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ABSTRACT

Modern organizations need to constantly adjust their business processes in order
to adapt to internal and external changes, such as new competitors, new regula-
tions, changes in customer expectations, or changes in strategic objectives. For
example, due to a pandemic, a retailer might experience a 50% increase in their
number of online orders while, during the same time, their volume of in-store pur-
chases declines by 30%. To adjust to these changes, the managers may decide to
re-deploy employees from the retail stores to the warehouses of the company and
the company’s online customer service department. To inform their decisions, the
managers need to have an accurate estimate of the impact of the above changes
on the delivery and customer service response times.

A common approach to make such estimates is to use Business Process Sim-
ulation (BPS). BPS refers to the use of computers to explore the dynamics of a
business process over time. BPS has long proven to be a useful approach to an-
swer what-if questions in the context of business process redesign. At the same
time, the predictions made by BPS models are known to be relatively inaccurate
due to the way they are usually applied.

Traditionally, domain experts create simulation models manually by using
manual data gathering techniques (e.g. interviews, observations, and sampling).
This approach makes the creation of simulation models time-consuming and error-
prone. In real-life, business processes tend to be more complex than what domain
experts can capture in a manually designed simulation model. Yet, any omission
in the simulation model can significantly affect the accuracy and reliability of a
simulation. Other limitations of current BPS approaches arise from fundamental
assumptions that business process simulation engines make. For example, busi-
ness process simulation engines assume that human workers work in a robotic
(or factory-line) style– meaning that they conduct their work continuously dur-
ing working hours, without any distractions, without multitasking, and without
fatigue. In other words, current business process simulation approaches are not
able to capture and reproduce the complexity of human behavior.

In this context, this thesis investigates the following overarching question:
How to automatically create accurate business process simulation models based
on data extracted from enterprise information systems? Previous research on this
question has demonstrated the viability of using a family of techniques for the
analysis of business process execution data, known as process mining, to semi-
automatically extract BPS models from execution data. Such techniques are fall
under the banner of Data-Driven Simulation (DDS). This thesis starts by noting
that existing techniques in the field of DDS require manual intervention and fine-
tuning to produce accurate simulation models. To address this gap, the thesis
presents and evaluates a fully automated technique for DDS capable of discov-
ering and fine-tuning BPS models through process mining techniques. The core
idea of the technique is to assess the accuracy of a BPS model automatically us-
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ing a similarity measure that considers both the ordering of activities and their
execution times. On this basis, the proposed technique employs a Bayesian opti-
mization algorithm to maximize the similarity between the behavior generated by
the BPS model and the behavior observed in the execution data.

The thesis, thus, shows that the proposed DDS technique generates models
that accurately reflect the ordering of activities. However, the proposed technique
often falls short when it comes to predicting the timing of each activity. This phe-
nomenon is due to the assumptions that BPS techniques make about the behavior
of resources in the process. To tackle this shortcoming, the thesis combines DDS
techniques based on process mining, with generative modeling techniques based
on deep learning. In this respect, the thesis makes two contributions. First, it
proposes an approach to learn generative deep learning models that are able to
produce timestamped sequences of activities (with associated resources) based on
historical execution data. Second, it proposes an approach to combine DDS tech-
niques based on process mining, with generative deep learning modeling tech-
niques. The thesis shows that this hybrid approach to learn BPS models leads
to simulations that more closely reflect the observed sequences of activities and
their timings compared to a DDS technique based purely on process mining and
techniques based purely on deep learning.
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1. INTRODUCTION

Organizations are subject to constant change motivated by an innumerable set of
internal and external factors, such as downward price pressure, changes in regu-
lations, or new technological opportunities. These changes drive organizations to
constantly adapt and update their business processes. For example, the possible
automation of tasks will imply the reorganization of resources, or for instance, the
addition of a quality assurance stage to comply with a new regulation will require
reorganizing the process’s sequence flow. Changes like these require resolving a
fundamental question: How to assess the impact of a possible change on a process
regarding temporal and cost measures?

Traditionally, these decisions are made based on the intuition and expertise
of managers and business analysts, which works well if the number of possible
changes is small or if the impact of the change is not critical. However, the number
of possible changes frequently grows exponentially, and calculating the impact of
potential changes is difficult to predict. In these situations, analysts need a tool
that allows them to automatically explore hundreds or thousands of hypothetical
changes in a short time, thus simplifying the decision-making process. This type
of analysis is known as what-if analysis. In this context, process analysts answer
this question using a tool called Business Process Simulation (BPS).

BPS is an approach for the quantitative analysis of business processes [25],
which are commonly used when deciding how to improve a business process
concerning one or more cost and time-related performance measures [91]. The
main idea of BPS is to use a computational simulation model that captures essen-
tial business process characteristics. With the help of such a simulation model,
it is possible to make all kinds of hypothetical changes without taking risks in
real life. The analyst can, for example, add two additional resources to a pro-
cess and compare if it is better than adding only one additional resource or, for
example, an analyst can suggest parallelizing multiple activities that are currently
performed sequentially and compare cycle times versus current times. In this way,
the BPS becomes a kind of super-intuition that supports decision-making related
to changes in the processes.

1.1. Problem statement

Despite its great potential, the applicability of BPS is hindered by various limita-
tions. Some of these limitations are methodological, that is, they arise from the
methods that are currently used to create simulation models. A key ingredient
for BPS is a simulation model (herein, a BPS model) that accurately reflects the
actual dynamics of the process. An accurate initial simulation model provides a
reliable basis for evaluating and drawing conclusions about implementing possi-
ble changes in real life. However, domain experts have traditionally created BPS
models using manual data gathering techniques, such as interviews, contextual in-
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quiries, and on-site observation. This approach is time-consuming and error-prone
as it requires careful attention to numerous pitfalls [61, 1].

Another design problem is the low precision of manually constructed simula-
tion models. A BPS model comprises a process model enriched with simulation
parameters that allow its reproduction over time. Therefore, the accuracy of a
BPS model depends mainly on how faithfully these components capture the ob-
served reality. However, process models produced by domain experts often do
not capture all possible execution paths (e.g., exceptional paths are left aside).
Indeed, since business process models are often designed for documentation and
communication purposes, they need to balance completeness and understandabil-
ity. Moreover, simulation parameters for BPS are traditionally estimated based on
expert intuition, sampling, and manual curve fitting, which do not always lead to
an accurate reflection of reality [76].

Furthermore, even if we put aside the problems of creating simulation models,
current BPS techniques would still present a poor representation of the temporal
dynamics of business processes. These are due to the difficulty that BPS simu-
lators have in reflecting the complexities of human behavior [1, 3]. Among the
limitations that simulation techniques suffer, we can find the following:

• Waiting times are exclusively due to resource contention (i.e., a resource
cannot start a task because it is busy with another task).

• They assume that resources exhibit robotic behavior. If a resource is avail-
able and may perform an enabled activity instance, the resource will imme-
diately start it (eager resources consume work items in FIFO mode).

• They assume that a resource only works on one task instance simultane-
ously; this means that a task is strictly performed by one resource.

• Similarly, there is no time-sharing outside the simulated process; in other
words, these techniques exclude the possibility of multitasking . In this set-
ting, multitasking refers to the situation where a resource executes multiple
task instances simultaneously, meaning that the resource divides its atten-
tion across multiple active task instances [64].

• They assume no fatigue, no interruptions, and no distractions beyond "sto-
chastic" ones.

• Oftentimes, they do not consider differences between the performance of
resources, meaning that every resource in a pool has the same performance
as others.

Considering the complexity of the BPS limitations described above, in this
thesis, we will focus on building more accurate BPS models. For this purpose, we
will assume that a simulation model must accurately reproduce the current state
(AS-IS) of a business process before assessing the impact of possible changes
(WHAT-IF scenarios). Similarly, we hypothesize that using data and machine
learning models for this purpose might help find answers to some problems of
the current simulation technique. Specifically, this thesis addresses two research
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questions:
RQ1 How to automatically create accurate business process simulation models

based on data extracted from enterprise information systems?
RQ2 How to create simulation techniques that more accurately capture the ob-

served temporal dynamics of business processes?

1.2. Previous work and research gaps

Several research groups have studied and partially addressed the problem raised
in RQ1. In the literature, the use of data has mainly been explored in conjunc-
tion with Process Mining (PM) tools to create more reliable BPS models [54].
One could consider a PM as the family of machine learning techniques that al-
lows users to analyze data extracted from business information systems (i.e., an
event log) in order to obtain information that improves business processes [4].
The discovery of simulation models that use PM tools is known as Data-driven
Simulation (DDS).

Proposed DDS techniques for discovering simulation models range from semi-
automated [40] to automated [74, 68]. In all of them, a DDS model is built by
first discovering a process model from an event log and then adjusting many pa-
rameters (e.g., arrival rate, processing times, and conditional branching probabil-
ities). DDS approaches significantly decrease the risks of introducing biases due
to the intervention of the modeler in the model creation phase. However, the exist-
ing proposals have shortcomings not yet addressed, leaving the research question
open:
GAP1 Existing studies have not extensible explored the question of measuring

the accuracy of BPS models derived from data; and,
GAP2 The fine-tuning of simulation parameters is left to the modeler, thus leav-

ing the door open for the introduction of biases during the creation of BPS
models.

Moreover, none of the previous works directly addresses RQ2, as this question
implies a more profound intervention in the simulation technique. Face this ques-
tion forced us to take a step back to have a broader perspective on the panorama
of possible solutions to the problems of representation of the temporal dynamics
of the current simulation technique. In a more generic way and without delving
into too much detail, a BPS model is a generative model of business processes. A
generative model of business processes is a statistical model constructed from an
event log that can generate traces that resemble those observed in the log and other
traces of the process. Generative process models have several applications in PM,
including anomaly detection [63], what-if scenario analysis [16], conformance
checking [77], and predictive monitoring [84].

Especially in predictive monitoring, the use of Deep Learning (DL) generative
models has been explored with great success. DL generative models are machine
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learning models consisting of interconnected layers of artificial neurons adjusted
based on input-output pairs to maximize accuracy. In predictive monitoring, the
use of these models has been due to the increase in the computational capacity
and the refinement of techniques for processing large volumes of data; the appli-
cations of DL techniques in the resolution of prediction, classification, and gener-
ation problems have been experiencing constant growth [44]. DL techniques have
demonstrated their great potential in the resolution of complex problems in diverse
areas such as healthcare, autonomous driving, image and speech recognition, and
natural language understanding[33].

Starting from an ongoing case (prefix), these models have been used to pre-
dict the next event category and its timestamp, or the most remaining likely se-
quence of events (suffix) [27, 57, 84]. Moreover, suitably trained DL generative
models can also be used to generate entire traces and even entire logs (not just
suffixes) [18]. The ability of these models to learn the non-linear relationships
between multiple variables accurately forces us to ask ourselves if it is possible to
use DL generative models as simulation models, and what their relative precision
would be.

Hypothetically, the approach would avoid the difficulties presented in the cur-
rent simulation technique by capturing the complexities of the human compo-
nent involved in business processes typically overlooked by traditional techniques
(e.g., multitasking, batching). However, before these techniques can be used in
BPS, there must be a solution to three important problems:
GAP3 DL generative models must be able to generate not only remaining se-

quences of events (suffixes) but also complete logs starting from scratch
(prefixes of size zero).

GAP4 Similarly, the generated logs must include the category of the event, asso-
ciated resource, and start and end times of the activities, thus allowing an
evaluation of the performance of the scenarios.

GAP5 Furthermore, the deep learning techniques must be able to perform what-if
analysis, one of the BPS’s key features.

The challenge in this sense resides in the black box structure of neural net-
works. This structure prevents the direct introduction of changes in the process
that is being evaluated. In this thesis, we evaluate approaches to address these
gaps, to enable the use of DL techniques for process simulation.

1.3. Research Methodology

In this thesis, we follow the design science research methodology [35], which
focuses on the continuous construction and evaluation of artifacts in order to im-
prove their performance. Following this methodology, we identified the problems
of the current process simulation technique, defined two research questions w.r.t.,
RQ1 and RQ2, and identified the gaps in the state-of-the-art related to the solution
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of the questions. This process allowed us to define a set of requirements for con-
structing and evaluating two initial artifacts. The first artifact, related to RQ1, is
a DDS approach that automatically discovers, evaluates, and performs the tuning
of process simulation model parameters.

The second artifact we build is aimed at finding a solution to the RQ2. In
a preparatory way, we proposed a deep-learning generative model training tech-
nique that allows the generation of complete event logs from input data. Subse-
quently, as a benchmark, we exhaustively compared the relative precision of both
artifacts, which allowed us to define a new set of requirements for the construc-
tion of a third artifact. The third artifact proposes a hybrid simulation technique
between DDS and DL to provide a solution to RQ2.

1.4. Contributions

Contribution 1: We propose an automated DDS method to discover an accuracy-
optimized BPS model from an event log (Chapter 4). To solve the GAP1, the
proposed method asses the accuracy of the simulation model using a similarity
measure that considers both the ordering of activities and their execution times.
Likewise, in response to the GAP2, the approach optimizes the generated model
applying a Bayesian hyperparameter optimization algorithm able to maximize the
similarity between the behavior generated by the BPS model and the behavior
observed in the log. The method has been implemented as a tool (namely Simod)
that generates process simulation models from event logs. The magnitude of the
accuracy enhancements achieved by the proposed method has been evaluated via
experiments on one synthetic and two real-life event logs from different domains.

Contribution 2: We propose new pre- and post-processing methods and archi-
tectures for building and using generative models from event logs using LSTM
neural networks (Chapter 5). In response to GAP3 and GAP4, this thesis pro-
poses an approach to learn generative DL models able to generate complete traces
(or suffixes of traces starting from a given prefix) consisting of triplets (event type,
role, and timestamp). This approach allowed us to obtain a generative deep learn-
ing approach comparable to state-of-the-art techniques, but potentially applicable
to process simulation. The relative precision of the technique in terms of similarity
of the order of activities and their execution times was tested through experiments
on nine real-life event logs from different domains.

Contribution 3: In preparation to fill the GAP5, we compared the relative pre-
cision and characteristics of the DDS versus DL generative models under the
same conditions. This work allowed us to define the requirements to create a
hybrid approach capable of taking advantage of the strengths of both families
of generative models (Chapter 6). We evaluate the generative approaches using
eleven real and synthetic event logs, which vary in structural and temporal char-
acteristics.

Contribution 4: Finally, in response to GAP5, we present a hybrid approach

20



to learn process simulation models from event logs wherein a (stochastic) process
model is extracted by using DDS techniques and then combined with a DL model
to generate timestamped event sequences (traces) (Chapter 7). An experimental
evaluation using synthetic and real event logs against an existing DDS method
and two DL methods shows that the resulting hybrid simulation models match
the temporal accuracy of pure DL models while retaining the what-if analysis
capability of DDS approaches.

The above contributions have been previously documented in publications I-
IV, as referenced at the end of the thesis (see “List of original publications”).

1.5. Outline

The rest of the thesis is structured as follows. In Chapter 2, we introduce the
relevant concepts from business process simulation and deep learning. Chapter 3
presents the systematic literature review and taxonomy for existing DDS and DL
methods. In Chapter 4, we develop the Simod tool as representative of the DDS
approaches; we also perform an experimental evaluation of the tool. Chapter 5
presents and evaluates new pre- and post-processing methods and architectures
for learning accurate deep learning models of business processes. Chapter 6 em-
pirically compares the accuracy of DDS approaches versus DL generative models
of business processes and discusses their relative strengths and weaknesses. Chap-
ter 7 proposes and evaluates a new hybrid simulation technique that combines the
strengths of DDS and DL generative models. Chapter 8 concludes the thesis and
outlines directions for future work. Table 3 summarizes the research questions,
the research gaps associated with each research question, the contributions ad-
dressing those research gaps, the chapters where these contributions are unfolded,
and the publications related to each contribution.
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Research Question Research Gaps Contributions

RQ1 - How to automatically create
accurate business process simulation
models based on data extracted from
enterprise information systems?

GAP1 - Existing studies have not extensible explored the
question of measuring the accuracy of BPS models derived
from data.

#1 - Simod: Automated Discovery of
Business Process Simulation Models
from Event Logs (see Chapter 4)

GAP2 - The fine-tuning of simulation parameters is left to
the modeler, thus leaving the door open for
the introduction of biases during the creation of BPS models.

Publications:
- (2020) Decision Support Systems [16].
- (2019) BPM19 Demo paper [19].

RQ2 - How to create simulation
techniques that more accurately
capture the observed temporal
dynamics of business processes?

GAP3 - DL generative models must be able to generate not
only complete sequences of events, but also complete logs
starting from scratch.

#2 - Learning accurate generative
models of business processes
(see Chapter 5)

GAP4 - The generated logs must include the category of
the event, associated resource, and start and end times of
the activities, thus allowing an evaluation of the
performance of the scenarios.

Publications:
- (2019) BPM19 Conference paper [18].

GAP5 - The deep learning techniques must be able to
perform what-if analysis, one of the BPS’s key features.

#3 - Data-driven Simulation vs
Deep Learning (see Chapter 6)

Publications:
- (2021) PeerJ Computer Science [17].

#4 - Hybrid learning of Business Process
Simulation Models
(see Chapter 7)

Unpublished

Table 3: The first column presents the research questions, the second the gaps as-
sociated with the questions, and the third the thesis contributions and publications.
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2. BACKGROUND

This section presents background concepts used throughout the thesis.

2.1. Event log definition

For their analyses, PM techniques use the event logs generated by the process-
aware information systems that support the operation. In practice, the event logs
can be very different from each other. However, all event logs contain the records
of event occurrences at specific moments in time– where each event refers to a
particular process instance. Table 4 presents a basic example of an event log for a
production process.
Case ID Activity Resource Timestamp Transition Work Order Qty Part Desc. Report Type Qty Completed Qty Rejected Qty for MRB

Case 1

Turning & Milling ID4932 01/29/2012 23:24:00 start 10 Cable Head S 1 0 0

Turning & Milling ID4932 01/30/2012 05:43:00 complete 10 Cable Head S 1 0 0

Turning & Milling Q.C. ID4163 01/31/2012 13:20:00 start 10 Cable Head D 9 1 0

Turning & Milling Q.C. ID4163 01/31/2012 14:50:00 complete 10 Cable Head D 9 1 0

Laser Marking ID0998 02/01/2012 08:18:00 start 10 Cable Head D 9 0 0

Case 200

Final Inspection Q.C. ID4618 02/02/2012 12:38:00 start 251 Spur Gear D 250 1 0

Final Inspection Q.C. ID4618 02/02/2012 14:16:00 complete 251 Spur Gear D 250 1 0

Packing ID4820 02/03/2012 00:00:00 start 251 Spur Gear D 250 0 0

Packing ID4820 02/03/2012 01:00:00 complete 251 Spur Gear D 250 0 0

Table 4: Fragment of an example event log

More formally, an event log L is a set of traces such as L = { σi | σi ∈S ,1≤
i≤K }, in which S represents the set of all process traces, and K is the number
of traces. A trace is a non-empty sequence of events σ = 〈e1,e2, . . . ,en〉. The set of
all possible events is E , and each event e has at least a case identifier i , an activity
label l, a resource assigned to execute the task, and t the timestamp in seconds of
the task. The timestamp of the event can be associated with a transition in the life
cycle of the activity that generates the event y, typically the start or completion of
the activity, but other transitions can be included. Additionally, the event can also
contain additional data attributes specific to each process di j ∈ D j, 1 ≤ j ≤ m,
such as ei = (ii, li,ri, ti,yi,di1, ..., dim). Fig. 1 illustrates these definitions.

Figure 1: Event-log definition
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2.2. Business process simulation

A model is a simplification — smaller, less detailed, less complex, or all these
together — of some phenomenon, behavior, or system [32]. Science, in general,
builds models. These can be mathematical, logical, conceptual, or computational.
Simulation, for its part, uses the computer to explore the dynamics of a model
over time. In general, it makes sense when looking to represent complex systems.
The simulation of simple and complicated systems falls better in the plane of the
illustration of phenomena (for educational purposes, for example) or computer
graphics. Modeling and simulation are carried out mainly for three purposes:

1. When we seek to understand (and explain) fundamental processes.
2. When we want a phenomenon or system to behave as we wish / would like.
3. When we want to see emergencies, dynamics, processes, elements, and oth-

ers that we cannot see (= understand) outside of simulation and modeling
frequently.

A simulation is a powerful tool and way of thinking that allows us to under-
stand systems and solve problems characterized by high uncertainty, changing en-
vironments, symmetry breaks, emergencies, and evolution, among other features.
It is also helpful in cases where it is impossible to intervene in the real system due
to ethical, economic, temporal, or governmental limitations.

Business processes are ideal for using simulation since all the above condi-
tions are met. BPS is undoubtedly one of the main quantitative process analysis
techniques and is used mainly for the evaluation of process design options and
possible scenarios (i.e., what-if analysis) [25]. Specifically, in this last applica-
tion, the objective is deciding how to improve a business process concerning one
or more cost and time-related performance measures [91].

Discrete Event Simulation (DES) is the most widely used simulation technique
in BPS [1, 25]. DES seeks to represent the changes on a system (in our case, a
business process) as a sequence or series of events that occur in discrete moments.
In this sequence, an entity is processed and transformed, and these changes are
recorded into a simulated log. For example, a purchase order is processed step-by-
step until sending the product to the customer in a purchase-to-pay process. The
underlying statistical paradigm that supports DES is queuing theory. Traditionally,
BPS models are made up of a formal process model enhanced with parameters that
enable its execution over time by a DES simulator, as can be seen on Fig. 2.

This thesis considers business process models represented in the Business Pro-
cess Model and Notation (BPMN). In its basic form, a BPMN process model
consists of activity nodes (or activities for short) and gateways that are intercon-
nected by sequence flows. A split gateway has multiple outgoing sequence flows.
An exclusive decision gateway is a split gateway that encodes one decision– i.e.,
when the execution of the process reaches this gateway, only one of its outgoing
sequence flows is taken. An inclusive decision gateway allows multiple outgoing
flows to be taken when the branching conditions are satisfied. Any inclusive deci-
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Figure 2: BPS model components example for a purchase-to-pay process

sion gateway can be trivially transformed into a combination of exclusive decision
gateways and parallel gateways; hence, we can restrict ourselves to exclusive deci-
sion gateways without a loss of generality. The branches coming out of a decision
gateway are called conditional branches. A BPS model then consists of a BPMN
process model plus the following elements [25]:

• The mean inter-arrival time of cases and their associated Probability Dis-
tribution Function (PDF), e.g., one instance of a case is created every 10
seconds on average with an exponential distribution.

• The PDF of the processing times of each activity. For example, the process-
ing times of an activity may follow a normal distribution with a mean of 20
minutes and a standard deviation of 5 minutes or an exponential distribution
with a mean of 10 minutes.

• Optionally, other performance attributes for the task– such as cost and
added-value produced by the activity.

• For each conditional branch in the process model, a branching probability
(i.e., percentage of time the conditional branch in question is taken when
the corresponding decision gateway is reached).

• The resource pool that is responsible for performing each activity in the
process model. For example, in an insurance claims handling process, a
possible resource pool would be the claim handlers. Each resource pool
has a size (e.g., the number of claim handlers or the number of clerks). The
instances of a resource pool are the resources.

• A timetable for each resource pool, indicating the periods during which the
resources are available to perform activities (e.g., Monday-Friday from 9:00
to 17:00).

• A function that maps each task in the process model to a resource pool.
• The required number of process instances to be simulated (e.g., 1000).

Once the model is defined, the simulator stochastically creates new process
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cases according to the inter-arrival time PDF. The simulator constrains the execu-
tion of each case according to the control-flow semantics described in the process
model and following the next activity execution rules:

i If an activity in a case is enabled, and there is an available resource in the
pool associated with this activity, the activity is started and allocated to one
of the available resources in the pool;

ii When an activity is completed, the resource allocated to the activity is avail-
able again.

Hence, the waiting time of an activity is entirely determined by the availability of
a resource. Resources are assumed to be eager– as soon as a resource is assigned
to an activity, the activity is started.

The simulation of a BPS model yields a simulation log consisting of events
generated during the execution time and a collection of performance metrics. Sup-
pose we created the simulation model to reflect the AS-IS state of the process
accurately. In that case, we could use this output to understand internal process
dynamics, identify possible improvement opportunities such as bottlenecks, or
perform a what-if analysis.

The most used performance metrics in BPS are cycle, processing, and waiting
time. The cycle time of a process instance (herein called a case) is the amount of
time between the moment the case starts, and the moment it ends. By extension,
we define the cycle time of an instance of an activity as the amount of time be-
tween the moment the activity instance is enabled (i.e., ready to be executed) and
the moment it completes.

The processing time of an activity instance is the time comprehended between
the moment a resource start working on it and its completion. Usually, there is
a delay between the moment an activity instance is enabled and the moment it
starts. This delay is called waiting time. We define the processing time of a case
as the amount of time when the process instance is active, meaning that at least
one activity instance of this case has started but not yet been completed. The
waiting time of a case is the cycle time of the case minus the processing time.

These definitions also apply to a process, which consists of a set of cases. The
cycle time of a process is the mean cycle time of its cases. Similarly, the cycle
time of an activity is the mean cycle time of its activity instances.

2.3. Deep learning in business processes

DL is a subfield of machine learning concerned with the construction and use of
networks composed of multiple interconnected layers of neurons (perceptrons),
which perform non-linear transformations of data [34]. These transformations
allow the network to learn the behaviors/patterns observed in the data. Theoret-
ically, the more layers of neurons there are in a network, the more it becomes
possible to detect higher-level patterns in the data due to the composition of com-
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plex functions [44]. DL models have been applied in several subfields of PM,
particularly in the context of Predictive Process Mining (PPM). PPM is a class of
PM techniques concerned with predicting, at runtime, some properties about the
future state of a case, e.g., predicting the next event(s) in an ongoing case or the
remaining time until completion of the case.

Fig. 3 illustrates a case in which we have a running case σ = 〈e1,e2,e3〉 and
we want to know its possible future states. For this purpose, we use a genera-
tive DL model that has been trained using examples of possible subsequences of
execution and expected outcomes. The possible outcomes can be the category
of the next event and its respective timestamp (in our example the category and
timestamp of e4), the case’s continuation (in our example the full subsequence
〈e4,e5, ...,en〉), and the remaining time of the process (in the example the time
difference between en and e3). This predictive information can be used for the
proactive adaptation of the process. Proactive adaptation can mitigate the impact
of execution problems by dynamically re-planning the flow of a running process
instance. Proactive process adaptation thereby can avoid contractual penalties or
time-consuming roll-back and compensation activities. Below, we describe the
most common DL architectures applied to predicting the future of an ongoing
case.

• Case continuation
• Remaining time

Next activity category 
and timestamp

…e1 e2 e3

Running case

e4 en
DL e5

Figure 3: Example of the Deep learning models application in business processes

2.3.1. Deep learning architectures in predictive processes
monitoring

Deep Feed-Forward networks (DFFNs). These kinds of networks, also called
multi-layer perceptrons, are the most basic DL models. In DFFNs, each neuron
of a layer is connected to all the neurons of the next layer, allowing the informa-
tion to flow without cycles. Commonly these networks are made up of an input
layer, followed by intermediate layers of neurons, and an output layer (see Fig. 4).
DFFNs uses a back-propagation algorithm to calculate a function that produces
the desired output from the input data [33, 78].

DFFNs are well suited for tabular data; however, they are not the most popular
kind of architecture in PPM. The scarce application of this type of architecture in
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PPM is due to the sequential nature of business processes, in which the dependen-
cies between activities play a primary role. Notwithstanding, some authors have
applied them in combination with other methods, such as autoencoders [57], or
after extracting features from the process model [88].

Convolutional Neural Networks (CNNs). CNNs are specialized DL models for
processing grid-like data such as images[45]. CNNs extend DFFNs by introduc-
ing three additional concepts: convolutional layers (local filters), pooling layers,
and weight sharing. A convolutional layer convolves a kernel with the input to ob-
tain a feature map. Many kernels of different sizes are often applied on the same
input, resulting in many feature maps of different sizes. Pooling layers are placed
between convolutional layers to reduce the number of parameters to be calculated
and speed up the training phase. In the CNNs structure, usually, upper layers use
broader filters that work on lower resolution inputs, processing the more complex
parts of the input. Finally, fully connected layers combine the inputs from all posi-
tions. This hierarchical organization allows CNNs to model local structures in the
input using supervised learning algorithms. Fig. 5 shows the general architecture
of CNNs.

Although this type of architecture does not specialize in the management of
temporal dependencies between observations as observed in event logs, some au-
thors have explored its application in PPM [39, 22]. In fact, CNNs are the second
most used technique in these kinds of predictive tasks due to their high perfor-
mance in terms of training time, as will be discussed in Chapter 3.

RNN and LSTM networks. Recurrent Neural Networks (RNNs) are DL mod-
els specialized in processing sequential data in which temporal relations are rel-
evant [78]. RNNs have been applied with great success in problems related to
text processing, such as text generation or the prediction of the next word of a
sentence. Thanks to the similarities between the structures of event logs and para-
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Figure 5: In the same way of DFFNs, the input of the CNNs are prefixes
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graphs (i.e., traces such as phrases, events such as words), the RNN models are
also the most commonly used in PPM[84, 27, 18, 62, 36]. Each RNN neuron, also
called a "cell," contains cyclic connections capable of storing representations of
events that pass through them. In fact, RNNs can be unfolded, which is equiva-
lent to having multiple copies of the same cell connected sequentially. Each cell
takes as input the hidden state — the memory — of the previous cell and the cur-
rent input to generate a new hidden state in the network. More formally, we can
calculate the hidden state of a cell ht as:

ht = f (Wht−1 +V xt +b) (2.1)

In this equation, t represents the current moment, and t− 1 the previous one.
The model takes a sequence of the input at the time t xt and the hidden state of
the previous cell ht−1, and computes them using a non-linear activation function
(commonly tanh). W and V are matrices of weights, and b the bias vector. Fig. 6
presents the basic RNN cell structure.
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Figure 6: RNN basic structure

Even though RNNs have a good performance when predicting sequences with
short-term temporary dependencies, they fail to account for long-term dependen-
cies. Long Short-Term Memory networks (LSTMs) [37] address this problem by
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using a mechanism of long-term memory called “cell state” ct . In the long-term
memory, the information flows from cell to cell with minimal variation – keeping
certain aspects constant during the processing of all inputs – creating coherence
in long-term prediction. To decide what information is added or removed, LSTMs
using gated structures. The following equations describe the LSTM model:

ft = σ(Wf ht−1 +Vf xt +b f ) (2.2a)

it = σ(Wiht−1 +Vixt +bi) (2.2b)

ot = σ(Woht−1 +Voxt +bo) (2.2c)

C̃t = tanh(Wcht−1 +Vcxt +bc) (2.2d)

Ct = ft ∗Ct−1 + it ∗C̃t (2.2e)

ht = ot ∗ tanh(Ct) (2.2f)

In these equations, ft is the “forget gate” and filters what information is re-
moved from the cell state ct ; it is the “input gate” and controls what information
is going to be updated in the cell state. Ct is the combination of the past and cur-
rent information of the cell. C̃t is the calculation of the cell state for the current
time step. Finally, ot is the “output gate,” which computes the new output ht of
the cell. Fig. 7 presents the basic LSTM cell structure.
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Figure 7: LSTM basic structure

2.3.2. Predictive process monitoring training pipeline

Deep learning models are mainly used, but not exclusively, in supervised learning
tasks. Supervised learning seeks to deduce a probability function from labeled
training data. The supervised learning approaches applied in PPM follow a series
of defined steps (see Fig. 8):

Validation strategy selection and event log splitting step. A widespread prob-
lem in machine learning is over-fitting, which occurs when the model fits exactly
against its training data, thus implying that the model cannot generalize its results
to future data. To avoid this risk, it is necessary to implement validation strategies
that ensure the model is relevant to data collected in the future, not only with the
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model’s training data. There are multiple validation strategies– such as Holdout,
K-fold cross-validation, and Random Sub-sampling– which can be implemented
to avoid this risk. These techniques work with subsets of the data (train and test
splits), so that the model is always tested with unobserved data. Fig. 9 presents
the validation schemes most commonly used in machine learning.
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Figure 9: Most common splitting strategies

In PPM and other applied disciplines, the temporal split strategy is commonly
used as a validation approach. In this approach, the splits are defined from the
selection of a fixed time-point, where any trace after that point is used for testing.
This strategy is considered the most strict and realistic setting, which is why it is
used in this thesis. However, one limitation of the temporal splitting is that after
calculating the intersection between the training and testing sets, the total number
of cases and events retained is much smaller than under other strategies, meaning
there are fewer cases available for training/validation/testing. Fig. 10 presents the
temporal split validation scheme used in this thesis.

Traces encoding step. In DL models, traces must be encoded in fixed-size
tensors. However, there is great variability in the length of each trace in a business
process, so this step supposes a significant challenge. Furthermore, this step also
defines how the training targets are fed into the neural network. Some of the
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Figure 10: In this image, σn represents each log trace arranged in the temporal
order. We marked in red the traces that resulted incomplete due to the selected
temporary cutoff points. We will remove such traces from the event log

methods most used in the literature for this task are the following:
• Prefixes encoding: This method seeks to extract incremental sub-sequences

from each trace. Each sub-sequence must be right padded with zeroes if
they are shorter than the specified vector length, which usually corresponds
to the size of the longest trace in the event log. For example, if we have
the trace σ1 = 〈e1,e2,e3,e4〉 the set of possible padded prefixes that we
can extract is {〈0,0,0,e1〉,〈0,0,e1,e2〉,〈0,e1,e2,e3〉,〈e1,e2,e3,e4〉}. The
target variable is commonly the next event in the sub-sequence, the time
remaining until the end of the case, or the complete suffix of the sequence.

• N-grams encoding: In this method, every contiguous sequence of n-items is
extracted from a given trace, where n is a parameter defined by the modeler.
As in the prefix encoding method, the n-grams must also be padded, allow-
ing the creation of training examples from the first event of the trace. For
example, if we have the trace σ1 = 〈e1,e2,e3,e4〉 the set of possible n-grams
with n = 3 is {〈0,0,e1〉,〈0,e1,e2〉,〈e1,e2,e3〉,〈e2,e3,e4〉}.

• Sequential encoding: In this method, the log is viewed as a text, each trace
as a sentence of that text, and each activity as a word. In this type of en-
coding, a window W of events is moved from the beginning of the record to
the end, creating non overlapped samples of the size of the window at each
step. In case if a window is incomplete, it can be discarded or filled with ze-
ros. In the same way, every end of case is denoted by a special symbol. For
example, if we have a set of traces {〈e1,e2,e3〉,〈e4,e5〉} the set of possible
examples created a window W = 2 is {〈e1,e2〉,〈e3,EOT 〉,〈e4,e5〉}.

Events encoding step. Input encoding: DL predictive models require the fea-
tures to be represented as numerical vectors. This coding is done differently de-
pending on the nature of the variables, i.e., continuous, or categorical. In the
case of continuous features, these must be scaled to avoid the magnitude of bias a
variable generates in its interpretation by the model. Continuous variables can be
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scaled using multiple techniques such as log-normalization, min-max normaliza-
tion, and z-score normalization– this being generally a design decision. In the case
of categorical attributes, their transformation is more complex, since the transfor-
mation can directly affect the performance of the model. Some of the most used
coding strategies in PPM for this task are:

• One-hot encoding: In this strategy, each possible value of the category vari-
able is converted into a new attribute that can take the value of 1 if the
observation corresponds to that value or 0 otherwise.

• Frequency-based: This type of coding seeks to express how many times a
category has occurred up to the current position. This encoding is useful
when the modeler must add temporal information to the encoding of the
sequences.

• Embedding: In this technique, each category of the variable is uniquely
assigned to a space of n-dimensions. The coordinates in this space are as-
signed randomly or using the stochastic gradient descent algorithm during
the training of a predictive model.

Training step. Depending on the predictive task required, it is possible to train
the models in a discriminative or generative way. The training method determines
"what" the models learn from the data. Discriminative training seeks to teach
the models the decision limit between classes, while generative training seeks
to teach the real distribution of each class on the data. In other words, a model
that employs discriminative training learns the conditional probability distribution
p(y|x) directly or learns a direct map from the x inputs to the class label. Using
generative training, the model learns the joint probability distribution p(x,y) of
the inputs x and the label Y. The models make their predictions using Bayes’
rules to calculate p(y|x) and then select the most probable label Y. The type of
training determines how each training step is applied, from creating examples to
evaluating accuracy. Fig. 11a and Fig. 11b present an example of the differences
in each training step using the same sample data set.

Both generative and discriminative training methods have advantages and dis-
advantages. For instance, models trained in a generative way (aka, generative
models) can handle missing or partially labeled data and can readily handle com-
positionality (e.g., faces with glasses and/or hats, and/or mustaches), whereas
models trained in a discriminative way (aka, discriminative models) need to see
all combinations of possibilities during training. However, generative models are
also more computationally expensive than discriminative models. On its part,
discriminative models are typically fast at making predictions for new (test) data
points, while generative ones often require an iterative solution. The selection of
one algorithm or another depends on the required predictive task, data availability,
and computing capacity. This thesis mainly uses generative models since the pre-
dictive task required imply the creation of new data for which learning the joint
probability distribution is the natural approach.
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Generative Adversarial Networks (GANs). GANs are DL generative models
that use a type of training called adversarial that differs somewhat from the classic
discriminative and generative training. Adversarial training consists of training,
simultaneously, two different networks (one called generator and another called
discriminator) to compete with each other. The generator network is trained to
produce new data points from some random, uniform distribution. Its goal is to
fool the discriminator into believing that the input it sends is real. The discrimina-
tor network is trained to identify the fake data produced by the generator from the
real data. In each training cycle, the generator becomes better to confuse the dis-
criminator; however, the discriminator becomes better at detecting the fake traces
produced by the generator as well, which forces a joint improvement of the mod-
els. This process repeats for a time or until the Nash equilibrium is found. Fig 11c
presents the general structure of a GAN model using Adversarial training.

Model

Model

Generator

Discriminator

Real samples
(x, y)

0 (Real) 1 (Fake)

Generated samples
(x, y’)

Random input
(noise)

Predictions

Training data

X Y
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0, e1, e2 e3
e1, e2, e3 EOT

… .

Y’ e2 e3 EOT …
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Training data

X Y
e1, e2, e3 1
e4, e5 0

e1, e2, e3 1
… .

Y’ 1 0 1 …

a)  Generative training b)  Discriminative training c)  Adversarial training

Model Model

Training data

X Y
0, 0, e1 e2
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e1, e2, e3 EOT

… .

Figure 11: Comparison between different kinds of training methods
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3. STATE OF THE ART

In this review of the state-of-the-art, we aim to answer the following questions:
Q1 What approaches of generative models of business processes are based on

data-driven simulation?
Q2 What approaches of generative models of business processes are based on

deep learning models?
Q3 How could these methods be classified?

Q1 and Q2 are the main research questions that aim to identify the existing
approaches of generative models of business processes that we can potentially
use in the business process simulation. Q3 aims to define a taxonomy to classify
the approaches in groups based on their, specific, characteristics. We filtered and
contextualized the works in the systematic literature reviews already existing to
answer these questions. In the case of DDS approaches, we review the work of
Martin et al. [54], while in the case of DL approaches, we rely on the work of
Rama-Maneiro et al. [71].

3.1. Data-driven simulation approaches

Data-driven approaches to BPS can be classified in two categories. The first cate-
gory consists of approaches that provide conceptual guidance on how to discover
BPS models using PM techniques. The second category consists of approaches
that seek to automate the discovery of BPS models. Below, we review each of
these two categories.

3.1.1. Conceptual guidance for data-driven simulation using PM
techniques

These approaches discuss how PM techniques can be used to extract, validate, and
tune BPS model parameters without seeking to provide fully automated support.

Martin et al. [53] identify four components of a simulation model– namely
entities, activities, resources and gateways. The authors identify BPS modeling
tasks related to each of these components (e.g., modeling gateways, modeling
activities). In [54], the same authors present a literature review on the use of PM
techniques to support each of these modeling tasks. This review sheds insights
into the question of how to choose PM techniques for each of the BPS modeling
tasks. In this thesis, we use these insights as a basis to design an automated method
for the discovery of BPS models from event logs.

In [91], the authors present an approach to enhance a given process model with
simulation parameters. This approach differs from the one presented in the present
thesis in that it assumes that the process model is given as an input (in addition to
the event log). The approach also assumes that the process model perfectly fits the
event log. In reality, though, the traces in the event log may deviate with respect
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to the behavior captured in the process model. Moreover, the approach in [91]
does not seek to provide an automated end-to-end approach for discovering BPS
models from event logs rather, it focuses on providing guidance for approaching
some steps in the discovery of a BPS model.

The authors in [61] present a methodology for process improvement based on
data-driven simulation. The authors propose as a first step the discovery of simu-
lation models from data for the representation of the current state of the process.
Next, the authors propose the manual evaluation of possible scenarios to lead the
process to a desired state. The work is illustrated with three case studies from the
gas, government, and agriculture industries. This work is useful for scoping the
relevance of using data for discovering simulation models, as well as for identify-
ing the need for automating this task to explore possible scenarios more quickly
and efficiently. However, it does not provide concrete guidance for discovering
accurate BPS models from process execution data.

3.1.2. Automated discovery of business process simulation models
using process mining

The methods in this category seek to automate the discovery of BPS models from
event logs by means of PM techniques.

Rozinat et al. [75] propose a semi-automatic approach to discover BPS mod-
els based on Colored Petri Nets (CPN). In this work, an event log is used as an
input for the discovery of various elements of a BPS model, including the process
model, the conditional branching probabilities, and the resource pools. However,
the automatic discovery of activity processing times and case inter-arrival times
(and their probability distributions) are left aside. In [74], the authors go further
by proposing a technique to discover more complete BPS models that include pro-
cessing times and case inter-arrival times. These simulation parameters are then
combined with the process model into a single CPN, which can be simulated us-
ing a CPN tool. One limitation of the work of Rozinat et al. [74] is that it does
not seek to automatically adjust or fit the probability distributions of the process-
ing times of activities (nor the probability distribution of case inter-arrival times).
Also, the step where the multiple model BPS model elements are merged together
is not automated. Moreover, Rozinat et al. do not seek to optimize the accuracy
of the BPS model. The authors suggest measuring the accuracy of the simulation
model by comparing the cycle time produced by the BPS model concerning the
input event log, but this only provides a coarse-grained assessment. Two event
logs may have similar cycle times, yet the activities in the corresponding traces
may occur at very different points in time and order.

Khodyrev et al. [40] propose a PM approach to generate BPS models tailored
for the short-term prediction of performance measures. The authors extract the
structure of the process as a Petri Net and establish the dependencies between el-
ements and variables using decision trees. A limitation of this approach is that
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it does not discover the resource perspective (i.e., the resource pools) of the BPS
model. Instead, it assumes that an infinite amount of resources may perform each
activity. While the authors automatically discover the conditional branching prob-
abilities and of the activity processing times, the integration of these elements into
a BPS model is left to the user. Moreover, the approach does not define how to
measure and optimize the accuracy of the resulting BPS model.

Gawin et al. [31] combine multiple PM techniques to create a BPS model that
reflects actual process behavior. Specifically, PM techniques are employed to ex-
tract the process model structure, the resource pools, the activity processing times,
and the decision logic of decision gates. Interviews and process documentation
techniques are used to elicit the case inter-arrival times, the costs of the use of
resources, and the definition of resource schedules. The simulation parameters
discovered in this way are then manually linked in the ADONIS tool, leading to a
BPS model that is then executed with a capacity analysis algorithm of this latter
tool. This latter work differs from the one reported in this thesis in that it does not
seek to automate the extraction of all elements of a BPS simulation model (nor
their assembly). Also, it does not seek to measure and optimize the accuracy of
the BPS model.

Finally, in a more recent study Pourbafrani et al. [69] propose a DDS approach
to derive the system dynamics of simulation models from logs for what-if analy-
sis. This type of model allows performing analysis at a high level of abstraction
without going into the details of the process. The same authors [68] present an
approach for the generation of DDS models based on time-aware process trees by
automating the extraction of simulation parameters. However, the responsibility
for tuning these parameters lies completely on the user.

Table 5 summarizes the capabilities of the above approaches for BPS model
discovery. In this table, the symbol (+) implies that the feature is supported, (−)
implies not supported, and (+/−) implies partially supported, e.g., supported but
not in an automated manner.
Characteristics Rozinat et al.

(2006)[75]
Rozinat et al.
(2009)[74]

Khodyrev et al.
(2014)[40]

Gawin et al.
(2015)[31]

Pourbafrani et al.
(2020)[68]

Sequence flow discovery (+) (+) (+) (+) (+)

Resource pools discovery (+) (+) (-) (+) (+)

Branching probabilities discovery (+) (+) (+/-) (+) (+)

Probabilities distribution fitting (-) (-) (-) (-) (+)

Model assembly (-) (-) (-) (-) (+)

Accuracy assessment (-) (+/-) (+/-) (+/-) (+)

Accuracy optimization (-) (-) (-) (-) (-)

Table 5: Comparison of approaches to discover and/or enhance BPS models

In summary, this review of related works allowed us to identify the charac-
teristics that every DDS approach must meet and the sources of possible biases
that the existing works have not addressed. Specifically, most of the works in the
current state-of-the-art present two shortcomings that we must manage in order to
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obtain a fully automatic tool for the discovery of DDS models: (i) Existing stud-
ies have not extensible explored the question of measuring the accuracy of BPS
models concerning the input data used to discover them, (ii) none of the works
perform automatic optimization of the hyperparameters of the PM techniques to
obtain the most accurate model possible. In this research, we propose a fully au-
tomated simulation model discovery method that addresses these shortcomings.
We materialized the method through a tool called Simod [16], that we introduce
in Chapter 4.

3.2. Generative neural network models in predictive
monitoring tasks

DL models have been widely applied in the field of predictive process monitoring.
Predictive process monitoring is a subfield of PM that deals with forecasting how
a running case will develop. DL models have been used successfully in tasks such
as process outcome prediction, anomaly detection, and prediction of the future of
an ongoing case in this area. We focus mainly on those models used in the last
task, since it is the one that directly uses DL generative models. Related work
in this area presents many combinations between possible architectures, ways to
encode traces and events, and the number of predictive tasks that each model
can perform. However, it is possible to identify three large groups: those using
generative RNNs as a base, those using other types of models such as DFFNs or
CNNs, and those who explore complementary methods to improve the precision
of the generative models. Next, we review each of these three categories.

3.2.1. Related work based on RNNs

Due to the sequential nature of event logs, the type of neural network most used in
predictive process monitoring has been RNNs (especially LSTM networks), since
they specialize in processing this type of data.

Tax et al. [84] is one of the first works to use RNNs networks to predict the fu-
ture state of an ongoing case. Specifically, the authors employed LSTM networks
to predict the type of next event and its timestamp. In this approach, the authors
encoded the log trace using incremental sub-sequences called prefixes, while the
types of events are encoded using one-hot encoding. Supplementary, each event
is enhanced with other features related to the event’s occurrence time, such as the
time of the day, the time since the previous event, and the accumulated duration
since the start of the case. The network architecture consisted of a shared LSTM
layer that fed two independent LSTM layers– one specialized in predicting the
next event category and the other in predicting times. By repeatedly predicting
the next event category in a case and its timestamp, the authors also used their ap-
proach to predict the remaining sequence of events until case completion and the
remaining cycle time. The experiments showed that the LSTM approach outper-
forms automata-based methods for predicting the remaining sequence of events
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and the remaining time [14, 67]. In this approach, the event type was one-hot
encoded. This design choice is suitable when the number of event types is low,
but detrimental for larger numbers of event types.

Evermann et al. [27] also applied LSTM networks to predict the type of the
next event of a case. Unlike [84], this approach used the embedded dimension
of LSTMs to reduce the input’s size and to include additional attributes such as
the resource associated with the task execution. The network’s architecture com-
prised two LSTM hidden layers. An empirical evaluation showed that this ap-
proach sometimes outperforms the approach of [84] at the task of predicting the
next event. However, this approach focused on predicting only event types. It
cannot handle numerical variables, and hence it cannot predict the next event’s
timestamp.

Navarin et al. [62] proposed an adaptation of the [84] approach specialized
in predicting the remaining time of a running case. The authors used the same
input encoding methods and LSTM architectures as those used by [84]. The main
difference between both approaches focused on the definition of the target vari-
able. In this approach, the models were trained to predict the remaining time of
the case directly; conversely, in [84] the prediction was performed iteratively. The
authors demonstrated that direct training avoids the accumulation of errors, thus
improving the accuracy of the overall method. This approach outperformed all
the reference works for the predictive task of predicting the remaining time of an
ongoing case. However, it cannot be generalized to other predictive tasks, such as
predicting the next event or the process suffix.

Multiple works have explored the impact of data attributes to improve the ac-
curacy of LSTM models. For example, in Schonig et al. [79], the authors em-
ployed LSTM models for the prediction of the next event type and associated
resource. For this task, they used complete sequences of activities, resources, and
data attributes. Similarly, in Hinkka et al. [36] the authors used GRU models in
conjunction with prefixes as encoding methods, and data attributes to predict the
category of the next event. The main contribution of this work was the proposal
of a clustering method of data attributes to reduce the dimensionality of the input
data.

More elaborately, Lin et al. [49] proposed an RNN-based approach, namely
MM-pred, which used data attributes and an encoder-decoder architecture for
predicting the next event type and the suffix of an ongoing case. The proposed
architecture was composed of encoders, modulators, and decoders. Encoder and
decoder layers used LSTM networks to transform the features of each event into,
and from, hidden representations. The modulator component infers a variable-
length alignment weight vector, in which each weight represents the relevance of
the attribute for predicting future events and features.

In the previous approaches, the use of data attributes significantly improved
the accuracy of the models, which was very useful in the case of predictive tasks
that were carried out directly, e.g., the prediction of the next event. However,
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predictive tasks that require been carried out iteratively by feeding backed the
models– e.g., event logs generation from scratch. The use of data attributes would
imply the accumulation of errors in all the features – since they need to be done
iteratively— significantly deteriorating the predictions’ quality.

Taymouri et al. [86] in a more recent study, proposed to use a GAN method
to train an LSTM model capable of predicting the type of the next event and its
timestamp. The strategy proposed by the authors consists of two LSTM models,
one generative and one discriminative, that were trained simultaneously through
a game of adversaries. In this game, the generative model must learn to con-
fuse a discriminative model to avoid distinguishing real examples from fake ones.
As the game unfolds, the discriminative model increases its ability to distinguish
between fake and real examples, thus forcing the generator to improve the gener-
ated examples. The authors showed that this GAN approach outperforms classical
training methods for the task of predicting the next event and timestamp on certain
datasets.

3.2.2. Related work based on other DL architectures

Arguing some limitations of RNNs, such as the limited handling of long-term
dependencies and the high computational cost involved in their training, alter-
natively, some works have explored the use of other types of networks such as
DFFNs or CNNs that have many applications in fields such as image processing.

Mehdiyev et al. [57] proposed another approach to predict the next event using
a multi-stage deep learning approach. In this method, each event is mapped to a
feature vector, and multiple transformations are applied to reduce the input’s di-
mensionality, i.e., extracting n-grams, using a hash function, and passing the input
through two auto-encoder layers. Then the transformed input is then processed by
a DFFN responsible for the next-event prediction. This approach did not handle
numerical variables, and hence it can not predict timestamps or durations.

In Theis et al. [88] the authors proposed an alternative approach to the RNN
and CNN models, in which they used a DFFN network in conjunction with a decay
function technique for the prediction of the next event. The method discovers a
process model in Petri nets format and performs a token replay of the event log on
the model. Then apply a decay function that encodes the time between the current
timestamp and the times a token was in each place during replay. The training
target is the next event after each replayed activity prefix on the Petri net. The
proposed technique had the advantage of potentially capture parallel relations be-
tween the activities that were not easily captured by observing the ordering of the
events in the log. However, this encoding is not compatible with more robust and
specialized models in sequences such as RNNs and CNNs. Similarly, its structure
makes it difficult to generalize to other predictive tasks, such as predicting the
process suffix.

The works proposed by [39, 22, 65] used CNN networks to predict the next
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event category. Al-Jebrni et al. [39] employed a neural network composed of five
one-dimensional CNN layers, the authors selected this architecture considering
the similarity in the data dimensionality and its cheaper computational cost. As
inputs, this model used uniquely sequences of event types encoded with embed-
ded dimensions. One of the main problems of CNN networks is defining the size
of the kernel used for the convolution operation, which significantly affects the
information extracted. This problem was not explored in [39]; however, the work
proposed by Di Mauro et al. [22] addressed this problem by using a module called
inception for one-dimensional CNN networks. The inception module simultane-
ously applies many convolutions with different kernel sizes over the same input.
In addition to the activity category sequences, this model uses time sequences.
The proposed method encodes the log sequences as prefixes and uses embedded
dimensions to encode the categorical attributes. Unlike the two previous works,
the proposed by Pasquadibisceglie et al. [65] used a traditional two-dimensional
CNN network. The method transforms the temporal data enclosed in the event log
into spatial data to treat them as images. This work used the prefixes of activities
and times and encoded the event types using embedded dimensions.

All the three previous works exceed the accuracy of LSTM-based ones for
predicting the next event category. However, they still do not consider the problem
of simultaneously predicting the next event and its timestamp, so they cannot be
used in BPS, which is the problem at hand in this thesis.

Table 6 summarizes the capabilities of the above DL generative models. In
this table, the column "Architecture type" indicates the kind of neuronal net-
work used in the approach: Long Short-Term Memory (LSTM), LSTM trained
with Adversarial training (LSTM-GAN), Gated Recurrent Unit (GRU), Convolu-
tional Neural Network (CNN), Autoencoder (AE), and Deep Feedforward Net-
work (DFNN). The "Encoding methods" column describes the trace and event
encoding methods applied to transform the event log in vectors. "Trace encoding"
methods: Full sequence (SEQ), Prefixes padded (PRFX), N-gram (NGRAM),
and Timed state sample (TSS). "Event encoding" methods: Embedding (EMB),
One-hot encoding (ONE-HOT), Frequency-based (FB), and Index-based (IDX).
The "Input features" column describes the relevant features supported in the
model’s training (the symbol X indicates supported). Sub-columns names: Event
type/Activity (AC), Resource (R), Time features (TF), Data Attributes (DA), En-
gineered features (EF), and Process Model (PrM). The "Predictive task" column
describes the supported predictive tasks (the symbol X indicates supported). Next
event prediction sub-columns: Event type/Activity (AC), resource (R), Time fea-
tures/timestamp (TF), Data Attributes (DA). Sequences prediction sub-columns:
Case continuation/Activities sequence (AC), Remaining Time (RT), and Data at-
tributes sequence (DA).

This review allowed us to identify the works in the current state-of-the-art that
can potentially be used in business process simulation. Specifically, in this thesis,
we present an approach to train DL generative models based on LSTM networks
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Approaches Architecture
Type

Encoding methods Input Features Predictive task

Trace
encoding

Events
encoding

Next Event Sequences

AC R TF DA EF PrM AC R TF DA AC RT DA

Tax et al. (2017) [84] LSTM PRFX ONE-HOT X X X X X X

Evermann et al. (2017) [27] LSTM SEQ EMB X X

Navarin et al. (2017) [62] LSTM PRFX ONE-HOT X X X X

Schonig et al. (2018) [79] LSTM SEQ ONE-HOT X X X X X

Hinkka et al. (2019) [36] GRU PRFX ONE-HOT X X X

Lin et al. (2019) [49] LSTM SEQ EMB X X X X X X

Taymouri et.al. (2020) [86] LSTM-GAN PRFX ONE-HOT X X X X

Mehdiyev et al. (2017) [57] AE+DFNN NGRAM IDX X X X

Theis et al. (2019) [88] DFNN TSS FREQ X X X X X

Al-Jebrni et al. (2018) [39] CNN SEQ EMB X X

Pasquadibisceglie et al. (2019) [65] CNN PRFX FREQ X X X

Di Mauro et al. (2019) [22] CNN PRFX EMB X X X

Table 6: Comparison of deep learning generative models applied in predictive
process monitoring

that can handle large numbers of event types (see Chapter 5), in which we combine
the idea of using the embedded dimensions from [27] with the idea of interleaving
shared and specialized layers from [84]. We selected these methods because they
have the capability of generating both the type of the next event in a trace and its
timestamp. This means that if we iteratively apply these methods starting from
an empty sequence, via an approach known as hallucination, we can generate a
sequence of events such that each event has one timestamp (the end timestamp).
Hence, these methods can be used to produce entire sequences of timestamped
events. Therefore, they can be used to generate event logs that are comparable to
those that DDS methods generate, with the difference that the above DL training
methods associate only one timestamp to each event. In contrast, DDS methods
associate both a start and end timestamp to each event. Accordingly, we needed
to adapt the above two DL methods to generate two timestamps per event for full
comparability.

3.2.3. Related work in complementary areas

The following works do not directly attack questions Q1 and Q2; however, we
decided to include them because they provide a complementary view of some
techniques that can be used in BPS.

In one complementary work, Di Francescomarino et al. [21] proposed encod-
ing of rules to determine the next task in a running case as a complementary
technique to the works of [84, 27]. The authors identified two types of rules,
named no-cycle and a-priori. No-cycle rules intend to detect and avoid the stag-
nation in high probabilities of LSTM models, a frequent problem in this type of
network. Meanwhile, a-priori knowledge rules filter the output of the generative
model based on known factors by an analyst that can determine the future path of
an ongoing case that, in principle, these factors can change from case to case. The
rules were defined in terms of Linear Temporal Logic (LTL) [66] and are applied
over the prediction performed by the generative models. The generative models
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are trained without knowing the rules, thus enabling their redefinition without re-
training the models. The results showed that the application of restrictions on the
generative model’s output helped improve the precision of the models.

In another work, Tax et al. [83] compared the performance of several tech-
niques for predicting the next element in a sequence using real-life datasets.
Specifically, the authors compared generative Markov models (including all-k
Markov AKOM), RNN, and automata-based models in terms of precision and
ability to be interpreted. The results that the AKOM model yields the highest ac-
curacy (outperforming an RNN architecture in some cases) while automata-based
models have a higher ability to be interpreted. This latter study addressed the
problem of predicting the next event’s type. Still, it does not consider the problem
of simultaneously predicting the next event and its timestamp, as we do in this
thesis.
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4. SIMOD: AUTOMATED DISCOVERY OF BUSINESS
PROCESS SIMULATION MODELS FROM EVENT

LOGS

According to the review of the state-of-the-art works, we identify two research
gaps in the current BPS techniques based on data:
GAP1 Existing studies have not extensible explored the question of measuring

the accuracy of BPS models derived from data; and,
GAP2 The fine-tuning of simulation parameters is left to the modeler, thus leav-

ing the door open for the introduction of biases during the creation of BPS
models.

In response, this section will introduce the simulation model discoverer (Simod)
tool specialized in generating simulation models from event logs automatically.
Simod uses an automated process discovery technique to extract a process model
from an event log and then enhances this model with simulation parameters ex-
tracted via a combination of trace alignment, replay, and curve-fitting techniques.
The tool incorporates a Bayesian hyperparameter optimization technique to fine-
tune the accuracy of the resulting simulation model. The first part of this chapter
will describe the tool’s execution pipeline and each of its steps. In the same way,
we will introduce the Event-Log Similarity metric specialized in measuring the
similarity between two event logs, including the sequence and time perspective.
Later we will present the evaluation of the tool that was carried out using three
event logs (one synthetic and two real-life) from different domains.

4.1. Approach Description

The proposed method takes as input an event log in which every event (corre-
sponding to the execution of an activity instance) has the following attributes: a
case identifier, an activity label, a resource that performed the activity, the start
timestamp, and the end timestamp1. The resource attribute is required to discover
the available resource pools, their timetables, and the mapping between activities
and resource pools. Equally, the start and end timestamps are required to compute
the processing time of activities and their respective probability distributions.

Fig. 12 illustrates the steps of the proposed method for automating the discov-
ery of BPS models. These steps are explained and exemplified in the following
subsections using a synthetic event log of a Purchase-to-Pay (P2P) process. This
event log 2 consists of 21 activities, 27 resources, and 9119 events related to 608
cases.

1Alternatively, the event log can also be processed in scenarios where each activity instance is
recorded as a start event and an end event, each one with a corresponding timestamp.

2Taken from the tutorial of the Disco PM tool, available at http://fluxicon.com/academic/
material/
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Figure 12: Steps of the BPS model discovery method

4.1.1. Phase 1: Pre-processing

These steps allow us extracting a BPMN process model from the event log and
guaranteeing their conformance3 [59]. Most of the time, due to the characteristics
of the process discovery algorithms, the models do not reflect all the possible paths
in a business process (the fitness is not 100%). Therefore, the proposed method
allows applying repair actions on the log to improve the fitness between the model
and the log.

Control Flow Discovery. We use the Split Miner algorithm [11] to generate
BPMN v2.0 models from event logs. We selected this process discovery method
since it achieves high levels of accuracy (precision and fitness) while at the same
time producing simple process models [10]. However, there is no limitation to use
other process discovery methods (e.g., Inductive Miner [46]).

Split Miner allows us the discovery of models with different sensitivity levels,
which depend on the epsilon (ε) and eta (η) parameters. The ε parameter refers
to the parallelism threshold, which determines the number of concurrent relations
captured between events. The η parameter refers to the percentile for frequency
threshold, which only the η percentiles most frequent paths between activities.
Table 7 outlines the structure of the event log used as input, while Fig. 13 illus-
trates the resulting model using ε as 0.3 and η as 0.7.

Alignment Evaluation. We measure the degree to which each trace in the log
can be aligned with a corresponding trace produced by the process model by using
the fitness measure proposed in [7]. This alignment is a sequence that has the
length of the longest trace, and it consists of three symbols: SM (“synchronous
move”), MM (“move-on-model”), and ML (“move-on-log”). An SM indicates
that the two traces match (i.e., the current activity is the same in both traces). An
MM means that the two current activities do not match and that the algorithm will
“skip” the current activity in the model. Thus, the algorithm moves forward in the

3Conformance checking is the discipline in PM that attempts to align the execution trace of a
case with the model to detect deviations. The fitness measure quantifies the extent to which the
model can reproduce the traces recorded in the log to quantify conformance [15].
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Case ID Activity Start Timestamp Complete Timestamp Resource

1 Create Purchase Requisition 2011/01/01 00:00:00 2011/01/01 00:37:00 Kim Passa

2 Create Purchase Requisition 2011/01/01 00:16:00 2011/01/01 00:29:00 Immanuel Karagianni

3 Create Purchase Requisition 2011/01/01 02:23:00 2011/01/01 03:03:00 Kim Passa

1 Create Request for Quotation 2011/01/01 05:37:00 2011/01/01 05:45:00 Kim Passa

1 Analyze Request for Quotation 2011/01/01 06:41:00 2011/01/01 06:55:00 Karel de G root

2 Create Request for Quotation 2011/01/01 08:16:00 2011/01/01 08:26:00 Alberto Duport

4 Create Purchase Requisition 2011/01/01 08:39:00 2011/01/01 09:00:00 Fjodor Kowalski

Table 7: Event-log format example

Figure 13: SplitMiner BPMN output example of the purchasing process

trace of the model, but we stay in the current position in the log trace. Conversely,
an ML means that the two current activities do not match; thus, the current activity
is skipped in the trace of the log to align the two traces (and remain in the same
position in the trace of the model). A perfectly aligned pair of traces contains only
SM symbols. Otherwise, the number of MM and ML symbols capture the level
of misalignment.

Log Repair. Once conformance (fitness) is measured, it can be improved by
performing a model repair, an event log repair, or both [73]. We perform a log
repair for those traces that do not fully fit a trace in the discovered process model.
We propose three methods for this purpose: removal, replacement, and repair.

The Removal method omits the traces that are not in conformance with the
extracted model, leaving only a reduced log composed of conformant traces. This
method is the most natural and computationally cheap to avoid the outlier traces
in the data source. However, if the event log has low conformance with the model,
it could result in a tiny event log that could not sufficiently represent the process
dynamics.

The Replacement method replaces each non-conformant trace with a copy of
the most similar conformant one. This action keeps the amount of traces of the log
and globally compensates for the lack of conformance. We define the similarity
between traces as one minus the normalized Damerau-Levenshtein distance (DLd)
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between two strings. We created an alphabet by assigning a unique character to
each event in the log to construct words that describe the execution order of the
activities. Then, each non-conformant trace is compared with all the conformant
ones to find the most similar.

The Repair method aligns each process trace of the log with the extracted pro-
cess model. This action keeps the maximum recorded observations, preserving
the recorded time variability. We use the automata-based alignment technique
proposed in the ProConformance 2.0 tool4, which determines the optimal align-
ments between the log traces and the model and suggests a minimum number of
movements to make them conformant. To repair a given trace as a first step, we
scan its corresponding alignment from left to right, and then we apply one of three
operations:

• When an ML is found, we remove the responsible event in the trace.
• When an MM is found, we annotate the log with zero processing time and

a special resource called "AUTO." This annotation means that the activity
does not consume resources and hence does not have an impact on the cycle
time of the process.

• Finally, When an SM is found, the algorithm advances one step in the trace.
Fig. 14 illustrates a resulting repaired trace from the original trace with case

ID 100 of the purchasing process event log mentioned above. This trace has three
activities, ending prematurely concerning the process model discovered from the
log. In this case, the ProConformance tool returns a fitness value of 0.4/1 and
suggests a type of alignment that can be used to repair the event log.

Figure 14: Example: repairing a non-conformant trace

As an example of applying the three methods and their differences, suppose we
have an event log with 30% of traces that do not conform to the discovered model.
The Removal technique would eliminate these non-conforming traces, leaving
only 70% for the extraction of parameters. On the other hand, the Replacement
technique would seek in the 70% of conformant traces the most similar to the 30%
non-conformant, with the purpose of duplicate them, resulting in a log of the same
size as the original with a 30% of duplications. Finally, the alignment technique

4http://apromore.org/wp-content/uploads/2017/04/ProConformance2.zip
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would adjust each non-conformant trace, resulting in a log with 70% of original
traces and 30% of corrected ones.

Alternatively, this step could also be performed using the alignment technique
proposed in [8] which is capable of measuring the precision between an event log
and a model using alignments. However, for ease of implementation, we used
the technique proposed by [7] since it has a command-line version that is easily
integrable to the Simod discovery pipeline. Similarly, we were able to use con-
formance checking techniques in conjunction with partitioning techniques [60]
which would allow us to divide large processes into sets of sub-processes that can
be easily analyzed. However, this would give us multiple versions of the process
model, which would make it difficult to simulate and analyze.

4.1.2. Phase 2: Processing

At this stage, the tool extracts the simulation parameters and assembles them with
the process structure to create a BPS model.

Replay of the Event Log. We created a replay algorithm (see Algorithm 1) that
takes as input a process model and a repaired trace to calculate the processing time
and the enablement time of each activity execution (event) in the trace, as well as
the traversal frequency of each conditional flow. We use these measures later
to calculate the simulation parameters. The enablement time is the moment the
activity is allowed to start according to the state of the execution. In the simplest
case, the enablement time is equal to the end time of the preceding activity in the
trace, but this is not always the case, especially in the presence of parallel activities
in the process model. The traversal frequency is the number of times that the
conditional branch is traversed while replaying the trace in the log. Additionally,
the tool calculates the waiting time of each activity by subtracting the start time
minus the enablement time. The waiting times calculated in this way are later
compared with the waiting times calculated by the simulator to determine the
accuracy of the simulation.

This algorithm computes the traversal frequencies for each trace in the log
and then sums up them to compute the total traversal frequency of each condi-
tional flow. The algorithm relies on the concept of marking of a BPMN process
model [23] to capture an execution state concerning a BPMN model. A mark-
ing in a semantically correct (sound) process model is a function that maps each
sequence flow in the model to a boolean value. A sequence flow is mapped to
true if and only if there is a token in that sequence flow in the current state. The
current marking of the model initializes where there is a token in the sequence
flow coming out of the start event of the model. Then, the algorithm iterates over
each event in the input trace, containing start and end timestamps, to calculate the
processing time of the activity. Before handling a given event e, the algorithm
fires every gateway enabled in the current marking until no more gateways can be
fired. When an XOR-gateway is fired, the conditional flow that leads to an activity
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Algorithm 1: Replay
inputs : A Process Model M, A trace T
output : processingTime: A map from events in T to Int
output : enablementTime: A map from events in T to Timestamp
output : traversalFrequency: A map from sequence flows in M to Int
for each ( e ∈ T ) {

processingTime[e]← endTime(e)− startTime(e);
repeat

gatewayFired← f alse;
for each ( g ∈ gateways(M) ) {

if isEnabled(M,currentMarking,g) then
if gatewayType(G) = XOR then

tc f ← traversedConditionalFlow(M,currentMarking,g,e);
traversalFrequency[tc f ]++;
currentMarking← f ire(M,currentMarking,g,e);
gatewayFired← true;

end
end

}
until not gatewayFired;
for each ( t ∈ Tasks(M) where isEnabled(M,currentMarking,g) ) {

if (enablementTime[nextOccurrence(t,T )] 6= /0) then
enablementTime[nextOccurrence(t,T )]← currentTime;

end
}
currentMarking← f ire(M,currentMarking,e);
currentTime← endTime(e);

}
return processingTime,enablementTime, traversalFrequency;

corresponding to the event e is traversed. Accordingly, the traversal frequency of
this conditional flow is increased by one.

The algorithm iterates over the activities enabled in the current marking. If
an activity is enabled and the enablement time of the next occurrence of this ac-
tivity has not yet been initialized (the activity was not enabled before), then the
enablement time of this activity is set to be equal to the current execution time.
At this point, and given that the model can parse every trace in the repaired input
log, the activity corresponding to the event e must be enabled. Accordingly, the
algorithm fires this activity and updates the current execution time to be equal to
the end time of the event e. The algorithm relies on two auxiliary functions: the
isEnabled function determines if a gateway is enabled in the current marking of
a BPMN model, whereas the fire function computes the marking reached from
the current marking when firing a given gateway. These functions implement the
semantics of gateways defined in the BPMN standard. Specifically, a split gate-
way (with a single incoming flow) is enabled when a token is in its incoming
flow. When it fires, the token is removed from its incoming flow, and a token is
produced in each of its outgoing flows (in case of an AND gateway) or in one of
its outgoing sequence flows (in case of an XOR gateway). In the latter case, the
conditional flow leading to enablement of the next event e in the trace is selected.
Conversely, an AND-join gateway is enabled if there is a token in each of its in-
coming flows, while an XOR-join gateway is enabled when there is a token in any
of its incoming flows. When a join gateway fires, the tokens in its incoming flows
are removed, and a token is added to its outgoing flow.

Discovery of the inter-arrival distribution. This step determines the PDF of
the inter-arrival times for the cases. To this end, the traces in the log are sorted
by the start time of their activities. We assume the timestamp of the first event
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in a trace as the case creation time. Otherwise, a pre-processing task can be used
to estimate the actual case creation time as discussed in [55]. Then, we calculate
the difference between the subsequent start times of the traces daily based. The
resulting data series of inter-arrival times are then analyzed to determine which
PDF yields the minimum standard error. Suppose the volume of data is too low
to determine a distribution (i.e., less than 100 observations). In that case, we as-
sume an exponential distribution with a mean equal to the mean of the observed
data. We used this distribution as it is commonly suggested in the process simu-
lation literature [25]. Our current implementation supports Normal, Exponential,
Uniform, Fixed-value, Triangular, Gamma, and Log-normal PDFs. In the running
example, the PDF that best fits the observed inter-arrival times is an exponential
PDF with a mean of 15455 seconds.

Definition of Conditional branching probabilities. A BPS model requires
defining the probabilities of the paths enabled by decisions made in the gateways.
These probabilities can be established by assigning equal values to each condi-
tional branch (e.g., if there are two branches, we assign 0.5 probability to each) or
by replaying or aligning the traces in the event log against the discovered process
model. In the latter case, we normalize the traversal frequencies of the outgoing
branches computed during replay so that their sum is one, hence converting these
traversal frequencies into (normalized) probabilities. In the case of our example
event log, the XOR1 gateway has two possible paths to the activities "Amend Re-
quest for Quotation" and "Send Request for Quotation to Supplier." These paths
were executed on 563 and 608 occasions, respectively, which means execution
probabilities of 0.48 and 0.52 of these paths (see Fig. 15).

Figure 15: XOR gateway probabilities definition example

Activity processing times measurement. We determine the PDF of the pro-
cessing time of a given activity A in the process model in two steps. First, we
create a data series consisting of observed processing time for each execution of
activity A in the log (computed by the log replay). Next, we fit a collection of
possible distribution functions to the data series to select the distribution function
that yields the smallest standard error. For example, we analyze each one of the 21
activities in the purchasing process event log. As can be seen in Table 8, most of
the processing times follow a Uniform distribution with a mean of 3600 seconds.

Extraction of resource pools. Resource pools defining organizational roles
and groups are discovered by using the algorithm proposed in [81]. This algo-
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PDF

Uniform Normal Exponential Gamma Lognorm Fixed Triangular
# of Activities 9 2 – 2 3 5 –

Mean 3600 1285.25 – 1027.55 764.66 24 –

StdDev 0 136.82 – 548.92 704.54 32.86 –

Table 8: Purchasing process activities probability distribution functions summary

rithm defines activity execution profiles for each resource by creating a graph
using the correlation of profiles, considering only the relations that overpass a
user-defined similarity threshold. The resulting graph is a set of unconnected
components (clusters) that correspond to groups of resources (resource pool) that
generally perform the same type of activities. The algorithm in [81] then assigns
each activity to one or more resource pools. Therefore, we post-process this out-
put to assign each activity to the resource pool that most frequently performs it,
as required by a BPS model. In our running example, 26 resources were grouped
in 5 resource pools, each one assigned to one activity when using the algorithm
mentioned above5.

Simulation model assembly. Once we have compiled all the simulation pa-
rameters, we put them together with the BPMN model into a single data structure.
This step is dependent on the target DES simulator (e.g., BIMP or Scylla). In
BIMP, for example, this step involves embedding the simulation parameters in-
side the BPMN model, using proprietary XML tags.

Simulate Process. In this last step, the BPS model is given as input to a DES
model simulator to generate a simulated event log. It is important to note that
this step can be performed using another DES simulator such as those evaluated
in Jansen-Vullers et al.[38]; However, we use BIMP and Scylla for ease of imple-
mentation since they have command line versions that allow their easy integration
into the Simod pipeline. Below, we discuss how the accuracy of the resulting BPS
model is assessed and optimized.

4.1.3. Phase 3: Assessment and optimization

This stage aims to assess the accuracy of the event log generated by the simulator
concerning the input event log (i.e., ground truth) and automatically combine the
discovery parameters (i.e., the set of parameters used by the discovery algorithms
used in phases 1 and 2) to obtain the most accurate BPS model.

Assess BPS model accuracy. In order to tune the BPS models produced by
Simod, we need to have a way of measuring the accuracy of a BPS model. We
propose to measure the accuracy of a BPS model by simulating it and then mea-
suring the similarity (or conversely, the distance) between, on the one hand, the

5It turns out that this event log contains information about roles and the mapping from activities
to roles. We found that the algorithm in [81] re-discovered the roles already present in the event log
(without using this information) with 100% accuracy
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traces in the event log generated by the simulation and, on the other hand, the
traces in the log from which the BPS model was discovered (the ground truth). To
make the log generated by the BPS model comparable to ground truth, we simu-
late precisely the same number of traces as in the original log, e.g., if the original
log has 500 traces, we ask the simulator to simulate 500 traces.

We need to define a similarity (or a distance) measure between the simulated
log traces and the ground truth traces to apply the above idea. A straightforward
way of doing so is by calculating the Mean Absolute Error (MAE) between the
cycle times of the simulated traces and the real traces. While simple to compute,
this measure is coarse-grained. Two traces may have the same cycle time yet
consist of very different sets of events.

Another approach to comparing pairs of traces is through the DLd: the mini-
mum number of operations (e.g., adding, deleting, replacing, or transposing sym-
bols) required to transform a given string into another. For example, given two
traces represented as strings: “abcd” and “acbd”, their DLd is two. It is easy to
normalize this measure to return a number between zero and one by dividing the
absolute DLd by the maximum length of the two traces.

The DLd captures the differences in the activity occurrences and in the order-
ing of activities. However, it does not take into account two requirements that
arise when comparing two business process execution traces:

1. The DLd penalizes transposed activities, even if these activities are parallel
and hence may be completed in any order. For example, if activities b and c
are parallel activities, the distance between traces “abcd” and “acbd” should
be zero. The difference is accidental: in one trace b occurs before c, but it
could have been vice-versa.

2. The DLd does not consider the waiting times and processing times of the
activity occurrences represented by the events in a trace. Nevertheless, the
ability to faithfully capture activities’ waiting and processing times is a crit-
ical requirement in business process simulation.

To address the first requirement, we propose to modify the cost function used
in the DLd so that, if two activities are parallel, we do not penalize transposed
occurrences of these activities in the compared traces. To this end, we first analyze
the input event log in order to discover pairs of parallel activities using the so-
called alpha concurrency oracle. The alpha concurrency oracle states that in an
event log, two activities (a, b) are parallel if sometimes b directly follows a and
sometimes a directly follows b. The alpha algorithm uses these heuristics for
process discovery [5]. Note that these heuristics is not fail-proof. More fine-
grained concurrency oracles have been proposed in the literature [9], but they are
more complex to calculate, and they are not fail-proof either. In other words, we
could refine this idea by using more fine-grained concurrency oracles at the price
of higher computational cost.

Given the concurrency relation ‖ between activities returned by the alpha con-
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currency oracle, we modify the cost function used in the DLd so that an occur-
rence of an activity b can be replaced by an occurrence of a parallel activity c
without penalty, provided that both activities b and c occur in both input traces. In
other words, if these activities co-occur in both input traces, their occurrences are
interchangeable.

To address the second requirement, we draw inspiration from [24], which de-
fined a variant of the DLd for timed words. The idea is that if two events in the
compared traces have the same activity label, but their waiting and processing
times do not match, we assign a penalty when matching this pair of events pro-
portional to the difference between their timestamps. This penalty is normalized
so that it is between zero and one.

Based on the above ideas, we propose a modified version of the DLd, namely
the Business Process Trace Distance (BPTD). To define the BPTD measure, we
first introduce some notations.

We define an event as a tuple e = (l, p,w), where l is a symbol taken from
the alphabet of all possible activity labels L, p is the processing time and w the
event waiting time of the activities – p,w ∈ R+. Moreover, let E is the set of all
possible events, i.e.

E = {(l, p,w)| l ∈ L; p,w ∈ R+} (4.1)

A trace is a non-empty sequence of events σ = 〈e1,e2, . . . ,en〉 such that ei =
(li, pi,wi) ∈ E ,1≤ i≤ n. The set of all process traces is S . An event log L is a
set of traces from S and K is the number of traces in the event log.

L = {σi|σi ∈S ,1≤ i≤K } (4.2)

Given two traces σ ,σ ′ ∈S , the DLd between σ and σ ′ is the output of fol-
lowing recursive function when initially invoked with i = |σ | and j = |σ ′| :

d
(
σ ,σ ′, i, j

)
= min



0 i f i = j = 0
d (σ ,σ ′, i−1, j)+ c(σ〈i〉,σ ′〈 j〉) i f i > 0
d (σ ,σ ′, i, j−1)+ c(σ〈i〉,σ ′〈 j〉) i f j > 0
d (σ ,σ ′, i−1, j−1)+ c(σ〈i〉,σ ′〈 j〉) i f i, j > 0
d (σ ,σ ′, i−2, j−2)+ c(σ〈i〉,σ ′〈 j〉) i f i, j > 1

& σ〈i〉= σ ′〈 j−1〉
& σ〈i−1〉= σ ′〈 j〉

(4.3)

In the classical definition of the DLd, the cost function c returns one for each
deletion, insertion, replacement (mismatch), or transposition. BPTD is defined in
the same way as the DLd, but it uses a cost function that (i) does not penalize the
replacement of one activity by another parallel activity if both of these activities
co-occur in the input traces; (ii) introduces a penalty in case two events match
(i.e., they have same activity label or correspond to parallel activities) but they
have different waiting times or processing times. Formally, the cost function used
by BPTD is the following one.
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c(e,e′) =
{

β |p− p′|+(1−β ) |w−w′| if l = l′∨ (l ‖ l′∧ l, l′ ∈ σ ∧ l, l′ ∈ σ ′)
1 otherwise

(4.4)

...where |p− p′| is the absolute error of the normalized processing time and
|w−w′| is the absolute error of the normalized waiting time. The coefficient
β represents the weight given to the processing time and 1 - β the weight given to
the waiting time (we take β = 0.5 by default).

Iter. Sec. Events Cost with
concurrency

Cost without
concurrency

σ e1 = (a,0.3,0.4) e2 = (b,0.5,0.1) e3 = (c,0.4,0.1)
0

σ ′ e′1 = (a,0.2,0.4) e′2 = (c,0.5,0.2) e′3 = (b,0.5,0.1) e′4 = (d,0.1,0.1)
0 0

σ e1 = (a,0.3,0.4) e2 = (b,0.5,0.1) e3 = (c,0.4,0.1)
1

σ ′ e′1 = (a,0.2,0.4) e′2 = (c,0.5,0.2) e′3 = (b,0.5,0.1) e′4 = (d,0.1,0.1)
0.042 0.042

σ e1 = (a,0.3,0.4) e3 = (c,0.4,0.1) e2 = (b,0.5,0.1)
2

σ ′ e′1 = (a,0.2,0.4) e′2 = (c,0.5,0.2) e′3 = (b,0.5,0.1) e′4 = (d,0.1,0.1)
0.1 1

σ e1 = (a,0.3,0.4) e3 = (c,0.4,0.1) e2 = (b,0.5,0.1)
3

σ ′ e′1 = (a,0.2,0.4) e′2 = (c,0.5,0.2) e′3 = (b,0.5,0.1) e′4 = (d,0.1,0.1)
0 0

σ e1 = (a,0.3,0.4) e3 = (c,0.4,0.1) e2 = (b,0.5,0.1) e4 = (d,0.1,0.1)
4

σ ′ e′1 = (a,0.2,0.4) e′2 = (c,0.5,0.2) e′3 = (b,0.5,0.1) e′4 = (d,0.1,0.1)
1 1

Total cost 1.142 2.042

Table 9: Exemplification of BPTD measure

The BPTD measure allows us to compare two traces. However, the problem
we initially posed was that of comparing two logs. To compare two event logs
(the simulated log against the ground-truth log), we define a similarity measure,
namely Event Log Similarity (ELS), as the mean between the pairing of each trace
in one log with a trace in the other log. Specifically, we search for the pair-
ing of traces that minimizes the sum of the Business Process Trace Distances
(BPTDs) between the paired traces. We map the problem of pairing the traces of
the two logs to the assignment problem, and we use the well-known Hungarian
algorithm[42] to find the minimal-distance pairing. Given two logs L1 and L2 and
given a minimal-distance pairing P = {(σ1,σ2) | σ1 ∈ L1andσ2 ∈ L2} between the
traces in these logs:

ELS(L1,L2) =
1
|P|

(Σ(t1,t2)∈PBPTD(σ1,σ2))

For the optimization and evaluation phases, we use the ELS similarity function
with L1 being the simulated log and L2 being the ground truth.

Hyperparameter optimization. The previous subsections described the auto-
matic creation of a BPS model that integrates multiple perspectives of the pro-
cess. These perspectives are discovered by using one or more Process Mining
algorithms. However, critical decisions must be made in each step, either on the
techniques to be used or on the parameters’ values. For example, low filter val-
ues in the BPMN miner can drastically affect the simulation accuracy, creating
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spaghetti models impossible to reproduce by the simulator. The same can hap-
pen when choosing how similar the resources of the discovered pools should be,
or when it is required to select the best way to calculate the probabilities of the
decision gateways.

In a traditional approach, an expert would manually search for the best com-
binations by modifying the values of the parameters based on his expertise and
intuition. However, this is a time-consuming approach that often leads to far-
from-optimal results [90]. Therefore, we propose to use a Tree-structured Parzen
Estimator (TPE) as a hyperparameter optimizer [13] to find the best settings based
on the historical accuracy of the executed models. TPE is a sequential algorithm
that defines on each trial the following parameter configuration. The decision is
based on past results and nested functions that select the parameters’ values based
on a probability distribution and ranges specified for each one. The objective func-
tion seeks to minimize the loss, which is calculated as the inverse ELS measure.
Table 10 defines the used search space.

Category Variable Distribution Range

Control flow discovery Parallelism threshold (ε) Uniform [0...1]
Percentile for frequency threshold (η) Uniform [0...1]

Log repair technique
Repair n/a
Removal n/a
Replace n/a

Conditional branching probabilities
Random n/a
Equiprobable n/a
Discovered n/a

Resource pools Similarity threshold Uniform [0...1]

Table 10: Search space definition

Simod Interface. Simod was developed in Python 3.6 and offers a user inter-
face for Jupyter Notebooks. The user interface allows to select an event-log in
XES or CSV format and to decide how to generate and analyze the model (see
Fig. 16). From the interface, it is possible to define the preprocessing parameters
manually or use the hyperparameter optimizer. In both cases, Simod provides in-
formation on the execution of the discovery steps and the results obtained from
the similarity evaluation.
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Figure 16: Simod interface

4.2. Evaluation

The proposed method has been implemented in an open-source tool, namely
Simod, which is packaged as a Python application with Jupiter Notebook inter-
face.6 Simod takes as input an event log in XES format and produces a BPS model
ready to be simulated using the BIMP simulator [6]7. The source code of Simod
can also be configured to produce models for the Scylla simulator [70], but BIMP
is used as the default simulator because Scylla only supports a restricted set of
probability distributions, thus restricting the space of configuration options.

Using Simod, we conducted an evaluation to address the following specific
research questions:
SQ1 What is the accuracy of the BPS models generated by the proposed method?
SQ2 To what extent the hyperparameter optimization step improves the accuracy

of the BPS models?
6Tool and datasets available at https://github.com/AutomatedProcessImprovement/

Simod/tree/v2.0.0
7Available at http://bimp.cs.ut.ee
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4.2.1. Datasets

A pre-requisite to discover a BPS model from an event log is that the events in the
log should have both start and end timestamps. Unfortunately, this pre-requisite is
not fulfilled by publicly available real-life logs such as those in the 4TU Collection
of event logs.8 As an alternative, we validate the proposed approach using one
synthetic event log and two real-life event logs that satisfy the above requirement.

The first event log is a synthetic log generated from a model unavailable to the
authors of a P2P process9. This log is the same log used as a running example
in Sec. 4.1. The second log stems from an Academic Credentials Recognition
(ACR) process at the University of Los Andes in Colombia. The log comes from
a deployment of a Business Process Management System (BPMS), specifically
Bizagi. The model corresponding to this log was not available to the authors of
this thesis. The third log is that of a Manufacturing Production (MP) process,
exported from an Enterprise Resource Planning system [48]. The tasks in this
process refer to steps (or “stations’;) in the manufacturing process. The character-
istics of these logs are given in Table 11.

Event log Num.
traces

Num.
events

Num.
activities

Avg.
activities
per trace

Max.
activities
per trace

Mean
duration

Max.
duration

P2P 608 9119 21 14.9 44.0 21.5 days 108 days 7 hours

ACR 954 4962 16 5.2 23.0 14.9 days 135 days 19 hours

MP 225 4503 24 20.0 177.0 20.6 days 87 days 10 hours

Table 11: Statistics of the event logs

We choose these three event logs because they have distinct characteristics
regarding the number of activities, traces, resources, and times, and they come
from different domains. The ACR event log is the one that contains the highest
number of traces and the least number of average activities per trace, while MP is
the log with the least traces and the highest number of average activities per trace.
On the other hand, the P2P log corresponds to the scenario in which the event
log is generated from a process model defined in ideal conditions, so a 100%
fit between the two and high accuracy in the simulation is expected. The ACR
log corresponds to a self-service process executed on a BPMS. It is a relatively
complex process, which delivers a service to hundreds of users and involves over
a dozen workers. Finally, the MP event log is the scenario in which the process
structure is unknown and where the behavior of the resources can significantly
affect the structure of the process.

8https://data.4tu.nl/repository/collection:event_logs_real
9The log is part of the academic material of the Fluxicon Disco tool –https://fluxicon.com
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4.2.2. Experiment setup

To address the research questions, we compared a baseline variant of our method
against the hyperparameter optimized variant. The hyperparameter values used
for the baseline are given in the Baseline column in Table 12. We define the val-
ues of the hyperparameters in this scenario from the default values suggested by
the authors of the discovery algorithms and from values suggested in the literature
about the construction of simulation models [25]. The hyperparameter-optimized
variant explores 100 hyperparameter combinations per log using the TPE opti-
mization method mentioned above. The range of hyperparameter values given to
the TPE optimizer is shown in Table 12.

Parameter Baseline values Optimizer ranges

Parallelism threshold (ε) 0.1 [0...1]

Percentile for frequency threshold (η) 0.4 [0...1]

Log repair technique Removal Repair, Removal, Replace

Conditional branching probabilities Equiprobable Random, Equiprobable, Discovered

Similarity threshold 0.5 [0...1]

Inter-arrival times Exponential PDF PDF Discovered from data

Processing times Exponential PDF PDF Discovered from data

Table 12: Values of the configuration scenarios.

We discovered BPS models from each event log using both the baseline and the
optimized method. We then simulated each BPS model ten times, and each time,
we measured the similarity between the simulated log and the ground-truth using
the ELS measure introduced earlier. A total of 3000 simulated event logs were
generated: 1000 per input event log (10 simulation runs for each of 100 parameter
combinations tested by the hyperparameter optimizer).

The results of a simulation may vary from one run to another due to its stochas-
tic nature. To ensure that these stochastic variations are not responsible for the
conclusions drawn from the experiments, we applied the single-queue Mann-
Whitney U test to validate the significance of the optimization accuracy improve-
ment. The alternative hypothesis was that the accuracy of the best configuration is
higher than the accuracy of the baseline scenario. In this evaluation, we compared
the ten simulation runs of the best BPS found by the optimizer against the ten
simulation runs of the baseline model.

4.2.3. Results

Fig. 17 shows the accuracy results in terms of ELS when simulating the baseline
model and the BPS models generated by the optimizer for each of the event logs.
Since the search space has six dimensions, we organize the results by grouping the
hyperparameters according to the stage to which they belong, i.e., preprocessing
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or processing. Sub-figures 17a, 17c and 17e contrast the accuracy of the BPS
models with the η and ε values used for discovering the process model and with
the non-conformances handling technique. Sub-figures 17b, 17d, and 17f plots
the accuracy against the similarity threshold for discovering resource pools and
against the method for determining the conditional branching probabilities.

In the P2P event log, we observe a linear association between using the Re-
moval technique and model accuracy (see Figure 17a). In the processing stage
(see Fig. 17b), the branching probability discovery technique, in conjunction with
similarity threshold values of around 0.85, has a strong linear association with ac-
curacy. We also observe that the hyperparameter-optimized method outperforms
the baseline scenario.

The MP log led to different results. In the preprocessing stage (see Fig. 17c),
we observe an association between using the Repair technique and higher ac-
curacy values. In the processing stage (see Fig. 17d), there is a weak positive
association between using the Equiprobable allocation of probabilities and model
accuracy. The similarity threshold does not appear to be a determining factor.
Compared to the baseline model, the optimizer could find better configurations;
however, the choice of non-conformance handling technique played a more criti-
cal role in this log.

In the ACR event log, in the preprocessing stage (see Fig. 17e), the Removal
technique and the Repair technique have a strong association with higher model
accuracy values, especially with eta values greater than 0.4. However, none of
these two non-conformance handling techniques shows clear superiority. On the
other hand, and surprisingly, the Equiprobable allocation of branching probabil-
ities leads to higher accuracy (see Fig. 17f). As was the case in the MP log, the
similarity threshold does not appear to be a determining factor. For this log, the
baseline method led to slightly lower accuracy than the hyperparameter-optimized
method.

As shown in Table 13, the Mann-Whitney U test found that the differences in
accuracy between the simulation runs of the optimized BPS model and the runs of
the baseline BPS model are statistically significant for each of the three logs (i.e.,
null hypothesis rejected with p-values< 0.5).

log Baseline (ELS) Optimizer (ELS) p-values

P2P 0.8175 0.8622 9.13E-05

MP 0.2741 0.3118 9.13E-05

ACR 0.8699 0.8800 0.01882

Table 13: One tail Mann-Whitney U test results
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Figure 17: Accuracy results of the hyperparameter optimizer execution vs. base-
line scenario in terms of ELS (the bigger the better)
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4.3. Conclusions

In this chapter, we presented the first version of Simod, a method for automated
discovery of business process simulation models from event logs. In response to
the GAPs in the state-of-the-art, we also defined a measure for assessing the accu-
racy of a BPS model relative to an event log and used a hyperparameter optimizer
to maximize the accuracy of the final BPS model.

The empirical evaluation of the method has shown that the hyperparameter op-
timization method significantly improves the accuracy of the resulting BPS model
relative to an approach where default parameters were used. Also, it was observed
that the best configuration found varies from one event log to another, further em-
phasizing the need for automated hyperparameter optimization in this setting. A
threat to the validity of this study is that each parameter is extracted using a par-
ticular algorithm because our focus was on the automatic discovery of simulation
models and the search for greater precision concerning the process model used as
the basis. One possible extension of this tool could include multiple extraction
options for each parameter.

Another limitation of the present study is that the evaluation is restricted to one
synthetic and two real-life event logs. As such, the generalizability of the results
is limited: The results might be different for other event logs, and as shown in
the evaluation, particularly for event logs for which the automated process dis-
covery technique does not manage to discover an accurate process model. This
is because a prerequisite to discover a BPS model from an event log is that the
events in the log should have both start and end timestamps. Unfortunately, this
prerequisite is not easily fulfilled by publicly available real-life logs. As such, the
generalizability of the results is limited: The results might be different for other
event logs, and as shown in the evaluation, particularly for event logs for which
the automated process discovery technique does not manage to discover an accu-
rate process model. We lift this limitation in the following chapters, in which we
extended the number of event logs used in the evaluation.

It should be noted that further research has been developed over this tool, in-
cluding the discovery of other perspectives that were not included in this evalua-
tion. In [26] we extended the discovery method to include calendars that restrict
the availability of resources in running time as occurs in real life. This extension
and others carried out on the discovery pipeline aimed at improving its accuracy
are explained and evaluated in Chapter 6.
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5. LEARNING ACCURATE GENERATIVE MODELS
OF BUSINESS PROCESSES

Deep learning techniques have recently found applications in the field of predic-
tive process monitoring. These techniques allow us to predict, among other things,
what will be the subsequent events in a case, when they will occur, and which re-
sources will trigger them. They also allow us to generate entire execution traces
of a business process or even entire event logs, which opens up the possibility of
using such models for process simulation. However, to enable its use in this simu-
lation, it is necessary to close some gaps in the state-of-the-art works (see Sec. 3).
Specifically in this chapter, we focus on:
GAP3 DL generative models must be able to generate not only remaining se-

quences of events (suffixes) but also complete logs starting from scratch
(prefixes of size zero), and

GAP4 the generated logs must include, as a minimum, the category of the event,
associated resource, and start and end times of the activities allowing the
evaluation of the performance of the scenarios.

The first part of this chapter will describe the steps of the method and the evalu-
ated LSTM architectures. In the second part of the chapter, we will present two
evaluations; the first one compares different instantiations of the proposed archi-
tectures in terms of preprocessing and post-processing choices, and the second
compares the proposed approach with three comparable baselines in predictive
process monitoring, showing that the proposed approach outperforms previously
proposed LSTM architectures targeted at this problem.

5.1. Approach Description

This section describes the method we propose to build predictive models from
business process event logs. The method uses LSTM networks to predict se-
quences of successive events, their timestamp, and associated resource pools.
Three LSTM architectures are proposed that seek to improve the network’s learn-
ing concerning the different events logs characteristics. These architectures can
accurately reproduce the behavior observed in the log. Fig. 18 summarizes the
phases and steps for building predictive models with our method.

5.1.1. Phase 1: Pre-processing

Data transformation.. We carried out specific preprocessing tasks according
to the features’ nature (i.e., categorical or continuous) to improve the data quality
for feeding the models.

In the case of the categorical features, our main concern was their transforma-
tion into numerical values to be interpreted by the LSTM network without increase
the dimensionality of the features. In contrast with previous approaches that only
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Figure 18: Phases and steps for building predictive models

encode the sequence of activities of the process, our method uses activities and
resources as categorical features. The inclusion of multiple categorical features
seeks to use more information about the process behavior to improve the predic-
tion accuracy. However, this multiplicity increases the number of potential cate-
gories exponentially. To deal with this problem, we propose grouping resources
into roles and embedded dimensions for encoding the activities categories.

We group resources into roles using the algorithm described by Song and Van
der Aalst [81]. This algorithm seeks to discover resource pools (called roles in
[81]) based on the definition of activity execution profiles for each resource and
the creation of a correlation matrix of similarity of those profiles. This algorithm
allowed us to reduce the number of categories of this feature but keep enough in-
formation to help the LSTM network make the differences between events clearer.

The use of embedded dimensions helps control the exponential features growth
while providing more detailed information about the associations between fea-
tures. To exemplify its advantages, let us take the event log BPIC20121, which has
36 activities and five roles. If we use one-hot encoding to represent each unique
pair activity-role in the event log, 180 new features composed of 179 zeroes are
needed. This huge increment in dimensionality is mainly composed of useless in-
formation. In contrast, using embedded dimensions to map the categories into an
n-dimensional space, only four dimensions are needed to encode the log, in which
each coordinate corresponds to a unique category. In this dimensional space, the
distances between points represent how close one activity performed by one role
is concerning the same activity performed by another role. This additional infor-
mation can help the network to understand the associations between events and
differentiate them among similar ones.

We train an independent network to coordinate the embedded dimensions. The
training network was fed with positive and negative examples of association be-

1https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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tween features, allowing the network to identify and locate near features with
similar characteristics. We determine the number of embedded dimensions as the
fourth root of the number of categories to avoid a possible collision between them,
according to a standard recommendation used in the NLP community2. The gen-
erated values were exported and reused in all the experiments as non-trainable
parameters, which allowed not to increase the complexity of the models. Fig. 19a
presents the architecture of the network used for training the embedded layers,
whereas Fig. 19b shows an example of a generated embedding 3d space for activ-
ities.

(a) Embedded layers (b) Generated space

Figure 19: (a) The architecture of the model we used to encode the activities and
roles categorical features. (b) Each point corresponds to one activity or role; the
distances between the points were determined based on the relations the embed-
ding model found in the data.

In the case of continuous features, our primary concern was the scaling of the
values in a [0,1] range to avoid interpretation errors in the features’ importance
by our predictive models. Our model uses the relative time between activities as
categorical input, calculated as the time elapsed between the complete timestamp
of one event and the complete timestamp of the previous one. The relative time
is easier to interpret by the models and helps calculate the events’ timestamp in
a trace. However, due to the nature of each event log, the relative time may have
high variability. If the feature scaling is performed without care, helpful informa-
tion about the process behavior, such as time bottlenecks or abnormal behaviors,
can be lost. For example, we can observe this problem when scaling enabling
times. If the times in the event log present high variability or distribution different
from the normal distribution, normalization could distort the perception of data;
however, the use of log-normalization makes variations in relative times observ-
able. Fig. 20 illustrates the results of scaling the enabling times in the event log
BPIC2012. Therefore, we consider multiple scaling techniques (i.e., log normal-

2https://www.tensorflow.org/guide/feature_columns
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ization, normalization, z-transform, dividing over the max) as one of the hyper-
parameters to be evaluated to determine which best fits the characteristics of the
relative times.

(a) Original (b) Maximum value (c) Log-normalized

Figure 20: Scaling of relative times using different methods

Sequences creation.. To create the input sequences and expected events used
to train the predictive network, we decided to extract n-grams of fixed sizes from
each event log trace. N-grams allow control of the temporal dimensionality of
the input and bring clear patterns of sub-sequences describing the execution order
of activities, roles, or relative times, regardless of the length of the traces. One
n-gram is extracted for each time-step of the process execution and is done for
each attribute independently. Meaning that we have three independent inputs for
our models: activities, roles, and relative times. Table 14 presents five n-grams
extracted from the case id 174770 of the BPIC2012 event log. The numbers used
to represent the activities, roles, and times correspond to the indexes and scaled
values in the data transformation step.

Time Step Activities Roles Relative times

0 [0 0 0 0 0] [0 0 0 0 0] [0. 0. 0. 0. 0.]

1 [0 0 0 0 10] [0 0 0 0 5] [0. 0. 0. 0. 0.]

2 [0 0 0 10 7] [0 0 0 5 5] [0. 0. 0. 0. 4.73e-05]

3 [0 0 10 7 18] [0 0 5 5 1] [0. 0. 0. 4.73e-05 5.51e-01]

4 [0 10 7 18 5] [0 5 5 1 1] [0. 0. 4.73e-05 5.51e-01 1]

5 [10 7 18 5 18] [5 5 1 1 1] [0. 4.73e-05 5.51e-01 1 7.48e-04]

Table 14: N-grams for case number 174770 of the BPIC2012 event log

5.1.2. Phase 2: Model Structure Definition

LSTM networks were used as the core of our predictive models since they are a
well-known and proven technology to handle sequences, as the nature of a busi-
ness process event log. Fig. 21 illustrates the basic architecture of our network
consisted of an input layer for each attribute, two stacked LSTM layers, and a
dense output layer. The first LSTM layer provides a sequence output rather than a
single value output to feed the second LSTM layer. Additionally, the categorical
attributes have an embedded layer for their coding.
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Figure 21: Baseline architecture

Likewise, we tested three variants of the baseline architecture, as is shown in
Fig. 22. The hypothesis behind these approaches is that sharing information be-
tween the layers can help to differentiate execution patterns. However, the changes
produced by the different nature of the variables could interfere with the clear
identification of patterns in a log, generating noise in learning. The specialized
architecture (see Fig. 22a) does not share any information; in fact, it can be un-
derstood as three independent models. The shared categorical architecture (see
Fig. 22b) concatenates the activities and roles inputs and shares the first LSTM
layer. This architecture is expected to avoid the possible noises introduced by
sharing information between features of different nature (i.e., categorical or con-
tinuous). The full-shared architecture (see Fig. 22c) concatenates all the inputs
and completely shares the first LSTM layer.

(a) Specialized (b) Shared categorical (c) Full shared

Figure 22: Tested architectures
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5.1.3. Phase 3: Post-processing

Our technique is capable of generating complete traces of business processes start-
ing from a zero prefix size. This is done by using continuous feedback of the
model with each newly generated event until the generation of a finalization event
(hallucination). Although previous approaches have used this technique, we also
incorporate arguments of the maxima (arg-max) and random choice as techniques
for selecting the next predicted event category. Arg-max is the technique com-
monly used to select the next category of a prediction and consists of selecting the
one with the highest predicted probability. In theory, this technique should work
well for prediction tasks, such as the most likely category of the next event, given
an incomplete case.

However, if the model is used generatively, arg-max is inconvenient because
it reduces the variability in the kind of sequences generated. Arg-max provokes
the model to get trapped in the highest probabilities. To avoid this bias in the
model, we use the random selection (following the predicted probability distri-
bution) method for the category selection of the next predicted event, increasing
the variability in the generated traces. This method also helped us reveal what
the neural network has learned from the dynamics observed in the event log. Of
course, introducing a random element forces us to perform multiple repetitions
to reduce the stochastic variability finding the convergence in the measurements.
We evaluate both approaches (arg-max and random selection) in the evaluation of
results.

5.2. Evaluation

This section describes two evaluations. The first experiment compares different
instantiations of the three proposed architectures in terms of preprocessing and
post-processing choices. The second experiment compares the proposed approach
with three comparable baselines [84, 27, 49] for the next event, suffix, and remain-
ing time prediction tasks (see Sec. 3.2).

5.2.1. Datasets

For this evaluation, we use nine real-life event logs from different domains and
with diverse characteristics. Most of the event logs are public and were taken
from the Business Process Intelligence Challenge (BPIC), below the description
of their characteristics:

• The Helpdesk3 event log contains records from a ticketing management pro-
cess of the helpdesk of an Italian software company.

• The two event-logs within BPIC20124 are related to a loan application pro-
cess from a German financial institution. This process is composed of three

3https://doi:10.17632/39bp3vv62t.1
4https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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sub-processes from which we used the W sub-process to allow the compar-
ison with the existing approaches [83, 27].

• The event log within BPIC20135 is related to a Volvo’s IT incident and
problem management. We used the complete cases to learn generative mod-
els.

• The five event-logs within BPIC20156 contain data on building permit ap-
plications provided by five Dutch municipalities during four years. We sub-
divided the original event log into five parts (one per municipality). Ini-
tially, all the event logs were specified at a sub-processes level, including
more than 345 activities. Therefore, we preprocessed the logs to manage
them at a phases level by following the steps described in [87].

Each event log’s Sequence Flow (SF) was classified as simple, medium, and
complex according to its composition in terms of the number of traces, events,
activities, and length of the sequences. In the same way, we classify the Time
Variability (TV) as steady or variable according to the relation between the mean
and max duration of each event log (see Table 15).

Event log Num.
traces

Num.
events

Num.
activities

Avg.
activities
per trace

Max.
activities
per trace

Mean
duration

Max.
duration SF TV

Helpdesk 4580 21348 14 4.6 15 40.9 days 59.2 days simple stedy

BPIC2012 13087 262200 36 20 175 8.6 days 137.5 days complex stedy

BPIC2012W 9658 170107 7 17.6 156 8.8 days 137.5 days complex stedy

BPIC2013 1487 6660 7 4.47 35 179.2 days 6 years, 64 days simple irregular

BPIC2015-1 1199 27409 38 22.8 61 95.9 days 4 years, 26 days medium irregular

BPIC2015-2 832 25344 44 30.4 78 160.3 days 2 years, 341 days medium irregular

BPIC2015-3 1409 31574 40 22.4 69 62.2 days 4 years, 52 days medium irregular

BPIC2015-4 1053 27679 43 26.2 83 116.9 days 2 years, 196 days medium irregular

BPIC2015-5 1156 36.234 41 31.3 109 98 days 3 years, 248 days medium irregular

Table 15: Event logs description

5.2.2. Experiment 1: Comparison of LSTM architectures and
processing options

This experiment compares different instantiations of our approach in terms of
their ability to learn execution patterns and reproduce the behavior registered in
the event log reliably. Accordingly, we use the LSTM models to generate full
event logs starting from size zero prefixes, and we then compare the generated
traces against those in the original log.

Experiment setup. We used two metrics to assess the similarity of the gener-
ated event logs. The Damerau-Levenshtein distance (DLd) algorithm measures

5https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
6https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
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the distance between sequences, regarding the number of editions necessary for
one string character to be equal to another. This algorithm penalizes each action,
such as insertion, deletion, substitution, and transposition. Their measurements
are commonly scaled by using the maximum size between the two sequences that
are compared. Therefore, we use its inverse to measure the similarity between
a generated sequence of activities or roles and a sequence observed in the actual
event log. Then, a higher value implies a higher similarity among the sequences.

We trivially lift the DLd (which applies to pairs of strings or traces) to mea-
sure the difference between two event logs by pairing each generated trace with
the most similar trace (w.r.t. DLd) of the ground-truth log. Once the pairs are
formed (generated trace, ground-truth trace), we calculate the mean DLd. We
use the MAE metric to measure the error in predicting timestamps. This measure
is calculated by measure the absolute error value of the distance between an ob-
servation and the predicted value and then calculating the average value of these
magnitudes. We apply this for each pair (generated trace, ground-truth trace).

We used holdout as the validation technique by splitting the event logs into
two folds: 70% for training and 30% for validation. We used the first fold to
train 2000 models (approximately 220 models per event log). These models
were configured with different preprocessing techniques and architectures. The
configurations’ values were selected by randomly sampling the complete search
space of 972 combinations. With each trained model, we generated 15 new event
logs using the two techniques for the selection of the next activity described in
Sec. 5.1.3. In total, we evaluate more than 32000 generated event logs.

Results. Table 16 summarizes the similarity results of the event logs gener-
ated from different model instantiations. The Pre-processing, model definition,
and Post-processing columns describe the configuration used in each phase for
building the evaluated models. The DLd act and DLd roles columns measure the
similarity in the predicted categorical attributes. The MAE column corresponds to
the mean absolute error of the cycle time of the predicted traces.

These results indicate that it is possible to train models that learn and reliably
reproduce the observed behavior patterns of the original logs using our approach.
Additionally, the results suggest that for the LSTM models, it is more challenging
to learn sequences with a more extensive vocabulary than longer sequences. The
models require more examples to learn these patterns, as seen in the BPIC2012
and BPIC2015 results. Both logs have more than 30 activities, but there is a
significant difference in the amount of traces (see Table 15). The high degree
of similarity of the BPIC2012 also suggests that using embedded dimensions to
handle many event types improves the accuracy.

Concerning the architectural components evaluated in this experiment, we an-
alyze them according to the phases to build generative models: preprocessing,
model structure and hyper-parameters selection, and prediction. Regarding the
pre-processing phase, Fig. 23a illustrates how logs with little time variability
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Event log Pre-processing Model definition Post-processing DLd act. DLd roles MAE (days)
Scaling N-gram size Architecture Selection method

BPIC2012
max 15 specialized random 0.8929 0.7888 9

max 15 shared cat. random 0.885 0.8998 9

lognorm 15 concatenated random 0.8426 0.856 4

BPIC2012W
max 15 specialized random 0.8742 0.8245 11.8

max 15 concatenated random 0.7902 0.8552 7.3

max 10 concatenated random 0.7855 0.8329 5.9

BPIC2013
lognorm 10 joint arg max 0.5442 0.698 242.6

max 15 shared cat. random 0.7209 0.8139 471.5

lognorm 15 shared cat. random 0.4416 0.8475 472.5

BPIC2015-1
max 10 concatenated random 0.4397 0.8048 76.6

lognorm 10 specialized random 0.4228 0.8498 79.3

lognorm 10 concatenated arg in ax 0.3642 0.5922 40.1

BPIC2015-2
lognorm 10 shared cat. arg in ax 0.3737 0.6228 159.4

max 15 concatenated random 0.3462 0.8612 158.3

max 10 shared cat. arg max 0.0431 0.1691 89

BPIC2015-3
lognorm 10 concatenated random 0.4616 0.8501 53.2

lognorm 5 concatenated random 0.4456 0.8729 54.4

lognorm 15 concatenated arg max 0.4255 0.7786 39.6

BPIC2015-4
lognorm 5 concatenated arg max 0.4034 0.7188 96

lognorm 5 specialized random 0.3609 0.8248 98.8

max 5 shared cat. arg max 0.0581 0.0968 71.1

BPIC2015-5
lognorm 15 specialized random 0.3633 0.8653 84.1

max 5 shared cat. random 0.3323 0.9019 82.5

lognorm 10 concatenated arg max 0.3228 0.6547 49.6

Helpdesk max 5 shared cat. random 0.9568 0.9869 42.1

max 5 joint arg max 0.5773 0.7368 7.3

Table 16: Similarity results in event logs for different configurations

present better results using max value as scaling technique. In contrast, logs
that have an irregular structure have lower MAE using log-normalization. Ad-
ditionally, Fig. 23b presents the results of DLd similarity in the use of n-grams of
different sizes concerning the structure of event logs. We can observe that longer
n-grams have better results for logs with longer traces, showing a steady increas-
ing trend. In contrast, it is not clear a trend for the event logs with medium and
simple structures. Therefore, the use of long n-grams should be reserved for logs
with very long traces.

Regarding the model structure definition phase, Fig. 24 illustrates that the con-
catenated architecture has the lowest overall similarity. In contrast, the model ar-
chitecture that only shares information between attributes of the same nature has
the median best performance. However, it is not very distant from the specialized
architecture, albeit a wider spread. This result implies that sharing information
between attributes of different nature can generate noise in the network’s patterns

70



(a) Scaling of relative times results (b) N-gram size selection

Figure 23: Preprocessing phase components comparison

identification, thus hindering the learning process.
Regarding the prediction phase, Fig. 25 shows how random choice outper-

forms arg-max in all the event logs. This behavior is even more clear in the event
logs with longer and complex traces. The results suggest that random choice is
advisable to assess the learning process despite the event log structure.

5.2.3. Experiment 2: Comparison against baselines

This experiment aims to assess the relative performance of our approach at the
task of predicting the next event, the remaining sequence of events (i.e., suffixes),
and the remaining time, for trace prefixes of varying lengths.

Experiment setup. For next event prediction, we feed each model with trace
prefixes of increasing length, from 1 up to the length of each trace. We predict
the next event for each prefix and measure the accuracy (percentage of correct
predictions). For suffix and remaining time prediction, we also feed the models
with prefixes of increasing lengths. However, this time, we allow the models
to hallucinate until the end of the case is reached. The remaining time is then
computed by subtracting the timestamp of the last event in the prefix from the
timestamp of the last hallucinated event. As in [84], we use DLd as a measure
of similarity for suffix prediction and MAE for remaining time prediction. For
next event and suffix prediction, we use [84, 27, 49] as baselines while for
remaining time prediction, we only use [84], since [27] and [49] cannot handle
this prediction task. We only use the Helpdesk, BPIC2012W, and BPIC2012
event logs because these are the only logs for which results are reported in the
three baselines. The results reported for [27] for the Helpdesk and BPIC2012
event logs correspond to the re-implementation of this technique reported in [49].
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Figure 24: Shared layers’ overall similarity

(a) Similarity per structure type (b) Overall similarity

Figure 25: Comparison of next-event selection methods

Results. Table 17 summarizes the average accuracy for the next-event predic-
tion task and the average similarity between the predicted suffixes and the actual
suffixes. For the task of next-event prediction, our approach performs similar
to that of Evermann et al. [27] and Tax et al. [84] while slightly outperforming
them for the BPIC2012W event log. However, it underperforms the approach by
Lin et al. [49] For the task of suffix prediction, our approach outperforms all base-
lines, including that of Lin et al. These results suggest that the measures adopted
for the dimensionality control of the categorical features allow our approach to
achieve consistently good performance even for long sequences.
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Next event accuracy Suffix prediction distance

Implementation Helpdesk BPIC2012W BPIC2012 Helpdesk BPIC2012W BPIC2012

Our approach 0.789 0.778 0.786 0.917 0.525 0.632

Tax et al. 0.712 0.760 0.767 0.353

Everman et al. 0.798 0.623 0.780 0.742 0.297 0.110

Lin et al. 0.916 0.974 0.874 0.281

Table 17: Next event and suffix prediction results

Fig. 26 presents the MAE for remaining cycle time prediction. Even though
the objective of our technique is not to predict the remaining time, it achieves
similar performance at this task relative to Tax et al. – slightly underperforming it
in one log and slightly outperforming it for long suffixes in the other log.

(a) Helpdesk (b) BPIC2012W

Figure 26: Results of remaining cycle-time MAE in days

5.3. Conclusions

This chapter outlined an approach to train LSTM networks to predict the next
event type in a case, its timestamp, and the role associated with the event. By
iteratively predicting the next event, the approach can also predict the remaining
sequence of events of a case (the suffix), and it can also generate entire traces
from scratch. The method consists of a preprocessing phase (scaling and n-gram
encoding), an LSTM training phase, and a post-processing phase (selecting the
predicted next event among the likely ones). The chapter compared several op-
tions for each of these phases concerning generating full traces that closely match
the traces in the original log. The evaluation shows that using longer n-grams
increases the accuracy in logs with long traces; log-normalization is a suitable
scaling method for logs with high variability, and randomly select the next event
using the probabilities produced by the LSTM leads to a most comprehensive va-
riety of traces and higher accuracy, relative to always choosing the most likely
next event.

The evaluation also showed that the proposed approach outperforms existing
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LSTM-based approaches for predicting the remaining sequence of events and their
timestamps starting from a given prefix of a trace.

This work helped lay the foundations for applying generative deep learning
models in BPS. Indeed, in its essence, a process simulator is a generative model
that produces sets of traces consisting of event types, resources, and timestamps.
From that set of traces, it is possible to calculate performance measures such as
waiting times, cycle times, and resource utilization. While process simulators rely
on interpretable process models (e.g., BPMN models), any model capable of gen-
erating traces of events composed of an event type (activity label), a timestamp,
and a resource, can, in principle, be used to simulate a process.

The generative models trained with the method that we present in this chapter
can generate complete traces of processes starting from prefixes of zero size, al-
lowing the generation of event records composed of multiple traces, providing a
solution to the research GAP3. Furthermore, in response to the research GAP4,
this technique can generate events composed of event types, resources, and times-
tamps resembling those produced by traditional simulation models. These logs
can potentially be used to analyze the behavior of a process –as it could be done
using more conventional simulation models—, with the advantage that DL mod-
els do not require the definition of an explicit process model or the distributions of
times and resources as a basis. In the next chapter, we will evaluate and compare
in a more detailed way the characteristics of the conventional DDS generative
models vs. the DL generative models introduced in this chapter.
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6. DATA-DRIVEN SIMULATION VS DEEP LEARNING

A generative model is a statistical model capable of generating new data instances
from previously observed ones. In the context of business processes, a generative
model creates new execution traces from a set of historical traces, also known as
an event log. Up to this point in this thesis, we introduce two types of genera-
tive business process models: In Chapter 4 we proposed a data-driven simulation
approach, and in Chapter 5 we proposed an approach to train deep learning gen-
erative models. Until now, these two approaches have evolved independently, and
their relative performance has not been studied. This chapter fills this gap by em-
pirically comparing a data-driven simulation approach with multiple deep learning
approaches for building generative business process models. The study sheds light
on the relative strengths of these two approaches and raises the prospect of devel-
oping hybrid approaches that combine these in preparation to solve the research
GAP5 (cf. Sec. 1.2).

In the Sections 6.1 and 6.2, we describe the adaptations made to the generative
models to compare them under the same conditions. Later, in Section 6.3 we
exhaustively compared the relative precision and characteristics of the DDS versus
DL generative models under the same conditions, including the number of event
logs (eleven in total).

6.1. Generative data-driven process simulation models

In this research, we use an updated version of the Simod tool that we introduce in
the Chapter 4 as a representative DDS method because, to the best of our knowl-
edge, it is the only fully automated method for discovering and tuning business
process simulation models from event logs. The use of methods with automated
tuning steps, such as that of [74, 68], would introduce two sources of bias in the
evaluation: (i) a bias stemming from the manual tuning of simulation parameters,
which would have to be done separately for each event log using limited domain
knowledge; and (ii) a bias stemming from the fact that the DDS model would be
manually tuned while the deep learning models are automatically tuned as part of
the model training phase.

By using Simod, we ensure a fair comparison, insofar as we compare a DDS
method that performs automatic data-driven tuning of model parameters with deep
learning methods that, likewise, tune their parameters (weights) to fit the data.
Fig. 27 depicts the updated steps of the Simod method, namely "Structure discov-
ery" and "Time-related parameters discovery".

In the structure discovery stage, Simod extracts a BPMN model from data
and guarantees its quality and coherence with the event log. The first step is the
Control Flow Discovery, using the SplitMiner algorithm [11], which is known for
being one of the fastest, simple, and accurate discovery algorithms. Next, Simod
applies Trace alignment to assess the conformance between the discovered pro-
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• Control Flow Discovery
• Trace alignment
• Branching probabilities 

definition
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• Interarrival dist.
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• Instances calendars
• Resource avail calendars

Time-related parameters discovery

Figure 27: Pipeline of Simod to generate process models.

cess model and each trace in the input log. The tool provides options for handling
non-conformant traces via removal, replacement, or repair to ensure full confor-
mance, which is needed in the following stages. Then Simod discovers the model
branching probabilities, offering two options: assign equal values to each condi-
tional branch or computing the conditional branches’ traversal frequencies by re-
playing the event log over the process model. Once all the structural components
are extracted, they are assembled into a single data structure that a discrete event
simulator can interpret (e.g., Bimp). The simulator is responsible for reproducing
the model at discrete moments, generating an event log as a result. Then, Simod
uses a hyperparameter optimization technique to discover the configuration that
maximizes the Control-Flow Log Similarity (CFLS) between the produced log
and the ground truth.

In the time-related parameters discovery stage, Simod takes as input the
structure of the optimized model, extracts all the simulation parameters related
to the perspective of times, and assembles them in a single BPS model. The
extracted parameters correspond to the PDF of Inter-arrival times, the Resource
pools involved in the process, the Activities durations, the instances’ generation
calendars and the resources’ availability calendars. The PDFs of inter-arrival
times and activities durations are discovered by fitting a collection of possible
distribution functions to the data series, selecting the one that yields the smallest
standard error. The evaluated PDFs correspond to those supported by the BIMP
simulator (i.e., normal, log-normal, gamma, exponential, uniform, and triangular
distributions). The resource pool is discovered using the algorithm proposed by
Song and Van der Aalst [81]; likewise, the resources are assigned to the different
activities according to the frequency of execution. Finally, Simod discovers calen-
dar expressions that capture the resources’ time availability, restricting the hours
they can execute tasks. Similarly, the tool discovers case creation timetables that
limit when the process instances can be created. Once all these simulation param-
eters are compiled, Simod again uses the hyperparameter optimization technique
to discover the configuration that minimizes the Earth Mover’s Distance (EMD)
distance between the produced log and the ground truth.

The final product of the two optimization cycles is a model that reflects the
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structure and the simulation parameters that best represent the time dynamics ob-
served in the ground truth log.

6.2. Generative deep learning models of business processes

DL models have been applied in several subfields of PM, particularly in the con-
text of predictive process monitoring. Predictive process monitoring is a class of
PM techniques that are concerned with predicting, at runtime, some properties
about the future state of a case, e.g., predicting the next event(s) in an ongoing
case or the remaining time until completion of the case.

Fig. 28 depicts the main phases for the construction and evaluation of DL mod-
els for predictive process monitoring. In the first phase (preprocessing), the events
in the log are transformed into (numerical) feature vectors and grouped into se-
quences, each sequence corresponding to the execution of a case in the process (a
trace). Next, a model architecture is selected depending on the prediction target.
In this respect, different architectures may be used for predicting the type of the
next event, its timestamp, or both (see Chapter 3).

Figure 28: Phases and steps for building DL models

In this chapter, we tackle the problem of generating traces consisting of event
types (i.e., activity labels) and timestamps. As we reviewed in the Chapter 2,
one of the earliest studies to tackle this problem in predictive process monitoring
was [84], which proposed an approach to predict the type of the next event in an
ongoing case, as well as its timestamp using LSTM architectures. The same study
showed that this approach could be effectively used to generate the remaining
sequence of timestamped events, starting from a given case prefix. However, this
approach cannot handle high-dimensional inputs due to its reliance on the one-
hot encoding of categorical features. As a result, its accuracy deteriorates as the
number of categorical features increases.

We lift this limitation in the LSTM approach that we introduce in Chap-
ter 5, which extends the approach of [84] with two mechanisms to handle high-
dimensional input, namely n-grams and embeddings, and integrates a mechanism
for avoiding temporal instability, namely Random Choice next-event selection. A
more recent study [86] proposes to use a GAN method to train an LSTM model
capable of predicting the type of the next event and its timestamp. The authors
show that this GAN approach outperforms classical training methods (for predict-
ing the next event and timestamp) on specific datasets.

In the empirical evaluation reported in this chapter, we retain our LSTM ap-
proach (see Chapter 5) and the GAN approach of [86] as representative methods
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for training generative DL models from event logs. We selected these methods be-
cause they can generate both the type of the next event in a trace and its timestamp.
This means that if we iteratively apply these methods starting from an empty se-
quence, via an approach known as hallucination, we can generate a sequence of
events such that each event has one timestamp (the end timestamp). Hence, these
methods can be used to produce entire sequences of timestamped events. There-
fore, they can be used to generate event logs comparable to those that DDS meth-
ods generate, with the difference is that the above DL training methods associate
only one timestamp to each event, whereas DDS methods associate both a start
and end timestamp to each event. Accordingly, we need to adapt the above two
DL methods to generate two timestamps per event for full comparability. In the
following subsections, we describe these approaches and how we adapted them to
fit this requirement.

6.2.1. DeepGenerator approach

Next, we describe the adaptation of the LSTM approach that we proposed in
Chapter 5 from now on DeepGenerator. The DeepGenerator approach trains a
generative model by using attributes extracted from the original event log. Specif-
ically, DeepGenerator uses activities, roles, relative times (start and end times-
tamps), and contextual times (day of the week, time during the day). The original
approach can produce traces consisting of triplets (event type, role, timestamp),
where a role refers to a group of resources who are able to perform a given activ-
ity (e.g., “Clerk” or “Sales Representative”). This chapter adapts DeepGenerator
to generate sequences of triplets of the form (event-type, start-timestamp, end-
timestamp). Each triplet captures the execution of an activity of a given type
(event-type) together with the timeframe during which the activity was executed.
In this chapter, we do not attach roles to events in order to make the DeepGenera-
tor method fully comparable to Simod as we discussed in Sect. 6.4.

In the preprocessing phase (cf. Fig. 28), DeepGenerator applies encoding
and scaling techniques to transform the event log depending on the data type of
each event attribute (categorical vs. continuous). Categorical attributes (activ-
ities and roles) are encoded using embeddings to keep the data dimensionality
low, as this property enhances the neural network’s performance. Meantime, start
and end timestamps are relativized and scaled over a range of [0,1]. The rela-
tivization is carried out by first calculating two features: the activities duration
and the time-between-activities. The duration of an activity (a.k.a. the processing
time) is the difference between its complete timestamp and its start timestamp.
The time-between-activities (a.k.a. the waiting time) is the difference between the
start timestamp of an activity and the end timestamp of the immediately preced-
ing activity in the same trace. All relative times are scaled using normalization or
log-normalization, depending on the variability of the times in the event log. Once
the features are encoded, DeepGenerator executes the sequences’ creation step to
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extract n-grams, which allow better handling of long sequences. One n-gram is
generated for each step of the process execution, and this is done for each attribute
independently. Hence, DeepGenerator uses four independent inputs: activity pre-
fixes, role prefixes, relativized durations, and relativized time-between-activities.

In the model training phase, one of two possible architectures is selected for
training. These architectures, depicted in Fig. 29, vary depending on whether
they share intermediate layers. The use of shared layers sometimes helps to better
differentiate between execution patterns. These architectures were defined and
explained in more detail in Section 5.1.2. DeepGenerator uses LSTM layers or
GRU layers. Both of these types of layers are suitable for handling sequential
data, with GRU layers sometimes outperforming LSTM layers [51, 20].
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(a) Shared categorical (b) Full shared

Figure 29: (a) this architecture concatenates the inputs related with activities and
roles, and shares the first layer, (b) this architecture completely shares the first
layer. Despite the role’s prefixes are encoded and predicted, their accuracy is not
evaluated.

Finally, the post-processing phase uses the resulting DL model in order to
generate a set of traces (i.e., an event log). DeepGenerator takes each generated
trace and uses the classical hallucination method to repeatedly ask the DL model
to predict the next event given the events observed so far (or given the empty trace
in the case of the first event). This step is repeated until we observe the “end of
trace” event. At each step, the DL model predicts multiple possible “next events”,
each one with a certain probability. DeepGenerator selects among these possi-
ble events randomly weighted by the associated probabilities. This mechanism
turns out to be the most suitable for the task of generating complete event logs by
avoiding getting stuck in the higher probabilities [18].

6.2.2. LSTM-GAN approach

The approach proposed by [86] trains LSTM generative models using the GAN
strategy. The strategy proposed by the authors consists of two LSTM models, one
generative and one discriminative, that are trained simultaneously through a game
of adversaries. In this game, the generative model has to learn how to confuse a
discriminative model to avoid distinguishing real examples from fake ones. As the
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game unfolds, the discriminative model becomes more capable of distinguishing
between fake and real examples, thus forcing the generator to improve the gen-
erated examples. Fig. 30 presents the general architecture of the GAN strategy
proposed in [86]. We performed modifications in every phase of this approach to
be able to generate full traces and entire event logs to make it fully comparable
with DDS methods.

(a) Training phase (b) Generative model inference mode

Figure 30: (a) Training strategy, (b) Inference strategy.

In the preprocessing phase (cf. Fig. 28), the features corresponding to the
activity’s category and relative times are encoded and transformed. The model
uses one-hot encoding for creating a binary column for each activity and returning
a sparse matrix. We adapted the model to enable the prediction of two timestamps
instead of one. The original method by [86] only handles one continuous attribute
per event (the end timestamp). We added another continuous attribute to capture
the time (in seconds) between the end of the previous event in the sequence and the
start of the current one. This additional attribute is herein called the inter-activity
times. Next, the inter-activity times are then rounded up to the granularity of days
to create a so-called design matrix composed of the one-hot encoded activities
and the scaled inter-activity times. Then, we create the prefixes and the expected
events in order to train the models. Since the original model was intended to train
models starting from a k-sized prefix, all the smaller prefixes were discarded, and
the prediction of the first event of a trace was not considered. We also adapted the
model to be trained to predict zero-size prefixes. For this purpose, we extended
the number of prefixes considered by including a dummy start event before each
trace and by applying right-padding to the prefixes. This modification of the input
implied updating the loss functions in order to consider the additional attribute.

In the model training phase, [86] trained specialized models to predict the
next event from prefixes of a predefined size. While this approach is suitable for
predicting the next event, it is not suitable for predicting entire traces of unknown
size. Therefore, we train a single model with a prefix of size five. This strategy is
grounded on the results of the evaluation reported by [80], from which the authors
concluded that increasing the size of the prefix used by the LSTM models (be-
yond a size of five events) does not substantially improve the model’s predictive
accuracy.
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Finally, in the post-processing phase we take the complete predicted suffix
to feedback the model instead of considering only the first event predicted by the
model (see Fig. 30). We carry out this operation to take advantage of the fact that
the original generative model is a sequence-to-sequence model, which receives
a sequence of size k and predicts a sequence of size k. The empirical evidence
reported by [18] shows that concatenating only the last event predicted by the
model generates a rapid degradation in the model’s long-term precision, as the
model gets trapped in always predicting the most probable events. Accordingly,
we use random selection to select the next type of event.

6.3. Evaluation

This section presents an empirical comparison of DDS and DL generative pro-
cess models. The evaluation aims at addressing the following questions: what is
the relative accuracy of these approaches when it comes to generating traces of
events without timestamps? and what is their relative accuracy when it comes to
generating traces of events with timestamps?

6.3.1. Datasets

We evaluated the selected approaches using eleven event logs that contain both
start and end timestamps. In this evaluation, we use real logs from public and
private sources and synthetic logs generated from simulation models of real pro-
cesses:

• The event log of a manufacturing production Manufacturing Production
(MP) process is a public log that contains the steps exported from an Enter-
prise Resource Planning system [48].

• The event log of a Purchase-to-Pay (P2P) process is a public synthetic log
generated from a model not available to the authors.1

• The event log from an Academic Credentials Recognition (ACR) process of
a Colombian University was gathered from its BPM system (Bizagi).

• The W subset of the BPIC20122 event log, which is a public log of a loan
application process from a Dutch financial institution. The W subset of
this log is composed of the events corresponding to activities performed by
human resources (i.e. only activities that have a duration).

• The W subset of the BPIC20173 event log, which is an updated version
of the BPIC2012 log. We carried out the extraction of the W-subset by
following the recommendations reported by the winning teams participating
in the BPIC 2017 challenge 4.

1The log is provided as part of the Fluxicon Disco tool – https://fluxicon.com/
2https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
4https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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• We used three private logs of real-life processes, each corresponding to a
scenario of different sizes of data for training. The UB log belongs to an
undisclosed banking process, and the CALL log belongs to the call center
records of a helpdesk process. Both of them correspond to large-size train-
ing data scenarios. The INS logs belong to an insurance claims process,
corresponding to a small size of training data scenario. For confidentiality
reasons, only the detailed results of these three event logs will be provided.

• We used three synthetic logs generated from simulation models of real-life
processes 5. The selected models are complex enough to represent scenar-
ios in which occur parallelism, resource contention, or scheduled waiting
times. From these models, we generate event logs varying the number of
instances representing greater or lesser availability of training data. The
CVS retail pharmacy (CVS) event-log is a large-size training data scenario
from a simulation model of an exercise described in the book Fundamen-
tals of Business Process Management [25]. We generated the Confiden-
tial Large-size (CFL) and Confidential Small-size (CFS) event logs from an
anonymized confidential process. They were used to representing scenarios
of large and small size training data.

Table 18 characterizes these logs according to the number of traces and events.
The BPIC2017W and BPIC2012W logs have the largest number of traces and
events, while the MP, CFS and P2P have fewer traces but a higher average number
of events per trace.

Size Type of source Event log Num.
traces

Num.
events

Num.
activities

Avg.
activities
per trace

Avg.
duration

Max.
duration

LARGE REAL UB 70512 415261 8 5.89 15.21 days 269.23 days

LARGE REAL BPIC2017W 30276 240854 8 7.96 12.66 days 286.07 days

LARGE REAL BPIC2012W 8616 59302 6 6.88 8.91 days 85.87 days

LARGE REAL CALL 3885 7548 6 1.94 2.39 days 59.1 days

LARGE SYNTHETIC CVS 10000 103906 15 10.39 7.58 days 21.0 days

LARGE SYNTHETIC CFL 2000 44373 29 26.57 0.76 days 5.83 days

SMALL REAL INS 1182 23141 9 19.58 70.93 days 599.9 days

SMALL REAL ACR 954 4962 16 5.2 14.89 days 135.84 days

SMALL REAL MP 225 4503 24 20.01 20.63 days 87.5 days

SMALL SYNTHETIC CFS 1000 21221 29 26.53 0.83 days 4.09 days

SMALL SYNTHETIC P2P 608 9119 21 15 21.46 days 108.31 days

Table 18: Event logs description

6.3.2. Evaluation measures

We use a generative process model to generate an event log (multiple times) and
then we measure the average similarity between the generated logs and a ground-

5https://zenodo.org/record/4264885
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truth event log. To this end, we define four measures of similarity between pairs
of logs: Event Log Similarity (ELS), Mean Absolute Error (MAE) of cycle times,
the Earth Mover’s Distance (EMD) of the histograms of activity processing times,
and Control-Flow Log Similarity (CFLS). It is important to clarify that the gen-
eration of time and activity sequences is not a classification task. Therefore, the
precision and recall metrics traditionally used for predicting the next event do not
apply. Instead, we use symmetric distance metrics (i.e., that penalize the differ-
ences between a and b in the same way as from b to a) that measure both precision
and recall at the same time, as explained in [47].

ELS and MAE metrics measure the differences between two event logs at
trace level as we already defined in Chapter 4. ELS is a measure that combines
the control-flow and the temporal perspective. Meanwhile, MAE is focused on the
temporal similarity between two logs. To complement them, we include two met-
rics, one that focuses solely on the differences in terms of control-flow at the trace
level (CFLS) and the other that gives us a perspective of the global differences in
log times (ELS).

CFLS is defined based on a measure of distance between pairs of traces: one
trace coming from the original event log and the other from the generated log.
We first convert each trace into a sequence of activities (i.e. we drop the times-
tamps and other attributes). In this way, a trace becomes a sequence of symbols
(i.e. a string). We then measure the difference between two traces using the DLd,
which is the minimum number of edit operations necessary to transform one string
(a trace in our context) into another. The supported edit operations are inser-
tion, deletion, substitution, and transposition. Transpositions are allowed without
penalty when two activities are concurrent, meaning that they appear in any order,
i.e. given two activities, we observe both AB and BA in the log. Next, we normal-
ize the resulting DLd distance by dividing the number of edit operations by the
length of the longest sequence. We then define the control-flow trace similarity as
the one minus the normalized DLd distance. Given this trace similarity notion, we
pair each trace in the generated log with a trace in the original log, in such a way
that the sum of the trace similarities between the paired traces is maximal. This
pairing is done using the Hungarian algorithm for computing optimal alignments
[42]. Finally, we define the CFLS between the real and the generated log as the
average similarity of the optimally paired traces.

The cycle time MAE is a rough measure of the temporal similarity between the
traces in the original and the generated log. It does not take into account the timing
of the events in a trace – only the cycle time of the full trace. To complement the
cycle time MAE, we use the EMD between the normalized histograms of the mean
durations of the activities in the ground-truth log vs the same histogram computed
from the generated log. The EMD between two histograms H1 and H2 is the
minimum number of units that need to be added to, removed to, or transferred
across columns in H1 in order to transform it into H2. The EMD is zero if the
observed mean activity durations in the two logs are identical, and it tends to one
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the more they differ.
The above leaves us with a metric that measures the control-flow differences at

trace level (CFLS), one that measures the time differences at trace level (MAE),
one that integrates both perspectives (ELS), and finally, one that provides a global
perspective on the temporal differences at event log level (EMD).

6.3.3. Experiment setup

The aim of the evaluation is to compare the accuracy of DDS models vs DL mod-
els discovered from event logs. Fig. 31 presents the pipeline we followed.
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Figure 31: Experiment pipeline

We used the hold-out method with a temporal split criterion to divide the event
logs into two folds: 80% for training and 20% for testing. Next, we use the train-
ing fold to train the DDS and the DL models. The use of temporal splits is com-
mon in the field of predictive process monitoring (from which the DL techniques
included in this study are drawn from) as it prevents information leakage [18, 86].

We use the first 80% of the training fold to construct candidate DDS models
and the remaining 20% for validation. We use Simod’s hyperparameter optimizer
to tune the DDS model (see the tool’s two discovery stages in Sec. 6.1). First,
the optimizer in the structure discovery stage was set to explore 15 parameter
configurations, with five simulation runs per configuration. At this stage, we kept
the DDS model that gave the best results on the validation sub-fold in terms of
CFLS averaged across the five runs. Second, the optimizer in the time-related
parameters discovery stage was set to explore 20 parameter configurations with
five simulation runs per configuration. Then, we hold the DDS model that gave
the best results on the validation sub-fold in terms of EMD averaged across the
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five runs. As a result of the two stages, Simod found the best model in both
structure and time dynamics. We defined the number of optimizer trials in each
stage by considering the differences in the search space’s size in each stage (see
Simod’s model parameters in Table 19).

The results showed that the best possible value is reached in fewer attempts
than expected. Fig 32 shows the log P2P in which the best model was found in
the first optimization stage at trial 10 and in the second stage at trial 13.

(a) structure discovery stage (b) time-related params. discovery stage

Figure 32: (a) In CFLS units the higher the best, (b) in EMD units the lower the
best

Next, we apply the random search for hyperparameter optimization for each
family of generative models (LSTM and GRU). Similar to the DDS approach, we
explore 40 random configurations with five runs each, using 80% of the train-
ing fold for model construction and 20% for validation. This sample size was
chosen to ensure a confidence level of 95 % with a confidence interval of 6 (see
LSTM/GRU’s model parameters in Table 19).

Model Stage Parameter Distribution Values

Simod

Structure discovery
Parallelism threshold (ε) Uniform [0...1]
Percentile for frequency threshold (η) Uniform [0...1]
Conditional branching probabilities Categorical {Equiprobable, Discovered}

Time-related
parameters discovery

Log repair technique Categorical {Repair, Removal, Replace}
Resource pools similarity threshold Uniform [0...1]
Resource availability calendar support Uniform [0...1]
Resource availability calendar confidence Uniform [0...1]
Instances creation calendar support Uniform [0...1]
Instances creation calendars confidence Uniform [0...1]

LSTM/GRU Training

N-gram size Categorical {5, 10, 15}
Input scaling method Categorical {Max, Lognormal}
# units in hidden layer Categorical {50, 100}
Activation function for hidden layers Categorical {Selu, Tanh}
Model type Categorical {Shared Categorical, Full Shared}

Table 19: Parameter ranges and distributions used for hyperparameter optimiza-
tion

In the case of the LSTM-GAN implementation, as proposed by the au-
thors [86], we dynamically adjust the size of hidden units in each layer being
twice the input’s size. Additionally, we use 25 training epochs, a batch of size
five, and a prefix size of five.

The above led us to one DDS, one LSTM, one GRU, and one LSTM-GAN

85



model per log. We then generated five logs per retained model. To ensure com-
parability, we create each generated log of the same size (number of traces) as
the testing fold of the original log. We then compare each generated log with the
testing fold using the ELS, CFLS, EMD, and MAE measures defined above. We
report the mean of each of these measures across the 5 logs generated from each
model to smooth out stochastic variations.

6.3.4. Findings

Fig. 33 presents the evaluation results of CFLS, MAE and ELS measures grouped
by event log size and source type. Table 3 presents the exact values of all metrics
sorted by metric, event log size, and source type. The Event-log column identi-
fies the evaluated log; meanwhile, the GRU, LSTM, LSTM (GAN), and SIMOD
columns present the accuracy measures. Note that ELS and CFLS are similar-
ity measures (the higher, the better), whereas MAE and EMD are error/distance
measures (lower is better).

The results show a clear dependence of training data size on the models’ accu-
racy. Simod presents a greater similarity in the control flow generation for small
logs in three of the five evaluated logs, as shown by the CFLS results. In the re-
maining two logs, the measure is not far from the best-reported values. Simod
obtains the smallest errors in four of the five logs in terms of MAE, which leads
to higher ELS similarity in four of the five logs. However, the LSTM model
presents the best CFLS results in five of the six evaluated large logs, where the
GRU model approaches better in the remaining one. The LSTM model obtains
the lowest errors in the MAE in four of the six logs, whereas the LSTM-GAN
model approaches better in the remaining two. The difference between the DL
and Simod models for the MAE measure is constant and dramatic in some cases,
such as the CALL log. In this log, Simod generates a difference almost four times
greater than that reported by the DL models. This result can be due to a contention
of resources that is non-existent in the ground truth.

When analyzing the ELS measure, which joins the two perspectives of control
flow and time distance, the LSTM model obtains the greatest similarity in five out
of six models and the GRU model in the remaining one. The LSTM-GAN model
does not obtain a better result in this metric due to its poor performance in control
flow similarity. The LSTM-GAN model’s low performance is because the tem-
poral stability of the models’ predictions declines rapidly, despite having a higher
precision in predicting the next event as demonstrated in [86]. This result also
indicates overfitting on the models, preventing the generalization of this approach
for this predictive task.
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Figure 33: In the first column the CLFS are presented in similarity units (the
higher, the better), the second column presents the MAE results in distance units,
and the third column presents the ELS results (the higher, the better)

On the one hand, the results indicate that DDS models perform well when cap-
turing the occurrence and order of activities (control-flow similarity) and that this
behavior is independent of the training dataset size. A possible explanation for
this result is that event logs of business processes (at least those included in this
evaluation) follow certain normative pathways captured sufficiently by automati-
cally discovered simulation models. However, Deep Learning models, especially
LSTM models, outperform the DDS models if a sufficiently large training dataset
is available.
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On the other hand, Deep Learning models are more accurate when capturing
the cycle times of the cases in the large logs (cf. the lower MAE for DL models vs.
DDS models). Here, we observe that both DDS and DL models achieve similar
EMD values, which entails that both models predict activities’ processing times
with similar accuracy. Therefore, we conclude that the differences in temporal
accuracy (cycle time MAE) between DL and DDS models come from the fact
that DL models can better predict the waiting times of activities rather than the
processing times. 6

The inability for DDS models to accurately capture the waiting times can be
attributed to the fact that these models rely on the assumption that the waiting
times can be fully explained by the availability of resources. In other words,
DDS models assume that resource contention is the sole cause of waiting times.
Furthermore, DDS models operate under the assumption of eager resources as
discussed in Sec. 1.1 (i.e., resources start an activity as soon as they are allocated).
Conversely, DL models try to find the best fit for observed waiting times without
any assumptions about the behavior of the resources involved in the process.

6.3.5. Discussion

The results of the empirical evaluation reflect the trade-offs between DDS models
and deep learning models. Indeed, these two families of models strike different
trade-offs between modeling capabilities (expressive power) on the one hand, and
interpretability on the other.

The results specifically put into evidence the limitations in modeling capa-
bilities of DDS models. Such limitations arise both along the control-flow level
perspective (sequences of events) and along the temporal perspective (timestamps
associated to each event).

From a control-flow perspective, DDS models can only generate sequences
that can be fully parsed by a business process model. In the case of Simod, this
model is a BPMN model. The choice of modeling notation naturally introduces
a representational bias [2]. For example, free-choice workflow nets – which have
the expressive power of BPMN models with XOR and AND gateways [28] –
have limitations that prevent them from capturing certain synchronization con-
structs [41]. Adopting a more expressive notation may reduce this representa-
tional bias, possibly at the expense of interpretability. Furthermore, any DDS
approach relies on an underlying automated process discovery algorithm. For
example, Simod relies on the Split Miner algorithm [11] to discover BPMN mod-
els. Every such algorithm is limited in terms of the class of process models that it
can generate. For example the Split Miner and other algorithms based on directly-
follows graphs (e.g. Fodina) cannot capture process models with duplicate activity
labels (i.e. multiple activity nodes in the model sharing the same label). Mean-

6The cycle time of a process instance adds the processing times (activity durations) and the
waiting times [25]
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Metric Size Type of source Event Log GRU LSTM LSTM-GAN SIMOD

CLFS

LARGE
REAL

UB 0.63141 0.67176 0.28998
BPIC2017W 0.63751 0.71798 0.36629 0.58861
BPIC2012W 0.58375 0.70228 0.35073 0.53744
CALL 0.82995 0.83043 0.24055 0.62911

SYNTHETIC CVS 0.83369 0.85752 0.20898 0.71359
CFL 0.81956 0.60224 0.11412 0.77094

SMALL
REAL

INS 0.50365 0.51299 0.25619 0.61034
ACR 0.78413 0.78879 0.18073 0.67959
MP 0.27094 0.23197 0.06691 0.34596

SYNTHETIC CFS 0.69543 0.66782 0.10157 0.76648
P2P 0.41179 0.65904 0.13556 0.45297

MAE

LARGE
REAL

UB 801147 778608 603105
BPIC2017W 868766 603688 828165 961727
BPIC2012W 701892 327350 653656 662333
CALL 160485 174343 159424 679847

SYNTHETIC CVS 859926 667715 952004 1067258
CFL 25346 15078 956289 252458

SMALL
REAL

INS 1586323 1516368 1302337 1090179
ACR 344811 341694 296094 230363
MP 335553 321147 210714 298641

SYNTHETIC CFS 30327 33016 717266 15297
P2P 2407551 2495593 2347070 1892415

ELS

LARGE
REAL

UB 0.58215 0.65961 0.28503
BPIC2017W 0.63643 0.70317 0.35282 0.58412
BPIC2012W 0.57862 0.67751 0.33649 0.52555
CALL 0.79336 0.81645 0.19123 0.59371

SYNTHETIC CVS 0.65160 0.70355 0.16854 0.70154
CFL 0.68292 0.43825 0.09505 0.66301

SMALL
REAL

INS 0.49625 0.50939 0.23070 0.57017
ACR 0.75635 0.45737 0.15884 0.71977
MP 0.25019 0.21508 0.04570 0.31024

SYNTHETIC CFS 0.54433 0.57392 0.07930 0.67526
P2P 0.22923 0.39249 0.09968 0.43202

EMD

LARGE
REAL

UB 0.00036 0.00011 0.00001
BPIC2017W 0.00060 0.01010 0.00072 0.00057
BPIC2012W 0.00077 0.00061 0.00006 0.00002
CALL 0.00084 0.15794 0.00090 0.00072

SYNTHETIC CVS 0.61521 0.57217 0.40006 0.13509
CFL 0.00472 0.00828 0.03529 0.06848

SMALL
REAL

INS 0.03343 0.00308 0.33336 0.00001
ACR 0.49996 0.68837 0.25012 0.58674
MP 0.12609 0.33375 0.28577 0.31411

SYNTHETIC CFS 0.08253 0.10784 0.06924 0.03461
P2P 0.25306 0.33747 0.23898 0.03888

Table 20: This table presents the detailed results of the DDS vs DL generative
models evaluation, the underlined values correspond to the best values reported
by the models

while, the Inductive Miner algorithm cannot capture non-block-structured process
models [10]. In contrast, deep learning models for sequence generation rely on
non-linear functions that model the probability that a given activity occurs after
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a given sequence prefix. Depending on the type of architecture used and the pa-
rameters (e.g. the number of layers, the type of activation function, learning rate),
these models may be able to learn dependencies that cannot be captured by the
class of BPMN models generated by a given process discovery algorithm such as
Split Miner.

Along the temporal perspective, DDS models make assumptions about the
sources of waiting times of activities. Chiefly, DDS models assume that waiting
times are caused exclusively by resource contention, and they assume that as soon
as a resource is available and assigned to an activity, the resource will start the ac-
tivity in question (robotic behavior) [1]. Furthermore, DDS models generally fail
to capture interdependencies between multiple concurrent cases (besides resource
contention) such as batching or prioritization between cases (some cases having a
higher priority than others) [1]. Another limitation relates to the assumption that
resources perform one activity at a time, i.e. no multitasking [26]. In contrast,
deep learning models simply try to learn the time to the next-activity in a trace
based on observed patterns in the data. As such, they may learn to predict delays
associated with inter-case dependencies as well as delays caused by exogenous
factors such as workers being busy performing work not related to the simulated
process. These observations explain why deep learning models outperform DDS
models when it comes to capturing the time between consecutive activities (and
thus the total case duration). DDS models are prone to underestimating waiting
times, and hence cycle times, because they only take into account waiting times
due to resource contention. Meanwhile, deep learning models learn to replicate
the distributions of waiting times regardless of their origin.

On the other hand, that DDS models are arguably more interpretable than deep
learning models, insofar as they rely on a white-box representation of the process
that analysts typically use in practice. This property implies that DDS models
can be modified by business analysts to capture what-if scenarios, such as what
would happen is a task was removed from the model. Also, DDS models ex-
plicitly capture one of the possible causes of waiting times, specifically resource
contention, while deep learning models do not explicitly capture any such mecha-
nism. As such, DDS models are more amenable to capture increases or reductions
in waiting or processing times that arise when a change is applied to a process.
Specifically, DDS models are capable of capturing the additional waiting time (or
the reduction in waiting time) that result from higher or lower resource contention,
for example due to an increase in the number of cases created per time unit.

6.4. Conclusions

In this chapter, we compared the accuracy of two approaches to discover gener-
ative models from event logs: Data-Driven Simulation and Deep Learning. The
results suggest that DDS models are suitable for capturing the sequence of activ-
ities of a process. On the other hand, DL models outperform DDS models when
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predicting the timing of activities, specifically the waiting times between activ-
ities. This observation can be explained by the fact that the simulation models
used by DDS approaches assume that waiting times are entirely attributable to
resource contention, i.e. to the fact that all resources that are able to perform an
enabled activity instance are busy performing other activity instances. In other
words, these approaches do not take into account the multitude of sources of wait-
ing times that may arise in practice, such as waiting times caused by batching,
prioritization of some cases relative to others, resources being involved in other
business processes, or fatigue effects.

A natural direction for future work is to extend existing DDS approaches in or-
der to take into account a wider range of mechanisms affecting waiting times, to
increase their temporal accuracy. However, the causes of waiting times in business
processes may ultimately prove to be so diverse, that no DDS approach would
be able to capture them in their entirety. An alternative approach would be to
combine DDS approaches with DL approaches to take advantage of their relative
strengths. In such a hybrid approach, the DDS model would capture the control-
flow perspective, while the DL model would capture the temporal dynamics, par-
ticularly waiting times. The DSS model would also provide an interpretable model
that users can change in order to define “what-if” scenarios, e.g. a what-if scenario
where an activity is removed, or a new activity is added.

Two challenges need to be overcome to design such a hybrid DDS-DL ap-
proach: (i) how to integrate the DDS model with the DL model; and (ii) how to
incorporate the information of a what-if scenario into the DL model. These two
requirements for the development of a hybrid technique are addressed in Chap-
ter 7.
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7. HYBRID LEARNING OF BUSINESS PROCESS
SIMULATION MODELS

Taking as input the analysis performed, and the requirements defined in Chapter 6,
in this chapter, we propose the DeepSimulator method for learning generative
models for business process simulation by combining DDS and DL models. This
technique seeks to fill in the research GAP 5 (cf. Sec. 1.2) and answer the research
question RQ2 (cf. Sec. 1.1) concerning how to create simulation techniques that
more accurately capture the observed temporal dynamics of business processes.

The first part of this chapter will describe the steps of the approach. Sec. 7.1.1
presents the first phase of the method that uses the DDS model, or more specif-
ically, a stochastic model trained to generate distributions of sequences of activ-
ities [47]. Sec. 7.1.2 presents the time series prediction method used to gener-
ate process instances. Finally, Sec. 7.1.3 presents the deep learning approach in
charge of predicting and incorporating the timestamps into the sequences gener-
ated by the stochastic model. In the second part of the chapter, we will present two
evaluations; the first one exhaustively compares the relative accuracy of the pro-
posed method concerning pure DDS and DL approaches. Additionally, the second
evaluation assesses the approach’s ability to simulate a process after a change is
introduced (what-if analysis).

7.1. Approach Description

Fig. 34 depicts the architecture of the DeepSimulator approach. The architecture
is a pipeline with three phases. The first phase uses PM techniques to learn a
model to generate sequences of (non-timestampted) events. The second and third
phases enrich these sequences with case start times and activity start and end
times. Below, we discuss each phase in turn.

DeepSimulator
• Event log reading & splitting

Phase 1: structure generation

Stochastic process model discovery
• Control Flow Discovery
• Trace alignment
• Branching probabilities definition

Assessment and 
optimization 

Sequences generation

Phase 2: instances start-time generation

Time-series analysis
• Prophet model training

Cases' start-times generation

Assessment and 
optimization 

Phase 3: timestamps generation

Times generator
• Log replay
• Features engineering
• Models Training

Assembling the output log

Assessment and 
optimization 

Event log

Sequences
of activities

Cases’ 
start-times

Simulated 
Event log

Figure 34: Overview of the proposed BPS model discovery method
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7.1.1. Phase 1: Activity sequences generation

This phase aims to extract a stochastic process model [47] from the log and to use
it to generate sequences of activities that resemble those in the log. A stochastic
process model is a process model with branching probabilities assigned to each
branch of a decision point. In this thesis, we represent process models using the
standard BPMN notation. Phase 1 starts with a control-flow discovery step, where
we first discover a plain (non-stochastic) process model using the Split Miner
algorithm [11]. This algorithm relies on two parameters: the sensitivity of the
parallelism oracle (η) and the level of filtering of directly-follow relations (ε).
The former parameter determines how likely the algorithm will discover parallel
structures, while the latter determines the percentage of directly-follows relations
between activity types are captured in the resulting model. Like other automated
process discovery algorithms, the Split Miner discovers a process model that does
not perfectly fit the log. The discovered process model cannot parse some traces
in the log. This hinders the calculation of the branching probabilities. Accord-
ingly, we apply the trace alignment algorithm in [72] to compute an alignment
for each trace in the log that the model cannot parse. An alignment describes
how a trace can be modified to be turned into a trace that can be parsed by the
model (via “skip” operations). Based on the alignments, we either repair each
non-conformant trace, or we replace it with a copy of the most similar confor-
mant trace (w.r.t. string-edit distance). The choice between the repair and the
replacement approaches is a parameter of the method.

Next, DeepSimulator uses the (conformant) event log to discover the branch-
ing probabilities for each branching point in the model. Here, DeepSimulator
offers two options: (i) assign equal values to each conditional branch; or (ii) com-
pute the branching branches by replaying the aligned event against the process
model. The first approach may perform better for smaller logs, where the proba-
bilities computed via replay are not always reliable, while the latter may be prefer-
able for larger logs.

The DeepSimulator combines the process model and the branching probabili-
ties to assemble a stochastic process model. In this step, the DeepSimulator uses
a Bayesian optimization technique to discover the hyperparameter settings (i.e.,
values of ε , η , replace-vs-repair, and equal-vs-computed probabilities) that maxi-
mize the similarity between the generated and the ground truth sequences in terms
of activity sequences. The optimizer uses a holdout method, and as a loss function,
it uses the CFLS metric described in [16]. The CFLS metric is the mean string-
edit distance between the activity sequences generated by the stochastic process
model and the traces in the ground-truth log after their optimal alignment.1

Finally, in the sequences’ generation step, DeepSimulator uses the resulting

1We did not use the stochastic conformance checking metrics over Petri nets defined in [47]
because our method handles BPMN models with inclusive join gateways, which cannot be directly
transformed to Petri nets (without exponential blowout) as demonstrated in [29]
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stochastic process model to generate a bag of activity sequences without times-
tamps. This bag of sequences is used as the log’s base structure in Phase 3.

7.1.2. Phase 2: Case start-times generation

In this phase, we generate each process instance’s start time in the output log.
Traditionally, DDS models generate the start-time of cases by randomly drawing
from an unimodal distribution of the interarrival times between consecutive cases.
A typical BPS model captures the interarrival times using a negative exponential
distribution (i.e., it models the creation of cases as a Poisson process). However,
a single distribution is not realistic enough to capture real scenarios. For example,
cases might be created more frequently on Mondays than on Thursdays in a claims
handling process.

Instead of fitting an interarrival distribution, the DeepSimulator models the
case generation as a time series prediction problem as the number of cases gener-
ated per hour of the day. This type of modeling allows us to use robust techniques
such as ARIMA or ETS tested successfully in several contexts such as Stock
Market Analysis or Workload Projections. DeepSimulator uses the Prophet [85]
model proposed by Facebook because it is one of the simplest but, at the same
time, more accurate predictive models for this type of task. Prophet starts from
the time series decomposition into four main components (i.e., trend, seasonality,
holidays, and error) and applies specialized techniques to model each component.

The trend component decomposes those non-periodic changes in the time se-
ries values, which are modeled using logistic growth models or Piecewise linear
models. The seasonality component decomposes the periodic changes repeated
at fixed intervals (hours, weeks, months, or years), which are modeled by using
the Fourier series. The holidays component represents the effects of holidays that
occur on potentially irregular schedules over one or more days. This component is
optionally modeled and is defined manually by a domain expert, since it is specific
to each time series. The model automatically calculates the error, corresponding
to all those unforeseen changes that the model cannot fit.

In the time-series analysis step, we use a saturated logistic growth model to fit
the case generation trend. We chose this model, considering that the time series
is limited by a lower and upper bound. The lower bound corresponds to 0, which
is the minimum number of cases attended in the process, and the upper bound
is theoretically limited by the capacity of the process. The parameter that most
significantly affects data trend capture is changepoint-prior-scale that determines
how much the trend changes at the trend change points. The smaller the value
of this parameter, the less flexible the trend running the risk of under-fitting; on
the contrary, the greater the risk of over-fitting. Therefore, for this parameter,
DeepSimulator tests different values between [0.001, 0.5]. Analogously, the pa-
rameter that most directly affects the seasonality capture is the seasonality-prior-
scale. This parameter affects the flexibility of seasonality, the smaller this value,
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the model tends to focus on small fluctuations, and the larger the model is fixed
on large fluctuations. For this parameter, DeepSimulator tests different values
between [0.01, 10].

We do not define the Holidays component in a specific way since for each log,
it is independent, and in principle, it is unknown by the simulator. However, this
component possibly can be discovered by a calendar discovery technique such as
the one proposed in [26]. We used grid search for selecting the best hyperpa-
rameters of the model because the search space consists of only sixteen possible
configurations (see Sec. 7.2.3). For validation, we used the internal mechanism of
Prophet based on cross-validation and the selection of cutoff points.

In the case start-times generation step, we use the Prophet time series model
to determine the number of cases to be created at each hour of the simulation. We
then generate the start-times, for each simulation hour, by modeling the intercase
arrival times via a normal distribution.

7.1.3. Phase 3: Activity timestamps generation

We enhance the activity sequences generated in Phase 1 to capture waiting times
and processing times in this phase. The DeepSimulator trains two LSTM models
to perform two predictive tasks: the processing time of a given activity (herein
called the current activity) and the waiting time until the start of the next activity.
This task differs in two ways from approaches used to predict the next event and
its timestamp [18, 86]. First, we do not seek to predict the next event since the
sequences of activities are generated by the stochastic process model (cf. Phase
1). Second, we need to support changes in the process model (e.g., adding or
removing tasks) for enabling what-if analysis.

Therefore, we train one model specialized in predicting the processing time of
the current activity and another specialized in predicting the waiting time until the
next activity. Both models differ in the set of features since they act at different
moments in the predictive phase, as shown in Fig. 35.

The processing time predictive model uses the following features as inputs:
the label and processing time of the current activity, the time of day of the current
activity’s start timestamp, the day of the week, and inter-case features such as the
Work-in-progress (WIP) of the process and the activity and Resources’ Occupa-
tion (RO) at the start of the activity.

The waiting time predictive model uses the following features as inputs: the
next activity’s label, the time of day of the current activity’s end timestamp, the
day of the week, and inter-case features such as the WIP of the process and the
RO at the end of the current activity.

In the log replay step, we calculate the waiting and processing times of each
activity by replaying each trace in the input log (or in a training subset thereof)
against the process model discovered in Phase 1. As explained in Sec. 2.2 an
activity’s processing time is the difference between its end and start timestamps.
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Features: Wait+Ac2+Cx+WIP+RO

Processing time predictive model
Features: Proc+Ac1+Cx+WIP+RO

Figure 35: Predictive models timeline and features

An activity’s waiting time is the difference between its start time and enablement
time, i.e., when it was ready to be executed according to the process model. All
waiting and processing times are scaled to the range [0...1] by dividing them by
the largest observed values.

In the feature engineering step, we compute and encode all the remaining fea-
tures used by the models. We calculate the time of the day as the elapsed seconds
from the closest midnight until the event timestamp; this feature is scale over
86400 seconds. The day of the week is modeled as a categorical attribute and en-
coded using one-hot encoding. We include these latter features since they provide
contextual information, allowing the model to find seasonal patterns in the data
that may affect waiting and processing times. In the same way, considering that
the overall process performance is affected by the process’ WIP and the RO [43],
we use two inter-case features that measure these variations.

The WIP of the process measures the number of active tasks at each moment
in the log transversally. The RO measures each resource pool’s percentage occu-
pancy in the log, implying that a new feature is created for each pool to record the
occupation-specific variations. Since the information about the size and composi-
tion of the resource pools is not always included in the logs, we grouped resources
into roles by using the algorithm described in [81]. This algorithm discovers re-
source pools based on the definition of activity execution profiles for each resource
and the creation of a correlation matrix of similarity of those profiles. WIP and
RO are calculated by replaying over time the log events, recording the variations
in both features at every time point. Fig. 36 presents an example of the WIP and
RO calculation at each time point or slice. In this example, we have two traces
that overlap at execution time σ1 and σ2, each composed of four events that cor-
respond to the execution of two activities, A1 and A2. In the example, we have
two resource pools RP1 and RP2, each one with two resources. Likewise, each
activity is associated with a pool and is executed by a resource of said pool.

Finally, we encode the current activity’s label using pre-trained embedded di-
mensions. We use embeddings for two reasons. First, embeddings help prevent
exponential feature growth associated with one-hot encoding [18]. Second, em-
bedded dimensions allow adding new categories (i.e., activity labels) without
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Figure 36: Example of WIP and RO inter-case features encoding

altering the predictive model’s structure. These embedded dimensions are an n-
dimensional space, where each category (each activity level) is encoded as a point
in that space. An independent network fed with positive and negative examples
of associations between activities is used to map the activity labels to points. The
network maps activities that co-occur or occur close to each other to nearby points.
This mechanism also allows adding a new point in that space by updating the en-
coding model without altering the predictive model’s input size. Each time a new
activity is added to the process model for what-if analysis, we generate examples
of traces involving this new activity and use these examples to determine the co-
ordinates of the new activity label to be encoded in the embedded space. Then,
we update the predictive model’s embedded layers with the new definition, and
the predictive model can handle the new activity label from that point on.

Once encoded the features, we extract n-grams of fixed sizes from each trace to
create the input sequences to train the model. As shown in Fig. 37, both models are
composed of two stacked LSTM layers and a dense output. A model receives the
sequences as inputs and the expected processing and waiting times as a target. The
user can vary the number of units in the LSTM layers (50 or 100), the activation
function (tanh or selu), the size of the n-gram (5, 10, or 15 events), and the use
of all the RO inter-cases or just the one of the resource pool associated to the
execution of the activity. The activation function of the dense layer is linear.

7.1.4. Assembling the output log

The output log is generated by assembling each generated sequence (see Phase 1),
with the generated case start time (see Phase 2) and the processing and waiting
times predicted iteratively (see Phase 3). In each iteration, the trained model pre-
dicts times relative to the current activity in seconds, which are transformed into
absolute times by adding them to the start time of the case. Then, the DeepSimu-
lator generates a simulated log composed of a bag of traces, each trace consisting
of a sequence of triplets (activity label, start-timestamp, end timestamp).
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Figure 37: Deep learning models architectures

7.2. Evaluation

We empirically compare the DeepSimulator (DSIM) vs. DDS and DL approaches
in terms of the similarity of the simulated logs they generate relative to (a fold of)
the original log. We also assess the accuracy of the DSIM models for the "what-if"
analysis task of adding new process activities.

7.2.1. Datasets

We evaluated the approaches using 10 logs that contain both start and end times-
tamps. We use real-life logs (R) from public and private sources and synthetic
logs (S) generated from simulation models of real processes.2 Table 21 provides
descriptive statistics of the logs. The UB and BPIC2017W logs have the largest
number of traces and events, while MP, CFS and P2P have fewer traces, but more
events per trace.

7.2.2. Evaluation measures

To evaluate the temporal accuracy of a model M produced by one of the meth-
ods under evaluation, we compute a distance measure between a log generated by
model M and a ground-truth log (a testing subset of the original log). We use two
distance measures: the MAE of cycle times and the EMD of the normalized his-
tograms of activity timestamps grouped by day/hour. Both of the were introduced
in the Chapter 6.

2Logs and models available at https://doi.org/10.5281/zenodo.5080502
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Size Source Log #Traces #Events #Act.
Avg.

activities
per trace

Avg.
duration

Max.
duration Description

L
A

R
G

E

R UB 70512 415261 8 5.89 15.21 days 269.23 days
Undisclosed
banking process*

R BPIC2017W 30276 240854 8 7.96 12.66 days 286.07 days
Dutch financial
institution updated

R BPIC2012W 8616 59302 6 6.88 8.91 days 85.87 days
Dutch financial
institution

S CVS 10000 103906 15 10.39 7.58 days 21.0 days
CVS
retail pharmacy**

S CFL 2000 44373 29 26.57 0.76 days 5.83 days
Anonymized
confidential
process**

SM
A

L
L

R INS 1182 23141 9 19.58 70.93 days 599.9 days
Insurance
claims process*

R ACR 954 4962 16 5.2 14.89 days 135.84 days
Academic
Credential
Recognition

R MP 225 4503 24 20.01 20.63 days 87.5 days
Manufacturing
Production

S CFS 1000 21221 29 26.53 0.83 days 4.09 days
Anonymized
confidential
process**

S P2P 608 9119 21 15 21.46 days 108.31 days
Purchase-to-Pay
process

Table 21: (*) Private logs, (**) Generated from simulation models of real pro-
cesses

The cycle time MAE measures the temporal similarity between two logs at
the trace level. The absolute error of a pair of traces T1 and T2 is the absolute
value of the difference between the cycle time of T1 and T2. The cycle time
MAE is the mean of the absolute errors over a collection of paired traces. Given
this trace distance notion, we pair each trace in the generated log with a trace
in the original log so that the sum of the trace errors between the paired traces
is minimal. This pairing is done using the Hungarian algorithm for computing
optimal alignments [42].

The cycle time MAE is a rough measure of the temporal similarity between the
ground-truth and the simulated traces. But it does not consider the start time of
each case, nor the start and end timestamps of each activity. To complement MAE,
we use the EMD between the normalized histograms of the timestamps grouped
by day and hour in the ground-truth log vs. the same histogram computed from
the generated log. The EMD between two histograms H1 and H2 is the minimum
number of units that need to be added, removed, or transferred across columns in
H1 to transform it into H2. The EMD is zero if the observed distributions in the
two logs are identical, and it tends to one the more they differ.
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7.2.3. Experiment 1: Accuracy of generated models

The evaluation aims to compare the accuracy of DSIM models vs. DDS and DL
models discovered from logs.

Experiment Setup. For this, in this section, we start from the same experiment
setup as in Chapter 6 i.e., we use Simod as a baseline DDS approach since it is
fully automated for parameters setting. As DL baselines, we used an adaptation of
the LSTM approach proposed by Camargo et al. [18] – herein labeled the LSTM
method – as well as the GAN approach by Taymouri et al. [86] – herein labeled
LSTM(GAN). Both DL approaches attain high accuracy concerning the task of
generating timestamped trace suffixes [71]. Fig. 38 summarizes the experiment
setup.

Testing

Partition 2 
(20%)

Testing

Pa
rt

it
io

n
 1

 (
8

0
%

)

Training
DeepSimulator

Models' discovery 
and training

BEST MODELS

Event-log 
generatorTi

m
e 

sp
lit

ti
n

g

Evaluation
MAE/EMD

DDS
Model discovery

BEST SIM MODEL

Simulator

Training 
(80%)

Validation 
(20%)

Event-log 1 2

3

DL
Model training

BEST DL MODEL

Event-log 
generator

Figure 38: Setup of experiment 1

We used the hold-out method with a temporal split criterion to divide the logs
into two main folds: 80% for training-validation and 20% for testing. From the
first fold, we took the first 80% for training and 20% for validation. We use
temporal splits to prevent information leakage [18, 86].

The DDS technique (Simod) was set to explore 15 parameter configurations
to tune the stochastic process model. For each configuration, we executed five
simulation runs and computed the CFLS measure (cf. Sec. 6.1, Phase 1) between
each simulated log and the validation fold. We selected the stochastic model that
gave the lowest average CFLS w.r.t. the validation fold. Then, the optimizer was
set to explore 20 simulation parameter configurations (i.e., the parameters that
Simod uses to model resources and processing times) again using five simulation
runs per configuration. We then selected the configuration with the lowest average
EMD (cf. Sec. 6.1, Phase 2) between the simulated log and the validation fold. We
used the parameter ranges given in Table 22 for tuning.

The LSTM technique was hyperparameter-optimized using grid search over a
space of 48 possible configurations (see Table 22). For LSTM model training,
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we used 200 epochs, the cycle time MAE as the model’s loss function, Nadam
as the optimizer, and early stopping and dropout to avoid model over-training.
The LSTM(GAN) technique was configured to dynamically adjust the size of the
hidden units in each layer so that their size is twice the input’s size, as proposed
by the authors [86]. We used 25 training epochs, a batch of size five, and a prefix
size of five.

DSIM was tuned by randomly exploring 15 parameter configurations with
five simulation runs per configuration in the stochastic model discovery phase
(cf. Sec. 7.1, Phase 1). In Phases 2 and 3, we used grid search to explore the space
of hyperparameter configurations specified in Table 22.

In the end, we generated four models per log: one SIMOD, one LSTM, one
LSTM(GAN), and one DSIM. We then generated five logs per retained model,
each of the same size (number of traces) as the original log’s testing fold to ensure
comparability. Each generated log was compared with the testing fold using the
MAE and EMD measures. We report the mean of each of these measures across
five runs.

Model Stage Parameter Distribution Values

SI
M

O
D

Structure
discovery

Parallelism threshold (ε) Uniform [0...1]

Percentile for frequency threshold (η) Uniform [0...1]

Conditional branching probabilities Categorical {Equiprobable, Discovered}

Time-related
parameters
discovery

Log repair technique Categorical {Repair, Removal, Replace}

Resource pools similarity threshold Uniform [0...1]

Resource availability calendar support Uniform [0...1]

Resource availability calendar confidence Uniform [0...1]

Instances creation calendar support Uniform [0...1]

Instances creation calendars confidence Uniform [0...1]

L
ST

M

Training

N-gram size Categorical [5, 10, 15]

Input scaling method Categorical {Max, Lognormal}

# units in hidden layer Categorical {50, 100}

Activation function for hidden layers Categorical {selu, tanh}

Model type Categorical {shared_cat, concatenated}

D
SI

M

Structure
generation

Parallelism threshold (ε) Uniform [0...1]

Percentile for frequency threshold (η) Uniform [0...1]

Conditional branching probabilities Categorical {Equiprobable, Discovered}

Cases
start-times
generation

changepoint-prior-scale Categorical {0.001, 0.01, 0.1, 0.5}

seasonality-prior-scale Categorical {0.01, 0.1, 1.0, 10.0}

Timestamps
generation

N-gram size Categorical {5, 10, 15}

# units in hidden layer Categorical {50, 100}

Activation function for hidden layers Categorical {selu, tanh}

Single resource-pool intercase feature Boolean {True, False}

Table 22: Hyperparameters used by optimization techniques
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Results. Fig. 39 and Table 23 present the accuracy results grouped by metrics,
log size and source type. Cycle time MAE and EMD are error/distance measures
(lower is better).
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Figure 39: Evaluation results at trace and log levels

At the traces level (see Fig. 39a) in the large logs (real-life and synthetic), the
DSIM models outperform the LSTM and SIMOD approaches. The DSIM models
obtain by far the best result in four out of five logs. In small logs, DSIM models
obtain the lower MAE values in three out of five logs and SIMOD by a few in the
remaining. As expected, the pure DL model results show a significant dependence
on the volume of data available for learning the log’s complex temporal dynamics.
However, although the DSIM approach also uses DL models for time prediction,
it is insensitive to the data volume. The LSTM(GAN) models present a low per-
formance in general terms due to the temporal stability of the models’ predictions
declines rapidly, despite having a high precision in predicting the next event [86].
These results also indicate overfitting on the LSTM(GAN) models, preventing the
generalization of this approach for this predictive task.

At the global representation of times, DSIM obtains as well the best results in
seven of the ten logs evaluated, surpassing the SIMOD results (see Fig. 39b). De-
spite the minor differences between both approaches, the Prophet model used by
DSIM can precisely capture the dynamics of instance generation without defining
calendars. The calendar definition can be included in the Prophet model as part of
the holidays component, potentially improving its performance. We did not evalu-
ate the LSTM and LSTM(GAN) techniques concerning the global representation
of times because these models do not handle the generation of process instances,
operating exclusively at the level of individual process traces.
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Size Type Log MAE EMD

LSTM(GAN) LSTM SIMOD DSIM SIMOD DSIM
L

A
R

G
E R

UB 603105 778608 N/A 471239 N/A 0.036932

BPIC2017W 828165 603688 961727 418422 0.016873 0.034584

BPIC2012W 653656 327350 662333 548813 0.056789 0.020098

S
CVS 952004 667715 1067258 158902 0.018955 0.000004

CFL 956289 15078 252458 8441 0.240567 0.239087

SM
A

L
L R

INS 1302337 1516368 1090179 1190019 0.143675 0.142097

ACR 296094 341694 230363 165411 0.207050 0.205106

MP 210714 321147 298641 157453 0.062227 0.050479

S
CFS 717266 33016 15297 24326 0.222515 0.266749

P2P 2347070 2495593 1892415 1836863 0.130655 0.132898

Table 23: Evaluation results (lower values are better)

7.2.4. Experiment 2: Process demand modification

In this experiment, we compared the ability of DSIM to reproduce a what-if sce-
nario in which the process arrival rate contains high and low periods of case in-
fluxes.

Experiment setup. AS a first step to evaluate this scenario, we created a mod-
ified version of the three largest logs (i.e., BPIC2012W, BPIC2017W, and CVS).
We first divide each log into six batches of the same number of cases and create
two groups, interleaving them. The first group is composed of batches 1, 3, and
5 and represents the high influx of cases for which we did not make any changes.
The second group comprises batches 2, 4, and 6, representing the low influx of
cases; therefore, we reduced the arrival rate by 1/3, randomly eliminating two out
of three cases. Fig. 40 presents the modification made in the BPIC2017W log.

Figure 40: Original and modified cases creation

Later we trained the DSIM and SIMOD models in the same way as we did in
Experiment 1 using these modified logs. Later, we generated five logs, each of
the same size (number of traces) as the original log’s testing fold. Each gener-
ated log was compared with the testing fold using the MAE and EMD measures.
In a complementary way, we report the Dynamic Time Warping (DTW) distance
between the time series of the number of cases generated per hour of the day be-
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tween the testing partition and the logs generated. DTW gives a non-linear (elas-
tic) alignment between two-time series, producing an intuitive similarity measure.
We report the mean of each of these measures across five runs.

Results. Table 24 presents the results of cycle time MAE, EMD of the log
timestamps grouped by day and hour and DTW of the interarrival times. Fig. 41
shows the generation of cases of the testing partitions vs. the logs generated by
each of the models per input event log. DSIM has a lower error in cycle times in
all cases. We can explain this result because the DL models in charge of predict-
ing waiting and processing times consider inter-case attributes that describe the
Workload of the process. The use of these attributes implies that the models can
adjust to variations in the load of the process.

Regarding the results of EMD and DTW, both metrics follow the same trends.
In two of the three logs, DSIM obtains the best results - In some cases much better
w.r.t. CVS log -, and in the rest, the results remain close to those of SIMOD. In
the case of the CVS log, SIMOD, when using a single distribution, generated the
cases in a very short interval of time, which caused a contention of resources that
triggered errors in cycle times. On the contrary, DSIM distributed the creation in
a much greater interval than expected. In the case of BPIC2012W, the opposite
occurred. SIMOD generated the cases in a much longer interval than expected. In
the BPIC2017W log, DSIM and SIMOD tended to a medium generation of cases,
for which both approaches obtained similar results.
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Figure 41: Cases creation in generated logs versus cases creation in the test parti-
tions

MAE EMD DTW
Log SIMOD DSIM SIMOD DSIM SIMOD DSIM

BPIC2017W 971151 417572 0.02222 0.03593 3185 3647
BPIC2012W 660211 534341 0.11295 0.04853 515 458
CVS 1489252 467572 0.03213 0.00001 3380 849

Table 24: Detailed results
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7.2.5. Experiment 3: Addition of a new activity

We evaluate the ability of DSIM to simulate a process after a change (what-if
analysis). We consider the scenario where one activity is added to a process.
This scenario is challenging because it adds an element to the process that was
not known when the DSIM model was trained. Other possible changes, such as
altering the branching probabilities or removing activities, do not add unknown
elements.

Experiment setup. For each of the two synthetic logs (CVS and CFL), we se-
lected a random activity A, and we eliminated all occurrences of A from the log.
We then trained a DSIM simulation model using this modified log (cf. left-hand
side of Fig. 42). Next, we generated synthetic data consisting of positive and neg-
ative examples of pairs composed by the activity label and associated resource
(see Sec. 7.1.3). Using these synthetic samples, we updated the embedded dimen-
sions to include activity A (without modifying the embedding of the remaining
activities). We then plugged the updated embedding into the previously trained
DSIM model (cf. right-hand side of Fig. 42). We then calculated the errors of the
DSIM model of the “as-is” process (before a change) and of the DSIM model of
the “what-if” process (after adding an activity).

We measured the error using the MAE metric. Additionally, we calculated
the RMSE and SMAPE metrics to confirm that the results do not depend on the
chosen error metric.
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Figure 42: Setup of experiment 2

Results. Table 25 presents results of cycle time MAE, RSME, and SMAPE
grouped for each log, both for the simulation model of the initial process (as-is
model) and the model after the modification (what-if model). In general terms,
the what-if model has the higher prediction error at the trace level concerning the
baseline model in both event logs. These high error values are evident in the CVS
log, where the SMAPE of the updated model is 184% compared to 31.97% of
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the baseline model. However, these results also demonstrate that embedded di-
mensions enable deep-learning models to incorporate and predict activities that
were not present in the training log without model retraining. These results open
the discussion on using more specialized embedding techniques such as word2vec
or transformer models that allow coding activities in a more precise way. Using
these techniques would improve the precision of deep-learning models in predict-
ing both as-is scenarios and possible what-if scenarios.

Log Source MAE RMSE SMAPE

CFL as-is 7155 22006 0.1563
what-if 17546 33137 0.2876

CVS as-if 283061 357717 0.3197
what-if 1040344 1052255 1.8460

Table 25: Experiment 2 evaluation results

7.3. Conclusions

This chapter presented a method, namely DSIM, to learn BPS models from event
logs using a combination of PM and DL techniques. The design of this method
is driven by the observation that traditional methods for discovering BPS models
from event logs – a.k.a. DDS methods – do not capture delays between activities
caused by factors other than resource contention within the simulated process,
such as fatigue effects, batching effects, and inter-process dependencies. In con-
trast, DL techniques can learn complex temporal patterns present in event logs.
Accordingly, the proposed method discovers a stochastic process model from an
event log using automated process discovery and trace alignment techniques, and
it then uses DL models to add timestamps to the traces produced by the stochastic
model. The method is designed in such a way that the stochastic process model
can be later modified (activities may be added or removed, and branching proba-
bilities may be altered), thus enabling some forms of what-if analysis.

The chapter reported on an empirical comparison of the proposed method
against an existing DDS method and two DL methods. The evaluation shows
that the DeepSimulator method outperforms the DDS and DL methods, while re-
taining the what-if analysis capabilities of DDS methods. These results fill the
research GAP5 (cf. Sec. 1.2) and answer the research question RQ2 (cf. Sec. 1.1)
concerning how to create simulation techniques that more accurately capture the
observed temporal dynamics of business processes.

The evaluation in a what-if analysis setting (adding an activity to the process)
shows that the accuracy of the method may considerably degrade in this setting.
We foresee that this drawback can be addressed by experimenting with embedding
techniques that take into account the context in which an activity occurs, such as
word2vec or transformer models – as opposed to computing the embedding based
on the activity-resource pairings as reported in this thesis.
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8. CONCLUSION AND FUTURE WORK

8.1. Summary of contributions

This thesis addressed the question of how to create more accurate business process
simulation models derived from data. More specifically, we are interested in how
to improve the temporal accuracy of the current BPS technique. Accordingly, we
proposed two research questions:
RQ1 How to automatically create accurate business process simulation models

based on data extracted from enterprise information systems?
RQ2 How to create simulation techniques that more accurately capture the ob-

served temporal dynamics of business processes?
To answer the research question RQ1, we filter and contextualize the existing

literature reviews in the area. We identified two research gaps in the current state-
of-the-art in the field of DDS:
GAP1 Existing studies have not extensible explored the question of measuring

the accuracy of BPS models derived from data; and,
GAP2 The fine-tuning of simulation parameters is left to the modeler, thus leav-

ing the door open for the introduction of biases during the creation of BPS
models.

To address these gaps, in contribution 1, we proposed a method to automati-
cally discover BPS models from event logs and to fine-tune the accuracy of the
discovered BPS model. The proposed method takes an event log as the input, au-
tomatically discovers a process model, aligns the log to the model (and repairs it
accordingly), and applies replay and organizational mining techniques to extract
all the parameters required for simulation.

Each of the steps in the method relies on a number of hyperparameters. The
proposed method uses a Bayesian optimization technique to fine-tune these hy-
perparameters to maximize the accuracy of the resulting BPS model, which is
measured in terms of a timed string-edit distance between the log(s) the simula-
tion model generates and the original log.

The proposed method was implemented as an open-source tool named Simod.
Simod was evaluated using three real-life event logs from different domains. The
evaluation showed that the hyperparameter optimization method significantly im-
proved the accuracy of the resulting BPS model relative to an approach built using
standard default parameters. Furthermore, the evaluation revealed that the best
configuration of hyperparameters varies significantly from one event log to an-
other– further emphasizing the need for automated hyperparameter optimization
in this setting.

On the other hand, the evaluation of the Simod method put into evidence its
limitations– in particular, temporal accuracy. These limitations can be explained
by the fact that most of the existing DES engines used in BPS, including the
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one used by Simod, assume that the only source of waiting time in a process
is resource contention, i.e. the fact that a task instance cannot be started if the
resource is busy with other task instances. In doing so, these techniques fail to
account for the multitude of sources of waiting times that may arise in practice,
such as waiting times caused by batching, prioritization, resources being involved
in other business processes besides the one under analysis, or fatigue.

Considering that the factors that can determine waiting times are numerous and
diverse, proposing an answer to the RQ2 research question required approaching
the problem from a different angle. This thesis investigated the hypothesis that
machine learning techniques, specifically deep learning techniques, can be used to
increase the accuracy of BPS models extracted from data. After reviewing existing
deep learning techniques applied in business processes, this thesis identified three
further gaps that must be addressed to make these techniques applicable in this
context:
GAP3 DL generative models must be able to generate not only remaining se-

quences of events (suffixes) but also complete logs starting from scratch
(prefixes of size zero).

GAP4 Similarly, the generated logs must include the category of the event, asso-
ciated resource, and start and end times of the activities, thus allowing an
evaluation of the performance of the scenarios.

GAP5 Furthermore, deep learning techniques must be able to perform what-if
analysis, one of the BPS’s key features.

In response to research gaps 3 and 4, in our contribution 2, we proposed a
method to train deep-learning generative models capable of generating complete
event logs from input data composed of activities, roles, and timestamps as done
in BPS. The approach consisted of a pre-processing phase (scaling and n-gram
encoding), an LSTM training phase, and a post-processing phase (selecting the
predicted next event among the likely ones). In a first experiment, this thesis com-
pared and analyzed several options for each phase concerning accurately gener-
ating full traces from scratch– thus enabling its use in simulation. In the second
experiment, the evaluation showed that the proposed approach outperformed ex-
isting DL approaches for predicting the remaining sequence of events and their
timestamps starting from a given prefix of a trace.

Subsequently, as a benchmark and in preparation to solve research gap 5, we
compared the relative precision and characteristics of the DDS versus DL gen-
erative models under the same conditions, including the number of event logs
(eleven in total). The results suggested that DDS models are suitable for capturing
the sequence of activities of a process. In contrast, DL models outperform DDS
models when predicting the timing of activities– specifically, the waiting times
between activities. This is because simulation models used by DDS approaches
assume that waiting times are entirely attributable to resource contention, i.e., all
resources that can perform an enabled activity instance are busy performing other
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activities. Conversely, DL models try to find the function that best fits the ob-
served waiting times without any assumptions about the behavior of the resources
involved in the process. Furthermore, this study clarified how to construct a hy-
brid technique between DDS and DL to improve the temporal accuracy of current
DDS techniques while retaining the what-if capabilities.

Finally, to address gap 5, in the contribution 4 in contribution 3, we presented
a method - namely DeepSimulator - to learn BPS models from event logs us-
ing a combination of PM and DL techniques. The proposed method discovers a
stochastic process model from an event log using automated process discovery
and trace alignment techniques. The DeepSimulator method then uses DL models
to add timestamps to the traces produced by the stochastic model. The method
was designed so that the stochastic process model can be later modified (activities
may be added or removed, and branching probabilities may be altered); therefore,
the method enables some forms of what-if analysis. The proposed approach was
compared empirically against the previously developed DDS method and two DL
methods. The evaluation showed that the DeepSimulator method outperforms the
DDS and DL methods while retaining the what-if analysis capabilities of DDS
methods.

In summary, to answer the research questions, we proposed two approaches.
The first one – Simod —focuses on answering the RQ1; the tool automatically dis-
covers BPS models from an event log, thus responding to the problems of creating
simulation models of the current technique. Furthermore, to our knowledge, this
is the only tool capable of measuring and optimizing the precision of a simulation
model concerning the input log– thus, significantly improving its precision. How-
ever, due to the intrinsic limitations of the simulation technique employed in BPS,
Simod has not yet fully responded to the challenge of improving the temporal ac-
curacy of the simulation models. Due to this, to answer the RQ2, we proposed a
second tool – DeepSimulator – that discovers hybrid simulation models with deep
learning techniques capable of representing the temporal dynamics of the process
in a more precise way, thus answering the research question.

To support the reproducibility of the research results, the source code of all
the artifacts and experiments performed in this thesis is made available in code
repositories (see Appendix A).

8.2. Future work

The research presented in this thesis opens up several directions for future work,
described in the following paragraphs.

Extending the capabilities of data-driven simulation. A direction for future
work to enhance the accuracy of DDS is to take into account the fact that resources
are not always available to perform tasks in a process. In recent work, conducted
in parallel with this PhD research, we extended the Simod method (see Sec. 4) to
discover calendars that capture the availability periods of resources based on the
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data available in an event log [26]. However, the discovered availability calendars
are hard to interpret and are too granular, since it is assumed that all resources
within a resource pool share the same availability calendar. Future work can re-
fine this technique by working at a more granular level– like resource pool or
individual resources (i.e., differentiated availability calendars for each resource)–
so that the discovered calendars reflect the constraints observed in the process
more realistically.

As an alternative to fitting an inter-arrival distribution for the generation of
cases in this thesis, we tested the use of time series prediction models [85]. The
integration and extension of this type of technique in DDS models could improve
the precision of the temporal representation of DDS models. This type of model-
ing allows the representation of the more complex dynamics of case generation–
for example, the constant growth of the demand of the process or the inclusion of
seasonal patterns not currently captured by fitting of one single distribution.

A direction to enhance the capabilities of DDS is to include techniques for
discovering perspectives from event logs that have not yet been included in the
simulation models, which can make the simulation models more realistic. For
example, [52, 12] propose techniques for the discovery of decision rules that can
be used as an alternative to the use of probabilities in decision gateways. Martin
et al. [56] propose techniques for the discovery of batching, and Suriadi et al. [82]
propose techniques for the discovery of task prioritization. The use of these, and
other perspectives [54], may require the design of simulation engines that can
integrate them into execution.

One of the main limitations of data-driven simulation is the constraint of re-
quiring event logs to contain start and complete timestamps of process activities.
In practice, this type of event log is rare. A possible direction of future work is in
the development of discovery techniques that allow approximating the processing
time of the tasks in cases in which there is only one timestamp available. Similar
to these examples, each simulation model component is susceptible to improve-
ment and is a rich extension source.

Extending the capabilities of hybrid simulation techniques. A key challenge
to use deep-learning models for process simulation is how to capture “what-if”
scenarios (e.g., the effect of removing a task or removing a resource). The evalu-
ation of the DeepSimulator technique in a what-if analysis setting (adding an ac-
tivity to the process) shows that the method’s accuracy may considerably degrade.
We foresee that this drawback can be addressed by experimenting with embed-
ding techniques that consider the context in which an activity occurs, such as
word2vec [58] or transformer models [89]. These techniques can be used instead
of computing the embedding based on the activity-resource pairings, as reported
in this thesis. Another possible way to meet this challenge is to apply techniques
to guide the generation of event sequences from LSTM models using constraints
along the lines of [21].

The problem of handling what-if scenarios is closely related to the problem of
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adapting a predictive model to handle concept drifts. A concept drift refers to a
scenario in which the relationship between the input data and the target variable
changes over time– affecting the precision of a trained predictive model [30]. In
both cases (i.e., what-if and concept drift), the predictive model must adapt to
dynamics that were not part of the training data. Some of the techniques that have
already been evaluated in the management of the conceptual drift in predictive
process monitoring, such as incremental learning, can be explored in the case of
process simulation [58]. This research topic is still open in the deep learning
community and is a potential source of research in business processes.

Given that the proposed approach generates logs consisting of sequences of
timestamped activity instances, another avenue for future work is extending the
approach to generate events that include resource and domain-specific attributes.
A related avenue is to extend the approach to support a broader range of changes,
such as changes in the resource perspective (adding or removing resources). An-
other avenue is to validate the proposed method via case studies to complement
the “postmortem” evaluation reported in this thesis.

Automatically creating and evaluating improvement scenarios. In this thesis,
we explored the problem of discovering simulation models from data. However,
to support effective decision-making, it is necessary to take a step further and
to investigate the effect of difference change scenarios on the performance of a
process. Along this direction Lopez-Pintado et al. [50] explore how to optimize
the allocation– using BPS to evaluate the possible configurations. The same idea
can be extended to explore other possible changes in the process, such as changes
in the sequence flow or in the availability of resources. Building process opti-
mization techniques on top of the simulation techniques developed in this thesis
is another avenue for future work.
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9. CODE REPOSITORIES

The implementations and the code required to run the experiments reported in the
thesis can be found in the following code repositories:

I Simod tool: https://github.com/AutomatedProcessImprovement/
Simod

II DeepGenerator approach: https://github.com/AdaptiveBProcess/
GenerativeLSTM

III DeepSimulator tool: https://github.com/AdaptiveBProcess/
DeepSimulator

IV Adapted LSTM(GAN) approach: https://github.com/
AdaptiveBProcess/LSTM-GAN

A screencast of the Simod tool is available at https://youtu.be/
i9X5jwjuipk. This video illustrates two typical scenarios. In the first scenario,
the user manually explores the different preprocessing options of the tool to gen-
erate a simulation model. In the second scenario, the user defines a search space,
and the tool automatically explores the combination looking for the optimal one.
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SISUKOKKUVÕTE

Äriprotsesside simulatsioonimudelite automatiseeritud
tuvastamine sündmuslogidest: Protsessikaevel ja süvaõppel

põhinev hübriidlähenemine

Kaasaegsed organisatsioonid peavad oma äriprotsesse pidevalt muutma, et koha-
neda erinevate sisemiste ja välimiste muutustega nagu näiteks uued konkuren-
did, uued regulatsioonid, muutused klientide ootustes või muutused strateegilis-
tes eesmärkides. Näiteks pandeemia oludes võib jaemüüja internetikaubanduse
maht suureneda 50%, samas kui kohapeal sooritatud ostude maht langeb näiteks
30%. Sellise muutunud olukorraga kohanemiseks võib jaemüüja otsustada tööta-
jate ümberpaigutamise jaekauplustest ettevõtte ladudesse ja veebipõhise kliendi-
teeninduse osakonda. Seda tüüpi otsuste teadlikuks vastuvõtmiseks on jaemüüjal
vaja täpset hinnangut selle kohta, millist mõju antud otsus avaldaks kaupade ko-
haletoimetamise ja klientide päringutele vastamise aegadele.

Tavapärane lähenemine selliste hinnangute andmiseks on kasutada äriprotses-
side simuleerimist. Äriprotsesside simuleerimine viitab äriprotsesside ajalise dü-
naamika arvuti abil uurimisele ja tegemist on kasuliku lähenemisega vastamaks
„mis-oleks-kui“ tüüpi küsimustele äriprotsesside ümberdisainimise kontekstis.
Samas, tulenevalt sellest kuidas äriprotsesside simuleerimist tavaliselt rakendatak-
se, on selle lähenemisega saadud ennustused teadaolevalt suhteliselt ebatäpsed.

Äriprotsesside simuleerimisel kasutatavad simulatsioonimudelid luuakse tava-
liselt valdkonna ekspertide poolt käsitsi, kasutades manuaalseid andmekogumis-
meetodeid (intervjuud, vaatlused, valikulised andmete väljavõtted), mis omakorda
muudab simulatsioonimudelite loomise ajamahukaks ja veaaltiks. Reaalsuses on
äriprotsesside käitumine sageli oluliselt keerukam sellest, mida valdkonna eks-
perdid suudaksid käsitsi koostatud simulatsioonimudelites kajastada. Samas iga
simulatsioonimudelist välja jäänud detail võib oluliselt mõjutada äriprotsesside
simuleerimise täpsust ja usaldusväärsust. Teised olemasolevate äriprotsesside si-
muleerimise lähenemiste puudujäägid tulenevad äriprotsesside simulatsioonimoo-
torite poolt tehtavatest põhimõttelistest eeldustest. Näiteks eeldus et inimesed töö-
tavad robotitele (või tehase tööliinidele) sarnasel viisil, ehk et tööd tehakse töö-
tundide jooksul järjepidevalt, püsiva tähelepanuga, kõrvalistele töödele aega ku-
lutamata ja väsimatult. Ehk teisisõnu, olemasolevad äriprotsesside simuleerimise
lähenemised ei ole võimelised kajastama ja seega ka taaslooma inimkäitumise
keerukust.

Ülaltoodust lähtuvalt uurib käesolev doktoritöö järgnevat üleüldist küsimust:
Kuidas automatiseeritult luua täpseid äriprotsesside simulatsioonimudeleid tugi-
nedes ettevõttete infosüsteemidest kogutud andmetele? Antud küsimusega seon-
duv varasem teadustöö on näidanud, et äriprotsessi käitlemisandmete analüüsiteh-
nikaid, mida tervikuna nimetatakse protsessikaeveks, on võimalik edukalt kasu-
tada äriprotsesside simulatsioonimudelite pool-automatiseeritult loomiseks ning
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vastavate tehnikate kohta kasutatakse üldnimetust andmepõhine simuleerimine.
Käesolev doktoritöö juhib kõigepealt tähelepanu tõsiasjale, et täpsete simulatsioo-
nimudelite loomine, kasutades olemasolevaid andmepõhise simuleerimise teh-
nikaid, nõuab käsitsi sekkumist ja peenhäälestamist. Selle puudujäägi lahenda-
miseks esitatakse ja hinnatakse käesolevas doktoritöös andmepõhise simuleeri-
mise täielikult automatiseeritud lahendus, mis suudab tuvastada ja peenhäälesta-
da simulatsioonimudeleid rakendades protsessikaeve tehnikaid. Lahenduse tuu-
mikidee on automatiseeritult hinnata simulatsioonimudeli täpsust, arvestades nii
tegevuste järjekorda kui ka tegevuste kestuseid. Täpsuse hinnangule tuginedes ra-
kendatakse antud lähenemises Bayesi optimeerimisalgoritmi eesmärgiga saavu-
tada maksimaalne sarnasus simulatsioonimudeli poolt genereeritud käitumise ja
äriprotsessi käitlemisandmete vahel.

Seejärel näitab käesolev doktoritöö, et esitatud andmepõhise simuleerimise
tehnika loob simulatsioonimudeleid, mis peegeldavad tegevuste järgnevusi täp-
selt, aga samas ei suuda sageli täpselt ennustada tegevuste kestust. Antud puudu-
jääk on põhjustatud andmepõhise simuleerimise tehnikates tehtavatest eeldustest
seoses ressursside käitumisega äriprotsessides. Antud puudujäägi lahendamiseks
kombineeritakse käesolevas doktoritöös protsessikaevel tuginevaid andmepõhi-
se simuleerimise tehnikaid ja generatiivseid süvaõppepõhiseid modelleerimise
tehnikaid. Selles osas esitab käesolev doktoritöö kaks teaduslikku panust. Esi-
teks, lähenemine generatiivsete süvaõppe mudelite loomiseks, mis võimaldavad
protsessi ajalooliste käitlemisandmete põhjal genereerida ajatembeldatud sünd-
muste järgnevusi koos sündmustele vastavate ressurssidega. Teiseks, lähenemine
protsessikaevel tuginevate andmepõhise simuleerimise tehnikate ja generatiivsete
süvaõppepõhiste modelleerimise tehnikate kombineerimiseks. Käesolev doktori-
töö näitab, et sellise hübriidlähenemisega loodud simulatsioonimudelid võimalda-
vad luua simulatsioone, mis peegeldavad protsessi käitlemisandmetes sisalduvaid
sündmuste järgnevusi ja kestuseid täpsemalt kui ainult andmepõhisele simulat-
sioonile tuginevad tehnikad ja täpsemalt kui ainult süvaõppele tuginevad tehni-
kad.
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