), ILS (ILSsm), TABU (TABUsm), SIMA (SIMAsm); Fodina with default
parameters (FO); Fodina with hyper-parameter optimization7 (HPOfo); Fodina op-
timized with our framework using the following optimization metaheuristics, RLS
(RLSfo), ILS (ILSfo), TABU (TABUfo), SIMA (SIMAfo); Inductive Miner (IMd);
Inductive Miner optimized with our framework using the following optimization
metaheuristics, RLS (RLSimd), TABU (TABUimd), SIMA (SIMAimd).

For each of the discovered models we measured accuracy, complexity and dis-
covery time. For the accuracy, we adopted two different sets of measures: one
based on alignments, computing fitness and precision with the approaches pro-
posed by Adriansyah et al. [158, 181] (alignment-based accuracy); and one based

6Available under the label “Optimization Framework for Automated Process Discovery” at
http://apromore.org/platform/tools.

7With objective function the Markovian accuracy F-score.

159

http://apromore.org/platform/tools

on Markovian abstractions, computing fitness and precision with the approaches
introduced in Chapter 6 (Markovian accuracy). For assessing the complexity of
the models we relied on size, Control-Flow Complexity (CFC), and Structured-
ness.

These measurements allowed us to compare the quality of the models discov-
ered by each baseline APDA (SM, FO, IMd) against the quality of the models
discovered by the respective optimized approaches.

All the experiments were performed on an Intel Core i5-6200U@2.30GHz
with 16GB RAM running Windows 10 Pro (64-bit) and JVM 8 with 14GB RAM
(10GB Stack and 4GB Heap). The framework implementation, the batch tests, the
results, and all the models discovered during the experiments are available for re-
producibility purposes at https://doi.org/10.6084/m9.figshare.7824671.
v1.

7.3.2. Results

Split Miner. Tables 43 and 44 show the results of our comparative evalua-
tion for Split Miner. Each row reports the quality of each discovered process
model in terms of accuracy (both alignment-based and Markovian), complexity,
and discovery time. We held out from the tables four logs: BPIC13cp, BPIC13inc,
BPIC17, and PRT9. For these logs, none of the metaheuristics could improve the
accuracy of the model already discovered by SM. This is due to the high fitness
score achieved by SM in these logs. By design, our metaheuristics try to improve
the precision by removing edges, but in these four cases, no edge could be re-
moved without compromising the structure of the model (i.e. the model would
become disconnected).

For the remaining 16 logs, all the metaheuristics improved consistently the
Markovian F-score w.r.t. SM. Also, all the metaheuristics performed better than
HPOsm, except in two cases (BPIC12 and PRT1). Overall, the most effective op-
timization metaheuristic was ILS, which delivered the highest Markovian F-score
nine times out of 16, followed by SIMAsm (eight times), RLSsm and TABUsm (six
times each).

Despite the fact that the objective function of the metaheuristics was the Marko-
vian F-score, all four metaheuristics optimized in half of the cases also the alignment-
based F-score. This is due to the fact that any improvement on the Markovian
fitness translates into an improvement on the alignment-based fitness, though the
same does not hold for the precision. This result highlights the (partial) correlation
between the alignment-based and the Markovian accuracies, already reported in
the previous chapter. Analysing the complexity of the models, we note that most
of the times (nine cases out of 16) the F-score improvement achieved by the meta-
heuristics comes at the cost of size and CFC. This is expected, since SM tends
to discover models with higher precision than fitness (see also Chapter 5). What
happens is that to improve the F-score, new behaviour is added to the model in

160

https://doi.org/10.6084/m9.figshare.7824671.v1
https://doi.org/10.6084/m9.figshare.7824671.v1

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

SM 0.963 0.520 0.675 0.818 0.139 0.238 51 41 0.69 3.2
HPOsm 0.781 0.796 0.788 0.575 0.277 0.374 40 17 0.58 4295.8

BPIC12 RLSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.3
ILSsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 159.4

TABUsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 140.7
SIMAsm 0.921 0.671 0.776 0.586 0.247 0.348 49 31 0.90 151.1

SM 0.772 0.881 0.823 0.150 1.000 0.262 20 14 1.00 0.8
HPOsm 0.852 0.857 0.855 0.449 1.000 0.619 22 16 0.59 575.8

BPIC14f RLSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 139.0
ILSsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 151.3

TABUsm 0.955 0.775 0.855 0.856 0.999 0.922 26 31 0.69 154.7
SIMAsm 1.000 0.771 0.871 1.000 0.985 0.992 28 34 0.54 140.3

SM 0.899 0.871 0.885 0.701 0.726 0.713 111 45 0.51 0.7
HPOsm 0.962 0.833 0.893 0.804 0.670 0.731 117 55 0.45 1242.3

BPIC151f RLSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 163.6
ILSsm 0.925 0.839 0.880 0.774 0.803 0.788 124 63 0.39 166.8

TABUsm 0.948 0.843 0.892 0.774 0.805 0.789 125 64 0.33 187.2
SIMAsm 0.920 0.839 0.878 0.772 0.807 0.789 125 63 0.43 160.4

SM 0.783 0.877 0.828 0.514 0.596 0.552 129 49 0.36 0.6
HPOsm 0.808 0.851 0.829 0.561 0.582 0.572 133 56 0.30 1398.9

BPIC152f RLSsm 0.870 0.797 0.832 0.667 0.670 0.668 156 86 0.20 158.3
ILSsm 0.869 0.795 0.830 0.663 0.680 0.671 157 86 0.20 157.6

TABUsm 0.870 0.794 0.830 0.665 0.667 0.666 150 83 0.23 176.8
SIMAsm 0.871 0.775 0.820 0.677 0.662 0.669 159 93 0.26 167.4

SM 0.774 0.925 0.843 0.436 0.764 0.555 96 35 0.49 0.5
HPOsm 0.783 0.910 0.842 0.477 0.691 0.564 99 39 0.56 9230.4

BPIC153f RLSsm 0.812 0.903 0.855 0.504 0.775 0.611 110 53 0.35 151.5
ILSsm 0.833 0.868 0.850 0.533 0.775 0.631 120 66 0.23 153.8

TABUsm 0.832 0.852 0.842 0.558 0.690 0.617 121 64 0.23 173.4
SIMAsm 0.827 0.839 0.833 0.565 0.694 0.623 123 71 0.18 159.4

SM 0.762 0.886 0.820 0.516 0.615 0.562 101 37 0.27 0.5
HPOsm 0.785 0.860 0.821 0.558 0.578 0.568 103 40 0.27 736.4

BPIC154f RLSsm 0.825 0.854 0.839 0.634 0.672 0.652 114 57 0.21 146.9
ILSsm 0.853 0.807 0.829 0.649 0.657 0.653 117 64 0.27 147.8

TABUsm 0.811 0.794 0.803 0.642 0.661 0.651 115 61 0.24 161.7
SIMAsm 0.847 0.812 0.829 0.624 0.649 0.636 117 61 0.18 148.2

SM 0.806 0.915 0.857 0.555 0.598 0.576 110 38 0.34 0.6
HPOsm 0.789 0.941 0.858 0.529 0.655 0.585 102 30 0.33 972.3

BPIC155f RLSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 159.3
ILSsm 0.868 0.813 0.840 0.737 0.731 0.734 137 78 0.14 153.8

TABUsm 0.885 0.818 0.850 0.739 0.746 0.743 137 79 0.14 173.3
SIMAsm 0.867 0.811 0.838 0.734 0.727 0.731 137 78 0.16 154.3

SM 0.996 0.958 0.977 0.959 0.311 0.470 22 17 0.46 2.9
HPOsm 0.887 1.000 0.940 0.685 0.696 0.690 20 9 0.35 2452.7

RTFMP RLSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 142.8
ILSsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 143.8

TABUsm 0.988 1.000 0.994 0.899 0.794 0.843 22 14 0.46 114.8
SIMAsm 0.986 1.000 0.993 0.875 0.893 0.884 23 15 0.39 131.0

SM 0.764 0.706 0.734 0.349 0.484 0.406 32 23 0.94 0.4
HPOsm 0.925 0.588 0.719 0.755 0.293 0.423 33 34 0.39 28,846

SEPSIS RLSsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 145.4
ILSsm 0.812 0.625 0.706 0.455 0.436 0.445 35 28 0.86 157.1

TABUsm 0.839 0.630 0.720 0.508 0.430 0.466 35 29 0.77 137.0
SIMAsm 0.806 0.613 0.696 0.477 0.445 0.460 35 30 0.77 137.2

Table 43: Comparative evaluation results for the public logs - Split Miner.

161

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Method Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

SM 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 0.4
HPOsm 0.999 0.948 0.972 0.989 0.620 0.762 19 14 0.53 298.3

PRT1 RLSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 155.3
ILSsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 153.2

TABUsm 0.976 0.974 0.975 0.730 0.669 0.698 20 14 1.00 10.3
SIMAsm 0.983 0.964 0.974 0.814 0.722 0.765 20 15 1.00 132.6

SM 0.795 0.581 0.671 0.457 0.913 0.609 29 23 1.00 0.3
HPOsm 0.826 0.675 0.743 0.501 0.830 0.625 21 13 0.67 406.4

PRT2 RLSsm 0.886 0.421 0.571 0.629 0.751 0.685 29 34 1.00 141.4
ILSsm 0.890 0.405 0.557 0.645 0.736 0.688 29 35 1.00 172.3

TABUsm 0.866 0.425 0.570 0.600 0.782 0.679 29 33 1.00 143.1
SIMAsm 0.886 0.424 0.574 0.629 0.751 0.685 29 34 1.00 139.7

SM 0.882 0.887 0.885 0.381 0.189 0.252 31 23 0.58 0.4
HPOsm 0.890 0.899 0.895 0.461 0.518 0.488 26 14 0.81 290.2

PRT3 RLSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 138.4
ILSsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 144.2

TABUsm 0.944 0.902 0.922 0.589 0.519 0.552 30 20 0.60 134.7
SIMAsm 0.945 0.902 0.923 0.591 0.517 0.551 31 23 0.55 133.7

SM 0.884 1.000 0.938 0.483 1.000 0.652 25 15 0.96 0.5
HPOsm 0.973 0.930 0.951 0.929 0.989 0.958 26 24 0.31 867.5

PRT4 RLSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 140.1
ILSsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 152.3

TABUsm 0.955 0.914 0.934 0.883 0.988 0.932 26 26 0.77 138.6
SIMAsm 0.997 0.903 0.948 0.993 0.990 0.992 26 28 0.92 136.9

SM 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 0.3
HPOsm 0.937 1.000 0.967 0.542 1.000 0.703 15 4 1.00 105.1

PRT6 RLSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 141.1
ILSsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 144.2

TABUsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 124.9
SIMAsm 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

SM 0.914 0.999 0.954 0.650 1.000 0.788 29 10 0.48 0.6
HPOsm 0.944 1.000 0.971 0.772 1.000 0.871 22 9 0.64 173.1

PRT7 RLSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 139.2
ILSsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 142.9

TABUsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 134.0
SIMAsm 0.993 1.000 0.996 0.933 1.000 0.965 23 11 0.78 131.9

SM 0.970 0.943 0.956 0.905 0.206 0.335 45 47 0.84 0.5
HPOsm 0.936 0.943 0.939 0.810 0.243 0.374 30 22 0.73 1214.3

PRT10 RLSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 153.0
ILSsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 155.4

TABUsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 117.6
SIMAsm 0.917 0.989 0.952 0.741 0.305 0.432 44 41 0.86 136.7

Table 44: Comparative evaluation results for the proprietary logs - Split Miner.

162

Figure 29: BPIC14f models discovered with SIMAsm (above) and SM (below).

Figure 30: RTFMP models discovered with SIMAsm (above) and SM (below).

the form of new edges (note that new nodes are never added). Adding new edges
leads to new gateways and consequently to increasing size and CFC. On the other
hand, when the precision is lower than fitness and the metaheuristic aims to in-
crease the value of this measure to improve the overall F-score, the result is the
opposite: the model complexity reduces as edges are removed. This is the case of
the RTFMP and PRT10 logs. As an example of the two possible scenarios, Fig-
ure 29 shows the models discovered by SIMAsm and SM from the BPIC14f log
(where the model discovered by SIMAsm is more complex than that obtained with
SM), while Figure 30 shows the models discovered by SIMAsm and SM from the
RTFMP log (where the model discovered by SIMAsm is simpler). Comparing the
results obtained by the metaheuristics with HPOsm, we can see that our approach
allows us to discover models that cannot be discovered simply by tuning the hy-
perparameters of SM. This relates to the solution space exploration. Indeed, while

163

HPOsm can only explore a limited number of solutions (DFGs), i.e. those that can
be generated by the underlying APDA, SM in this case, by varying its hyperpa-
rameters, the metaheuristics go beyond the solution space of HPOsm by exploring
new DFGs in a pseudo-random manner.

In terms of execution times, the four metaheuristics perform similarly, having
an average discovery time close to 150 seconds. While this is considerably higher
than the execution time of SM (∼ 1 second on average), it is much lower than
HPOsm, while consistently achieving higher accuracy.

Fodina. Tables 45 and 46 report the results of our comparative evaluation for
Fodina. In these tables, we used “-” to report that a given accuracy measurement
could not be reliably obtained due to the unsoundness of the discovered process
model. We held out from the tables two logs: BPIC12 and SEPSIS, because none
of the 6 approaches was able to discover a sound process model, this is due to
Fodina design, which does not guarantee any soundness.

Considering the remaining 18 logs, 11 times all the metaheuristics improved
the Markovian F-score w.r.t. to HPOfo (and consequently FO), whilst 16 times
at least one metaheuristic outperformed both FO and HPOfo. The only two cases
where none of the metaheuristics was able to discover a more accurate process
model than HPOfo are PRT2 and BPIC14f. In the latter log, because all the meta-
heuristics discovered the same model of HPOfo. In the former log, because none
of the metaheuristics discovered a sound process model within the given timeout
of five minutes, however, we note that HPOfo took almost four hours to discover a
sound process model from the PRT2 log. Among the optimization metaheuristics,
the one performing the best was TABUfo, which achieved 14 times out of 18 the
best Markovian F-score, followed by ILSfo (10 times).

In this case, the results achieved by the metaheuristics on the alignment-based
F-score are more remarkable than the case of SM, and in-line with the results ob-
tained on the Markovian F-score. Indeed, 50% of the times, all the metaheuristics
were able to outperform both FO and HPOfo on the alignment-based F-score, and
more than 80% of the times, at least one metaheuristic scored higher alignment-
based F-score than FO and HPOfo. Such a result is impressive considering that
the objective function of the metaheuristics was the Markovian F-score.

Regarding the complexity of the models discovered by the metaheuristics,
more than 50% of the times, it is lower than the complexity of the models discov-
ered by FO and HPOfo, and in the remaining cases in-line with the two baselines.
Such a difference with the results we obtained for SM relates to the following two
factors: (i) SM discovers much simpler models than FO, and any further improve-
ment is difficult to achieve; (ii) FO natively discovers more fitting models than
SM, so that the metaheuristics aim at improving the precision of the discovered
models ultimately removing model’s edges and reducing its complexity.

In terms of execution times, the four metaheuristics perform similarly, with an
execution time between 150 and 300 seconds, slightly higher than the case of SM.

164

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

FO 0.999 0.879 0.935 0.997 0.647 0.784 13 10 0.77 0.1
HPOfo 0.999 0.879 0.935 0.997 0.647 0.784 13 10 0.77 17.7

BPIC13cp RLSfo 0.994 0.963 0.978 0.947 0.864 0.904 12 9 0.67 290.6
ILSfo 0.994 0.880 0.934 0.935 0.758 0.837 12 8 0.92 151.2

TABUfo 0.994 0.963 0.978 0.947 0.864 0.904 12 9 0.67 95.2
SIMAfo 0.994 0.880 0.934 0.935 0.758 0.837 12 8 0.92 130.0

FO 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 0.291
HPOfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 112.0

BPIC13inc RLSfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 304.7
ILSfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 180.1

TABUfo 0.998 0.743 0.852 0.987 0.604 0.749 14 15 1.00 129.0
SIMAfo 0.994 0.877 0.932 0.950 0.576 0.717 13 10 0.85 146.1

FO - - - - - - 37 46 0.41 36.8
HPOfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 8612.7

BPIC14f RLSfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 370.7
ILSfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 365.5

TABUfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 358.5
SIMAfo 1.000 0.757 0.862 1.000 0.985 0.992 27 36 0.56 300.2

FO 1.000 0.760 0.860 1.000 0.480 0.650 146 91 0.26 0.3
HPOfo 1.000 0.756 0.861 1.000 0.479 0.648 146 91 0.26 130.5

BPIC151f RLSfo 0.916 0.829 0.870 0.804 0.772 0.788 131 69 0.24 301.9
ILSfo 0.916 0.829 0.870 0.804 0.772 0.788 131 69 0.24 198.4

TABUfo 0.916 0.830 0.871 0.802 0.778 0.790 129 67 0.33 177.5
SIMAfo 0.918 0.833 0.873 0.777 0.799 0.788 127 67 0.34 174.4

FO - - - - - - 195 159 0.09 48.5
HPOfo - - - - - - 187 145 0.11 118.7

BPIC152f RLSfo - - - - - - 181 131 0.09 306.0
ILSfo - - - - - - 175 120 0.11 276.1

TABUfo 0.876 0.754 0.810 0.653 0.608 0.630 177 120 0.13 262.3
SIMAfo - - - - - - 175 121 0.12 284.1

FO - - - - - - 174 164 0.06 4.3
HPOfo 0.983 0.601 0.746 0.925 0.208 0.339 163 161 0.07 402.9

BPIC153f RLSfo - - - - - - 166 141 0.07 303.5
ILSfo 0.924 0.713 0.805 0.701 0.444 0.543 158 131 0.10 247.1

TABUfo - - - - - - 163 131 0.09 235.5
SIMAfo - - - - - - 163 131 0.09 241.8

FO - - - - - - 157 127 0.15 1.3
HPOfo 0.995 0.660 0.793 0.973 0.302 0.461 153 126 0.14 443.0

BPIC154f RLSfo 0.887 0.790 0.836 0.708 0.610 0.655 127 77 0.17 308.3
ILSfo 0.882 0.801 0.839 0.697 0.628 0.661 127 75 0.17 300.5

TABUfo 0.864 0.806 0.834 0.675 0.652 0.663 127 74 0.17 274.5
SIMAfo 0.882 0.801 0.839 0.697 0.628 0.661 127 75 0.17 252.2

FO 1.000 0.698 0.822 1.000 0.362 0.532 166 125 0.15 2.4
HPOfo 1.000 0.698 0.822 1.000 0.362 0.532 166 125 0.15 238.1

BPIC155f RLSfo 0.886 0.810 0.846 0.727 0.703 0.715 150 94 0.11 303.4
ILSfo 0.884 0.819 0.850 0.719 0.724 0.722 147 90 0.13 268.1

TABUfo 0.886 0.814 0.849 0.723 0.730 0.727 149 92 0.11 217.1
SIMAfo 0.884 0.808 0.844 0.721 0.743 0.732 141 83 0.14 208.5

FO 1.000 0.675 0.806 1.000 0.330 0.496 35 22 0.69 22.4
HPOfo 1.000 0.675 0.806 1.000 0.330 0.496 35 22 0.71 9755.7

BPIC17f RLSfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 309.9
ILSfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 313.5

TABUfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 305.7
SIMAfo 0.999 0.675 0.806 0.997 0.331 0.497 33 20 0.70 319.2

FO 0.996 0.933 0.964 0.937 0.148 0.256 31 32 0.19 0.4
HPOfo 0.884 1.000 0.939 0.646 0.857 0.737 18 7 0.56 2666.2

RTFMP RLSfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 268.7
ILSfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 134.1

TABUfo 0.987 1.000 0.994 0.848 0.938 0.890 26 25 0.12 131.2
SIMAfo 0.987 1.000 0.993 0.847 0.923 0.883 28 27 0.11 133.9

Table 45: Comparative evaluation results for the public logs - Fodina.

165

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Method Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

FO - - - - - - 30 28 0.53 0.2
HPOfo 0.998 0.925 0.960 0.988 0.739 0.845 21 17 0.81 402.6

PRT1 RLSfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 302.7
ILSfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 183.1

TABUfo 0.994 0.957 0.976 0.981 0.844 0.907 21 17 0.86 149.3
SIMAfo 0.988 0.964 0.976 0.888 0.827 0.857 21 16 0.86 154.0

FO - - - - - - 38 45 0.76 92.7
HPOfo 1.000 0.276 0.432 0.998 0.148 0.258 29 78 1.00 12937.1

PRT2 RLSfo - - - - - - 48 56 0.08 301.0
ILSfo - - - - - - 48 56 0.08 308.1

TABUfo - - - - - - 53 70 0.08 313.0
SIMAfo - - - - - - - - - 854.9

FO 0.999 0.847 0.917 0.993 0.269 0.423 34 37 0.32 0.2
HPOfo - - - - - - 73 93 0.18 756.5

PRT3 RLSfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 306.6
ILSfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 157.3

TABUfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 138.1
SIMAfo 0.963 0.902 0.932 0.679 0.446 0.539 37 38 0.35 143.0

FO - - - - - - 37 40 0.54 46.0
HPOfo 1.000 0.858 0.924 1.000 0.965 0.982 32 41 0.50 10914.5

PRT4 RLSfo 0.997 0.859 0.923 0.993 0.990 0.991 31 37 0.52 317.4
ILSfo 0.997 0.903 0.948 0.993 0.993 0.993 27 32 0.74 314.4

TABUfo 0.997 0.903 0.948 0.993 0.993 0.993 27 32 0.74 300.1
SIMAfo 0.977 0.887 0.930 0.793 0.963 0.870 32 38 0.50 309.1

FO 1.000 0.908 0.952 1.000 0.632 0.775 22 17 0.41 0.1
HPOfo 1.000 0.908 0.952 1.000 0.632 0.775 22 17 0.41 25.0

PRT6 RLSfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 278.8
ILSfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 140.0

TABUfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 129.3
SIMAfo 0.984 0.928 0.955 0.840 0.818 0.829 22 14 0.41 131.2

FO 0.990 1.000 0.995 0.906 1.000 0.951 26 16 0.39 0.3
HPOfo 0.990 1.000 0.995 0.906 1.000 0.951 26 16 0.39 50.2

PRT7 RLSfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 287.6
ILSfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 140.3

TABUfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 129.7
SIMAfo 0.993 1.000 0.997 0.933 1.000 0.966 28 22 0.36 132.1

FO - - - - - - 32 45 0.72 53.1
HPOfo - - - - - - 24 18 0.54 2799.5

PRT9 RLSfo 0.969 0.999 0.984 0.894 0.893 0.893 23 21 0.91 301.5
ILSfo - - - - - - 34 26 0.15 263.2

TABUfo - - - - - - 36 30 0.14 185.8
SIMAfo 0.968 1.000 0.984 0.887 0.956 0.920 20 17 0.80 278.4

FO 0.990 0.922 0.955 0.961 0.087 0.159 52 85 0.64 0.2
HPOfo 0.872 0.958 0.913 0.659 0.786 0.717 35 28 0.60 750.8

PRT10 RLSfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 301.1
ILSfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 195.0

TABUfo 0.964 0.965 0.965 0.870 0.813 0.840 44 46 0.25 165.0
SIMAfo 0.965 0.963 0.964 0.874 0.809 0.840 44 47 0.25 161.2

Table 46: Comparative evaluation results for the proprietary logs - Fodina.

166

Event Discovery Align. Acc. Markov. Acc. (k = 5) Complexity Exec.
Log Approach Fitness Prec. F-score Fitness Prec. F-score Size CFC Struct. Time(s)

IMd 1.000 0.168 0.287 1.000 <0.001 <0.001 30 28 1.00 0.7
BPIC12 RLSimd 0.661 0.763 0.708 0.220 0.163 0.187 40 21 1.00 300.0

TABUimd 0.661 0.763 0.708 0.220 0.163 0.187 40 21 1.00 309.4
SIMAimd 0.660 0.805 0.725 0.204 0.223 0.213 39 19 1.00 308.7

IMd 1.000 0.862 0.926 0.999 0.161 0.277 15 11 1.00 0.4
BPIC13cp RLSimd 0.984 0.889 0.934 0.882 0.424 0.573 9 5 1.00 301.4

TABUimd 0.990 0.888 0.936 0.942 0.414 0.575 10 7 1.00 101.8
SIMAimd 0.984 0.889 0.934 0.882 0.424 0.573 9 5 1.00 300.5

IMd 1.000 0.673 0.805 1.000 0.109 0.197 10 9 1.00 0.5
BPIC13inc RLSimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 301.5

TABUimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 71.9
SIMAimd 0.895 0.921 0.908 0.679 0.517 0.587 10 6 1.00 300.7

IMd 0.861 0.782 0.820 0.507 0.814 0.625 27 16 1.00 0.8
BPIC14f RLSimd 0.977 0.676 0.799 0.918 0.447 0.601 16 11 1.00 302.5

TABUimd 0.949 0.673 0.788 0.859 0.505 0.636 17 13 1.00 303.3
SIMAimd 0.977 0.676 0.799 0.918 0.447 0.601 16 11 1.00 300.8

IMd 1.000 0.679 0.808 1.000 0.284 0.442 34 23 1.00 1.5
BPIC17f RLSimd 0.674 0.815 0.738 0.241 0.214 0.227 27 11 1.00 302.7

TABUimd 0.693 0.817 0.750 0.262 0.204 0.230 28 13 1.00 83.8
SIMAimd 0.674 0.815 0.738 0.241 0.214 0.227 27 11 1.00 301.0

IMd 1.000 0.543 0.704 1.000 0.003 0.005 15 12 1.00 0.8
RTFMP RLSimd 0.938 0.886 0.911 0.784 0.379 0.511 21 14 1.00 321.1

TABUimd 0.938 0.886 0.911 0.784 0.379 0.511 21 14 1.00 52.1
SIMAimd 0.917 0.907 0.912 0.780 0.625 0.694 19 9 1.00 300.8

IMd 1.000 0.291 0.451 0.918 0.006 0.012 24 23 1.00 0.4
SEPSIS RLSimd 0.796 0.684 0.736 0.367 0.363 0.365 27 18 1.00 305.5

TABUimd 0.796 0.684 0.736 0.367 0.363 0.365 27 18 1.00 306.9
SIMAimd 0.813 0.581 0.678 0.482 0.310 0.377 25 16 1.00 301.6

IMd 1.000 0.748 0.856 1.000 0.025 0.048 14 11 1.00 0.5
PRT1 RLSimd 0.974 0.946 0.960 0.692 0.707 0.699 16 10 1.00 304.4

TABUimd 0.971 0.946 0.958 0.692 0.707 0.699 17 10 1.00 304.0
SIMAimd 0.974 0.946 0.960 0.692 0.707 0.699 16 10 1.00 300.7

IMd 1.000 0.243 0.390 1.000 0.109 0.196 13 11 1.00 0.9
PRT2 RLSimd 0.811 0.464 0.591 0.588 0.601 0.594 18 13 1.00 305.5

TABUimd 0.788 0.461 0.581 0.542 0.566 0.554 16 11 1.00 303.0
SIMAimd 0.792 0.413 0.543 0.524 0.674 0.590 18 13 1.00 307.3

IMd 0.827 0.890 0.857 0.328 0.253 0.286 26 10 1.00 0.4
PRT3 RLSimd 0.914 0.896 0.905 0.501 0.593 0.543 26 14 1.00 305.1

TABUimd 0.933 0.900 0.917 0.626 0.592 0.608 28 15 1.00 302.6
SIMAimd 0.930 0.898 0.914 0.562 0.539 0.550 29 17 1.00 300.8

IMd 0.880 0.811 0.844 0.876 0.967 0.919 27 13 1.00 0.5
PRT4 RLSimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 301.0

TABUimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 307.2
SIMAimd 0.962 0.879 0.919 1.000 0.956 0.977 19 13 1.00 300.8

IMd 0.917 0.988 0.951 0.524 0.350 0.420 18 6 1.00 0.4
PRT6 RLSimd 0.953 0.987 0.969 0.674 0.941 0.785 17 7 1.00 304.2

TABUimd 0.905 0.915 0.910 0.488 0.903 0.634 18 10 1.00 643.0
SIMAimd 0.953 0.987 0.969 0.674 0.941 0.785 17 7 1.00 300.6

IMd 0.852 0.997 0.919 0.618 0.407 0.491 21 5 1.00 0.4
PRT7 RLSimd 0.917 1.000 0.957 0.700 1.000 0.824 20 6 1.00 305.5

TABUimd 0.917 1.000 0.957 0.700 1.000 0.824 20 6 1.00 1013.9
SIMAimd 0.960 0.988 0.974 0.664 0.752 0.705 23 13 1.00 309.6

IMd 0.586 0.461 0.516 0.078 0.014 0.024 22 15 1.00 2.6
PRT9 RLSimd 0.945 1.000 0.972 0.851 1.000 0.919 16 9 1.00 304.2

TABUimd 0.946 1.000 0.972 0.856 0.947 0.899 18 10 1.00 306.6
SIMAimd 0.954 1.000 0.976 0.890 0.909 0.899 15 8 1.00 300.0

IMd 0.530 0.656 0.586 0.386 0.000 0.001 36 28 1.00 0.5
PRT10 RLSimd 0.859 0.961 0.907 0.664 0.691 0.677 30 24 1.00 300.3

TABUimd 0.912 0.907 0.909 0.790 0.484 0.600 30 24 1.00 33.1
SIMAimd 0.862 0.941 0.900 0.671 0.719 0.694 32 28 1.00 307.6

Table 47: Comparative evaluation results for the public and proprietary logs -
Inductive Miner.

167

Inductive Miner. Table 47 displays the results of our comparative evaluation
for Inductive Miner. We held out from the table the five BPIC15 logs, because
none of the three metaheuristics could discover a model within the five minutes
timeout. This was due to scalability issues experienced by the Markovian accu-
racy, and already highlighted in Chapter 6 (for the case of IM).

In the remaining 15 logs, 13 times all the metaheuristics improved the Marko-
vian F-score w.r.t. IMd, and only for the BPIC17f log none of the metaheuristics
could outperform IMd. The best performing metaheuristic was SIMAimd, achiev-
ing 8 times the highest Markovian F-score, followed by TABUimd and RLSimd,
who scored 7 and 6 times the highest Markovian F-score.

The results of the metaheuristics on the alignment-based F-score are similar to
the case of Fodina, and they are broadly in-line with the results achieved on the
Markovian F-score. Indeed, 80% of the times, all the metaheuristics were able to
outperform IMd, failing only in two logs out of 15.

Regarding the complexity of the models discovered by the metaheuristics, we
recorded little variation w.r.t. the complexity of the models discovered by IMd,
meaning that the size and the CFC of the discovered models did not notably im-
prove nor worsen in any case, expect for the PRT9 and the BPIC14f logs, where
both size and CFC were reduced of circa 30%.

In terms of execution times, the three metaheuristics perform similarly, with an
average execution time close to 300 seconds, meaning that majority of the times
the solution-space exploration was interrupted by the five minutes timeout.

7.3.3. Statistical Analysis

Finally, we used the Mann-Whitney U-test [6] to assess the statistical significance
of our empirical evaluation. In particular, we analysed whether the improvements
brought by our framework in terms of F-score were statistically significant. Ta-
ble 48 reports the results of our statistical analysis, which can be summarised as
follows. (i) Our optimization framework significantly improves the alignment-
based and Markovian F-scores of IMd, regardless of the underlying metaheuris-
tic. (ii) The alignment-based F-score improvements delivered by RLSfo are sig-
nificantly higher than those delivered by HPOfo. (iii) The Markovian F-score
improvements of SIMAsm are significantly higher than those of HPOsm. Event
though we cannot claim that all the improvements of the alignment-based and
Markovian F-scores of FO and SM achieved by the metaheuristics in our frame-
work are statistical significant (i.e. with a confidence level greater than 95%), from
the results in Table 48, we note that the confidence levels of the statistical results
are always above 88.5%, except for the case of the alignment-based F-scores of
SM.

168

Hypothesis: Distribution 1 significantly higher than Distribution 2.
F-score Measure Distribution 1 Distribution 2 n1 = n2 U2 Z Confidence

Alignment RLSimd IMd 15 58.5 2.24 97.5%
Alignment TABUimd IMd 15 61.5 2.12 96.6%
Alignment SIMAimd IMd 15 59.5 2.20 97.2%
Markovian RLSimd IMd 15 36.5 3.15 99.7%
Markovian TABUimd IMd 15 31 3.17 99.7%
Markovian SIMAimd IMd 15 34 3.26 99.8%
Alignment RLSfo HPOfo 15 64 2.01 95.6%
Alignment ILSfo HPOfo 15 74 1.60 89.0%
Alignment TABUfo HPOfo 15 74.5 1.58 88.6%
Alignment SIMAfo HPOfo 15 66 1.93 94.6%
Markovian RLSfo HPOfo 15 66.5 1.91 94.4%
Markovian ILSfo HPOfo 15 70.5 1.74 91.8%
Markovian TABUfo HPOfo 15 68.5 1.83 93.3%
Markovian SIMAfo HPOfo 15 67.5 1.87 93.9%
Alignment RLSsm HPOsm 16 106.5 0.81 58.2%
Alignment ILSsm HPOsm 16 108.5 0.74 54.1%
Alignment TABUsm HPOsm 16 111 0.64 47.8%
Alignment SIMAsm HPOsm 16 111.5 0.62 46.5%
Markovian RLSsm HPOsm 16 80 1.81 93.0%
Markovian ILSsm HPOsm 16 78 1.88 94.0%
Markovian TABUsm HPOsm 16 82 1.73 91.6%
Markovian SIMAsm HPOsm 16 75.5 1.98 95.2%

Table 48: Summary of the Mann-Whitney U-tests [6].

7.3.4. Discussion

The results of the experimental evaluation of our optimization framework applied
to Split Miner, Fodina, and Inductive Miner, proved its effectiveness and effi-
ciency. The metaheuristics integrated in our framework delivered different de-
grees of optimization depending on the underlying APDA, the complexity of the
input event log, and the selected optimization metaheuristic, yet consistently out-
performing the baselines in the vast majority of the cases (i.e. more than 80% of
the times).

Overall, all the three APDAs successfully achieved better results in terms of
Markovian F-score (our objective function) and alignment-based F-score when
optimized through our framework, and only at the cost of a reasonably longer
execution time (up to five minutes).

We note, however, that in a small number of cases the optimization framework
could not bring any improvement to the accuracy achieved by the baseline AP-
DAs due to: (i) a small solution-space (i.e. the baseline already discovers the best
process model); or (ii) scalability issues (i.e. the Markovian accuracy cannot be
computed within the five minutes timeout). While the former scenario is beyond
our control and strictly relates to the complexity of the input event log, the latter
reminds us of the limitations of the state-of-the-art accuracy measures (and espe-
cially precision) in the context of automated process discovery, and justifies our
design choice of a modular optimization framework, that allows the implementa-
tion of (future) accuracy measures (as objective functions) able to overcome such
scalability issues.

169

7.4. Summary

This chapter addressed our third and last research question, how can the accu-
racy of an automated process discovery approach be efficiently optimized? We
proposed an optimization framework for DFG-based APDAs which is powered
by single-solution-based optimization metaheuristics (S-metaheuristics), such as
iterative local search, tabu search, and simulated annealing. The framework takes
advantage of the DFG’s simplicity to define efficient perturbation functions that
allow the S-metaheuristics to explore the solution-space and discover process
models with higher objective function scores. We designed our framework in
a modular manner, allowing the integration of any DFG-based APDAs and ob-
jective function. In the context of this thesis, we instantiated the framework for
Split Miner, Fodina, and Inductive Miner, since these are representative APDAs
of the state of the art in automated process discovery, and we chose the Markovian
F-score as objective function (introduced in Chapter 6).

The evaluation showed that when applying our framework to Split Miner, Fod-
ina, and Inductive Miner, each of these three APDAs achieved higher accuracy for
a clear majority of the events logs in the benchmark, particularly when using fine-
grained measures of fitness and precision based on Markovian abstractions, but
also when using measures based on alignments (especially in the case of Fodina
and Inductive Miner). We note that these accuracy gains come at the expense of
slightly higher execution times (up to five minutes) and sometimes greater model
size and structural complexity (in the case of Split Miner).

Lastly, but most interesting, the experiments showed that the S-metaheuristics
achieve higher accuracy than hyperparameter-optimized version of Split Miner
and Fodina, while achieving lower execution times, highlighting the fact that our
optimization framework enhances the underlying APDA, allowing it to explore
areas of the solution-space that could not be reached by simply varying the input
parameters.

170

8. CONCLUSION

8.1. Summary of Contributions

This thesis made four contributions to the field of automated discovery of business
process models from event logs. The first contribution of this thesis is an exten-
sive systematic literature review of the research studies addressing the problem
of automated process discovery. We identified and analysed 34 studies proposing
automated process discovery approaches (APDAs). Then, we designed a bench-
mark based on 24 real-life event logs and seven quality measures, and assessed a
representative subset of the 34 APDAs. The outcome of this benchmark allowed
us to identify strengths and weaknesses of the state-of-the-art APDAs, among
the weaknesses, the following three were recurrent: (i) limited accuracy (i.e. low
scores of fitness and/or precision); (ii) high computational and time complexity;
(iii) syntactically incorrect outputs (i.e. unsound process models).

With the goal of overcoming these weaknesses, we designed a novel APDA,
namely Split Miner, which represents our second (and core) contribution. Split
Miner is the first APDA that guarantees to discover sound unstructured acyclic
process models, and deadlock-free unstructured cyclic process models. Further-
more, Split Miner is designed to discover highly accurate process models, while
maintaining a low computational and time complexity. We assessed Split Miner
on our benchmark, and we showed that it outperforms the state-of-the-art APDAs,
and successfully overcomes their three major weaknesses. Split Miner is inte-
grated within the process discoverer plugin of Apromore, an open-source business
process analytics platform providing the full suite of process mining functionali-
ties, from automated process discovery to predictive process intelligence.1 Such
an integration, allowed our contribution to reach not only academics but also in-
dustry practitioners.2.

Our extensive evaluations also highlighted that many state-of-the-art APDAs
can achieve better results when their hyper-parameters are opportunely tuned.
However, tuning the hyper-parameters of an APDA is a time consuming and
computationally expensive exercise, due to two shortfalls in the state-of-ther-art:
(i) the computational inefficiency of existing accuracy measures for automated
process discovery, particularly precision measures; and (ii) the lack of efficient
solution-space exploration methods for the problem of automated process discov-
ery. The last two major contributions of this thesis focused on solving these two
problems.

The third contribution of this thesis is a family of accuracy measures that ad-
dress the first of the above shortcomings, our novel accuracy measures are based
on the comparison of the Markovian abstractions of process models and event
logs, hence the name Markovian accuracy. Such measures, despite approximate,

1https://apromore.org
2https://apromore.org/testimonials/

171

https://apromore.org
https://apromore.org/testimonials/

showed to be computationally faster than the state-of-the-art measures. Further-
more, we proved that they satisfy a set of desirable properties for accuracy mea-
sures that the state-of-the-art measures do not.

To address the second problem, we designed an optimization framework for
APDAs powered by single-solution-based optimization metaheuristics, such as
iterative local search, tabu search, and simulated annealing. Our optimization
framework is modular and allows the integration of any APDA based on directly-
follows graphs, as well as any objective function. In the context of this thesis, we
set as objective function our Markovian accuracy F-score, and we instantiated our
framework for three state-of-the-art APDAs (Split Miner, Fodina, and Inductive
Miner). Finally, we empirically evaluated our framework, demonstrating that it
allows an APDA to explore its solution-space in an efficient and effective manner
beyond tuning the APDA hyper-parameters.

8.2. Future Work

Our most valuable contribution to the automated process discovery area, Split
Miner, addressed the major problems that we identified surveying and benchmark-
ing the research in the area. Among the open challenges identified, we note that
none of the existing APDAs guarantees to discover sound unstructured cyclic pro-
cess models. In fact, even though Split Miner can discover such process models,
it does not guarantee this property. Our literature review and benchmark high-
lighted that the only APDAs that guarantees such a result imposes the restriction
of discovering block-structured process models. This constraint can impair the
accuracy of the discovered process models. Designing an APDA that guarantees
sound unstructured cyclic process models is the natural extension of the work
produced in this thesis.

Another open challenge, in automated process discovery, is the optimization of
the state-of-the-art APDAs, in particular how to efficiently explore their solution-
space in a fast and scalable manner. Our proposed optimization framework is
a first step in this direction, but it currently relies on our Markovian accuracy
measures, which despite faster than existing measures, they are approximate. De-
signing exact and scalable accuracy measures has proven very challenging. One
of the latest studies proposes the use of the concept of entropy [166], showing
that accuracy measures based on entropy are exact and satisfy even a stricter set
of qualitative properties [4], yet they are not as efficient as our Markovian accu-
racy measures. Future work should consider the designing of exact and scalable
accuracy measures, as well as the designing of alternative approaches to explore
the solution-space of an APDA, ideally reducing the use of accuracy measures,
for example by inferring the accuracy of a process model based on its location in
the solution-space (e.g. analysing its neighbouring solutions).

Finally, an emerging research area closely related to process mining (and au-
tomated process discovery) is robotic process automation (RPA), which has re-

172

cently attracted much attention from the research community. The ultimate goal of
RPA is to automatically detect clerical routines performed by process participants
(within a well-defined working environment), and train software-bots to repli-
cate the detected automatable routines. Currently, the detection of automatable
routines and the training of software-bots are time-consuming manual activities
performed by process participants, while the research community of RPA aims to
automate the whole pipeline as follows. First, the clerical routines performed by
an user are (automatically) recorded into a so-called user interaction log (UI log).
Next, the UI log is analysed to discover routines that can be automated [182]. Fi-
nally, the discovered automatable routines are compiled into software-bots. The
discovery of automatable routines from UI logs is a problem very similar to auto-
mated process discovery of process models from event logs. Therefore, it would
be interesting to explore the adaptation of APDAs to the discovery of automat-
able routines from UI logs, trying to overcome specific challenges of that context,
among which: (i) avoiding to discover automatable routines that generalise the
user interactions recorded in the input UI log; (ii) handling the noise in the UI log,
as well as the variability of a given routine (i.e. the same routine can be performed
in different ways); and (iii) dealing with complex data transformations (required
to detect routines) in a scalable manner.

173

BIBLIOGRAPHY

[1] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of
business process management. Springer, 2013.

[2] B. van Dongen, J. Carmona, and T. Chatain, “A unified approach for mea-
suring precision and generalization based on anti-alignments,” in BPM,
Springer, 2016.

[3] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A multi-
dimensional quality assessment of state-of-the-art process discovery al-
gorithms using real-life event logs,” Information Systems, vol. 37, no. 7,
pp. 654–676, 2012.

[4] A. F. Syring, N. Tax, and W. M. van der Aalst, “Evaluating conformance
measures in process mining using conformance propositions (extended ver-
sion),” arXiv preprint arXiv:1909.02393, 2019.

[5] N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. van der Aalst, “The impre-
cisions of precision measures in process mining,” Information Processing
Letters, vol. 135, 2018.

[6] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The annals of mathemati-
cal statistics, pp. 50–60, 1947.

[7] W. van der Aalst, Process Mining - Data Science in Action. Springer, 2016.
[8] A. Weijters and J. Ribeiro, “Flexible heuristics miner (FHM),” in Compu-

tational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium on,
pp. 310–317, IEEE, 2011.

[9] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
Block-Structured Process Models from Incomplete Event Logs,” in Appli-
cation and Theory of Petri Nets and Concurrency: 35th International Con-
ference, PETRI NETS 2014, Tunis, Tunisia, June 23-27, 2014. Proceedings,
pp. 91–110, Springer International Publishing, 2014.

[10] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Quality dimen-
sions in process discovery: The importance of fitness, precision, general-
ization and simplicity,” International Journal of Cooperative Information
Systems, vol. 23, no. 01, p. 1440001, 2014.

[11] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno, “Auto-
mated discovery of structured process models: Discover structured vs. dis-
cover and structure,” in Conceptual Modeling: 35th International Confer-
ence, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings, pp. 313–
329, Springer, 2016.

[12] S. K. vanden Broucke and J. De Weerdt, “Fodina: a robust and flexible
heuristic process discovery technique,” Decision Support Systems, 2017.

174

[13] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. Maggi, A. Marrella,
M. Mecella, and A. Soo, “Automated discovery of process models from
event logs: Review and benchmark,” IEEE TKDE, vol. 31, no. 4, 2019.

[14] J. Mendling, Metrics for Process Models: Empirical Foundations of Verifi-
cation, Error Prediction, and Guidelines for Correctness. Springer, 2008.

[15] W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, E. Verbeek,
M. Voorhoeve, and M. Wynn, “Soundness of workflow nets: classification,
decidability, and analysis,” Formal Asp. Comput., vol. 23, no. 3, 2011.

[16] R. H. Von Alan, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, vol. 28, no. 1, pp. 75–105,
2004.

[17] A. Augusto, R. Conforti, M. Dumas, and M. La Rosa, “Split Miner: Dis-
covering Accurate and Simple Business Process Models from Event Logs,”
in 2017 IEEE International Conference on Data Mining, ICDM 2017, New
Orleans, LA, USA, November 18-21, 2017, pp. 1–10, 2017.

[18] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and A. Polyvyanyy,
“Split miner: automated discovery of accurate and simple business process
models from event logs,” KAIS, 2018.

[19] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La Rosa,
and D. Reissner, “Abstract-and-compare: A family of scalable precision
measures for automated process discovery,” in BPM, Springer, 2018.

[20] A. Augusto, A. Armas Cervantes, R. Conforti, M. Dumas, M. La Rosa, and
D. Reissner, “Measuring fitness and precision of automatically discovered
process models: A principled and scalable approach,” tech. rep., University
of Melbourne, 2019.

[21] A. Augusto, M. Dumas, and M. La Rosa, “Metaheuristic optimization for
automated business process discovery,” in BPM, Springer, 2019.

[22] Object Management Group (OMG), Business Process Model and Notation
(BPMN) ver. 2.0. Object Management Group (OMG), 1 2011.

[23] J. L. Peterson, “Petri nets,” ACM Computing Surveys (CSUR), vol. 9, no. 3,
pp. 223–252, 1977.

[24] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[25] W. M. Van der Aalst, “The application of petri nets to workflow manage-
ment,” Journal of circuits, systems, and computers, vol. 8, no. 01, pp. 21–
66, 1998.

[26] A. Polyvyanyy, L. García-Bañuelos, and M. Dumas, “Structuring acyclic
process models,” Inf. Syst., vol. 37, no. 6, pp. 518–538, 2012.

[27] W. van der Aalst, Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

175

[28] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[29] A. Fink, Conducting research literature reviews: from the internet to paper.
Sage Publications, 3rd edition ed., 2010.

[30] C. Okoli and K. Schabram, “A guide to conducting a systematic literature
review of information systems research,” Sprouts: Working Papers on In-
formation Systems, vol. 10, no. 26, pp. 1–49, 2010.

[31] J. Randolph, “A guide to writing the dissertation literature review,” Practi-
cal Assessment, Research & Evaluation, vol. 14, no. 13, pp. 1–13, 2009.

[32] R. Torraco, “Writing integrative literature reviews: guidelines and exam-
ples,” Human Resource Development Review, vol. 4, no. 3, pp. 356–367,
2005.

[33] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Discov-
ering process models from event logs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[34] A. Alves de Medeiros, B. Van Dongen, W. Van Der Aalst, and A. Weijters,
“Process mining: Extending the α-algorithm to mine short loops,” tech.
rep., BETA Working Paper Series, 2004.

[35] L. Wen, W. M. van der Aalst, J. Wang, and J. Sun, “Mining process models
with non-free-choice constructs,” Data Mining and Knowledge Discovery,
vol. 15, no. 2, pp. 145–180, 2007.

[36] Q. Guo, L. Wen, J. Wang, Z. Yan, and S. Y. Philip, “Mining invisible tasks
in non-free-choice constructs,” in International Conference on Business
Process Management, pp. 109–125, Springer, 2015.

[37] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Robust process
discovery with artificial negative events,” Journal of Machine Learning Re-
search, vol. 10, no. Jun, pp. 1305–1340, 2009.

[38] A. A. De Medeiros and A. Weijters, “Genetic process mining,” in Appli-
cations and Theory of Petri Nets 2005, Volume 3536 of Lecture Notes in
Computer Science, Citeseer, 2005.

[39] A. K. A. de Medeiros, A. J. Weijters, and W. M. van der Aalst, “Genetic
process mining: an experimental evaluation,” Data Mining and Knowledge
Discovery, vol. 14, no. 2, pp. 245–304, 2007.

[40] A. J. Weijters and W. M. Van der Aalst, “Rediscovering workflow mod-
els from event-based data using little thumb,” Integrated Computer-Aided
Engineering, vol. 10, no. 2, pp. 151–162, 2003.

[41] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process mining
with the heuristics miner-algorithm,” Technische Universiteit Eindhoven,
Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

176

[42] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno, “Au-
tomated Discovery of Structured Process Models From Event Logs: The
Discover-and-Structure Approach,” DKE, 2017.

[43] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. van der Aalst,
“Data-Driven Process Discovery-Revealing Conditional Infrequent Behav-
ior from Event Logs,” in International Conference on Advanced Informa-
tion Systems Engineering, pp. 545–560, Springer, 2017.

[44] S. De Cnudde, J. Claes, and G. Poels, “Improving the quality of the heuris-
tics miner in prom 6.2,” Expert Systems with Applications, vol. 41, no. 17,
pp. 7678–7690, 2014.

[45] J. M. E. van derWerf, B. F. van Dongen, C. A. Hurkens, and A. Serebrenik,
“Process discovery using integer linear programming,” Fundamenta Infor-
maticae, vol. 94, no. 3-4, pp. 387–412, 2009.

[46] S. van Zelst, B. van Dongen, W. van der Aalst, and H. Verbeek, “Discov-
ering workflow nets using integer linear programming,” Computing, pp. 1–
28, 2017.

[47] Z. Huang and A. Kumar, “A study of quality and accuracy trade-offs in
process mining,” INFORMS Journal on Computing, vol. 24, no. 2, pp. 311–
327, 2012.

[48] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient Dis-
covery of Understandable Declarative Process Models from Event Logs,”
in Advanced Information Systems Engineering - 24th International Con-
ference, CAiSE 2012, Gdansk, Poland, June 25-29, 2012. Proceedings,
pp. 270–285, 2012.

[49] F. M. Maggi, A. J. Mooij, and W. M. van der Aalst, “User-guided discovery
of declarative process models,” in Computational Intelligence and Data
Mining (CIDM), 2011 IEEE Symposium on, pp. 192–199, IEEE, 2011.

[50] F. M. Maggi, R. J. C. Bose, and W. M. van der Aalst, “A knowledge-
based integrated approach for discovering and repairing declare maps,” in
International Conference on Advanced Information Systems Engineering,
pp. 433–448, Springer, 2013.

[51] M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Discovering cross-
organizational business rules from the cloud,” in 2014 IEEE Symposium
on Computational Intelligence and Data Mining, CIDM 2014, Orlando,
FL, USA, December 9-12, 2014, pp. 389–396, 2014.

[52] F. M. Maggi, “Discovering metric temporal business constraints from event
logs,” in Perspectives in Business Informatics Research - 13th International
Conference, BIR 2014, Lund, Sweden, September 22-24, 2014. Proceed-
ings, pp. 261–275, 2014.

[53] T. Kala, F. M. Maggi, C. Di Ciccio, and C. Di Francescomarino, “Apri-
ori and sequence analysis for discovering declarative process models,” in

177

Enterprise Distributed Object Computing Conference (EDOC), 2016 IEEE
20th International, pp. 1–9, IEEE, 2016.

[54] F. M. Maggi, C. D. Ciccio, C. D. Francescomarino, and T. Kala, “Paral-
lel algorithms for the automated discovery of declarative process models,”
Information Systems, 2017.

[55] C. Di Ciccio and M. Mecella, “A two-step fast algorithm for the auto-
mated discovery of declarative workflows,” in Computational Intelligence
and Data Mining (CIDM), 2013 IEEE Symposium on, pp. 135–142, IEEE,
2013.

[56] C. Di Ciccio and M. Mecella, “Mining constraints for artful processes,” in
Business Information Systems - 15th International Conference, BIS 2012,
Vilnius, Lithuania, May 21-23, 2012. Proceedings, pp. 11–23, 2012.

[57] C. Di Ciccio and M. Mecella, “On the discovery of declarative control flows
for artful processes,” ACM Trans. Management Inf. Syst., vol. 5, no. 4,
pp. 24:1–24:37, 2015.

[58] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovering target-branched
declare constraints,” in International Conference on Business Process Man-
agement, pp. 34–50, Springer, 2014.

[59] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Efficient discovery of Target-
Branched Declare Constraints,” Information Systems, vol. 56, pp. 258–283,
2016.

[60] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from event logs containing infrequent be-
haviour,” in Business Process Management Workshops - BPM 2013 In-
ternational Workshops, Beijing, China, August 26, 2013, Revised Papers,
pp. 66–78, 2013.

[61] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
Block-Structured Process Models from Event Logs - A Constructive Ap-
proach,” in Application and Theory of Petri Nets and Concurrency: 34th
International Conference, PETRI NETS 2013, Milan, Italy, June 24-28,
2013. Proceedings, pp. 311–329, Springer Berlin Heidelberg, 2013.

[62] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Exploring Processes
and Deviations,” in Business Process Management Workshops: BPM 2014
International Workshops, Eindhoven, The Netherlands, September 7-8,
2014, Revised Papers, pp. 304–316, Springer, 2014.

[63] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Using Life Cy-
cle Information in Process Discovery,” in Business Process Management
Workshops: BPM 2015, 13th International Workshops, Innsbruck, Austria,
August 31 – September 3, 2015, Revised Papers, pp. 204–217, Springer,
2015.

178

[64] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Scalable pro-
cess discovery with guarantees,” in International Conference on Enter-
prise, Business-Process and Information Systems Modeling, pp. 85–101,
Springer, 2015.

[65] S. J. Leemans, D. Fahland, and W. M. van der Aalst, “Scalable process dis-
covery and conformance checking,” Software & Systems Modeling, pp. 1–
33, 2016.

[66] M. Leemans and W. M. van der Aalst, “Modeling and discovering cance-
lation behavior,” in OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems", pp. 93–113, Springer, 2017.

[67] F. M. Maggi, M. Dumas, L. García-Bañuelos, and M. Montali, “Discov-
ering data-aware declarative process models from event logs,” in Business
Process Management, pp. 81–96, Springer, 2013.

[68] M. Abe and M. Kudo, “Business Monitoring Framework for Process Dis-
covery with Real-Life Logs,” in International Conference on Business Pro-
cess Management, pp. 416–423, Springer, 2014.

[69] M. Kudo, A. Ishida, and N. Sato, “Business process discovery by using pro-
cess skeletonization,” in Signal-Image Technology & Internet-Based Sys-
tems (SITIS), 2013 International Conference on, pp. 976–982, IEEE, 2013.

[70] S. K. vanden Broucke, J. Vanthienen, and B. Baesens, “Declarative pro-
cess discovery with evolutionary computing,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on, pp. 2412–2419, IEEE, 2014.

[71] W. M. van der Aalst, J. C. Buijs, and B. F. van Dongen, “Towards Improv-
ing the Representational Bias of Process Mining,” in Data-Driven Process
Discovery and Analysis: First International Symposium (SIMPDA 2011),
pp. 39–54, Springer, 2011.

[72] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “A genetic algo-
rithm for discovering process trees,” in Evolutionary Computation (CEC),
2012 IEEE Congress on, pp. 1–8, IEEE, 2012.

[73] J. C. Buijs, B. F. Van Dongen, W. M. van Der Aalst, et al., “On the Role of
Fitness, Precision, Generalization and Simplicity in Process Discovery,” in
OTM Conferences (1), vol. 7565, pp. 305–322, 2012.

[74] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst, “Discovering and
navigating a collection of process models using multiple quality dimen-
sions,” in Business Process Management Workshops: BPM 2013 Interna-
tional Workshops, Beijing, China, August 26, 2013, Revised Papers, pp. 3–
14, Springer, 2013.

[75] M. L. van Eck, J. C. Buijs, and B. F. van Dongen, “Genetic Process Min-
ing: Alignment-Based Process Model Mutation,” in Business Process Man-
agement Workshops: BPM 2014 International Workshops, Eindhoven, The

179

Netherlands, September 7-8, 2014, Revised Papers, pp. 291–303, Springer,
2014.

[76] J. Carmona and J. Cortadella, “Process discovery algorithms using numer-
ical abstract domains,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 26, no. 12, pp. 3064–3076, 2014.

[77] S. Ferilli, “Woman: logic-based workflow learning and management,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44,
no. 6, pp. 744–756, 2014.

[78] S. Ferilli, B. De Carolis, and D. Redavid, “Logic-based incremental pro-
cess mining in smart environments,” in International Conference on Indus-
trial, Engineering and Other Applications of Applied Intelligent Systems,
pp. 392–401, Springer, 2013.

[79] B. De Carolis, S. Ferilli, and G. Mallardi, “Learning and Recognizing Rou-
tines and Activities in SOFiA,” in Ambient Intelligence: European Con-
ference, AmI 2014, Eindhoven, The Netherlands, November 11-13, 2014.
Revised Selected Papers, pp. 191–204, Springer, 2014.

[80] S. Ferilli, B. De Carolis, and F. Esposito, “Learning Complex Activity Pre-
conditions in Process Mining,” in New Frontiers in Mining Complex Pat-
terns: Third International Workshop, NFMCP 2014, Held in Conjunction
with ECML-PKDD 2014, Nancy, France, September 19, 2014, Revised Se-
lected Papers, pp. 164–178, Springer, 2014.

[81] S. Ferilli, D. Redavid, and F. Esposito, “Logic-Based Incremental Process
Mining,” in Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pp. 218–221, Springer, 2015.

[82] S. Ferilli, “The WoMan Formalism for Expressing Process Models,” in Ad-
vances in Data Mining. Applications and Theoretical Aspects: 16th In-
dustrial Conference, ICDM 2016, New York, NY, USA, July 13-17, 2016.
Proceedings, pp. 363–378, Springer, 2016.

[83] F. M. Maggi, T. Slaats, and H. A. Reijers, “The automated discovery of
hybrid processes,” in International Conference on Business Process Man-
agement, pp. 392–399, Springer, 2014.

[84] D. Redlich, T. Molka, W. Gilani, G. S. Blair, and A. Rashid, “Scalable
Dynamic Business Process Discovery with the Constructs Competition
Miner,” in Proceedings of the 4th International Symposium on Data-driven
Process Discovery and Analysis (SIMPDA 2014), pp. 91–107, 2014.

[85] D. Redlich, T. Molka, W. Gilani, G. Blair, and A. Rashid, “Constructs com-
petition miner: Process control-flow discovery of bp-domain constructs,” in
International Conference on Business Process Management, pp. 134–150,
Springer, 2014.

[86] D. Redlich, W. Gilani, T. Molka, M. Drobek, A. Rashid, and G. Blair,
“Introducing a framework for scalable dynamic process discovery,” in En-

180

terprise Engineering Working Conference, pp. 151–166, Springer, 2014.
[87] D. Redlich, T. Molka, W. Gilani, G. Blair, and A. Rashid, “Dynamic con-

structs competition miner-occurrence-vs. time-based ageing,” in Interna-
tional Symposium on Data-Driven Process Discovery and Analysis (SIM-
PDA 2014), pp. 79–106, Springer, 2014.

[88] O. Vasilecas, T. Savickas, and E. Lebedys, “Directed acyclic graph extrac-
tion from event logs,” in International Conference on Information and Soft-
ware Technologies, pp. 172–181, Springer, 2014.

[89] J. De Smedt, J. De Weerdt, and J. Vanthienen, “Fusion miner: process
discovery for mixed-paradigm models,” Decision Support Systems, vol. 77,
pp. 123–136, 2015.

[90] G. Greco, A. Guzzo, F. Lupia, and L. Pontieri, “Process discovery under
precedence constraints,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 9, no. 4, p. 32, 2015.

[91] G. Greco, A. Guzzo, and L. Pontieri, “Process discovery via precedence
constraints,” in Proceedings of the 20th European Conference on Artificial
Intelligence, pp. 366–371, IOS Press, 2012.

[92] V. Liesaputra, S. Yongchareon, and S. Chaisiri, “Efficient process model
discovery using maximal pattern mining,” in International Conference on
Business Process Management, pp. 441–456, Springer, 2015.

[93] T. Molka, D. Redlich, M. Drobek, X.-J. Zeng, and W. Gilani, “Diversity
guided evolutionary mining of hierarchical process models,” in Proceed-
ings of the 2015 Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 1247–1254, ACM, 2015.

[94] B. Vázquez-Barreiros, M. Mucientes, and M. Lama, “Prodigen: Mining
complete, precise and minimal structure process models with a genetic al-
gorithm,” Information Sciences, vol. 294, pp. 315–333, 2015.

[95] B. Vázquez-Barreiros, M. Mucientes, and M. Lama, “A genetic algorithm
for process discovery guided by completeness, precision and simplicity,” in
International Conference on Business Process Management, pp. 118–133,
Springer, 2014.

[96] M. L. Bernardi, M. Cimitile, C. Di Francescomarino, and F. M. Maggi,
“Do activity lifecycles affect the validity of a business rule in a business
process?,” Information Systems, 2016.

[97] M. L. Bernardi, M. Cimitile, C. D. Francescomarino, and F. M. Maggi,
“Using discriminative rule mining to discover declarative process models
with non-atomic activities,” in Rules on the Web. From Theory to Appli-
cations - 8th International Symposium, RuleML 2014, Co-located with the
21st European Conference on Artificial Intelligence, ECAI 2014, Prague,
Czech Republic, August 18-20, 2014. Proceedings, pp. 281–295, 2014.

181

[98] D. Breuker, M. Matzner, P. Delfmann, and J. Becker, “Comprehensible
predictive models for business processes,” MIS Quarterly, vol. 40, no. 4,
pp. 1009–1034, 2016.

[99] D. Breuker, P. Delfmann, M. Matzner, and J. Becker, “Designing and eval-
uating an interpretable predictive modeling technique for business pro-
cesses,” in Business Process Management Workshops: BPM 2014 Inter-
national Workshops, Eindhoven, The Netherlands, September 7-8, 2014,
Revised Papers, pp. 541–553, Springer, 2014.

[100] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “Bpmn
miner: Automated discovery of bpmn process models with hierarchical
structure,” Information Systems, vol. 56, pp. 284–303, 2016.

[101] R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “Beyond
tasks and gateways: Discovering bpmn models with subprocesses, bound-
ary events and activity markers,” in International Conference on Business
Process Management, pp. 101–117, Springer, 2014.

[102] M. L. van Eck, N. Sidorova, and W. M. van der Aalst, “Discovering
and exploring state-based models for multi-perspective processes,” in In-
ternational Conference on Business Process Management, pp. 142–157,
Springer, 2016.

[103] M. L. van Eck, N. Sidorova, and W. M. P. van der Aalst, “Guided Interac-
tion Exploration in Artifact-centric Process Models,” in 19th IEEE Confer-
ence on Business Informatics, CBI 2017, Thessaloniki, Greece, July 24-27,
2017, Volume 1: Conference Papers, pp. 109–118, 2017.

[104] C. Li, J. Ge, L. Huang, H. Hu, B. Wu, H. Yang, H. Hu, and B. Luo, “Process
mining with token carried data,” Information Sciences, vol. 328, pp. 558–
576, 2016.

[105] A. Mokhov, J. Carmona, and J. Beaumont, “Mining Conditional Partial
Order Graphs from Event Logs,” in Transactions on Petri Nets and Other
Models of Concurrency XI, pp. 114–136, Springer, 2016.

[106] S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, and J. Mendling,
“Efficient and customisable declarative process mining with sql,” in In-
ternational Conference on Advanced Information Systems Engineering,
pp. 290–305, Springer, 2016.

[107] S. Schönig, C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovery of
multi-perspective declarative process models,” in International Conference
on Service-Oriented Computing, pp. 87–103, Springer, 2016.

[108] W. Song, H.-A. Jacobsen, C. Ye, and X. Ma, “Process discovery from
dependence-complete event logs,” IEEE Transactions on Services Com-
puting, vol. 9, no. 5, pp. 714–727, 2016.

[109] T. Tapia-Flores, E. Rodríguez-Pérez, and E. López-Mellado, “Discovering
Process Models from Incomplete Event Logs using Conjoint Occurrence

182

Classes,” in ATAED@ Petri Nets/ACSD, pp. 31–46, 2016.
[110] B. N. Yahya, M. Song, H. Bae, S.-o. Sul, and J.-Z. Wu, “Domain-driven

actionable process model discovery,” Computers & Industrial Engineering,
2016.

[111] B. N. Yahya, H. Bae, S.-o. Sul, and J.-Z. Wu, “Process discovery by syn-
thesizing activity proximity and user’s domain knowledge,” in Asia-Pacific
Conference on Business Process Management, pp. 92–105, Springer, 2013.

[112] J. De Weerdt, S. K. vanden Broucke, and F. Caron, “Bidimensional Process
Discovery for Mining BPMN Models,” in Business Process Management
Workshops: BPM 2014 International Workshops, Eindhoven, The Nether-
lands, September 7-8, 2014, Revised Papers, pp. 529–540, Springer, 2014.

[113] H. Nguyen, M. Dumas, A. H. ter Hofstede, M. La Rosa, and F. M.
Maggi, “Mining business process stages from event logs,” in International
Conference on Advanced Information Systems Engineering, pp. 577–594,
Springer, 2017.

[114] H. Verbeek, W. van der Aalst, and J. Munoz-Gama, “Divide and Conquer:
A Tool Framework for Supporting Decomposed Discovery in Process Min-
ing,” The Computer Journal, pp. 1–26, 2017.

[115] H. Verbeek and W. van der Aalst, “An experimental evaluation of passage-
based process discovery,” in Business Process Management Workshops,
International Workshop on Business Process Intelligence (BPI 2012),
vol. 132, pp. 205–210, 2012.

[116] W. M. Van der Aalst, “Decomposing Petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.

[117] B. Hompes, H. Verbeek, and W. M. van der Aalst, “Finding suitable activity
clusters for decomposed process discovery,” in International Symposium on
Data-Driven Process Discovery and Analysis, pp. 32–57, Springer, 2014.

[118] H. Verbeek and W. M. van der Aalst, “Decomposed Process Mining: The
ILP Case,” in Business Process Management Workshops: BPM 2014 Inter-
national Workshops, Eindhoven, The Netherlands, September 7-8, 2014,
Revised Papers, pp. 264–276, Springer, 2014.

[119] W. M. van der Aalst and H. Verbeek, “Process discovery and conformance
checking using passages,” Fundamenta Informaticae, vol. 131, no. 1,
pp. 103–138, 2014.

[120] S. J. van Zelst, B. F. van Dongen, and W. M. van der Aalst, “Avoiding
over-fitting in ILP-based process discovery,” in International Conference
on Business Process Management, pp. 163–171, Springer, 2015.

[121] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst, “ILP-Based
Process Discovery Using Hybrid Regions,” in International Workshop on
Algorithms & Theories for the Analysis of Event Data, ATAED 2015,

183

vol. 1371 of CEUR Workshop Proceedings, pp. 47–61, CEUR-WS.org,
2015.

[122] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[123] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE: full
support for loosely-structured processes,” in 11th IEEE International En-
terprise Distributed Object Computing Conference (EDOC 2007), 15-19
October 2007, Annapolis, Maryland, USA, pp. 287–300, 2007.

[124] M. Westergaard and F. M. Maggi, “Declare: A tool suite for declarative
workflow modeling and enactment,” in Proceedings of the Demo Track of
the Nineth Conference on Business Process Management 2011, Clermont-
Ferrand, France, August 31st, 2011, 2011.

[125] T. Slaats, D. M. M. Schunselaar, F. M. Maggi, and H. A. Reijers, The Se-
mantics of Hybrid Process Models, pp. 531–551. 2016.

[126] M. Westergaard and T. Slaats, “Mixing paradigms for more comprehensible
models,” in BPM, pp. 283–290, 2013.

[127] C. Favre, D. Fahland, and H. Völzer, “The relationship between workflow
graphs and free-choice workflow nets,” Inf. Syst., vol. 47, pp. 197–219,
2015.

[128] A. Adriansyah, B. van Dongen, and W. van der Aalst, “Conformance
checking using cost-based fitness analysis,” in EDOC, IEEE, 2011.

[129] A. Adriansyah, J. Muñoz-Gama, J. Carmona, B. van Dongen, and W. van
der Aalst, “Alignment based precision checking,” in BPM Workshops,
LNBIP 132, Springer, 2012.

[130] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estima-
tion and model selection,” in IJCAI, pp. 1137–1145, Morgan Kaufmann,
1995.

[131] A. Rozinat, A. Alves de Medeiros, C. G’́unther, A. Weijters, and W. van der
Aalst, “Towards an evaluation framework for process mining algorithms,”
bpm center report bpm-07-06, 2007.

[132] A. Bolt, M. de Leoni, and W. M. P. van der Aalst, “Scientific workflows for
process mining: building blocks, scenarios, and implementation,” Software
Tools and Technology Transfer, vol. 18, no. 6, pp. 607–628, 2016.

[133] B. F. van Dongen, J. Carmona, T. Chatain, and F. Taymouri, “Align-
ing modeled and observed behavior: A compromise between computation
complexity and quality,” in Advanced Information Systems Engineering -
29th International Conference, CAiSE 2017, pp. 94–109, Springer, 2017.

[134] J. Mendling, H. Reijers, and W. van der Aalst, “Seven process modeling
guidelines (7PMG),” Information and Software Technology, vol. 52, no. 2,
pp. 127–136, 2010.

184

[135] J. S. Cardoso, “Business process control-flow complexity: Metric, evalu-
ation, and validation,” Int. J. Web Service Res., vol. 5, no. 2, pp. 49–76,
2008.

[136] W. M. P. van der Aalst, Verification of workflow nets, pp. 407–426. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997.

[137] R. Conforti, M. L. Rosa, and A. ter Hofstede, “Filtering out infrequent
behavior from business process event logs,” IEEE TKDE, vol. 29, no. 2,
2017.

[138] van der Aalst, W. M. P., van Dongen, B. F., J. Herbst, L. Maruster,
G. Schimm, and Weijters, A. J. M. M., “Workflow mining: a survey of
issues and approaches,” Data Knowl. Eng., vol. 47, no. 2, pp. 237–267,
2003.

[139] J. Claes and G. Poels, “Process Mining and the ProM Framework: An Ex-
ploratory Survey,” in Business Process Management Workshops, pp. 187–
198, Springer, 2012.

[140] S. K. L. M. vanden Broucke, J. D. Weerdt, J. Vanthienen, and B. Baesens,
“A comprehensive benchmarking framework (CoBeFra) for conformance
analysis between procedural process models and event logs in ProM,” in
IEEE Symposium on Computational Intelligence and Data Mining, CIDM,
pp. 254–261, IEEE, 2013.

[141] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Dis-
covering process models from event logs,” IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 9, 2004.

[142] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 12 1959.

[143] A. Polyvyanyy, J. Vanhatalo, and H. Völzer, “Simplified computation and
generalization of the refined process structure tree,” in WS-FM, pp. 25–41,
2010.

[144] H. Völzer, “A new semantics for the inclusive converging gateway in safe
processes,” in International Conference on Business Process Management,
pp. 294–309, Springer, 2010.

[145] G. Janssenswillen, N. Donders, T. Jouck, and B. Depaire, “A comparative
study of existing quality measures for process discovery,” Information Sys-
tems, vol. 71, pp. 1–15, 2017.

[146] A. Polyvyanyy, A. Solti, M. Weidlich, C. D. Ciccio, and J. Mendling,
“Monotone precision and recall measures for comparing executions and
specifications of dynamic systems,” CoRR, vol. abs/1812.07334, 2018.

[147] W. M. P. van der Aalst, “Relating process models and event logs - 21 con-
formance propositions,” in International Workshop on Algorithms & Theo-
ries for the Analysis of Event Data, pp. 56–74, Springer, 2018.

185

[148] A. Rozinat and W. M. Van der Aalst, “Conformance testing: Measur-
ing the fit and appropriateness of event logs and process models,” in In-
ternational Conference on Business Process Management, pp. 163–176,
Springer, 2005.

[149] A. K. A. de Medeiros, Genetic Process Mining. PhD thesis, Eindhoven
University of Technology, 2006.

[150] S. K. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens, and
J. Vanthienen, “Event-based real-time decomposed conformance analysis,”
in OTM Confederated International Conferences "On the Move to Mean-
ingful Internet Systems", pp. 345–363, Springer, 2014.

[151] A. Adriansyah, B. F. van Dongen, and W. M. van der Aalst, “Conformance
checking using cost-based fitness analysis,” in IEEE International on En-
terprise Distributed Object Computing Conference (EDOC), pp. 55–64,
IEEE, 2011.

[152] S. Leemans, D. Fahland, and W. van der Aalst, “Scalable process discovery
and conformance checking,” Software & Systems Modeling, 2016.

[153] T. Ceccherini-Silberstein, A. Machi, and F. Scarabotti, “On the entropy of
regular languages,” Theoretical computer science, vol. 307, no. 1, pp. 93–
102, 2003.

[154] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, “Discovering expressive
process models by clustering log traces,” IEEE TKDE, vol. 18, no. 8, 2006.

[155] A. Rozinat and W. van der Aalst, “Conformance checking of processes
based on monitoring real behavior,” ISJ, vol. 33, no. 1, 2008.

[156] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A robust f-
measure for evaluating discovered process models,” in IEEE Symposium on
CIDM, IEEE, 2011.

[157] J. Munoz-Gama and J. Carmona, “A fresh look at precision in process con-
formance,” in BPM, Springer, 2010.

[158] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, and W. van
der Aalst, “Measuring precision of modeled behavior,” ISeB, vol. 13, no. 1,
2015.

[159] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs - a constructive approach,” in
Petri Nets, Springer, 2013.

[160] S. M. Ross, Introduction to probability models. Academic press, 2014.
[161] H. Kuhn, “The hungarian method for the assignment problem,” NRL, vol. 2,

no. 1-2, 1955.
[162] H. W. Kuhn, “Variants of the hungarian method for assignment problems,”

Naval Research Logistics Quarterly, vol. 3, no. 4, pp. 253–258, 1956.

186

[163] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the society for industrial and applied mathematics, vol. 5, no. 1,
pp. 32–38, 1957.

[164] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” in Soviet physics doklady, vol. 10, pp. 707–710, 1966.

[165] A. Backurs and P. Indyk, “Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false),” in 47th Annual ACM Symposium
on Theory of Computing (STOC), pp. 51–58, ACM, 2015.

[166] A. Polyvyanyy and A. Kalenkova, “Monotone conformance checking for
partially matching designed and observed processes,” in International Con-
ference on Process Mining, pp. 81–88, 06 2019.

[167] B. F. van Dongen, “Efficiently computing alignments - using the extended
marking equation,” in International Conference on Business Process Man-
agement (BPM), pp. 197–214, Springer, 2018.

[168] J. Buijs, B. van Dongen, and W. van der Aalst, “On the role of fitness,
precision, generalization and simplicity in process discovery,” in CoopIS,
Springer, 2012.

[169] W. Song, S. Liu, and Q. Liu, “Business process mining based on simulated
annealing,” in ICYCS, IEEE, 2008.

[170] D. Gao and Q. Liu, “An improved simulated annealing algorithm for pro-
cess mining,” in CSCWD, IEEE, 2009.

[171] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization meta-
heuristics,” Information Sciences, vol. 237, 2013.

[172] T. Stützle, Local search algorithms for combinatorial problems. PhD the-
sis, Darmstadt University of Technology, 1998.

[173] F. Glover, “Future paths for integer programming and links to artificial in-
telligence,” Computers & operations research, vol. 13, no. 5, 1986.

[174] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, 1983.

[175] J. H. Holland, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence.
MIT press, 1992.

[176] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for
parameter optimization,” Evolutionary computation, vol. 1, no. 1, pp. 1–23,
1993.

[177] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine
learning, pp. 760–766, Springer, 2011.

[178] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialistic competition,” in Evolu-
tionary computation, 2007. CEC 2007. IEEE Congress on, pp. 4661–4667,
IEEE, 2007.

187

[179] S. Alizadeh and A. Norani, “Icma: a new efficient algorithm for process
model discovery,” Applied Intelligence, vol. 48, no. 11, 2018.

[180] V. R. Chifu, C. B. Pop, I. Salomie, I. Balla, and R. Paven, “Hybrid particle
swarm optimization method for process mining,” in ICCP, IEEE, 2012.

[181] A. Adriansyah, B. van Dongen, and W. van der Aalst, “Conformance
checking using cost-based fitness analysis,” in EDOC, IEEE, 2011.

[182] A. Bosco, A. Augusto, M. Dumas, M. La Rosa, and G. Fortino, “Discover-
ing automatable routines from user interaction logs,” in International Con-
ference on Business Process Management, pp. 144–162, Springer, 2019.

188

ACKNOWLEDGEMENT

The outcomes of our endeavours are direct consequences of all the actions and
decisions we have taken along the way, whether little or big. For this reason, I am
grateful to all the people I met, talked, and worked with; among them especially to
Marcello and Marlon, my mentors; to Mia, my partner; to Maria Concetta and An-
tonino, my parents. Also, I am grateful to all the places, cities, and countries that
welcomed, hosted, and inspired me; among them especially Estonia and Australia,
the former because allowed me to appreciate the beauty of a small community, the
latter because allowed me to find a new home.

189

SUMMARY

Täpne ja tõhus protsessimudelite automaatne koostamine
sündmuslogidest

Firmad üle kogu maailma tarnivad iga päev tooteid ja teenuseid keerukate äriprot-
sesside mudelite täitmise abil. Vastavate äriprotsesside kvaliteet ja tõhusus mõ-
jutavad otseselt kasutajakogemust. Seetõttu on firmadele väga oluline hoolikalt
hallata oma äriprotsesse.

Äriprotsesside haldamiseks on vajalikud nende protsesside üksikasjalikud mu-
delid. Traditsiooniliselt kavandatakse äriprotsesside mudelid käsitsi. Protsessimu-
delite käsitsi kavandamine võtab aga palju aega. See nõuab, et analüütikud koguk-
sid protsessi täitmise kohta üksikasjalikku teavet. Peale selle on käsitsi kavandatud
protsessimudelid sageli mittetäielikud, sest käsitsi andmekogumise abil on raske
koostada protsessi kõikvõimalikke täitmisteid.

Äriprotsesside mudelite automaatse koostamise meetodid lubavad analüütiku-
tel kasutada andmeid äriprotsesside täitmise kohta (mis on salvestatud nn sünd-
muslogidesse) protsessimudelite automaatseks genereerimiseks. Käesolevas väi-
tekirjas teeme süstemaatilise kirjanduse ülevaate ja viime läbi kõige uuemate prot-
sessimudelite automaatsete koostamise meetodite võrdleva analüüsi. See analüüs
näitab, et praegustel antud valdkonna meetoditel on kolm ühist piirangut: (i) pii-
ratud täpsus; (ii) arvutuslik ebatõhusus tegelikus elus kasutamiseks; (iii) süntakti-
liselt vigaste protsessimudelite genereerimine.

Nimetatud piirangutest ülesaamiseks paneme ette uue meetodi protsessimude-
lite automaatseks koostamiseks, mille nimetuseks on Split Miner. Näitame empii-
riliselt, et uus meetod ületab kõik muud kaasaegseimad meetodid nii täpsuse kui
ka tõhususe poolest. Samuti näitame, et on võimalik isegi veelgi enam tõsta nii
meetodi Split Miner kui ka teiste meetodite abil genereeritud protsessimudelite
täpsust, kasutades selleks optimeerimisalgoritme. Siiski tuleb niisugune täpsuse
paranemine palju aeglasema täitmisaja arvelt.

Üks põhjusi, miks olemasolevate protsessimudelite automaatse koostamise mee-
todite täpsuse optimeerimine ei ole tõhus seisneb selles, et praegused automaatselt
koostatud protsessimudelite täpsuse hindamise mõõdikud on arvutuslikult liiga
aeganõudvad. Sellele lisaks annavad olemasolevad täpsusmõõdikud sageli intuit-
sioonile mittevastavaid tulemusi. Kirjeldatud probleemi lahendamiseks paneme
ette uue kogumi täpsusmõõdikuid, mis põhinevad Markovi mudelitel. Näitame,
et neid täpsusmõõdikud saab tõhusalt välja arvutada ja need on olemasolevatest
täpsusmõõdikutest intuitiivsemad ja neil on hulk soovitud omadusi.

Nimetatud täpsusmõõdikute alusel paneme ette optimeerimisraamistiku, mis
põhineb optimeerimise metaheuristikal nagu näiteks “mäkkeronimise” või simu-
leeritud lõõmutamismeetodi algoritmid. Näitame, et see optimeerimisraamistik
võimaldab oluliselt parandada olemasolevate automatiseeritud protsessimudeli-
te automaatse koostamise meetodite täpsust ja selle arvutuslik tõhusus on piisav

190

IINIESTONIAN

tegeliku elu stsenaariumites kasutamiseks.

Väitekiri koosneb kaheksast peatükist. Kahes esimeses peatükis antakse üle-
vaade probleemist, mida väitekirjas käsitletakse. Kolmandas peatükis antakse süs-
temaatiline ülevaade olemasolevaid protsessimudelite automaatse koostamise mee-
todeid käsitlevast kirjandusest. Neljandas peatükis esitatakse nende tehnikate kat-
sepõhine hindamine. Kolmes järgnevad peatükis tutvustatakse Split Miner algo-
ritmi, täpsusmõõdikuid ja optimeerimisalgoritme. Viimases peatükis tehakse kok-
kuvõte väitekirjas antud panustest ja kirjeldatakse üldjoontes tulevase töö suundi.

191

CURRICULUM VITAE

Personal data

Name: Adriano Augusto
Citizenship: Italian

Education

2016–2020 joint doctor of philosophy programme in computer science
– University of Tartu and University of Melbourne

2013–2016 master’s degree in computer engineering – Politecnico di
Torino

2009–2013 bachelor’s degree in computer engineering – Politecnico di
Torino

Employment

2019– associate lecturer – University of Melbourne
2015–2016 research assistant – Queensland University of Technology

Scientific work

Main fields of interest:
- process mining
- automated process discovery
- robotic process automation

192

ELULOOKIRJELDUS

Isikuandmed

Nimi: Adriano Augusto
Kodakondsus: Itaalia

Haridus

2016–2020 Tartu Ülikooli ja Melbourne’i Ülikooli ühine doktoriõpe
informaatika erialal

2013–2016 Torino Polütehnikum, arvutitehnika magistriõpe
2009–2013 Torino Polütehnikum, arvutitehnika bakalaureuseõpe

Teenistuskäik

2019– Melbourne’i Ülikooli, abilektor
2015–2016 Queenslandi Tehnikaülikool, nooremteadur

Teadustegevus

Peamised uurimisvaldkonnad:
- protsessikaeve
- protsessimudelite automaatne koostamine
- robotprotsesside automatiseerimine

193

LIST OF ORIGINAL PUBLICATIONS

This thesis is the final outcome of several research studies completed over the past
three years. This section lists the peer-reviewed journal articles and conference
papers published during my PhD, as well as technical reports yet to be published.
The following research studies are integrated as chapters into this thesis, and ac-
knowledged as footnotes at the beginning of the corresponding chapters.

Publications

- Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F. M., Marrella,
A., Mecella, M., & Soo, A. (2018). Automated discovery of process models
from event logs: Review and benchmark. IEEE Transactions on Knowledge
and Data Engineering, 31(4), 686-705.

- Augusto, A., Conforti, R., Dumas, M., & La Rosa, M. (2017, November).
Split miner: Discovering accurate and simple business process models from
event logs. In IEEE International Conference on Data Mining (ICDM)
2017, (pp. 1-10). IEEE.

- Augusto, A., Conforti, R., Dumas, M., La Rosa, M., & Polyvyanyy, A.
(2019). Split miner: automated discovery of accurate and simple busi-
ness process models from event logs. Knowledge and Information Systems,
59(2), 251-284.

- Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M.,
& Reissner, D. (2018, September). Abstract-and-Compare: A Family of
Scalable Precision Measures for Automated Process Discovery. In Inter-
national Conference on Business Process Management (BPM) 2018 (pp.
158-175). Springer.

- Augusto, A., Dumas, M., & La Rosa, M. (2019, September). Metaheuristic
Optimization for Automated Business Process Discovery. In International
Conference on Business Process Management (BPM) 2019. Springer.

Technical Reports

- Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., & La Rosa,
M. (2018). Measuring Fitness and Precision of Automatically Discovered
Process Models: a Principled and Scalable Approach. Submitted to IEEE
Transactions on Knowledge and Data Engineering.

- Augusto, A., Dumas, M., La Rosa, M., Leemans, S. J. J., & vanden Broucke,
S. K. L. M. (2019). Optimized Discovery of Process Models From Event
Logs: Framework and Evaluation. Submitted to Data & Knowledge Engi-
neering.

194

195

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 lk.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
45. Kristo Heero. Path planning and learning strategies for mobile robots in

dynamic partially unknown environments. Tartu 2006, 123 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

59. Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving Ill-Posed Problems. Tartu 2010, 105 p.

61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.
73. Dmitri Lepp. Solving simplification problems in the domain of exponents,

monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

196

74. Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

77. Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

78. Reina Uba. Merging business process models. Tartu 2011, 166 p.
79. Uuno Puus. Structural performance as a success factor in software deve-

lopment projects – Estonian experience. Tartu 2012, 106 p.
81. Georg Singer. Web search engines and complex information needs. Tartu

2012, 218 p.
83. Dan Bogdanov. Sharemind: programmable secure computations with

practical applications. Tartu 2013, 191 p.
84. Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu

2013, 151 p.
87. Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language

development in enterprise information systems. Tartu, 2013, 151 p.
90. Raivo Kolde. Methods for re-using public gene expression data. Tartu,

2014, 121 p.
91. Vladimir Šor. Statistical Approach for Memory Leak Detection in Java

Applications. Tartu, 2014, 155 p.
92. Naved Ahmed. Deriving Security Requirements from Business Process

Models. Tartu, 2014, 171 p.
94. Liina Kamm. Privacy-preserving statistical analysis using secure multi-

party computation. Tartu, 2015, 201 p.
100. Abel Armas Cervantes. Diagnosing Behavioral Differences between

Business Process Models. Tartu, 2015, 193 p.
101. Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:

An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

102. Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

103. Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

104. Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

108. Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

109. Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

110. Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

111. Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

112. Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

19

113. Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

114. Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

116. Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

121. Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

122. Eno Tõnisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

7

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

1. Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

2. Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

3. Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

4. Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

5. Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

6. Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

7. Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

8. Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

9. Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

10. Elena Sügis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

11. Tõnis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

12. Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

13. Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

14. Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

	Introduction
	Research Area
	Research Problem
	Research Method
	Contributions to the Research Area
	Thesis Structure

	Background
	Business Processes
	Business Process Modelling Languages
	Business Process Model and Notation (BPMN)
	Petri Nets
	Other Process Modelling Languages

	Process Discovery

	State of the Art
	Automated Process Discovery
	Methodology
	SLR Research Questions
	Search String Design
	Study Selection

	Classification of the Studies
	Model Type and Language (RQ1.2)
	Procedural Language Constructs (RQ1.3)
	Implementation (RQ1.4)
	Evaluation Data and Domains (RQ1.5)

	Threats to Validity
	Summary

	Benchmark
	APDAs Selection
	Evaluation Measures
	Setup and Datasets
	Benchmark Results
	Threats to Validity
	Related Work
	Summary

	Split Miner
	Approach
	Directly-Follows Graph and Short-Loops Discovery
	Concurrency Discovery
	Filtering
	Filtered PDFG to BPMN Process Model
	Splits Discovery
	Joins Discovery
	OR-joins Minimization
	Time Complexity

	Semantic Properties of the Discovered Model
	Preliminaries
	Proofs

	Evaluation
	Evaluation Results

	Summary

	Markovian Accuracy
	Fitness and Precision in Automated Process Discovery
	Fitness Measures
	Precision Measures
	Fitness Propositions
	Precision Propositions

	Kth-order Markovian Abstraction
	Generating the Mk-abstraction of an Event Log
	Generating the Mk-abstraction of a Process

	Comparing Markovian Abstractions
	Markovian Abstraction-based Fitness
	Proofs of the 7-Propositions of Fitness
	Markovian Abstraction-based Precision
	Proofs of the 8-Propositions of Precision

	Evaluation
	Qualitative Evaluation Dataset
	Qualitative Evaluation of MAFk
	Qualitative Evaluation of MAPk
	Quantitative Evaluation Setup
	Quantitative Evaluation of MAFk
	Quantitative Evaluation of MAPk
	The Role of k

	Summary

	Optimized Automated Process Discovery
	Optimization Metaheuristics
	Metaheuristic Optimization Framework
	Preliminaries
	Approach Overview
	Adaptation of the Optimization Metaheuristics
	Framework Instantiation

	Evaluation
	Dataset and Experimental Setup
	Results
	Statistical Analysis
	Discussion

	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications
	aive uus.pdf
	Introduction
	Research Area
	Research Problem
	Research Method
	Contributions to the Research Area
	Thesis Structure

	Background
	Business Processes
	Business Process Modelling Languages
	Business Process Model and Notation (BPMN)
	Petri Nets
	Other Process Modelling Languages

	Process Discovery

	State of the Art
	Automated Process Discovery
	Methodology
	SLR Research Questions
	Search String Design
	Study Selection

	Classification of the Studies
	Model Type and Language (RQ1.2)
	Procedural Language Constructs (RQ1.3)
	Implementation (RQ1.4)
	Evaluation Data and Domains (RQ1.5)

	Threats to Validity
	Summary

	Benchmark
	APDAs Selection
	Evaluation Measures
	Setup and Datasets
	Benchmark Results
	Threats to Validity
	Related Work
	Summary

	Split Miner
	Approach
	Directly-Follows Graph and Short-Loops Discovery
	Concurrency Discovery
	Filtering
	Filtered PDFG to BPMN Process Model
	Splits Discovery
	Joins Discovery
	OR-joins Minimization
	Time Complexity

	Semantic Properties of the Discovered Model
	Preliminaries
	Proofs

	Evaluation
	Evaluation Results

	Summary

	Markovian Accuracy
	Fitness and Precision in Automated Process Discovery
	Fitness Measures
	Precision Measures
	Fitness Propositions
	Precision Propositions

	Kth-order Markovian Abstraction
	Generating the Mk-abstraction of an Event Log
	Generating the Mk-abstraction of a Process

	Comparing Markovian Abstractions
	Markovian Abstraction-based Fitness
	Proofs of the 7-Propositions of Fitness
	Markovian Abstraction-based Precision
	Proofs of the 8-Propositions of Precision

	Evaluation
	Qualitative Evaluation Dataset
	Qualitative Evaluation of MAFk
	Qualitative Evaluation of MAPk
	Quantitative Evaluation Setup
	Quantitative Evaluation of MAFk
	Quantitative Evaluation of MAPk
	The Role of k

	Summary

	Optimized Automated Process Discovery
	Optimization Metaheuristics
	Metaheuristic Optimization Framework
	Preliminaries
	Approach Overview
	Adaptation of the Optimization Metaheuristics
	Framework Instantiation

	Evaluation
	Dataset and Experimental Setup
	Results
	Statistical Analysis
	Discussion

	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications

