HINA ANWAR

Towards Greener Software Engineering

Using Software Analytics

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS

30




DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
30



DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
30

HINA ANWAR

Towards Greener Software Engineering
Using Software Analytics

Z& [UNIVERSITY oF TARTU
H"L Press
1632



Institute of Computer Science, Faculty of Science and Technology, University of
Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in Computer Science on 4th November, 2021 by the Council of
the Institute of Computer Science, University of Tartu.

Supervisors

Prof. Dr. Dietmar Alfred Paul Kurt Pfahl
University of Tartu
Estonia

Prof. Dr. Satish Narayana Srirama
Visiting Professor, University of Tartu, Estonia
Associate Professor, University of Hyderabad, India

Opponents

Assist. Prof. Dr. Luis Miranda da Cruz
Delft University of Technology (TU Delft)
Netherlands

Prof. Dr. Coral Calero
University of Castilla-La Mancha
Spain

The public defense will take place on December 14th, 2021 at 11:15 in Zoom.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright © 2021 by Hina Anwar

ISSN 2613-5906
ISBN 978-9949-03-767-4 (print)
ISBN 978-9949-03-768-1 (pdf)

University of Tartu Press
http://www.tyk.ee/



To my daughter



ABSTRACT

In the current era of ubiquitous technology usage, gadgets like smartphones,
tablets, and laptops are widely used. Since all of these devices are battery-
operated, the question of energy efficiency has become one of the crucial parame-
ters when users select a device. Energy efficiency aims at reducing the amount of
energy required when providing products and services. The energy efficiency of
a digital device has become part of its overall perceived quality.

Empirical studies have shown that mobile apps that do not drain battery usually
get good ratings from users. Many studies have been published that present refac-
toring guidelines and tools to optimize the code to make mobile apps energy ef-
ficient. However, these guidelines cannot be generalized w.r.t. energy efficiency,
as there is not enough energy-related data for every context. Existing energy en-
hancement tools and profilers are mostly prototypes applicable to only a small
subset of energy-related problems. In addition, existing guidelines and tools fo-
cus on addressing energy issues a posteriori, i.e., once they have already been
introduced into the code.

Android app code can be roughly divided into two parts: the custom code and the
reusable code. Custom code is unique to each app. Reusable code includes third-
party libraries that are included in apps to speed up the development process. As
compared to desktop or web applications, Android apps contain multiple compo-
nents that have user-driven workflows. A typical Android app consists of activ-
ities, fragments, services, content providers, and broadcast receivers. Due to the
difference in architecture, the support tools used to develop traditional Java-based
applications are not so useful in Android app development and maintenance.

We start by evaluating the energy consumption of various code smell refactorings
in native Android apps. Then we conduct an empirical study on the impact of
third-party network libraries used in Android apps. By analysing commonly used
third-party network libraries in various usage scenarios, we show that the energy
consumption of these libraries differs significantly. We discuss results and provide
generalized contextual guidelines that could be used during app development.

Further, we conduct a systematic literature review to identify and study the cur-
rent state of the art support tools available to aid the development of green An-
droid apps. We summarize the scope and limitations of these tools and highlight
research gaps. Based on this study and the experiments we conducted before, we
highlight the problems in capturing and reproducing hardware-based energy mea-
surements. We develop support tool ARENA (Analysing eneRgy Efficiency in
aNdroid Apps) for the Android Studio IDE that could help in gathering energy
data and analyzing the energy consumption of Android apps.



Last, we develop the support tool REHAB (Recommending Energy-efficient
tHird-pArty liBraries) for the Android Studio IDE to recommend energy efficient
third-party network libraries to developers during development.



CONTENTS

List of Figures
List of Tables

1. Introduction
1.1. Problem Statement and Research Goals . . . . .. ... ... ..
1.2. Research Approach . . . . ... ... ... ... .. .......
1.3. Contributions of the Thesis . . . . . . . ... ... ... .....
1.4. Structure of the Thesis . . . . . . ... ... ... ........

2. Background
2.1. Android OS . . . . . .
22.Android Apps . . . ..o
2.3. Android App Development Process . . . . . .. ... .......
24.CodeSmells . . . . .. . ...
2.5. Third-party Libraries . . . . . . ... ... ... ... ......
2.6. Software Sustainability . . . . ... ... ... ... ... ...
2.7. Energy Measurement . . . . . .. ... ...

3. Related Work
3.1. Code Smells Refactoring . . . . ... ... ............
3.2. Third-party Libraries . . . . .. ... ... ... ... ......
3.3. Tool Support for Developing Green Android Apps . . . . . . . ..

4. Impact of Code Smell Refactoring on the Energy Consumption of An-
droid Apps
4.1.Research Method . . . . ... ... ... .. ... ... ...
4.1.1. Research Questions . . . . . . ... ............
412.CodeSmells . . .. ... ... ... ..
4.1.3. Code Smell Detection Tool and Refactoring . . . . .. ..
4.1.4.Selected Apps . . . . ..o
415 . TestingTool . . ... ... ... ... ... ........
4.1.6. Energy Measurement . . . . .. ... ... ... ... ..
4.1.7. Test Environment . . . . . . ... ... ... .......
4.1.8. Experimental Design . . . . .. ... ... ... ... ..
42.Results. . . . ...
4.2.1. RG1-RQ1: Is there a correlation between code smell refac-

12
13

16
17
20
21
22

24
24
24
25
26
26
27
28

30
30
31
32

35
35
35
36
37
37
37
38
38
39
41

41

43
45



4.4 Threatsto Validity . . . . . . . ... ... ... ... .......

5. Impact of Third-party HTTP Libraries on the Energy Consumption

of Android Apps
5.1.Research Method . . . . . . .. .. ... ... ... . .....

5.1.1.
5.1.2.
5.1.3.
5.14.
5.1.5.

Research Questions . . . . . .. . ... ... .......
UseCases . . . . . . . o v i i i i ittt i
Selected Libraries . . . . . .. ... ... ... ......
Experimental Design . . . . .. ... ... ........
Test Environment . . . .. ... ..............

52.Results . . . . . ...

5.2.1.

5.2.2.

5.2.3.

5.24.

5.2.5.

5.2.6.

RG1-RQ3-A: When making GET requests is there variance

in energy consumption of Android third-party HTTP libraries?

RG1-RQ3-B: When making multi-part POST requests is
there variance in energy consumption of Android third-party
HTTP libraries? . . . . . . . . . . ...
RG1-RQ3-C: When sending structured JSON objects is
there variance in energy consumption of Android third-party
HTTP libraries? . . . . . . . ... ... ....
RG1-RQ3-D: When receiving structured JSON objects is
there variance in energy consumption of Android third-party
HTTP libraries? . . . . . . . . . . ...
RG1-RQ3-E: When loading and displaying images on the
screen is there variance in energy consumption of Android
third-party HTTP libraries? . . . . . . . . . .. ... ...
RG1-RQ4: Is the energy consumption of a third-party HTTP
library correlated with execution time? . . . . . . . .. ..

53.DISCUSSION . . . . . .. e e e e e

5.3.1.
5.3.2.
5.3.3.
5.34.
5.3.5.

Recommendations . . . . ... ... ... ... ... ...
Energy Consumption versus Execution Time . . . . . . ..
Energy Drivers . . . . . . .. ... ... ..
Energy Consumption versus Popularity . . . . . ... ...
General Take-aways . . . . ... ... ... ... .....

S54.Threatsto Validity . . . . . . . ... ... ... ... ......

6. Tool Support for Green Android Development
6.1. Research Method . . . . . ... ... ... ... .........

6.1.1.
6.1.2.
6.1.3.
6.14.

Research Questions . . . . . .. ... ... ........
SearchQuery . .. ... .. ... ... ..........
Screening of Publications . . . . .. ... ... ... ...
Classification and Analysis . . . . .. ... ... .....

6.2.Results . . . . . ...

47

50
51
51
52
53
54
57
57

59

59

61

63

64
67
67
69
69
70
71
71

73
73
73
74
75
76
80



6.2.1. RG2-RQ1: What state of the art support tools have been de-
veloped to aid software practitioners in detecting or refactor-
ing Android specific code smells and energy bugs in Android
apps? . .o e e e e e e 82
6.2.2. RG2-RQ2: What state of the art support tools have been
developed to aid software practitioners in detecting or mi-
grating third-party libraries in Android apps? . . . . . . . 82
6.2.3. RG2-RQ3: How do existing support tools compare to one
another in terms of techniques they use for offering the sup-
POFE? .« . e e 84
6.2.4. RG2-RQ4: How do existing support tools compare to one
another in terms of the support they offer to practitioners for

improving energy efficiency in Android apps? . . . . . . . . 88
6.3.Discussion . . . . ... L 97
6.3.1. Support Tools for Code Smell and Energy Bug Detection or

Refactoring . . . . ... ... ... .. .. 97
6.3.2. Support Tools for Third-party Library Detection or Migration 98
6.4. Threatsto Validity . . . . . . .. ... ... ... . ..... 100

7. ARENA: A Tool for Measuring and Analysing the Energy Efficiency
of Android Applications 102
7.1. ARENA Architecture . . . . . . . . .. ... . 103
7.1.1. Component 1: ExperimentRunner . . . . . . ... .. ... 104
7.1.2. Component 2: CleanupRunner . . . .. .. ... .. ... 105
7.1.3. Component 3: AnalysisRunner . . . .. ... ... .... 106
7.1.4. Component 4: VisualizationRunner . . . . . .. ... ... 106
7.2. ARENA Implementation . . . .. ... ... ........... 106
7.3. ARENAinPractice . . . . ... .. ... ... ... ....... 107
7.3.1. Comprehensive Usage Scenario . . . . ... ........ 107
7.3.2. Application Example . . .. ... ... ... ....... 108

8. REHAB: A Tool for Recommending Energy-efficient Third-party Li-
braries to Android Developers 112
8.1. REHAB Architecture . . . . . . ... ... ... ... ... ... 112
8.1.1. Component 1: KnowledgeBase . . . . . ... ... .... 113
8.1.2. Component 2: Code Inspection . . . .. ... ... .... 115
8.1.3. Component 3: Rule Mapping Module . . . . . ... .. .. 116
8.2. REHAB Implementation . . . ... ... ... .......... 116
8.2.1. Usage Overview . . . . . . . . . . . o v v i .. 118
8.3. Scope Extensionof REHAB . . . . ... ... . ... ...... 121
8.4.REHAB Evaluation . . . . . ... ... ... ........... 129
9. Conclusion and Future Work 132
9.1. Contributions and Findings . . . . . ... ... ... ....... 132

10



9.1.1. Code Smell Refactorings . . . .. ... ... ....... 132

9.1.2. Third-party Libraries . . ... ... ... ... ...... 132
9.1.3. Tool Support for Developing Green Android Apps . . . . . 133
9.2. Opportunities for Future Work . . . . ... ... ... ...... 134
9.2.1. Contextual Data for Refactoring . . . . . . ... ... ... 134
9.2.2. Trade-off Analysis . . . . . ... ... ... ........ 134

9.2.3. Energy Data for Creating Software Based Energy Prediction
Models . . . . . . ... e 135
Bibliography 136

Appendix A. Statistics and Pairwise Comparison Results for Selected

Third-party HTTP Libraries 152
A.1. Statistics for Selected Third-party HTTP Libraries . . . . . . . .. 152
A.2. Features and Methods of Selected Third-party HTTP Libraries . . 153

A.3. Results of Pairwise Comparison for the Mean Ranks of Energy by
Libraryin Each Use-case . . . . ... ... ... ... ...... 154
Appendix B. List of Selected Publications, Energy Bugs, and Code Smells 162
B.1. List of Selected Publications . . . . ... ... .......... 162

B.2. Android Energy Bugs Covered by Tools in the ‘Detector’ and ‘Op-
timizer’ Categories . . . . . . ... . e e e e e e 167

B.3. Android Code Smells Covered by Tools in ‘Detector’ and ‘Opti-
Mizer’ Categories . . . . . . v v v v e e e e e e 168
Appendix C. Instructions for Installing ARENA 171
C.1. Installation Pre-requisites . . . . . . .. ... ... .. ...... 171
C.2. Plugin Installation . . . . . ... ... ... ... ......... 171
Appendix D. Installation Instruction and Detailed Data - REHAB 172
D.1. Plugin Installation . . . . . . ... ... ... ... ... ... 172
D.2. Third-party Libraries and Version Used in Android Apps . . . . . 172
Acknowledgement 175
Sisukokkuvote (Summary in Estonian) 176
Curriculum Vitae 178
Elulookirjeldus (Curriculum Vitae in Estonian) 179
List of Original Publications 180

11



1.1.

2.1

2.2
2.3.
24.
4.1.
4.2.
4.3.
4.4.
45.
4.6.
5.1

5.2.
5.3.
54.
5.5.
5.6.
5.7.
6.1.
6.2.
6.3.

6.4.

7.1.

7.2.
7.3.
7.4.
7.5.
7.6.
8.1.
8.2.
8.3.
8.4.

LIST OF FIGURES

Structure of the thesis . . . . . . . . .. ... L. 23
. Android software stack . . . . .. ... . oL oL 24
Overview of Android app development process . . . .. .. .. 26
Dimensions of software sustainability . . ... ... ... ... 28
Energy measurement process . . . . . . . . ... ... 29
Energy consumption in joules for Calculator app per treatment . 42
Energy consumption in joules for Todo-List app per treatment . 42
Energy consumption in joules for ‘Openflood’ app per treatment 42
Execution time in seconds for Calculator app per treatment . . . 44
Execution time in seconds for Todo-List app per treatment . . . 44
Execution time in seconds for ‘Openflood’ app per treatment . . 45
For each use case, the library used for making app versions and
the respective app versions . . . . . . . ... ... 55
Mean energy consumption per library in UC-GF . . . . . . . .. 58
Mean energy consumption per library in UC-PF . . . . . . . .. 60
Mean energy consumption per library in UC-PJO . . . . . . .. 60
Mean energy consumption per library in UC-GJO . . . . . . .. 62
Mean energy consumption per library in UC-GI . . . . . .. .. 63
Flowchart summarizing recommendations . . . . . .. ... .. 68
Publication per year per category (Search Query 1) . . . .. .. 83
Publication per year per category (Search Query 2) . . ... .. 83
Percentage of the tools in "Detector’ and *Optimizer’ categories
that can detect Android energy bugs. . . . . .. ... ... ... 92
Percentage of code smells detected by each tools in ‘Detector’ and
‘Optimizer’ categories. . . . . . . . v v v v v v v 93
An overview of the energy measurement and analysis process that
issupported by ARENA . . . . ... ... ... ... ..... 103
Detailed workflow supported by ARENA tool . . . .. ... .. 109
ARENA interface - Data collectiontab . . . . . . ... ... .. 110
ARENA interface - Pre-processingtab . . . . . . ... ... .. 110
ARENA interface - Analysistab . . . .. ... ... ...... 111
ARENA interface - Visualizationtab . . . . . ... ... .. .. 111
Anoverviewof REHAB . . ... ... ... ... ....... 113
REHAB tool window . . . . . .. ... ... ... ....... 119
REHAB usageexample . . . . . ... .. ... .. ....... 120
Number of versions per change type per library . . . . ... .. 122

12



4.1.
4.2.
4.3.
4.4.
45.
4.6.
4.7.
4.8.
4.9.

5.1

5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.

6.1.
6.2.
6.3.
6.4.
6.5.

6.6.
6.7.
6.8.
6.9.

6.10.
6.11.

6.12.

6.13.
6.14.

LIST OF TABLES

Characteristics of selected Androidapps . . . . . ... ... ..
Number of refactorings for Calculatorapp . . . . . .. ... ..
Number of refactorings for Todo-Listapp . . . ... ... ...
Number of refactorings for Openfloodapp . . . . . . . . .. ..
ANOVA results for all apps (energy consumption) . . . . . . . .
Overview of energy consumption results (RG1-RQ1) . . . . ..
ANOVA results for all apps (execution time) . . . . . . ... ..
Overview of execution time results (RG1-RQ2) . . . ... ...
Energy consumption results when a permutation of code smell
refactorings was applied. . . . .. ... ... ... ... ...
Android third-party HTTP libraries used in each selected use case
for making app versions. . . . . ... ... ... ... ...
Results for RG1-RQ3-A and summary statistics (UC-GF) . . . .
Results for RG1-RQ3-B and summary statistics (UC-PF) . . . .
Results for RG1-RQ3-C and summary statistics (UC-PJO)
Results for RG1-RQ3-D and summary statistics (UC-GJO) . . .
Results for RG1-RQ3-E and summary statistics (UC-GI) . . . .
RG1-RQ4 Results and summary statistics . . . . . . ... ...
Spearman correlation results between energy and execution time
for librariesin allusecases . . . . .. .. ... .. .......
Searchqueryfilter. . . . . ... ... ... .. .........
Quality assessmentcriteria . . . . . . .. ...
Categories of support tools (RG2-RQ1) . ... ... ......
Categories of support tools (RG2-RQ2)) . . . . ... ... ...
Categories of techniques used in support tools for code smells or
energy bugs (RG2-RQ3) . . .. ... ... ... . ... ..
Categories of techniques used in support tools for third-party li-
braries (RG2-RQ3) . . . . . . .. . ... ... . ........
Number of publications extracted per online repo. (search query 1)
Number of publications per screening step (search query 1) . . .
Quality score assigned to each selected publication (search query
P
Number of publications extracted per online repo. (search query 2)
Number of publications after applying filters and screening steps
(searchquery2) . . . . . . . . ... .
Quality score assigned to each selected publication (search query
)
Distribution of publications in each category (RG2-RQ1) . . . .
Distribution of publications in each category (RG2-RQ2) . . . .

13

37
40
40
40
41
43
44
45

46

56
58
60
61
62
63
64

65
75
76
77
78
78
79
81
81

81
81

82

82

83



6.15.

6.16.

6.17.

6.18.

8.1.
8.2.
8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.11

8.12.

8.13.

8.14.

8.15.

8.16.
8.17.

Overview of support tools (for code smells or energy bugs de-
tection and refactoring) showing the technique used for offering
support to developers (RG2-RQ3) . . . ... ... ... ....
Overview of support tools (for third-party library detection and
migration) showing the technique used for offering support to de-
velopers (RG2-RQ3) . . . . ... ... ... ... .......
List of support tools in ‘Profiler’, ‘Detector’, and ‘Optimizer’ cat-
egories along with information about their inputs and outputs, user
interface, IDE support and availability (RG2-RQ4) . . . .. ..
List of support tools in ‘Identifier’, ‘Migrator’, and ‘Controller’
categories along with information about their inputs and outputs,
library coverage, Ul, and availability (RG2-RQ4) . . . . . . ..

Android third-party HTTP libraries used in each selected use case.

Unique combinations of use-cases. . . . . . . . ... ......
Based on mean energy values the calculated minimum energy loss
values are shown for selected third-party HTTP libraries in UC-
GFandUC-PF . . ... ... . ... .. ... . ... ...
Elements for detecting different types of HTTP requests . . . . .
Number of versions per library available in MVN-central reposi-
tory (as of January 2021). . . . . . .. ... ..o
Number of groups created per library in which versions were di-
vided. . ...
Number of apps in which selected third-party HTTP libraries were
detected (irrespective of the version). . . . . . . .. ... .. ..
Group of versions created for Volley library along with number of
apps in which these groups were detected . . . . ... ... ..
Group of versions created for Retrofit library along with number
of apps in which these groups were detected . . . . . . ... ..
Group of versions created for OkHttp library along with number
of apps in which these groups were detected . . . . . . ... ..

. Group of versions created for AndroidAsync library along with

number of apps in which these groups were detected . . . . . .
Group of versions created for AsyncHttp library along with num-
ber of apps in which these groups were detected . . . . . . . . .
Group of versions created for Glide library along with number of
apps in which these groups were detected . . . . . . ... ...
Group of versions created for Picasso library along with number
of apps in which these groups were detected . . . . . . . .. ..
Group of versions created for UIL (Universal Image Loader) li-
brary along with number of apps in which these groups were de-
tected . ...
REHAB evaluation results (app-set 1) . . . . . ... ... ...
REHAB evaluation results (app-set2). . . . . . ... ... ...

14

84

85

89

94
114
115

115

117

122

123

123

124

124

125

126

127

127

128



Al
A2.
A3.
AA4.
AS.
A.6.
AT
A.8.

A09.

A.10.

B.1.

B.2.

D.1.

D.2.

D.3.

Statistics for selected libraries gathered from Awesome Android
website (Oct. 2019) . . . . . . . . ... ...
Statistics for selected libraries gathered from the ‘AppBrain’ web-
site. (Oct. 2019) . . . . . . . . .
HTTP request methods . . . . . .. ... ... ... ......
Features in selected network third-party libraries . . . .. . ..
Features in selected image loading third-party libraries . . . . .
Pairwise comparisons for the mean ranks of energy by library
(UC-GF) . . . . . e
Pairwise comparisons for the mean ranks of energy by library
(UC-PF) . . . o e
Pairwise comparisons for the mean ranks of energy by library
(UC-PJO) . . . o e
Pairwise comparisons for the mean ranks of energy by library
(UC-GJO) . . . o o e
Pairwise comparisons for the mean ranks of energy by library
(UC-GD . . . o e
Android energy bugs detected by each tool in ‘Detector’ and ‘Op-
timizer’ categories. . . . . . . ... .. e e e e
Android code smells detected by each tool in the ‘Detector’ and
‘Optimizer’ categories. . . . . . . . v v v v v v v .
Group of versions created for Gson library along with number of
apps in which these groups were detected . . . . ... ... ..
Group of versions created for Jackson library along with number
of apps in which these groups were detected . . . . . . . .. ..
Group of versions created for Moshi library along with number of
apps in which these groups were detected . . . . . ... .. ..

15

152

153

153

154

154

154

155

155

158

161

167

170

172

173



1. INTRODUCTION

Global warming due to CO, emission has become one of the most promi-
nent environmental issues in the past decades. A part of this CO, emission
is contributed by the information and communication technology (ICT) indus-
try [64]. Therefore, producing green and sustainable products and practices
has been the focus of many researchers in the ICT community. Recently, the
focus of research in the ICT community has shifted from optimizing the en-
ergy consumption of hardware to optimizing the energy consumption of software
[11, 13, 24, 26, 40, 52, 62, 79, 88, 91, 109, 120, 139].

Software systems have such a significant impact on our everyday lives that
changes towards environmental sustainability can ripple to other systems with
which they interact and positively affect the industries in which they are used.
This impact can be direct, indirect, or occur as a rebound effect [23]. As soft-
ware indirectly consumes energy by controlling the equipment. An efficiently
designed software might use resources optimally, thus reducing energy consump-
tion [70, 84, 111]. A green or sustainable software is the one that is developed
and used in such a way that it leaves a minimum negative impact on users, envi-
ronment, economy and society in general [48]. Therefore, green software engi-
neering consists of processes and practices that help produce sustainable software
and everything related to the software product, be it development or maintenance,
taking environmental aspects into account [23]. In "green software engineering
practitioners care and think about energy when they build applications™ [102].

In the current era of ubiquitous technology usage, gadgets like smart phones,
tablets, and laptops are widely used. Among portable devices, mobile phones
are the most commonly used. Statistics show that the usage of mobile devices
will grow in the coming years [50], indicating an increase in the carbon footprint.
Since mobile devices are battery operated, the question of energy efficiency has
become one of the crucial parameters when users select a device. Energy effi-
ciency aims at reducing the amount of energy required when providing products
and services. In order to produce energy efficient devices, the software architec-
ture, design, and code all need to be developed with the awareness that the soft-
ware product will be power efficient or, in other words, green. However, software
practitioners lack the necessary information and support infrastructure required to
produce green software products [102]. Such information could be gathered via
software analytics, which combines information from different software artefacts
and converts it into useful information for software practitioners.

The term ‘Android development’ refers to the development of apps that are
developed to operate on devices running the Android operating system. These
apps could be developed in various languages; however, in this thesis, we focus

16



on Android development in Java. Android development differs from traditional
software development in terms of context, user-experience and a touch-based
interface. Android apps are designed for portable devices, which have limited
resources such as memory or battery. A common struggle during Android
app development is how to make the apps efficient in terms of resource usage.
Banarjee et al. summarize the problem nicely as follows:

“High computational power coupled with small battery capacity and the appli-
cation development in an energy-oblivious fashion can only lead to one situation:
short battery life and an unsatisfied user base” [19].

Previously, studies have explored mobile app stores in order to define procedures
to optimize energy consumption of apps [103, 118, 136, 156, 166, 170, 172].
Some studies have focused on profiling energy [16, 17, 32, 82, 125] consumed by
apps, while others have developed support tools [20, 55]. As compared to desk-
top or web applications, Android apps contain multiple components that have
user-driven workflows. A typical Android app consists of activities, fragments,
services, content providers, and broadcast receivers. Due to the difference in ar-
chitecture, the support tools used in the development of traditional Java-based
applications are not so useful in Android app development and maintenance.

1.1. Problem Statement and Research Goals

Android app code can be roughly divided into two parts: the custom code and the
reusable code. Custom code is unique to each app. Reusable code includes third-
party libraries that are included in apps to speed up the development process. To
produce a mobile app it is a common practice of developers to combine custom
app code with library modules. As compared to app code which is unique to the
project, libraries are reusable services that hide the low-level complexities and
provide developers with a higher level abstraction for certain features. As the
mobile app evolves the app code evolves with it while the library modules usually
stay static and are not updated by the app developers [44, 87, 147]. In the domain
of Android app development, research has been focused on development activities
related to energy efficiency, memory usage, performance etc., and maintenance
activities related to code smell detection and correction, energy bug detection and
correction, detection and migration of third-party libraries etc.

Code smells are an indication of possible problems in source code or design of
the apps. Such problems could be avoided by refactoring the code [59]. How-
ever, refactoring the code smells could impact the energy consumption of mo-
bile apps as internal structure of the code is changed. In Android development,
code smells typically appear due to frequent development and update cycles of

17



apps. As the source code of Android apps is mostly in Java, therefore, tradi-
tional code smells (as defined by M. Fowler [59]) can occur. These code smells
are related to maintainability and can appear in applications irrespective of the
platform. In addition to traditional code smells, there are Android-specific code
smells that appear in Android apps. Android-specific code smells represent bad
programming practices in Android apps and could impact maintainability and
other non-functional requirements such as performance, security, sustainability
etc. Many studies [72, 73, 122, 123, 135] have focused on identifying and cat-
aloguing Android-specific code smells and profiling the energy consumption of
Android-specific code smell refactorings. Energy bugs are scenarios that cause
unexpected energy drains, such as preventing the mobile device from going into
the idle state even after the app execution has been completed. Such malfunc-
tioning can cause battery drains and should be avoided [19]. To build an energy-
efficient Android app, developers need to identify and refactor code smells and
energy bugs.

Third-party libraries are reusable components available to implement various
functionalities in an app, such as billing, advertisement, and networking. Up till
June 2021, the online Maven repository! contained 15,730,282 unique libraries.
Such a huge supply of third-party libraries is linked to the demands and needs
of developers [174]. Almost sixty percent of code in Android apps is related to
third-party libraries [168]. However, these libraries could introduce various secu-
rity, privacy, permission, and resource usage related issues in apps [179]. The re-
search on the detection or migration of third-party libraries has many uses. Some
studies have used third-party library detection techniques for finding security vul-
nerabilities [65, 77, 104, 115] in Android apps. While others have focused on
privacy leaks [21, 60, 61, 80, 169]. Third-party libraries have been detected and
removed as noise in clone, app repackage, and malicious app detection studies
[27, 94, 150, 178, 181]. Third-party libraries are detected and removed from
these studies in order to improve the accuracy of the analysis. Studies related
to the energy impact of third-party Android libraries are limited [154].

To improve app code for energy efficiency developers could apply refactoring
alternatives that are energy efficient. In case of libraries, choosing a stable and
reliable third-party library is important as app success depends on it, however, if
that third-party library is not energy efficient and will not be updated anytime soon
it might negatively impact battery consumption. Despite a large number of studies
published related to the energy efficiency of apps, there is still a pronounced gap in
literature in terms of providing generalized contextual guidelines and open source
support tools for improving the energy efficiency of apps. This gap exists because
of the following problem:s:

* Research results related to energy consumption in software apps are con-

lhttps://search.rnaven.org/stats, Statistics for central repository

18



strained by specific contexts and might not be convincing enough for app
developers in their work environment.

* The techniques used for measuring the energy consumption of apps dur-
ing such evaluations usually have a steep learning curve and are unique by
design. Therefore, they are not easy to adopt, reproduce or reuse.

* There is a lack of free open source support tools that could be used during
energy measurements. Measurements are performed by writing specialized
scripts for selected hardware and software components.

The research goal of this thesis is to help overcome these problems by evaluat-
ing the energy consumption of various code smell refactorings and third-party
libraries used in Android app development, with the intention to add data to the
already existing body of knowledge and to provide support tool(s) that could in-
tegrate with the current Android Studio IDE and be usable by app developers
without the in-depth knowledge of energy issues related to mobile apps.

In this thesis, we address the following research goals:

Main Research Goals

RG1: To understand the influence of mobile apps’ code structure on
energy efficiency.

RG2: To improve tool support for developing energy efficient mobile apps.

Regarding RG1, we evaluate alternative coding patterns to save energy in mobile
apps in two contexts 1) custom app code written by the developers; 2) library
modules, i.e., reusable services added to the project. Research related to RQ1
will be interesting for mobile app developers as it will add to the already existing
evidence on what is or is not energy efficient and will provide recommendations
to the developers in some typical use cases. To address RG1, we answer the
following research questions.

RG1-RQ1: Is there a correlation between code smell refactoring and energy
consumption of Android apps? (Chapter 4)

RG1-RQ2: Is there a correlation between code smell refactoring and execution
time of Android apps? (Chapter 4)

RG1-RQ3: Is there variance in the energy consumption of Android third-party
HTTP libraries? (Chapter 5)

RG1-RQ4: Is the energy consumption of a third-party HTTP library correlated
with execution time? (Chapter 5)

19



Regarding RG2, we explore the state of the art support tools for energy efficient
app development and investigate their strengths and weaknesses. More precisely,
we answer the four research questions listed below. This research will be in-
teresting for researchers who want to conduct similar controlled experiments (as
conducted in RG1) for Android-specific code smells or energy bugs or third-party
libraries. Based on the answers to the research questions listed below, we provide
two new support tools that overcome some of the limitations of the existing tools
(Chapters 7 and 8).

RG2-RQ1: What state of the art support tools have been developed to aid soft-
ware practitioners in detecting or refactoring Android specific code smells and
energy bugs in Android apps? (Chapter 6)

RG2-RQ2: What state of the art support tools have been developed to aid soft-

ware practitioners in detecting or migrating third-party libraries in Android apps?
(Chapter 6)

RG2-RQ3: How do existing support tools compare to one another in terms of
techniques they use for offering the support? (Chapter 6)

RG2-RQ4: How do existing support tools compare to one another in terms of
the support they offer to practitioners for improving energy efficiency in Android
apps? (Chapter 6)

1.2. Research Approach

To address RG1, we first conduct controlled experiments, to evaluate the energy
consumption of various traditional code smell refactorings and third-party HTTP
libraries commonly used in Android app development. We choose Android based
development for investigation, because Android holds the largest market share
and is open source. Android also provides the capabilities to manage different
features using libraries and APIs. We select Java as the programming language
for investigation, because it is the native language for Android developers and is
among the most popular languages for Android development. We selected code
smell types as well as their refactorings, from Fowler et al.’s [59] list. We as-
sume that the types of code smells identified by Fowler et al. occur in Java code
independent of platform. The third-party libraries are selected based on usage
statistics and rankings provided on the popular third-party market (AppBrain®)
and catalogue (Awesome Android®). We identified the typical use cases from the
most downloaded apps in the Google play store. The selected third-party libraries
could be used as alternatives to one another in each use case. To measure the en-
ergy consumption, we use hardware based energy measurements as they are more

2https :/lwww.appbrain.com/stats/libraries
3https://android.libhunt.com

20



accurate. Statistical analysis is done on the energy data to measure the variance,
effect size and percentage change in energy.

To address RG2, we study and analyze what is already built and what is needed.
We conduct a systematic mapping study to identify and compare the existing sup-
port tools based on the support they offer to develop green Android apps. In the
related literature, the energy impact of refactoring Android-specific code smells
is not consistent. We know about some tools that detect and refactor energy bugs,
among them, some also include detection for Android-specific code smells. We
systematically check support tools that provide coverage for energy bugs and cov-
erage for Android-specific code smells to aid the development of green Android
apps. We also analyze support tools available to measure the energy consumption
of apps. During the controlled experiments conducted to answer RG1, we found
it challenging and resource-intensive to benchmark the energy consumed by dif-
ferent code smell refactorings and third-party libraries. The energy measurement
process is human-intensive, and there are limited tools available to help automate
this process. Therefore, manual effort is required to apply refactorings and use
libraries in various contexts and combinations. Based on the analysis of state of
the art, we develop the support tool ARENA to help automate the energy mea-
surement process and thus making it more reliable and accurate. We also analyze
support tools available to detect and migrate third-party libraries in Android apps.
We systematically check existing support tools for coverage of the selected third-
party libraries, energy-related support and IDE integration. We wanted to make
the results from investigating the energy impact of various third-party libraries in
RGI1 readily available to developers. Based on the analysis of state of the art,
it was clear that no tool offered energy-related support and IDE integration for
third-party HTTP libraries. Therefore, we build another support tool REHAB that
recommends energy-efficient third-party libraries to the developers.

1.3. Contributions of the Thesis

In this thesis we make three contributions that we hope will help developers and
researchers estimate and improve the energy efficiency of mobile apps.

Contribution 1: Impact of code smell refactoring on the energy consumption of
Android apps. We investigated the custom app code of mobile apps and modify
the code via code smell refactorings in an effort to find the energy efficient
refactorings. For this purpose we conducted an experiment to assess 1) if there is
a correlation between code smell refactorings and energy consumption, 2) if there
is a correlation between code smell refactorings and execution time. The results
of this experiment provide the following insights: 1) impact of refactoring only a
single type of code smell on energy consumption was not consistent. However,
where the effect size was medium or large, energy consumption decreased due to

21



refactoring. 2) Specific permutations of code smell refactorings should be used
with caution as their energy impact might vary strongly depending on the selected
Android app. 3) A significant reduction in energy consumption of Android apps
does not necessarily correlate with a significant reduction or increase of execution
time.

Contribution 2: Impact of third-party HTTP libraries on the energy consumption
of Android apps. The right choice of third-party libraries used in mobile apps is
extremely important as it can affect the code quality. Third-party libraries save
effort to write specialized code and speed up the development. We measured
the energy consumption of alternative third-party Android HTTP libraries for
selected use cases to assess 1) which one of the selected libraries are more energy
efficient in a particular use case such as for making a multipart POST request to
the server or for making a GET request from the server or for loading images
from the server etc. 2) Is there a correlation between execution time and energy
consumption of the selected third-party libraries. The results of our experiment
show that there is a significant variance of energy consumption between the
selected Android third-party HTTP libraries.

Contribution 3: Tool support for green Android development. Aiming at identi-
fying the problems that are resulting in a lack of support tools for energy efficient
programming, it is important to first understand the current tools, methods, mod-
els, and profilers developed so far. To accomplish this, we conducted a systematic
mapping study. Based on the results of this study, and the energy data produced in
the contribution 2, we developed a support tool REHAB that recommends energy
efficient third-party HTTP libraries to the developers. We also developed another
support tool ARENA, to help automate the energy measurement process and to
reduce the risks related to human errors during energy measurements. Both tools
are open source and integrate with the Android Studio and IntelliJ IDEs.

The above contributions have been documented in publications III, VI, and VII
listed at the end of the thesis (see "List of original publications")

1.4. Structure of the Thesis

Sections 1.1 to 1.3 provided the context for the thesis, outlined research goals,
presented our research approach, and described contributions of the thesis.
Figure 1.1 gives an overview of the thesis structure.

Chapter 2 provides the background of how energy estimation can assist devel-
opers in making energy efficient Android apps. We also introduce the concepts
relevant to this thesis.

22



Chapter 3 positions our research by summarizing literature related to app code
and related measures for improving energy efficiency in Android apps.

Chapter 4 tackles RQ1 and RQ2 of RG1 of the thesis and is based on the work
from [158]. This work was published in the proceedings of the 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’19).

Chapter 5 tackles RQ3 and RQ4 of RG1 of the thesis and is based on the work
from [154]. This work was published in the proceedings of the IEEE/ACM 7th In-
ternational Conference on Mobile Software Engineering and Systems (MOBILE-

Soft’20).

Chapter 6 tackles RQ1 to RQ4 of RG2 of the thesis and is based on work from
[155]. This work was published as book chapter in the Springer book Software
Sustainability .

Chapter 7 addresses RG2 and provides a description of the support tool ARENA.
Chapter 8 addresses RG2 and provides a description of the support tool REHAB.

Chapter 9 gives the concluding remarks and points out possible future research
directions.

( Energy Efficiency of Mobile Apps
Chapter 2 and 3 (background & related work)

l i

Energy Analysis of Code Tool Support
(RG1) (RG2)

_’Evaluating Code Smells Refactorings Swstematic Mapping Study ]

Chapter 4 - Contrib. 1 Chapter 6 - Contrib. 34
Ly Evaluating Third-party Libraries Energy Measurement Tool - ARENA |

Chapter 5 - Conirib. 2 Chapter 7 - Contrib. 3B
|  TPL Recommender - REHAB L |

Chapter 8 - Contrib. 3C

¥

Conclusion and Future Work
Chapter 9

Figure 1.1: Structure of the thesis

23



2. BACKGROUND

In this chapter, first, we explain the key Android concepts, Android app develop-
ment process and how code smells and third-party libraries effect Android apps.
Then, we introduced the sustainability concept and approaches used to measure
energy consumption of Android apps.

2.1. Android OS

Android is a Linux based mobile operating system developed by Open Handset
Alliance! and Google. It was launched in 2007. It is free and open-source,
commonly referred to as Android open source project (ASOP). Figure 2.1 gives
an overview of the Android software stack (we derived this figure from the
detailed Android software stack figure published in the Android developer blogz)

-
[ Applications
>
T
[ Application Framework/ Java API
i
-
; . - ; Android Runtime
Patform/Native Libraries [{core libraries + DVM)
v,

Hardware Abstraction Layer

Linux Kemal

Figure 2.1: Android software stack

2.2. Android Apps

Android software development kit (SDK) tools compile all contents of an Android
app along with any data and resource files into an Android package called APK,
which is an executable file with .apk extension. The APK file can be installed
on any device with the Android OS. Upon execution a unique Linux user ID is
assigned to each app (as Linux is multi-user system in which each app is a user).

1https://www.openhandsetalliance.com/index,html
2https ://developer.android.com/guide/platform

24



Only apps with correct user IDs and granted permissions can access files within
an app. Each app has its own process which is started when some component of
the app is executed and is destroyed when it is no longer needed. As compared to
desktop applications, Android apps have a complex structure containing multiple
app components such as activities, fragments, services, content providers, and
broadcast receivers®. An Android app code roughly consists of two parts: 1)
custom app code written by the developers, and 2) library modules, i.e., reusable
services added to the project. The third-party libraries included in an app use
underlying system APIs in the Android software stack to perform specific tasks.

2.3. Android App Development Process

The basic workflow to build an Android app is same as for other app platforms [4].
However, building an app is not just the basic work flow. It combines software
development, project management and continuous integration activities as well.
Therefore, we present a high level view of the Android app development process
divided into five phases as shown in Figure 2.2 (Figure derived from Android de-
veloper b10g4). The first phase ’discover and define’ involves conceptualizing and
clarifying app functionalities, goals and potential users. Features are prioritized
based on requirement documents and milestones are set accordingly. The second
phase ’design’ involves creating prototypes/wireframes to understand the busi-
ness viewpoint and improve the user experience by helping to design a good user
interface. The third phase ’development and quality assurance/testing’ involves
setting up the environment for development. Android app development is an iter-
ative process. Typically, a project manager, product owner or chief architect starts
by setting up a project management system such as JIRA® and a communication
channel such as Slack®. The development process is divided into a series of short
development cycles, where each cycle consist of refined/prioritized requirements,
planning, coding, debugging and testing. During development, developers have
full control over the selection of software development kits (SDKs), as well as
native and third-party libraries included in the project. The fourth phase *publish-
ing’ involves preparing the app for release by configuring, building and testing
the app in release mode. Finally, the app is marketed and distributed to the users
via an app store. The fifth and last phase, *maintenance and support’ involves
post deployment tasks such as tracking the causes of crashes, gathering follow-
up statistics, gathering user feedback and reviews, and planing new features and
updates.

3https ://developer.android.com/guide/components/fundamentals

4https ://tool.oschina.net/uploads/apidocs/android/guide/developing/index.html
3 https://www.atlassian.com/software/jira

6https :/[slack.com/intl/en-ee/

25



1. Discover and Define i - E E)e_ve_lo_pﬂ‘le_nt_s:dua;lify:ﬂ\;sﬁran_ce_ﬂés_tiﬁg_ S
r h .1
I 1

Brainstorming ideas/

conceptualization Market

Potential users/ ‘

' 1

! (" scrum master set )

. . I project in JIRA & set Setup development \

l ' communication enviorment, AVDs and |

i i § ' channel such as devices for testing I

( 3 ( " . Slack / S

Feature prioritization, Requirement : !

planning, Milestones Gathering, SRS ' - :

| A ), ' Create Android 1

. i (1 Continuous L project with source ,4'

I integration setup [ code, resource and '

l . ) manifestfiles | 1

I — &

! 1

' 2.Design A s & _ R

i p \. p v ' '

i . ' ' Build and run app in o 1

4 Prototyping/ X . ' » Debug and Test App 3

i ‘ ‘.".f\refgr?ningg UIfUX Design ‘ I I debug modz )

‘ | 1 \ ) \ )
!
1

5. Maintenance & Support 4. Publishing

post deployment — prepare app for Market and distribute
support release the app fo users

Figure 2.2: Overview of Android app development process

user review/feedback

2.4. Code Smells

Due to time constraints and rapid release cycles, code maintainability might de-
crease. In order to implement a current requirement quickly, developers may ap-
ply solutions that make future changes in the code costly. Code smells are design
and implementation patterns in an app source code that leads to decrease in soft-
ware maintainability. Code smells can be removed via Refactoring. Refactoring
is "the process of changing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal structure" [59] . Man-
ual refactoring of code is a tedious task. Automated systems designed to detect
code smells are commonly referred as static code analyzers. Static code analyzers
perform static analysis on code without executing it. M.Fowler [59] has defined
many commonly occurring code smells in Java applications along with their refac-
torings. An example of a code smell is Long Method. Long Method is a smell
that points to a method which has become too long from the beginning or over
time and could affect the maintainability of the app in the long run. A possible
refactoring technique is to divide the long method into smaller methods which are
called from inside the original method.

2.5. Third-party Libraries

Third-party libraries are reusable components provided by other developers than
the one who is developing a new app. The reusable components typically help im-

26



plement various standard functionalities in an app, such as billing, advertisement,
networking and so forth. Up till June 2021, the online Maven repository’ con-
tained 15,730,282 unique libraries. Such a huge supply of third-party libraries is
linked to the demands and needs of developers [174]. Almost sixty percent of code
in Android apps is related to third-party libraries [168]. However, these libraries
could introduce various security, privacy, permission, and resource usage related
issues in apps [179]. There are various online catalogues (such as Awesome An-
droid®, AppBrain’ etc.) available where developers can search for an appropriate
library that they can include in their project. In these online catalouges, third-party
libraries are divided into various categories bases on functionalities they offer.
Developers can compare similar third-party libraries within a category based on
statistics such as popularity, activity, stability etc. Selection of third-party library
is time consuming process that requires that developer go through documentation
and gather statistics about these libraries to make an informed decision.

2.6. Software Sustainability

The term software sustainability envelopes sustainability by software and sustain-
ability in software. Sustainability by software means using software products to
make other domains of life more sustainable. Sustainability in software refers
to the study and practice of designing, developing, maintaining and disposing of
software products in a way that it has minimal negative impact on the environ-
ment, community, economy, individuals and technology [22, 127]. In this thesis,
we focus on sustainability in software. Usually three types of resources are re-
quired in software processes i.e., human resources, economic resources and en-
ergy resources. Therefore, software sustainability can be divided into dimensions
[22] based on resources required in software processes. Figure 2.3 (figure derived
from [22]) provides an overview of software sustainability dimensions .

* Social Dimension: encompasses software development and maintenance
and how it affects the software development community.

* Economic Dimension: encompasses software lifecycle processes that are
related to stakeholders, risk reduction, investment etc.

* Environmental/Green software Dimension: encompasses development of
software products and how their usage and maintenance affect energy con-
sumption.

7https://search.maven.org/stats, Statistics for central repository
8https://android.libhunt.com/
9https://www.appbrain.com/

27



Software Lifecycle
Requires Processes Requires
Requires
b 4 v
Human Energy Economic
Resources Resources Resources
Impacts Impacts Impacts
v v v
Green Software Economic

Social Dimension B Dimension

Software sustainability

Figure 2.3: Dimensions of software sustainability

2.7. Energy Measurement

Energy consumption is an accumulation of power dissipation over time. Power
is not the same as energy. Energy refers to the ability of making a change in
the state of something while power refers to the rate of energy transfer. Power
is measured in watts, whereas energy is measured in joules. As an example, if a
task requires five seconds to complete and use ten watts, it consumes 50 joules of
energy. In the context of software engineering, when measuring energy consump-
tion we must take into account the hardware, context and time. The choice of
hardware or platform such as WiFi or 3G can effect energy. Similarly, the context
in which software is built and used affects energy consumption. Often, Android
developers use the reduction in execution time as a proxy for reduction in energy
consumption, which is not always true. For example, reducing the execution time
via increased performance may use the CPU in a high power state, thus causing an
increase in energy consumption. A typical energy software measurement process
involves 1) setting up a measurement environment, 2) executing the app under test
on a mobile device, 3) recording energy data via hardware based or software based
approach, and 4) cleaning and aggregating data for analyses, reports and visual-
izations. There are two different approaches for capturing energy measurements
1) software based approach, 2) hardware based approach.

Software based approach: Software based approaches are easier to implement
and are based on estimation of a set of features such as system calls, number of
packets transferred over the network, or cpu cycles etc. for measuring energy
consumption. Software based approaches are not very accurate.

28



Hardware based approach: Hardware based approaches are difficult to set up
and depend on a physical measurement device. However, once the one time
setup is done they are more accurate than software based approaches. The
current/voltage data is usually recorded at the rate of SkHz and higher. Figure 2.4
gives an overview of all the steps needed to complete the energy measurement
process via hardware based approach. We prepare app version(s) with test cases
that could mimic user interaction in a given use-case(s). Next, we execute the
test scenario several times on the mobile phone and energy measurements are
captured via physical measurement device such as Monsoon power monitor.
Then, energy data is collected, filtered and aggregated. The captured energy data
and related ADB logs are filtered by matching timestamps to identify start and
end of test scenario. In the end, statistical analysis is performed on filtered data
to identify significant changes in energy consumption.

Measure : ;
Energy Filter Information

~7 T

@ "EzYm

Application Run Test . . Adb logs + Timestamp y
Version Scenario Fower Monitor Energy Readings  matching Correlation +

% change in Energy

T By m® Rg A

Deploy each version
on Android device

Extract Daia Stafistical Analysis

Figure 2.4: Energy measurement process

29



3. RELATED WORK

This chapter reviews the existing work related to app code and related measures
for improving energy efficiency in Android apps. To put our research in perspec-
tive, we organized the existing literature along three directions relevant to our re-
search questions; (1) code smells refactoring, (2) third-party libraries, (3) support
tools.

3.1. Code Smells Refactoring

Code smell refactoring in Android apps has been discussed with respect to quality
characteristics such as performance and maintainability [116, 175], but the energy
impact of code smells has not yet been fully explored [69, 132, 141, 165]. Studies
by Pinto and Kamei [131], Yamashita and Moonen [176] indicate that developers
do care about code smells (such as ‘Long Method’, ‘Feature Envy’) and conduct
refactoring. Verdecchia et al. [163] discussed the energy impact of five code
smell refactorings on three ORM-based Java web applications. Their results in-
dicate that in one out of three apps code smell refactoring significantly impacted
energy consumption. Castillo et al. [132] analyzed the energy impact of ‘God
Class’ refactoring on two Java applications. Their results indicated that God class
refactoring has a negative impact on energy consumption. Tufano et al. [161] and
Delchey et al. [43] discussed when and how code smells appear in source code
during development.

Android has the biggest share in the smartphone market and mobile app users pre-
fer native mobile apps over desktop and web applications [152]. Several empiri-
cal studies have investigated the energy impact of code smells in the mobile app
domain. Sahin et al. [145] applied six code refactorings from Eclipse IDE refac-
toring tool to the source code and evaluated their energy consumption. Morales
et al. [108] analyzed the energy impact of eight types of anti-patterns in 20 open-
source Android apps. Rodriguez et al. [141] evaluated the trade-off between
object oriented design and battery consumption of mobile apps. Reimann et al.
[137] published a catalogue of 30 quality code smells for Android platform dif-
ferent from Fowler et al.’s [59] list of code smells. Carette et al. [25] proposed
an automated approach called HOT-PEPPER, which enables developers to detect
and correct three Android-specific code smells. Cruz et al. [36] provide list of
design patterns for improving the energy efficiency in mobile apps. Chowdhury
et al. [31] recommend applying small changes to design pattern in combination
with the bundling technique as it can significantly effect on energy consumption
of mobile apps. In another study, Cruz et al. [37] present a tool to automatically
refactor energy code smells in mobile apps. They also studied [39] how main-
tainability in Android application is impacted by changes done to improve energy

30



efficiency.

In related studies analyzing code smells in Android apps, the focus is on Android
specific code smells related to specific mobile resources, and their correlation
with performance, maintainability, and sustainability. However, traditional code
smells defined by M.Fowler could appear in applications irrespective of the plat-
form, Therefore, in this thesis, we extend previous studies by investigating the
energy impact of refactoring five traditional code smell types (first individually
per type and then in permutation) on native Android open source apps. We also
study the effect of code smell refactorings on execution time to check if there is a
correlation.

3.2. Third-party Libraries

There are several million apps available on Android app stores like Google Play
Store which could be mined to extract information related to apps and app usage.
Some studies have focused on app store analyses and extracted information about
billing functionality and ad libraries [14, 63, 103, 166, 170, 172]. Other studies
focused on the identification of libraries in mobile apps [18, 98, 100].

Another group of studies [18, 98, 100] have explored types and distribution of
commonly used third-party libraries (such as ads, billing, and social libraries)
in Android apps and how they affect performance and security. These studies
highlighted that third-party libraries were frequently used in Android app devel-
opment. However, they did not investigate the energy consumed by third-party
libraries. Wang et al. [173] presented an algorithmic solution to model the energy
minimization problem for ad prefetching in Android apps. Lee et al. [89] pro-
vided a run-time energy estimation system for ads in mobile apps. Rasmussen et
al. [134] conducted a study to compare the power efficiency of various methods of
blocking advertisements on an Android platform. They found many cases where
ad-blocking software or methods resulted in increased power usage. In Android
apps, there could be many reasons for long-running operations in the background
that continuously consume resources. Such operations could cause battery drain
and performance degradation. Shao et al. [148] demonstrated through experiment
that sometimes such behaviour could be caused by third-party libraries used in the

apps.

Choosing a third-party library is not simple, developers compare similar li-
braries by reading documentation or searching online. Therefore, some studies
[41, 106, 107, 162] explored different online sources and repositories and ranked
third-party libraries and APIs based on metrics (such as popularity, backward
compatibility, release cycle, etc.) so that developers can choose the right library
during development. None of the previous studies discussed the energy consump-
tion of Android third-party HTTP libraries. There are studies [90, 92] that fo-

31



cused on measuring and optimizing the energy of HTTP requests in Android apps.
However these studies do not focus on third-party libraries for handling HTTP re-
quests.

In existing studies, information related to the energy impact of third-party Android
libraries is limited. Library-related research for Android apps, so far, has been
restricted to ad libraries, billing libraries, and social libraries, investigating how
these libraries are used and identified in mobile apps and how they impact the
security of Android apps and users’ privacy. Other often used third-party libraries
such as Android third-party HTTP libraries have received less attention. Therefore,
in this thesis, we investigate the energy consumption of eight Android third-party
HTTP libraries in five use cases. We checked if there is variance in the energy
consumption of popular Android third-party HTTP libraries. In addition, we also
checked whether there is a correlation between energy consumption and execution
time of these libraries in selected use cases.

3.3. Tool Support for Developing Green Android Apps

Most Android projects use Java as the programming language, however, the sup-
port tools and techniques used for Java projects reviewed by previous secondary
studies [58, 83, 149] cannot be effectively applied to Android projects as Android
development differs from traditional software development in terms of context,
user-experience and a touch-based interface. Therefore, many specialized support
tools have been developed to improve the quality of Android apps with regard to
maintainability, performance, security, or energy efficiency.

Studies that present support tools for developing green android apps cover differ-
ent aspects. Some studies have focused on improving quality of apps by refactor-
ing traditional code smells or by identifying various types of third-party libraries
(as discussed above). Other studies have focused on developing tools and tech-
niques to address Android specific code smells and energy bugs [25, 37, 53, 68].
Some empirical studies have investigated the energy consumption of mobile apps
by developing tools and methods for energy profiling and enhancement of mobile
apps [16, 20, 29, 32, 55, 82, 125]. Di Nucci et al. [46] introduced a new soft-
ware based tool PETrA, for measuring the energy consumption of Android apps.
Rua et al. [143] reported on GreenSource infrastructure, which characterize en-
ergy consumption in the Android ecosystem. GreenSource used AnaDroid tool
to instrument app code for software-based energy measurements and to automate
application execution.

The primary studies mentioned above are just a glimpse of literature presenting
support tools. To get a complete picture secondary studies are quite useful. Stud-
ies that compare state-of-the-art support tools and techniques can help in selec-
tion of an appropriate support tool for a given task. However, secondary studies

32



related to measuring and improving energy efficiency in Android apps are scarce.
Related secondary studies in the domain of Android development have focused
on comparing tools and techniques related to static analysis of code, resource us-
age, security, malware detection, repackaging, and benchmarking of development
approaches.

Li et al. [95] performed a systematic literature review to analyze static source
code analysis techniques and tools proposed for Android to assess issues related
to security, performance, or energy. The authors have reviewed work published
between 2011 and 2015, consisting of 124 studies. The review concluded that
the majority of static analysis techniques only uncover security flaws in Android
apps. Qiu et al. [133] provide a comparison between three static analysis tools:
FlowDroid/IccTA, Amandroid, and Droidsafe. They evaluated these tools using a
common configuration setup and the same set of benchmark applications. Results
were compared to the results of previous studies in order to identify reasons for
inaccuracy in existing tools.

Degu A. [42] performed a systematic literature review to classify primary studies
with a focus on resource usage, energy consumption, and performance in An-
droid apps. The classification is high level based on the main research focus, type
of contribution and type of evaluation method adopted in selected studies. Their
results did not provide an in-depth review of support tools in green Android devel-
opment. Rawassizadeh R. [136] benchmarked apps based on their resource usage.
They proposed a method using a utility function and evaluated their results on two
apps comparing their CPU and memory consumption.

Corrodi et al. [35] review the state-of-the-art in Android data leak detection tools.
Out of 87 state-of-the-art tools, they executed five based on availability. They
compared those five tools against a set of known vulnerabilities and discussed
the overall performance of the tools. Ndagi et al. [112] provided a compari-
son of machine classifiers for detecting phishing attacks in Adware in Android
apps. This study concluded that many existing machine classifiers if adequately
explored could yield more accurate results for phishing detection. Cooper et al.
[34] provide an overview of security threats posed by Android malware. They also
survey some common defence techniques to mitigate the impact of malware apps
and characteristics that are commonly found in malware apps that could enable
detection techniques. Li et al. [93] provide a literature review that summarises the
challenges and current solutions for detecting repackaged apps. They concluded
that many existing solutions merit further research as they are tested on closed
datasets and might not be as efficient or accurate as they claim to be. Roy et al.
[142] provide a qualitative comparison of clone detection techniques and tools.
They classify, compare, and evaluate these tools.

Oliveira et al. [118] evaluated alternative development solutions available on on-
line sites like Rossetta and compared the energy efficiency and performance of the

33



most commonly used approaches to develop apps on Android: Java, JavaScript,
and C/C++. Their results indicated that “JavaScript was more energy efficient in
75 percent of all benchmarks as compared to Java and C++ while performance-
wise, both Java and C++, outperformed JavaScript in most of the benchmarks”.

To best of our knowledge, none of the previous secondary studies provide an
overview of the state of the art w.r.t to support tools available to aid development
of green Android apps. Most secondary studies discussed above have covered
published work until 2015 or 2017 and many of the reviewed tools in those stud-
ies are now out-dated/obsolete. To build effective Android-specific support tools
to aid development of green Android apps, we first need to understand what is
already available and what is still missing. Therefore, in this thesis, we provide a
different view of literature by conducting a systematic mapping study to analyze
recently developed support tools for energy profiling, code optimization, refac-
toring, and third-party library detection or migration in Android development to
improve energy efficiency in apps. We explore if these support tools aid green
Android development. We provide an overview of the techniques used in these
support tools, information about their interface, availability, and IDE integration.

34



4. IMPACT OF CODE SMELL REFACTORING ON
THE ENERGY CONSUMPTION OF ANDROID APPS

In this chapter, we focus on RG1 (defined in Section 1.1) by investigating the
influence of code structure on the energy efficiency of mobile apps. Android app
code can be roughly divided into two parts: the custom code and the reusable
code. In order to reduce the energy consumption of mobile devices, the quality
of custom code in mobile apps could be improved. This could be achieved by
constant refactoring. Refactoring is “the process of changing a software system in
such a way that it does not alter the external behavior of the code yet improves its
internal structure. Code smells are an indicator of a problem in software design
and quality that requires refactoring” [59]. Refactoring code smells could impact
the energy consumption of mobile apps. Therefore, we investigate the energy
impact of refactoring five code smell types (first individually per type and then
in permutation) in custom code of native Android open source apps. We also
study the effect of code smell refactorings on execution time to check if there
is a correlation. We expect that our findings will help developers improve their
Android apps not only with regard to maintainability but also in terms of energy
efficiency.

4.1. Research Method

In this section we introduce the research questions, identify the code smells for
refactoring, present the tools used for the detection of code smells, and define the
experimental setup of our study.

4.1.1. Research Questions

Our research questions are the following:

RG1-RQ1

Is there a correlation between code smell refactoring and energy consump-
tion of Android apps?

RG1-RQ2

Is there a correlation between code smell refactoring and execution time
of Android apps?

\

RG1-RQ1 investigates the energy impact of code refactorings from two aspects 1)
impact, i.e., how do code refactorings impact the energy consumption of Android

35



apps and 2) Consistency, i.e., are the observed effects of code smell refactorings
in Android based Java applications similar to the effects observed in other Java
based applications discussed in related work. RG1-RQ2 investigates the impact of
code refactoring on the apps execution time, i.e., What is the correlation between
execution time and energy efficiency?

4.1.2. Code Smells

In this study we focus on commonly occurring code smells in Java applications
and investigate their energy impact in Android apps. We assume that the types
of code smells identified by Fowler et al. [59] occur in Java code independent
of platform, although the frequency with which they occur might be distributed
differently [138]. Therefore, we picked the set of code smell types analyzed in
our study, as well as their refactorings, from Fowler et al.’s list.

The selected smells are ‘Long Method’, ‘Feature Envy’, ‘Type Checking’, ‘Dupli-
cated Code’, and ‘God Class’. These smells have previously been investigated for
their energy impact (cf. Chapter III) but the results from those studies are limited
by the type and number of apps on which these code smells were analyzed.

The ‘Long Method’ code smell is one of the most commonly occurring smells
in Android apps. As defined by Fowler [59], this smell points to a method which
has become too long over time and could affect the maintainability of the app.
Several refactoring techniques are defined by Fowler to get rid of this smell. In
our study, we apply the ‘Extract Method’ refactoring for this smell. As a result
of this refactoring, the ‘Long method’ is divided into smaller methods which are
called inside the original method.

The ‘Feature Envy’ code smell occurs when one class envies the features of
another class, i.e., a method in one class sends many ‘get method’ calls to an-
other class, which indicates that this method could be placed inside the other class
whose features it envies [59]. We apply the ‘Move method’ refactoring for this
code smell.

The ‘Type Checking’ code smell occurs when an attribute in a class representing
the state is checked for different values. This state attribute is referred to as a
type field. The term ‘Type Checking’ was used by the creator of JDeodorant for
this smell [59, 159]. In our study, we use the refactoring ‘replace type code with
state/strategy’. This refactoring results in new methods and subclasses.

The ‘Duplicated Code’ smell occurs when the same code is used in many places
inside an app. This could be intentional or it could be due to the copying of the
code or it could be the result of another refactoring. It could be refactored by
combining the different code clone structures into one [59].

The ‘God Class’ code smell occurs when over time many functionalities are

36



added to the same class in a project, making it responsible for a large percent-
age of the app’s architecture. This smell is removed by dividing the large class
into smaller classes, each having a unique functionality [59].

4.1.3. Code Smell Detection Tool and Refactoring

Based on previous studies [57, 121, 160, 164] that compared different code smell
detection and refactoring tools, we chose to use JDeodorant for code smell detec-
tion. JDeodorant follows all the refactoring activities stated by Mens et al. [105].
According to the studies mentioned above JDeodorant is very effective in detect-
ing the selected code smells. We manually evaluated each of the refactorings
suggested by JDeodorant before applying them to ensure that they do not change
the external behavior of the app.

4.1.4. Selected Apps

We chose open source apps in Android for this study because Android holds the
biggest market share in the world’s smartphone market. We selected from F-
Droid! open source native Android apps that were more than two years old, had
more than 10K downloads, and at least a rating of ‘4’ in the Google play store.
The selected apps?** were picked from the categories “Tools’ and ‘Puzzles’. The
detection of code smells and the generation of refactoring candidates was done
using JDeodorant with Eclipse IDE. Table 4.1 summarizes the characteristics of
each of the selected apps. The first row (Years) shows the age of the project (up till
February 2019) for example, the age of ‘Calculator’ app is 6 years and 8 months.
The second row (LOC) shows the source line of codes and gives an estimate of
the size of the project. The third row (Downloads) shows the number of times
the selected app is downloaded by users from the Google play store. The last row
(Ratings) shows the mean of ratings given to the app by Google play store users.

Table 4.1: Characteristics of selected Android apps

Calculator Todo-List Openflood

years 6.8 3 3.1
LOC 7758 6145 1236
Downloads | 1,000k+ 10k+ 10k+

Ratings 4.5 4 4.6

4.1.5. Testing Tool

We used Espresso to create test scripts as it comes built-in with Android Studio
and, according to a recent studies [38, 99], is very fast and reliable outperforming

! https://www.f-droid.org/
2https://f—droid.org/en/packages/com.xlythe.(:alculator.material/
3https ://f-droid.org/packages/org.secuso.privacyfriendlytodolist/
4https ://f-droid.org/en/packages/com.gunshippenguin.openflood/

37



other tools for testing native Android apps. Since we do not intend to navigate
outside the app under test, Espresso is a good choice as it supports white box
testing and Ul tests can be created easily. The test scripts created in Espresso do
not need time delays to function properly. Therefore, the overhead introduced in
the execution of the apps when using Espresso is low.

We used our test scripts for energy measurements and also to ensure the correct-
ness of the refactored app code. The test cases® included in the test scripts may
seem trivial but they were solely defined to ensure that the code containing a
smell is actually executed. To validate that the test scripts triggered the execution
of code containing a code smell as well as the execution of the corresponding
refactored code, execution traces were inspected.

4.1.6. Energy Measurement

We used hardware based approach for energy measurement. We used Monsoon
power monitor to measure the energy consumption, recording the power measure-
ments at a rate of SKHz. The time between two readings was 0.0002 seconds. In
this study, energy consumption corresponds to the total amount of energy used by
the mobile device within a period of time. Energy is measured in Joules which is
power (watts) times measurement period (seconds). We calculated the energy as-
sociated with each reading as E = Power x (0.0002). The total energy consumption
corresponds to the sum of the energy associated with each reading.

Before starting the experiment, a baseline was recorded to measure the energy
consumption of the mobile device in an idle state, which was then subtracted
from the actual energy readings during the experiment to filter out the energy
used by the app under test. During the experiment, the screen brightness was set
to minimum and only essential Android services were run on the phone.

The timestamps from the adb logs recording during energy measurement and the
CSV files containing energy readings were matched to mark the start and end of an
execution run. Each app version was executed 10 times to account for underlying
variation in the mobile device.

4.1.7. Test Environment

The test environment consisted of an HP Elite Book, the Monsoon power monitor,
and an LG Spirit Y70 Phone having Android 5.0.1 as the operating system with
1GB of RAM, and a 2100mAh battery. The test was controlled from the HP Elite
Book using a script that automated the process and runs each app version 10 times.
This saved manual effort and ensured that no problems were created during the
experiment due to human error. The mobile device was connected via USB cable

3Calculator app test cases: https://bitbucket.org/hinaanwar2003/calculator/wiki/Test%20Cases.
Todo-List app test cases: https://bitbucket.org/hinaanwar2003/todolist/wiki/Test%20Cases. Open-
flood app test cases: https://bitbucket.org/hinaanwar2003/open_flood_src/wiki/Test%20Cases

38



to the Monsoon power monitor according to the instruction manual of the power
monitor [12].

4.1.8. Experimental Design

In this section, we describe the setup of our experiment to measure the energy con-
sumption of code smell refactorings on Android apps. JDeodorant is provided as
a plugin in Eclipse IDE and works only with Java projects. Since Android studio
projects cannot be opened directly inside Eclipse like Java projects, the apps were
first modified using an Eclipse plugin in Android studio generating a file structure
that helps Eclipse IDE to open the project with Gradle and recognize the Java files.
Build path dependencies for projects opened in Eclipse IDE were solved manually
by the author. Code smell refactorings were applied in two ways: 1) code smell
refactorings per code smell type and 2) code smell refactorings for all code smell
types (one type after the other) in various permutations. For single code smell
type, we first detected the smells using JDeodorant and then candidate refactor-
ings suggested by JDeodorant were applied. For each suggested refactoring, the
test script was executed to ensure that the refactoring could be applied without
altering the functionality of the app. If the test script failed for a suggested refac-
toring, that refactoring was ignored. We applied refactorings for a single code
smell type and made new versions of the refactored app. For assessing whether
the order of refactoring has an effect, we also made versions in which all code
smell types were refactored in various permutations grouped by type. As the total
number of all possible permutations of five code smell types was 120, we chose
a sample of permutations randomly using Fisher-Yates shuffle [56]. Fisher-Yates
shuffle was selected as it is relatively simple and unbiased i.e., the probability
occurrence for every permutation is equal. For versions of the app where refac-
torings of all code smell types were applied in various permutations, we ignored
any new candidate refactorings identified as a result of applying refactorings to a
previous code smell type. For most code smell types, more refactorings could be
applied but we only applied and reported the refactorings for which the test script
was successfully executed.

Tables 4.2, 4.3, and 4.4 show the numbers of applied code smell refactorings per
app. The code smell names are abbreviated as LM (Long Method), FE (Feature
Envy), TC (Type Checking), DC (Duplicated Code), and GC (God Class). In
the first column ‘Refactoring’, the row ‘Single Refactoring’ refers to the situation
where only code refactorings of one code smell type were applied. The rest of the
rows in the first column represent the situation where refactorings of all code smell
types were applied one by one in various permutations. For statistical analysis,
normality and homogeneity of the energy data were checked before doing the
analysis of variance®” (ANOVA) related to RG1-RQ1 and RG1-RQ2. For our

The aov() function is R is used to perform analysis of variance.
"The data used in the analysis is available at https://figshare.com/s/53e2d06d8ab9c0d78427

39



analyses, alpha was set to 0.05. We calculated the effect size using Cliff’s delta
[33].

Table 4.2: Number of refactorings for Calculator app

Refactoring IM FE TC DC GC

Single Refactoring | 41
LM-TC-GC-FE-DC | 41
FE-LM-TC-DC-GC | 41
TC-GC-LM-FE-DC | 39
GC-LM-DC-TC-FE | 41
FE-DC-TC-GC-LM | 40
TC-LM-DC-FE-GC | 39
LM-DC-TC-GC-FE | 41
LM-TC-DC-FE-GC | 41
DC-TC-FE-LM-GC | 40

el e Rl R e e e e e B
W[ DWW W[ | W
WD W[N] DN D | W
| | | | | O\ | | | O\

Table 4.3: Number of refactorings for Todo-List app

Refactoring LM FE TC DC GC
Single Refactoring | 45 3 3 4 11
LM-TC-GC-FE-DC | 45 1 3 2 6
FE-LM-TC-DC-GC | 44 3 3 2 6
TC-GC-LM-FE-DC | 41 1 3 2 11
GC-LM-DC-TC-FE | 43 1 3 2 11
FE-DC-TC-GC-LM | 36 3 3 4 11
TC-LM-DC-FE-GC | 45 1 3 2 6
LM-DC-TC-GC-FE | 45 1 3 2 6
LM-TC-DC-FE-GC | 45 1 3 2 6
DC-TC-FE-LM-GC | 40 3 3 4 6

Table 4.4: Number of refactorings for Openflood app

Refactoring LM FE TC DC GC

Single Refactoring | 7 1 0 0 1
LM-GC-FE 7 0 0 0 1
FE-LM-GC 7 1 0 0 1
GC-LM-FE 6 0 0 0 1
FE-GC-LM 6 1 0 0 1
LM-FE-GC 7 1 0 0 1
GC-FE-LM 6 0 0 0 1

40



4.2. Results

In this section, we present the results of our investigation regarding the impact of
code refactoring on energy consumption and execution time for Android apps.

4.2.1. RG1-RQ1: Is there a correlation between code smell
refactoring and energy consumption of Android apps?

An analysis of variance (ANOVA) showed that the effect of code smell refactor-
ings on energy consumption of Android apps was significant in two out of three
apps. The null hypothesis related to RG1-RQ1 states that the energy consump-
tion between the original version and all possible refactored versions of the app
remains the same. Based on the p-values and F-values (cf. Table 4.5), the null
hypothesis could be rejected for the ‘Calculator’ and ‘Todo-List’ apps (p-values
below aplha=0.05 and large F-values) but not for ‘Openflood’.

Figures 4.1, 4.2, and 4.3 show the boxplots of Treatment vs. Energy consump-
tion in joules for each of the apps. The treatments are along the x-axis while
energy consumption is shown along the y-axis. Treatments refer to the type
of code smell refactoring applied (or=Original, LM=Long Method, FE=Feature
Envy, TC= Type Checking, GC=God Class, DC=Duplicated Code, ALL=Avg. of
all versions where the refactorings of all code smell types were applied in per-
mutations). From figures 4.1, 4.2, and 4.3 we see that for permutations of code
smell refactorings, for all apps, there was no significant difference in energy con-
sumption. For individual code smell refactorings, two out of three apps had a
significant difference in energy consumption, but the direction of the effect is not
uniform across treatments. Only TC, DC, FE, and LM consistently saving energy
in both apps, however, the strength of the effect is not uniform. Table 4.6 gives de-
tails about the median, standard deviation, percentage change, and effect size for
each app after each treatment. In Table 4.6, the negative percentage change means
a reduction in energy consumption, and the positive percentage change means an
increase in energy consumption. We see that for the ‘Calculator’ app maximum
reduction in energy consumption was recorded in app versions where ‘Duplicated
code’ (10.8%) and “Type checking’ (10.5%) code smell refactorings were applied.

Table 4.5: ANOVA results for all apps (energy consumption)

Application ‘ p-Value F-value

Calculator | 0.00005343  7.3503
Todo-List | 0.0009859  4.3473
Openflood 0.4351 0.9666

41



A
2 =
= o I
s = —
= - -1
: | = T T =
3 M 1 1
=

ITe) -
[ ] p— —
S & — —
E T T T T T T T
H or LM FE TC GC DC ALL

Treatment

Figure 4.1: Energy consumption in joules for Calculator app per treatment

W

o

g =5 T

=2 , a

5§ 4 ' 2

2 =]

E -

40

E % ] T e

&) | 1 —— —_

= — /= . I:l o

[l =2 _| —1 —1

z = T T T T T T T

- ar LM FE TC GC oC ALL
Treatment

Figure 4.2: Energy consumption in joules for Todo-List app per treatment

H

2 ®-

= _

=

e o |

-E_ (o]

g _

c % B T | —

s | B — ==

= | !

E @ | N o 1 o

z ™ T T T T T T T

= ar LM FE TC GC DC ALL
Treatment

Figure 4.3: Energy consumption in joules for ‘Openflood’ app per treatment

42



Table 4.6: Overview of energy consumption results (RG1-RQ1)

Treatments
Application (joules) | Or LM FE TC GC DC ALL
Median | 71.9 69.1 67.1 643 72,6 641 71.6
Calculator SD 26 3.6 44 1.7 1.8 2.8 3.4
% - -3.8 -6.6 -105 +1.0 -108 ~-1.3
ES - L L L N L S
Median | 32.7 31.5 30.8 31.0 313 31.0 31.8
Todo-List SD 23 14 05 0.7 0.7 2.0 1.0
% - 36 59 52 44 51 26
ES - M L L L L M
Median | 29.1 29.5 294 N/A 291 N/A 295
Openflood SD 06 05 05 - 0.4 - 0.4
% - +15 +1.1 N/A -0.02 NA +13
ES - S S N/A N N/A S

(SD=standard deviation, %= percentage change, ES=effect size, L=large, M= medium, S=small,
N=negligible)
4.2.2. RG1-RQ2: Is there a correlation between code smell
refactoring and execution time of Android apps?

Based on our measurement we could not find a significant impact of code refactor-
ing on execution time for the selected Android apps. The p-values (cf. Table 4.7)
were 0.2584, 0.113, and 0.384 for the ‘Calculator’, “Todo-List’, and ‘Openflood’
apps respectively, which was greater than the alpha value of 0.05. Therefore, the
null hypothesis stating that the execution time between the original version and
all possible refactored versions of the app remains the same could not be rejected.

Figures 4.4, 4.5, and 4.6 show the boxplots of Treatment vs. Execution time in
seconds for each of the apps. The treatments are along the x-axis while execution
time is shown along the y-axis. Treatments refer to the type of code smell refactor-
ing applied (or=Original, LM=Long Method, FE=Feature Envy, TC=Type Check-
ing, GC=God Class, DC=Duplicated Code, ALL=Avg. of all versions where the
refactorings of all code smell types were applied in permutations). From fig-
ures 4.4, 4.5, and 4.6 we see that that for permutations of code smell refactorings,
for all apps, there was no significant difference in execution time. For individual
code smell refactorings, only LM and FE show reduction in execution time in two
out of three apps, but the strength of the effect is not uniform.

Table 4.8 gives details about the median, standard deviation, percentage change,
and effect size for each app after each treatment. In Table 4.8, the negative per-
centage change means a reduction in execution time, and the positive percentage
change means an increase in execution time. In ’Openflood’ no significant change

43



in execution time was recorded. For *Todo-List’ app, for all versions execution
time reduced but effect size was not consistent. In *Todo-List” app maximum re-
duction in execution time was recorded where ‘Feature Envy’ (1.26%) and *God
Class’ (1.25%) code smell refactorings were applied. For ’Calculator’ app, ver-
sion where 'Long Method’ and ’Feature Envy’ code smell refactoring were ap-
plied execution time reduced but effect size was negligible. For versions were
"Type checking’, *God Class’, *Duplicated Code’ and all permutations of code
smell refactorings were applied, execution time was increased however effect size
was not uniform.

Table 4.7: ANOVA results for all apps (execution time)

Application | p-Value F-value

Calculator 0.258 1.365
Todo-List 0.113 1.902
Openflood 0.384 1.067

L) [=]
E % : L 1
E _ o —_
[ ] E
S = == 1 [
-.g o ] oy T —_— —1
— 1
O —
LLI = _
[ ]
o T T T T T T T
ar LM FE TC GC DC ALL
Treatment

Figure 4.4: Execution time in seconds for Calculator app per treatment

— -
g .7 o
E o — | '
s = i _
5 w . ° —
= - ] o
= = | V" = : —
m = \ p——
o3 — J
b T T T T T T T
ar LM FE TC GC DC ALL
Treatment

Figure 4.5: Execution time in seconds for Todo-List app per treatment

44



—
= — - ° !
g ' —= : -
L e
s 2 —
= 4 . =
2 | — —
ik} = 1
T —_—
= T T T T T T T
ar LI FE TC GC DC ALL
Treatment

Figure 4.6: Execution time in seconds for ‘Openflood’ app per treatment

Table 4.8: Overview of execution time results (RG1-RQ2)

Treatments
Application (seconds) | Or LM FE TC GC DC ALL
Median | 201.9 2019 201.7 202 202.7 2023 2023
Calculator SD 1.09 043 073 103 071 053 034
% - -0.005 -0.1 +0.01 +0.36 +0.17 +0.15
ES - N M N S L M
Median | 84.3  84.1 84.8 84.1 843 849 852
Todo-List SD 0.33  0.19 0.65 1.0 0.76 027 0.84
% - -1.08 -126 -040 -1.25 -098 -0.33
ES - L L L L M M
Median | 69.1 68.9  68.7 N/A 69 N/A 689
Openflood SD 055 022 043 - 0.43 - 0.24
% - 0 -037 N/A +047 N/A -0.09
ES - S M N/A N N/A N

(SD=standard deviation, %= percentage change, ES=effect size, L=large, M= medium, S=small,
N=negligible)

4.3. Discussion

In this section, we take a closer look at how different configurations of code smell
refactorings affected the energy consumption of each of the analyzed Android
apps. Verdecchia et al. [163] reported maximum energy reduction in versions
where ‘Long Method’ and ‘Feature Envy’ code smell refactorings were applied.
In our experiment, the number of applied refactoring of both ‘Type Checking’ and
‘Duplicated Code’ code smells were smaller as compared to ‘Long Method’ code
smell refactorings but the recorded effect size for energy reduction was larger.
For app versions where ‘Long Method’ code smell refactorings were applied our
results were similar to Verdecchia et al. [163].

45



Table 4.9 shows the median, standard deviation, percentage change, and effect size
when the refactorings of all code smell types were applied in permutations. The
negative percentage change indicates a reduction in energy consumption, and the
positive percentage change indicates an increase in energy consumption. We only
analysed the ‘Calculator’ and ‘Todo-List’ app because for ‘Openflood’ app the
change in energy consumption was not significant. In the ‘Calculator’ and ‘Todo-
List” apps. In ‘Calculator’ app the permutation ‘LM-TC-DC-FE-GC’ resulted in
a maximum increase of energy consumption up to 7.25%, while the permutation
‘DC-TC-FE-LM-GC’ resulted in a maximum decrease of energy consumption up
t0 9.3%. In the “Todo-List’ app no permutation resulted in a significant increase
in energy consumption, However, the maximum decrease of energy consumption
was in permutation ‘FE-DC-TC-GC-LM’ (up to 7%). If not used carefully the
refactorings for different code smells could cancel out each other’s positive ef-
fects. To find a clear pattern between a permutation of code smell refactoring
types and energy consumption, we need experiments with more permutations on
a bigger corpus of Android apps.

Table 4.9: Energy consumption results when a permutation of code smell refac-
torings was applied.

Refactoring Calculator Todo-List

Med SD % ES|Med SD % ES

Original (baseline) | 71.9 2.6 - - 1327 2.0 - -
LM-TC-GC-FE-DC | 748 63 +40 N |31.3 09 -43 L
FE-LM-TC-DC-GC | 66.8 28 -70 L |314 08 -39 M
TC-GC-LM-FE-DC | 66.8 69 -7.1 S |31.3 09 -41 L
GC-LM-DC-TC-FE | 758 69 +54 S |323 23 -1.1 N
FE-DC-TC-GC-LM | 76.6 65 +69 L |304 05 -70 L
TC-LM-DC-FE-GC | 709 25 -13 S |338 07 +34 N
LM-DC-TC-GC-FE | 694 48 -34 S |322 15 -13 N
LM-TC-DC-FE-GC | 77.1 48 +7.2 L |309 05 -53 L
DC-TC-FE-LM-GC | 651 96 93 L |319 12 -24 S

(Med=median, SD= standard deviation, %= percentage change, ES=effect size, L=large, M=
medium, S=small, N=negligible)

The results related to RG1-RQ2 are contradictory to the results reported by
Verdecchia et al. [163]. They reported that observed energy reduction was due
to performance-related improvements. However, in our results the energy con-
sumption was not clearly related to increase or decrease in execution time. For
Calculator app, energy consumption reduced in versions where 'Long Method’,
"Feature Envy’, *Type checking’ and 'Duplicated’ code smell refactorings were
applied. However, for the same versions execution time was reduced (with negli-

46



gible effect size) only in versions where ’Long Method’ and "Feature Envy’ code
smell refactorings were applied. For all other versions execution time increased
and the effect size was not uniform. For Todo-List’ app, energy consumption
and execution reduced in all versions, however, effect size was not uniform. For
’Openflood’ app, there was negligible change is execution time and energy con-
sumption. The direction of the effect was not uniform across treatments. There-
fore, more experimental evidence is required to confirm the assumption that a
trade-off between execution time and energy consumption exists.

We detailed the statistics of the selected Android apps in section 4.1.4. The age
of apps ‘Todo-List’ and ‘Openflood” were the same yet there was a significant
difference in the number of code smells refactored in these two apps. This shows
that for the Android app of the same age the probability of detected code smells
could be dependent on the size of the projects and also possibly on the experience
and knowledge of the contributors of that project regarding code smell refactoring.

Insight 1

Impact of refactoring only a single type of code smell on energy consump-
tion of selected apps was not consistent. However, in two out of three
selected apps, where the effect size was medium or large, the energy con-
sumption decreased due to refactoring.

Insight 2

| r
\

The energy impact of overall permutations of code smell refactorings in
the selected Android apps was small. However, specific permutations of
code smell refactorings should be used with caution as their energy impact
might vary strongly depending on the selected Android app.

Insight 3

Significant reduction in energy consumption of Android apps does not nec-
essarily correlate with a significant reduction or increase of execution time.

4.4. Threats to Validity

In this section, we discuss the possible threats to validity of this study and our
strategy to mitigate them.

Internal validity: In order to avoid threats related to the order in which the tests
were executed, caches and data related to each app was cleaned from the mobile
device before each run. When applying multiple treatments, the order of treat-



ments could effect the results. To mitigate effects that might occur due to specific
order of refactoring we performed randomization using Fisher-Yates shuffle [56].
We used JDeodorant for detecting code smells and for generating candidate refac-
torings. The accuracy of this tool might affect the accuracy of the results. We
selected JDeodorant because it complies with Mens et al. [105] list of activities
that should be followed by a good detection and refactoring tool. JDeodorant
has been used in various previous studies for code smell detection, based on the
above two reasons we think that the results produced by JDeodorant were reliable.
However, we cannot ensure that the same candidate code smell refactorings will
be produced if this study is replicated using another code smell detection tool.

External validity: The apps chosen for experimentation were selected from F-
Droid but to ensure that they were representative of a real world Android apps we
checked that these apps are also available on Google play store and have more
than 10K downloads and a rating of 4 at least. We only analyzed three apps there-
fore the results might not be generalizable in every context. The current results
are specific to context (in terms of OS, programming language and type of appli-
cations) used in the experiment. Increasing the magnitude of study in terms of a
number of included apps in future work is desirable. Increasing the number of
apps in the experiment also exponentially increases the number of app versions
that need to be tested. As writing test scenarios, checking each candidate refac-
toring before applying and mapping of Android projects to Eclipse Java projects
is a time consuming and slow process that requires manual effort, we limited this
experiment to three apps. Nevertheless, we did consider apps from two different
app categories of Google play store.

It is important to note that in order to replicate the results of this experiment same
phone model and Android OS version, measurement tools and app version should
be used. The reason is that different mobile phones with different Android OS
might use different levels of energy. Changing the version of the apps might
result in failure of test cases. To ensure that the selected device was a good repre-
sentation of an Android device we checked the device specifications, i.e., Android
version, Chipset, screen resolution and size, battery capacity and RAM size.

Construct validity: Accuracy of energy measurements depend on the sampling
frequency of the measurement device. Energy measurements were recorded using
the Monsoon power monitor which recorded power consumption at a rate of SKHz
or one sample every 200 microsecond. The same specification has been used in
previous studies [20, 38, 81, 91, 180] so sampling frequency in enough to produce
precise readings. Energy measurements were for app plus Android OS related
activities. We tried to minimize this threat by using adb logs and matching the
timestamps with the energy trace to filter out any unwanted readings. A baseline
was recorded and subtracted from readings. We repeated the tests 10 times for
each version and included the averaged reading to further mitigate variations in

48



the readings. However, recording the logs for the app introduces an overhead
which in itself could be energy consuming. But as this overhead was constant
between the versions of the app it could be ignored. During the experiments, the
screen brightness is set to a minimum and only essential Android services are run
on the phone.

49



5. IMPACT OF THIRD-PARTY HTTP LIBRARIES ON
THE ENERGY CONSUMPTION OF ANDROID APPS

In this chapter, we also focus on RG1 (defined in Section 1.1) by investigating the
influence of code structure on the energy efficiency of mobile apps. Android app
code can be roughly divided into two parts: the custom code and the reusable code.
In previous chapter we conducted a study on the custom code of Android apps.
In this chapter we focus on the reusable code i.e., third-party libraries included in
the Android app code.

The use of third party libraries for implementing various functionalities in mobile
apps is very common. Wang et al. [168] have found that over 60% of Android
apps’ code is contributed by commonly used libraries. Developers prefer to use li-
braries because it speeds up the development process. Usually, for a specific task,
there are many different libraries available that can help developers achieve that
task. If developers are not well informed, then the task of choosing the correct
library may not be easy. Developers compare libraries based on different charac-
teristics such as performance, usability, community support or functionality of the
library to find the best alternative. The information available on sites such as stack
overflow is usually limited as each online post focuses on a specific aspect of the
library and typically provided information is based on the personal experience of
the posting developers. Developers can also consult online catalogs such as ‘Awe-
some Android’, ‘AppBrain’, and ‘MindOrk’! which give information about a li-
brary’s popularity, usage, number of installs, etc. (information usually extracted
from the official documentation and Github pages of the libraries.), however, none
of these sites provide information about the energy consumption of Android third-
party libraries. A library once added in the app is hardly ever updated [147] and,
therefore, it is crucial that developers know how much energy a particular library
consumes for a particular task to avoid unnecessary battery drain. Measuring the
energy consumption of these libraries could be beneficial to the developers as they
could make better choices about which libraries to use in their apps.

In this chapter, we investigate Android third-party network libraries (sometimes
also referred to as network packages). Among the network libraries, we focus
on libraries used to establish network connections for sending and receiving data
to/from the server. Apps in different categories (such as games, business, utili-
ties, education, lifestyle, travel) have different requirements and functionalities.
Moreover, user expectations are also different for each category. However, there
exist features that are found in apps across categories. For instance, user account

! https://android.libhunt.com/
https://www.appbrain.com/
https://mindorks.com/android/store

50



authentication, web search, push notifications, image/video/user-data upload to
servers, etc. The most common mechanism used behind these features is HTTP
request methods like GET and POST. Since different third-party libraries adopt
different mechanisms to achieve the same task, the energy consumption of these
libraries could be different. The results in [157] indicate that there is a differ-
ence in the energy consumption of different libraries when making HTTP POST
requests. Moreover, the execution time for the same task varies among libraries.
Therefore we select popular Android network libraries (that could be used as an
alternative to one another) offering capabilities to handle HTTP GET and POST
request methods. In this chapter, we refer to them as third-party HTTP libraries.
The selected libraries have the highest relative popularity rating in their respective
categories in online catalogs like ‘Awesome Android’, ‘MindOrks’, and ‘App-
Brain’. We measure the energy consumption of eight third-party HTTP libraries
in five use cases. In each use case, we created custom app versions using the
selected libraries. For some use cases, additional app versions were made due
to multiple implementation choices. In total, we made 45 app versions and used
them for energy and execution time measurements. Results from this study will
help software developers to make an informed decision when choosing popular
Android third-party HTTP libraries.

5.1. Research Method

In this section, we introduce the research questions, present the use cases, intro-
duce the selected third-party HTTP libraries, and define the experimental design
and test environment of our study.

5.1.1. Research Questions

Is there variance in the energy consumption of Android third-party HTTP
libraries?

RGI-RQ3-A: When making GET requests is there variance in energy con-
sumption of Android third-party HTTP libraries?

RGI1-RQ3-B When making multi-part POST requests is there variance in
energy consumption of Android third-party HTTP libraries?
RGI-RQ3-C: When sending structured JSON objects is there variance in
energy consumption of Android third-party HTTP libraries?
RGI-RQ3-D: When receiving structured JSON objects is there variance in
energy consumption of Android third-party HTTP libraries?
RGI-RQ3-E: When loading and displaying images on the screen is there
variance in energy consumption of Android third-party HTTP libraries?

51



RG1-RQ4

Is the energy consumption of a third-party HTTP library correlated with
execution time?

RG1-RQ3 investigates whether there is variance in energy consumption of the se-
lected Android third-party HTTP libraries and within each use case which selected
library is most energy efficient. RG1-RQ4 deals with the execution time of each
library in order to complete each task. We compare this data with energy data to
see if selected third-party HTTP libraries are also efficient in terms of execution
time.

5.1.2. Use Cases

In order for an app to get information, usually, it needs to connect to a remote
server and transfer information via HTTP protocol. It is common for different
platforms to provide an HTTP based API so that apps can easily integrate with
them. For good app design, HTTP requests should not be made in the UI thread.
As additional code is required to wrap such calls in a separate thread, therefore,
developers prefer to use third-party libraries that handle HTTP requests for them.

Motivational examples: YouTube is one of the most popular mobile apps by
Google. It is a platform where users upload and watch various types of video-
based content. For unregistered users, one basic feature of this app is the topic-
based search for videos. These features fetch videos or playlists based on the text
phrase entered by the user. HTTP GET request is used behind this feature, which
gets information from the remote server as per user request. On the other hand
registered users have access to additional features like upload videos and com-
ment on videos. To upload videos, create playlists, create subscriptions, create
users, etc. HTTP POST requests are used. More details about YouTube features
and API can be found in [3]. YouTube also provides analytics to its users like most
viewed videos, the number of channel subscribers, number of user subscriptions,
etc. HTTP GET request methods are used behind the scenes to get this informa-
tion from the server. Similarly, in Google Chrome, HTTP GET request and JSON
object serialization is used to get and present search results to the user. Each of the
above discussed apps has more than 5 billion downloads and there are thousands
of similar apps by other developers in play store which offer similar features.

According to [10], in 2018, 52.2% of all internet traffic was from mobile devices
and most of this traffic is generated by a handful of top apps such as YouTube
and Facebook. HTTP requests are a major part of mobile internet traffic [51].
Among HTTP requests, GET and POST are the most common ones. There are
other HTTP request methods? as well like DELETE, PUT, OPTIONS, HEAD,

2See Annex A for more details about other HTTP request methods.

52



and PATCH but their usage frequency is very low due to security risks.

The use cases we have selected for our experiment are motivated from the above
examples and are based on common features of some most downloaded apps and
browsers (like YouTube, Facebook, chrome, etc.).

* UC-GF: Making an HTTP GET request to the server to download a file and
logging the server’s response. (RGI-RQ3-A)

¢ UC-PF: Making a multipart HTTP POST request to the server to upload a
file and logging the server’s response. (RGI-RQ3-B)

* UC-PJO: Making a multipart HTTP POST request for sending Java objects
serialized as JSON to the server and logging the server’s response. (RGI-
RQ3-C)

* UC-GJO: Making an HTTP GET request to the server for receiving JSON
Objects, de-serializing them and mapping them to the Java objects. (RG1-
RQ3-D)

* UC-GI: Making a GET request to the server to load images and displaying
them on screen. (RGI-RQ3-E)

Many other use cases can be derived based on the common features of the apps
like Databases, image processing, Ul capabilities, e-commerce, etc. but, as a start,
we looked only at the above selected five use cases related to HTTP requests.

5.1.3. Selected Libraries

The Android third-party HTTP libraries usually can be found under the ‘net-
work’ category in online catalogs like ‘Awesome Android’, ‘AppBrain’, and ‘Min-
dOrks’.

’MindOrks’ do not provide any additional statistics about third party libraries.
Therefore, we gathered the statistics® about Android third-party libraries from
online catalogs ‘Awesome Android’ and ’AppBrain’ only. Based on the extracted
information, we chose the top five libraries in the ‘network’ category based on
popularity, number of watchers, and quality ranking. Upon closer look, we found
that only two of these libraries also provided an additional capability of image
loading. Therefore we selected the top three Android third-party libraries from
the ‘image loading’ category that could be used as an alternative in UC-GI. The
Android third-party libraries that perform only image loading are usually listed
under the category of ‘image loading’ in online catalogs. The selected libraries*
are listed below.

3 Annex A, See Table A.1 and Table A.2.
4 Annex A, detail features of each selected library can be seen in section A.2.

53



Volley (Version 1.1.1). This is an HTTP library that excels at RPC-type operations
used to populate a UI, such as fetching a page of search results as structured data.
It offers support for raw strings, images, and JSON [45].

Retrofit (Version 2.5.0). This is a REST Client for Android and Java. It makes it
relatively easy to retrieve and upload JSON (or other structured data) via a REST-
based web service [67, 78].

OkHttp (Version 3.13.1). This is an open-source project designed to be an effi-
cient HTTP client. It supports the SPDY protocol. SPDY is the basis for HTTP
2.0 and allows multiple HTTP requests to be multiplexed over one socket connec-
tion [66, 151].

Androidasynchttp (version 1.4.9). This is an asynchronous callback-based HTTP
client for Android built on top of Apache’s HTTP Client libraries [1].

Androidasync (version 2.2.1). This is a low level network protocol library used
mostly for a raw socket, HTTP(s) client/server, and web socket [49].

Picasso (Version 2.7). This is an image library for Android. It is created and
maintained by Square and caters to image loading and processing. It simplifies
the process of displaying images from external locations [2, 8].

Universal Image Loader (UIL) (Version 1.9.5). This library aims to provide
a powerful, flexible, and highly customizable instrument for image loading,
caching, and displaying. It provides a lot of configuration options and good con-
trol over the image loading and caching process [7].

Glide (Version 4.9.0). This is a fast and efficient open-source media management
and image loading framework for Android that wraps media decoding, memory
and disk caching, and resource pooling into a simple and easy to use interface [6].

5.1.4. Experimental Design

In this section, we describe the setup of our experiment to measure the energy
consumption of selected third-party HTTP libraries used in Android apps. For
this experiment, we made app versions®, depending upon the use cases, as shown
in Figure 5.1 below.

For UC-GF and UC-PF, we made app versions with a blank screen that performs
the HTTP request and logs the server’s response. In each app version, an alternate
network library (vo, re, ok, async-h, async, see Table 5.1) was used.

For UC-PJO and UC-GIJO, three app versions were made for each library as within
the implementation of the selected third-party libraries like Volley, Retrofit, etc.
There are many choices available regarding which serialization/de-serialization

3Code for all app versions: https://github.com/hina86/third_party_ HTTP_libraries.git

54



lesr  [UCHEN 10 IS 3

=
IIIII : : : ..... g EE |
(]

B
=3
5

wo
re
ok
async-h
async

s28 25 £28 23 g 2f
0= [ o ] [
Taode 5% 520 23 5238 o2f F933¢
5558 =4 2al Fml o=7 047 E 5555
EEEEE EEC B2 EEC EEE £EE BEEEE
FE2Z% EEE Eﬁg EEE EE% EE% EEEELE
E
5§ 950 355 335 53¢

Figure 5.1: For each use case, the library used for making app versions and the
respective app versions

libraries to use. We selected three libraries Gson (G), Moshi (M), and Jackson (J)
based on the recommendations and discussion in Android related blogs. In each
app version, an alternate network library (vo, re, ok, async-h, async) is used in
combination with a serialization/de-serialization library. For example, Volley is
first used with Gson (G) and we refer to this combination of libraries as Volley
(G) and so on.

For UC-GI, we made app versions in which images were loaded from the server
and displayed on the screen. In each app version, alternatively vo, async-h, and
pic, uil, and gil are used. In all app versions, tasks are performed asynchronously
on a separate thread (not in the main UI thread) by the selected libraries. In
UC-GF, UC-PF, and UC-GI, the code for library related operations is put inside
a loop with N = 100. We keep the loop size to 100 because making just one
HTTP request might make a very small difference in energy which might not be
detectable. However, sending a larger number of requests will make it easier to
detect changes in energy consumption due to these requests.

In UC-GJO and UC-GI, the code for library related operation is put inside a loop
with N = 30. We keep the loop size to 30, because in each iteration of the loop,
besides the HTTP request, an additional step of serialization/deserialization is per-
formed on the payload. Increasing the size of the loop could potentially increase
the invocation of the garbage collector to free the memory for the serialization/de-
serialization process. This could potentially affect the energy readings. In all use
cases, the payload size in each HTTP request is IMB. Once the operation is com-
plete, the app terminates automatically. Sending HTTP requests in a loop and
getting the server response for all HTTP requests is counted as one run. For each
app version, we perform ten runs to account for underlying variation in mobile
device. The timestamps from the adb logs extracted from the device and the CSV
files containing energy measurements are matched to mark the start and end of an
execution run.

55



Table 5.1: Android third-party HTTP libraries used in each selected use case for
making app versions.

ucC
1D Library GF PF PJO GJO GI
(RQ3-A) (RQ3-B) (RQ3-C) (RQ3-D) (RQ3-E)
Vo Volley X X
vo(G) Volley(G)
vo(M) Volley(M) X X
vo(J) Volley(J)
re Retrofit X X
re(G) Retrofit(G) X X
re(M) Retrofit(M)
re(J) Retrofit(J) X X
ok OkHttp X X
ok(G) OkHttp(G) X X
ok(M) OkHttp(M) X X
ok(J) OkHttp(J) X X
async-h Androidasynchttp X X X
async-h(G)  Androidasynchttp(G) X X
async-h(M) Androidasynchttp(M) X X
async-h(J) Androidasynchttp(J) X X
async Androidasync X X
async(G) Androidasync(G) X X
async(M) Androidasync(M)
async(J) Androidasync(J) X X
pic Picasso X
uil UIL
gli Glide X

For each app version, we recorded energy measurements using the Monsoon
power monitor [12], which records the power measurements at a rate of SKHz.
The energy is measured in Joules which is power (watts) times measurement
period (seconds). We calculate the energy associated with each reading as
E = Power x (0.0002). The total energy consumption corresponds to the sum
of the energy associated with each reading. For filtering energy data related to
libraries and for gathering data for execution time, we use adb logs.

Dependent variables in this experiment are energy and execution time, while the
independent variable is the choice of library. We assume that our data is non-
normal and unpaired; therefore we use the Kruskal-Wallis rank sum test® [76]
to measure the variance in energy consumption of app versions using different
libraries within each use case. Pairwise comparisons’ between libraries is used to
identify significant differences based on & = 0.05. Spearman correlation analysis
[76] among energy consumption and execution time of libraries within each use

Sthe kruskal.test stats package in R was used to perform kurskal-Wallis rank sum test
"The pairwise.wilcox.test stats package in R was used to perform pairwise comparisons. Ben-
jamini & Hochberg (BH) correction was used as correction method.

56



case is used to evaluate the strength of the relationship.

5.1.5. Test Environment

The test environment consists of an HP Elite Book, the Monsoon power monitor,
and an LG Spirit Y70 Phone having Android Lollipop (version 5.0.1) as the op-
erating system with 1GB of RAM, and a 2100mAh battery. According to Google
distribution dashboard [5], Android Lollipop is among the top five most popular
Android OS, more than 15% of Android phones globally are using this version®.
The selected device uses Qualcomm chipset, which is used globally in more than
45% of the smartphones [9]. Therefore, the selected mobile device is a good

representation of an Android smartphone.

Before starting the experiment, each app version is checked for the presence of
energy bugs as described by Banerjee et al. [19]. A baseline is recorded to mea-
sure the energy consumption of the mobile device in an idle state, which is then
subtracted from the actual energy readings during the experiment to filter out the
energy used by the app under test. During the experiment, Android settings for
screen timeout, display brightness, and sound profiles are kept constant. We made
45 different versions of the app, each using a different library and use case. For
connecting to the configured server, WiFi is enabled on the phone. The experiment
is controlled from the HP Elite Book using a script that automates the process
and runs each app version ten times. This saves manual effort and ensures that
no problems are created during the experiment due to human error. The mobile
phone is connected to the host computer with a USB cable via Monsoon power
monitor [12] which disables the USB phone charging once the energy reading
starts.

5.2. Results

In this section, we present the results of the analysis of variance (ANOVA). In
addition, to better understand the nature of variance we made additional analysis
where we make pairwise comparisons between libraries (full results are in
Annex A”). Throughout this section, following abbreviations are used in tables:
KW=Kruskal-Wallis Rank Sum Test, MR=Mean Rank, M=Mean, SD=Standard
Deviation, SEj; = Standard Error of Mean. In all figures in this section, the
Android third-party HTTP library used in each app version in the particular use
case is shown along the x-axis while energy consumption in joule is shown along
the y-axis.

8Google dashboard: accessed 2019-11-04

° Additional material in Annex A. For RG1-RQ3-A, see Table A.6. For RG1-RQ3-B, see Table
A.7. For RG1-RQ3-C, see Table A.8. For RQ RG1-RQ3-D, see Table A.9. For RQ RG1-RQ3-E,
see Table A.10.

57



5.2.1. RG1-RQ3-A: When making GET requests is there variance in
energy consumption of Android third-party HTTP libraries?

To answer RG1-RQ3-A, we checked whether the energy consumption between
versions of the app making the GET requests using the selected Android third-
party HTTP libraries remains the same. This hypothesis is rejected.

Table 5.2 presents the results of the Kruskal-Wallis rank sum test and also shows
the summary statistics for energy consumption in joules for libraries included in
UC-GF. The analysis of variance using Kruskal-Wallis test showed significant
variance, based on o = 0.05, x> (4) = 42.94, p < .001, indicating that the mean
rank of energy was significantly different between the selected libraries.

Figure 5.2 shows the boxplot of energy consumption in joules for app versions
using the selected libraries in UC-GF. Based on mean values, Volley is con-
suming the most energy, while Androidasync is consuming the least energy.
Retrofit (re) and OkHttp (ok) are comparable. They are significantly worse than
Androidasync (async) on the one hand and significantly better than Volley (vo)
and Androidasynchttp (async-h) on the other hand.

Table 5.2: Results for RG1-RQ3-A and summary statistics (UC-GF)

KW Test (p <.001) ‘ Summary statistic for energy consumption (Joule)

ID. MR | M SD SEy Min Max
async 5.50 9.85 126 0.39 8.53 12.4
ok 19.00 1544 1.22 038 13.80 17.18
re 22.00 16.03 1.05 0.33 14.69 17.77
async-h 38.50 23.86 2.63 0.83 21.65 29.93
VO 42.50 2542 2.07 065 22.0 28.56
= 30 — -

2 E—

S 20 -

5 15 ——

"; T

§ 10 = I;I

vlo r:e olk asyll'u:—h as;fnc

Android Third-Party HTTP Library

Figure 5.2: Mean energy consumption per library in UC-GF

58



5.2.2. RG1-RQ3-B: When making multi-part POST requests is there
variance in energy consumption of Android third-party HTTP
libraries?

To answer RG1-RQ3-B, we checked whether the energy consumption between
versions of the app making multi-part POST requests using the selected Android
third-party HTTP libraries remains the same. This hypothesis is rejected.

Table 5.3 presents the results of the Kruskal-Wallis rank sum test for UC-PF and
also shows the summary statistics for energy consumption in joules for libraries
included in UC-PF. The analysis of variance using the Kruskal-Wallis test showed
significant variance, based on o = 0.05, y*(4) = 32.75, p < .001, indicating that
the mean rank of energy was significantly different between the selected libraries.

Figure 5.3 shows the boxplot of energy consumption in joules for app versions
using the selected libraries in UC-PE. Based on mean values we can see that
Volley is consuming the most energy while the other four libraries, i.e., Retrofit
(re), OkHttp (ok), Androidasynchttp (async-h), and Androidasync (async), did
not show significant differences with regards to energy consumption.

5.2.3. RG1-RQ3-C: When sending structured JSON objects is there
variance in energy consumption of Android third-party HTTP
libraries?

To answer RG1-RQ3-C, we checked whether the energy consumption between
versions of the app sending structured JSON objects using the selected Android
third-party HTTP libraries remains the same. This hypothesis is rejected.

Table 5.4 presents the results of the Kruskal-Wallis rank sum test for UC-PJO
and also shows the summary statistics for energy consumption in joules for li-
braries included in UC-PJO. The analysis of variance using the Kruskal-Wallis test
showed significant variance, with o = 0.05, ¥*(14) = 102.87, p < .001, indicat-
ing that the mean rank of energy was significantly different between the selected
libraries.

Figure 5.4 shows the boxplot of energy consumption in joules for app versions
using the selected libraries in UC-PJO. Each facet shows the serialization library
used with the selected HTTP libraries. Based on the mean values, Volley (vo)
has clearly the highest energy consumption while the other four libraries cannot
be distinguished significantly. This pattern holds for the situation when using
Gson (G) and Moshi (M), while in the sub-case of using Jackson (J) Volley (vo)
is having the highest energy consumption but the difference to the other libraries
is not as large as in the other two situations.

59



Table 5.3: Results for RG1-RQ3-B and summary statistics (UC-PF)

KW Test (p <.001) ‘ Summary statistic for energy consumption (Joule)

ID. MR | M SD SEy Min Max
re 10.60 9246 1.66 0526 6.63 11.73
async 17.40 10.74 1.70 054  7.90 13.99
ok 25.60 12.62 253 0.801 9.60 17.82
async-h 28.40 1351 3.06 097 8.84 17.88
VO 45.50 52777 212 0.672 49.65 56.65
= 55

E =0 $

s 45

3@ 40 -

§ 35 -

Z 30 -

g 25—

Y 20+

g 154 N 3

E 12: il:l I | I | ]

T T T T T
Vo re ok async-h async

Android Third-Party HTTP Library

Figure 5.3: Mean energy consumption per library in UC-PF

Gson Jackson Moshi

35 = ¢

2l el
= Qégg _ e

Average Energy Consumption (J)

15 = 1 .
10- a L ]
| B B T T T 1 T T T 1
< o < 0 < 0
o o x g2 & o o x g £ o o x g2 €
> 2% 5 > > 2 0% S @ > = ° 3 7
w w ]
© @ © @ © ©

Android Third-Party HTTP Library

Figure 5.4: Mean energy consumption per library in UC-PJO

60



Table 5.4: Results for RG1-RQ3-C and summary statistics (UC-PJO)

KW Test (p <.001) ‘ Summary statistic for energy consumption (Joule)

ID. MR | M SD SEy Min Max
re(G) 16.80 1607 2.67 085 9.12 18.08
re(M) 29.90 1781 279 0.88 14.89 23.03
ok(G) 32.10 1826 3.69 1.17 1501 28.25
async(M) 51.20 1928 221 070 14.1 22.97
async(G) 53.20 1957 144 045 179 22
ok(M) 55.00 19.80 2.04 0.64 17.14 23.06
async-h(M) 63.80 2061 1.88 059 17.95 22.93
async-h(G) 67.40 2098 273 086 19.25 28.36
ok(J) 70.90 2060 476 151 951 27.55
async(J) 96.50 2351 289 091 2033 29.57
async-h(J) 99.90 2389 213 067 2113 27.48
re(J) 109.56 2582 456 152 2075 36.11
vo(G) 119.00 2650 220 070 22.17 30.13
vo(J) 127.22 2774 196 0.65 2546 32.29
vo(M) 133.80 2836 1.60 0.51 2636 32.22

5.2.4. RG1-RQ3-D: When receiving structured JSON objects is there
variance in energy consumption of Android third-party HTTP
libraries?

To answer RG1-RQ3-D, we checked whether the energy consumption between
versions of the app receiving structured JSON objects using the selected Android
third-party HTTP libraries remains the same. This hypothesis is rejected.

Table 5.5 presents the results of the Kruskal-Wallis rank sum test for UC-GJO
and also shows the summary statistics for energy consumption in joules for li-
braries included in UC-GJO. The analysis of variance using the Kruskal-Wallis
test showed significant variance, based on a = 0.05,)(2(14) = 140.70, p < .001,
indicating that the mean rank of energy was significantly different between the
libraries.

Figure 5.5 shows the boxplot of energy consumption in joules for app versions us-
ing the selected libraries in UC-GJO. Each facet shows the de-serialization library
used with the selected HTTP libraries. Based on mean values Androidasynchttp
(async-h) was the most energy consuming library whether it is used with Gson
(G), Moshi (M) or Jackson (J), while OkHttp (ok), Retrofit (re) and Volley (vo) in
combination with Jackson (J) library were least energy consuming.

61



Table 5.5: Results for RG1-RQ3-D and summary statistics (UC-GJO)

KW Test (p <.001) ‘ Summary statistic for energy consumption (Joule)

ID. MR | M SD SEu Min Max
ok(J) 9.10 698 0.60 0.19 5.62 7.69
re(J) 16.20 798 1.12 035 6.54 9.54
vo(J) 26.10 899 1.67 053 17.03 12.06
ok(G) 36.44 10.76 047 0.16 9.81 11.34
vo(G) 48.90 11.59 1.16 0.37 10.30 14.25
re(G) 54.00 11.68 043 0.14 10.82 11.08
ok(M) 65.10 12.82 1.28 0.41 11.56 14.83
re(M) 70.80 13.89 226 0.72 11.26 17.12
vo(M) 77.50 1430 128 041 12.30 16.39
async(J) 94.50 1854 055 0.17 17.48 19.60
async(G) 107.67 2290 0.55 0.18 21.82 23.55
async(M) 117.30 2397 1.04 033 22.19 25.96
async-h(J) 117.80 2449 1.82 0.58 2243 28.14
async-h(G) 133.82 28.69 1.93 0.58 23.58 31.40
async-h(M) 143.30 30.87 1.18 0.37 2941 33.00

2 Gson Jackson Moshi

S

L |

%‘ 30 = == =

(2] =

: 25 = é —

> 20 - <

2 154, = E =

0 === é

10

o = —

g ST T T T T T T 1 —

> < 5 < o < o

) e e ¥t ge¥c: 2w E:

g © g v g ©

Android Third-Party HTTP Library

Figure 5.5: Mean energy consumption per library in UC-GJO

62




5.2.5. RG1-RQ3-E: When loading and displaying images on the
screen is there variance in energy consumption of Android
third-party HTTP libraries?

To answer RG1-RQ3-E, we checked whether the energy consumption between
versions of the app loading and displaying images on the screen using the selected
Android third-party HTTP libraries remains the same. This hypothesis is rejected.

Table 5.6 presents the results of the Kruskal-Wallis test for UC-GI and also shows
the summary statistics for energy consumption in joules for libraries included in
UC-GI. The analysis of variance using the Kruskal-Wallis test showed significant
variance, based on a = 0.05, 12(4) = 40.04, p < .001, indicating that the mean
rank of energy was significantly different between the selected libraries.

Figure 5.6 shows the boxplot of energy consumption in joules for app versions
using the selected libraries in UC-GI. Volley (vo) and Androidasynchttp (async-h)
were consuming significantly more energy than Glide (gli), Picasso (pic) and UIL
(uil). The variance in energy consumption between Picasso (pic), Glide (gli), and
UIL (uil) was not significant.

Table 5.6: Results for RG1-RQ3-E and summary statistics (UC-GI)

KW Test (p <.001) | Summary statistic for energy consumption (Joule)

ID. MR | M SD SEy Min Max
uil 7.80 2.65 0.3 0.1 2.2 3.23
pic 18.30 3.32 0.7 022 2.69 4.78
gli 20.40 342 1.02 032 276 6.28
async-h 38.30 2998 1.85 0.58 27.95 33.71
VO 42.70 30.76 1.32 042 27.75 32.65

= 20 — _—

"% 1 $

E 25—

§ 20+

S 45

"é 10 —

g 5 = ) ¥

vlo asy:m—h pilc uIiI glli

Android Third-Party HTTP Library

Figure 5.6: Mean energy consumption per library in UC-GI

63



5.2.6. RG1-RQ4: Is the energy consumption of a third-party HTTP
library correlated with execution time?

To answer RG1-RQ4, we check whether there is positive correlation between the
energy consumption and execution time of Android third-party HTTP libraries'°.
This hypothesis is rejected. Table 5.7 shows the results of the Kruskal-Wallis Rank
Sum Test and summary statistics for execution time in seconds for all use cases.
The results of the spearman correlation between energy and execution time for
libraries in each use case are presented in Table 5.8. The analysis of variance using
the Kruskal-Wallis test showed significant variance, based on ¢ = 0.05, p < .001,
indicating that the mean rank of execution time was significantly different between
the selected libraries. The correlations were determined based on & = 0.05. Holm
corrections used to adjust p-values. Based on ry and p-value, significant positive
correlations were observed between some libraries in each use case (highlighted
in blue in Table 5.8). No other significant correlation was observed as p-values
for other libraries were greater than 0.05.

Table 5.7: RG1-RQ4 Results and summary statistics

Library KW Test (p<.001) | M SD SEy Min Max
UC-GF

async 5.50 775 081 026 7.17 9.99
re 21.40 25.13 125 039 2382 27.15
ok 24.50 2631 3.07 097 2408 31.77
async-h 30.70 2893 823 260 2439 5222
vo 45.40 58.04 523 1.65 51.35 69.20
UC-PF

async 14.80 2639 5.08 1.61 1828 3541
re 16.20 2735 598 185 17.56 41.17
ok 25.10 32,55 8.12 257 2208 47.62
async-h 25.90 32.55 6.49 202 2231 4225
vo 45.50 1457 872 276 1363 167.6
UC-PJO

re(M) 9.80 2333 026 0.08 23.01 23.90
reG) 16.00 22.85 3.06 097 1425 24.87
async(M) 31.00 24.66 1.14 036 2343 27.66
async(J) 46.70 2525 034 0.11 24.80 26.03
async(G) 47.35 2530 053 0.17 2451 26.37
ok(M) 53.90 25.89 1.14 036 2468 2821
ok(G) 63.95 2720 3.42 1.08 23.82 3546
async-h(M) 80.15 2790 042 0.13 2720 28.65

0The execution time and energy data used in the analysis is available here
https://figshare.com/s/b7a6b37e367ebd351cb9.

64



ok() 90.20 30.35 635 2.01 1593 38.66
async-h(J) 92.90 28.65 045 0.14 28.19 29.52
async-h(G) 93.65 31.00 630 199 27.08 47.42
re(J) 103.67 3400 7.16 239 2740 47.24
vo(J) 125.00 41.68 0.80 0.27 4047 42.85
vo(G) 131.10 44.09 324 1.02 4034 50.04
vo(M) 140.10 48.55 354 1.12 4080 53.14
UC-GJO

ok(J) 8.90 9.69 052 0.17 9.04 10.88
ok(G) 20.44 11.47 074 025 1046 12.79
re(J) 22.00 1205 297 094 924 16.73
ok(M) 31.60 13.50 131 041 11.78 16.11
re(G) 41.70 1555 0.14 0.04 1534 1574
vo(G) 60.40 1877 223 0.71 1697 2442
re(M) 67.00 19.46 0.65 020 18.76 20.70
vo(J) 78.00 2330 798 252 1625 42.89
vo(M) 81.70 23.73 358 1.13 19.71 32.07
async-h(J) 94.20 28.38 3.08 097 24.77 35.83
async(J) 99.90 29.26 024 0.08 28.92 29.66
async(G) 119.78 36.58 0.58 0.19 36.06 37.90
async-h(G) 120.45 3693 250 0.75 3372 4284
async-h(M) 132.90 39.27 225 091 36.73 44.77
async(M) 140.50 40.28 0.38 0.12 39.79 40.78
UC-GI

uil 7.70 255 024 007 230 3.14

pic 19.20 298 045 0.14 256 394

gil 19.60 327 150 047 261 751

async-h 35.50 3320 850 2.69 27.60 55.17
VO 45.50 7520 7.08 2.24 6431 86.77

Table 5.8: Spearman correlation results between energy and execution time for
libraries in all use cases

Library I Lower Upper p-value
UC-GF

VO 0.82 0.39 0.96 .004
re 0.55 -0.12  0.88 .098
ok 0.58 -0.08 0.88 .082
async-h -0.03  -0.65 0.61 934
async 0.77  0.27 0.94 .009
UC-PF

Vo 0.18 -0.51 0.73 .627

65



re

ok
async-h
async
UC-PJO
vo(G)
vo(M)
vo(J)
re(G)
re(M)
re(J)
ok(G)
okM)
ok(J)
async-h(G)
async-h(M)
async-h(J)
async(QG)
async(M)
async(J)
UC-GJO
vo(G)
vo(M)
vo(J)
re(G)
re(M)
re(J)
ok(G)
ok(M)
ok())
async-h(G)
async-h(M)
async-h(J)
async(QG)
async(M)
async(J)
UC-GI

%)
async-h
pic

uil

gli

-0.14
-0.27
0.44
-0.21

-0.08
0.45
0.20
0.62
0.72
0.77
0.75
0.48
0.43
0.31
-0.41
0.02
0.05
0.39
0.27

0.27
0.88
0.92
0.26
0.84
0.89
0.32
0.83
0.56
0.43
0.72
0.77
-0.02
0.75
0.32

0.33
0.41
0.48
0.59
0.79

-0.71
-0.77
-0.26
-0.74

-0.67
-0.25
-0.54
-0.01
0.17

0.21

0.22
-0.22
-0.27
-0.40
-0.82
-0.62
-0.60
-0.31
-0.43

-0.43
0.56
0.67
-0.45
0.45
0.60
-0.44
0.41
-0.10
-0.23
0.17
0.27
-0.67
0.22
-0.39

-0.37
-0.30
-0.22
-0.07
0.32

0.54
0.43
0.84
0.48

0.58
0.84
0.76
0.90
0.93
0.95
0.94
0.85
0.83
0.79
0.30
0.64
0.66
0.82
0.77

0.77
0.97
0.98
0.76
0.96
0.97
0.81
0.96
0.88
0.82
0.93
0.94
0.65
0.94
0.79

0.80
0.82
0.85
0.89
0.95

701
446
.200
.556

.829
187
.606
.054
019
016
013
162
214
385
244
960
.881
260
446

446
<.001
<.001

476

.002
<.001

406

.003

.090

.190

.019

.009

.966

.013

.365

347
244
162
074
.007

66



5.3. Discussion

In this section, we start out with giving recommendation on how to chose third-
party HTTP libraries with regards to energy consumption in various use cases.
Then we discuss the relationship between energy consumption and execution time
as well as energy consumption and popularity of libraries. We finish the discussion
with a summary of general take-aways.

5.3.1. Recommendations

In each use case, we observed a significant variance between the eight identified
Android third-party HTTP libraries. To help developers choose the most appro-
priate library in the selected use cases, we provide recommendations in the form
of a flowchart (see Figure 5.7).

In UC-GF and UC-PF, based on results of RG1-RQ3-A and RG1-RQ3-B, we
recommend simply not to use Volley (vo) if there is not a strong reason for doing
so. This recommendation is corroborated when looking at the execution time in
RG1-RQ4 (cf. Table 5.7) where, again, Volley (vo) is the worst.

In UC-PJO, based on results of RG1-RQ3-C combined with the results from RG1-
RQ4, we recommend using Retrofit (re) in combination with either Gson (G) or
Moshi(M) as good alternatives for implementing UC-PJO. This recommendation
is corroborated when looking at the execution time in RG1-RQ4 (cf. Table 5.7)
where, again, Retrofit (re) with Moshi(M) or Gson (G) performs best.

In UC-GJO, based on the results of RG1-RQ3-D, we recommend using OkHttp
(ok), Retrofit (re), and Volley (vo) in combination with Jackson (J) library as
alternatives for implementing UC-GJO as compared to Androidasync (async) and
Androidasynchttp (async-h). If execution time is also important, then, based on
the results of RG1-RQ4, we recommend OkHttp (ok).

In UC-GI, based on the results of RG1-RQ3-E, we recommend UIL (uil), Picasso
(pic), Glide (gli) libraries as alternatives for implementing UC-GI. If execution
time is also important, then, based on the results of RG1-RQ4, we recommend
UIL (uil).

Manual effort is required by developer in order to use the recommendations pre-
sented in this section. Therefore to help developers, we provide an open source
support tool REHAB!!, implemented as an IntelliJ/Android Studio plugin. If initi-
ated during development, REHAB can help developers choose an energy efficient
third-party HTTP library. At the moment, REHAB automates the manual pro-
cess and is useful in identifying the selected third-party libraries, HTTP request
types and use-cases used in this study. However, in future, if energy measurement

Hsee chapter 8 for more details about REHAB tool architecture, implementation and usage

67



ses resulis in the paper
"An Investigation into the Energy
Consumpiion of HTTP POST Request
Methods for Android App

Use HTTP
Request?

Develgpment”
Simple
POST -y
4 N
POST 4 N s 4 \
Type of POST _‘—</TypeorH‘|TP N y . N
request -, Request? \ LErE ;
h 4 S /
- 4 N ;
\ v g ’
i  Structured Data
Mulfipart- POST
. Deserialize JSON to
lava Object (UC-GJO)
— Parse Data Parse Data
Serialize Java Object
to JSON (UC-PJO)
No deserialization
{UC-GF)
No Serialization
(UC-PF)
Quality Quality
Attribute Attribute
[Exacution fime Energy Execution ime Ensrgy
[RG1.RQ4) (RE1LRAFC) [RG1Ra4) (RE1RAEA)
Y ¥ A
Retrofit with Retrofit with androidasync androidasync
MoshilGson Gson/Moshi
ﬁ e
Guality
: Attribute
Quality
Attribute
Execution time  Enargy
Exscution time Ensrgy (REIR%)  (Re1Ra3D)
[RG1.RQ4) |RG1.REE)
v Okhttp with Pkt e
o volley with
randroidasync/ retrofit/ okhtip/| retrofit [ androidasync/ Jackson
androidasynchitp okhttp/ androidasynchttp

Performance
[RG1.RGY)

v

Quality

Energy
[RG1RAME)

Atfribute
uiL

UIL! Picassol
Glide

Figure 5.7: Flowchart summarizing recommendations

68

Image
(uc-al



are done for more third-party libraries, the scope of REHAB can be widened to
include more use-cases and related recommendations.

5.3.2. Energy Consumption versus Execution Time

We did not observe a positive correlation between energy consumption and ex-
ecution time in most of the app versions. Only 14 out of 45 app versions in all
use cases showed a strong positive correlation between energy consumption and
execution time. For each use case, based on the mean value of execution time in
summary statistics, we could see that there were significant differences between
the execution time of libraries as well. If energy consumption of the third-party
library is not a concern, the results of RG1-RQ4 (cf. Table 5.7) could still be used
by developers to choose an Android third-party HTTP library based on execution
time.

5.3.3. Energy Drivers

Although energy consumption of libraries varied significantly, the nature of the
variance was inconsistent across the use cases. If one is looking for a result that
consistently occurs across use cases, one could, perhaps, mention that the popu-
lar library Volley (vo) was most energy consuming in use cases UC-GF, UC-PF,
UC-PJO and UC-GI among all libraries selected in our experiment. Generally,
the variance in the energy consumption of third-party HTTP libraries could be
related to how these libraries deal with multiple threads and requests, if they use
thread pools and caching mechanisms. In Volley (vo) by default only four threads
are created and reused for asynchronous requests. Volley (vo) uses memory cache
(RAM) (it loads all data in memory during parsing), however updating cache state,
limited number of threads and frequent context switching due to callback on UI
thread might be causing Volley to use more energy than other alternative libraries
like Retrofit (re), OkHttp (ok), and Androidasync (async). Retrofit (re) is built on
top of OkHttp (ok) and use unlimited thread pools and no caching to complete
the requests. Androidasync (async), on the other hand, is built on top of NIO
(non-blocking Input/output) model and use single thread along with NIO buffers
to efficiently complete the requests. Volley (vo), Retrofit (re), OkHttp (ok,) and
Androidasynchttp (async-h) use connection pooling. Starting/stopping a connec-
tion is always expensive as it creates an overhead. Reusing an idle connection
is much more feasible (as done by Retrofit and OkHttp). Pooled/shared connec-
tion also means more complex error handling in the app. Androidasync (async)
is avoiding overhead by not using thread and connection pool, which might be
the reason behind its less energy consumption. Loading and displaying images
on the screen requires memory management especially for large size images to
avoid OutofMemory error. Picasso (pic), Glide (gli) and UIL (uil) provide better
memory management then Volley (vo). Picasso (pic) download the image in its
actual size to disk cache and retrieve it from there when needed. In contrast, Glide

69



(gli) and UIL (uil) get the images from the server, but based on imageview resize
it and save it in different resolutions for later use.

5.3.4. Energy Consumption versus Popularity

When considering UC-GF to UC-GJO together, then Retrofit (re) and OkHttp (ok)
are either the most energy efficient or, at least, at an acceptable middle position re-
garding energy consumption. Since in an app it is probable that all use cases apply
in one way or the other, this might be another argument for developers to use those
libraries that are acceptable across the board instead of choosing libraries that are
most efficient with regards to energy consumption (and possibly also execution
time) in only one or two use cases, such as Androidasync (async). When looking
at the popularity statistics we gathered (cf. Section 3.3) from online catalogs, it
turns out that not Androidasync (async) but, instead, Retrofit (re) and OkHttp (ok)
are the most popular HTTP libraries in the ‘network’ category and used in most
apps. There could be many reasons why Androidasync (async) is not as popular
as Retrofit (re) and OkHttp (ok). One could simply be that Androidasync (async)
is a new library that only recently has become available. This potential reason
can be excluded because all three libraries have been available for almost ten
years (cf. Table 5.1 in additional material). Another reason could be that Retrofit
(re) and OkHttp (ok) are more popular because they offer more features and of-
fer more support for HTTP/2 and SPDY which Androidasync (async) does not
have. Another reason could be the architectural style that the libraries use. Both
REST (Representational State Transfer) and RPC (Remote Procedure Calls) use
HTTP verbs/methods (GET, POST, DELETE etc.). The choice of library could
be dependent on the context and personal preference of the developers. REST
uses HTTP verbs to manipulate resource through HTTP protocol, while, RPC
use operations to manipulate data and use HTTP for transport. Therefore, REST
might seem attractive to developers due to its obvious semantics and could be a
possible reason behind the popularity of Retrofit (re) and OkHttp (ok). Finally,
it could be that Retrofit (re) and OkHttp (ok) have a better execution time than
Androidasync (async). However, as we could see from the results related to RG1-
RQ4, in UC-GF, Androidasync (async) is performing better than both Retrofit
(re) and OkHttp (ok). In UC-GI, result of RG1-RQ3-E indicate that Picasso (pic),
Glide (gli) and UIL(uil) consumes the least energy with no significant variance
among them. However, related to the results of RG1-RQ4 UIL (uil) get a clear
edge based on its execution time. Based on popularity statistics Picasso (pic) and
Glide (gli) are more popular as compared to and UIL (uil), Volley (vo), and An-
droidasynchttp (async-h). Possible reasons for the popularity of these libraries
could be due to their superior memory management and customization capabili-
ties. Assuming that developers make rational decisions, the fact that better energy
consumption and better execution time don’t automatically make Androidasync
(async) or UIL (uil) the first choice indicates that there is a large range of criteria

70



that developers take under consideration when choosing an Android third-party
HTTP library. Energy consumption might not be among them. Our results might
help to give a more complete picture of their selection criteria but in order to
provide actionable decision-support more detailed trade-off analyses are needed.

5.3.5. General Take-aways

Assuming that in the future the libraries used in this experiment might be depreci-
ated or merged or new versions are published, the take away from this experiment
is that the energy consumption of third-party libraries should be taken into con-
sideration during selection. Third-party libraries that offer task-specific features
(such as Picasso (pic), Glide (gli), OkHttp (ok) and Retrofit (re)) have less energy
consumption than alternative third-party libraries (such as Volley (vo)) providing
an extended feature set. Third-party libraries that are task specific are also easier
to replace if requirements change in future, hence the effort required to maintain
the app code is reduced. Development of task specific third-party libraries and
their usage should be encouraged to avoid excessive energy consumption and to
improve performance of the apps.

5.4. Threats to Validity

In this section, we discuss the possible threats to validity of this study and our
strategy to mitigate them.

Internal validity: In order to ensure accuracy of measurements, each app version
was run under same conditions. Only necessary services were run on Android de-
vice. The caches and data related to each app version was cleaned from the mobile
device after each run. To account for underlying variation in energy consumption
measurement due to OS related operations, ten samples were recorded for each
app version.

External validity: The libraries chosen for energy measurement were selected
based on the fact that they were available on online catalogue site like ‘AppBrain’
and ‘Awesome Android’. To ensure that the selected libraries were representative
of a commonly used third party HTTP libraries, we checked relative popularity
rating in their respective categories. In addition, we also ensured that these li-
braries were used in a considerable number of apps on the play store.

Changing the version of the selected libraries might also produce different results.
The version of the libraries used in the experiment is not necessarily used in all the
apps that use these selected libraries. We looked at the changes made in several of
the releases of the selected libraries and updates mostly related to error handling
and retry policies. Further research could be performed on different versions of
the same library to identify the most energy efficient version. In our experiment,
we did not consider versions of the same library as it exponentially increased the

71



number of times the execution needs to be performed and it was not possible to
measure energy for all of them in all the possible scenario (that would require a
much larger study both in terms of time, processing power, and human resources).
There is a risk that our results might not generalize to the Android app’s popula-
tion, hence to minimize it we selected popular third-party libraries.

Increasing the magnitude of study in terms of a number of included libraries in
future work is desirable. Increasing the number of libraries in the experiment also
exponentially increases the number of app versions that need to be tested. As
writing app versions is a slow process that requires manual effort, we limited this
experiment to eight libraries.

It is important to note that in order to replicate the results of this experiment the
same phone model and Android OS version, measurement tools and app version
should be used. The reason is that different mobile phones with different An-
droid OS versions might use different levels of energy. To ensure that the selected
device was a good representation of an Android device we checked the device
specifications, i.e., Android version, Chipset, screen resolution and size, battery
capacity and RAM size.

Construct validity: Accuracy of energy measurements depend on the sampling
frequency of the measurement device. Energy measurements were recorded using
the Monsoon power monitor [12], which recorded power consumption at a rate
of 5SKHz. The same specification has been used in previous studies [20, 38, 81,
91, 97, 157, 180] so sampling frequency is sufficient to produce precise readings.
Energy measurements were made for the apps plus Android OS related activities.
We tried to minimize this threat by using adb logs and matching the timestamps
with the energy trace to filter out any unwanted readings. We repeated the tests ten
times for each app version and included the averaged reading to further mitigate
variations in the readings. However, recording the logs for the app introduces an
overhead which in itself could be energy consuming. Since this overhead was
constant between the versions of the app it could be ignored.

72



6. TOOL SUPPORT FOR GREEN ANDROID
DEVELOPMENT

In this chapter, we focus on RG2 (defined in Section 1.1) to improve the tool
support for energy efficient mobile app development. In order to build effective
Android-specific support tools to aid development of green Android apps, we first
need to understand what is already available, what is still needed, and how the
problems in existing tools could be overcome. Based on published literature we
outlined an explorative analysis of support tools available to 1) optimize code in
Android apps through code smell or energy bug detection or refactoring, and 2) to
optimize reusable code in Android apps through detection or migration of third-
party libraries. We explore if these support tools aid green Android development.
We also provide an overview of the techniques used in these support tools.

6.1. Research Method

We conducted a systematic mapping study following the method described in
[129]. First, we formulated research questions, then based on those research ques-
tions we formulated two general search queries and conducted the search in the
following online repositories for primary publications: IEEE Xplore, ACM digital
library, Science Direct, and Springer. We cover publications from 2014 to June
2020, as from 2014 onwards the focus of many publications has been Android and
energy-efficient app development, indicating a shift in research focus.

6.1.1. Research Questions

As the objective of this study is to analyze the current support tools available to
improve custom code through detection or refactoring of code smell or energy
bugs and to improve reusable code through detection or migration of third-party
libraries in Android apps, we formulated the following research questions.

What state of the art support tools have been developed to aid software
practitioners in detecting or refactoring Android specific code smells and
energy bugs in Android apps?

73



RG2-RQ2

What state of the art support tools have been developed to aid software
practitioners in detecting or migrating third-party libraries in Android

apps?

| r

RG2-RQ3

How do existing support tools compare to one another in terms of tech-
niques they use for offering the support?

RG2-RQ4

| r

How do existing support tools compare to one another in terms of the sup-
port they offer to practitioners for improving energy efficiency in Android

apps?

RG2-RQ1 and RG2-RQ2 aims to classify publications based on the tools they of-
fer. RG2-RQ3 aims to classify and analyze publications based on techniques used
in the tool to offer support to developers. RG2-RQ4 deals with the characteriza-
tion of all the identified tools in terms of the support (such as output or interface
or availability, etc.) they offer to developers to aid green Android development.

6.1.2. Search Query

We derived search terms to use in our search queries from the research questions
of this study. We looked for alternatives to the search terms in publications we
already knew and refined our search terms to return the most relevant publications.
We used the “*’ operator to cover possible variations of the selected search terms
in the search query. Keyword ‘OR’ was used to improve search coverage.

The first search query is designed to retrieve publications that provide a support
tool to detect/refactor code smells/energy bugs in Android apps. This search query
extends our previous study [54] in following ways: we improved the search strings
to cover missing papers e.g. the terms ("energy effici*" OR "code optimization")
were replaced by ("energy" OR "efficien*" OR "code smell" OR "optimiz*") and
so on. We also extended our search in terms of publication years to include one
more year.

The second search query is designed to retrieve publications that provide a support
tool to detect/migrate third-party libraries in Android apps.

We did not use the search terms ‘mobile development’, ‘apps’, ‘optimization’,
‘green’, ‘sustainability’, and ‘recommendation’ in isolation as they were too high
level and produced a quite large corpus consisting of a high number of irrelevant



publications while the search terms ‘resource leaks’, ‘APT’, ‘tool’, ‘framework’,
and ‘technique’ were eliminated to avoid being too specific. The search queries
were applied to popular online repositories (IEEE Xplore, ACM digital library,
Science Direct, and Springer) to find a dataset of relevant primary publications. In
each repository, based on available advanced search options, filters were applied
to refine the query results. Applied filters are shown in Table 6.1. The search
queries were applied to the titles, abstracts, and keywords of the publications.

Search Query 1:

Android AND (energy OR code smell OR bug OR refactor* OR correct* OR
detect* OR optimiz* OR efficien*) AND NOT (environ* OR iot OR edu* OR
hardware OR home)

Search Query 2:
(Android) AND ( “third-party libr*” OR “third-party Android lib*” OR "libr*")
AND NOT (environ* OR iot OR indus* OR edu* OR hardware OR home)

Table 6.1: Search query filter

Filter ‘ Value
Publication year ‘ 2014 — 2020 (up till June)
Content-Type ‘ Journal Article, Conference Paper

6.1.3. Screening of Publications

We first removed duplicate results and then defined inclusion, exclusion, and qual-
ity criteria for further screening of search results.

Duplicate Removal. The search results from online repositories were first loaded
in Zotero (an open-source reference management system) to create a dataset of
relevant publications. Using the feature in Zotero duplicates publications were
removed from the dataset. Next, we manually applied inclusion, exclusion, and
quality criteria on the remaining publications.

Inclusion Criteria. For inclusion, the selected publication should be a primary
study generally related to the software engineering domain with a focus on third-
party libraries or code smells or energy bugs in Android apps. A tool/automated
technique for third-party library/code smell/energy bug detection, modification or
replacement was presented in the publication to support Android development.
We considered only conference and journal articles published in English.

Exclusion Criteria. Publications that were unrelated to Android development or
third-party library/code smell/energy bugs in Android apps were excluded. The

75



publications that focused only on hardware, environmental, security, privacy, net-
works, malware, clones, repackaging of apps, obfuscation issues, 10S, or present
secondary data were also excluded. The work presented in a thesis or a book
chapter is usually published in relevant journals or conferences as well. Therefore,
doctoral symposium papers, magazine articles, book chapters, work-in-progress
papers, and papers that were not in English were excluded as well.

Quality Criteria. The quality criteria applied to selected publications are shown
in Table 6.2. Abstracts of the publications and structure of the publication were
inspected for further quality assessment. If a quality rule was true for a publica-
tion, it was awarded full points; otherwise, no points were awarded. In case a rule
partially applied to a publication, half points were awarded. After applying all five
quality rules, the points were added to get a final quality score for a publication.
A maximum quality score of 3 could be assigned to a publication. If a publication
was below a total quality score of 2, it was removed from the results. The quality
score threshold is set to 2 so that publications above the 50% score are included.
It ensures the rigour and relevance of selected primary publications.

Table 6.2: Quality assessment criteria

ID | Description Rating
1 | Does the publication clearly state contribution(s) that is directly 0.5
related to third-party libraries/code smells/ energy bugs in An-
droid apps?
2 | Is the contribution(s) related to green in Android development?? 0.5
3 | Is contribution(s) a tool or automated technique that could be 1
used in Android development or maintenance?
4 | Is the research method adequately explained? 0.5
5 | Are threats to validity and future research directions separately 0.5
discussed?
TOTAL 3

6.1.4. Classification and Analysis

To answer RG2-RQ1-RG2-RQ3, we identified the main keywords of the selected
publications along with the commonly used terms in the abstracts to define cate-
gories of support tools. Research methodology and results of selected publications
were additionally studied when needed. We kept extracted data in excel spread-
sheets for further processing. During data extraction, if there was a conflict of
opinion, it was discussed among authors until a consensus was reached.

To answer RG2-RQ1 and RG2-RQ2, a bottom-up merging technique was adopted
to build our own classification schemes (see Table 6.3 and 6.4). Once classifica-
tion schemes were established, we extracted data from each selected publication
to identify its main contribution and assigned the tool mentioned in the publication

76



to a category based on the classification scheme.

To answer RG2-RQ3, a classification scheme was needed to classify techniques
used in support tools for offering support to aid Android development. We used
the bottom-up approach to build this classification scheme by combining the spe-
cialized analysis methods/techniques into more generic higher-level techniques.
The identified generic techniques along with their definitions, are described in Ta-
bles 6.5 and 6.6. Once we had established the classification schemes, we extracted
data from the abstract and research methodology of each selected publication and
assigned it to a category defined in the classification schemes.

To answer RG2-RQ4, we extracted data form each selected publication to gather
information about the kind of support the identified tool offers. We compare
these tools based on the inputs of the tool, outputs of the tool, code smells/en-
ergy bugs/third-party libraries coverage, interface type, integrated development
environment (IDE) support, and availability. In general, a code smell is defined as
“a surface indication that usually corresponds to a deeper problem in the system”
[59] and an energy bug is defined as “error in the system (application, OS, hard-
ware, firmware, external conditions or combination) that causes an unexpected
amount of high energy consumption by the system as a whole” [124]. A third-
party library is a reusable component related to specific functionality that can be
integrated into the application to speed up the development process. A third-party
library could be for advertising, analytics, Image, Network, Social Media, Utility
etc. [177]. In the light of these definitions, we looked for Android-specific code
smells, energy bugs, and third-party libraries in the studies.

Table 6.3: Categories of support tools (RG2-RQ1)

ID | Category | Description

CP | Profiler | A software program that measures the energy consumption
of an Android app or parts of apps.

CD | Detector | A software program that only identifies and detects energy
bugs/code smells in an Android app.

CO | Optimizer | A software program that identifies energy bugs/code smells
as well as refactor source code of an Android app to im-
prove energy consumption.

77



Table 6.4: Categories of support tools (RG2-RQ2))

ID ‘ Category ‘ Description

CI | Identifier | A software program that only identifies and detects third-
party libraries in an Android app.

CM | Migrator | A software program that identifies third-party libraries as
well as helps in updating or migrating the third-party li-
braries (to an alternative library or version) in the source
code of an Android app.

CC | Controller | A software program that identifies third-party libraries to
control, isolate, or deescalate privileges and permissions
granted to third-party libraries in an Android app.

Table 6.5: Categories of techniques used in support tools for code smells or energy
bugs (RG2-RQ3)

ID ‘ Technique Definition

T1 | Byte Code Manipulation | A technique that injects code in the Smali
files of the app under test. The injected code
is either a log statement or an energy evalua-
tion function. These statements help find out
the part of the source code that consumes a
specific amount of energy at runtime.

T2 | Code Instrumentation A technique that instruments the app, using
instrumented test cases that are capable of
running specific parts of the app, in such a
way that it is run in a specific environment
while calling known methods/classes of the
app under test. It uses finite state machines
and device-specific power consumption de-
tails to measure energy.

T3 | Logcat Analysis A technique that uses system-level log files
to obtain energy consumption information
provided by OS for the app under test. These
logs are compared with application-level
logs to give graphical information about the
energy consumption of the app.

78



T4 | Static  Source Code | A technique that uses the source code of
Analysis the app and analyses it using one or com-
bination of the following methods: control
flow graphs analysis, point-to-analysis, inter-
procedural, intra-procedural, component call
analysis, abstract syntax tree traversal or
taint analysis.

TS5 | Search-based algorithms | A technique that uses a multi-objective
search algorithm to find multiple refactoring
solutions and the most optimal solution is
selected as final refactoring output by iter-
atively comparing the quality of design and
energy usage.

T6 | Dynamic Analysis A technique based on the identification of in-
formation flow between objects at run time
for the detection of vulnerabilities in the app
under test. It monitors the spread of sensory
data during different app states.

Table 6.6: Categories of techniques used in support tools for third-party libraries
(RG2-RQ3)

ID ‘ Technique Definition

T7 | Feature Similarity A technique that uses machine learning to
extract code clusters or train classifiers, by
using feature hashing or similarity metrics or
pattern digest or similarity digest, in order to
identify and classify third-party libraries.

T8 | Whitelist Comparison A technique that compares third—party li-
brary names/versions/package information
to whitelist in order to detect third-party li-
braries.

T9 | API Hooking A technique that intercepts or redirect API
calls at various levels in order to regulate per-
mission or policy-related operations.

T10| Module Decoupling A technique to divide code in modules and
extract code features such as package name,
package structure, inheritance relationships
for clustering/classification to detect library.

79



T11| Process Isolation A technique to isolate untrusted components
in the operating system. This technique re-
quires system-level modification.

T12| Class Profile Similarity | A technique to extract (strict or relaxed) pro-
files from libraries and apps code based on
structural hierarchies. Based on similarity
(exact or fuzzy) between these profiles li-
brary is detected.

T13| Collaborative Filtering A technique to predict or recommend third-
party libraries based on feature vectors and
its similarity against a set of similar apps
or neighbourhood apps. It Includes model-
based approaches (such as matrix factoriza-
tion), memory and item-based approaches.
T14 | Natural Language Pro- | A technique used to identify or recommend
cessing third-party libraries based on textual descrip-
tions. It includes techniques such as word
embedding, skip-gram model, continuous
bag-of-words model, domain-specific rela-
tional and categorical tag embedding, and
topic modelling.

6.2. Results

In this section, first we present the publications that were found when applying
the search strings and the other steps outlined in the method (cf Section 6.1.4)
for a) support tools for code smells or energy bugs and b) for support tools for
third-party libraries. The list of selected publications and additional details about
code smells or energy bugs covered by support tools are shown in a Annex B.
Then, each subsection (6.2.1, 6.2.2, 6.2.3, and 6.2.4), is dedicated to answering
one research question.

Search Query 1 (support tools for code smells or energy bugs): As a result of
running search query 1 and applying filters on search results, 2334 publications
were found from the selected online repositories. These publications were loaded
into the Zotero software for the screening and removal of duplicates, the total
number of publications were reduced to 2241 after duplicate removal. Inclusion
and exclusion criteria were applied to the remaining publications, and the number
was reduced to 575. We read abstracts of these publications and looked at the
structure to assign them a quality score based on quality criteria. After applying
the quality criteria, the number of selected publications was reduced to 24. (See
Tables 6.7, 6.8, and 6.9)

80



Search Query 2 (support tools for third-party libraries): As a result of running
search query 2 and applying filters on search results, 545 publications were found
from the selected online repositories. These publications were loaded into the
Zotero software for the screening and removal of duplicates, the total number of
publications were reduced to 521 after duplicate removal. Inclusion and exclusion
criteria were applied to the remaining publications and the number was reduced to
131. We read abstracts of these publications and looked at the structure to assign
them a quality score based on quality criteria. After applying the quality criteria,
the number of selected publications was reduced to 27. (See Tables 6.10, 6.11,
and 6.12).

The four RQs are answered one by one in the following subsections.

Table 6.7: Number of publications extracted per online repo. (search query 1)

Sr. Repo. No. of studies Conf. Papers  Journal Articles

1 IEEE Xplore 1170 910 260

2  ACM Digital library | 483 459 24

3 Springer 595 362 231

4 Science Direct 86 4 82

Table 6.8: Number of publications per screening step (search query 1)

Sr. Step in the screening of publications No. of publications
1  Search string results after applying filters | 2334

2 Remove duplicates 2241

3 Apply inclusion and exclusion criteria | 575

4 Apply quality criteria 24

Table 6.9: Quality score assigned to each selected publication (search query 1)

Publication ID ‘ Quality Score
P2, P11, P12,P14, P16, P17, P19, P20 2

P5, P6, P7, P13, P21, P24 2.25

P1, P4, P8, P9, P10, P15, P22, P23 2.5

P3, P18 2.75

Table 6.10: Number of publications extracted per online repo. (search query 2)

Sr. Repo. No. of studies Conf. Papers  Journal Articles
1 IEEE Xplore 312 296 12

2  ACM Digital library | 177 157 20

3 Springer 28 22 6

4 Science Direct 28 0 28

81



Table 6.11: Number of publications after applying filters and screening steps
(search query 2)

Sr. ‘ Step in the screening of publications No. of publications
1 | Search string results after applying filters | 545

2 Remove duplicates 521

3 Apply inclusion and exclusion criteria 131

4 Apply quality criteria 27

Table 6.12: Quality score assigned to each selected publication (search query 2)

Publication ID ‘ Quality Score
P31, P43 2

P26, P29, P33, P34, P35 ,P36, P39, P40, P48, P49 2.25
P25, P27, P28, P30, P32, P37, P38, P41 ,P42, P44, P45, P46, 2.5

P47, P50, P51

6.2.1. RG2-RQ1: What state of the art support tools have been
developed to aid software practitioners in detecting or refactoring
Android specific code smells and energy bugs in Android apps?

To answer RG2-RQ1, the classification scheme defined in Table 6.3 (cf. Sec-
tion 6.1.4) was used and the selected publications were divided into three cate-
gories, i.e., 1) ‘Profiler’, 2) ‘Detector’, and 3) ‘Optimizer’, based on the support
tool they offer to aid green Android development. Table 6.13 gives an overview
of the distribution of selected publications in each category, along with the total
number of tools in each category. Figure 6.1 shows the number of publications
each year. The color in bars indicates the number of tools in each category each
year from 2014 to 2020. We can see a decrease in the number of ‘Profiler’ tools
while an increase in the number of ‘Optimizer’ tools. In 2019 and 2020 (till June),
no new ‘Detector’ tool has been published.

Table 6.13: Distribution of publications in each category (RG2-RQ1)

Category ‘ Selected Publications No. of Tools
Profiler ‘ P6, P14, P16, P12, P13, P20, P19 7
Detector ‘ P1, P3, P4, PS5, P§, P9, P7, P17 8

Optimizer ‘ P10, P11, P15, P18, P2, P21, P22, P23, P24 9

6.2.2. RG2-RQ2: What state of the art support tools have been
developed to aid software practitioners in detecting or migrating
third-party libraries in Android apps?

To answer RG2-RQ2, the classification scheme defined in Table 6.4 (cf. Sec-
tion 6.1.4) was used and the selected publications were divided into categories: 1)

82



Profiler @0ptimizer @Detector

MO, OF PUBLICATIONS

N
_H!_\!_\

2014 2015 2016 2017 2018 2019 2020
YEAR OF PUBLICATION

[ R T ™ N % I S & B = B

Figure 6.1: Publication per year per category (Search Query 1)

‘Identifier’, 2) ‘Migrator’, 3) ‘Controller’, based on the support tool they offer to
aid Android development. Table 6.14 gives an overview of the distribution of se-
lected publications in each category, along with the total number of tools in each
category. Figure 6.2 shows the number of publications each year. The color in
bars indicates the number of tools in each category each year from 2014 to 2020
(till June). We can see at least one ‘Identifier’ and ‘Controller’ tool each year. We
can see an increase in the number of ‘Migrator’ tools in 2019 and 2020.

Table 6.14: Distribution of publications in each category (RG2-RQ2)

Category ‘ Selected Publications No. of Tools
Identifier | P26, P27, P29, P30, P31, P32, P33, P37, P40, P41, 16
P42, P44, P47, P48, P49
Migrator | P35, P45, P50, P51 4
Controller | P25, P28, P34, P36, P38, P39, P43, P46 7
g . )
% 2 O ldertifier @Wigrator O Controller
]
E G
U s
@4
>
o3
L
o2
=p
0 | [ ]

2014 2015 2016 2017 2013 2019 2020
YEAR OF PUBLICATION

Figure 6.2: Publication per year per category (Search Query 2)

83



6.2.3. RG2-RQ3: How do existing support tools compare to one
another in terms of techniques they use for offering the support?

To answer RG2-RQ3, we identify techniques used in each tool for improving the
energy efficiency of apps. Table 6.15 and 6.16 gives an overview of tools and
techniques along with reference to selected publications. Based on Table 6.15,
we observed that no tool in any category used a combination of techniques. Each
tool could be easily classified into exactly one category of techniques (defined in
Section 6.1.4). However, in Table 6.16 many tools used a combination of tech-
niques such as module decoupling and feature similarity, or collaborative filtering
and natural language processing. As a result of fine-tuning the search query 1, we
were able to identify three new ‘Optimizer’ tools [P22, P23, and P24] which used
static source code analysis to refactor and optimize the app code.

Profiler. Profiling tools measure the energy consumption of the software and the
used hardware resources. Profilers [P6, P16, and P14] were designed to inject log-
ging statements into the Smali files to gather relevant log data. This data was then
transformed as needed and matched against pre-defined API names or method
names to identify energy intensive APIs and methods in the program. In these
profilers, Dumpsys or System level logs or ADB data plotted on a graph was used
to measure energy usage. Another group of profilers analyzed the paths in source
codes using finite state models (FSM) or inter procedural control-flow paths. The
authors of [P19] created a dynamic model that instrumented the app to measure
its power consumption. Methods were invoked using tests and were classified into
three different levels (classes, packages, and projects) based on their energy con-
sumption. The classification was then presented graphically. The authors of [P12]
modelled energy consumption as an FSM model by collecting events from an An-
droid device. By executing the instrumented unit tests the line of source code
with the energy consumption issue was identified. The authors of [P13] sliced the

Table 6.15: Overview of support tools (for code smells or energy bugs detection
and refactoring) showing the technique used for offering support to developers
(RG2-RQ3)

‘ Techniques
Ct. | Ti1 T2 T3 T4 TS T6
CP | P6,P16 PI2,P13,P19 Pl4, P20 - - P17
P1, P3, P7.PS,
b i i i P9, P4, P5 i i
P11, P21, P2,
o - ] " plo,p22.p23,p24 D10 PI8

CP=Profiler, CD= Detector, CO= Optimizer, T1=Byte code manipulation, T2= Code instru-
mentation, T3=Logcat analysis, T4= Static source code analysis, T5=Search-based algorithms,
T6=Dynamic analysis

84



Table 6.16: Overview of support tools (for third-party library detection and migra-
tion) showing the technique used for offering support to developers (RG2-RQ3)

‘ Technique ‘
Ct. T7 T8 T9 T10 T11 T12 T13 TI14
o
CI | P49, P33, P31, - P33’ P37’ - P30, - -
P37, P40 P47 P 40’ p 47’ P41,
’ P48
CM - - - P45 - - P35, P35,
P51 P50
P34, P36,
CC - - P38, P39, P28 P25 - - -
P43, P46

Cl=Identifier, CM= Migrator, CC=Controller, T7= Feature similarity , T8=Whitelist comparison,
T9= API hooking, T10=Module decoupling, T11=Process isolation, T12=Class profile similarity,
T13= Collaborative filtering, T14= Natural language processing

program into executable slices for generating feature predictors. Predictors were
generated based on some predefined metrics which quantified energy consump-
tion. The authors of [P20] measured energy consumption by encapsulating the
code blocks with energy evaluation functions. Sampling collector extracted en-
ergy consumption and a runtime manager extracted application information from
OS.

Detector. The authors of [P17] used JPF to statically analyze the state space of the
app to find the usage of sensors and wake locks. The utilization of sensory data
was defined by a coefficient. The authors of [P7] converted APK files into byte
code using ‘SOOT’ which is a static source code analyzer. The converted code
was then used to identify and report various antipatterns in code. The authors
of [P5] identified resource intensive items in an app using control-flow graphs
(CFGs). Using resource protocols as a guide a taint-like analysis was performed
on CFGs. In the study [P1] valid inter-procedural control-flow paths were ana-
lyzed in each callback method and its transitive callees, in order to detect energy
draining operations related to missing deactivation behaviors. In the study [P3],
a static analysis tool ‘SOOT’ was used to find energy bugs in graphics intensive
mobile apps along with point-to analysis tool, ‘SPARK’. Energy bugs were iden-
tified based on the frequency at which GPU was being used to perform certain
actions e.g. texture transformations etc. The authors of [P8] used flexible bug
pattern specification notation (FBPSN) to specify bug patterns. The source code
was transformed to CFGs which were used to detect bugs with the help of FBPSN
specified bug patterns. In the study [P9] the APK files were analyzed using ‘AP-
KTool’ and resource leak were analyzed using ‘SAAF’. ‘Lint’ was used for lay-

85



out defect analysis. "SAAF’ internally uses inter-procedural, intra-procedural and
component call analysis and resource leak detection. The output from ’Lint’ was
passed through a filter based on a set of rules defined in a defect table to generate
the report. The results of both these tools are used to generate the respective re-
ports. In the study [P4] an abstract syntax tree of classes was traversed to apply a
set of detection rules based on a specific set of code smells.

Optimizer. The authors of [P2] introduced the tool ‘DelayDroid’ which used
static analysis and byte code refactoring using ASM library to find the parts of
code that performed energy intensive network related tasks and batched them to-
gether to perform those tasks at a delayed interval to reduce energy consumption.
The tool ‘Hot-pepper’ was presented in [P10] which detected energy smells us-
ing the ‘Paprika’ tool and computed the energy consumption of code smells using
the ‘Naga-Viper’ tool. Corrections were made using a tool called ‘SPOON’ that
used static analysis for transformation. The authors of [P11] presented a tool
developed on top of the Eclipse refactoring engine which converted AsyncTask
to Intent-Service in order to improve the asynchronous operations. In the study
[P15] a novel tool ‘EARMO’ was presented which created code abstractions to
search for anti-patterns based on QMOOD metrics. To correct anti-patterns in the
app, the ‘ReCon’ tool was used. In [P18] a framework was presented that had
three main components: Design extractor, refactoring component and code gener-
ation component. Design and defect expressions were generated from EFG using
deterministic finite automata. Their intersection was used to refactor the code.
The authors of [P21] used ‘PMD’ and ‘Android Lint’ to create an Eclipse plugin
for refactoring of source code. ‘PMD’ created an Abstract Source Tree (AST) to
analyze code and apply the pre-defined rules.

Identifier. ‘Identifier’ tools mostly use feature similarity or module decoupling
or both techniques to detect third-party libraries. The authors of [P26] used sim-
ilarity digest (which are similar to standard hashes) and compared them against
a database consisting of original compiled code of third-party libraries. The au-
thors of [P42] also used similarity digests to measure the similarity between data
objects. The authors of [P49] used design pattern digests, fuzzy signatures along
with fuzzy hash to match design patterns from app and library code. The authors
of [P27 and P29] identified third-party libraries by decoupling an app into mod-
ules using package hierarchy clustering, and clustering based on locality sensitive
hashing, respectively. The authors of [P32 and P44] decoupled app into mod-
ules to extract package dependencies for identifying third-party libraries. The
authors of [P33, P37 and P40] used a combination of module decoupling and fea-
ture hashing/digests to provide list of detected third-party libraries. The authors
of [P47] used whitelist based detection for non-obfuscated apps and used motifs
subgraph based detection for obfuscated apps. The authors of [P31] used whitelist
based detection by comparing library name and package information against a list
of commonly used third-party libraries. The authors of [P31, P41, and P48] ex-

86



tracted method signatures, and package hierarchy structures from libraries to build
profiles per library and used these profiles for third-party library identification.

Migrator. ‘Migrator’ tools are mostly a combination of collaborative filtering and
natural language processing techniques. The authors of [P35] used collaborative
filtering in combination with topic modelling (applied to the textual description in
readme files). Based on results of topic modelling, similar apps were identified,
and the set of third-party libraries extracted from these similar apps were then used
to recommend libraries to developers. The authors of [P50] applied word embed-
ding and domain-specific relational and categorical knowledge on stack overflow
questions to recommend alternative libraries. The authors of [P51] used collabo-
rative filtering and applied matrix factorization approach to neutralize bias while
recommending libraries. The authors of [P45] used ‘LibScout’ tool to extract li-
brary profiles. These profiles are then used to determine if a library version should
be updated or not.

Controller. ‘Controller’ tools mostly use API hooking techniques to provide con-
trol over library privileges based on policy. The authors of [P34] intercept and
control framework APIs. The authors of [P36] intercept system APIs to extract
runtime library sequence information. The authors of [P38] track the execution
entry of the module and all related asynchronous executions at thread level. The
authors of [P39] use the tool ‘Soot Spark’ to get call graphs in order to identify
Android APIs that leak data (based on a given policy). The authors of [P43] used
binder hooking, in-VM API hooking and GOT (global offset table) hooking to
regulate permission and file related operation of third-party libraries. The authors
of [P46] intercept permissions protected calls and check them against a compiled
list of third-party libraries in order to regulate privileges. The authors of [P28]
extract code features and package information to train a classifier to detect li-
braries and grant them privileges. The authors of [P25] used system-level process
isolation in order to separate third-party library privileges.

Techniques used to provide support by the various categories of support
tools for detecting or refactoring code smells or energy bugs are the
following:

‘Profiler’ tools typically use a variety of techniques to measure energy con-
sumption but none of the tools in this category uses static source code anal-
ysis. Almost all ‘Detector’ and ‘Optimizer’ tools use static source code
analysis of APK/SC based on a predefined set of rules.

87



Techniques used to provide support by the various categories of support
tools for detecting or migrating third-party libraries are the following:

‘Identifier’ tools use a variety of techniques for detecting third-party li-
braries. However, feature similarity and/or module decoupling techniques
are more frequent. Almost all ‘Migrator’ tools used collaborative filter-
ing and/or natural language processing techniques to recommend library
migration. Almost all ‘Controller’ tools used API hooking techniques to
control privileges/permissions related to third-party libraries.

6.2.4. RG2-RQ4: How do existing support tools compare to one
another in terms of the support they offer to practitioners for
improving energy efficiency in Android apps?

To answer RG2-RQ4, we first list all the support tools for code smell/energy bug
detection/correction (see Table 6.17) and compare them in terms of input, output,
user interface, integrated development environment (IDE) integration, availabil-
ity, and code smell/energy bug coverage. Second, we list all the support tools
for detecting/migrating third-party libraries (see Table 6.18) and compare them
in terms of input, output, library coverage, user interface, availability, and IDE
integration support. In Tables 6.17 and 6.18, the ‘input’ column provides in-
formation about what is the input for each tool. The ‘output’ column provides
information about the support the tool offers based on the input. The ‘UI’ column
provides information about the user interface of the tool. The ‘open source’ col-
umn provides information about tool availability for usage/extension. The ‘IDE’
column (see Table 6.17) provides information about the IDE integration capability
of tools. The ‘TPL Type’ column (see Table 6.18) provides information about the
third-party library(TPL) coverage of the tool.

Support tools for code smell or energy bug detection or refactoring

In Table 6.17, we provide a list of all the tools identified in ‘Profiler’, ‘Detector’,
and ‘Optimizer’ categories. As a result of fine-tuning the search query 1, we were
able to identify three new ‘Optimizer’ tools [P22, P23, P24] that were not included
in our previous work [54], For all the 24 tools listed in Table 6.17 we provide
additional information related to interface, availability and IDE integration that
was not included in previous work [54].

Studies in the category ‘Profiler’ offer support to the practitioners by providing
tools that can measure the energy consumed by whole/parts of an app or device
sensors used in the apps. The measured information is usually presented to prac-
titioners as graphs for energy consumption over time. Studies in the ‘Profiler’
category do not recommend when, where, and how practitioners can use the infor-
mation from these graphs during development to improve the energy consumption

88



of their apps. Studies in the category ‘Detector’ offer support to practitioners by
developing tools that present as output lists of energy bugs/code smells causing
a change in energy consumption of apps. Studies in the category ‘Optimizer’ of-
fer support to practitioners by developing tools that present as output refactored
source code of apps optimized for energy. The studies in this category do not
explicitly give the recommendation to the developers about how to optimize the
source code for energy efficiency as the tools automatically refactor the code.

Table 6.17: List of support tools in ‘Profiler’, ‘Detector’, and ‘Optimizer’ cate-
gories along with information about their inputs and outputs, user interface, IDE
support and availability (RG2-RQ4)

Ct.| Tool Input | Output Ul IDE Open | ID
Source
Orka APK | ECG GUI | No No P6
SEPIA AE ECG GUI | No No P12
Mantis PBC Program CRC | CMD| No No P13
CpP predictors
AEP* SL, ECG GUI | No No P14
PID
via
ADB
E-Spector | SL, ECG GUI | No No P16
AL
via
ADB
SEMA PID, Log of EC CMD| No No P20
MVC
Keong et. | SC ECG GUI | No No P19
al +
CMD
Wu et al. SC List of energy | CMD| No No P1
bugs
Kim et al. PBC List of energy | CMD| No No P3
C bugs
Statedroid | APK | List of energy | CMD | No No P5
bugs
PatBugs SC List of de- | NS No No P8
tected warn-
ings
SAAD APK | List of energy | CMD| No No P9
bugs

&9



aDoctor SC List of code | GUI | No Yes P4

smells +
CMD

GreenDroid | PBC,CH List of energy | CMD| No Yes P17
bugs + severity
level

Paprika APK, | List of code | CMD| No Yes pP7

PM smells

DelayDroid | APK | Refactored NS No No P2
APK

HOT- APK | Most energy | CMD| No Yes P10

PEPPER efficient APK,

CO Refactored

SC, and List
of refactoring

Asyncdroid | SC Refactored SC | GUI | Eclipse| No P11

EARMO APK | Refactored CMD | No Yes P15
APK

EnergyPatch| APK | Refactored GUI | Eclipse| No P18
APK

Nguyen et | SC Refactored SC | GUI | Eclipse| No P21

al.

Chimera SC Refactored CMD | Android No P22
APK Studio

ServDroid | APK Refactored CMD| No Yes P23
APK

Leafactor SC Refactored GUI | Eclipse| Yes P24
APK file

90

(Ct.=Category, CP=Profiler, CD= Detector, CO= Optimizer, SC=Source Code, APK=Android
Package Kit, PBC=Program Byte Code, SL= System Log files, AL= Application Log files, PID=
Process ID, ADB=Android Debug Bridge, CRC= Computational Resource Consumption, AE=
Application Events, CF= configuration Files, MVC= Measurements of Voltage and Current, ECG=
Energy Consumption Graph, SM= Software Metrics values, PM=PlayStore Metadata, GUI =
Graphical User Interface, CMD= Command Line, EC= Energy Consumption)

Out of 24 tools listed in Table 6.17, only seven are open source. Out of the seven
open-source tools, three are ‘Detector’ tools, and four are ‘Optimizer’ tools. Most
of the tools do not offer IDE integration. Four tools in ‘Optimizer’ category sup-
port integration with Eclipse IDE [P11, P18, P21, P24] while one tool [P22] sup-
ports integration with Android Studio IDE. Out of 24 tools, 12 offer command-
line interface (CMD) [P1, P3, P5, P9, P7, P10, P13, P15, P17, P20, P22, P23],
eight tools offer graphical user interface (GUI) [P6, P11, P12, P14, P16, P18, P21,



P24], two tools offer both [P4, P19], while for the rest of them information about
interface is not specified in the publications.

See Annex B for detail about definitions of code smells/ energy bugs covered
by tools in ‘Detector’ and ‘Optimizer’ categories. Figure 6.3 shows the Android
energy bug coverage of tools in the ‘Detector’ and ‘Optimizer’ category. The
Android energy bugs are shown on the horizontal axis. The percentage of tools in
the ‘Detector’ and ‘Optimizer’ categories covering Android energy bugs is shown
on the vertical axis. We can see that Android energy bugs ‘TMV’, ‘TDL’, ‘UL,
‘UP’, “‘VBS’ are detected by 13% of the tools, whereas ‘RL’, “‘WB’ and ‘NCD’ are
detected by 75%, 50% and 38% of tools, in the ‘Detector’ category respectively.
None of the tools in the ‘Optimizer’ category covers. ‘TMV’, ‘TDL’, ‘UL’, and
‘UP’ energy bugs. On the other hand, energy bugs ‘IB’, ‘OLP’, ‘VHB’, ‘EMC’
are covered by tools in the ‘Optimizer’ category, whereas none of the tools in
the‘Detector’ category covers them. ‘RL’ and ‘VBS’ energy bugs are detected by
44% of the tools in the ‘Optimizer’ category.

Figure 6.4 shows the Android code smell coverage of tools in the ‘Detector’ and
‘Optimizer’ category. The Android code smells are shown on the vertical axis.
The percentage of tools in the ‘Detector’ and ‘Optimizer’ categories covering
Android code smells is shown on the horizontal axis. We can see that Android
code smell ‘ERB’ and ‘VHP’ is not detected by any tool in the ‘Detector’ cat-
egory, whereas ‘LWS’, ‘LC’, ‘RAM’, ‘PD’, ‘ISQLQ’, ‘IDFP’, ‘DW; ‘DR’, and
‘DTWC’ are not detected by any of tools in the ‘Optimizer’ category. Android
code smells such as ‘10D’, ‘HBR’, ‘HSS’, ‘HAT’, ‘IWR’, ‘UIO’, ‘BFU’, ‘UHA’,
‘LWS’, ‘'LC’, ‘S, ‘RAM’, ‘PD’, ‘NLMR’, ‘MIM’, ‘LT’, ‘IDS’, ‘IDFP’, ‘DW’,
‘DR’, ‘DTWC’ are detected by 13-25% of the tools in the ‘Detectors’ category

' ~

Typical support given by the various categories support tools for detecting
and refactoring code smells/energy bugs are as follows:

'Profiler’ tools support developers by visualizing the energy consumption
of the whole app or parts of it. ’Detector’ tools support developers with
lists of energy bugs and code smells to be manually fixed by the developer
for energy improvement. ’Optimizer’ tools support developers by automat-
ically refactoring APK/SC versions based on pre-defined rules.

\.

Support tools for third-party library detection or migration

In Table 6.18, we provide a list of all the tools identified in ‘Identifier’, ‘Migrator’,
and ‘Controller’ categories. Publications in the category ‘Identifier’ offer support
to the practitioners by providing tools that detect third-party libraries present in
the apps. The information is usually presented to practitioners as a list of de-
tected libraries along with their version or similarity scores. Publications in the

91



100%
14% mDetector mOptimizer

90%
80%
70%

B3%
0%

50% =

1%

il =
5% 4%

40%

3%
B0%
20% 3804

SARRRRANNREN

RL WB VBs THY NCD UL up OLF  VHB  EMC
TYPE OF ENERGY BUG

PERCENTAGE OF TOOLS DETECTING ANDROID
EMERGY BUGS

Figure 6.3: Percentage of the tools in ’Detector’ and *Optimizer’ categories that
can detect Android energy bugs.

(RL=Resource Leak, WB=Wake-lock Bug, VBS=Vacuous Background Services, IB= Immortality
Bug, TMV=Too Many Views, TDL= Too Deep Layout, NCD=Not Using Compound Drawables,
UL= Useless Leaf, UP=Useless Parent, OLP=0bsolete Layout Parameter, VHB= View Holder
Bug, EMC=Excessive Method Calls)

category ‘Migrator’ offer support to practitioners by developing tools that present
as output lists of recommended third-party libraries. Publications in the cate-
gory ‘Controller’ offer support to practitioners by developing tools that present
as output policy-based privilege or permission control over third-party libraries.
Most tools in ‘Identifier’, ‘Migrator’, and ‘Controller’ categories provide coverage
for all types (advertisement, social, network, billing, analytics etc) of Java-based
third-party libraries. Some tools such as AdDetect (CI), or Pedal (CC) cover only
the advertisement related third-party libraries. NativeGuard (CC) provides cover-
age for only native third-party libraries. Reaper (CC) and LibCage (CC) provide
coverage for native and Java-based third-party libraries. For many tools listed in
Table 6.18, interface type was not specified in publications, while others provide
either a command-line interface (CMD) or a graphical user interface (GUI). Out
of 27 tools listed in Table 6.18, only seven tools are open source. Out of the seven
open-source tools, six tools [P30, P31, P33, P37, P42, P48] are ‘Identifier’ tools
and one tool [P46] is a ‘Controller’ tool. None of the tools listed in Table 6.18
provides IDE integration support.

92



VHPO% 1%
ERBO% 2%
0D S %
HER IR 1%
HSS IS 1%
HAT piasem 2%
WR SR 1%
UO Fidlenms 1%
BRU i3 11%
UHA S 1%
Lws e
LC 5,
UC . 3%
SL . 1%
RAN 3%
PD [EA3%m0°%
NR st 1%
NI 2%
LT s 1%
LUC D 1%
IG5 Sk 2%
15010
DS NS 3%
IOFP ot
DW |0,
DR EESI0;
DTWC I3imanr:

0% 1% 20% 3% 4% S0% 60 0% 80% 0% 100%
PERCENTAGE OF TOOLS DETECTING CODE SMELLS

n Detector + Optimizer

TWPE OF CODE SMELL

Figure 6.4: Percentage of code smells detected by each tools in ‘Detector’ and
‘Optimizer’ categories.

(DTWC=Data Transmission Without Compression, DR=Debuggable Release, DW=Durable Wake-
lock, IDFP=Inefficient Data Format and Parser, IDS=Inefficient Data Structure, ISQLQ=Inefficient
SOL Query, IGS=Internal Getter and Setter, LIC=Leaking Inner Class, LT=Leaking Thread,
MIM=Member Ignoring Method, NLMR=No Low Memory Resolver, PD=Public Data,
RAM=Rigid Alarm Manager, SL=Slow Loop, UC=Unclosed Closeable, LC=Lifetime Containment,
LWS= Long Wait State, UHA=Unsupported Hardware Acceleration, BFU= Bitmap Format Usage,
UIO=UI Overdraw, IWR=Invalidate Without Rect, HAT=Heavy AsyncTask, HSS=Heavy Service
Start, HBR=Heavy Broadcast Receiver, IOD=Init ONDraw, ERB=Early Resource Binding, VHP=
View Holder Pattern.)

93



Table 6.18: List of support tools in ‘Identifier’, ‘Migrator’, and ‘Controller’ cat-
egories along with information about their inputs and outputs, library coverage,
UI, and availability (RG2-RQ4)

Ct.| Tool Input | Output TPL | Ul Open | Ref
Type Sourcg
Duet APK | Library Java | NS No P26
integrity

-pass/fail ratio
AdDetect APK List of de- | Java- | NS No P27
tected TPLs Ad
AnDarwin | APK Detect and | Java | NS No P29
exclude TPLs
CI + Set clone
or rebranded
apps

LibScout TPL Presence of | Java | CMD | Yes P30
Jjar/.aar| given TPL

+ based on
APK similarity
score

DeGuard APK De-obfuscated | Java | GUI* | Yes P31
APK (contain-
ing  detected
TPLs)
LibSift APK List of de- | Java | NS No P32
tected TPLs
LibRadar APK List of de- | Java | GUI* | Yes P33
tected TPLs
sorted by pop-
ularity + info
about TPLs
LibD APK List of de- | Java | CMD | Yes P37
tected TPLs
Ordol APK List of de- | Java | NS No P40
tected TPL
versions +
similarity
score.

94



LibPecker

TPL
name+
APK

Presence  of
given TPL
based on the
similarity
score

Java

NS

P41

Orlis

APK

List of de-
tected TPLs

Java

NS

Yes

P42

PanGuard

He et al.

Feichtner
et al.

APK

List of de-
tected TPLs

Java

GUTI*

No

P44

APK

List of de-
tected TPLs
+ risk assess-
ment

Java

NS

No

P47

APK/TH

PIList of de-
tected TPLs
and versions
+  similarity
score

Java

CMD#*

*Yes

P48

DPAK

APK/

droid
jar

List of de-
tected TPLs

Java

CMD*

*No

P49

CM

AppLibRec

Appcom-
mune

SimilarTech

LibSeek

SC

List of recom-
mended TPLs

Java

NS

P35

APK

Tailored app
without TPLs
and updated/-
customized
TPLs

Java

GUI**

No

P45

TPL
name

List of recom-
mended TPLs
+ information
about usage

Java

GUI*

No

P50

APK

List of recom-
mended TPLs

Java

NS

P51

CC

NativeGuard

APK

Split  original
APK into
Ser-vice APK
and Client
APK

Native

CMD

No

P25

95



Pedal

LibCage

Zhan et al.

SurgeScan

AdCapsule

Reaper

APK | Repackaged Java- | GUI** | No P28
APK with | Ad
privilege
de-escalated
for  detected
TPLs.
SC + | Deny wunnec- | Java+| NS No P34
list of | essary  TPL | Na-
per- permission on | tive
mis- runtime
sions
re-
quired
by
TPLs
SC+ Grant or deny | Java | NS No P36
Policy | permissions to
TPLs based on
policy
TPL Dex and jar | Java | NS No P39
byte- | files of TPL
code with the policy
+ An- | implemented
droid.jar
+ pol-
icy
SC+ Grant or deny | Java- | NS No P43
policy | permissions to | Ad
TPLs based on
policy
APK Grant or deny | Java | GUI** | Yes | P46
permissions +
to TPLs | Na-
based on user | tive
preference

(Ct.=Category, CI=Identifier, CM= Migrator, CC=Controller Ul= User Interface, SC=Source Code,
APK=Android Package Kit, TPL= Third-Party Libraries, GUI= Graphical User Interface, CMD=
Command-line Interface, NS= Not Specified in publication, *Web service, **App on Android de-
vice, *** executable jar, NS= not specified in the publication.)

96



The tools in ‘Identifier’, ‘Migrator’, and ‘Controller’ categories do not
detect/update/control/migrate third-party libraries to optimize the source
code of Android app for energy efficiency.

Typical support given by the various categories of support tools for
detecting and migrating third-party libraries are as follows:

‘Identifier’ tools support developers by detecting third-party libraries
present in apps. 'Migrator’ tools support developers with lists of recom-
mended third-party libraries along with the mapping information of these
libraries for updating/migrating them. ’Controller’ tools support devel-
opers by separating third-party library privileges from the app privileges
based on policy defined by developers.

6.3. Discussion

In this section, we highlight what is lacking and make suggestions for future re-
search directions regarding the two types of tool support.

6.3.1. Support Tools for Code Smell and Energy Bug Detection or
Refactoring

Regarding support tools for code smell and energy bug detection and refactoring,
we identified the following shortcomings.

* Lack of open-source tools: We observed that most of the support tools in
‘Profiler’, ‘Detector’ and ‘Optimizer’ categories are not open-source, mak-
ing these tools inaccessible to many developers.

e Lack of IDE integration: Most of the support tools in ‘Profiler’, ‘Detector’
and ‘Optimizer’ categories do not support IDE integration. Due to the rapid
development process of Android apps, developers are more likely to use
tools that are integrated with the IDEs and share the same interface design.

e Limited code smell and energy bug coverage: Each tool in ‘Detector’ and
‘Optimizer’ categories provided a limited coverage over Android-specific
code smells or energy bugs. In principle, if developers spend time and
effort to learn one such tool, they still might not be able to identify many
code smells and energy bugs in their code unless they use a combination of
these tools to get complete coverage.

* Vague industry relevance: The industry relevance of the current state of
the art support tools might not be obvious because they are not evaluated in
industrial settings.

97



e Lack of hybrid analysis techniques: Most tools in ‘Detector’ and ‘Op-
timizer’ categories used static source code analysis, which indicates that
these tools do not cover dynamic issues such as those related to asyn-
chronous tasks.

Based on the above shortcomings we propose the following future research op-
portunities

* Open-source tools and IDE integration: There is a need for more open-
source ’Profiler’, ‘Detector’ and ‘Optimizer’ tools to be integrated with cur-
rent IDEs for better accessibility. The process of setting up and control-
ling hardware-based energy measurements for apps is cumbersome. Open-
source ’Profiler’ tools for hardware-based measurements could be useful
in conducting controlled experiments to generate accurate energy data in a
specific context. IDE integration of such tools will help reduce the learning
curve for the users and help with the adaption of the tools (we present one
such tool (ARENA) in Chapter 7).

» Extension of existing support tools: The current state of the art tools could
be extended to integrate with other industrially famous code analyzers like
Android Lint, Check Style, Find Bugs and PMD. Work done by Goaér et al.
[68] and Fatima et al. [53] are promising as they extend the Android Lint
tool to provide coverage for various code smells and energy bugs.

¢ Tool development using hybrid techniques For the development of bet-
ter support tools, hybrid techniques encompassing both dynamic and static
analysis could be used. In addition, non-intrusive techniques could be used
to collect software metrics for identifying code smells and energy bugs.

e Improving scope of primary studies: The results from the selected publi-
cations could be expanded to include cross-project predictions and correc-
tions for energy bugs. Analysis and inclusion of multi-threaded program-
ming approaches in the experiments could be another direction for future
researchers.

6.3.2. Support Tools for Third-party Library Detection or Migration

Regarding support tools for third-party library detection and migration, we iden-
tified the following shortcomings.

* Lack of IDE integration: We observed that none of the support tools in
‘Identifier’, ‘Migrator’ and ‘Controller’ provide support for IDE integra-
tion, and many of these tools are also not open source, making them inac-
cessible to developers.

e Lack of energy-related support and library coverage: We also observed
that none of the support tools in ‘Identifier’, ‘Migrator’, and ‘Controller’

98



categories offers any support to developers to aid the development of green
Android apps. One possible reason could be that so far research related to
third-party library identification is mostly used in clone detection, detec-
tion of rebranded or similar or malicious apps, detection of issues related to
security, privacy or data leaks. Rasmussen et al. [134] showed that block-
ing advertisements in Android apps reduce energy consumption. However,
these studies have only focused on a small subset of network and adver-
tisement related libraries. Current state-of-the-art explore limited types and
distribution of commonly used third-party libraries such as ads, billing, and
social libraries.

* Lack of hybrid analysis techniques: Support tools in the ‘Identifier’ cat-
egory roughly use two techniques a) whitelist-based b) similarity-based.
Tools that use whitelist based approaches are fast due to smaller feature
sets thus could perform better in large scale analysis. However, this tech-
nique cannot identify third-party libraries without prior knowledge. On the
other hand, tools that use similarity-based approaches such as feature hash-
ing use a larger feature set and can identify third-party libraries without
prior knowledge. Due to the extended feature set, these tools might be
more accurate but time-consuming.

e Lack of detection accuracy: Many tools in the ‘Identifier’ category (such
as ‘LibD’, ‘LibScout’, ‘LibRadar’, ‘AdDectect’ etc.) consider code obfus-
cation during library detections to give accurate results. However, not many
tools are resilient against code shrinking as they rely on package hierarchies.

Based on the above shortcomings we propose the following future research op-
portunities

* Candidates for tool extension: Support tools in ‘Migrator’ category are
good candidates for an extension to offer energy-related support as col-
laborative filtering, and natural language processing techniques could sup-
plement the data gathered from the energy reading of third-party libraries.
Such information could be useful in mapping the function of one library to
another alternative library for a smooth migration.

» Improving detection techniques: Support tools in ‘Controller’ categories
rely on API hooking techniques that separate libraries from app code. Such
tools could also benefit from using an access control list (ACL) to split
privileges. Because current techniques require system-level changes, which
makes the deployment of ‘Controller’ tools difficult.

* Recommend energy-efficient third-party libraries: Energy consumption
of other libraries such as network, analytical, utility, etc., is not fully ex-
plored in literature and merits further research. Tool developers could use

99



data from such studies to recommend energy-efficient libraries to develop-
ers during development (we present one such tool (REHAB) in Chapter 8).

6.4. Threats to Validity

In this section, we discuss the possible threats to validity of this study and our
strategy to mitigate them.

Internal validity: The search queries and classification of selected publications
could be biased by the researcher’s knowledge. We mitigated this threat by fol-
lowing the method described by Petersen et al. [129] for conducting a systematic
mapping study. We defined the inclusion, exclusion and quality criteria for the
selection of the publications. We searched for publications in only four online
repositories (IEEE Xplore, ACM digital library,Science Direct, and Springer), as
these repositories cover most of the high quality publications in the domain of
software engineering.

Construct validity: In order to avoid false-positive and false negatives in the
search results, we used the wildcard character (*) to maximize coverage and the
keyword ‘AND NOT” to remove irrelevant studies. We did not use the terms ‘en-
ergy’ or ‘efficiency’ in combination with ‘Android’ in the second search query,
as we have already executed this combination in search query 1. The results of
the search strings were manually checked and further refined. We already knew
about many relevant studies and we recaptured almost 90% of them when we ex-
ecuted the search queries. On each online repository the search mechanism is
slightly different we tried to keep the queries as consistent as possible, but there
might be a slight difference due to the difference in search mechanism provided
by different online repositories. We have excluded publications that did not focus
on Android development yet still contributed a tool for detecting or recommend-
ing third-party libraries. Maven central repository contains a huge quantity of
Java-based third-party libraries that could be used in any Java-based application.
However, in this study, we focused particularly on the support tools for energy
profiling, code optimization and refactoring of code smells or energy bugs, detec-
tion or migration of third-party libraries to help aid development of green Android
apps. Other types of support tools, such as tools for style checking, interface op-
timization, test generation, requirement engineering, code obfuscation, etc., were
not in the scope of this study. Therefore, while applying inclusion/exclusion crite-
ria, we filtered support tools such as ‘LibFinder’, LibCPU, CrossRec and RAPIM
[15, 113, 119, 146]. These tools could identify or recommend third-party libraries
but they were not designed to be used specifically with Android apps. We plan to
cover such tools in future work.

External validity: We only covered publications from 2014 to June 2020. On-
line repositories continuously update their databases to include new publications,

100



therefore, executing the same queries might yield some additional results that
were not included in this study. Some selected publications use the terms code
smells and energy bugs interchangeably which could affect the classification. To
mitigate this threat, we used the selected definitions (cf. section 6.1.4) for code
smells and energy bugs to correctly classify the studies in the right category.

101



7. ARENA: A TOOL FOR MEASURING AND
ANALYSING THE ENERGY EFFICIENCY OF
ANDROID APPLICATIONS

In this chapter, we also focus on RG2 (defined in Section 1.1) to improve the
tool support for energy efficient mobile app development. In the previous chapter,
we provided an overview of state-of-the art and compared the current available
support tools to aid green Android development. Recent studies [28, 128, 130]
indicate that user acceptance of energy-draining apps is low. To make energy-
efficient mobile apps, there is a need for tools that assist software practitioners
in estimating the energy consumption of an app when it is running on a device.
Therefore, in this chapter, we present an open-source tool ARENA (Analyzing
eneRgy Efficiency in aNdroid Apps) to support the energy measurement and anal-
ysis process and to reduce the risks related to human errors. This tool integrates
all the activities necessary to measure, statistically analyze and report (including
result interpretations and visualization in the form of graphs) the energy consump-
tion of Android apps.

The energy measurement and analysis process typically involves setting up an en-
ergy measurement environment, executing the app under test (AUT) on the mobile
device, and recording current/voltage data, usually at the rate of SKHz and above.
Once the energy data is acquired, it needs to be cleaned from noise and aggre-
gated over several samples to account for variations in energy consumption due
to background processes in the mobile device. Further, data is visualized or sta-
tistically analyzed to discover significant variations in energy consumption. The
energy measurements could be captured either via hardware-based approaches
(e.g., using devices such as Monsoon power monitor') or via software-based ap-
proaches (e.g., such as PowerAPI?). As compared to software-based approaches,
hardware-based approaches are more accurate in capturing energy measurements
but at the same time more cumbersome to implement. Several empirical stud-
ies exist [74, 85, 114, 144] in which either one or both of these approaches are
used to measure energy consumption of mobile apps. In each of these studies, the
authors employ their own methods for measuring energy consumption, and most
of the work is done manually or via specialized scripts. Therefore, it is difficult
to compare and reproduce their results. Estimating the energy consumption of an
Android app is challenging and resource intensive. To overcome these problems, a
systematic and fully/semi-automated process is needed to ensure that the measure-
ments are performed consistently and reliably [101]. Previously, many tools have
been developed to estimate energy consumption [75, 110, 117, 126, 167, 171] of

! https://www.monsoon.com/high-voltage-power-monitor
2https ://github.com/powerapi-ng/powerapi-scala

102



apps. However, they target large-scale app store analysis after an app has been
published, or they use outdated hardware for physical measurements. Few tools
exist that help developers estimate the energy consumption of an app during de-
velopment. Physalia is a python library? that helps software practitioners in taking
hardware based energy measurements for mobile apps. However, it does not pro-
vide integration with Android Studio IDE. Android Profiler within the Android
Studio IDE estimates energy consumption via a software-based approach but does
not provide means to analyze and report the energy consumption between differ-
ent apps, or different versions of the same app, via a hardware-based approach.
As the process of recording hardware-based energy measurement is lengthy with
a steep learning curve, we present a new support tool ARENA for energy mea-
surement of Android apps.

In the rest of the chapter, we describe ARENA’s architecture and explain how
ARENA supports the energy measurement and analysis process. Then, we pro-
vide implementation details. Finally, we present ARENA in a typical usage sce-
nario.

Path to apk
e — 3

Data ﬁIes-—'——P

|
|
.
4 —Deploy app + script rL;nnel— —> — l
|
I

l @
.
L] . .
Android ihnne l Data collection Pre-processing Statistical analysis Visualization
Yo m— m— Q—Q—Q—Q—Q—Q—Q-Q—t—t—t—t—t-—‘

Power monitor

Figure 7.1: An overview of the energy measurement and analysis process that is
supported by ARENA

7.1. ARENA Architecture

In this section, we describe how ARENA supports the energy measurement and
analysis process. Typically energy measurement and analysis process consist of
four steps: 1) Data collection, 2) Data pre-processing, 3) Statistical Analysis and
4) Visualization. For each of the main steps in this process, there exists a cor-
responding component in ARENA. Figure 7.1 gives an overview of the energy
measurement and analysis process that is supported by ARENA.

3 https://tqrg.github.io/physalia/

103



7.1.1. Component 1: ExperimentRunner

The ARENA component ‘ExperimentRunner’ supports the first step of the energy
measurement and analysis process, i.e., ‘Data collection’. During data collection,
energy measurements are recorded several times to account for the underlying
variations in energy consumption due to background processes in the mobile de-
vice. The energy measurements are controlled from the host computer via ‘Ex-
perimentRunner’, which helps ARENA user to control activities required to set
up and execute the experiment for data collection. ‘ExperimentRunner’ initializes
the callback object to display output in the tool window. It also creates a directory
where customized shell scripts will be created.

Experiment Setup. Before using the ARENA tool, the scope of the experiment,
measurement environment settings, an AUT, and test scripts are prepared by the
ARENA user. R version 3.4.3 or above and Rtools needs to be installed on the host
computer. To measure hardware-based energy readings, ARENA is designed to be
used with the Monsoon Power Monitor, a popular physical measurement device
that has been used in various studies [47, 96, 140]. Therefore related libraries
and python packages* need to be installed as per the user manual of Monsoon
Power Monitor. The mobile phone on which the AUT will be executed should
have Android 5.0 and above. The mobile phone is connected to the host computer
with a USB cable via Monsoon Power Monitor disabling the USB phone charging
once the energy measurement starts. ARENA user should check that the screen
brightness is set to a minimum and only essential Android services are running
on the phone. ‘ExperimentRunner’ checks if the mobile device is successfully
connected to the host computer. Additionally, a script ‘start_power_monitor.py’
is generated, which initializes Monsoon Power Monitors’ runtime current lim-
its, and enables the USB channel on Monsoon Power Monitor hardware. The
serial number of Monsoon Power Monitor hardware can be configured in the
‘start_power_monitor.py’ script in the ARENA source code. ‘ExperimentRunner’
works with only one Monsoon Power Monitor at a time.

Experiment Execution. ‘ExperimentRunner’ creates customized scripts for exper-
iment execution. These scripts include commands to clear battery statistics, mem-
ory statistics, network statistics and adb log files before each iteration of the ex-
periment. We consider an iteration to be the execution of a test case on a mobile
device once. Based on the AUT selected by the ARENA user, commands in shell
scripts are customized to install and run the app (for baseline readings, these com-
mands are not included). The script ‘start_power_monitor.py’ creates an instance
of the sample engine class from the Monsoon Power Monitor Python library. By
default, the current/voltage samples are saved as a Python list that can be retrieved
with the getSamples() function. At the end of each iteration, the Python list is con-
verted into a CSV file and saved on the host computer. Monsoon Power Monitor

4https://ﬁgshare.com/s/9cdfc9f8b3941 1698afd

104



output files are checked for reliability based on the number of dropped samples.
As Monsoon Power Monitor records samples at a rate of SKHz, and assuming that
AUT runs for more than one second, the ARENA user is given a warning to check
current/voltage data if 1000 or more samples are dropped.

Once all scripts are ready, they are pushed to the mobile device along with the
script-runner apk. Script-runner is a small app that comes with ARENA to au-
tomatically trigger AUT and related shell scripts on the mobile device. This app
is a necessary overhead to save manual effort and to ensure that no problems are
created during the experiment due to human error. ‘ExperimentRunner’ gives the
options to the ARENA user to re-run the same iteration, run the next iteration,
uninstall AUT from the mobile device, and clear data for AUT from the mobile
device. The selected option is passed as a runtime argument to the script-runner
app, which executes the relevant shell script on the mobile device.

After each iteration, data is retrieved from the device to the result folder on the
host computer and files are renamed as per iteration number. e.g. for the first iter-
ation, the adb log file "logcat.txt" is renamed to "Logcat_R1" and so on. During
the next iterations, settings are updated in the shell scripts (if needed).

7.1.2. Component 2: CleanupRunner

The ARENA component ‘CleanupRunner’ supports the second step of the energy
measurement and analysis process, i.e., ‘Data pre-processing’. ‘Cleanup-Runner’
renders the raw data files in a list in the tool window and performs cleaning/filter-
ing on the selected files. PID (process-ID) and UID (user-ID) are extracted from
the adb log files for each iteration of the experiment. The UID is used to extract
relevant data from network statistics files. CPU and memory statistic files are fil-
tered by app package name. For cleaning adb logs, UID, PID, and user-specified
tags are used. As the format of adb log and statistic files in different Android ver-
sions are slightly different, to produce cleaned output files with a consistent for-
mat, the API version of the mobile device is used to implement the correct parser
on the log and statistic files. Once the adb log and statistic files are cleaned, the
timestamps from the cleaned adb log file are used to extract relevant current/volt-
age data in each iteration. The cleaned current/voltage file is used to calculate
energy consumption in joules (J) of AUT in each iteration. An average of base-
line energy is subtracted from the calculated energy consumption of AUT (under
the assumption that an increase in energy consumption from the baseline is due
to the execution of AUT). A data file named ‘data.csv’ is created containing the
package name of AUT, energy (J), memory %, CPU % and network statistics for
each iteration. Another file named ‘average_data.csv’ is created with aggregated
values for energy (J), memory %, CPU % and network statistics of all iterations
of AUT.

105



7.1.3. Component 3: AnalysisRunner

The ARENA component ‘AnalysisRunner’ supports the third step of the energy
measurement and analysis process, i.e., ‘Statistical Analysis’. ‘AnalysisRunner’
populates the combo boxes for dependent, independent and filter variables in the
tool window with column names from the selected CSV data files (the cleaned
energy files produced by ‘CleanupRunner’ are used here). ‘AnalysisRunner’ pro-
vides detailed help text in the tool window in order to make it easier for the user
to select a statistical analysis based on requirements and data type. Based on the
ARENA user selection, the values of variables included in the analysis are updated
in the relevant R scripts, which are then executed to produce a report containing
the results of the selected statistical analysis and its interpretation.

7.1.4. Component 4: VisualizationRunner

The ARENA component ‘VisualizationRunner’ supports the fourth step of the en-
ergy measurement and analysis process, i.e., ‘Visualization’. ‘VisualizationRun-
ner’ populates the combo boxes for dependent, independent and filter variables in
the tool window with column names from the selected CSV file. The type of the
graph selected and the dependent, independent, and filter variables control how
the data in the graph is displayed. ‘VisualizationRunner’ allows various graph
configuration for each graph type in terms of label font, legend colours, graph
title, graph size, sequence of label on x-axis etc.

7.2. ARENA Implementation

ARENA is built for integration with IntelliJ] IDEA and Android Studio IDE as
a plugin. Functionalities of the plugin are implemented on widgets of the tool
window (from here onwards referred to as ARENA interface). The plugin is im-
plemented in Java. Each component in ARENA’s architecture corresponds to a
tab on the ARENA interface. Based on the scope and requirements of the experi-
ment, the ARENA user can set certain parameters on each tab to get the results. It
is ideal to use the tabs in the ARENA interface iteratively as they are interrelated.
However, if ARENA users wants to reuse data of a particular process step or skip
a process step, that is also permitted.

The first tab in the ARENA interface is ‘Data collection’, which corresponds to
the ARENA component ‘ExperimentRunner’. Within this tab, ARENA users can
perform two sets of activities, 1) configure experiment setup by selecting energy
measurement mode, data collection phase and corresponding data files, and 2)
control the experiment execution by configuring the experiment parameters such
as number of iterations (a single iteration is the execution of test apk once, the
choice of this value depends on the requirement of the experiment, however for the
sake of sampling distribution a value between 10-30 is considered good), path to
app apk, path to test apk, data path on mobile device, test class, test runner, re-run

106



configuration (i.e., re-install app or clear data), results folder etc. The main out-
put of this tab is the raw timestamped current/voltage data from Monsoon Power
Monitor and corresponding adb logs and statistics from the mobile device.

The second tab in the ARENA interface is ‘Pre-processing’, which corresponds
to the ARENA component ‘CleanupRunner’. The main outputs of this tab are
the 1) filtered current/voltage data, adb logs and statistics®, and 2) calculated and
aggregated energy and statistics data®.

The third tab in the ARENA interface is ‘Analysis’, which corresponds to the
ARENA component ‘AnalysisRunner’. The main output of this tab is a report(s)
in .docx format with results of statistical analysis about the energy consumption
of AUT (along with its interpretations).

The fourth tab in the ARENA interface is ‘Visualization’, which corresponds to
the ARENA component ‘VisualizationRunner’. The main output of this tab is the
graph of the selected type.

In all the tabs hovering the mouse pointer on a widget of the interface shows a
tool-tip with help text. Progress and error messages are shown either in the tool
window terminal or via error labels.

The implementation of ARENA is available at our bitbuket repository’.

7.3. ARENA in Practice

This section ties together all components described above and provide example
usage. ARENA can be installed as an IntelliJ or Android Studio plugin using the
package we provide on our bitbucket repository®. After installation, when a user
opens a new or existing project, they can see the ARENA tab on the right side of
the IDE.

7.3.1. Comprehensive Usage Scenario

In this section we present a comprehensive usage scenario in which all tabs in
ARENA are used. It is ideal to use the tabs in the ARENA interface iteratively as
they are interrelated. However, if ARENA users wants to reuse data of a particular
process step or skip a process step, that is also permitted. The comprehensive
usage scenario of ARENA is also shown in a YouTube video’.

3Details of columns in filtered data file https://figshare.com/s/50c5732300315023b197

®Details of columns in aggregated data file https:/figshare.com/s/cbc2fd529b413e4dcbf1

7 ARENA source code, https://bitbucket.org/hinaanwar2003/arena

8ARENA is packaged as a plugin, which could be installed via zip file EnergyPlugin-1.0-
SNAPSHOT.zip available at https://bitbucket.org/hinaanwar2003/arena/src/master/. See Annex C
for installation instructions.

9 ARENA comprehensive usage scenario YouTube video:
https://www.youtube.com/watch?v=hgP5XL9SvRU

107



The comprehensive usage scenario of ARENA begins with the source code of the
AUT. The developer writes automated Android user interface tests for AUT us-
ing tool such as Espresso'®. Next, the developer wants to assess AUT’s energy
consumption to compare with the previous version of the same app or against a
competitor app. The ARENA interface facilitates the developer to measure, ag-
gregate, analyse and visualize the energy consumption of AUT. Using the ‘Data
collection’ tab, the energy data collection process is initiated. The correspond-
ing adb logs and additional statistics (if selected) such as CPU, memory, network
statistics and trace files are recorded and extracted from the mobile device. The
energy data from Monsoon Power Monitor is automatically saved as a CSV file on
the host computer. Using the ‘pre-processing’ tab, the raw energy data is cleaned
and aggregated by matching it against the start and end timestamps found in the
adb log files. Using the ‘Analysis’ tab, various statistical analysis (such as Sum-
mary statistics, Kruskal-Wallis, Spearman Correlation, ANOVA etc.) could be
performed on the data. After analysis is complete, a detailed report of the anal-
ysis and the interpretation of the results are generated (in .docx format). Using
the ‘Visualization’ tab, the data could be visualized by creating various graphs
(such as scatter plot, box plot). In Figure 7.2. we show the detailed workflow with
included sub-steps supported by ARENA tool. Figures 7.3, 7.4, 7.5, and 7.6
shows the corresponding ARENA interfaces'! in IntelliJ IDE.

7.3.2. Application Example

Application example used the comprehensive scenario described above. We used
ARENA in a study [154] to evaluate the energy consumption of commonly used
third-party network libraries in Android apps. We made 45 versions of a custom
app using selected third-party network libraries in different use cases. We used
ARENA to measure the energy consumption of each version of the custom app by
executing it on an Android device ten times. We recorded 450 energy measure-
ments along with corresponding adb logs. Next, the recorded data was cleaned,
aggregated, analyzed and visualized using ARENA to identify the statistically sig-
nificant changes in energy consumption of different third-party network libraries
in different use cases. ARENA significantly reduced the time and effort required
to measure and analyze the energy consumption of AUT. As the process described
was controlled via ARENA, thus errors in measurement due to human error were
also avoided.

10https://developelr..amdroid.com/tr.a\ining/testing/espresso
See the detailed tool tutorial: https://figshare.com/s/4c4ec26fcOec91fbad41

108



#of runs,

start, end, delay time,

apk, test apk, re-run criteria,
test class

ADEB Logs, CPU , Mem|
network, and Battery Statistics,
Trace Files

L
Ly

Configure experiment
parameters

l

M= Start data collection

select energy select stage of data
measurement mode ° collection

y

[~ Choose datatypes

Data saved on host | Stop data collection & le—| Application under test is
computer b pull data from device executed

.| Clear app dataf re-install
app

= Next iteration

uonIDod eyed

D I I

Y v
e .| Enter package name, api version, start tag (optional), end tag (optional), stop time, 5
analysis version, result folder g
g
Calculate and save Avg energy consumpfion and average of other L Save cleaned energy, memary, CPU, network 2
statistics such as memory, CPU, network data/statistics g
¥ =
Select type of stafistical Enter dependent, independent, filter variable/column H
I d !
Choose data file = analysis names (from drop down menu) %
' - a
. !
Summary stafistics, Kruskal-Wallis, Spearmian Generate report (.docx) containing analysis results
Comelstion, Pearson Correlation, ANOVA T and interpretations.
Shapiro Test, 2nd Pairwise 4est
i
Choose property and Enter axes labels, graph
> —> i g =
Choose datafle  —» Choosegraphtype — s A caption and fille i
= N
Y g
.box plt, .d?“ plot, scatte/ plo (Generate graph choose graph colors Enter graph size (width
RS NI A ongljpegete)  [€ | (optiona) €| height)
chart, and Bubble plot - !

Figure 7.2: Detailed workflow supported by ARENA tool

109



ARENA T —
o
Data collection Pre-processing Analysis Visualization =
pemensewe
x
Energy measurement mode: Choose additional data to be collected: 5
© Hardware based ~ Software based | Current/voltage data
Data collection phase: +| ADBlogs || CPU statistics
! Baseline © Application execution || Memory statistics | Network statistics
| Battery statistics || Trace files
Number of iterations: Start Data Collection
Choose app APK: = Re-run lteration
Choose test APK: = Run Next Iteration
Data path on device: /sdcard/Download/ Pull Data
Test class: Stop Data Collection
Test runner: Process Results
Re-run configuration: © Re-install app | Clear data Reset
Results folder: =
Total time (s):
Start delay (s): 10
Figure 7.3: ARENA interface - Data collection tab
AREMA o — %
=

Data collection Pre-processing Analysis Visualization

Raw data files =+ Clean data files

Package name

APl wersion

Start tag:
End tag:

Total time

Analysis version: L1

Results folder ﬁ | Reset | | Clean Data

Terminal

Figure 7.4: ARENA interface - Pre-processing tab

110



AREMA

Data collection Pre-processing Analysis Visualization

Data file:
Analysis type:

Dependent variable:

Independent variable:

Filter variable 1:

Filter value 1:

Filter variable 2:

Filter value 2:

Result folder:

= || Kruskal Wallis

I KRUSKAL WALLIS

-]

Kruskal Wallis test is a non-
parametric method for testing

whether samples originate from
the same distribution. It is used
for comparing two of fhore

independent samples of equal or

different sample sizes. In the
o= ANOVA we assume that

distribution of each group is
normally distributed and there is
approximately equal variance on
the scores for each group.

Generate Report

Reset

Howewver, in the Kruskal-Wallis
Test. these assumptions are
omitted. Like all non-parametric
tests, the Kruskal-Wallis Test is
sk not as powerful as the ANOVA.
Chi-Square Test Statistic: Used
= with the df to compute the p-
wvalue.

Critical Difference: The
minimum value at which an
observed difference is considered

CTeminal

YN 5

Figure 7.5: ARENA interface - Analysis tab

AREMNA

o

Data collection Pre-processing Analysis Visualization

Choose graph options:

|| Remowe legend

Data file: ﬁ'ﬂ Select order of values for x-axis :
Graph type: 1 v [ -
X-axis property: -
¥-axis property: -
H-axis label
W-axis label:
Facet 1: -

Filter by -

Filter values
Facet 2: - Graph caption

Filter by i Graph width

Filter values Graph height:

Graph file: E‘.

Reset Generate Graph

Wy %

WY s

VNIV &

Figure 7.6: ARENA interface - Visualization tab

111



8. REHAB: A TOOL FOR RECOMMENDING
ENERGY-EFFICIENT THIRD-PARTY LIBRARIES TO
ANDROID DEVELOPERS

In this chapter, we focus on RG2 (defined in Section 1.1) as well to improve the
tool support for energy efficient mobile app development. In chapter 6, we pro-
vided an overview of state-of-the art and compared the current available support
tools to aid green Android development. In chapter 7, we presented a new support
tool for measuring energy of Android apps. The work presented in this chapter is
an extension of the study presented in chapter 5, in which we measured the energy
consumption of commonly used third-party HTTP libraries for Android apps. We
measured energy consumption for one version per library within each selected use
case. Now, we present a recommender system REHAB (Recommending Energy-
efficient tHird-pArty liBraries) to assist developers in choosing energy-efficient
third party HTTP libraries in specific use cases. Further, we discuss how the scope
of REHAB can be widened by conducting usage and change analysis on 8457 An-
droid apps. The usage analysis quantifies the usage of selected third-party HTTP
libraries and all their versions in a set of real Android apps. The change analysis
quantifies what kind of changes are made in the consecutive versions.

Mobile users prefer longer battery life. If an app is causing battery drain it usually
receive negative reviews from the users. Energy of mobile apps could be improved
by minor code optimizations [30, 71, 90, 125]. Android developers use third-
party libraries to speed up the development. Over 60% of Android apps’ code is
contributed by commonly used libraries [168]. The choice of using third-party
libraries in the Android app is crucial as developers do not tend to update them
frequently [147]. For a particular task usually many alternatives are available that
offer similar functionalities. If the third-party library included in the app is not
energy efficient it might drain the mobiles’ battery. We seek to help Android
developers by recommending energy efficient third-party HTTP libraries during
development.

8.1. REHAB Architecture

In this section we describe how REHAB recommend energy efficient third-party
HTTP libraries to the developers. We developed a rule based system that uses
pre-defined rules to make recommendations to the user. Based on the energy
consumption data of selected third-party HTTP libraries, a finite set of rule (con-
ditions and related actions) are defined. REHAB does not automatically make
changes in code. Based on conditions it recommends related action. REHAB con-
sist of three main components: 1) knowledge base, 2) Code inspection module, 3)

112



Rule mapping module. Figure 8.1 gives an overview of the REHAB Architecture.

Java
App
Source Code

_____________________________________________________________________

Code Inspection Moduls

- elements\to\'
Whitelist of ] ] - .
h i identify HTTH Recommendation(s) »-
Libraries requests ~
:— o F User
N —
N —

knowledge base
h 4

== =
N = Rule
> —,@ » Mapping
”~ Provide Module Set of
Facis Rules

Static Analysis

\\ of Code _/)
Figure 8.1: An overview of REHAB

Y

8.1.1. Component 1: Knowledge Base

To define rules, we used energy data produced in chapter 5 [154]. The selected
use-cases are as follows:

UC-GF: Making an HTTP GET request to the server to download a file and
logging the server’s response.

UC-PF: Making a multipart HTTP POST request to the server to upload a
file and logging the server’s response.

UC-PJO: Making a multipart HTTP POST request for sending Java objects
serialized as JSON to the server and logging the server’s response.

UC-GJO: Making an HTTP GET request to the server for receiving JSON
Objects, de-serializing them and mapping them to the Java objects.

UC-GI: Making a GET request to the server to load images and displaying
them on screen.

The third-party selected libraries used within each use-case are summarized in the
Table 8.1 (taken from chapter 5).

In chapter 5, we have calculated the energy consumption of libraries in individual
use cases, therefore, we cannot tell how much energy efficient combined usage
of libraries are in all possible combinations. We can make a recommendation if
user wants to use a single library for more than one use case. At the moment, we
cannot recommend combination of third-party libraries that requires additional
energy data. We made 31 unique combinations of use-cases (see Table 8.2) in
total. For each single/combination of use case we recommend library alternatives
(assuming that the probability of inclusion of each library alternative in an app is

113



Table 8.1: Android third-party HTTP libraries used in each selected use case.

ucC
ID Library GF PF PJO GIO GI
VO Volley X X
vo(G) Volley(G) X X
vo(M) Volley(M) X X
vo(J) Volley(J) X
re Retrofit X X
re(G) Retrofit(G) X X
re(M) Retrofit(M) X X
re(J) Retrofit(J) X X
ok OkHttp X X
ok(G) OkHttp(G) X X
ok(M) OkHttp(M) X X
ok(J) OkHttp(J) X X
async-h Androidasynchttp X X X
async-h(G)  Androidasynchttp(G) X X
async-h(M) Androidasynchttp(M) X X
async-h(J)  Androidasynchttp(J) X X
async Androidasync X X
async(G) Androidasync(G) X X
async(M) Androidasync(M) X
async(J) Androidasync(J) X X
pic Picasso X
uil UIL X
gli Glide

equal). In Table 8.2 text in blue indicates the number of library choices available
for that particular use case/combination of use cases.

The rules are based on mean energy consumption(joules) of each library and loss
in energy calculated for each library within each use case using Minimax strategy.
Minimax strategy is commonly used in game theory where the objective is to min-
imize loss and maximize the profit. In our case profit = most energy efficient. We
select the libraries that are most energy efficient with minimum loss. To calculate
loss, within each use case we select the library with smallest mean energy value
(J) and we subtract it from all other alternatives. In each use case we have five
choices of libraries. We select one third-party library in each use case that is most
energy efficient ( with minimum loss within a use-case) for implementing that use
case in an app. To recommend a library for a combination of use-cases, we rank
the libraries based on the total minimum loss value for that combination.

114



Table 8.2: Unique combinations of use-cases.

1uc | 2uCc | 3uC \ 4UC \ 5UC

GF (5) GE,PF (5) GE,PE,PJO (15) | GEPEPJO,GJO (15) | GEPEPJO,GJO,GI (6)
PF (5) GEPJO (15) | GEPEGIJO (15) GE,PE,PJO,GI (6)
PJO (15) | GEGJO (15) GEPEGI (2) GE,PE,GJO,GI (6)
GJO(15) | GEGI(2) | GEPJO,GIO (15) | GEPJO,GJO,GI (6)
GI(2+3) | PEPIJO (15) GFE,PJO,GI (6) PF,PJO,GJO,GI (6)
PEGJO (15) | GEGIJO,GI (6)
PE,GI (2) PF,PJO,GJO (15)
PJO,GJO (15) | PFEPJO,GI (6)
PJO,GI (6) PF,GJO,GI (6)
GJO,GI (6) | PJO,GJO,GI (6)
45 | 96 \ 86 \ 39 \ 6

Table 8.3 shows an example of the calculated minimum loss values indicating
loss in energy for selected third-party HTTP libraries in UC-GF and UC-PF. The
last column shows the ranking of third-party libraries based on the loss values of
both UC-GF and UC-PF. For example, within a single use case such as UC-GF,
based on minimum loss value AndroidAsync library will be recommended to the
REHAB user. For a combination of use-cases, for each third-party library we
add the minimum loss calculated for that library within each use-case, and rank
(1 = most energy-efficient, 5 = least energy-efficient) the third-party libraries.
The ranking is shown to REHAB user so that they can make an informed decision.

Table 8.3: Based on mean energy values the calculated minimum energy loss
values are shown for selected third-party HTTP libraries in UC-GF and UC-PF

ucC
ID Library GF PF | Ranking
VO Volley 15.57 | 43.53 5
re Retrofit 6.18 0 2
ok OkHttp 5.59 | 3.38 3
async | AndroidAsync 0 1.5 1
async-h AsyncHttp 14.01 | 4.27 4

8.1.2. Component 2: Code Inspection

Code inspection module contains the whitelist of selected third-party HTTP
libraries, elements for detecting different types of HTTP requests and Ac-
tion_DetectTPL class. Static analysis is perfomed on the source by Ac-
tion_DetectTPL class upon user action (i.e., when user click 'TREHAB - Detect
Third-party Libraries’ option form *Tools’ menu in IDE). Code inspection mod-
ule detect third-party HTTP libraries and their call expression and methods in-
cluded in the project. Project refers to an Android Studio or IntelliJ Gradle based

115



project. Whitelist in the code inspection module contains the base package name
and version number for all the select third-party HTTP libraries. Elements for
detecting different types of HTTP requests are referred in the following sections
as TypeRequestRules.

First, we collect all the libraries included in the project from Gradle file, that may
be added to dependencies of the corresponding projects modules. We match the
collected project-level libraries with all the selected third-party HT'TP libraries in
the whitelist. If a match is found,it is displayed in the tool window. Second, for
each detected third-party HTTP library, we search for all the JAVA source files in
project that are dependent on that third-party library. We match import statements
in each source file with the base package of selected third-party HTTP libraries.
Base package name of a third-party library in import statements is enough to find
all the classes added in a source file from that library. Third, based on TypeR-
equestRules, we statically analyze the source files to detect methods definitions,
method calls, fields, and parameter for each library. Detected results are shown to
REHAB user in tool window.

8.1.3. Component 3: Rule Mapping Module

In rule mapping module the identified methods definitions, method calls and vari-
ables for each third-party library are saved as facts. These facts are then matched
against the knowledge base. If a match is found i.e., the third-party library name
and the corresponding HTTP request type are same in fact and in pre-defined rules,
then the corresponding recommendation for single use case and combination of
use cases is shown to REHAB user in the tool window.

8.2. REHAB Implementation

REHAB is implemented as an IntelliJ and Android Studio plugin. The imple-
mentation is done in JAVA. Within the knowledge base module, the RecLibAlter-
natives class reads the energy data from excel sheet and calculates the minimum
energy loss value for each library with each use case and rank the libraries for
combination of use cases. Within the code inspection module, Action_DetectTPL
class detect third-party HTTP libraries and their call expression and methods in-
cluded in the project. Action_DetectTPL class uses JavaRecursiveElementVisitor
to analyze all the source files included in the project for patterns. JavaRecur-
siveElementVisitor belongs to the build in PsiElementVisitor class, which can be
used to visit elements in PSI' (program structure interface) tree in a programming
language.

'PSI is a root structure containing contents of a file as hierarchy. Static analysis could be per-
formed on the source code by accessing individual PSI elements. For more details on the topic of
PSI trees and files see https://plugins.jetbrains.com/docs/intellij/psi.html

116



To detect and highlight the source code lines related to different types of HT'TP
requests, we defined TypeRequestRules. Each TypeRequestRules consists of at-
tributes (see Table 8.4) to identify a particular type of HTTP request such as GET,
POST etc. Third-party libraries are used in source files via annotations, identifiers,
method calls, client Builders and response callbacks and serialization methods.
Not all attributes are required in every HTTP request.

We extract the PSI tree and elements (such as Psimethods, Psivariables,
PsiMethodCallExpression etc.) for each source file and match it against the Type-
RequestRules to detect and highlight the code relevant to HTTP requests. If a
TypeRequestRule is satisfied than the third-party library name and HTTP request
type within the TypeRequestRule is matched against the knowledge base and rec-
ommendation is shown to the REHAB user.

Table 8.4: Elements for detecting different types of HTTP requests

Elements Description
requestClass Method call or variable for  request
e.g.com.loopj.android.http.RequestHandle
requestldentifier Keyword to identify method call depending on the
library e.g. "GET", "POST" for volley.
typeAnnotations Annotations that must be present in an HTTP request
e.g. retrofit2.GET, retrofit2.POST etc.
notTypeAnnotations | Annotations that must not be present in an HTTP re-
quest.
bodyClass The request body object that must be present such as
to differentiate between multipart body object from
simple body object.
notbodyClass The request body object that must not be present in
HTTP request.
clientBuilderClass Client builder class used in HTTP request e.g.
retrofit2.Retrofit
builderIdentifier Identifier to specify that client is created e.g. "build"
or "getlnstance" etc.
builderAttributes List of strings that must be present in client builder
definition e.g. GsonConverterFactory
notbuilderAttributes | List of strings that must not be present in client
builder definition e.g. JsonConverterFactory
serializerClass Serialization builder required for HTTP request e.g.
com.squareup.moshi.Moshi
notSerializerClass Serialization builder that must not be present in an
HTTP request e.g. com.squareup.moshi.Moshi
responseCallbackClass | The Response Callback class e.g. retrofit2.Callback

117



8.2.1. Usage Overview

REHAB can be installed as an Intellij or Android Studio plugin using the package
provided in our bitbucket repository 2. After installation, when a user opens a new
or existing project, they can see the REHAB tab on the right side of the Intelli]
or Android Studio IDE. Figure 8.2 shows the tool window that will appear when
user click on the REHAB tab. In this figure we have assigned numbers to main
components in the tool window for easy reference. The REHAB user can hover
the mouse pointer on any of the tool window components to get a short descrip-
tion about them. As third-party libraries are not so frequently updated in source
code therefore to avoid unnecessary computational overhead we do not run RE-
HAB constantly in the background. Instead, to detect third-party HTTP libraries
included in the whitelist of REHAB and see the related recommendation, RE-
HAB user can click on 'REHAB - Detect Third-party Libraries’ from the *Tools’
drop down menu in IntelliJ/Android Studio IDE. The first part of the tool window
(marked by number 1 in Figure 8.2) shows the detected third-party HTTP libraries
in the source code. For each of the detected third-party libraries the second part of
the tool window (marked by number 2 in Figure 8.2) shows related method def-
initions (if any). Similarly, for each of the detected third-party libraries the third
part of the tool window (marked by number 3 in Figure 8.2) shows related method
calls (if any). Clicking any of the identified method definitions/method call

* highlights the related source code and the name of the source file containing
the highlighted code is displayed in fifth part of the tool window (marked
by number 5 in Figure 8.2),

* the recommendation for alternative energy-efficient third-party Library that
can make similar HTTP request is also shown in the fifth part of the tool
window,

* aranking of alternative energy-efficient third-party libraries for the detected
HTTP request(s) is shown in part sixth part of the tool window (marked by
number 6 in Figure 8.2).

Figure 8.3 shows an example of a recommendation made by REHAB. Based
on the provided information in the tool window, REHAB users can make an
informed decision on whether or not they would like to change the current
third-party HTTP library. The fourth part of the tool window (marked by number
4 in Figure 8.2) can used to export the results shown in REHAB tool window to a
CVS file in USER.HOME.

’REHAB is published for others to use at https://bitbucket.org/hinaanwar2003/rehab/src/master/

118



REHAR b

Detected Third-party Libraries

1

Method Definitions

\2)

Method Calls

®

Analysis Version: @ Export

Source File:
Recommended Alternative Energy-Efficient Library @

Ranking Alternative Energy-Efficient Libraries for Detected HTTP Request(s) b

Figure 8.2: REHAB tool window

119

3lpein

Y %

Jado|dxg 214 3amad

AYHIH



REHAB o —

Detected Third-party Libraries

com.android.velleyvelley:1.1.1
com.github. bumptech.glide:glide:4.12.0

Method Definitions

Mo method definitions found

Method Calls
~  Metwork Requests
¥ Volley-GF (1)
com.android.volley Request

com.android.volley RequestCueue

¥ Glide-GI (1)
com.bumptech.glide.RequestManager
com.bumptech.glide.RequestBuilder
com.bumptech.glide.RequestBuilder

Analysis Version: Export

File: MainActivity java

Recommended Alternative Energy-Efficient Library
For making HITP GET reguest to download images from server , recommended energy-efficie
mt alternative is "com.nostral3.universalimageloader:universal-image-loader:1.9.5" libra
ry.

Ranking Alternative Energy-Efficient Libraries for Detected HTTP Request(s)
For making HITP GET reguest and HITP get image regquest, the library ranking (l= most ene
rgy efficient, 5= least energy efficient) based on energy-efficiency is as follows:
{1} "com.loopj.android:android-async-http:1.4.9"

{2} "com.android.volley:wvolley:1.1.1"

For making HITP GET request the library ranking (1= most energy efficient, 5= least ener
gy efficient) based on energyv-efficiency is as follows:
(1) "com.koushikdutta.async:androidasynec:2.2.1"

{2) "com.sgquareup.okhttp3:okhtep:3.13.1"

{3) "com.sguareup.retrofit2:recrofit:2.5.0"

{4) "com.loop].android:android-async-http:1.4.9"

{5} "com.android.volley:wvolley:1.1.1"

For making HITP GET reguest to downlcad images the library ranking (l= most energy effic
ient, 5= least energy efficient) based on energy-efficiency is as follows:
{1} "com.nostral3.universalimageloader:universal-image-loader:1.9.5"

{2} "com.sguareup.picasso:picasso:2.71828™

{3} "com.github.bumptech.glide:glide:4.9.0"

{4) "com.loop].android:android-async-http:l.4.9 ™

{5) "com.android.volley:volley:l.1.1"

3jpein 3

WY e

aYHId +

Figure 8.3: REHAB usage example

120

2ad




8.3. Scope Extension of REHAB

In this section, we discuss if the recommendations shown by REHAB for partic-
ular version of selected third-party HTTP libraries could also be applied to other
versions of the same library. For this purpose, we conducted usage and change
analyses on Android apps. Each selected third-party HTTP library has many ver-
sions available in MVN-central library. The usage analysis quantifies the usage of
selected third-party libraries and all their versions in a set of real Android apps.
The change analysis quantifies what kind of changes are made in the between
consecutive versions.

Collecting Android APKs from online markets is a time consuming process, there-
fore, we choose Androzoo dataset® which contains 15,730,282 APKs (as of june
2021) collected from different app stores. For each APK, Androzoo dataset con-
tains its SHA256, SHA1, md5, apk_size dex_size,pkg_name, market etc. App
APK could be downloaded from a remote server via a combination of SHA256
key and API key. From Androzoo dataset we filtered out APKs that belonged to
F-Droid* and Google Playstore®. We selected F-Droid because it contains free
open source Android apps. We selected Google Playstore because it the official
online market for publishing Android apps. We further filtered the apps using
SHA?256 key to ensure that for each app only the latest version of that app is in-
cluded. As manually downloading such a huge number of apps one by one is a
time consuming task, therefore we wrote python scripts to automate the process.
After filtering apps via SHA25 keys we had 3457 unique SHA256 keys for apps
from F-Droid repository, and 4388689 unique SHA256 keys for apps from Google
play store. We downloaded 3457 app APKs belonging to F-Droid and 5000 app
APKSs belonging to google play.

For the usage and change analysis, we used LibScout® (version 2.3.2), a static
analysis tool, to detect selected third-party libraries in Android apps APK. Lib-
Scout requires the original library SDKs (compiled .jar/.aar files) to extract library
profiles that can be used for detection on Android apps. LibScout can detect li-
brary versions and its APIs based on semantic versioning. For each app APK a
JSON report was made containing app name, package name, used libraries and
versions. Using python scripts we parsed the JSON files to CSV for further pro-
cessing in Excel.

For each third-party library, there are several versions available in the MVN-
central repository. Table 8.5 gives an overview of the number of versions available
for each third-party library. Figure 8.4 shows number of versions per change type

3https ://androzoo.uni.lu/

4https :/Iwww.f-droid.org/

3 https://play.google.com/store/apps
6https ://github.com/reddr/LibScout

121



per library. The type of change in versions of a library were detected using Lib-
Scout tool.

Table 8.5: Number of versions per library available in MVN-central repository
(as of January 2021).

ID ‘ Library Number of versions
VO Volley 3
re Retrofit 20
ok OkHttp 64
async | AndroidAsync 65
async-h AsyncHttp 9
gli Glide 26
pic Picasso 22
Uil UIL 15

Il EMAJOR
EMINOR
= no change
oPATCH

Number of versions

L kL

volley retrofit oknttp async async-h glide picasso uiL
Third-party Library

Figure 8.4: Number of versions per change type per library

At the moment we have energy data for only one version per third-party library.
Therefore, we grouped the versions (see Table 8.6) based on the changes made
between two consecutive versions: major, minor, or a patch. Major version change
include incompatible API changes, minor version change include the addition in
functionality with backward-compatible and a patch version change includes bug
fixes with backward-compatible. We assume that in the case of minor and patch
level changes, the difference in consecutive versions are small and might not cause
a significant change in energy consumption. Therefore, to cover more library
versions via REHAB, we group such similar library versions based on the type
of change. The consecutive versions with minor changes and patches are kept in

122



a single group until a major change occurs. Upon encountering a major change
between consecutive versions, we place the version with major change and its
subsequent versions with minor and patch changes in the next group, and so on.
From here onward, the groups containing the library versions for which we have
energy data are referred as target groups.

Table 8.6: Number of groups created per library in which versions were divided.

ID Library Number of groups
VO Volley 1
re Retrofit 3
ok OkHttp 6
async | AndroidAsync 14
async-h AsyncHttp 5
gli Glide 15
pic Picasso 5
uil UIL 9

Out of 3457 apps belonging to F-Droid repository, selected third-party HTTP li-
braries were detected in 789 apps i.e. 21%. Out of 5000 apps belonging to Google
playstore, selected third-party HTTP libraries were detected in 2942 app i.e. 78%
(see Table 8.7). Out of 789 apps belonging to F-Droid repository, versions from
the target group were detected in 395 app i.e. 50%. Out of 2942 apps belonging
to Google playstore, versions from the target group were detected in 1636 app i.e.
55%. (see Annex D for detailed data on versions, groups, number of apps etc.).

Table 8.7: Number of apps in which selected third-party HTTP libraries were
detected (irrespective of the version).

ID ‘ Library ‘ Number of Google playstore apps ‘ Number of F-Droid apps ‘ TOTAL

Vo Volley 101 16 117

re Retrofit 637 172 809

ok OkHttp 955 366 1321
async | AndroidAsync 11 13 24
async-h AsyncHttp 48 8 56
gli Glide 461 109 570
pic Picasso 619 80 699
uil UIL 110 25 135

| TOTAL | 2942 \ 789 | 3731

Tables 8.8 to 8.15 shows group of versions created per library along with number
of apps in which these groups were detected. The version highlight in the red are
the ones for which we measured energy data in chapter 5.

Third-party libraries have multiple versions and it is a time consuming task to
measure energy consumption of each version in every possible use-case. If library

123



versions are released frequently then energy data also needs to be updated fre-
quently. As we grouped the similar versions together, therefore, we can say with
some confidence that the recommendation that REHAB made for the selected ver-
sion could be applied to the other versions that belong to the same group. One can
argue, that in minor and patch changes, even though the difference in code or func-
tionality is small but it could still cause significant changes in energy consump-
tion. However, these changes are done in backward compatible manner which
means that apps consuming the APIs from such versions could switch between
versions without changing their code. Minor and patch level changes in library
versions are usually quick fixes by the creators of third-party libraries until the
version with major change is released. In the versions with major changes APIs
are deleted, added or changed in a way that require developers to change their
app code. We suggest that the software practitioners could adopt a similar scheme
and group the versions together. Energy consumption could be measured first for
the version with major changes, with the assumption that the subsequent versions
with minor or patch level changes are not too different. Then if needed the energy
consumption for the version with minor and patch changes could be measured
respectively. Measuring energy consumption of third-party libraries is lengthy
process, our tool ARENA (presented in Chapter 7) could help the researchers to
speed up the energy measurement process without human errors.

Table 8.8: Group of versions created for Volley library along with number of
apps in which these groups were detected

Version | # of Google playstore apps % # of F-Droid apps % Group | Type of Change
gle play pp! pp! p | 1yp g

1.0.0 no change

1.1.0 110 100% 25 100% 1 MINOR

1.1.1 MINOR
TOTAL | 110 \ \ 25 \ \ \

Table 8.9: Group of versions created for Retrofit library along with number of
apps in which these groups were detected

Version | # of Google playstore apps | % | #of F-Droidapps | % | Group | Type of Change

2.0.0 no change
2.0.1 o o PATCH
202 139 22% 22 13% 1 MINOR
2.1.0 PATCH
22.0 MAJOR
2.3.0 PATCH
0], ) [ 2
240 444 70% 26 15% 2 MINOR
2.5.0 MINOR
2.6.0 MAJOR
2.6.1 MINOR
2.6.2 PATCH
2.6.3 MINOR
2.6.4 PATCH
2.7.0 PATCH
271 54 8% 124 72% 3 PATCH
2.7.2 PATCH

124



2.8.0 MINOR

2.8.1 PATCH
2.82 MINOR
2.9.0 PATCH

TOTAL | 637 \ \ 172 \ \ \

Table 8.10: Group of versions created for OkHttp library along with number of
apps in which these groups were detected

Version # of Google playstore apps % # of F-Droid apps % Grou, Type of Change
gle play pp! pp! p yp g

3.0.0 no change
3.0.1 MINOR
3.1.0 MINOR
3.1.1 aron
M 4 4% 8 2% ! PATCH
3.2.0 MINOR
3.3.0 aron
33.1 o
33 MAJOR
3.4.1 PATCH
342 MINOR
3.5.0 MINOR
330 179 19% 50 14% | 2 MINOR
3.7.0 MINOR
3.8.0 barcn
380 PATCH
3.9.0 MAJOR
3.9.1 PATCH
3oL PATCH
3.11.0 MINOR
3.12.0 baron
3.12.1 PATCH
3.122 PATCH
3.12.3 PATCH
3.124 PATCH
3125 PATCH
3.12.6 PATCH
3.12.7 PATCH
3.12.8 PATCH
3.12.9 PATCH
3.12.10 PATCH
3.12.11 PATCH
3.12.12 MINOR
ij}?? 734 77% 277 76% 3 ?ggg
3.14.0 baron
3.14.1 PATCH
3.14.2 PATCH
3.14.3 PATCH
3.14.4 PATCH
3.14.5 PATCH
3.14.6 PATCH
3.14.7 PATCH
3.14.8 PATCH
3.14.9 MINOR
4.0.0 MINOR
4.0.1 PATCH
4.1.0 MINOR

125



4.1.1 PATCH
4.2.0 MINOR
4.2.1 PATCH
4.2.2 PATCH
4.3.0 MAJOR
4.3.1 0 0% 6 2% 4 PATCH
4.4.0 MAIJOR
4.4.1 0 0% 4 1% 5 PATCH
4.5.0 MINOR
4.6.0 MAJOR
4.7.0 MINOR
4.7.1 PATCH
4.7.2 0 0% 21 6% 6 PATCH
4.8.0 PATCH
4.8.1 PATCH
4.9.0 MINOR
TOTAL 955 366

Table 8.11: Group of versions created for AndroidAsync library along with num-
ber of apps in which these groups were detected

Version # of Google playstore apps % # of F-Droid apps % Grou Type of Change
gle play pp! pp p yp g

1.0.0 no change
1.0.2 PATCH
1.0.3 PATCH
1.0.5 0 0% 0 0% 1 PATCH
1.0.6 MINOR
1.0.7 PATCH
1.0.8 MINOR
1.0.9 MAJOR
1.1.0 0 0% 0 0% 2 PATCH
1.1.1 MAIJOR
1.1.2 0 0% 0 0% 3 PATCH
1.1.3 0 0% 0 0% 4 MAJOR
1.1.4 MAJOR
1.1.5 0 0% 0 0% 5 MINOR
1.1.6 MINOR
1.1.8 MAJOR
1.1.9 0 0% 0 0% 6 MINOR
1.2.0 MINOR
1.2.1 MAJOR
1.2.2 MINOR
1.2.3 0 0% 0 0% 7 MINOR
124 MINOR
1.2.5 0 0% 0 0% 8 MAJOR
1.2.6 0 0% 0 0% 9 MAJOR
1.2.8 MAIJOR
1.2.9 PATCH
1.3.0 PATCH
1.3.1 PATCH
132 MINOR
133 PATCH
134 PATCH
1.3.5 0 0% ! 9% 10 PATCH
1.3.6 PATCH
1.3.7 PATCH
1.3.8 MINOR
1.3.9 MINOR

126



1.4.0 PATCH
1.4.1 MINOR
2.0.0 MAIJOR
2.0.1 MINOR
2.0.2 MINOR
2.0.3 MINOR
2.04 PATCH
2.0.5 PATCH
2.0.6 MINOR
2.0.7 MINOR
2.0.8 4 36% 7 64% 11 PATCH
2.09 MINOR
2.1.0 MINOR
2.1.1 PATCH
212 MINOR
2.1.3 PATCH
2.14 MINOR
2.1.5 MINOR
2.1.6 PATCH
2.1.7 MAIJOR
2.1.8 MINOR
2.1.9 7 64% 5 45% 12 MINOR
22.0 MINOR
22.1 PATCH
3.0.0 MAIJOR
308 0 0% 0 0% 13 PATCH
1o 0 o 0 o | 14 | pawon
TOTAL 11 13

Table 8.12: Group of versions created for AsyncHttp library along with number
of apps in which these groups were detected

Version | # of Google playstore apps | % | # of F-Droid apps %  Group | Type of Change
gle play pp pp p | Lyp g

143 4 8% 1 13% 1 no change
144 12 25% 0 0% 2 MAJOR
1.4.5 MAJOR
1.4.6 6 13% ! 13% 3 MINOR
1.4.7 MAJOR
1.4.8 6 13% 0 0% 4 MINOR
1.4.9 MAJOR
1.4.10 20 42% 6 75% 5 MINOR
1.4.11 MINOR
TOTAL 48 8

Table 8.13: Group of versions created for Glide library along with number of apps
in which these groups were detected

Version # of Google playstore apps % # of F-Droid apps % Grou Type of Change
gle play pp! pp p yp g

3.3.0 0 0% 0 0% 1 no change
3.3.1 1 0% 0 0% 2 MAJOR
3.4.0 0 0% 0 0% 3 MAJOR
3.5.0 MAIJOR
3.5.1 4 1% 1 1% 4 MINOR
352 MINOR

127



3.6.0 MAIJOR
3.6.1 MINOR
370 267 58% 51 47% 5 PATCH
3.8.0 MINOR
4.0.0 0 0% 0 0% 6 MAJOR
4.1.0 MAIJOR
4.1.1 2 0% 0 0% 7 PATCH
4.2.0 3 1% 0 0% 8 MAIJOR
4.3.0 MAIJOR
4.3.1 8 2% 0 0% o MINOR
4.4.0 0 0% 0 0% 10 MAIJOR
4.5.0 MAIJOR
4.6.0 18 4% 6 6% 11 MINOR
4.6.1 PATCH
4.7.0 MAIJOR
4.7.1 42 9% 2 2% 12 PATCH
4.8.0 16 3% 8 7% 13 MAIJOR
4.9.0 71 17% 11 10% 14 MAJOR
4.10.0 MAIJOR
4110 23 5% 30 28% 15 MINOR
TOTAL 461 109

Table 8.14: Group of versions created for Picasso library along with number of
apps in which these groups were detected

Version ‘ # of Google playstore apps ‘ % ‘ # of F-Droid apps ‘ %  Group ‘ Type of Change

1.0.0 no change
1.0.1 0 0% 0 0% 1 MINOR
1.0.2 MINOR
1.1.0 MAJOR
1.1.1 4 1% 0 0% 2 PATCH
2.0.0 MAJOR
2.0.1 PATCH
2.0.2 PATCH
2.1.0 PATCH
2.1.1 MINOR
2.2.0 MINOR
3.0 73 12% 8 10% 3 MINOR
2.3.1 PATCH
232 PATCH
233 PATCH
234 MINOR
24.0 MINOR
2.5.0 MAJOR
2.5.1 330 53% 34 43% 4 MINOR
252 MINOR
2.8.0 MAJOR
2.71828.0 212 4% 38 8% 3 PATCH
TOTAL 619 80

128



Table 8.15: Group of versions created for UIL (Universal Image Loader) library
along with number of apps in which these groups were detected

Version | # of Google playstore apps [ % ‘ # of F-Droid apps | % ‘ Group ‘ Type of Change

1.7.0 no change
1.7.1 30 30% 0 0% ! MINOR
1.8.0 MAJOR
1.8.1 ! 1% 0 0% 2 MINOR
1.8.2 MAIJOR
1.8.3 2 2% 2 13% 3 MINOR
1.8.4 MINOR
1.8.5 MAIJOR
1.8.6 12 12% ! 6% 4 MINOR
1.9.0 2 2% 0 0% 5 MAJOR
1.9.1 11 11% 0 0% 6 MAJOR
192 1 1% 2 13% 7 MAJOR
1.9.3 10 10% 4 25% 8 MAJOR
1.9.4 pe . MAJOR
195 32 32% 7 44% 9 MINOR
TOTAL 101 16

8.4. REHAB Evaluation

We report the accuracy of REHAB when used on Android apps within Android
Studio IDE. The purpose of this evaluation was to check 1) if REHAB can cor-
rectly identify the use-cases and the related HTTP requests in the source code, 2)
if REHAB can correctly map the detected use cases to the pre-defined rules in the
knowledge base and show recommendations.

The correctness of recommendations made by REHAB is exclusively dependent
on the energy measurements used in the start to create the knowledge base. Once
we assume that the energy measurements are correct, the recommendation made
by REHARB is also considered correct. Currently, the knowledge base (cf. Sec-
tion 8.1.1) contains a finite set of pre-defined rules. REHAB lookup the use cases
and HTTP requests in the source code and match them to rules. A related recom-
mendation based on the energy measurements is shown to the user if a match is
found.

First, we evaluated REHAB on 45 custom app versions (we call it app-set 17).
For each of these app versions, we already knew the libraries included and request
types used. Therefore, it was easier to spot false positives or false negatives. Then
from the F-droid repository, we selected four open-source Android apps (we call
it app-set 2 8). The criteria for selecting apps was 1) one or more selected third-
party HTTP libraries were present in the app, 2) the size of the project should be

"The custom app versions wused in the evaluation are available at
https://figshare.com/s/8e65154ab9821eba96aft

8The open source apps used in evaluation are available at
https://figshare.com/s/5facc180f9cbd36ef114

129



small (less than 2K), as we wanted to confirm the results afterwards manually, and
3) the source code of the app is available.

For app-set 1, REHAB correctly identified the selected third-party HTTP libraries
and HTTP requests in all 45 custom app versions. For each detected use case,
two types of recommendations were shown to the user 1) an alternative energy-
efficient third-party library for each use case, 2) ranking of alternative third-party
libraries for the individual and a combination of use cases. The recommendations
shown by REHAB for each app version were manually checked for correctness.
Table 8.16 shows the detected use cases, the number of detected HTTP requests,
detected libraries, false positives (FP), false negatives (FN), and the number of
recommendations shown.

For app-set 2, REHAB correctly identified selected third-party HTTP libraries and
related HTTP requests. Within each app, multiple use cases and HTTP requests
were detected. For each detected use case, two types of recommendations were
shown to the user 1) an alternative energy-efficient third-party library for each
use case, 2) ranking of alternative third-party libraries for the individual and a
combination of use cases. Table 8.17 shows the detected use cases, the number
of detected HTTP requests, detected libraries, false positives (FP), false negatives
(FN), and the number of recommendations shown. For the first app, *Android-
Volley-Master’, four HTTP requests were detected. Out of four detected HTTP
requests, two were GET requests (UC-GF), and two were GET image requests
(UC-GI). For the second app, *android-http-app-master’, one POST request was
detected. For the third app, "Memesharing’, two request types were detected, i.e.
one GET request (UC-GF) to retrieve a file from a server and one GET request
(UC-GI) to download an image from the server. For the fourth app, *Weatherapp’,
four HTTP requests were detected. Out of four detected HTTP requests, one was
GET requests (UC-GF), and three were GET image requests (UC-GI).

For app-set 1 and 2, REHAB correctly detected and highlighted the relevant code
in source code files. Figure 8.3 in Section 8.2.1 shows an example of the recom-
mendation shown by REHAB in the "Memesharing’ app in app-set 2. If energy
measurement is correct, then the recommendation is correct. The "Memesharing’
app used third-party HTTP libraries Volley and Glide for making GET requests
to extract images from the server. REHAB recommended the library UIL, which
has a better energy value. Two types of recommendations are shown to the user 1)
an alternative energy-efficient third-party library for each use case, 2) ranking of
alternative third-party libraries for the individual and a combination of use cases.

Table 8.16: REHAB evaluation results (app-set 1)

App version | Use Case | Detected Library [ #of HTTP requests | FP [ FN | # of recomm.
1 GF Volley 1 0 0 2
GF Retrofit 1 0 0 2

130



38 GF OKHttp 1 0 0 2
4 GF AsyncHttp 1 0 0 2
5 GF AndroidAsync 1 0 0 2
6 PF Volley 1 0 0 2
7 PF Retrofit 1 0 0 2
8 PF OKHttp 1 0 0 2
9 PF AsyncHttp 1 0 0 2
10 PF AndroidAsync 1 0 0 2
11 PJO Volley, Gson 1 0 0 2
12 PJO Volley, Jackson 1 0 0 2
13 PJO Volley, Moshi 1 0 0 2
14 PJO Retrofit, Gson 1 0 0 2
15 PJO Retrofit, Jackson 1 0 0 2
16 PJO Retrofit, Moshi 1 0 0 2
17 PJO OKHttp, Gson 1 0 0 2
18 PJIO OKHittp, Jackson 1 0 0 2
19 PJO OKHrttp , Moshi 1 0 0 2

20 PJO AsyncHttp, Gson 1 0 0 2

21 PJO AsyncHttp, Jackson 1 0 0 2

22 PJO AsyncHttp, Moshi 1 0 0 2

23 PJO AndroidAsync, Gson 1 0 0 2

24 PJO AndroidAsync, Jackson 1 0 0 2

25 PJO AndroidAsync, Moshi 1 0 0 2

26 GI Volley 1 0 0 2

27 GI AsyncHttp 1 0 0 2

28 GI Glide 1 0 0 2

29 GI Picasso 1 0 0 2

30 GI UIL 1 0 0 2

31 GJO Volley, Gson 1 0 0 2

32 GJO Volley, Jackson 1 0 0 2

33 GJO Volley, Moshi 1 0 0 2

34 GJO Retrofit, Gson 1 0 0 2

35 GJO Retrofit, Jackson 1 0 0 2

36 GJO Retrofit, Moshi 1 0 0 2

37 GJO OKHrttp, Gson 1 0 0 2

38 GJO OKHrttp , Jackson 1 0 0 2

39 GJO OKHttp , Moshi 1 0 0 2

40 GJO AsyncHttp, Gson 1 0 0 2

41 GJO AsyncHttp, Jackson 1 0 0 2

42 GJO AsyncHttp, Moshi 1 0 0 2

43 GJO AndroidAsync, Gson 1 0 0 2

44 GJO AndroidAsync, Jackson 1 0 0 2

45 GJO AndroidAsync, Moshi 1 0 0 2

Table 8.17: REHAB evaluation results (app-set 2).
App ‘ Use Case Detected Library ‘ # of HTTP requests ‘ FP ‘ FN ‘ # of recomm.
Android-volley-Master GF, GI Volley, Picasso 4 0 0 5
android-http-app-master PF AsyncHttp 1 0 0 2
Memesharing GF, GI volley, Glide 2 0 0 5
Weatherapp GF, GI Retrofit, Picasso 4 0 0 5

131



9. CONCLUSION AND FUTURE WORK

Sustainability in software engineering is a relatively new and fast growing field of
research. Green software engineering aims to produce sustainable software prod-
ucts with minimum negative impact on the environment. In order to make greener
software products, software practitioners need actionable timely information, to
make useful trade-offs between energy efficiency and other quality attributes, like
performance, during development. Software analytics could be used to provide
this support, as it combines information from different software artifacts and con-
verts it into useful information. In this thesis, we have evaluated alternative coding
patterns to save energy in mobile apps in two contexts: 1) custom app code written
by the developers; 2) library modules, i.e., reusable services added to the project.
In addition, we explore the state of the art support tools for energy efficient app de-
velopment and investigate their strengths and weaknesses. Based on this analysis,
we provide support tools that overcomes some of the limitations of the existing
tools.

9.1. Contributions and Findings

In this section we summarize our contributions and findings in the area of green
software engineering.

9.1.1. Code Smell Refactorings

In this thesis, we extend previous studies by investigating the energy impact of
refactoring five code smell types (first individually per type and then in permuta-
tions) of native Android open source apps. We also study the impact of using the
code smell refactorings on the execution time of native Android open source apps.
Our results indicate that the maximum energy reductions recorded are 10.8% and
10.5% for refactoring code smell ‘Duplicated code’ and ‘Type Checking’ respec-
tively. Specific permutations of code smell refactorings should be used with cau-
tion, as their energy consumption impact might differ strongly between the se-
lected Android apps. We observe neither significant increase nor decrease of the
execution time in selected Android apps.

9.1.2. Third-party Libraries

We investigate whether popular Android third-party HTTP libraries vary in en-
ergy consumption. In addition, we checked whether there is a correlation between
performance and energy consumption. To achieve this goal, we performed a con-
trolled experiment. We created 45 different versions of a custom app and ex-
plored the energy consumption and performance of eight popular Android third-
party HTTP libraries in five typical use cases. We found that there is a significant

132



variance in energy consumption between the selected Android third-party HTTP
libraries. Based on our discussion, we hypothesize that the energy drivers are re-
lated to the internal structure of the Android third-party HTTP libraries, in partic-
ular with the handling of asynchronous tasks and the creation of multiple threads
in the background. This is something that should be investigated in follow-up
studies. We did not find any significant correlation between performance and en-
ergy consumption. Our results will help app developers make better choices when
selecting Android third-party HTTP libraries.

9.1.3. Tool Support for Developing Green Android Apps

We provide an overview of the state-of-the-art and highlight research opportuni-
ties with respect to support tools available for green Android development. Based
on our analysis we identified tools for detecting/refactoring code smells/energy
bugs, which were classified into three categories 1) ‘Profiler’, 2) ‘Detector’, 3)
‘Optimizer’. Additionally, we identified tools for detecting/migrating third-party
libraries in Android apps, which were classified into 1) Identifier, 2) Migrator, 3)
Controller categories. The main findings of this study are that most ‘Profiler’ tools
provide a graphical representation of energy consumption over time. Most “De-
tector” tools provide a list of energy bugs/code smells to be manually corrected by
a developer for the improvement of energy. Most “Optimizer” automatically con-
vert original APK/SC to a refactored version(s) of APK/SC. Tools in ‘Identifier’,
‘Migrator’ or ‘Controller’ categories do not provide supports to developers to op-
timize code w.r.t energy consumption. The most typical technique in “Detector”
and ‘Optimizer ‘category was static source code analysis using a predefined set
of code smells and rules. The most typical techniques in the ‘Identifier’ category
were module decoupling and feature similarity. While in ‘Migrator’ and ‘Con-
troller categories, API hooking and collaborative filtering in combination with
natural-language processing were used, respectively.

We present the support tool ARENA to help automate the energy measurement
process and to reduce the risks related to human errors during energy measure-
ment. Energy consumption of app could be measured via software or hardware-
based approaches. Compared to software-based approaches, hardware-based
approaches for collecting energy data are more accurate but difficult to apply.
ARENA connects with one of the most widely used physical measurement de-
vices (Monsoon Power Monitor) to capture energy data. ARENA provides an
interface that is consistent with the IntelliJ/Android Studio IDEs and enables de-
velopers and researchers to compare energy consumption between versions of the
apps. Further, ARENA helps in aggregating, statistically analyzing, reporting and
visualizing the energy data.

We also present a support tool REHAB for recommending energy-efficient third-
party libraries to the developers. For a particular task usually alternative third-

133



party libraries are available that offer similar functionalities. If the third-party li-
brary included in the app is not energy efficient it might drain the mobiles’ battery.
REHAB helps Android developers by recommending energy efficient third-party
HTTP libraries during development. Additionally, we discuss how the scope of
REHAB can be widened by conducting usage and change analysis on 8457 An-
droid apps. The usage analysis quantifies the usage of selected third-party HTTP
libraries and all their versions in a set of real Android apps. The change analysis
quantifies how what kind of changes are made in the consecutive versions. Third-
party libraries have multiple versions and it is a time consuming task to measure
energy consumption of each version in every possible use-case. We suggest that
the software practitioners group the versions together. Energy consumption could
be measured first for the version with major changes, with the assumption that the
subsequent versions with minor or patch level changes are not too different. Then
if needed the energy consumption for the version with minor and patch changes
could be measured respectively.

9.2. Opportunities for Future Work

This work opens multiple opportunities for future work, which we outline below.

9.2.1. Contextual Data for Refactoring

From previous research (cf. Chapter 3) and the research conducted in this thesis
(contribution 1) it is clear that code smell refactorings can impact energy con-
sumption of apps. However, more context based data is needed in order to provide
actionable recommendations to developers. In future, one could perform similar
studies with wider scope to measure the impact of applying combinations and
permutations of code smell refactorings on different underlying platforms (such
as Java virtual machine vs Java runtime environment) and types (native vs hybrid)
of mobile apps. Similarly, one could also explore how many times a single refac-
toring could be applied before it starts to negatively impact energy consumption.
As manual detection and refactoring of code smells in apps is a human intensive
task, and usually hinders such experiment, support tools such as xAL (extended
Android Lint) [53] could be used. Similarly support tool such as ARENA could
be used to automate the energy measurement process.

9.2.2. Trade-off Analysis

A third-party library chosen for a scenario for one quality aspect could have a
positive or negative correlation with other quality aspects such as usability and
resource consumption. Trade-off analysis is needed to evaluate how alternative
third-party libraries for a scenario affect certain quality requirements and con-
straints. The benefits of such a trade-off analysis are; 1) helpful in better un-
derstanding the trade-off between the implementation choices regarding certain

134



quality aspects, 2) helpful in documenting all the trade-off decisions for future
use. For example, third-party library *A’ is energy efficient but difficult to imple-
ment and requires developers to write additional code or third-party library "B’ is
more secure but not energy efficient. Trade-off analysis could help in choosing
which third-party library is better for a given task in a certain context.

9.2.3. Energy Data for Creating Software Based Energy Prediction
Models

Developers want software based models that could predict energy consumption
of app during development. To produce such models accurate energy data is re-
quired. There is lack of contextual energy data because it is costly in terms of
efforts to produce such data. Not only we need hardware devices for accurate en-
ergy measurements but also specialized tests need to be written for every app. On
top of that energy measurements could be taken at different level such as system,
method, source line of codes. Better tools are needed to automate energy mea-
surement process. Support tools such as ARENA could be improved to connect to
more hardware devices with option to select the granularity (system level, method
level etc.) of energy measurements.

135



(1]
(2]
(3]

[4]

[5]

[6]
[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

Android asynchronous http client. [Online; accessed 2019-11-04].
Android sdk: Working with picasso. [Online; accessed 2019-04-25].

Api reference | youtube data api | google developers. [Online; accessed
2019-10-21].

Developer workflow basics | android developers. [Online; accessed 2021-
10-15].

Distribution dashboard | android developers. [Online; accessed 2019-11-
04].

Glide android library.

Image loader andriod library.

Picasso. [Online; accessed 2019-04-25].

Smartphone ap market share 2014-2018 | statista. [Online; accessed 2019-
11-04].

What percentage of internet traffic is mobile in 2019? [Online; accessed
2019-11-04].

Energy-efficient ICT in practice : Planning and implementation of GreenIT
measures in data centres and the office. Technical report, 2014.

Mobile device power monitor manual, 2017. [Online; accessed 2018-06-
04].

Hayri Acar. Software development methodology in a Green IT environment.
PhD thesis, Université de Lyon, 2017.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
Androzoo: Collecting millions of android apps for the research commu-
nity. In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 468-471. IEEE, 2016.

Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon
Reznik, Ali Ouni, and Jason Mcgoff. Learning to recommend third-party
library migration opportunities at the api level. Applied Soft Computing,
90:106140, 2020.

Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Giuseppe
Migliore. Profiling power consumption on mobile devices. ENERGY, pages
101-106, 2013.

136



[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Larissa Azevedo, Altino Dantas, and Celso G Camilo-Junior. Droidbugs:

An android benchmark for automated program repair. arXiv preprint
arXiv:1809.07353, 2018.

Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. pages 356-367. ACM
Press, 10 2016.

Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik
Roychoudhury. Detecting energy bugs and hotspots in mobile apps. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pages 588-598, 2014.

Abhijeet Banerjee and Abhik Roychoudhury. Automated re-factoring of
android apps to enhance energy-efficiency. In Proceedings of the Inter-
national Conference on Mobile Software Engineering and Systems, pages
139-150, 2016.

Reuben Binns, Jun Zhao, Max Van Kleek, and Nigel Shadbolt. Measuring
third-party tracker power across web and mobile. ACM Transactions on
Internet Technology (TOIT), 18(4):1-22, 2018.

Coral Calero, M* Angeles Moraga, and Mario Piattini. Introduction to Soft-
ware Sustainability, pages 1-15. Springer International Publishing, Cham,
2021.

Coral Calero and Mario Piattini. Green in software engineering, volume 3.
Springer, 2015.

Coral Calero and Mario Piattini. Introduction to green in software engi-
neering. In Green in Software Engineering, pages 3—27. Springer, 2015.

Antonin Carette, Mehdi Adel Ait Younes, Geoffrey Hecht, Naouel Moha,
and Romain Rouvoy. Investigating the energy impact of android smells.
pages 115-126. IEEE, 2 2017.

Nitin Singh Chauhan and Ashutosh Saxena. A green software development
life cycle for cloud computing. It Professional, 15(1):28-34, 2013.

Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalabil-
ity simultaneously in detecting application clones on android markets. In
Proceedings of the 36th International Conference on Software Engineer-
ing, pages 175-186, 2014.

Shaiful Chowdhury, Stephanie Borle, Stephen Romansky, and Abram Hin-
dle. GreenScaler: training software energy models with automatic test gen-
eration. Empirical Software Engineering, 24(4):1649-1692, August 2019.

137



[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Shaiful Chowdhury, Silvia Di Nardo, Abram Hindle, and Zhen Ming Jiang.
An exploratory study on assessing the energy impact of logging on android
applications. Empirical Softw. Engg., 23(3):1422-1456, June 2018.

Shaiful Alam Chowdhury and Abram Hindle. Greenoracle: Estimating
software energy consumption with energy measurement corpora. In 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pages 49-60. IEEE, 2016.

Shaiful Alam Chowdhury, Abram Hindle, Rick Kazman, Takumi Shuto,
Ken Matsui, and Yasutaka Kamei. Greenbundle: An empirical study on
the energy impact of bundled processing. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), pages 1107-1118,
2019.

Yi-Fan Chung, Chun-Yu Lin, and Chung-Ta King. Aneprof: Energy profil-
ing for android java virtual machine and applications. In 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, pages 372—
379. IEEE, 2011.

Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114:494-509, 1993.

Vanessa N. Cooper, Hossain Shahriar, and Hisham M. Haddad. A survey
of android malware characterisitics and mitigation techniques. pages 327—
332. IEEE, 4 2014.

Claudio Corrodi, Timo Spring, Mohammad Ghafari, and Oscar Nierstrasz.
Idea: Benchmarking android data leak detection tools. volume 10953
LNCS, pages 116-123. Springer Verlag, 6 2018.

Luis Cruz and Rui Abreu. Catalog of energy patterns for mobile applica-
tions. Empirical Softw. Engg., 24(4):2209-2235, August 2019.

Luis Cruz and Rui Abreu. Improving energy efficiency through automatic
refactoring. J. Softw. Eng. Res. Dev., 7:2, 2019.

Luis Cruz and Rui Abreu. On the energy footprint of mobile testing frame-
works. IEEE Transactions on Software Engineering, pages 1-1, 2019.

Luis Cruz, Rui Abreu, John Grundy, Li Li, and Xin Xia. Do energy-
oriented changes hinder maintainability? In 2019 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pages 29-40,
2019.

Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and
Christian Le. Rapl: Memory power estimation and capping. In 2010

138



[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]
[50]

[51]

[52]

ACM/IEEE International Symposium on Low-Power Electronics and De-
sign (ISLPED), pages 189-194. IEEE, 2010.

Fernando Lépez De La Mora and Sarah Nadi. Which library should i use?
a metric-based comparison of software libraries. pages 37-40. IEEE Com-
puter Society, 5 2018.

Abebaw Degu. Android application memory and energy performance: Sys-
tematic literature review. IOSR J. of Comp. Eng., 21(3):20-32, 2019.

Marin Delchev and Muhammad Firdaus Harun. Investigation of code
smells in different software domains. 2015.

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes.
Keep me updated: An empirical study of third-party library updatability on
android. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2187-2200, 2017.

Google Developers. Volley overview | android developers. [Online; ac-
cessed 2019-04-25].

Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy
Zaidman, and Andrea De Lucia. Petra: A software-based tool for estimat-
ing the energy profile of android applications. pages 3—6. IEEE, 5 2017.

Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy
Zaidman, and Andrea De Lucia. Software-based energy profiling of an-
droid apps: Simple, efficient and reliable? In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 103-114, 2017.

Markus Dick, Stefan Naumann, and Norbert Kuhn. A model and selected
instances of green and sustainable software. In What kind of information so-

ciety? Governance, virtuality, surveillance, sustainability, resilience, pages
248-259. Springer, 2010.

Koushik Dutta. Androidasync. [Online; accessed 2019-11-04].

Egham. Gartner Says Worldwide End-User Device Spending Set to In-
crease 7 Percent in 2018; Global Device Shipments Are Forecast to Return
to Growth, 2018.

Cheng Fang, Jun Liu, and Zhenming Lei. Fine-grained http web traffic
analysis based on large-scale mobile datasets. IEEE Access, 4:4364-4373,
2016.

Keith I Farkas, Jason Flinn, Godmar Back, Dirk Grunwald, and Jennifer M
Anderson. Quantifying the energy consumption of a pocket computer and
a java virtual machine. In Proceedings of the 2000 ACM SIGMETRICS

139



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

international conference on Measurement and modeling of computer sys-
tems, pages 252-263, 2000.

Iffat Fatima, Anwar, Hina, Dietmar Pfahl, and Usman Qamar. Detection
and correction of android-specific code smells and energy bugs: An android
lint extension. In 8th International Workshop on Quantitative Approaches
to Software Quality (QuASoQ 2020), 2020.

Iffat Fatima, Anwar, Hina, Dietmar Pfahl, and Usman Qamar. Tool sup-
port for green android development: A systematic mapping study. In Pro-
ceedings of the 15th International Conference on Software Technologies
(ICSOFT), number 1, pages 409-417, 2020.

Thiago Soares Fernandes, Erika Cota, and Alvaro Freitas Moreira. Perfor-
mance evaluation of android applications: a case study. In 2014 Brazilian
Symposium on Computing Systems Engineering, pages 79-84. IEEE, 2014.

Ronald Aylmer Fisher and Frank Yates. Statistical tables for biological,
agricultural and medical research. Edinburgh: Oliver and Boyd, 6th edi-
tion, 1963.

Francesca Arcelli Fontana, Marco Mangiacavalli, Domenico Pochiero, and
Marco Zanoni. On experimenting refactoring tools to remove code smells.
New York, New York, USA, 2015. ACM Press.

Francesca Arcelli Fontana, Elia Mariani, Andrea Mornioli, Raul Sormani,
and Alberto Tonello. An experience report on using code smells detection
tools. pages 450-457. IEEE, 3 2011.

Martin Fowler. Refactoring: Improving the Design of Existing Code.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

Jiaojiao Fu, Yangfan Zhou, Huan Liu, Yu Kang, and Xin Wang. Perman:
fine-grained permission management for android applications. In 2017
IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE), pages 250-259. IEEE, 2017.

Xing Gao, Dachuan Liu, Haining Wang, and Kun Sun. Pmdroid: Permis-
sion supervision for android advertising. In 2015 IEEE 34th Symposium on
Reliable Distributed Systems (SRDS), pages 120-129. IEEE, 2015.

Saurabh Kumar Garg and Rajkumar Buyya. Green cloud computing and
environmental sustainability. Harnessing Green IT: Principles and Prac-
tices, 2012:315-340, 2012.

Franz-Xaver Geiger and Ivano Malavolta. Datasets of android applications:
a literature review. ArXiv, 1809.10069, 9 2018.

140



[64]

[65]

[60]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

GeSI. SMARTer2030 ICT Solutions for 21st Century Challenges. Techni-
cal report, 2015.

Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. A double-
edged sword? software reuse and potential security vulnerabilities. In In-
ternational Conference on Software and Systems Reuse, pages 187-203.
Springer, 2019.

vogella GmbH. Using the okhttp library for http requests - tutorial - tutorial.
[Online; accessed 2019-04-25].

Vogella GmbH. Using retrofit 2.x as rest client - tutorial, 2018. [Online;
accessed 2019-04-25].

Olivier Le Goaér. Enforcing green code with android lint. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE °20, page 85-90, New York, NY, USA, 2020.
Association for Computing Machinery.

Marion Gottschalk, Jan Jelschen, and Andreas Winter. Saving energy on
mobile devices by refactoring. pages 437-444, 2014.

PK Gupta et al. Minimizing power consumption by personal computers: A
technical survey. 1J Information Technology and Computer Science, 2012.

Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram
Adams, and Abram Hindle. Energy profiles of java collections classes. In
Proceedings of the 38th International Conference on Software Engineer-
ing, pages 225-236, 2016.

Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. An empirical study
of the performance impacts of android code smells. In Proceedings of the
International Conference on Mobile Software Engineering and Systems,
MOBILESoft ’16, page 59-69, New York, NY, USA, 2016. Association
for Computing Machinery.

Geoffrey Hecht, Romain Rouvoy, Naouel Moha, and Laurence Duchien.
Detecting antipatterns in android apps. In 2015 2nd ACM international
conference on mobile software engineering and systems, pages 148—149.
IEEE, 2015.

Abram Hindle. Green mining: a methodology of relating software change
and configuration to power consumption. Empirical Software Engineering,
20(2):374-409, April 2015.

Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow,
Joshua Charles Campbell, and Stephen Romansky. Greenminer: A hard-
ware based mining software repositories software energy consumption

141



[76]

[77]

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

framework. In Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, MSR 2014, page 12-21, New York, NY, USA, 2014.
Association for Computing Machinery.

Mpyles. Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric
statistical methods. WILEY, 3rd edition, 2014.

Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mo-
hamed Ali Kaafar, and Vern Paxson. An analysis of the privacy and security
risks of android vpn permission-enabled apps. In Proceedings of the 2016
Internet Measurement Conference, pages 349-364, 2016.

Square Inc. Retrofit. [Online; accessed 2019-04-25].

Erik Jagroep, Jan Martijn van der Werf, Sjaak Brinkkemper, Leen Blom,
and Rob van Vliet. Extending software architecture views with an energy
consumption perspective. Computing, 99(6):553-573, 2017.

Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gaurav Srivastava,
Matthew Fredrikson, Yuvraj Agarwal, and Jason I Hong. Why are they col-
lecting my data? inferring the purposes of network traffic in mobile apps.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2(4):1-27, 2018.

Wonwoo Jung, Chulkoo Kang, Chanmin Yoon, Dongwon Kim, and Ho-
jung Cha. Devscope: a nonintrusive and online power analysis tool for
smartphone hardware components. In CODES+ISSS 12, 2012.

Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-
aware application design. ACM SIGMETRICS Performance Evaluation
Review, 36(2):26-31, 2008.

Amandeep Kaur and Gaurav Dhiman. A review on search-based tools and
techniques to identify bad code smells in object-oriented systems. volume
741, pages 909-921. Springer Verlag, 2019.

Eva Kern, Lorenz M Hilty, Achim Guldner, Yuliyan V Maksimov, An-
dreas Filler, Jens Groger, and Stefan Naumann. Sustainable software prod-
ucts—towards assessment criteria for resource and energy efficiency. Fu-
ture Generation Computer Systems, 86:199-210, 2018.

Eva Kern, Lorenz M. Hilty, Achim Guldner, Yuliyan V. Maksimov, An-
dreas Filler, Jens Groger, and Stefan Naumann. Sustainable software prod-
ucts—towards assessment criteria for resource and energy efficiency. Fu-
ture Generation Computer Systems, 86:199-210, 2018.

Fauzia Khan, Anwar, Hina, Dietmar Pfahl, and Satish Srirama. Software
techniques for making cloud data centers energy-efficient: A systematic

142



[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

mapping study. In 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA 2020), 2020.

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and
Katsuro Inoue. Do developers update their library dependencies? Empiri-
cal Software Engineering, 23(1):384—417, 2018.

Young-Woo Kwon and Eli Tilevich. Reducing the energy consumption of
mobile applications behind the scenes. In 2013 IEEE International Con-
ference on Software Maintenance, pages 170-179. IEEE, 2013.

Seokjun Lee, Minyoung Go, Rhan Ha, and Hojung Cha. Provisioning of
energy consumption information for mobile ads. Pervasive and Mobile
Computing, 53:49-61, 2019.

Ding Li and William G. J. Halfond. Optimizing energy of http requests in
android applications. In Proceedings of the 3rd International Workshop on
Software Development Lifecycle for Mobile - DeMobile 2015, pages 25-28.
ACM Press, 2015.

Ding Li and William GJ Halfond. An investigation into energy-saving pro-
gramming practices for android smartphone app development. In Proceed-
ings of the 3rd International Workshop on Green and Sustainable Software,
pages 46-53, 2014.

Ding Li, Yingjun Lyu, Jiaping Gui, and William G. J. Halfond. Automated
energy optimization of http requests for mobile applications. In Proceed-
ings of the 38th International Conference on Software Engineering - ICSE
’16, pages 249-260. ACM Press, 2016.

Li Li, Tegawende F. Bissyande, and Jacques Klein. Rebooting research
on detecting repackaged android apps: Literature review and benchmark.
IEEE Transactions on Software Engineering, pages 1-1, 2 2019.

Li Li, Tegawendé F Bissyandé, Hao- Yu Wang, and Jacques Klein. On iden-
tifying and explaining similarities in android apps. Journal of Computer
Science and Technology, 34(2):437-455, 2019.

Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Le Traon. Static
analysis of android apps: A systematic literature review. Information and
Software Technology, 88:67-95, 8 2017.

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining energy-
greedy api usage patterns in android apps: An empirical study. In Pro-
ceedings of the 11th Working Conference on Mining Software Reposito-

143



[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

ries, MSR 2014, page 2-11, New York, NY, USA, 2014. Association for
Computing Machinery.

Mario Linares-vasquez, Gabriele Bavota, Carlos Bernal-cardenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Optimizing En-
ergy Consumption of GUIs in Android Apps : A Multi-objective Approach.
FSE’15 Proceeding of the 10th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2015), pages 143-154, 2015.

Mario Linares-Vasquez, Andrew Holtzhauer, Carlos Bernal-Cérdenas, and
Denys Poshyvanyk. Revisiting android reuse studies in the context of code
obfuscation and library usages. pages 242-251. ACM Press, 2014.

Tomi Lamsd. Comparison of GUI testing tools for Android applications.
PhD thesis, 2017.

Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: Fast and
accurate detection of third-party libraries in android apps. pages 653-656.
ACM Press, 5 2016.

Javier Mancebo, Félix Garcia, and Coral Calero. A process for analysing
the energy efficiency of software. Information and Software Technology,
134:106560, 2021.

Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jas-
pan, Caitlin Sadowski, Lori Pollock, and James Clause. An empirical
study of practitioners’ perspectives on green software engineering. In
2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 237-248. IEEE, 2016.

William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Har-
man. A survey of app store analysis for software engineering. IEEE trans-
actions on software engineering, 43(9):817-847, 2016.

Alejandro Mazuera-Rozo, Jairo Bautista-Mora, Mario Linares-Vasquez,
Sandra Rueda, and Gabriele Bavota. The android os stack and its vulnera-
bilities: an empirical study. Empirical Software Engineering, 24(4):2056—
2101, 2019.

Tom Mens and Tom Tourwé. A survey of software refactoring. [EEE
TRANSACTIONS ON SOFTWARE ENGINEERING, 2004.

Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas
Zeller. Mining trends of library usage. pages 57-61, 2009.

Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. Mining
api popularity. volume 6303 LNCS, pages 173-180, 2010.

144



[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Rodrigo Morales, Ruben Saborido, Foutse Khomh, Francisco Chicano, and
Giuliano Antoniol. Earmo: An energy-aware refactoring approach for mo-
bile apps. IEEE Trans. Softw. Eng., 44(12):1176 — 1206, 2018.

Irineu Moura, Gustavo Pinto, Felipe Ebert, and Fernando Castor. Mining
energy-aware commits. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pages 56—67. IEEE, 2015.

S. Murugesan and G. R. Gangadharan. Green Cloud Computing and Envi-
ronmental Sustainability, pages 315-339. 2012.

San Murugesan and GR Gangadharan. Green it: an overview. 2012.

Joseph Yisa Ndagi and John K. Alhassan. Machine learning classification
algorithms for adware in android devices: A comparative evaluation and
analysis. pages 1-6. IEEE, 12 2019.

Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di
Penta. Crossrec: Supporting software developers by recommending third-
party libraries. Journal of Systems and Software, 161:110460, 2020.

A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. A preliminary
study of the impact of software engineering on greenit. pages 21-27, 2012.
cited By 56.

Hiroki Ogawa, Eiji Takimoto, Koichi Mouri, and Shoichi Saito. User-side
updating of third-party libraries for android applications. In 2018 Sixth In-
ternational Symposium on Computing and Networking Workshops (CAN-
DARW), pages 452—458. IEEE, 2018.

Steffen Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The
evolution and impact of code smells: A case study of two open source
systems. pages 390-400. IEEE, 10 2009.

W. Oliveira, R. Oliveira, and F. Castor. A study on the energy consumption
of android app development approaches. In 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR), pages 42-52,
2017.

Wellington Oliveira, Renato Oliveira, and Fernando Castor. A study on
the energy consumption of android app development approaches. In 2017
IEEE/ACM 14th International Conference on Mining Software Reposito-
ries (MSR), pages 42-52. IEEE, 2017.

Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio,
Daniel M. German, and Katsuro Inoue. Search-based software library rec-
ommendation using multi-objective optimization. Information and Soft-
ware Technology, 83:55-75, 2017.

145



[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Shola Oyedeji, Ahmed Seffah, and Birgit Penzenstadler. A catalogue sup-
porting software sustainability design. Sustainability, 10(7):2296, 2018.

Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Claudio
Sant’ Anna. On the evaluation of code smells and detection tools. JSERD,
5(1):7, 12 2017.

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and
Andrea De Lucia. Lightweight detection of android-specific code smells:
The adoctor project. In 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER), pages 487—491.
IEEE, 2017.

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and
Andrea De Lucia. On the impact of code smells on the energy consumption
of mobile applications. Information and Software Technology, 105:43-55,
2019.

Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy
debugging on smartphones: A first look at energy bugs in mobile devices.
In Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, New York, NY, USA, 2011. Association for Computing Ma-
chinery.

Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Where is the energy spent
inside my app? fine grained energy accounting on smartphones with eprof.
In Proceedings of the 7th ACM european conference on Computer Systems,
pages 29-42, 2012.

Birgit Penzenstadler and Henning Femmer. A generic model for sustain-
ability with process- and product-specific instances. GIBSE 13, page 3-8,
New York, NY, USA, 2013. Association for Computing Machinery.

Birgit Penzenstadler, Ankita Raturi, Debra Richardson, Coral Calero, Hen-
ning Femmer, and Xavier Franch. Systematic mapping study on software
engineering for sustainability (se4s). In Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering,
EASE 14, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome Cunha,
Jodo Paulo Fernandes, and Jodo Saraiva. Energy efficiency across pro-
gramming languages: How do energy, time, and memory relate? In Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2017, page 256-267, New York, NY, USA,
2017. Association for Computing Machinery.

146



[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

K. Petersen, R. Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic
mapping studies in software engineering. In EASE, 2008.

Gustavo Pinto and Fernando Castor. Energy efficiency: A new concern for
application software developers. Commun. ACM, 60(12):68-75, November
2017.

Gustavo H. Pinto and Fernando Kamei. What programmers say about
refactoring tools? pages 33-36, New York, New York, USA, 2013. ACM
Press.

Ricardo Pérez-Castillo and Mario Piattini. Analyzing the harmful effect of
god class refactoring on power consumption. /EEE Software, 31(3):48-54,
52014.

Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers: Flow-
droid/iccta, amandroid, and droidsafe. pages 176-186, New York, New
York, USA, 2018. Association for Computing Machinery, Inc.

Kent Rasmussen, Alex Wilson, and Abram Hindle. Green mining: Energy
consumption of advertisement blocking methods. In Proceedings of the
3rd International Workshop on Green and Sustainable Software, GREENS
2014, page 38—45, New York, NY, USA, 2014. Association for Computing
Machinery.

Ghulam Rasool and Azhar Ali. Recovering android bad smells from

android applications. Arabian Journal for Science and Engineering,
45(4):3289-3315, 2020.

Reza Rawassizadeh. Mobile application benchmarking based on the re-
source usage monitoring. International Journal of Mobile Computing and
Multimedia Communications (IJMCMC), 1(4):64-75, 2009.

Jan Reimann and Martin Brylski. A tool-supported quality smell catalogue
for android developers. pages 14-15, 2014.

dos Jose Pereira Reis, Fernando Brito e Abreu, and Glauco de F. Carneiro.
Code smells incidence: Does it depend on the application domain? pages
172-177. IEEE, 9 2016.

Haris Ribic and Yu David Liu. Energy-efficient work-stealing language
runtimes. ACM SIGARCH Computer Architecture News, 42(1):513-528,
2014.

Gilson Rocha, Fernando Castor, and Gustavo Pinto. Comprehending en-
ergy behaviors of java i/o apis. In 2019 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), pages
1-12, 2019.

147



[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Ana Rodriguez, Mathias Longo, and Alejandro Zunino. Using bad smell-
driven code refactorings in mobile applications to reduce battery usage.
pages p.56-68, 2015.

Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative ap-
proach. Science of Computer Programming, 74(7):470-495, 5 20009.

Rui Rua, Marco Couto, and Jodo Saraiva. Greensource: A large-scale col-
lection of android code, tests and energy metrics. In Proceedings of the
16th International Conference on Mining Software Repositories, MSR °19,
page 176-180. IEEE Press, 2019.

C. Sahin, F. Cayci, .L.M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and
K. Winbladh. Initial explorations on design pattern energy usage. pages
55-61, 2012. cited By 73.

Cagri Sahin, Lori Pollock, and James Clause. How do code refactorings
affect energy usage? 8th ACM/IEEE International Symposium - ESEM
'14, pages 1-10, 2014.

Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina
Kula, Katsuro Inoue, and David Lo. Improving reusability of software
libraries through usage pattern mining. Journal of Systems and Software,
145:164-179, 2018.

Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, Andrea
De Lucia, and Filomena Ferrucci. Do developers update third-party li-
braries in mobile apps? In Proceedings of the 26th Conference on Program
Comprehension, pages 255-265, 2018.

Yuru Shao, Ruowen Wang, Xun Chen, Ahemd M. Azab, and Z. Morley
Mao. A lightweight framework for fine-grained lifecycle control of an-
droid applications. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys *19, New York, NY, USA, 2019. Association for Computing
Machinery.

Satwinder Singh and Sharanpreet Kaur. A systematic literature review:
Refactoring for disclosing code smells in object oriented software. Ain
Shams Engineering Journal, 3 2017.

Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, and
Lipo Wang. Detecting clones in android applications through analyzing
user interfaces. In 2015 IEEE 23rd international conference on program
comprehension, pages 163—173. IEEE, 2015.

n.d Square Inc. An http and http/2 client for android and java applications.
[Online; accessed 2017-12-30].

148



[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Nate Swanner. Users spend more money in apps as mobile web use de-
clines, 2018.

Anwar, Hina. Towards greener android application development. In 2020
IEEE/ACM 42nd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 170-173. IEEE, 2020.

Anwar, Hina, Berker Demirer, Dietmar Pfahl, and Satish Srirama. Should
energy consumption influence the choice of android third-party http li-
braries? In MOBILESoft '20: IEEE/ACM 7th International Conference
on Mobile Software Engineering and Systems, pages 87-97, 2020.

Anwar, Hina, Iffat Fatima, Dietmar Pfahl, and Usman Qamar. Tool Sup-
port for Green Android Development, pages 153—-182. Springer Interna-
tional Publishing, 2021.

Anwar, Hina and Dietmar Pfahl. Towards greener software engineering
using software analytics: A systematic mapping. In 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 157-166. IEEE, 2017.

Anwar, Hina, Dietmar Pfahl, and Satish Narayana Srirama. An investiga-
tion into the energy consumption of http post request methods for android
app development. In 13th International Conference on Software Technolo-
gies (ICSOFT 2018), pages 241-248, 2018.

Anwar, Hina, Dietmar Pfahl, and Satish N Srirama. Evaluating the impact
of code smell refactoring on the energy consumption of android applica-
tions. In 2019 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 82-86. IEEE, 2019.

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou.
Jdeodorant: Identification and removal of type-checking bad smells. pages
329-331. IEEE, 4 2008.

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou.
Ten years of jdeodorant: Lessons learned from the hunt for smells. IEEE,
2018.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massi-
miliano Di Penta, Andrea De Lucia, and Denys Poshyvanyk. When and
why your code starts to smell bad. volume 1, pages 403—414. IEEE Press,
2015.

Gias Uddin and Foutse Khomh. Automatic summarization of api reviews.
In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 159-170. IEEE, 2017.

149



[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

Roberto Verdecchia, René Aparicio Saez, Giuseppe Procaccianti, and Pa-
tricia Lago. Empirical evaluation of the energy impact of refactoring code
smells. pages 365-383, 2018.

D. Verloop. Code Smells in the Mobile Applications Domain. PhD thesis,
2013.

A. Vetro, L. Ardito, G. Procaccianti, and M. Morisio. Definition, imple-
mentation and validation of energy code smells: an exploratory study on
an embedded system. pages 34-39. ENERGY 2013-iaria, 2013.

Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of
google play. In The 2014 ACM international conference on Measurement
and modeling of computer systems, pages 221-233, 2014.

Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of
google play. SIGMETRICS Perform. Eval. Rev., 42(1):221-233, June 2014.

Haoyu Wang and Yao Guo. Understanding third-party libraries in mobile
app analysis. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering Companion (ICSE-C), pages 515-516. IEEE, 2017.

Haoyu Wang, Yuanchun Li, Yao Guo, Yuvraj Agarwal, and Jason I Hong.
Understanding the purpose of permission use in mobile apps. ACM Trans-
actions on Information Systems (TOIS), 35(4):1-40, 2017.

Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai Xu,
and Jason Hong. An explorative study of the mobile app ecosystem from
app developers’ perspective. In Proceedings of the 26th International Con-
ference on World Wide Web, pages 163-172, 2017.

Haoyu Wang, Zhe Liu, Yao Guo, Xiangqun Chen, Miao Zhang, Guoai Xu,
and Jason Hong. An explorative study of the mobile app ecosystem from
app developers’ perspective. WWW *17, page 163172, Republic and Can-
ton of Geneva, CHE, 2017. International World Wide Web Conferences
Steering Committee.

Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo,
Li Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. Beyond google play: A
large-scale comparative study of chinese android app markets. In Proceed-
ings of the Internet Measurement Conference 2018, pages 293-307, 2018.

Yimeng Wang, Yongbo Li, and Tian Lan. Capitalizing on the promise of ad
prefetching in real-world mobile systems. In 2017 IEEE 14th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 162—
170, 2017.

Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. Why

150



[175]

[176]

[177]

[178]

[179]

[180]

[181]

reinventing the wheels? an empirical study on library reuse and re-
implementation. Empirical Software Engineering, 25(1):755-789, 2020.

Aiko Yamashita and Steve Counsell. Code smells as system-level indicators
of maintainability: An empirical study. JSS, 86(10):2639-2653, 10 2013.

Aiko Yamashita and Leon Moonen. Do developers care about code smells?
an exploratory survey. pages 242-251. IEEE, 10 2013.

Tatsuhiko Yasumatsu, Takuya Watanabe, Fumihiro Kanei, Eitaro Shioji,
Mitsuaki Akiyama, and Tatsuya Mori. Understanding the responsiveness
of mobile app developers to software library updates. In Proceedings of
the Ninth ACM Conference on Data and Application Security and Privacy,
CODASPY ’19, page 13-24, New York, NY, USA, 2019. Association for
Computing Machinery.

Li Yuan. Detecting similar components between android applications with
obfuscation. In 2016 5th International Conference on Computer Science
and Network Technology (ICCSNT), pages 186—-190. IEEE, 2016.

Jiawei Zhan, Quan Zhou, Xiaozhuo Gu, Yuewu Wang, and Yingjiao Niu.
Splitting third-party libraries’ privileges from android apps. In Australasian
Conference on Information Security and Privacy, pages 80-94. Springer,
2017.

Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P.
Dick, Zhuoqing Morley Mao, and Lei Yang. Accurate online power es-
timation and automatic battery behavior based power model generation
for smartphones. In Proceedings of the Eighth IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES/ISSS 10, page 105-114, New York, NY, USA, 2010. Association
for Computing Machinery.

Yaocheng Zhang, Wei Ren, Tianqing Zhu, and Yi Ren. Saas: A situational
awareness and analysis system for massive android malware detection. Fu-
ture Generation Computer Systems, 95:548-559, 2019.

151



Appendix A. STATISTICS AND PAIRWISE
COMPARISON RESULTS FOR SELECTED
THIRD-PARTY HTTP LIBRARIES

Additional Material- Chapter 5

A.1. Statistics for Selected Third-party HTTP Libraries

In table A.1 quality ranking provided by ‘Awesome Android’ website is done by a
third party that measure the structural quality with focus on maintainability, Each
project is compared to other projects of equal size, language and ranking is given
based on the ratio of highly unmaintainable code to the total size of the project.

In Table A.2 the percentage of apps means that a particular library is present in
most of the apps while percentage of installs indicates the presence of library in
most installs on actual Android devices. These statistics are crowd sourced i.e. the
more popular the app the more coverage it has in terms of the libraries it is using.
For less popular apps the libraries might not be detected. But these statistics can
be considered relevant as large number of downloads are generated by relatively
small number of apps.

Table A.1: Statistics for selected libraries gathered from Awesome Android
website (Oct. 2019)

ID. ‘ Library ‘ Stars ‘ Watchers ‘ Forks ‘ Quality* ‘ Launched
) Volley 2.5k 140 611 L4 2017
re Retrofit 33k 1.6k 6.3k L1 2010
ok OkHttp 34k 1.7k 7.6k L2 2012
async- h | Androidasynchttp | 10.5k 810 4.3k L4 2011
async Androidasync 6.4k 418 1.4k L3 2012
pic Picasso 17.1k 937 4k L2 2013
uil UIL 16.6k 1.4k 6.4k L3 2011
gli Glide 27.4k 1.1k 5k L5 2013

*Quality levels used on Awesome Android website (calculated by a third party, Luminous). L1=
initial stage of development, highly unmaintainable. L2= not initial stage but still require refactoring
to improve low quality. L3=medium structural quality. L4=good structural quality, maintenance
cost under control. L5= fine-tuned and optimized structural quality.

152



Table A.2: Statistics for selected libraries gathered from the ‘AppBrain’ website.
(Oct. 2019)

ID. Library ‘AppBrain’ Statistics for | ‘AppBrain’ Statistics for | ‘AppBrain’ Statistics over-
overall apps in the Google | Top 500 apps in the Google | all
Play Store Play Store
% of apps % of installs % of apps % of installs | Tags # of apps
using the lib  on devices using the lib | on devices using the lib
Vo Volley 7.61% 14.89% 17% 12.82% Network, >62K
Image
Loader
re Retrofit 11.87% 20.37% 55.60% 28.78% Network >97K
ok OkHttp 4.63% 6.86% 7.40% 8.16% Network >38K
async- h | Androidasynchttp | 2.70% 2.87% 4% 0.66% Network™® >22k
async Androidasync 0.88% 0.48% 0.80% 0.18% Network >TK
pic Picasso 16.51% 16.80% 34% 20.44% Image >135K
Loader
uil UIL 4.30% 3.28% 2.40% 0.78% Image >35K
Loader
gli Glide 16.16% 29.25% 31% 27.75% Image >132K
Loader

*only ‘network’ tag is assigned to the androidasynchttp library on ‘AppBrain’ website, however,
we identified that it also performs image loading tasks.

A.2. Features and Methods of Selected Third-party HTTP
Libraries

Besides basic HTTP methods like GET and POST the third-party HTTP libraries
also offer additional benefits like caching system, parallel request, support for
HTTP/2, etc. Some HTTP libraries are for specific tasks like image loading.

Table A.3: HTTP request methods

HTTP method Description Request Resp Safe | Idempotent | Cacheabl
has Body has Body
GET Only retrieve data and should have no | Optional Yes Yes Yes Yes
other effect
HEAD GET request, but without the response | Optional No Yes Yes Yes
body. This is useful for retrieving meta
, information written in response head-
ers, without having to transport the entire
content.
POST Requests that the server accept the entity | Yes Yes No No Yes
enclosed in the request as a new entry
PUT Already existing resource is modified Yes Yes No Yes No
DELETE Deletes the specified resource Optional Yes No Yes No
CONNECT Converts the request connection to a | Optional Yes No No No
transparent TCP/IP tunnel, usually to fa-
cilitate SSL , encrypted communication
(HTTPS) through an unencrypted HTTP
proxy
OPTIONS Returns the HTTP methods that the | Optional Yes Yes Yes No
server supports for the specified URL
TRACE Echoes the received request so that a | No Yes Yes Yes No
client can see what (if any) changes or
additions have been made by intermedi-
ate servers
PATCH Applies partial modifications to a re- | Yes Yes No No No
source

153



Table A.4: Features in selected network third-party libraries

‘OkHttp Retrofit ‘Volley ‘Androidasynchttp Androidasync

Cancel requests

Async Requests

POST Request

Delete Request

GET Request

Multiple Request
Multipart uploads
Connection pooling
Caching of responses
Retry policy

Load and transform images
JSON

SPDY, HTTP/2 support
Handle redirects

Gzip response decoding

S SN

(NENERANENENANRN
(N NENENEEENA NN

AN

(NENANENENASA YRS NEERNANAN

ANRNEEANRNA NN NANEEANERANRNE
|

SN SNSN N
[N

Table A.5: Features in selected image loading third-party libraries

‘ Picasso ‘ Universal image loader(UIL) ‘ Glide

Async

GET Request
Disk Caching
Load image
Video stills - -
Animated GIFs - -
Displaying image v v
Image cropping v v

ANRNANENANENASNAY

A.3. Results of Pairwise Comparison for the Mean Ranks of
Energy by Library in Each Use-case

In the following tables observed differences > critical differences indicate signifi-
cance at the p < 0.05 level. Significantly different pairs of libraries are highlighted
in blue color.

Table A.6: Pairwise comparisons for the mean ranks of energy by library (UC-GF)

Comparison Observed Difference | Critical Difference
re , ok 3.00 18.30
vo , async-h 4.00 18.30
ok , async 13.50 18.30
re , async-h 16.50 18.30
re , async 16.50 18.30
ok , async-h 19.50 18.30
Vo , 1€ 20.50 18.30

154



Vo, ok 23.50 18.30
async-h , async 33.00 18.30
VO , async 37.00 18.30

Table A.7: Pairwise comparisons for the mean ranks of energy by library (UC-
PF)

Comparison ‘ Observed Difference \ Critical Difference

ok , async-h 2.80 18.30
re , async 6.80 18.30
ok , async 8.20 18.30
async-h , async 11.00 18.30
re , ok 15.00 18.30
vo , async-h 17.10 18.30
re , async-h 17.80 18.30
vo , ok 19.90 18.30
Vo , async 28.10 18.30
VO , Ie 34.90 18.30

Table A.8: Pairwise comparisons for the mean ranks of energy by library (UC-
PJO)

Comparison ‘ Observed Difference | Critical Difference
ok(M) , async(G) 1.80 66.98
async(QG) , async(M) 2.00 66.98
re(M) , ok(G) 2.20 66.98
async-h(J) , async(J) 3.40 66.98
ok(J) , async-h(G) 3.50 66.98
async-h(G) , async-h(M) 3.60 66.98
ok(M) , async(M) 3.80 66.98
vo(M) , vo(J) 6.58 68.82
ok(J) , async-h(M) 7.10 66.98
vo(G) , vo(J) 8.22 68.82
ok(M) , async-h(M) 8.80 66.98
vo(G) , re(J) 9.44 68.82
re(J) , async-h(J) 9.66 68.82
async-h(M) , async(G) 10.60 66.98
ok(M) , async-h(G) 12.40 66.98
async-h(M) , async(M) 12.60 66.98
re(J) , async(J) 13.06 68.82
re(G) , re(M) 13.10 66.98

155



async-h(G) , async(G) 14.20 66.98
vo(G) , vo(M) 14.80 66.98
re(G) , ok(G) 15.30 66.98
ok(M) , ok(J) 15.90 66.98
async-h(G) , async(M) 16.20 66.98
vo(J) , re(J) 17.67 70.60
ok(J) , async(G) 17.70 66.98
vo(G) , async-h(J) 19.10 66.98
0ok(G) , async(M) 19.10 66.98
ok(J) , async(M) 19.70 66.98
ok(G) , async(G) 21.10 66.98
re(M) , async(M) 21.30 66.98
vo(G) , async(J) 22.50 66.98
ok(G) , ok(M) 22.90 66.98
re(M) , async(G) 23.30 66.98
vo(M) , re(J) 24.24 68.82
re(M) , ok(M) 25.10 66.98
ok(J) , async(J) 25.60 66.98
vo(J) , async-h(J) 27.32 68.82
ok(J) , async-h(J) 29.00 66.98
async-h(G) , async(J) 29.10 66.98
vo(J) , async(J) 30.72 68.82
ok(G) , async-h(M) 31.70 66.98
async-h(G) , async-h(J) 32.50 66.98
async-h(M) , async(J) 32.70 66.98
vo(M) , async-h(J) 33.90 66.98
re(M) , async-h(M) 33.90 66.98
re(G) , async(M) 34.40 66.98
0ok(G) , async-h(G) 35.30 66.98
async-h(M) , async-h(J) 36.10 66.98
re(G) , async(G) 36.40 66.98
vo(M) , async(J) 37.30 66.98
re(M) , async-h(G) 37.50 66.98
re(G) , ok(M) 38.20 66.98
re(J) , ok(J) 38.66 68.82
ok(G) , ok(J) 38.80 66.98
re(M) , ok(J) 41.00 66.98
ok(M) , async(J) 41.50 66.98
re(J) , async-h(G) 42.16 68.82
async(G) , async(J) 43.30 66.98

156



ok(M) , async-h(J) 44.90 66.98
async(M) , async(J) 45.30 66.98
re(J) , async-h(M) 45.76 68.82
async-h(J) , async(G) 46.70 66.98
re(G) , async-h(M) 47.00 66.98
vo(G) , ok(J) 48.10 66.98
async-h(J) , async(M) 48.70 66.98
re(G) , async-h(G) 50.60 66.98
vo(G) , async-h(G) 51.60 66.98
re(G) , ok(J) 54.10 66.98
re(J) , ok(M) 54.56 68.82
vo(G) , async-h(M) 55.20 66.98
vo(J) , ok(J) 56.32 68.82
re(J) , async(G) 56.36 68.82
re(J) , async(M) 58.36 68.82
vo(J) , async-h(G) 59.82 68.82
vo(M) , ok(J) 62.90 66.98
vo(J) , async-h(M) 63.42 68.82
vo(G) , ok(M) 64.00 66.98
ok(G) , async(J) 64.40 66.98
vo(G) , async(G) 65.80 66.98
vo(M) , async-h(G) 66.40 66.98
re(M) , async(J) 66.60 66.98
vo(G) , async(M) 67.80 66.98
ok(G) , async-h(J) 67.80 66.98
vo(M) , async-h(M) 70.00 66.98
re(M) , async-h(J) 70.00 66.98
vo(J) , ok(M) 72.22 68.82
vo(J) , async(G) 74.02 68.82
vo(J) , async(M) 76.02 68.82
re(J) , ok(G) 77.46 68.82
vo(M) , ok(M) 78.80 66.98
re(M) , re(J) 79.66 68.82
re(G) , async(J) 79.70 66.98
vo(M) , async(G) 80.60 66.98
vo(M) , async(M) 82.60 66.98
re(G) , async-h(J) 83.10 66.98
vo(G) , ok(G) 86.90 66.98
vo(G) , re(M) 89.10 66.98
re(G) , re(J) 92.76 68.82

157



vo(J) , ok(G) 95.12 63.82
vo(J) , re(M) 97.32 63.82
vo(M) , ok(G) 101.70 66.98
vo(G) , re(G) 102.20 66.98
vo(M) , re(M) 103.90 66.98
vo(J) , re(G) 110.42 63.82
vo(M) , re(G) 117.00 66.98

Table A.9: Pairwise comparisons for the mean ranks of energy by library (UC-
GJO)

Comparison ‘ Observed Difference ‘ Critical Difference
async(M) , async-h(J) 0.50 67.43
re(G) , vo(G) 5.10 67.43
ok(M) , re(M) 5.70 67.43
vo(M) , re(M) 6.70 67.43
re(J) , ok(J) 7.10 67.43
async-h(G) , async-h(M) 9.48 65.88
async(G) , async(M) 9.63 69.28
re(J) , vo(J) 9.90 67.43
async(QG) , async-h(J) 10.13 69.28
ok(G) , vo(J) 10.34 69.28
re(G) , ok(M) 11.10 67.43
ok(M) , vo(M) 12.40 67.43
vo(G) , ok(G) 12.46 69.28
async(G) , async(J) 13.17 69.28
async-h(G) , async-h(J) 16.02 65.88
vo(G) , ok(M) 16.20 67.43
async-h(G) , async(M) 16.52 65.88
re(G) , re(M) 16.80 67.43
vo(M) , async(J) 17.00 67.43
vo(J) , ok(J) 17.00 67.43
re(G) , ok(G) 17.56 69.28
ok(G) , re(J) 20.24 69.28
vo(G) , re(M) 21.90 67.43
vo(G) , vo(J) 22.80 67.43
async(M) , async(J) 22.80 67.43
async-h(J) , async(J) 23.30 67.43
re(G) , voM) 23.50 67.43
re(M) , async(J) 23.70 67.43

158



async-h(M) , async-h(J) 25.50 67.43
async(M) , async-h(M) 26.00 67.43
async-h(G) , async(G) 26.15 67.77
ok(G) , ok(J) 27.34 69.28
re(G) , vo(J) 27.90 67.43
vo(G) , vo(M) 28.60 67.43
ok(G) , ok(M) 28.66 69.28
ok(M) , async(J) 29.40 67.43
async(G) , voM) 30.17 69.28
vo(G) , re(J) 32.70 67.43
ok(G) , re(M) 34.36 69.28
async(QG) , async-h(M) 35.63 69.28
async(QG) , re(M) 36.87 69.28
re(G) , re(J) 37.80 67.43
ok(M) , vo(J) 39.00 67.43
async-h(G) , async(J) 39.32 65.88
vo(G) , ok(J) 39.80 67.43
async(M) , vo(M) 39.80 67.43
vo(M) , async-h(J) 40.30 67.43
re(G) , async(J) 40.50 67.43
ok(G) , vo(M) 41.06 69.28
async(G) , ok(M) 42.57 69.28
re(M) , vo(J) 44.70 67.43
re(G) , ok(J) 44.90 67.43
vo(G) , async(J) 45.60 67.43
async(M) , re(M) 46.50 67.43
re(M) , async-h(J) 47.00 67.43
async-h(M) , async(J) 48.80 67.43
ok(M) , re(J) 48.90 67.43
vo(M) , vo(J) 51.40 67.43
async(M) , ok(M) 52.20 67.43
ok(M) , async-h(J) 52.70 67.43
re(G) , async(G) 53.67 69.28
re(M) , re(J) 54.60 67.43
ok(M) , ok(J) 56.00 67.43
async-h(G) , vo(M) 56.32 65.88
ok(G) , async(J) 58.06 69.28
vo(G) , async(G) 58.77 69.28
vo(M) , re(J) 61.30 67.43
re(M) , ok(J) 61.70 67.43

159



async-h(G) , re(M) 63.02 65.88
re(G) , async(M) 63.30 67.43
re(G) , async-h(J) 63.80 67.43
async-h(M) , vo(M) 65.80 67.43
vo(G) , async(M) 68.40 67.43
vo(M) , ok(J) 68.40 67.43
vo(J) , async(J) 68.40 67.43
async-h(G) , ok(M) 68.72 65.88
vo(G) , async-h(J) 68.90 67.43
ok(G) , async(G) 71.22 71.08
async-h(M) , re(M) 72.50 67.43
async-h(M) , ok(M) 78.20 67.43
re(J) , async(J) 78.30 67.43
re(G) , async-h(G) 79.82 65.88
ok(G) , async(M) 80.86 69.28
ok(G) , async-h(J) 81.36 69.28
async(G) , vo(J) 81.57 69.28
vo(G) , async-h(G) 84.92 65.88
ok(J) , async(J) 85.40 67.43
re(G) , async-h(M) 89.30 67.43
async(M) , vo(J) 91.20 67.43
async(G) , re(J) 91.47 69.28
vo(J) , async-h(J) 91.70 67.43
vo(G) , async-h(M) 94.40 67.43
ok(G) , async-h(G) 97.37 67.77
async(G) , ok(J) 98.57 69.28
async(M) , re(J) 101.10 67.43
re(J) , async-h(J) 101.60 67.43
ok(G) , async-h(M) 106.86 69.28
async-h(G) , vo(J) 107.72 65.88
async(M) , ok(J) 108.20 67.43
ok(J) , async-h(J) 108.70 67.43
async-h(M) , vo(J) 117.20 67.43
async-h(G) , re(J) 117.62 65.88
async-h(G) , ok(J) 124.72 65.88
async-h(M) , re(J) 127.10 67.43
async-h(M) , ok(J) 134.20 67.43

160



Table A.10: Pairwise comparisons for the mean ranks of energy by library (UC-
GD

Comparison | Observed Difference | Critical Difference

pic, gli 2.10 18.30
vo , async-h 4.40 18.30
uil , pic 10.50 18.30
uil , gli 12.60 18.30
async-h, gli 17.90 18.30
async-h , pic 20.00 18.30
vo, gli 22.30 18.30
Vo , pic 24.40 18.30
async-h , uil 30.50 18.30
vo , uil 34.90 18.30

161



Appendix B. LIST OF SELECTED PUBLICATIONS,

ENERGY BUGS, AND CODE SMELLS
Additional Material- Chapter 6

B.1. List of Selected Publications

Study
ID

Reference

P1

Wu, H., Yang, S., & Rountev, A. (2016). Static detection of energy defect
patterns in Android applications. In Proceedings of the 25th International
Conference on Compiler Construction - CC 2016 (pp.185-195). New York,
New York, USA: ACM Press. https://doi.org/10.1145/2892208.2892218

P2

Cai, H., Zhang, Y., Jin, Z., Liu, X., & Huang, G. (2015). Delay-
Droid: Reducing Tail-Time Energy by Refactoring Android Apps. In
Proceedings of the 7th Asia-Pacific Symposium on Internetware - Inter-
netware ‘15 (pp. 1-10). New York, New York, USA: ACM Press.
https://doi.org/10.1145/2875913.2875915

P3

Kim, C. H. P, Kroening, D., & Kwiatkowska, M. (2016). Static Program
Analysis for Identifying Energy Bugs in Graphics-Intensive Mobile Apps.
In 2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS) (pp.
115-124). IEEE. https://doi.org/10.1109/MASCOTS.2016.28

P4

Palomba, F., Nucci, D. Di, Panichella, A., Zaidman, A., & De Lucia, A.
(2017). Lightweight Detection of Android-specific Code Smells: the aDoc-
tor Project. in 2017 IEEE 24th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), Feb 2017, pp. 487-491.

P5

Xu, Z., Wen, C., & Qin, S. (2018). State-taint analysis for detect-
ing resource bugs. Science of Computer Programming, 162, 93-109.
https://doi.org/10.1016/j.scico.2017.06.010

P6

Westfield, B., & Gopalan, A. (2016). Orka: A new technique
to profile the energy usage of android applications. In SMART-
GREENS 2016 - Proceedings of the 5th International Conference on
Smart Cities and Green ICT Systems (pp. 213-224).  SciTePress.
https://doi.org/10.5220/0005812202130224

P7

Hecht, G., Rouvoy, R., Moha, N., & Duchien, L. (2015). Detecting
Antipatterns in Android Apps. In Proceedings - 2nd ACM International
Conference on Mobile Software Engineering and Systems, MOBILESoft
2015 (pp. 148-149). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/MobileSoft.2015.38

P8

Liang, G., Wang, J., Li, S., & Chang, R. (2014). PatBugs: A Pattern-
Based Bug Detector for Cross-platform Mobile Applications. In 2014
IEEE International Conference on Mobile Services (pp. 84-91). IEEE.
https://doi.org/10.1109/MobServ.2014.21

162



P9

Jiang, H., Yang, H., Qin, S., Su, Z., Zhang, J., & Yan, J. (2017). Detect-
ing Energy Bugs in Android Apps Using Static Analysis. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) (Vol. 10610 LNCS, pp. 192—
208). Springer Verlag. https://doi.org/10.1007/978-3-319-68690-5_12

P10

Carette, A., Younes, M. A. A., Hecht, G., Moha, N., & Rou-
voy, R. (2017). Investigating the energy impact of Android smells.
In 2017 IEEE 24th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER) (pp. 115-126). IEEE.
https://doi.org/10.1109/SANER.2017.7884614

P11

Lin, Y., Okur, S., & Dig, D. (2015). Study and Refactoring of Android Asyn-
chronous Programming (T). In 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE) (pp. 224-235). IEEE.
https://doi.org/10.1109/ASE.2015.50

P12

Barde, K., Kulkarni, J., Bloch, S., Luo, C., Hanumaiah, V., Kim, E., &
Patel, H. (2015). SEPIA: A framework for optimizing energy consump-
tion in Android devices. In 2015 12th Annual IEEE Consumer Com-
munications and Networking Conference (CCNC) (pp. 562-569). IEEE.
https://doi.org/10.1109/CCNC.2015.7158035

P13

Kwon, Y., Lee, S., Yi, H., Kwon, D., Yang, S., Chun, B., Paek,
Y. (2015). Mantis:  Efficient Predictions of Execution Time, En-
ergy Usage, Memory Usage and Network Usage on Smart Mobile De-
vices. IEEE Transactions on Mobile Computing, 14(10), 2059-2072.
https://doi.org/10.1109/TMC.2014.2374153

P14

Chen, X., & Zong, Z. (2016). Android App Energy Efficiency: The
Impact of Language, Runtime, Compiler, and Implementation. In
2016 IEEE International Conferences on Big Data and Cloud Comput-
ing (BDCloud), Social Computing and Networking (SocialCom), Sustain-
able Computing and Communications (SustainCom) (BDCloud-Social Com-
SustainCom) (pp. 485-492). IEEE. https://doi.org/10.1109/BDCloud-
Social Com-SustainCom.2016.77

P15

Morales, R., Saborido, R., Khomh, F., Chicano, F., & Antoniol,
G. (2018). EARMO: An Energy-Aware Refactoring Approach for
Mobile Apps. IEEE Trans. Softw. Eng., 44(1), 1176-1206.
https://doi.org/10.1109/TSE.2017.2757486

P16

Wang, C., Guo, Y., Shen, P, & Chen, X. (2017). E-Spector: Online energy
inspection for Android applications. In 2017 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED) (pp. 1-6). IEEE.
https://doi.org/10.1109/ISLPED.2017.8009207

P17

Yepang Liu, Chang Xu, Cheung, S. C., & Jian Lu. (2014). Green-
Droid: Automated Diagnosis of Energy Inefficiency for Smartphone Ap-
plications. IEEE Transactions on Software Engineering, 40(9), 911-940.
https://doi.org/10.1109/TSE.2014.2323982

P18

Banerjee, A., Chong, L. K., Ballabriga, C., & Roychoudhury, A. (2018).
EnergyPatch: Repairing Resource Leaks to Improve Energy-Efficiency of
Android Apps. IEEE Transactions on Software Engineering, 44(5), 470-
490. https://doi.org/10.1109/TSE.2017.2689012

163



P19

Couto, M., Car¢do, T., Cunha, J., Fernandes, J. P., & Saraiva, J. (2014). De-
tecting anomalous energy consumption in android applications. In Brazilian
Symposium on Programming Languages (Vol. 8771 LNCS, pp. 77-91).
Springer Verlag. https://doi.org/10.1007/978-3-319-11863-5_6

P20

Fischer, L. M., Brisolara, L. B. de, & Mattos, J. C. B. de. (2015).
SEMA: An Approach Based on Internal Measurement to Evaluate En-
ergy Efficiency of Android Applications. In 2015 Brazilian Sympo-
sium on Computing Systems Engineering (SBESC) (pp. 48-53). IEEE.
https://doi.org/10.1109/SBESC.2015.16

P21

Nguyen, M. D., Huynh, T. Q., & Nguyen, T. H. (2016). Improve the perfor-
mance of mobile applications based on code optimization techniques using
PMD and android lint. In International Symposium on Integrated Uncer-
tainty in Knowledge Modelling and Decision Making, [IUKM 2016. Lecture
Notes in Computer Science (Vol. 9978 LNAI pp. 343-356). Springer Ver-
lag. https://doi.org/10.1007/978-3-319-49046-5_29

P22

M. Couto, J. Saraiva and J. P. Fernandes, Energy Refactorings for Android
in the Large and in the Wild, 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), London, ON,
Canada, 2020, pp. 217-228, doi: 10.1109/SANER48275.2020.9054858.

P23

Wei Song, Jing Zhang, and Jeff Huang. 2019. ServDroid: detecting service
usage inefficiencies in Android applications. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 362-
373, doi:https://doi.org/10.1145/3338906.3338950

P24

Cruz, Luis & Abreu, Rui. (2018). Using Automatic Refactoring to Improve
Energy Efficiency of Android Apps.

P25

M. Sun and G. Tan, ‘NativeGuard: Protecting android applications from
third-party native libraries’, in WiSec 2014 - Proceedings of the 7th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, New
York, NY, USA, 2014, pp. 165-176, doi: 10.1145/2627393.2627396.

P26

W. Hu, D. Octeau, P. D. McDaniel, and P. Liu, ‘Duet’, in Proceedings of
the 2014 ACM conference on Security and privacy in wireless & mobile
networks - WiSec *14, New York, New York, USA, 2014, pp. 141-152, doi:
10.1145/2627393.2627404.

P27

A. Narayanan, L. Chen, and C. K. Chan, ‘AdDetect: Automated detec-
tion of Android ad libraries using semantic analysis’, in 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks and In-
formation Processing (ISSNIP), Apr. 2014, pp. 1-6, doi: 10.1109/ISS-
NIP.2014.6827639.

P28

B. Liu, B. Liu, H. Jin, and R. Govindan, ‘Efficient privilege de-escalation
for ad libraries in mobile apps’, in MobiSys 2015 - Proceedings of the
13th Annual International Conference on Mobile Systems, Applications,
and Services, New York, New York, USA, May 2015, pp. 89-103, doi:
10.1145/2742647.2742668.

164



P29

J. Crussell, C. Gibler, and H. Chen, ‘AnDarwin: Scalable Detection of
Android Application Clones Based on Semantics’, IEEE Transactions on
Mobile Computing, vol. 14, no. 10, pp. 2007-2019, Oct. 2015, doi:
10.1109/TMC.2014.2381212.

P30

M. Backes, S. Bugiel, and E. Derr, ‘Reliable third-party library de-
tection in Android and its security applications’, in Proceedings of the
ACM Conference on Computer and Communications Security, New York,
New York, USA, Oct. 2016, vol. 24-28-Octo, pp. 356-367, doi:
10.1145/2976749.2978333.

P31

B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, ‘Statistical deobfusca-
tion of Android applications’, in Proceedings of the ACM Conference on
Computer and Communications Security, New York, NY, USA, 2016, vol.
24-28-Octo, pp. 343-355, doi: 10.1145/2976749.2978422.

P32

C. Soh, H. B. Kuan Tan, Y. L. Arnatovich, A. Narayanan, and L. Wang,
‘LibSift: Automated Detection of Third-Party Libraries in Android Ap-
plications’, in 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC), 2016, vol. 0, pp. 41-48, doi: 10.1109/APSEC.2016.017.

P33

Z. Ma, H. Wang, Y. Guo, and X. Chen, ‘LibRadar: Fast and accurate de-
tection of third-party libraries in Android apps’, in Proceedings - Interna-
tional Conference on Software Engineering, May 2016, pp. 653-656, doi:
10.1145/2889160.2889178.

P34

F. Wang, Y. Zhang, K. Wang, P. Liu, and W. Wang, ‘Stay in Your Cage! A
Sound Sandbox for Third-Party Libraries on Android’, in Computer Security
— ESORICS 2016, I. Askoxylakis, S. Ioannidis, S. Katsikas, and C. Mead-
ows, Eds. Cham: Springer International Publishing, 2016, pp. 458-476.

P35

H. Yu, X. Xia, X. Zhao, and W. Qiu, ‘Combining collaborative filtering and
topic modeling for more accurate android mobile app library recommenda-
tion’, in ACM International Conference Proceeding Series, New York, New
York, USA, 2017, vol. Part F1309, pp. 1-6, doi: 10.1145/3131704.3131721.

P36

J. Zhan, Q. Zhou, X. Gu, Y. Wang, and Y. Niu, ‘Splitting Third-Party Li-
braries’ Privileges from Android Apps’, in Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), vol. 10343 LNCS, Springer Verlag, 2017, pp.
80-94.

P37

M. Li et al,, ‘LibD: Scalable and Precise Third-Party Library Detec-
tion in Android Markets’, in 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE), May 2017, pp. 335-346, doi:
10.1109/ICSE.2017.38.

P38

J. Fu, Y. Zhou, H. Liu, Y. Kang, and X. Wang, ‘Perman: Fine-Grained Per-
mission Management for Android Applications’, in 2017 IEEE 28th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), Oct. 2017,
vol. 2017-Octob, pp. 250-259, doi: 10.1109/ISSRE.2017.38.

165



P39

J. Vronsky, R. Stevens, and H. Chen, ‘SurgeScan: Enforcing security
policies on untrusted third-party Android libraries’, in 2017 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted Com-
puted, Scalable Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2017, pp. 1-8, doi:
10.1109/UIC-ATC.2017.8397610.

P40

D. Titze, M. Lux, and J. Schuette, ‘Ordol: Obfuscation-Resilient Detec-
tion of Libraries in Android Applications’, in 2017 IEEE Trustcom/Big-
DataSE/ICESS, Aug. 2017, pp. 618-625, doi: 10.1109/Trustcom/Big-
DataSE/ICESS.2017.292.

P41

Y. Zhang et al., ‘Detecting third-party libraries in Android applications with
high precision and recall’, in 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Mar. 2018, vol.
2018-March, pp. 141-152, doi: 10.1109/SANER.2018.8330204.

P42

Y. Wang, H. Wu, H. Zhang, and A. Rountev, ‘ORLIS: Obfuscation-Resilient
Library Detection for Android’, in Proceedings of the 5th International Con-
ference on Mobile Software Engineering and Systems, New York, NY, USA,
2018, pp. 13-23, doi: 10.1145/3197231.3197248.

P43

X. Zhu, J. Li, Y. Zhou, and J. Ma, ‘AdCapsule: Practical Confinement
of Advertisements in Android Applications’, IEEE Transactions on De-
pendable and Secure Computing, vol. 17, no. 3, pp. 1-1, 2018, doi:
10.1109/TDSC.2018.2814999.

P44

Z. Tang et al., ‘Securing android applications via edge assistant third-party
library detection’, Computers and Security, vol. 80, pp. 257-272, Jan. 2019,
doi: 10.1016/j.cose.2018.07.024.

P45

B. Li, Y. Zhang, J. Li, R. Feng, and D. Gu, ‘APPCOMMUNE: Au-
tomated Third-Party Libraries De-duplicating and Updating for Android
Apps’, in 2019 IEEE 26th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), Feb. 2019, pp. 344-354, doi:
10.1109/SANER.2019.86680009.

P46

M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis, and J. Po-
lakis, ‘Reaper: Real-time app analysis for augmenting the android permis-
sion system’, in CODASPY 2019 - Proceedings of the 9th ACM Conference
on Data and Application Security and Privacy, New York, NY, USA, 2019,
pp. 3748, doi: 10.1145/3292006.3300027.

P47

Y. He, X. Yang, B. Hu, and W. Wang, ‘Dynamic privacy leakage analysis of
Android third-party libraries’, Journal of Information Security and Applica-
tions, vol. 46, pp. 259-270, 2019, doi: 10.1016/j.jisa.2019.03.014.

P48

J. Feichtner and C. Rabensteiner, ‘Obfuscation-resilient code recognition in
android apps’, New York, NY, USA, 2019, doi: 10.1145/3339252.3339260.

P49

A. K. Mondal, C. Roy, B. Roy, and K. A. Schneider, ‘Automatic Compo-
nents Separation of Obfuscated Android Applications: An Empirical Study
of Design Based Features’, in 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering Workshop (ASEW), Nov. 2019,
pp- 23-28, doi: 10.1109/ASEW.2019.00022.

166



P50 C. Chen, Z. Xing, and Y. Liu, ‘What’s Spain’s Paris? Mining analogical
libraries from Q&A discussions’, Empirical Software Engineering, vol. 24,
no. 3, pp. 1155-1194, Jun. 2019, doi: 10.1007/s10664-018-9657-y.

P51 Q. He, B. Li, F. Chen, J. Grundy, X. Xia, and Y. Yang, ‘Diversified Third-
party Library Prediction for Mobile App Development’, IEEE Transactions
on Software Engineering, pp. 1-1, 2020, doi: 10.1109/TSE.2020.2982154.

B.2. Android Energy Bugs Covered by Tools in the ‘Detector’
and ‘Optimizer’ Categories

Table B.1: Android energy bugs detected by each tool in ‘Detector’ and ‘Opti-
mizer’ categories.

%2} > = a A /M O .
Tool 2|52 g |E|E|2|8|B|3|5 (& |2
Wu et al. v P1
GreenDroid |/ P17
Kim et al. v P3
Statedroid |/ P5
PatBugs P8
SAAD v VR A A A 4 P9
Paprika v v P7
aDoctor |/ P4
DelayDroid v P2
HOT- v v P10
PEPPER
Asyncdroid v P11
EARMO P15
EnergyPatch A AN AN 4 P18
Nguyen et al. P21
Chimera |/ v |V |/ | P22
ServDroid v v P23
Leafactor v v P24

1. The ‘RL’ (Resource Leak) energy bug is caused by energy leaks in re-
sources such as camera, multimedia, and memory, that are not released
when no longer needed.

2. The ‘WB’ (Wake-lock Bug) energy bug is caused by excessive energy con-
sumption because the device is kept in high power state for too long.

3. The ‘VBS’ (Vacuous Background Services) energy bug is caused by ser-
vices consuming resources in the background after the app exits.

4. The ‘IB’ (Immortality Bug) energy bug is caused by apps that re-spawn
after they have been closed.

167



5. The TMV’ (Too Many Views) energy bug is caused by exceeding the de-
fault number of widgets in view hierarchy.

6. The TDL’ (Too Deep Layout) energy bug is caused by exceeding the default
nesting depth in view hierarchy.

7. The NCD’ (Not Using Compound Drawables) energy bug is caused by not
replacing multiple widgets.

8. The ‘UL’ (Useless Leaf) energy bug is caused by not removing a widget
that does not impact the interface.

9. The ‘UP’ (Useless Parent) energy bug is caused by not removing widget
which is not root view and has no background properties.

10. The ‘OLP’ (Obsolete Layout) Parameter energy bug is caused by XML
layout parameters that do not contribute to the layout functionality.

11. The ‘VHB’ (View Holder Bug) energy bug is caused by using getView() in
View Holder repeatedly instead of caching in a variable.

12. The ‘EMC’ (Excessive Method Calls) energy bug is caused by excessive
calls of a method whose implementation can be extracted to the caller class.

B.3. Android Code Smells Covered by Tools in ‘Detector’ and
‘Optimizer’ categories

1. The ‘DTWC’ (Data Transmission Without Compression) code smell is
caused due to a file sent over the network without compression.

2. The ‘DR’ (Debuggable Release) code smell which when the Debuggable
attribute is left set to true in an app.

3. The ‘DW’ (Durable Wake-lock) code smell arises when a wake-lock is ac-
quired but not released.

4. The ‘IDFP’ (Inefficient Data Format and Parser) code smell arises when
XML or JSON data is parsed with TreeParser instead of a more efficient
parser like StreamParser.

5. The ‘IDS’ (Inefficient Data Structure) code smell arises when a data struc-
ture like Hash Map of objects can be replaced by a Sparse array.

6. The ‘ISQLQ’ (Inefficient SQL Query) code smell arises when a SQL query
issued to retrieve data from a remote server instead of using a JSON based

query.

7. The ‘IGS’ (Internal Getter and Setter) code smell arises when getter and
setter methods are used to access fields of a class externally.

168



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. The ‘LIC’ (Leaking Inner Class) code smell arises when an instance of an

outer class is held by a non-static inner class.

. The ‘LT’ (Leaking Thread) code smell arises when a thread is never

stopped.

The ‘MIM’ (Member Ignoring Method) code smell arises when non static
methods are being used to access class properties.

The ‘NLMR’ (No Low Memory Resolver) code smell which arises when
the method onLowMemory() is not implemented by an activity to clear
cache.

The ‘PD’ (Public Data) code smell arises when data private to an app is
kept in a public data store that can be accessed by other apps.

The ‘RAM’ (Rigid Alarm Manager) code smell arises when Alarm Man-
ager is triggered frequently without bundling the updates.

The ‘SL’ (Slow Loop) code smell arises when a slow version of loop is
used which can be converted to a more efficient implementation. The ‘UC’
(Unclosed Closable) code smell arises when a resource is not closed after
its usage,

The ‘LC’ (Lifetime Containment) code smell arises when a listener is reg-
istered but not unregistered as the activity is destroyed.

The ‘LWS’ (Long Wait State) code smell arises when a listener is added
leading to a potentially long wait state for resources leading to app suspen-
sion.

The ‘UHA’ (Unsupported Hardware Acceleration) code smell arises when
methods are called without hardware acceleration hence they use CPU in-
stead of GPU.

The ‘BFU’ (Bitmap Format Usage) code smell arises when images are rep-
resented as Bitmaps which is memory intensive.

The ‘UIO’ (UI Overdraw) code smell arises due to overdrawing of UI com-
ponents.

The TWR’ (Invalidate Without Rect) code smell arises when exact rect to
be redrawn is not mentioned in onDraw() method resulting in redrawing
everything.

The ‘HAT’ (Heavy AsyncTask) code smell arises when heavy resource in-
tensive operations are done inside the Async Task.

The ‘HSS’ (Heavy Service Start) code smell arises when heavy resource
intensive operations are done inside the Service on main thread.

169



23. The ‘HBR’ (Heavy Broadcast Receiver) code smell arises when heavy re-
source intensive operations are done inside the Broadcast Receiver on main
thread. The ‘IOD’ (Init ONDraw) code smell arises when new objects are
created inside the onDraw() method which is called a large number of times.

24. The ‘ERB’ (Early Resource Binding) code smell arises when high energy
resources are initialized before they need to be used.

25. The ‘“VHP’ (View Holder Pattern) code smell arises when lists are loaded
using the View Holder pattern that reused views.

Table B.2: Android code smells detected by each tool in the ‘Detector’ and ‘Op-
timizer’ categories.

O o =7

- | B & ol B & E = v S ololele vl &l Ao
Tool AHAEEEEEE EE BB R EEHEEEE EBEE
Wu et al. P1 IV
Kimetal. | P3 v
Statedroid | PS5 AR4
PatBugs P8 v
SAAD P9
ADoctor P4 |V |\ V| V|V
Paprika P7 v IV IV IV
GreenDroid| P17 v
DelayDroid | P2
HOT PEP- | P10 v 44 iR AR AR AR AR AR AN AR4
PER
AsyncDroid| P11 v
EARMO P15 v v v
EnergyPatch P18 v
Nguyen et | P21 v v
al.
Chimera P22 v v v v
ServDroid | P23 v
Leafactor | P24 v v v

170



Appendix C. INSTRUCTIONS FOR INSTALLING

10.

ARENA

C.1. Installation Pre-requisites

. The host system must have JAVA version 1.8 or above

Install Python 3.0 or above from here and add to the path of system envi-
ronment variables.

. Install Monsoon Power Monitor, and it’s related Python libraries as per the

user manual of Monsoon Power Monitor.

Install R from here with version 3.4.3. or above. Path to ./bin, ./bin/R.exe,
and ./bin/Rscript.exe must be added to the path in System Environment
Variables.

Install Rtools from here. Path to ./usr/bin must be added to the Path of
System Environment Variables

Make sure no other instance of R is running.

The plugin will install the following R libraries automatically. However, in
case of any un foreseen errors ARENA user can also install them manually
using R : dplyr, ggpubr, RColorBrewer, ggplot, officer, flextable, propagate,
pgirmess, RVAideMemoire, pastecs.

The mobile device must be a rooted device.

If test APK is selected, make sure it has a TestClass that runs all the instru-
mented tests.

The app under test must have API version >= 19

C.2. Plugin Installation

. Open IntelliJ Idea. Go to File > Settings > Plugin.

Click on the Settings icon and click Install Plugin From Disk

. Choose the EnergyPlugin-1.0-SNAPSHOT.zip file (you

can download this file from the bitbucket reposiotry
https://bitbucket.org/hinaanwar2003/arena/src/master/)

Click on OK. Restart IDE to start using the plugin.

171



Appendix D. INSTALLATION INSTRUCTION AND
DETAILED DATA - REHAB

D.1. Plugin Installation

1. Open IntelliJ Idea. Go to File > Settings > Plugin.
2. Click on the Settings icon and click Install Plugin From Disk

3. Choose the Rehab-1.0-SNAPSHOT.zip file (you can
download this file from the bitbucket reposiotry
https://bitbucket.org/hinaanwar2003/rehab/src/master/ )

4. Click on OK. Restart IDE to start using the plugin.

D.2. Third-party Libraries and Version Used in Android Apps

The following tables show number of apps using versions of third-party serial-
ization/deserialization libraries in a sample of Android apps taken from Google
playstore and F-Droid repository in which selected third-party HTTP libraries are
detected. For each serialization/deserialization library, versions are divided into
groups based on type of change.

Table D.1: Group of versions created for Gson library along with number of apps
in which these groups were detected

Version | # of Google playstore apps [ % ‘ # of F-Droid apps | % ‘ Group ‘ Type of Change

1.1.0 0 0% 0 0% 1 no change
1.4.0 0 0% 1 0% 2 MAJOR
1.5.0 0 0% 0 0% 3 MAJOR
1.6.0 3 0% 1 0% 4 MAJOR
1.7.0 MAJOR
1.7.1 8 1% 8 3% 5 MINOR
1.7.2 PATCH
2.0.0 1 0% 1 0% 6 MAJOR
2.1.0 MAIJOR
2.2.0 MINOR
2.2.1 PATCH
222 PATCH
223 MINOR
224 288 42% 92 37% 7 PATCH
2.3.0 MINOR
23.1 PATCH
2.4.0 MINOR
2.5.0 PATCH
2.6.0 MINOR
2.6.1 PATCH
2.6.2 PATCH
2.7.0 MAJOR
2.8.0 MINOR
281 379 56% 145 58% 8 MINOR

172



2.8.2 MINOR

2.83 MINOR
2.8.4 PATCH
285 MINOR
2.8.6 MINOR

TOTAL | 679 \ \ 248 \ \ \

Table D.2: Group of versions created for Jackson library along with number of
apps in which these groups were detected

Version | # of Google playstore apps ‘ % | # of F-Droid apps ‘ % | Group [ Type of Change

2.2.2 no change
223 15 2% 2 1% 1 MINOR
224 MINOR
2.3.0 MAJOR
2.3.1 PATCH
232 MINOR
233 16 2% 0 0% 2 PATCH
234 PATCH
235 PATCH
2.4.0 MAJOR
24.1 PATCH
242 PATCH
2.4.3 PATCH
244 PATCH
24.5 PATCH
24.6 PATCH
2.5.0 MINOR
2.5.1 MINOR
252 MINOR
253 14 2% 41 10% 3 PATCH
254 PATCH
2.5.5 PATCH
2.6.0 MINOR
2.6.1 PATCH
2.6.2 PATCH
2.6.3 PATCH
2.6.4 PATCH
2.6.5 PATCH
2.6.6 MINOR
2.6.7 PATCH
2.7.0 MAJOR
2.7.1 MINOR
272 MINOR
2.7.3 PATCH
274 PATCH
2.7.5 MINOR
2.7.6 PATCH
2.7.7 PATCH
2.7.8 PATCH
2.7.9 PATCH
2.8.0 MINOR
2.8.1 PATCH
2.8.2 PATCH
2.8.3 PATCH
2.84 PATCH
2.8.5 PATCH
2.8.6 32 4% 105 27% 4 PATCH

173



2.8.7 MINOR
2.8.8 MINOR
2.8.9 PATCH
2.8.10 PATCH
2.8.11 PATCH
2.9.0 MINOR
29.1 PATCH
292 MINOR
293 PATCH
294 MINOR
29.5 PATCH
2.9.6 MINOR
29.7 PATCH
29.8 MINOR
299 PATCH
2.9.10 PATCH
2.10.0 MINOR
2.10.1 PATCH
2.10.2 MINOR
2.10.3 PATCH
2.10.4 MINOR
2.10.5 PATCH
2.11.0 MINOR
2.11.1 PATCH
2.11.2 PATCH
2113 PATCH
2.11.4 PATCH
2.12.0 0 0% 0 0% 5 MAJOR
TOTAL 77 148

Table D.3: Group of versions created for Moshi library along with number of
apps in which these groups were detected

Versions ‘ # of Google playstore apps ‘ %  # of F-Droid apps ‘ % ‘ Group ‘ Type of Change

0.9.0 0 0% 0 0% 1 no change
1.0.0 MAJOR
1.1.0 MINOR
1.2.0 1 20% 1 3% 2 MINOR
1.3.0 MINOR
1.3.1 PATCH
1.4.0 0 0% 2 5% 3 MAJOR
1.5.0 0 0% 1 3% 4 MAJOR
1.6.0 MAJOR
1.7.0 MINOR
1.8.0 MINOR
1.9.0 MINOR
1.9.1 4 80% 34 89% 5 PATCH
1.9.2 PATCH
1.9.3 PATCH
1.10.0 MINOR
1.11.0 MINOR
TOTAL 5 38

174



ACKNOWLEDGEMENT

First and foremost, I thank Almighty for giving me the opportunity and ability to
pursue this research.

I am extremely grateful to my supervisor Dietmar Pfahl for the guidance, support
and feedback throughout these years. I am thankful for the constant opportunities
for professional development he gave me, but also for his time, help and discus-
sions outside my PhD topic.

I am also grateful to my co-supervisor Satish Srirama, for his support and feed-
back.

I am grateful to the reviewers of my thesis for their comments and valuable feed-
back that have significantly improved my thesis.

I want to thank all my friends and colleagues at the University of Tartu for their
support. I want to thank Kristiina and Karoliine for helping me with the Estonian
translations in this thesis.

I want to thank my family for their unconditional love and support. I say thanks
to my daughter, Rameen, for her hugs and laughs. She was always around and
accompanied me in moments of hardship and frustration. She is my strength and
kept me in high spirits. I also want to thank M.B. Aslam for helping me to move
to Estonia.

Finally, I would like to acknowledge the Estonian Research Council, the Doctoral
School of Information and Communication Technology (IKTDK), and the Esto-
nian Centre of Excellence in ICT research (EXCITE) for funding my research. I
am also thankful to Professor Marlon Dumas, for funding my research beyond the
nominal time.

175



SISUKOKKUVOTE

Praegusel iildlevinud tehnoloogia kasutamise ajastul kasutatakse laialdaselt selli-
seid seadmeid nagu nutitelefone, tahvelarvuteid ja siilearvuteid. Kuna kdik need
seadmed tootavad akudega, on energiatdhususe kiisimus muutunud iiheks oluli-
seks parameetriks, mille pdhjal kasutajad seadmeid valivad. Energiatdhususe ees-
mirk on vihendada toodete ja teenuste pakkumisel vajaliku energia hulka. Digi-
taalsse seadme energiatdhususest on saanud osa selle tildisest tajutavast kvalitee-
dist.

Empiirilised uuringud on niidanud, et mobiilirakendused, mis akut séddstavad,
saavad kasutajatelt tavaliselt hdid hinnanguid. Mobiilirakenduste energiasédstli-
kumaks muutmiseks on avaldatud palju uuringuid, mis tutvustavad koodi refak-
toreerimise juhiseid ja tooriistu. Neid juhiseid ei saa aga energiatdhususe suhtes
iildistada, sest iga konteksti jaoks pole piisavalt energiaga seotud andmeid. Ole-
masolevad energiatdhususe tooriistad ja profiilid on enamasti prototiiiibid, mida
saab kasutada ainult viikese energiaga seotud probleemide alamhulga jaoks. Li-
saks keskenduvad olemasolevad juhised ja todriistad energiaprobleemide lahen-
damisele textit tagantjdrele, st kui need on juba koodi sisse viidud.

Androidi rakenduse koodi vdib laias laastus jagada kaheks osaks: kirjutatud kood
ja korduvkasutatav kood. Kirjutatud kood on iga rakenduse jaoks ainulaadne. Kor-
duvkasutatav kood sisaldab kolmandate osapoolte teeke, mis on lisatud rakendus-
tesse arendusprotsessi kiirendamiseks. VOrreldes arvuti- vOi veebirakendustega
sisaldavad Android-rakendused mitut komponenti, millel on kasutaja juhitud t56-
vood. Tiiiipiline Androidi rakendus koosneb tegevustest, fragmentidest, teenus-
test, sisupakkujatest ja iilekannete vastuvdtjatest. Arhitektuuri erinevuse tottu ei
ole traditsiooniliste Java-pohiste rakenduste arendamisel kasutatavad tugivahen-
did Androidi rakenduste arendamisel ja hooldamisel nii kasulikud.

Alustuseks hindame erinevate Androidi rakenduste koodildhnade refaktoreerimis-
te energiatarbimist. Uurisime viie Androidi koodildhna tiiiibi refaktoreerimise
energiamdju (kdigepealt individuaalselt tiitibi ja seejdrel permutatsioonide alusel)
avatud ldhtekoodiga Androidi omarakendustes. Uurisime ka koodildhnade refak-
toreerimise moju Androidi avatud ldhtekoodiga omarakenduste tditmisajale. See-
jérel viime ldbi empiirilise uuringu Androidi rakendustes kasutatavate kolmandate
osapoolte teekide energiamdju kohta. Kolmandate osapoolte teegid valitakse ka-
sutusstatistika ja populaarsete kolmandate osapoolte turgude ja kataloogide pare-
musjirjestuse alusel. Tuvastasime nende teekide tiiiipilised kasutusjuhud Google
Play poe koige enam allalaaditud rakendustes. Valitud kolmandate osapoolte tee-
ke on vodimalik iga kasutusjuhu puhul kasutada iiksteise alternatiividena. Meie
tulemused néitavad, et kolmandate osapoolte vorguteekide energiatarbimine eri-
neb oluliselt. Arutame tulemusi ja pakume iildisi kontekstipdhiseid juhiseid, mida

176



saaks kasutada rakenduste véljatootamisel. Energiatarbimise modtmiseks kasuta-
me riistvarapohiseid energiamdotmisi, kuna need on tipsemad. Energiaandmete
statistilise analiilisiga hinnatakse kasutatud energia dispersiooni, mdju suurust ja
protsentuaalset muutust.

Lisaks teeme siistemaatilise kirjanduse iilevaate, et teha kindlaks ja uurida prae-
guseid kaasaegseid tugivahendeid, mis on saadaval Androidi roheliseks arenda-
miseks. Teeme kokkuvétte nende tooriistade ulatusest ja piirangutest ning tdstame
esile liingad uuringutes. Selle uuringu ja varem ldbi viidud katsete pohjal toome
esile riistvarapdhiste energiamddtmiste jiddvustamise ja taasesitamise problee-
mid. Riistvarapohise energia modtmise protsess on pikk ja jarsu dppimiskovera-
ga. Seetdttu todtame Android Studio IDE jaoks vilja abivahendi textbf ARE-
NA (Analysing eneRgy Efficiency in aNdroid Apps, mis vdiks aidata koguda
energiaandmeid ja analiilisida Androidi rakenduste energiatarbimist. See tooriist
ithendab koik tegevused, mis on vajalikud Androidi rakenduste energiatarbimise
modtmiseks, statistiliseks analiilisimiseks ja aruandluseks (sh tulemuste tolgen-
damine ja visualiseerimine graafikute kujul). ARENA on avatud ldhtekoodiga ja
selle rakendus on saadaval aadressil https://bitbucket.org/hinaanwar2003/arena

Lopuks tootame Android Studio IDE jaoks vilja abivahendi textbf REHAB
(Recommending Energy-efficient tHird-pArty liBraries- energiathusate kolman-
date osapoolete teekide soovitamine), et soovitada arendajatele energiatShu-
said kolmandate osapoolete vorguteeke. Samuti arutleme selle iile, kuidas RE-
HABI ulatust saab laiendada, viies 1dbi 8457 Androidi rakenduse kasutamise
ja muudatuste analiiiisi. Kasutusanaliiiis kvantifitseerib valitud kolmandate osa-
poolte HTTP-teekide ja kdigi nende versioonide kasutamise reaalsetes Android-
rakendustes. Muudatuste analiiiis kvantifitseerib, milliseid muudatusi jarjestikus-
tes versioonides tehakse. REHAB on avatud ldhtekoodiga ja selle rakendus on
saadaval aadressil https://bitbucket.org/hinaanwar2003/rehab/src/master/.

177


https://bitbucket.org/hinaanwar2003/arena
https://bitbucket.org/hinaanwar2003/rehab

Name:
Date of Birth:
Nationality:

CURRICULUM VITAE

Personal data

Hina Anwar
11.10.1986
Pakistani

Language skills: Urdu (native), English

Email:

2016-2021

2010-2013

2004-2008

2017-2021
2013-2016

2012-2012
2011-2011

hina.anwar@ut.ee

Education

University of Tartu, Tartu, Estonia, Ph.D. in Computer Sci-
ence

NUST College of E&ME, Rawalpindi, Pakistan, M.Sc in
Software Engineering

Fatima Jinnah Women University, Rawalpindi, Pakistan,
B.SC in Software Engineering

Employment

Junior Research Fellow, University of Tartu, Estonia
Lecturer, University of Education, Pakistan (on study
leave)

Lab Engineer, Air University, Pakistan

Research Assistant, NUST College of E&ME, Pakistan

Scientific work

Main fields of interest:

» Software Engineering

* Programming Pattern

* Data Mining and Machine Learning

178



ELULOOKIRJELDUS

Isiklikud andmed

Nimi: Hina Anwar

Siinniaeg: 11.10.1986

Kodakondsus: Pakistan

Keeleoskus: urdu (emakeel), inglise keel
E-post: hina.anwar@ut.ee

Haridus

2016-2021 Tartu Ulikool, Tartu, Eesti, Informaatike Ph.D.

2010-2013 NUST College of E&ME, Rawalpindi, Pakistan, Tarkvara-
tehnika MSc

2004-2008 Fatima Jinnah Women University, Rawalpindi, Pakistan,
Tarkvaratehnika B.Sc

Toohoive
2017-2021 Nooremteadur, Tartu Ulikool, Eesti
2013-2016 Lektor, University of Education, Pakistan (6ppepuhkusel)

2012-2012 Laboriinsener, Air University, Pakistan
2011-2011 Uurimisassistent, NUST College of E&ME, Pakistan

Teaduslik t00

Peamised huvialad:
¢ Tarkvaraarendus
¢ Programmeerimismuster

* Andmete kaevandamine ja masindpe

179



I

II

III

v

VI

VII

I

II

LIST OF ORIGINAL PUBLICATIONS

Publications in the scope of the thesis

Anwar, Hina and Dietmar Pfahl. Towards greener software engineering
using software analytics: A systematic mapping. In 2017 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 157-166. IEEE, 2017

Anwar, Hina, Dietmar Pfahl, and Satish Narayana Srirama. An investiga-
tion into the energy consumption of http post request methods for android
app development. In /3th International Conference on Software Technolo-
gies (ICSOFT 2018), pages 241-248, 2018

Anwar, Hina, Dietmar Pfahl, and Satish N Srirama. Evaluating the impact
of code smell refactoring on the energy consumption of android applica-
tions. In 2019 45th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 82-86. IEEE, 2019

Iffat Fatima, Anwar, Hina, Dietmar Pfahl, and Usman Qamar. Tool sup-
port for green android development: A systematic mapping study. In Pro-
ceedings of the 15th International Conference on Software Technologies
(ICSOFT), number 1, pages 409-417, 2020

Anwar, Hina. Towards greener android application development. In 2020
IEEE/ACM 42nd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 170-173. IEEE, 2020

Anwar, Hina, Berker Demirer, Dietmar Pfahl, and Satish Srirama. Should
energy consumption influence the choice of android third-party http li-
braries? In MOBILESoft '20: IEEE/ACM 7th International Conference on
Mobile Software Engineering and Systems, pages 87-97, 2020

Anwar, Hina, Iffat Fatima, Dietmar Pfahl, and Usman Qamar. Tool Support
for Green Android Development, pages 153—-182. Springer International
Publishing, 2021

Publications out of the scope of the thesis

Fauzia Khan, Anwar, Hina, Dietmar Pfahl, and Satish Srirama. Software
techniques for making cloud data centers energy-efficient: A systematic
mapping study. In 46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA 2020), 2020

Iffat Fatima, Anwar, Hina, Dietmar Pfahl, and Usman Qamar. Detection

180



and correction of android-specific code smells and energy bugs: An android
lint extension. In 8th International Workshop on Quantitative Approaches
to Software Quality (QuASoQ 2020), 2020

181



19.

22.
23.

24.

27.

29.
45.

49.

53.

55.

56.

59.

61.

62.

64.

66.

67.

71.
72.

73.

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN
DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

Kaili Miiiirisep. Eesti keele arvutigrammatika: siintaks. Tartu, 2000, 107 1k.
Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000, 116 p.

Olga Sokratova. Q-rings, their flat and projective acts with some appli-
cations. Tartu, 2000, 120 p.

Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline {ihesta-
mine. Tartu, 2001, 138 1k.

Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

Hirmel Nestra. Iteratively defined transfinite trace semantics and program
slicing with respect to them. Tartu 2006, 116 p.

Marina Issakova. Solving of linear equations, linear inequalities and
systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving I11-Posed Problems. Tartu 2010, 105 p.

Jiiri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

Mark FiSel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
Margus Treumuth. A Framework for Asynchronous Dialogue Systems:
Concepts, Issues and Design Aspects. Tartu 2011, 95 p.

Dmitri Lepp. Solving simplification problems in the domain of exponents,
monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

182



74.

77.

78.
79.

81.

83.

84.

87.

90.

91.

92.

94.

100.

101.

102.

103.

104.

108.

109.

110.

111.

112.

Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

Reina Uba. Merging business process models. Tartu 2011, 166 p.

Uuno Puus. Structural performance as a success factor in software deve-
lopment projects — Estonian experience. Tartu 2012, 106 p.

Georg Singer. Web search engines and complex information needs. Tartu
2012, 218 p.

Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. Tartu 2013, 191 p.

Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu
2013, 151 p.

Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language
development in enterprise information systems. Tartu, 2013, 151 p.

Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

Vladimir Sor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

Abel Armas Cervantes. Diagnosing Behavioral Differences between
Business Process Models. Tartu, 2015, 193 p.

Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:
An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

183



113.

114.

116.

121.

122.

Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

Eno Tonisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

184



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

Elena Siigis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

Tonis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.

Ilya Kuzovkin. Understanding Information Processing in Human Brain by
Interpreting Machine Learning Models. Tartu 2020, 149 p.

Orlenys Lopez Pintado. Collaborative Business Process Execution on the
Blockchain: The Caterpillar System. Tartu 2020, 170 p.

Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu
2020, 152 p.

185



22.

23.

24.

25.

26.

27.

28.

29.

Madis Vasser. Testing a Computational Theory of Brain Functioning with
Virtual Reality. Tartu 2020, 106 p.

Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams
and Parameter Quantification. Tartu 2021, 192 p.

Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p.

Kaido Lepik. Inferring causality between transcriptome and complex
traits. Tartu 2021, 224 p.

Tauno Palts. A Model for Assessing Computational Thinking Skills. Tartu
2021, 134 p.

Liis Kolberg. Developing and applying bioinformatics tools for gene
expression data interpretation. Tartu 2021, 195 p.

Dmytro Fishman. Developing a data analysis pipeline for automated pro-
tein profiling in immunology. Tartu 2021, 155 p.

Ivo Kubjas. Algebraic Approaches to Problems Arising in Decentralized
Systems. Tartu 2021, 120 p.



	List of Figures
	List of Tables
	Introduction
	Problem Statement and Research Goals
	Research Approach
	Contributions of the Thesis
	Structure of the Thesis

	Background
	Android OS
	Android Apps
	Android App Development Process
	Code Smells
	Third-party Libraries
	Software Sustainability
	Energy Measurement

	Related Work
	Code Smells Refactoring
	Third-party Libraries
	Tool Support for Developing Green Android Apps

	Impact of Code Smell Refactoring on the Energy Consumption of Android Apps
	Research Method
	Research Questions
	Code Smells
	Code Smell Detection Tool and Refactoring
	Selected Apps
	Testing Tool
	Energy Measurement
	Test Environment
	Experimental Design

	Results
	RG1-RQ1: Is there a correlation between code smell refactoring and energy consumption of Android apps?
	RG1-RQ2: Is there a correlation between code smell refactoring and execution time of Android apps?

	Discussion
	Threats to Validity

	Impact of Third-party HTTP Libraries on the Energy Consumption of Android Apps
	Research Method
	Research Questions
	Use Cases
	Selected Libraries
	Experimental Design
	Test Environment

	Results
	RG1-RQ3-A: When making GET requests is there variance in energy consumption of Android third-party HTTP libraries?
	RG1-RQ3-B: When making multi-part POST requests is there variance in energy consumption of Android third-party HTTP libraries?
	RG1-RQ3-C: When sending structured JSON objects is there variance in energy consumption of Android third-party HTTP libraries?
	RG1-RQ3-D: When receiving structured JSON objects is there variance in energy consumption of Android third-party HTTP libraries?
	RG1-RQ3-E: When loading and displaying images on the screen is there variance in energy consumption of Android third-party HTTP libraries?
	RG1-RQ4: Is the energy consumption of a third-party HTTP library correlated with execution time?

	Discussion
	Recommendations
	Energy Consumption versus Execution Time
	Energy Drivers
	Energy Consumption versus Popularity
	General Take-aways

	Threats to Validity

	Tool Support for Green Android Development
	Research Method
	Research Questions
	Search Query
	Screening of Publications
	Classification and Analysis

	Results
	RG2-RQ1: What state of the art support tools have been developed to aid software practitioners in detecting or refactoring Android specific code smells and energy bugs in Android apps?
	RG2-RQ2: What state of the art support tools have been developed to aid software practitioners in detecting or migrating third-party libraries in Android apps?
	RG2-RQ3: How do existing support tools compare to one another in terms of techniques they use for offering the support?
	RG2-RQ4: How do existing support tools compare to one another in terms of the support they offer to practitioners for improving energy efficiency in Android apps?

	Discussion
	Support Tools for Code Smell and Energy Bug Detection or Refactoring
	Support Tools for Third-party Library Detection or Migration

	Threats to Validity

	ARENA: A Tool for Measuring and Analysing the Energy Efficiency of Android Applications
	ARENA Architecture
	Component 1: ExperimentRunner
	Component 2: CleanupRunner 
	Component 3: AnalysisRunner
	Component 4: VisualizationRunner

	ARENA Implementation
	ARENA in Practice
	Comprehensive Usage Scenario
	 Application Example


	REHAB: A Tool for Recommending Energy-efficient Third-party Libraries to Android Developers
	REHAB Architecture
	Component 1: Knowledge Base
	Component 2: Code Inspection
	Component 3: Rule Mapping Module

	REHAB Implementation
	Usage Overview

	Scope Extension of REHAB
	REHAB Evaluation

	Conclusion and Future Work
	Contributions and Findings
	Code Smell Refactorings
	Third-party Libraries
	Tool Support for Developing Green Android Apps

	Opportunities for Future Work
	Contextual Data for Refactoring
	Trade-off Analysis
	Energy Data for Creating Software Based Energy Prediction Models


	Bibliography
	Statistics and Pairwise Comparison Results for Selected Third-party HTTP Libraries
	Statistics for Selected Third-party HTTP Libraries
	Features and Methods of Selected Third-party HTTP Libraries
	Results of Pairwise Comparison for the Mean Ranks of Energy by Library in Each Use-case

	List of Selected Publications, Energy Bugs, and Code Smells
	List of Selected Publications
	Android Energy Bugs Covered by Tools in the ‘Detector’ and ‘Optimizer’ Categories
	Android Code Smells Covered by Tools in ‘Detector’ and ‘Optimizer’ categories

	Instructions for Installing ARENA
	Installation Pre-requisites
	Plugin Installation

	Installation Instruction and Detailed Data - REHAB
	Plugin Installation
	Third-party Libraries and Version Used in Android Apps 

	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of Original Publications



