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Lühikokkuvõte
Selles bakalaureusetöös vaadeldakse väljakutsuvat lahtist küsimust Banachi
ruumi ühikkera plastilisusest. Töös antakse ülevaade probleemist ja laienda-
takse osaliste positiivsete tulemuste nimekirja, tõestades ühikkera plastilisuse
ruumis c. Samuti saadakse üks nõrgem omadus ruumi c0 ühikkera jaoks –
tõestatakse, et mittelaiendav bijektsioon on isomeetria, kui selle pöördkujutus
on pidev.

CERCS teaduseriala: P140 Jadad, Fourier analüüs, funktsionaalanalüüs.
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PLASTICITY OF THE UNIT BALL OF A BANACH SPACE
Bachelor’s thesis

Nikita Leo

Abstract
In this bachelor’s thesis, we consider a challenging open problem of whether
the unit ball of every Banach space is a plastic metric space. We give an
overview of the problem and extend the list of partial positive results by
proving the plasticity of the unit ball of c. We also obtain a slightly weaker
property for the unit ball of c0 – we prove that a non-expansive bijection is
an isometry, provided that it has a continuous inverse.

CERCS research specialisation: P140 Series, Fourier analysis, functional
analysis.
Keywords: Functional analysis, Banach spaces, metric spaces, non-linear
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Introduction

A function f : X → Y between two metric spaces is called non-expansive,
if d
(
f(a), f(b)

)
≤ d(a, b) for every a and b in X. If d

(
f(a), f(b)

)
= d(a, b)

for every a and b in X, then a function f is called an isometry. We call a
metric space plastic if every non-expansive bijection from the space onto
itself is an isometry. The notion was introduced in 2006 by S. A. Naimpally,
Z. Piotrowski and E. J. Wingler [1]. The only general result about the class of
plastic metric spaces is that every totally bounded (and hence every compact)
space is plastic. Conversely, it is known that a plastic metric space need not
be totally bounded nor bounded. It can also be shown that a bounded space
need not be plastic.

It is an open question whether the unit ball of every Banach space is a plastic
metric space. The unit ball of a finite-dimensional space is compact and
therefore is plastic, since compactness implies plasticity. So the question is
really just about the infinite-dimensional spaces. So far, the plasticity of the
unit ball has been proved for the following classes of Banach spaces:

• strictly convex spaces
(B. Cascales, V. Kadets, J. Orihuela and E. J. Wingler; 2016 [2]);

• `1-sums of strictly convex spaces
(V. Kadets and O. Zavarzina; 2018 [3]);

• spaces whose unit sphere is the union of all its finite-dimensional poly-
hedral extreme subsets
(C. Angosto, V. Kadets and O. Zavarzina; 2018 [4]).

In this thesis, we are going to extend this list by proving the plasticity of the
unit ball of c. We are also going to establish a slightly weaker property for the
unit ball of c0 – we prove that a non-expansive bijection with a continuous
inverse is an isometry.

The aim of the first section is to provide some intuition for the notion of
plasticity. The second section is devoted to giving an overview of the problem
and introducing the main tools used in its study. The last two sections are
meant for presenting the two original results of this thesis.
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1 Plastic metric spaces

In this section we are going to define a plastic metric space and provide some
examples of plastic and non-plastic metric spaces.

Definition 1.1. Let X and Y be metric spaces. A function f : X → Y is
called

• non-expansive, if for each a and b in X we have
d
(
f(a), f(b)

)
≤ d(a, b);

• non-contractive, if for each a and b in X we have
d
(
f(a), f(b)

)
≥ d(a, b);

• an isometry, if for each a and b in X we have
d
(
f(a), f(b)

)
= d(a, b).

Being non-expansive or non-contractive is a weaker condition than being an
isometry. The question is, under which conditions does non-expansiveness
or non-contractiveness imply being an isometry? We may try adding some
conditions to the left-hand side and one possible choice for this is to consider
injectivity, surjectivity and bijectivity. It gives rise to some properties of
metric spaces like the property that every non-expansive bijection from the
space onto itself is an isometry. There is a total of eight properties to consider.
These properties are listed in the following table, where nE and nC stand for
non-expansive and non-contractive:

1a) nE =⇒ isometry; 1b) nC =⇒ isometry;
2a) nE, injection =⇒ isometry; 2b) nC, injection =⇒ isometry;
3a) nE, surjection =⇒ isometry; 3b) nC, surjection =⇒ isometry;
4a) nE, bijection =⇒ isometry; 4b) nC, bijection =⇒ isometry.

The spaces with property 1a are exactly one-element spaces, so this property
is not of any interest. Some of these properties are equivalent. Note that
every non-contractive map is injective, so 1b is equivalent to 2b and 3b is
equivalent to 4b. Also note that the inverse of a non-expansive bijection is a
non-contractive bijection and vice versa. This makes 4a equivalent to 4b. If
we exclude 1a, we are left with four properties:

A – 2a, B – 3a, C – 1b/2b, D – 3b/4a/4b.

Obviously, properties A, B and C each imply property D. It is not hard to
find counterexamples for all the remaining conditionals, so the properties A,
B, C and D are all different. We will focus on property D.
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Definition 1.2. A metric space X is called plastic if every non-expansive
bijection from X onto itself is an isometry.

The notion was introduced by S. A. Naimpally, Z. Piotrowski and E. J. Wingler
in [1], where they study the properties of the class of plastic metric spaces.
In this paper, the term EC-plastic was used, but we prefer a shorter version
given above. One may also define plasticity using one of the two equivalent
conditions mentioned before. It is known that every totally bounded metric
space is plastic. Conversely, a plastic metric space need not be totally bounded
nor bounded. There are also examples of bounded spaces that are not plastic.
Overall, it seems that the class of plastic metric spaces does not have a good
simple characterization.

We are going to start with proving the theorem establishing the plasticity of
all totally bounded metric spaces. Recall that a metric space is called totally
bounded if its every sequence has a Cauchy subsequence. A related notion
is compactness. A metric space is called compact if its every sequence has
a convergent subsequence. Compact spaces constitute a subclass of totally
bounded spaces – a metric space is compact if and only if it is complete
and totally bounded. The next theorem implies the plasticity of all totally
bounded spaces. The theorem does not assume injectivity or surjectivity, so
it actually asserts more than just plasticity. The theorem and its proof are
extracted from [1].

Theorem 1.3 ([1], Theorem 1.1). Let X be a totally bounded metric space
and f : X → X be a non-contractive map. Then f is an isometry.

Proof. Let a and b be two arbitrary points of X. Our goal is to show that
d
(
f(a), f(b)

)
= d(a, b). Since f is non-contractive, we have d

(
f(a), f(b)

)
≥

d(a, b), so it suffices to show that d
(
f(a), f(b)

)
≤ d(a, b). Given a point x ∈ X

we can consider a sequence (xn) where x1 = x and xn+1 = f(xn). Let us
consider sequences (an) and (bn) defined as above. It is time to make use
of the condition that X is a totally bounded space. So it follows that both
our sequences have Cauchy subsequences. But this is not enough, because
we want these subsequences to have the same set of indices. This can be
accomplished as follows. First, extract a Cauchy subsequnce from (an), then
use the same indices to extract the corresponding subsequence of (bn). The
latter doesn’t have to be Cauchy, but we know that it contains a Cauchy
subsequence. Now, consider the corresponding subsequence of (an). This is a
subsequence of the initial Cauchy subsequence extracted from (an). Therefore,
the resulting subsequence of (an) is also Cauchy. It also has the same set of
indices as the previously obtained Cauchy subsequence of (bn).

5



So now we have an increasing sequence of indices (nk) such that (ank
) and (bnk

)
are both Cauchy sequences. Let ε > 0 be arbitrary. The definition of Cauchy
sequence implies that there exists an index K such that d(ani

, anj
) < ε for all

indices i ≥ K and j ≥ K and some another index K such that d(bni
, bnj

) < ε
for all indices i ≥ K and j ≥ K. Taking the maximum of these two, we
obtain an index K such that the both conditions hold simultaneously. Now
we see that there exists an index n and a positive integer p such that both
d(an, an+p) and d(bn, bn+p) are smaller than ε. One may choose n = ni and
n+ p = nj, where i and j are some indices with K ≤ i and i < j.

Figure 1: Illustration of the proof of Theorem 1.3

It is time to use the fact that f is non-contractive. First, we obtain the
inequalities d(a0, ap) ≤ d(an, an+p) and d(b0, bp) ≤ d(bn, bn+p). As d(an, an+p)
and d(bn, bn+p) are smaller than ε, it follows that d(a0, ap) and d(b0, bp) are
too (see Figure 1 above). We also obtain the inequality d(a1, b1) ≤ d(ap, bp).
Now we can give an upper estimate to d

(
f(a), f(b)

)
by using the triangle

inequality:

d
(
f(a), f(b)

)
= d(a1, b1) ≤ d(ap, bp) ≤ d(ap, a0) + d(a0, b0) + d(b0, bp)

< d(a0, b0) + 2ε = d(a, b) + 2ε.

Since ε was chosen arbitrarily, it follows that d
(
f(a), f(b)

)
≤ d(a, b), which

completes the proof.

We finish this section with a couple of examples. Plastic spaces tend to be
“small”, which seems to be supported by the last theorem, but there are
exceptions – we are going to see that a plastic metric space need not be totally
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bounded nor bounded. One may also wonder whether all “small” spaces are
plastic, but there are also exceptions to this – we will see an example of a
space that is bounded, but not plastic.

The first example is of a plastic space that is not bounded. This example is
taken from [1], but a slightly more intuitive proof is provided.

Example 1.4. The set of integers with the standard absolute value metric is a
plastic metric space, that is not bounded. Obviously, the space is not bounded.
Let us show that the space is plastic. Consider an arbitrary non-expansive
injection f : Z → Z. Let us show that f is an isometry. Denote f(0) by a.
Note that d(0, 1) = 1, so d

(
f(0), f(1)

)
≤ 1, as f is non-expansive. This means

that f(1) should be a− 1, a or a+ 1. However, the injectivity of f excludes
the case f(1) = a, so we should have either f(1) = a − 1 or f(1) = a + 1.
If f(1) = a + 1, then we can use induction to prove that f(x) = x + a for
each x ∈ Z. Similarly, if f(1) = a − 1, then we can use induction to show
that f(x) = −x + a for every x ∈ Z. In both cases, f turns out to be an
isometry. This proves that every non-expansive injection is an isometry, hence
Z is plastic.

Note that in the last proof, we do not assume the surjectivity of f , so here we
again have a property stronger than plasticity. The next example is of a space
that is bounded, but not plastic. We are going to omit the details, because
we only want to present the main idea. This example is a generalization of
[2], Example 2.7.

Example 1.5. Consider a Banach space H = `p(Z), where p ∈ (1,∞). Let
α : Z → R be a non-increasing sequence of positive numbers and suppose
that there exist positive numbers M and N such that M ≤ αk ≤ N for every
k ∈ Z. Let us also assume that there exists at least one index k ∈ Z with
αk+1 < αk. Consider a subset of H defined by

A =
{
x ∈ H :

∑
k∈Z

∣∣∣xk
αk

∣∣∣p ≤ 1
}
.

The set A is bounded, convex, closed and symmetric. Consider an operator
T : H → H defined by T (x)k = xk−1αk/αk−1. The restriction of T to A is a
non-expansive bijection from A onto itself, that is not an isometry. Therefore,
A is a bounded metric space that is not plastic.
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2 Plasticity of the unit ball

It is an open question whether the unit ball of every Banach space is a plastic
metric space. The unit ball of a finite-dimensional space is compact and
therefore is also plastic by the theorem proved in the previous section. So
the question is really just about the infinite-dimensional spaces. So far, the
plasticity of the unit ball has been proved for the following classes of Banach
spaces:

• strictly convex spaces;

• `1-sums of strictly convex spaces;

• spaces whose unit sphere is the union of all its finite-dimensional poly-
hedral extreme subsets.

The first positive result was for strictly convex spaces and it was presented
by B. Cascales, V. Kadets, J. Orihuela and E. J. Wingler in 2016 [2]. In the
same article, the question about plasticity of the unit ball was first posed.
The second positive result was initially for just `1 and it was presented by
V. Kadets and O. Zavarzina in the same year [5]. This result was generalized
to `1-sums of strictly convex spaces by V. Kadets and O. Zavarzina in 2018
[3]. Finally, the same year a positive result for the third class was obtained
by C. Angosto, V. Kadets and O. Zavarzina [4]. The class of strictly convex
spaces is a subclass of the other two classes, so the second and the third result
might be seen as generalizations of the first.

The unit ball seems to be a set that is likely to be plastic. However, a Banach
space can contain subsets that are not plastic, but yet very similar to the unit
ball. One example of such a subset is given in Example 1.5 of the previous
section. The subset considered in this example can be thought of as an infinite-
dimensional ellipsoid. This is indeed very similar to the unit ball. In particular,
both subsets are convex, closed, bounded and symmetric.

Extreme points play a significant role in the problem of plasticity of the unit
ball. Conversely, there is not much we can do without extreme points. As a
consequence, all the positive results obtained so far are for spaces that have
many extreme points. The first positive result was for strictly convex spaces
and these are spaces where all the points of the unit sphere are extreme. The
later extensions allow for some non-extreme points, but they still require the
space to have many extreme points. On the other hand, nothing is known
about spaces with little or no extreme points at all. It is natural to suppose
some of these spaces may actually not have a plastic unit ball. This motivates
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us to study plasticity of the unit ball in spaces with little or no extreme
points. A positive result for any such space would be also significant – it
would show that plasticity of the unit ball does not require the space to have
many extreme points. The space c0 is one such space, as it has no extreme
points. This is also one of the two spaces considered in this thesis.

The plasticity of the unit ball is known for all `p sequence spaces except `∞ –
there is a positive result for `1, while `p with p in (1,∞) is strictly convex
and there is a positive result for strictly convex spaces. The difficulty of `∞
seems to be lying in the fact that this space is too big. In particular, it is not
separable, while the spaces `p with p <∞ are. However, `∞ contains some
common separable spaces like c and c0. While the plasticity of the unit ball
of `∞ seems to be a hard problem to tackle, spaces c and c0 may be worth a
try. Spaces `∞ and c can be said to have many extreme points. In contrast,
the space c0 is special – it has no extreme points at all.

There is also a more general problem related to the problem at hand. Given
two Banach spaces X and Y and a non-expansive bijection F : BX → BY , is
it true that F is an isometry? As one can see, this is the same as plasticity of
the unit ball, except that now we have two spaces. The problem was posed
by O. Zavarzina in 2018 [6]. This article contains a positive result for pairs
of spaces where Y is finite-dimensional, strictly convex or `1. The same year,
two another positive results were obtained: [3] gives a positive answer for
pairs of spaces where Y is `1-sum of strictly convex spaces and [4] provides a
positive result for pairs where Y is a space whose unit sphere is the union of
all its finite-dimensional polyhedral extreme subsets. Additionally, it is easy
to see that if X is finite-dimensional, then Y is also finite-dimensional. It is
also easy to see that if X is strictly convex, then Y is also strictly convex
(see [4], Theorem 4.2). This yields a positive answer for the case where X is
finite-dimensional or strictly convex.

Usually, we are not interested in non-complete spaces. However, it is hard to
say whether completeness plays a role in the problem at hand, so it might
be reasonable to consider non-complete spaces as well. To the best of our
knowledge, there is no known example of a non-complete space that doesn’t
have a plastic unit ball. Nonetheless, it might occur that Banach spaces have
a plastic unit ball, but there is a non-complete space, the unit ball of which
is not plastic. In connection to this, there are two questions to consider: if X
is a non-complete normed space and X is its completion, then does X having
a plastic unit ball imply that X has a plastic unit ball and does X having a
plastic unit ball imply that X has a plastic unit ball?
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In this section we are going to introduce the main tools used in the study of
plasticity of the unit ball. The next two sections will be devoted to proving
the two main results of this thesis. The two spaces considered in this thesis
are c0 and c. We prove the plasticity of the unit ball of c. For c0, we will not be
able to prove the plasticity of the unit ball, but we show that a non-expansive
bijection having a continuous inverse is an isometry.

As mentioned above, extreme points play an important role in the context
of plasticity of the unit ball. So, we are going to start with introducing the
concept of an extreme point. If u and v are points of a normed space, the line
segment connecting these two points is a set of all points of form (1−λ)u+λv,
where λ is a real number in [0, 1]. Sometimes, the word “non-trivial” may be
added to stress that u and v should be distinct. The line segment connecting
points u and v is denoted by [u, v]. By the interior of a line segment we mean
the line segment with the endpoints excluded (this is different from the usual
notion of the interior of a set). The notion of an extreme point can be defined
for an arbitrary convex subset of a normed space, but we will focus on extreme
points of the unit ball, referring to them as simply “extreme”.

Definition 2.1. A point of the unit sphere of a normed space is called extreme
if it does not belong to the interior of any non-trivial line segment contained
in the unit sphere.

It is obvious that the set of extreme points is symmetric (x is an extreme
point if and only if −x is an extreme point). Below is a diagram showing the
unit balls of R2 with respect to three different norms. The extreme points are
highlighted.

‖(x, y)‖ = |x|+ |y| ‖(x, y)‖ =
√

x2 + y2 ‖(x, y)‖ = max{|x|, |y|}

Figure 2: Extreme points of the unit ball
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By definition, extreme points are part of the unit sphere, but a point of the
unit sphere need not be an extreme point. A normed space is called strictly
convex if every point of its unit sphere is an extreme point. Equivalently, a
strictly convex space is a space the unit ball of which does not contain any
non-trivial line segments.

An extreme point may be equivalently defined as a point of the unit sphere,
that is not a middle point of any non-trivial line segment contained in the
unit sphere. Indeed, a middle point of a non-trivial line segment is obviously
an element of its interior. Conversely, if a point belongs to the interior of
some non-trivial line segment, then it is also a middle point of some another
non-trivial line segment, which is contained in the first segment. It is also
easy to see that if a point of the unit sphere belongs to the interior of a line
segment connecting two distinct points of the unit sphere, then the whole
segment should be actually contained in the unit sphere. That is, to show
that a point of the unit sphere is not extreme, it suffices to show that this
point is contained in the interior of a line segment connecting two distinct
points of the unit sphere.

There is one useful property of extreme points which is important to emphasize.
Let X be a normed space and a be a point of X. Let δ be a positive real
number and e be an element of SX . Consider points a and b = a + δe. Let
α and β be positive numbers such that α + β = δ. Consider the set D of all
points of X that are distance α from a and distance β from b. Obviously, the
line segment connecting the points a and b contains a point with this property
– this is the point β

δ
a+ α

δ
b. It is also clear that it does not contain any other

points with this property. The question is, are there any other points with
this property outside of the line segment connecting a and b? In other words,
when is the set D one-element? The symmetry of a normed space should
make it obvious that the situation depends exclusively on the direction of e
and does not depend on a and δ. For x ∈ SX and λ ∈ (0, 1) denote by D(x, λ)
the set of all points that are distance λ from 0 and distance 1 − λ from x.
It is easy to see that D = a + δD(e, α

δ
), so D is one-element if and only if

D(e, α
δ
) is one-element. This means that it should suffice to consider the case

where a = 0 and δ = 1. It turns out that the following equivalence is true –
the set D is a one-element set if and only if e is an extreme point. To prove
this equivalence, it suffices to prove that for each λ ∈ (0, 1) and each x ∈ SX
the set D(x, λ) is one-element if and only if x is an extreme point. Let us
state this as a proposition. This proposition is a slightly modified version of
Lemma 2.1 of [2].

11



Proposition 2.2 ([2], Lemma 2.1). Let X be a normed space, x ∈ SX and
λ ∈ (0, 1). Denote by D(x, λ) the set {z ∈ X : ‖z‖ = λ, ‖x − z‖ = 1 − λ}.
The set D(x, λ) is one-element if and only if x is an extreme point.

Proof. Since λx ∈ D(x, λ), then the condition that D(x, λ) is a one-element
set is equivalent to the condition that the set D(x, λ) does not contain a point
distinct from λx. We prove the statement by proving the two following claims:

• if D(x, λ) contains an element distinct from λx, then x is not extreme;

• if x is not extreme, then D(x, λ) contains an element distinct from λx.

We begin with giving the set D(x, λ) the following description:

D(x, λ) =

{
z ∈ X : x+

z − λx
λ

∈ SX , x−
z − λx
1− λ

∈ SX
}
.

This is easy to verify. The first condition says that ‖x+ z−λx
λ
‖ = 1. Multiplying

both sides by λ, we get ‖z‖ = λ. The second condition says that ‖x− z−λx
1−λ ‖ = 1.

Multiplying both sides by 1− λ, we get ‖x− z‖ = 1− λ. This means that the
first condition is equivalent to ‖z‖ = λ and the second condition is equivalent
to ‖x− z‖ = 1− λ. This proves the equality. Now it is easy to see that if z is
a point of D(x, λ) which is different from λx, then x belongs to the interior
of a line segment connecting two distinct points x+ z−λx

λ
and x− z−λx

1−λ , which
both belong to the unit sphere, so x is not an extreme point. That is, if the
set D(x, λ) contains any element distinct from λx, then x is not extreme.
This proves one of the two directions. For the second direction, suppose that
x is not an extreme point. The description of D(x, λ) given above can be
rewritten the following way:

D(x, λ) =

{
λx+ w : x+

w

λ
∈ SX , x−

w

1− λ
∈ SX

}
.

The idea is to find a non-zero w which satisfies the two conditions given above.
As x is not an extreme point, there exists a ∈ X \ {0} such that the line
segment [x− a, x+ a] is contained in SX . Define w = min{λ, 1− λ}a, then
x+ w

λ
and x− w

1−λ belong to [x− a, x+ a] and hence to SX . Now we see that
z = λx+ w is an element of D(x, λ) which is distinct from λx. This proves
the second direction.

Let us illustrate the last proposition by the following diagrams (see Figure 3
below). When drawing a picture, it is useful to think of the set D(x, λ) as the
intersection of the balls B(0, λ) and B(x, 1−λ). The following three diagrams
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depict the space R2 equipped with the maximum-norm. The bigger square is
the unit ball. On the unit sphere, a point x is chosen. The two smaller squares
are the balls B(0, 3/5) and B(x, 2/5). Their intersection is the set D(x, 3/5).

Figure 3: Illustration of Proposition 2.2

We can make some conclusions from the proposition that we have just proved.
First, as we mentioned above, the situation depends on the direction, but
not the position, so the latter proposition can be generalized by the following
corollary.

Corollary 2.3. Let X be a normed space. Let a be a point of X and e
an element of SX . Let δ be a positive real number. Consider points a and
b = a + δe. Let α and β be two positive real numbers such that α + β = δ.
Denote by D the set of all points which are distance α from a and distance β
from b. The set D is one-element if and only if e is an extreme point.

Proof. It is straightforward to verify that D = a+ δD(e, α
δ
). This shows that

D is one-element if and only if D(e, α
δ
) is one-element. By the last proposition,

the latter is equivalent to the fact that e is an extreme point.

Note that if X is a strictly convex space, then the set D consists always of
just one element. The next corollary is just an application of Corollary 2.3 to
a specific situation.

Corollary 2.4. Let X be a normed space and let x be a point of SX . Consider
the set D of all points that are distance one from x and distance one from
−x. The set D is one-element if and only if x is an extreme point.

The main aim of this section is to introduce the tools used in the study of
plasticity of the unit ball. Let us start with the following easy observations.

Proposition 2.5 ([2], Theorem 2.3). Let X and Y be normed spaces and let
F : BX → BY be a non-expansive bijection. The following claims hold true:
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1) F (0X) = 0Y ;

2) ‖F (x)‖ ≤ ‖x‖;

3) if y ∈ SY , then F−1(y) ∈ SX .

Proof. Let us start with proving the first item. The idea of the proof is that
zero is a unique point of the unit ball such that all the other points of the
unit ball are within distance one from it. We are going to use a proof by
contradiction. Denote F (0X) by y and suppose by contrary that y 6= 0Y . In
this case, there exists a point y′ ∈ BY such that ‖y′ − y‖ > 1. An obvious
choice for such a point is − y

‖y‖ . For this point, the distance ‖y′ − y‖ is equal
to 1+ ‖y‖, which is clearly greater than one. Denote F−1(y′) by x′. Note that
the distance from x′ to 0X is at most one, but the distance from F (x′) to
F (0X) is greater than one. This contradicts the fact that F is non-expansive,
which proves the first item. The second and the third item follow easily from
the first one. The norm of an element is the distance of this element from
zero, so item 2) follows directly from item 1) and the non-expansiveness of F .
Item 3) is a straightforward consequence of item 2).

When dealing with plasticity of the unit ball, we are normally considering a
non-expansive bijection from the unit ball of some space onto itself. However,
the last proposition was stated in a more general setting of a non-expansive
bijection between unit balls of two normed spaces. This is motivated by a
more general problem which was mentioned at the beginning of this section.
We are going to follow this line in the next propositions.

When we consider a non-expansive map between two metric spaces and it is
known to preserve the distance between some two points, then we can make
some useful conclusions on the behaviour of nearby points. Let us illustrate
this. Consider a non-expansive map F : M → N between two metric spacesM
and N . Let x and y be two distinct elements of M and let α and β be positive
real numbers such that α+β = d(x, y). Let z be a point ofM which is distance
α from x and distance β from y. Non-expansiveness implies d

(
F (x), F (z)

)
≤ α

and d
(
F (z), F (y)

)
≤ β. However, if d

(
F (x), F (y)

)
= d(x, y), then F (z) will

be also distance α from F (x) and distance β from F (y), because otherwise we
would have d

(
F (x), F (z)

)
+d
(
F (z), F (y)

)
< d
(
F (x), F (y)

)
, which contradicts

the triangle inequality. To sum up, if F preserves the distance between points
x and y and a point z is such that d(x, z)+d(z, y) = d(x, y), then F preserves
the distance between points x and z and points z and y. This simple fact is
often used in the context of plasticity. This is also used in the proof of the
following proposition.
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We have mentioned that extreme points play a significant role in the problem
of plasticity of the unit ball. The following proposition is the reason for this.

Proposition 2.6 ([2], Theorem 2.3). Let X and Y be normed spaces and
let F : BX → BY be a non-expansive bijection. If y is an extreme point of
BY , then F−1(y) is an extreme point of BX and F−1(αy) = αF−1(y) for each
α ∈ [−1, 1].

Proof. Denote F−1(y) by x. Let us start with proving that x is an extreme
point. We know that y ∈ SY , so x ∈ SX by Proposition 2.5. Note that
F preserves the distance between 0X and x. This allows us to use the idea
presented just above this proposition. Take an arbitrary α from (0, 1). Consider
the set D(x, α) of all points of X that are distance α from zero and distance
1−α from x. Regardless of x, this set contains at least one point, which is αx.
Analogously, consider the set D(y, α) of all points of Y that are distance α
from zero and distance 1− α from y. Again, regardless of y, this set contains
at least one point, which is αy. The fact that F is non-expansive implies that
F (D(x, α)) ⊂ D(y, α). Now, as y is an extreme point, then Proposition 2.2
implies that D(y, α) is actually one-element – its only element is αy. The
injectivity of F together with the last inclusion imply that D(x, α) is also
one-element – its only element should be αx. Applying Proposition 2.2 again,
we get that x is an extreme point.

Now, let us show that F−1(αy) = αx for every α ∈ (0, 1). Let α ∈ (0, 1) be
arbitrary. Note that the last equation is equivalent to F (αx) = αy. The point
αx belongs to the set D(x, α). We know that F (D(x, α)) ⊂ D(y, α), so F (αx)
belongs to D(y, α). As y is an extreme point, then the only element of D(y, α)
is αy. Therefore, F (αx) should be equal to αy.

Let us show that F−1(−y) = −x. Denote F−1(−y) by x′. Note that the
distance between y and −y is equal to two, so x = F−1(y) and x′ = F−1(−y)
should be also distance two apart. Consider a point m = x+x′

2
. This point

is distance one from x and distance one from x′. Note that F preserves the
distance between x and x′. It follows that F (m) is distance one from y and
distance one from −y. As y is an extreme point, then Corollary 2.4 implies
that F (m) = 0Y . As F (0X) = 0Y by Proposition 2.5, then the injectivity of
F implies that m = 0X . The latter yields x′ = −x, so we are done.

The equation F−1(αy) = αF−1(y) is now proved for α ∈ (0, 1) and α = −1.
This is also obvious for α = 1. For α = 0, the equation follows from the first
item of Proposition 2.5. It is left to show that F−1(αy) = αF−1(y) for every
α ∈ (−1, 0). This is equivalent to showing that F−1(−αy) = −αF−1(y) for
every α ∈ (0, 1). Using the fact that F−1(−y) is equal to −F−1(y), the last
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equation can be rewritten as F−1(α(−y)) = αF−1(−y). Since y is an extreme
point, then −y is also an extreme point, so the latter equation can be proved
by applying the above argument to −y instead of y.

The properties described in the two last propositions were observed in [2],
the first article on plasticity of the unit ball, where the positive result for
strictly convex spaces was obtained. These properties were initially described
for the case of a non-expansive bijection from the unit ball of a normed space
to itself, but the generalization to two spaces is straightforward.
When dealing with plasticity of the unit ball, it is also useful to know the
following result by P. Mankiewicz. In 1932, S. Mazur and S. Ulam proved
that every isometric bijection from a normed space X onto a normed space
Y is affine. Recall that a map f : X → Y is called affine if there exists a
linear operator A : X → Y and an element y0 ∈ Y such that f can be given
by f(x) = A(x) + y0. In a sense, affine map is a “shifted” linear map.
One can consider a more general problem. Let U be a subset of X and V be
a subset of Y and let T : U → V be an isometric bijection. Is it true, that T
extends to an affine isometric bijection T̃ : X → Y ? It is easy to verify that
this is not true in general. Obviously, one should add some assumptions on U
and V .
This problem was considered by P. Mankiewicz. In 1972, he was able to give
two sufficient conditions [7]. One of them is given by the following theorem.

Theorem 2.7 ([7], Theorem 5). Let X and Y be normed spaces. Let U ⊂ X
and V ⊂ Y be convex with non-empty interior and let T : U → V be an
isometric bijection. Then T extends to an affine isometric bijection T̃ : X → Y .

This theorem is useful in the context at hand. Let U be the unit ball of X
and V be the unit ball of Y . Note that the unit ball is convex and has a
non-empty interior. So the theorem implies that every isometric bijection T
from U onto V extends to an affine isometric bijection T̃ from X onto Y .
The first item of Proposition 2.5 implies that T sends zero to zero, so the
same can be said for the extension of T . This means that T̃ is actually linear.
That is, the theorem implies the following: if F : BX → BY is an isometric
bijection, then F extends to an isometric isomorphism between two spaces –
a linear isometric bijection from X onto Y . In case X = Y , the result will be
an isometric automorphism of X – a linear isometric bijection from X onto
itself.
This last fact can be useful when proving plasticity of the unit ball, because
at some point of the proof one might discover that the unit ball of some finite-
dimensional subspace is mapped bijectively onto itself or a copy of itself. In
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this situation one can apply the fact that the unit ball of a finite-dimensional
space is plastic and then apply the mentioned result to conclude the linearity,
which can be useful in the future.

The last theorem is also useful in one other way. If we want to prove that
every non-expansive bijection from the unit ball of some space onto itself
is an isometry, then it might be useful to know what bijective isometries
from the unit ball of this space onto itself are there. The last result says that
these are precisely the restrictions of isometric automorphisms of this space.
One possible approach to proving plasticity of the unit ball in some specific
space X consists of considering a non-expansive bijection F : BX → BX ,
extracting some information about this function to choose an isometric
automorphism that this function seems to resemble and then proving that
the two functions actually coincide. Of course, this approach requires that we
know a characterization of the isometric automorphisms of X.

There is also a sufficient condition for a non-expansive bijection F : BX → BY

to be an isometry. This is given by the following theorem, which is taken from
[2]. In this article, the case X = Y is considered, but the generalization to
two spaces is straightforward. The proof can be found in [2] and is based on
smooth points and the differentiation of the norm.

Theorem 2.8 ([2], Lemma 2.5). Let X and Y be normed spaces and let
F : BX → BY be a non-expansive bijection. If F (SX) = SY and F (αx) =
αF (x) for every x ∈ SX and every α ∈ [−1, 1], then F is an isometry.

So, the sufficient condition is that F is homogeneous and maps SX bijec-
tively onto SY . Below is a slightly more general result, which is actually a
straightforward generalization of the last theorem. This is extracted from [6].

Theorem 2.9 ([6], Lemma 2.3). Let X and Y be normed spaces and let
F : BX → BY be a non-expansive bijection such that F (SX) = SY . Let V be
a subset of SX which consists of all those x ∈ SX such that F (αx) = αF (x)
for every α ∈ [−1, 1]. Then F keeps distances between elements of the set
A = {αx : α ∈ [−1, 1], x ∈ V }. That is, the restriction F |A is an isometry.

The sufficient condition given by Theorem 2.8 may be also equivalently
restated as follows. Let us state this as a corollary (extracted from [3]).

Corollary 2.10 ([3], Lemma 2.9). Let X and Y be normed spaces and let
F : BX → BY be a non-expansive bijection. If F−1(αy) = αF−1(y) for every
y ∈ SY and every α ∈ [−1, 1], then F is an isometry.
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It is easy to see how the last corollary implies the plasticity of the unit
ball for strictly convex spaces. Indeed, if X is a strictly convex space and
F : BX → BX is a non-expansive bijection, then Proposition 2.6 implies that
F−1(αx) = αF−1(x) for every x ∈ SX , because the condition that X is strictly
convex means that every point of SX is extreme. More generally, the last
corollary implies that if X and Y are normed spaces and Y is strictly convex,
then every non-expansive bijection from BX onto BY is an isometry.
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3 Plasticity of the unit ball of c0

Let us fix the notation for the following two sections. Given a sequence x ∈ c,
denote the n-th element by xn. Given a sequence ξ ∈ cN, denote the k-th
sequence by ξk and the n-th element of the k-th sequence by ξkn. For n ∈ N
denote by en a sequence such that enn = 1 and eni = 0 for every i ∈ N \ {n}.
Denote the unit ball of c by B. For h ∈ [−1, 1] denote by Bh the subset of B
which consists of all sequences converging to h. In particular, B0 is going to
stand for the unit ball of c0. For a subset S ⊂ N and h ∈ [−1, 1] denote by
BS
h the subset of Bh defined by

BS
h = {x ∈ Bh : xn = h for all n ∈ N \ S}.

For h ∈ [−1, 1] denote by B∗h the subset of Bh defined by

B∗h = {x ∈ Bh : xn 6= h for finitely many n ∈ N}.

For x ∈ c and r > 0 denote by B(x, r) the corresponding closed ball of the
space c.

Let us consider an arbitrary non-expansive bijection F : B0 → B0 from the
unit ball of c0 onto itself. We are going to try to infer as much as possible
about the behaviour of this function. The maximum goal is to show that F is
an isometry, but we will not be able to achieve this. However, we will show
that F is an isometry, provided that F−1 is continuous.

One possible approach to proving plasticity of the unit ball in some specific
space X consists of considering a non-expansive bijection F : BX → BX ,
extracting some information about this function to choose an isometric
automorphism that this function seems to resemble and then proving that
the two functions actually coincide. Of course, this approach requires that we
know a characterization of the isometric automorphisms of X. We are going
to apply this approach in the proof at hand. The isometric automorphisms of
c0 have the form A(x)σn = αnxn, where σ : N→ N is a bijection and α is a
sequence of ones and minus ones.

So, the first step is to extract some information about F to choose an isometric
automorphism of c0 that the function F seems to resemble. First, we need
the following lemma, which is concerned with covering the unit ball by two
closed balls of radius one.

Lemma 3.1. Let x and y be two non-zero elements of B0. The balls B(x, 1)
and B(y, 1) cover the ball B0 if and only if there exists an index n such that
xi = yi = 0 for all i 6= n and either xn is positive and yn is negative or xn is
negative and yn is positive.
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Proof. Suppose that there exists an index n such that xi = yi = 0 for all
i 6= n and either xn is positive and yn is negative or xn is negative and yn
is positive. Consider the case where xn is positive and yn is negative. Let z
be an arbitrary element of B0. We see that if zn ≥ 0, then z ∈ B(x, 1), and
if zn ≤ 0, then z ∈ B(y, 1). That is, z is always contained in at least one of
the balls B(x, 1) and B(y, 1). This means that the balls B(x, 1) and B(y, 1)
cover the ball B0. The second case is analogous. This proves one of the two
directions.

For the second direction, assume that B0 is covered by B(x, 1) and B(y, 1).
Since x is non-zero, there exists an index n such that xn 6= 0. Suppose
that there exists an index i 6= n such that yi 6= 0. Consider a sequence
z = − sgn(xn)e

n− sgn(yi)e
i. Note that z ∈ B0, but z is not covered by B(x, 1)

and B(y, 1). This contradicts our assumption, so we can conclude that yi = 0
for every i 6= n. If yn was also equal to zero, then y would be equal to zero,
therefore yn 6= 0. Now we can repeat the above argument swapping the roles
of x and y. As a result, we get that xi = 0 for every i 6= n. Finally, we have to
exclude the possibility that xn and yn are both positive or both negative. This
is easy to see, because if xn and yn are both positive, then B(x, 1) and B(y, 1)
do not cover −en ∈ B0, and if xn and yn are both negative, then B(x, 1) and
B(y, 1) do not cover en ∈ B0. This proves the second direction.

Now we can extract some information about F to choose a corresponding
isometric automorphism of c0.

Lemma 3.2. There exists a bijection σ : N → N and a sequence α : N →
{−1, 1} such that for every x ∈ B0 and n ∈ N we have the following:

1) if xn = 0, then F (x)σn = 0;

2) if xn < 0 and αn = 1 (αn = −1), then F (x)σn ≤ 0 (F (x)σn ≥ 0);

3) if xn > 0 and αn = 1 (αn = −1), then F (x)σn ≥ 0 (F (x)σn ≤ 0).

Proof. Let n ∈ N be arbitrary. Consider elements en and −en. Note that
B0 is covered by the balls B(en, 1) and B(−en, 1). As F is non-expansive
and surjective, then B0 should be also covered by the balls B

(
F (en), 1

)
and

B
(
F (−en), 1

)
. Moreover, item 1) of Theorem 2.5 implies that F (en) and

F (−en) are non-zero. The previous lemma implies that there exists an index
k such that F (en)i = F (−en)i = 0 for all i 6= k and either F (en)k is positive
and F (−en)k is negative or F (en)k is negative and F (−en)k is positive. Define
σn = k. Define αn = 1 if F (en)k is positive and αn = −1 otherwise.
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Now, we can show that if a sequence x ∈ B0 is such that xi = 0 for every
i 6= n, then F (x)i = 0 for all i 6= k. Let x ∈ B0 be such that xi = 0 for every
i 6= n. If xn = 0, then x is zero, so F (x) is also zero by item 1) of Theorem 2.5
and it is true that F (x)i = 0 for all i 6= k. So let us consider the case where
xn 6= 0. Suppose that xn > 0. Note that B0 is covered by the balls B(−en, 1)
and B(x, 1). As F is non-expansive and surjective, then B0 should be also
covered by the balls B

(
F (−en), 1

)
and B

(
F (x), 1

)
. Item 1) of Theorem 2.5

implies that F (−en) and F (x) are non-zero, so the previous lemma implies
that F (x)i = 0 for every i 6= k. The case xn < 0 is analogous.

Consider a function fn : [−1, 1] → [−1, 1] defined by fn(t) = F (ten)σn . The
non-expansiveness and the injectivity of F imply the non-expansiveness and
the injectivity of fn. Since fn is continuous and injective, then it is either
strictly increasing or strictly decreasing. If αn = 1, then fn is increasing,
fn(−1) < 0, fn(0) = 0 and fn(1) > 0. If αn = −1, then fn is decreasing,
fn(−1) > 0, fn(0) = 0 and fn(1) < 0. Since fn is continuous, then the image
of fn is a segment. This segment should have the form [a, b], where a < 0 and
b > 0. Now it is easy to see that the injectivity of F requires the injectivity
of σ. Indeed, suppose by contrary that there exist distinct indices m and
n such that σm = σn = k. Then the line segments [−en, en] and [−em, em]
have just one common point, but their images are line segments [aek, bek] and
[a′ek, b′ek], where a, a′ < 0 and b, b′ > 0. These segments have more than one
common point, which contradicts the injectivity of F .

We want to show that for each x ∈ B0 and n ∈ N the items 1)–3) are true.
As F is continuous and B∗0 is dense in B0, then it suffices to consider the
case where x ∈ B∗0 . Denote by S the set {n ∈ N : xn 6= 0}. Note that S is
finite. For every n ∈ S let sn = − sgn(xn)e

n. Note that B0 is covered by the
ball B(x, 1) together with the balls B(sn, 1), n ∈ S. Indeed, for arbitrary
z ∈ B0, if there exists an index n ∈ S such that either xn > 0 and zn < 0
or xn < 0 and zn > 0, then z belongs to B(sn, 1). Otherwise, z belongs to
B(x, 1). It follows that B0 should be also covered by the balls B

(
F (x), 1

)
and

B
(
F (sn), 1

)
, n ∈ S.

Now, let us construct a sequence y as follows:

• for k 6∈ σ(S) let yk = 0;

• for n ∈ S let yσn = sgn(xn)αn.
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Note that yk = 0 for k 6∈ σ(S) and yk = 1 or yk = −1 for k ∈ σ(S). As σ(S)
is finite, then y belongs to B0. Note that y does not belong to any of the balls
B
(
F (sn), 1

)
, n ∈ S. On the other hand, y is an element of B0 and B0 should

be covered by the balls B
(
F (x), 1

)
and B

(
F (sn), 1

)
, n ∈ S. It follows that y

should belong to B
(
F (x), 1

)
. This implies items 2) and 3).

To prove item 1), consider an index k 6∈ σ(S). Alter the definition of y such
that yk = 1. Note that y still belongs to B0 and does not belong to any of
the balls B

(
F (sn), 1

)
, n ∈ S, so it should belong to B

(
F (x), 1

)
. This yields

F (x)k ≥ 0. Similarly, if we take yk = −1, then we get F (x)k ≤ 0. So we can
conclude that F (x)k = 0. This proves item 1).

Continuity of F , together with the fact that B∗0 is dense in B0, allows us to
extend the result to all elements of B0. Finally, we have to make sure σ is a
surjection. Suppose by contrary that there exists an index k 6∈ σ(N). From the
above argument it follows that F (x)k = 0 for every x ∈ B∗0 . Continuity of F
and the fact that B∗0 is dense in B0 imply that the same holds for every x ∈ B0.
This contradicts the surjectivity of F . Therefore, σ should be surjective.

The previous lemma fixes a bijection σ : N → N and a sequence α : N →
{−1, 1}. Let A be the corresponding isometric automorphism of c0 defined
by A(x)σn = αnxn. Denote by G the restriction of A to B0, which is an
isometric bijection from B0 onto itself. Our goal is to show that F = G. This
is equivalent to showing that G−1 ◦ F is the identity map of B0. Denote
the map G−1 ◦ F by F̃ . Note that the definition of F̃ implies that F̃ is a
non-expansive bijection from B0 onto itself. The previous lemma implies that
F̃ has the following properties.

Lemma 3.3. For each x ∈ B0 and n ∈ N,

1) if xn = 0, then F̃ (x)n = 0;

2) if xn < 0, then F̃ (x)n ≤ 0;

3) if xn > 0, then F̃ (x)n ≥ 0.

The three properties listed above imply the following property of F̃−1.

Lemma 3.4. For each y ∈ B0 and n ∈ N, if yn < 0, then F̃−1(y)n < 0, and
if yn > 0, then F̃−1(y)n > 0.

Now we are going to continue collecting some properties that describe the
behaviour of F̃ .
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Lemma 3.5. For each y ∈ B0 and n ∈ N, if yn = 1 and yi 6= 0 for all
i 6= n, then F̃−1(y)n = 1, and if yn = −1 and yi 6= 0 for all i 6= n, then
F̃−1(y)n = −1.

Proof. Let y ∈ B0 be such that yn = 1 and yi 6= 0 for all i 6= n. Consider a
sequence z ∈ B0 defined by zn = −1 and zi = yi for all i 6= n. Denote F̃−1(y)
and F̃−1(z) by y′ and z′. The distance between y and z equals two, so the
distance between y′ and z′ should be also equal to two. Consider an index
i 6= n. We know that yi 6= 0, so yi is either positive or negative. If yi > 0,
then Lemma 3.4 implies that y′i and z′i should be positive too. Similarly, if
yi < 0, then Lemma 3.4 implies that y′i and z′i should be also negative. In
either case we have |y′i − z′i| < 1. It follows, that for the distance between y′
and z′ to be equal to two, we need to have |y′n − z′n| = 2. This means that
either y′n = 1 and z′n = −1 or y′n = −1 and z′n = 1. However, Lemma 3.4
excludes the second case. Therefore, we have y′n = 1 as wanted. The case
yn = −1 is similar.

Lemma 3.6. For each x ∈ B0 and n ∈ N, if xn < 0, then F̃ (x)n ∈ [xn, 0],
and if xn > 0, then F̃ (x)n ∈ [0, xn].

Proof. Let us consider the case xn > 0. Lemma 3.3 implies that F̃ (x)n ≥ 0,
so it remains to show that F̃ (x)n ≤ xn. Let us construct a sequence y ∈ B0

as follows. First, let yn = −1. Then, for every i 6= n

• choose yi from [−1, 0) if xi < 0;

• choose yi from (0, 1] if xi > 0;

• choose yi from [−1, 1] \ {0} if xi = 0.

For y to belong to B0, it is important to choose yi such that the sequence
converges to zero. Clearly, such choice is possible. One possible choice is to
define yi = 1/i for xi ≥ 0 and yi = −1/i for xi < 0.

Denote F̃−1(y) by y′. Note that yn = −1 and yi 6= 0 for every i 6= n. Lemma
3.5 implies that y′n = −1. Let us show that |xi − y′i| ≤ 1 for every i 6= n.
Consider an index i distinct from n. If xi < 0, then yi < 0, so Lemma 3.4
implies that y′i < 0. As xi and y′i are both negative, then |xi − y′i| < 1.
Similarly, if xi > 0, then yi > 0, so Lemma 3.4 implies that y′i > 0. As xi and
y′i are both positive, then |xi − y′i| < 1. Finally, if xi = 0, then the inequality
|xi − y′i| ≤ 1 is obvious. Now we see that the distance between x and y′ is
equal to 1 + xn. Indeed, |xn − y′n| = 1 + xn and |xi − y′i| ≤ 1 for i 6= n. This
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implies that the distance between F̃ (x) and y is at most 1 + xn, therefore
|F̃ (x)n − yn| ≤ 1 + xn, which yields F̃ (x)n ≤ xn. This concludes the proof for
the case xn > 0. The proof for the case xn < 0 is similar.

The last lemma implies the following properties of the inverse function.

Lemma 3.7. For each y ∈ B0 and n ∈ N, if yn < 0, then F̃−1(y)n ∈ [−1, yn],
and if yn > 0, then F̃−1(y)n ∈ [yn, 1].

The important feature of c0 is that every element attains its norm. That is,
for every x ∈ c0 there is an index n such that |xn| = ‖x‖. In other words, the
supremum used to define the norm of x is actually a maximum. We are going
to make use of this feature in the proof of the next proposition.

Lemma 3.8. Let y ∈ B0 be such that the set S = {i ∈ N : yi = 0} is finite.
Then F̃−1(y)i = 0 for each i ∈ S.

Proof. Let us proceed by induction on the number of elements of S. If S is
empty, then there is nothing to prove. Now, let N be a non-negative integer
and suppose that the claim holds whenever S has up to N elements. Let us
show that the claim also holds when S has N + 1 elements. So let y ∈ B0 be
a sequence such that the set S has N + 1 elements. Denote F̃−1(y) by y′. We
are going to use a proof by contradiction. Suppose by contrary that there
exists n ∈ S such that y′n 6= 0. Construct a sequence z ∈ B0 as follows. First,
set zn = 1 if y′n > 0 and zn = −1 if y′n < 0. Then, for each i 6= n

• choose zi from [−1, 0) if y′i < 0;

• choose zi from (0, 1] if y′i > 0;

• set zi = 0 if y′i = 0.

For z to belong to B0, it is important to choose zi such that the sequence
converges to zero. Clearly, such choice is possible. One possible choice is to
define zi = 1/i for y′i > 0 and zi = −1/i for y′i < 0.

By definition, zn 6= 0. If i ∈ N \ S, then yi 6= 0, so Lemma 3.4 implies
that y′i 6= 0 and the definition of z implies that zi 6= 0. It follows that
the set {i ∈ N : zi = 0} is contained in the set S \ {n}. Therefore, the set
{i ∈ N : zi = 0} has at most N elements. This means that the induction
hypothesis can be applied to z, so we know that F̃ (z)i = 0 whenever zi = 0.
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Denote F̃−1(z) by z′. Let us show that the distance between y′ and z′ is
smaller than one. Since every element of c0 attains its norm, it suffices to
show that |y′i − z′i| < 1 for each i ∈ N. Let i ∈ N be arbitrary. Consider the
case y′i > 0. The definition of z implies that zi > 0. As zi > 0, then Lemma
3.4 implies that z′i > 0. Since z′i and y′i are both positive, then |y′i − z′i| < 1.
Similarly, if y′i < 0, then the definition of z implies that zi < 0. As zi < 0,
then Lemma 3.4 implies that z′i < 0. Since z′i and y′i are both negative, then
|y′i − z′i| < 1. Finally, if y′i = 0, then the definition of z implies that zi = 0.
Since zi = 0, then the application of the induction hypothesis to z gives
z′i = 0, which makes the inequality |y′i − z′i| < 1 obvious. This shows that the
distance between y′ and z′ is smaller than one.

If the distance between y′ and z′ is smaller than one, then the distance between
y and z should be also smaller than one, but we have |yn − zn| = 1, which is
a contradiction.

Lemma 3.9. Let x ∈ B0 be such that the set S = {i ∈ N : xi = 0} is finite.
Then F̃ (x)i 6= 0 for each i ∈ N \ S.

Proof. Let n ∈ N \ S be arbitrary. Construct a sequence y ∈ B0 as follows.
First, set yn = sgn(xn). Then, for each i 6= n

• choose yi from [−1, 0) if xi < 0;

• choose yi from (0, 1] if xi > 0;

• set yi = 0 if xi = 0.

For y to belong to B0, it is important to choose yi such that the sequence
converges to zero. Clearly, such choice is possible. Denote F̃−1(y) by y′. Note
that the sequence y has only finitely many zeros. Therefore, Lemma 3.8 can
be applied to y. This means that y′i = 0 for every i ∈ S. Now, we can show
that the distance between x and y′ is smaller than one – the argument is
identical to the one that appeared in the proof of the previous lemma. Since
the distance between x and y′ is smaller than one, then the distance between
F̃ (x) and y should be also smaller than one. In particular, we should have
|F̃ (x)n − yn| < 1, which yields F̃ (x)n 6= 0.

Lemma 3.8 says that if we have yn = 0, then we should also have F̃−1(y)n = 0,
provided that the sequence y has only finitely many zeros. If we assume the
continuity of F̃−1, then we can get rid of that additional assumption.
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Lemma 3.10. Suppose that F̃−1 is continuous. Let y ∈ B0 and n ∈ N be
such that yn = 0. Then F̃−1(y)n = 0.

Proof. It is possible to construct a sequence ψ : N → B0 such that ψkn = 0,
ψki 6= 0 for i 6= n and ψk → y. One possible choice is to define

ψki =


0, i = n,

yi, i 6= n, yi 6= 0,

1/(ik), i 6= n, yi = 0.

For each k ∈ N, the sequence ψk ∈ B0 has exactly one zero at index n, so
Lemma 3.8 implies that F̃−1(ψk)n = 0. Since ψk → y and F̃−1 is continuous,
then F̃−1(ψk)→ F̃−1(y). This implies the convergence F̃−1(ψk)n → F̃−1(y)n.
As F̃−1(ψk)n = 0 for every k ∈ N, then it follows that F̃−1(y)n = 0.

Now we can prove the main result.

Theorem 3.11. If F−1 is continuous, then F is an isometry.

Proof. Let S be a finite subset of N. Consider the subset

BS
0 = {x ∈ B0 : xn = 0 for all n ∈ N \ S}.

Lemma 3.3 says that F̃ (x)n = 0 whenever xn = 0. This yileds the inclusion
F̃ (BS

0 ) ⊂ BS
0 . If F−1 is continuous, then F̃−1 is also continuous, so we can

apply Lemma 3.10, which yields the inclusion F̃−1(BS
0 ) ⊂ BS

0 . Combining
these two together, we get that the set BS

0 is mapped bijectively onto itself.
It follows that the restriction of F̃ to BS

0 is a non-expansive bijection from
the unit ball of a finite-dimensional space onto itself. Since the unit ball of a
finite-dimensional space is plastic, then it follows that the restriction of F̃ to
BS

0 is an isometry. Moreover, Theorem 2.7 says that the latter is actually a
restriction of an isometric automorphism of the underlying finite-dimensional
space. Combining this with some previously acquired information, we can
conclude that the restriction of F̃ to BS

0 is an identity map. Indeed, Lemma
3.3 says that for each n ∈ S the element en is mapped to ten, where t > 0.
However, for the norm to be preserved, we need to have t = 1. Therefore,
the elements en, n ∈ S are mapped to itself. Since every element of BS

0 is a
linear combination of these, then the linearity implies that F̃ should keep all
elements of BS

0 in place.
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If F̃ restricted to BS
0 is an identity map, then the restriction of F̃ to B∗0 is

also an identity map, because the latter is the union of all the subsets BS
0 ,

where S is a finite subset of N. Since F̃ restricted to B∗0 is an identity map,
F̃ is continuous and B∗0 is dense in B0, then it follows that F̃ is an identity
map of B0. This means that F is a restriction of an isometric automorphism
of c0 defined by A(x)σn = αnxn. In particular, F is an isometry.
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4 Plasticity of the unit ball of c

The notation for this section is fixed in the beginning of the previous section.
Also, some parts of the proof will be identical to the corresponding parts of
the proof for c0 and we are going to omit these parts. Therefore, it is advisable
to take a look at the previous section before reading the proof at hand.

Let us consider an arbitrary non-expansive bijection F : B → B from the unit
ball of c onto itself. Our goal is to show that F is an isometry. As with the
space c0, the first step is to extract some information about F to choose a
corresponding isometric automorphism of c. The isometric automorphisms of
c have the form A(x)σn = αnxn, where σ : N → N is a bijection and α is a
sequence of ones and minus ones that is constant from some point.

When dealing with plasticity of the unit ball, it is important to know the
extreme points. While the space c0 has no extreme points, the space c has
quite many. The extreme points of c are the sequences that consist of just
ones and minus ones and are constant from some point.

The next lemma is an analog of Lemma 3.1. The only difference is that now
we have B instead of B0. The proof is identical to the one of Lemma 3.1.

Lemma 4.1. Let x and y be two non-zero elements of B. The balls B(x, 1)
and B(y, 1) cover the ball B if and only if there exists an index n such that
xi = yi = 0 for all i 6= n and either xn is positive and yn is negative or xn is
negative and yn is positive.

Let us retrieve some information about F to fix an isometric automorphism
of c that the function F seems to resemble. The next lemma is an analog of
Lemma 3.2. The difference from the space c0 is that now we have to ensure
that the sequence α is constant from some point.

Lemma 4.2. There exists a bijection σ : N → N and a sequence α : N →
{−1, 1}, which is constant starting from some index, such that for every
x ∈ B and n ∈ N we have the following:

1) if xn = 0, then F (x)σn = 0;

2) if xn < 0 and αn = 1 (αn = −1), then F (x)σn ≤ 0 (F (x)σn ≥ 0);

3) if xn > 0 and αn = 1 (αn = −1), then F (x)σn ≥ 0 (F (x)σn ≤ 0).

Proof. The first part of the proof repeats the first three paragraphs of the
proof of Lemma 3.2. We only have to replace B0 by B. We fix a function
σ : N→ N and a sequence α : N→ {−1, 1}. We show that for each n ∈ N there
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exists a continuous function fn : [−1, 1]→ [−1, 1] such that F (ten) = fn(t)e
σn

for each t ∈ [−1, 1]. We also know that if αn = 1, then fn is strictly increasing,
fn(−1) < 0, fn(0) = 0 and fn(1) > 0, and if αn = −1, then fn is strictly
decreasing, fn(−1) > 0, fn(0) = 0 and fn(1) < 0. We also show that the
function σ is injective.
The next step is to ensure that the sequence α is constant from some point.
Let y be an arbitrary extreme point of B. The sequence y consists of ones
and minus ones and is constant from some point. Denote F−1(y) by x. By
Theorem 2.6 we know that x is also an extreme point. Therefore, the sequence
x consists of ones and minus ones and is constant from some point. Let us
show that for each n ∈ N we have yσn = αnxn. Let n ∈ N be arbitrary. We
know that xn is either 1 or −1. Let us consider the case xn = 1. We need
to show that yσn = αn. Consider elements en and x. The distance between
en and x is equal to one. It follows that the distance between F (en) and y
should be at most one. We know that F (en) is teσn , where t > 0 if αn = 1
and t < 0 if αn = −1. We know that yσn is either 1 or −1. If yσn 6= αn, then
|F (en)σn − yσn| > 1, which implies that the distance between F (en) and y
is greater than one, but this can not be the case. Therefore, we must have
yσn = αn. The case xn = −1 is analogous. Now, the fact that yσn = αnxn for
each n ∈ N and the fact that the sequences x and y are constant from some
point imply that the sequence α should be also constant from some point.
Now we want to show that for each x ∈ B and n ∈ N the items 1)–3) are
true. As F is continuous and B \B0 is dense in B, then it suffices to consider
the case where limxn 6= 0. Note that we can not apply the approach used
in the proof for c0, because the subset B∗0 is not dense in B. Denote by S
the set {n ∈ N : xn 6= 0}. For every n ∈ S let sn = − sgn(xn)e

n. Note that
B is covered by the ball B(x, 1) together with the balls B(sn, 1), n ∈ S. It
follows that B should be also covered by the balls B

(
F (x), 1

)
and B

(
F (sn), 1

)
,

n ∈ S.
As with the case of c0, the next step is to find an element y ∈ B, which does
not belong to any of the balls B

(
F (sn), 1

)
, n ∈ S. The difficult part is to

ensure that the sequence y belongs to B. Let us construct a sequence y as
follows:

• for k 6∈ σ(S) let yk = lim(sgn(xn)αn);

• for n ∈ S let yσn = sgn(xn)αn.

Let us ensure that the sequence y belongs to B. Since limxn 6= 0, then either
limxn > 0 or limxn < 0. If limxn > 0, then there exists an index N such
that sgn(xn) = 1 for each n ≥ N . If limxn < 0, then there exists an index N
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such that sgn(xn) = −1 for each n ≥ N . Either way, the sequence (sgnxn)
is constant starting from index N . The sequence (αn) is also constant from
some point, as shown above. This means that the sequence (sgn(xn)αn) is
also constant from some point, so the limit lim(sgn(xn)αn) exists and is equal
to 1 or −1. Now we see that the sequence y consists of ones and minus ones
and is constant from some point. Therefore, y belongs to B.

Note that y does not belong to any of the balls B
(
F (sn), 1

)
, n ∈ S. On

the other hand, y is an element of B and B should be covered by the
balls B

(
F (x), 1

)
and B

(
F (sn), 1

)
, n ∈ S. It follows that y should belong to

B
(
F (x), 1

)
. This implies items 2) and 3). The item 1) can be proved by the

same argument as in the proof for c0.

Continuity of F and the fact that B \B0 is dense in B allow us to extend the
result to all elements of B. Finally, we have to make sure σ is a surjection.
This can be proved by the same argument as in the proof for c0.

The previous lemma fixes a bijection σ : N → N and a sequence α : N →
{−1, 1}, that is constant from some point. Let A be the corresponding
isometric automorphism of c defined by A(x)σn = αnxn. Define F̃ as in the
proof for c0. Our goal is to show that F̃ is an identity map. The previous
lemma implies the following properties of F̃ .

Lemma 4.3. For each x ∈ B and n ∈ N,

• if xn = 0, then F̃ (x)n = 0;

• if xn < 0, then F̃ (x)n ≤ 0;

• if xn > 0, then F̃ (x)n ≥ 0.

The three properties listed above imply the following properties of F̃−1.

Lemma 4.4. For each y ∈ B0 and n ∈ N, if yn < 0, then F̃−1(y)n < 0, and
if yn > 0, then F̃−1(y)n > 0.

In the proof for c0, the next step was to prove Lemmas 3.5 and 3.6. The
proofs of these propositions work for the space c as well. We only need to
substitute B for B0. Therefore, we obtain the following.

Lemma 4.5. For each y ∈ B and n ∈ N, if yn = 1 and yi 6= 0 for all
i 6= n, then F̃−1(y)n = 1, and if yn = −1 and yi 6= 0 for all i 6= n, then
F̃−1(y)n = −1.
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Lemma 4.6. For each x ∈ B and n ∈ N, if xn < 0, then F̃ (x)n ∈ [xn, 0],
and if xn > 0, then F̃ (x)n ∈ [0, xn].

As for the case of c0, the previous lemma implies the following properties of
the inverse function.

Lemma 4.7. For each y ∈ B0 and n ∈ N, if yn < 0, then F̃−1(y)n ∈ [−1, yn],
and if yn > 0, then F̃−1(y)n ∈ [yn, 1].

In the case of c0, the next step was Lemma 3.8. The proof of this lemma relies
on the fact that every element of c0 attains its norm, but this is not true in c.
Therefore, we are forced to use some alternative approach.

Lemma 4.8. Let x ∈ B be such that the set S = {i ∈ N : xi 6∈ {−1, 1}} is
finite. Then F̃ (x) = x.

Proof. Let us proceed by induction on the number of elements of S. For the
base of induction, consider the case where the set S is empty. If the set S is
empty, then xi ∈ {−1, 1} for every i ∈ N and the application of Lemma 4.7
gives F̃−1(x) = x, which is equivalent to F̃ (x) = x. This proves the base of
induction.

Now, let N be an arbitrary non-negative integer. Suppose that the claim
holds whenever the set S has at most N elements. Let us prove that the
claim also holds when the set S has N + 1 elements. Suppose that the set
S has N + 1 elements. We need to show F̃ (x) = x, which is equivalent to
showing F̃−1(x) = x. Applying Lemma 4.7, we obtain that F̃−1(x)n = xn
for every n 6∈ S. It remains to show that F̃−1(x)n = xn is true for every
n ∈ S. Let n be an arbitrary element of S. Consider sequences y and z
defined by yn = 1, zn = −1 and yi = zi = F̃−1(x)i for every i 6= n. Note
that the sets Sy = {i ∈ N : yi 6∈ {−1, 1}} and Sz = {i ∈ N : zi 6∈ {−1, 1}} are
contained in the set S \ {n}. This implies that the sets Sy and Sz have at
most N elements. Therefore, we can apply the induction hypothesis to obtain
F̃ (y) = y and F̃ (z) = z. Since the sequences y, z and F̃−1(x) coincide for all
indices distinct from n, then the distance between elements F̃−1(x) and y is
equal to |F̃−1(x)n − yn| and the distance between elements F̃−1(x) and z is
equal to |F̃−1(x)n − zn|. It follows that the distance between elements x and
y is at most |F̃−1(x)n − yn| and the distance between elements x and z is at
most |F̃−1(x)n−zn|. Combining these two facts, we obtain F̃−1(x)n = xn.
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From the last lemma it follows that F̃ is an identity map on B∗1 ∪B∗−1. Since
F̃ is continuous and B∗1 ∪B∗−1 is dense in B1 ∪B−1, then F̃ is also an identity
map on B1 ∪B−1. It turns out that we can say something about other levels
too.

Lemma 4.9. Let x ∈ B, h = limxk and n ∈ N.

1) If |xn| < |h|, then F̃ (x)n = xn.

2) If xn ≥ |h|, then F̃ (x)n ∈ [|h|, xn].

3) If xn ≤ −|h|, then F̃ (x)n ∈ [xn,−|h|].

Proof. For the case h = 0, the three items follow from Lemma 4.6 and the
item 1) of Lemma 4.3, so it remains to consider the case h 6= 0.

Let us start with proving the first item. For the case xn = 0, the claim follows
from Lemma 4.3, so it remains to consider the case xn 6= 0. Let ε = |h| − |xn|.
Note that ε > 0. Since the sequence x converges to h, then there exists an
index N ∈ N such that |xk− h| < ε for each k ≥ N . Note that n < N . Define
a sequence y ∈ B as

yk =


sgn(xn), k = n,

xk, k < N, k 6= n,

sgn(h), k ≥ N.

Note that the sequence y satisfies the conditions of Lemma 4.8, hence we have
F̃ (y) = y. Compare sequences x and y. For k = n we have |xk−yk| = 1−|xn|.
For k < N , k 6= n we have |xk−yk| = 0. For k ≥ N we have |xk−yk| < 1−|xn|.
It follows that the distance between x and y is equal to 1− |xn|. Therefore,
the distance between F̃ (x) and y is at most 1− |xn| (recall that F̃ (y) = y).
If xn < 0, then the latter fact implies F̃ (x)n ≤ xn, while Lemma 4.6 implies
F̃ (x)n ≥ xn. If xn > 0, then the latter fact implies F̃ (x)n ≥ xn, while Lemma
4.6 implies F̃ (x)n ≤ xn. In either case we have F̃ (x)n = xn as wanted.

Now, let us consider the second item. By Lemma 4.6 we know F̃ (x)n ≤ xn, so
it remains to show F̃ (x)n ≥ |h|. Let ε be an arbitrary positive number. Since
the sequence x converges to h, then there exists an index N ∈ N such that
|xk − h| < ε for each k ≥ N . If it happens that N ≤ n, then choose N to be
any index greater than n. Define a sequence y ∈ B as before. Note that the
sequence y satisfies the conditions of Lemma 4.8, hence we have F̃ (y) = y.
Compare sequences x and y. For k = n we have |xk−yk| = 1−|xn| ≤ 1−|h|. For
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k < N , k 6= n we have |xk−yk| = 0. For k ≥ N we have |xk−yk| < 1−|h|+ε.
It follows that the distance between x and y is at most 1− |h|+ ε. Therefore,
the distance between F̃ (x) and y is also at most 1 − |h| + ε (recall that
F̃ (y) = y). This yields F̃ (x)n ≥ |h| − ε. Since ε was arbitrary, then it follows
that F̃ (x)n ≥ |h|. This concludes the proof of the second item. The proof of
the third item is analogous.

We can make some conclusions from the properties obtained in the last
lemma. First, we see that F̃ preserves the limit – for every x ∈ B we
have lim F̃ (x)k = limxk. Moreover, we see that the inverse function has the
following property.

Lemma 4.10. Let y ∈ B, h = lim yk and n ∈ N. If |yn| < |h|, then F̃−1(y)n =
yn.

Proof. Denote F̃−1(y) by x. As mentioned above, F̃ preserves the limit.
Therefore, we have limxk = lim yk = h. We can have three cases: |xn| < |h|,
xn ≥ |h| and xn ≤ −|h|. If xn ≥ |h|, then Lemma 4.9 implies that yn ≥ |h|,
which contradicts our assumption. If xn ≤ −|h|, then Lemma 4.9 implies that
yn ≤ −|h|, which contradicts our assumption. Therefore, we are left with the
case |xn| < |h|, so Lemma 4.9 implies that yn = xn.

We are almost done. Recall that in the case of c0 the last step was to show
that the set BS

0 , where S is a finite subset of N, is mapped bijectively onto
itself. To finish the proof at hand, it will suffice to show the same for the set
BS
h , where S is a finite subset of N and h ∈ [−1, 1]. Lemma 4.9 implies the

inclusion F̃ (BS
h ) ⊂ BS

h , so it remains to show that the same is true for the
inverse function. This is exactly what the next lemma asserts. It will be more
convenient to limit ourselves to the case h ∈ (−1, 1) \ {0}. Fortunately, this
will be sufficient.

Lemma 4.11. Let h ∈ (−1, 1) \ {0} and let S be a finite subset of N. Then
F̃−1(BS

h ) ⊂ BS
h .

Proof. Let us consider the case h > 0. Let y be an arbitrary element of the
set BS

h . Our goal is to show that F̃−1(y) ∈ BS
h . To prove this, we need to

show that F̃−1(y)n = h for every n ∈ N \ S. Let n be an arbitrary element of
n ∈ N \ S. Since yn = h and h > 0, then Lemma 4.7 says F̃−1(y)n ≥ h, so
we only need to show that the reverse inequality is also true. For the sake
of contradiction, suppose that F̃−1(y)n > h. Denote 1 − h by d. Define a
sequence z ∈ B as
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zk =


1, k = n,

yk, |yk| < h,

h+ d/2(1− 1/2k), yk ≥ h, k 6= n,

−h− d/4, yk ≤ −h.

It is straightforward to check that zk ∈ [−1, 1] for every k ∈ N. We see that
for every k 6∈ S ∪ {n} we have the third case. Since the set S ∪ {n} is finite
and h+ d/2(1− 1/2k)→ h+ d/2, then we also have zk → h+ d/2. Therefore,
we see that z is indeed an element of B. See Figure 4 below for an illustration.

Denote F̃−1(y) and F̃−1(z) by y′ and z′. To obtain a contradiction, let us
show that the distance between y′ and z′ is smaller than d. Since zn = 1, then
Lemma 4.7 says z′n = 1. Consider an index k 6= n. Recall that lim zk = h+d/2.
Since we have |zk| < |h+ d/2|, then Lemma 4.10 implies z′k = zk. It follows
that z′ = z. Therefore, we need to show that the distance between y′ and
z is smaller than d. According to our assumption, we have y′n > h, hence
|y′n − zn| < d. To show that the distance between y′ and z is smaller than d,
it will suffice to show that |y′k− zk| ≤ 3d/4 for every k 6= n. Consider the case
|yk| < h. Lemma 4.10 implies y′k = yk and the definition of z implies zk = yk,
so y′k = zk and |y′k − zk| = 0. Let us consider the cases yk ≥ h and yk ≤ −h.
If yk ≥ h, then Lemma 4.7 implies that y′k ∈ [h, 1], and if yk ≤ −h, then
Lemma 4.7 implies that y′k ∈ [−1,−h]. In either case, the greatest possible
distance between y′k and zk is 3d/4. This shows that the distance between y′
and z is smaller than d. Since the distance between y′ and z is smaller than
d, then the distance between y and z should be also smaller than d, but we
have |yn − zn| = d, which is a contradiction. The case h < 0 is analogous.

Figure 4: Illustration of the proof of Lemma 4.11
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Now, we can finish the proof. The remaining part is very similar to the way
we finished the proof for c0.

Theorem 4.12. F is an isometry.

Proof. Let h ∈ (−1, 1) \ {0} and let S be a finite subset of N. If x ∈ BS
h ,

then limxk = h and Lemma 4.9 implies that F̃ (x)n = h whenever xn = h.
This yields the inclusion F̃ (BS

h ) ⊂ BS
h . Applying Lemma 4.11, we obtain the

inclusion F̃−1(BS
h ) ⊂ BS

h . Combining these two together, we see that the set
BS
h is mapped bijectively onto itself. It follows that the restriction of F̃ to BS

h

is a non-expansive bijection from the unit ball of a finite-dimensional space
onto itself (the set BS

h , as a metric space, can be identified with BS
0 ). Since

the unit ball of a finite-dimensional space is plastic, then it follows that the
restriction of F̃ to BS

h is an isometry. Theorem 2.7 says that the latter is
actually a restriction of an isometric automorphism of the underlying finite-
dimensional space. Combining this with some previously acquired information,
we can conclude that the restriction of F̃ to BS

h is an identity map.

Since F̃ is an identity map on BS
h for every finite subset S, then the restriction

of F̃ to B∗h is also an identity map, because the latter is the union of all the
subsets BS

h , where S is a finite subset of N. Since F̃ is an identity map on B∗h,
F̃ is continuous and B∗h is dense in Bh, then it follows that the restriction of
F̃ to Bh is also an identity map.

We have seen that F̃ is an identity map on Bh for every h ∈ (−1, 1) \ {0}.
Previously, we have also seen that F̃ is an identity map on B−1 and B1. It
follows that the restriction of F̃ to B \ B0 is an identity map. Since F̃ is
continuous and B \ B0 is dense in B, then it follows that F̃ is an identity
map. This means that F is a restriction of an isometric automorphism of c
defined by A(x)σn = αnxn. In particular, F is an isometry.
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