VOLODYMYR LENO

Robotic Process Mining:
Accelerating the Adoption of
Robotic Process Automation

DISSERTATIONES
INFORMATICAE
UNIVERSITATIS

TARTUENSIS

33




DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
33



DISSERTATIONES INFORMATICAE UNIVERSITATIS TARTUENSIS
33

VOLODYMYR LENO

Robotic Process Mining:
Accelerating the Adoption of
Robotic Process Automation

b

UNIVERSITY oF TARTU
Press

—
o —
O E—
D —
—
—



Institute of Computer Science, Faculty of Science and Technology, University of

Tartu, Estonia.

Dissertation has been accepted for the commencement of the degree of Doctor of
Philosophy (PhD) in Computer Science on December 02, 2021 by the Council of
the Institute of Computer Science, University of Tartu.

Supervisor
Prof.
Prof.
Prof.

Prof.

Opponents

Assoc. Prof.

Assoc. Prof.

Marlon Dumas

University of Tartu, Estonia

Fabrizio Maria Maggi

Free university of Bozen-Bolzano, Italy
Marcello La Rosa

University of Melbourne, Australia
Artem Polyvyanyy

University of Melbourne, Australia

Paolo Ceravolo

University of Milan, Italy
Carmelo del Valle
University of Seville, Spain

The public defense will take place on January 17, 2022 at 09:00, Online.

The publication of this dissertation was financed by the Institute of Computer
Science, University of Tartu.

Copyright (©) 2021 by Volodymyr Leno

ISSN 2613-5906

ISBN 978-9949-03-789-6 (print)
ISBN 978-9949-03-790-2 (PDF)

University of Tartu Press
http://www.tyk.ee/


http://www.tyk.ee/

ABSTRACT

Nowadays, a vast majority of business processes involve many tedious and repet-
itive tasks, for example transferring data across multiple systems or transforming
data from one format to another. Automating these tasks can bring many benefits
such as error-rate reduction, performance improvements, workflow standardiza-
tion and transparency.

Automating repetitive tasks has been made more convenient by recent tech-
nological advances, particularly the emergence of Robotic Process Automation.
Robotic Process Automation (or RPA for short) is a technology that allows or-
ganizations to automate routine digital tasks by executing software scripts that
encode sequences of fine-grained interactions with Web and desktop applications.

Although RPA tools allow automating a wide range of routines, identifying and
scoping routines that can be automated is time-consuming. Manual identification
of candidate routines via interviews, walkthroughs, or job shadowing allows ana-
lysts to identify only the most visible routines. These methods are not suitable for
identifying routines for automation in large-scale settings.

The thesis studies the problem of discovering routines that can be automated
using RPA tools from logs of user interactions with IT systems. This problem
is decomposed into a sequence of subproblems such as logs collection and pre-
processing, identifying candidate routines, evaluating their automatability, and
synthesizing executable specifications that implement them. The thesis provides
an overview and analysis of the state-of-the-art for each identified subproblem and
identifies gaps to be addressed.

Based on this analysis, the thesis makes four contributions. The first contri-
bution is a format to store user interactions logs and a tool to record them. The
analysis of existing solutions shows that they are not capable of recording user
interactions logs that can be used to discover useful routines. Specifically, they
record user interactions at a low level of granularity (keystrokes and clickstreams)
and do not capture the data values used during such interactions. The format
proposed in the thesis specifies what information is required to be captured by a
logging tool to analyze, improve and automate the underlying user interactions.
The devised recording tool records user interactions performed in Chrome and
MS Excel applications. It records user interactions at a level of logical input ele-
ments of a target application. Moreover, it captures all the data values used during
these interactions so that the corresponding routines can be analyzed with respect
to their automatability and implemented in the form of executable scripts.

The second contribution is an end-to-end pipeline to automate routine tasks.
Given a user interactions log, the proposed pipeline aims at identifying automat-
able routines and their boundaries, collect variants of each identified routine, stan-
dardize and streamline the identified variants, and discover an executable specifi-
cation corresponding to a streamlined and standardized variant of the routine. The
routines produced as output are defined in a platform-independent language that



can be compiled into a script and executed in a target RPA tool.

The final two contributions instantiate the proposed pipeline. Specifically, the
devised approaches focus on discovering routines for RPA. The first approach
aims at discovering candidate routines for RPA from user interactions logs. It
applies graph theory to split a user interaction log given as input into a set of
segments, each representing an instance of task execution, and then identifies
candidate routines by mining frequent sequential patterns from these segments.
The second approach focuses on determining whether candidate routines are au-
tomatable and discovering their executable specifications. This approach exploits
state-of-the-art data transformation discovery techniques and introduces several
optimizations to improve their performance and discovery quality. The thesis also
describes a method for detecting and removing semantically equivalent routines
that lead to the same final effects.

Altogether, these approaches give rise to a new family of techniques, called
Robotic Process Mining (RPM). RPM aims at helping RPA developers and ana-
lysts in the early stages of the RPA lifecycle. Specifically, it assists the analysts in
drawing a systematic inventory of the tasks that can be automated with RPA and
synthesizes executable specifications of such tasks that can be used as a starting
point for their automation.

All the artifacts designed and developed for this thesis are publicly available
as standalone open-source command-line applications. They are also combined
into the pipeline in the form of a software-as-a-service tool called Robidium. The
efficiency and potential usefulness of the proposed techniques have been evaluated
using synthetic and real-life user interactions logs. The evaluation results show
that these approaches can discover automatable routines that present in a user
interaction log and identify automatable routines that users recognize as such in
real-life logs.



CONTENTS

1. Introduction

1.1. Research Problem . . . . . ... ... ... .........
1.2. Requirements to solution . . . . . . ... ... .......
1.3.Research Method . . . . . ... ... ... .........
1.4. Contributions to the Research Area . . . . .. ... ... ..
1.5. Thesis Structure . . . . . . ... ... . ... ........

2. Background

2.1. Business Process Management . . . . . .. ... ... ...
2.2. Robotic Process Automation . . . . ... ..........
23.ProcessMining . . . . .. ...
24, TaskMining . . . . . . .. ... ...

3. Robotic Process Mining: area, definition, architecture

3.1.C0oncepts . . ... e e e e
3.2. Architecture . . . . ... oL
33.Summary ... ... e

4. State of the Art

4.1. Segmentation . . . . . . ...
4.2. Candidate routines identification . . . . . .. ... ... ..
4.3. Executable routines discovery . . . . ... ... ... ...
4.4.5ummary ..o ... e e e

5. Discovery of candidate routines

S.1.Approach . . . . ... ...
5.1.1. UI Log Preprocessing and Normalization . . . . . . .
5.1.2. Segmentation . . . . .. ... ... ...
5.1.3. Candidate routines identification . . . . . ... . ..

52.Evaluation . . . .. ... L
52.1.Datasets . . . ...
522.8etup . ...
523.Results . . . ...
524. Threatstovalidity . . .. ... ............

53.Summary ... ...

6. Discovery of executable routines

6.1. Global transformations approach . . . . . . . ... ... ..
6.1.1. Baseline Approach . . . . . ... ... ........

6.1.2. Optimization 1: Grouping Examples by Target

6.1.3. Optimization 2: Grouping Examples by Input Structure
6.2. Local transformations approach . . . . . . .. ... ... ..

12
12
14
15
17
17

18
18
21
23
27

29
29
32
39

40
40
41
44
45

47
47
47
52
57
59
60
61
62
64
64

67
67
69
72
73
75



6.3. Routines aggregation . . . . .. ... ... ......
6.4.Evaluation . . . . . ... ... Lo
6.4.1. Global transformation approach . . . . . . . ..
6.4.2. Local transformation approach . . . . ... ..
6.4.3. Threats to validity . . . . . . ... ... ....
6.5.Summary . ... .. ... ...

7. Software implementation

7.1. ActionLogger . . . . .. ... ... .
72.Robidium . ... ... ... o 000000
7.3.Summary . .. ..o

8. Conclusion

8.1. Summary of contributions . . . . . .. ... ... ...
82.Futurework . . . ... ... ... ... ... ...

Bibliography

Acknowledgement

Sisukokkuvéte (Summary in Estonian)
Curriculum Vitae

Elulookirjeldus (Curriculum Vitae in Estonian)

List of original publications

Publications in the scope of the thesis . . . . . . . ... ...
Publications out of the scope of the thesis . . . . . . .. ...



0NN kW

19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

LIST OF FIGURES

. Extract of a spreadsheet with student data that needs to be trans-

ferredtoaWebform . .. ... ... .. ... . ... ......

.BPMlifecycle [1] . . . . . . .. .. .. ...
.RPAlifecycle . . ... ... ... ... .. . ... .. ... ...
.Example of aprocessmap . . . . . . ... ... L
.Processvs.task . ... ... o oo Lo
. Process analytics overview . . . . . ... ... oL
. Class diagram of RPM concepts . . . . .. ... .........
.RPMpipeline . ... ... ... ... ... .. ... ... ...
. Example of a routine specification presented in BPMN format . . .
10.
11.
12.
13.
14.
15.
16.
17.
18.

Outline of the approach for discovering candidate routines . . . . .
Collapsed vertices . . . . . . . .. . . . oo
Control-flow graph for the running example . . .. ... ... ..
Dominator tree for the running example . . . . . ... ... ...
Routine as a transformation . . . . . .. ... ... ... ... ..
Baseline approach for discovering data transformations in UI logs
Example of Foofah execution . . . . ... ... ... .......
A sample transformation program . . . . . . . . .. ... ... ..
Transformation programs synthesized by the approach that groups
transformation examples by targets . . . . .. ... ... L.
Transformation discovered by combining both optimizations
Transformation functions discovered from the running example . .
Data transformation graphexample . . . . . . ... ... ... ..
Fragment of a log recorded by JitBit . . . . ... ... ... ...
Fragment of a log recorded by WinParrot . . . . . . .. ... ...
Fragment of a log recorded by Automation Anywhere . . . . . . .
Action Logger architecture within the RPA pipeline . . . . . . ..
Use case to demonstrate the work of Action Logger . . . . . . ..
Fragment of a log recorded by Action Logger . . . ... ... ..
Robidium architecture . . . . . . . .. ... ...
Robidium interface . . . . . ... ... ... oL oL L.

13
19
22
25
27
28
32
33
38
47
52
53
55
68
69
70
71

74
76
81
82
90
91
91
92
93
93
94
96



0NN AW

— e e e e e e e
O 00 3 O WD K~ W= O O

LIST OF TABLES

. Example of a user interactionlog . . . . ... ... ... ... ..
.Example of aneventlog . . . . . ... ... ... ... ... ...
. Fragment of a user interactionlog . . . . . . .. ... .. ... ..
. User interaction types and their parameters . . . . . . .. ... ..
. Summary of prior work related to the three phases of RPM

. Running example for the candidate routines discovery approach . .
. Normalized running example after preprocessing . . . . . . . . . .
. Segments identification . . . . ... ... ... ... ...
. Ul'logs characteristics . . . . . . . ... ... ... ... .....
.Segmentationresults . . . . ... ...
. Quality of the discovered routines . . . . . ... ... ......
. List of the most commonly used Foofah’s commands . . . .. ..
. Transformation example with ambiguous output . . . . . ... ..
. Example of adependency table . . . . ... ... ... .. .. ..
. Transformation steps . . . . . . . . . . .. ... ... .. ...,
. Global transformations approach discovery results . . . . . . . . .
. Transformation discoveryusecase . . . . . . ... ... .....
. Local transformations approach discovery results . . . . . . . ..
. UI parameters recorded by Action Logger . . . . ... ... ...

10

14
24
30
31
45
48
51
57
60
63
65
71
74
80
80
84
85
86
94



LIST OF ABBREVIATIONS

Robotic Process Automation RPA
Robotic Process Mining RPM
User Interaction Ul
Control-flow Graph CFG
Strongly Connected Component SCC
Structured Query Language SQL
Information System IS
Automated Process Discovery APD
Business Process Management BPM
Business Process Model and Notation BPMN
Business Process Management System BPMS
Multi-perspective MP
Information Technology IT
JavaScript Object Notation JSON
Application Programming Interface API
Document Object Model DOM
Routine Automatability Index RAI
Levenshtein Edit Distance LED
Coloured Petri Net CPN

11



1. INTRODUCTION

1.1. Research Problem

Automation is an integral part of process improvement. Throughout history, man-
ual work had been gradually handed over to machines that could replicate human
work on a larger scale and a higher speed, significantly increasing efficiency. This
allowed people to move from heavy and sometimes dangerous manual labor to
more sophisticated activities.

Nowadays, a vast number of processes are performed with the help of IT sys-
tems. For example, when a bank client applies for a loan, the employee enters all
the necessary information into the bank system. This information is then analyzed,
and the client is notified about the outcome. This process involves many tedious
and routine activities, for example, filling in a web form of the banking system
and checking the client’s previous records. Such activities are time-consuming
and do not bring much value. Nevertheless, they have to be performed daily.

Robotic Process Automation (RPA) [2] is an emerging technology that allows
organizations to automate tedious and error-prone routine tasks in business pro-
cesses by executing software scripts that encode sequences of fine-grained interac-
tions with Web and desktop applications [3]. Using this technology, it is possible
to automate data entry, data transfer, and verification tasks, particularly when they
involve multiple applications.

Figure 1 shows an example of a task that can be automated via RPA. In this
example, the spreadsheet with student records must be transferred row by row
into a Web-based study information system. For each row in the spreadsheet,
this task involves selecting the cells, copying the value in a selected cell to the
corresponding field in the Web form, and submitting the form after a row has
been processed. Routines such as this one can be encoded in an RPA script and
executed by an instance of the RPA tool’s runtime environment, also known as
RPA software robot (RPA bot or bot for short).

Several case studies have shown that RPA technology can improve efficiency
and data quality in business processes involving clerical work [4, 5]. It leads to
error-rate reduction and can free up workers from unrewarding activities to be
reallocated to other more involving and stimulating tasks. RPA does not require
substantial changes to the existing processes and IT infrastructure, operating in-
stead on the user interface level by mimicking the human activities, e.g., by per-
forming mouse clicks or keyboard inputs. This enables organizations to automate
tasks (or chains thereof) with reasonably low costs and effort.

While RPA has already been successfully applied to various organizations [4,
6-10], to date, a great deal of time is still required to identify the routines for
automation and manually program the RPA bots. Although RPA tools are able to
automate a wide range of routines, they cannot determine which routines should
be automated in the first place. The current practice for identifying candidate rou-

12



A B €

1 |Name Surname  Country of residence New Record
2 |lohn Doe Australia
3 |Albert Rauf Germany
4 | Steven Richards  Australia First Name
5 |Gerard Dubois France
6 |Audrey Backer usa ‘ LIl ‘
7 |Carl Gustafsson Sweden
& |Sarah Johnson Australia Last Name
9 |Andrea Bt_JIzano_ Italy | Doe ‘
10 |Hannah Dietmeier Germany
11 |lgor Honchar Ukraine .
12 |Oliver Dunkan Ireland COU”'EFV of residence
13 |Terry Lee Australia | AusEETE |
14 (Volodymyr Leno Ukraine
15 |William Macdonald Canada Dlnternational Student
16 Jorge Canales Spain
17 |Thomas Taylor Australia
18 |Jack Brown Australia
19 |Christina  Esposito Italy
20 |Amelia Wilson Australia

(a) Student records spreadsheet (b) New Record creation form

Figure 1: Extract of a spreadsheet with student data that needs to be transferred to
a Web form

tines for RPA is through interviews, walk-throughs, and detailed observation of
workers conducting their daily work, either in situ or using video-recordings [11].
These empirical investigation methods allow analysts to identify candidate rou-
tines for automation and to assess the potential benefits and costs of automating
the identified routines. However, these methods are time-consuming and, there-
fore, face scalability limitations and are not cost-efficient in organizations where
the number of routines is very high and where the routines are scattered around
the process landscape. Besides, the information about routines obtained in such a
way can often be incomplete or outdated. The negative consequences of mistakes
introduced at this stage are magnified by the large number of bots typically de-
ployed in an organization that adopts RPA. Hence, in practice, considerable time
is invested in quality-testing the bots before deployment [2].

The goal of our research project is to minimize the amount of manual work
required for automation by designing a family of approaches, namely Robotic
Process Mining, to automatically identify routine tasks from the logs of user in-
teractions with IT applications that can be automated via RPA, and discover exe-
cutable specifications of such routines that the RPA bots can directly use.

In line with our goal, we formulate the following research questions:

o RQ1. Given a user interaction log, how to identify the routines that can
be potentially automated via an RPA tool?

o RQ2. Given a routine, how to discover its executable specification that
can be executed via an RPA tool?

We start with the analysis of the problem and design the architecture of the so-

13



lution. For each component of the proposed architecture, we identify the research
challenges, analyze how they are addressed by the existing research, and identify
gaps. Accordingly, we implement a framework by devising a series of approaches
that benefit from existing techniques while overcoming their limitations.

1.2. Requirements to solution

Routines for RPA automation can automatically be identified from the logs of
users’ interactions with information systems, or Ul logs, for short, capturing the
activities performed by one or more workers during the execution of their daily
tasks. Table 1 shows a Ul log that captures the execution of the task presented in
Figure 1.

Table 1: Example of a user interaction log

Timestamp Ul Type

1 | 2019-01-08 T 12:10:05 Copy Cell A2

2 | 2019-01-08 T 12:10:26 Paste in First Name

3 | 2019-01-08 T 12:10:51 Copy Cell B2

4 | 2019-01-08 T 12:11:04 Paste in Last Name

5 | 2019-01-08 T 12:11:36 Copy Cell C2

6 | 2019-01-08 T 12:11:49 | Paste in Country of residence
7 | 2019-01-08 T 12:11:58 Click Button Save

Each row in this table corresponds to one user interaction (UI), e.g., copying a
cell, editing a field, or clicking a button. A sequence of Uls frequently observed in
a log represents the routine that can potentially be automated. The identification
of such routines is not a trivial task.

While capturing multiple instances of workers’ tasks, Ul logs do not assign the
recorded Uls to specific task instances (i.e., Ul logs are unsegmented). Therefore,
it is not clear where one instance of a task ends and another starts. A typical Ul log
is a large stream of Uls representing a long-running session of work. The identifi-
cation of routines from such a log is computationally expensive. It becomes even
more challenging due to the fact that UI logs often contain extraneous Uls that are
not a part of the routine or that do not have any effect on its outcome. These Uls
constitute noise and have to be ignored. Examples of noise Uls include a worker
browsing the web (e.g., social networking) while executing a task that does not
require doing that, or a worker committing mistakes (e.g., filling in the field with
an incorrect value or copying a wrong cell in a spreadsheet), which need to be
remedied afterwards.

UI logs may contain multiple routine variations if there are no restrictions on
how the routine should be performed (e.g., in a fixed order of Uls). For example, if
a routine involves editing a “First name” field and a “Last name” field, it generally
does not matter in which order the corresponding edits are performed. Although

14



being represented by different sequences of Uls, these variations may lead to the
same effect(s) and, therefore, should be treated as one routine.

Another issue that needs to be addressed is that discovered routines can not
be directly automated as they do not contain the information about the data used
during their execution. Therefore, they are only considered to be candidates for
automation. To automate a candidate routine, we have to discover its executable
specification. An executable routine specification is a specification that contains
all the information required to fully reproduce the effects of the routine with any
inputs. In other words, given the same inputs observed in the log, it should
be possible to use the executable routine specification to produce the same out-
puts/effects. An executable routine specification must specify all the Uls within
the routine and how they are performed. It has to capture the required set of in-
puts and how these inputs are transformed into outputs (i.e., how data read during
the routine execution is used to write data during the routine execution). In ad-
dition, an executable routine specification should include a specification of the
conditions under which the routine should be activated. Finally, discovering the
routine specification also involves the identification of non-automatable Uls, as
not all Uls within a routine are necessarily automatable.

Accordingly, we define the following requirements for the desired solution:

o REQI1. The desired solution must discover routines that may be automated
using the RPA technology from unsegmented logs.

o REQ2. The desired solution must be resilient to noise present in the logs.

o REQ3. The desired solution must be tolerant to routine variations.

o REQA4. The desired solution must correctly identify automatable and non-
automatable Uls within a routine.

o REQS5. The desired solution must discover an executable specification for
each automatable routine.

o REQ6. The desired solution must be scalable, i.e., have acceptable exe-
cution times on commodity hardware, when given as input a Ul log corre-
sponding to multiple hours of Ul recordings.

1.3. Research Method

In this project, we follow the Design Science in Information Systems research
method proposed by Hevner [12]. This method outlines the following seven
guidelines to address a research problem.

o GL1. Design as an artifact. The result of the research project is a purpose-
ful IT artifact that addresses an important problem.

o GL2. Problem relevance. The research project aims at acquiring knowl-
edge and understanding that enable the development and implementation
of technology-based solutions to a heretofore unsolved and important prob-
lem.

15



o GL3. Design evaluation. The utility, quality, and efficacy of a design arti-
fact must be rigorously demonstrated via well-executed evaluation methods.

o GLA4. Research rigor. The construction and evaluation of the designed
artifacts require the application of rigorous methods.

o GLS5. Research contributions. The produced artifacts must provide a novel
solution for the addressed research problem.

o GL6. Design as a search process. The produced artifacts are the result of
an iterative search process aiming at finding the optimal solution.

o GL7. Communication of research. The research and its results must be
presented to both academics and practitioners.

In this thesis, we implemented the above guidelines as follows. (GL2) The
problem of discovering routines for automation via RPA is largely unexplored
and only recently started to receive attention from academics. Although it resem-
bles similar problems in other fields, for example, Process mining or Web usage
mining, existing approaches only partially address the problem and fail to satisfy
all the needs in the context of RPA. (GL5) This is the first attempt to design an
approach to discover fully executable specifications of automatable routines.

(GL1) During the project, we designed and implemented multiple artifacts that
solve the presented problem. We proposed a framework to discover executable
specifications of automatable routines from user interactions logs. We designed a
format for storing user interactions logs and implemented a logging tool capable
of capturing the user interactions with Web and Excel applications. We also de-
vised an approach to discover candidate routines from the recorded logs. Finally,
we defined the requirements for a routine to be automatable and designed an ap-
proach that identifies automatable routines from a list of discovered candidates.

(GL4) In this thesis, we formally describe all the produced artifacts. We ex-
plain how they work by providing their pseudocode and by discussing it line-by-
line. All our artifacts are supported by instructions on how to use them. (GL3) We
evaluate our framework on a range of synthetic and real-life logs of varied char-
acteristics (e.g., size, complexity) based on scalability and accuracy criteria. We
explain in detail how the evaluation was performed so that it can be reproduced.
(GL6) All the presented artifacts are the results of a long iterative design process,
where we considered and tested multiple various approaches before selecting the
optimal one. (GL7) We published six conference papers and three journal arti-
cles during our research project. The rank of the conferences and journals that
published our research work ensures that it will reach both the research commu-
nity and practitioners in the field of Business Process Management and Robotic
Process Automation.

16



1.4. Contributions to the Research Area

This thesis presents four main contributions to the research area. The main idea
of our research is that the routines for automation can be automatically discovered
from the logs that capture user interactions with IT systems (e.g., selecting field or
cells, copying and pasting, editing fields) during the execution of a worker’s daily
tasks. Therefore, our first contribution is the design of the format to store such in-
teractions and the tool that automatically captures and records them. We analyzed
the existing solutions to capture user interactions, identified their limitations and
designed a list of requirements that our solution must satisfy. We identified the
data that must be captured by the logging tool to automate user interactions and
applied the developed logging tool in practice to record the user interactions logs
that we used throughout our project.

The next major contribution is a “Robotic Process Mining" framework to iden-
tify automatable routine tasks from the logs of user interactions with Web and
desktop applications and produce their executable specifications that can be used
as a starting point for the automation effort. Given a user interactions log, the pro-
posed framework aims at identifying automatable routines and their boundaries,
collect variants of each identified routine, standardize and streamline the identified
variants, and discover an executable specification corresponding to a streamlined
and standardized variant of the routine. The routines produced as output are de-
fined in a platform-independent language that can be compiled into a script and
executed in a target RPA tool.

The final two contributions instantiate the envisioned framework. Specifically,
we devise and implement the artifacts needed to discover routines for RPA. The
first artifact aims at discovering candidate routines for RPA from UI logs, while
the second artifact focuses on the discovery of executable routines. The former
artifact also implements a segmentation technique that extracts a set of task in-
stances from a log. The latter artifact provides requirements for a routine to
be automatable, assesses the level of routine’s automatability, discovers the ex-
ecutable specification for a fully automatable routine, and filters out redundant
specifications.

1.5. Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 provides the necessary
background to understand the scope of the problem addressed in the thesis. Chap-
ter 3 presents the Robotic Process Mining framework. Chapter 4 reviews the state-
of-the-art. Chapter 5 describes our approach to identify candidate routines from
user interactions logs. Chapter 6 focuses on the discovery of automatable routines
and their specifications. Chapter 7 presents the software that was produced during
this thesis. Chapter 8 concludes the thesis by summarizing the contributions and
outlining directions for future work.

17



2. BACKGROUND

This chapter provides all the prerequisites to understand the context and the scope
of the thesis. First, in Section 2.1, we provide an overview of Business Process
Management and how business processes can be automated in this field. Next, in
Section 2.2, we focus on a specific automation technology, called Robotic Pro-
cess Automation, which aims at automating the tasks within the processes via
executable software scripts. Then, in Section 2.3 and Section 2.4, we present two
families of approaches designed to extract valuable insights about the processes
from the process execution data. Section 2.3 provides the basic concepts of Pro-
cess Mining, while Section 2.4 introduces Task Mining.

2.1. Business Process Management

The increasing interest of business organizations in understanding and improving
their processes gave rise to dedicated methods in process analysis, assessment, and
refinement. Altogether, these methods can be framed under the Business Process
Management discipline. Business Process Management, or BPM, in short, aims at
optimizing business processes via their analysis and redesign. It allows business
organizations to gain an operational advantage, reduce the costs and execution
time of the processes, as well as related risks and errors [1].

BPM can be envisioned as a continuous cycle consisting of the following
phases (see Figure 2):

o Process identification. This phase starts with the formulation of the busi-
ness problem and the identification of the processes within the organization
that are relevant to the problem. Their interrelations are analyzed, resulting
in a process architecture used to select the process(es) for the subsequent
phases of the cycle.

o Process discovery. This phase aims at discovering the workflow model of
the selected process. Since the model corresponds to the current way the
process is executed, it is called the as-is process model. For future analysis,
the model is usually annotated with performance data (e.g., duration time
of activities, waiting time between activities).

o Process analysis. During this phase, the constructed as-is process model is
analyzed. During the analysis, all the issues associated with the model are
identified, documented, quantified (if possible), and ranked with respect to
their importance and potential impact.

o Process redesign. During this phase, the changes in the process required to
address the documented issues are identified and evaluated. These changes
are then applied to the as-is process model resulting in a new to-be process
model that depicts how the process is expected to be executed.

18



o Process implementation. During this phase, the changes required to imple-
ment the to-be model are applied to the process. This may require structural
changes (e.g., splitting, merging, or removing process activities, introduc-
ing parallelism) or process automation (e.g., developing and deploying IT
systems).

o Process monitoring. During this phase, the newly implemented process is
monitored and analyzed to verify whether it fully conforms to the intended
execution. The presence of any deviations or errors may require another
execution of the lifecycle.!

Process identification

l Process architecture

Conformance and Process Discovery
performance insigh/' w‘vrocess model

Process Monitoring ] Process Analysis
Executable process Insights on weaknesses
model and their impact
Process

. Process Redesign
Implementation
To-be process

model

Figure 2: BPM lifecycle [1]

The process automation in BPM is achieved by developing and configuring IT
systems that execute and coordinate the tasks within the process. Such systems
aim at supporting the process participants (e.g., workers, or applications) in the
execution of the process. This includes assigning tasks to process participants,
providing them with the information required to perform the tasks, and monitoring
the execution of the tasks [1].

A typical example of such a system is a Business Process Management Sys-
tem (BPMS). A BPMS is a system that supports design, analysis, execution, and
monitoring of business processes based on their process models. The purpose of
a BPMS is to coordinate an automated business process by assigning the process

'In some cases, the lifecycle is required to be repeated due to some external factors, e.g., the
introduction of new policies, market situation changes, advancements in the technology.

19



tasks to responsible resources at the required points in time.

The process model constructed at the process redesign phase of the BPM life-
cycle can be used as a basis for the BPMS to coordinate the underlying process
execution. However, this model is not executable as it depicts the process at a
conceptual level. The information required to execute such a model is missing as
it is not relevant for process analysis. In addition, the model does not include the
instructions on how to react in the case of unexpected issues and exceptions that
may be observed during the execution of the process, capturing only the “happy
path”.

Accordingly, to be deployed into a BPMS, the conceptual process model must
be extended and transformed into an executable model. This involves the identifi-
cation of the automation boundaries, the detection of the automatable and manual
tasks within the process, and the refinement of the process model by introducing
exception handlings, by specifying the data objects required in each step of the
process, by defining the decision-making logic within the process, by decompos-
ing and aggregating some of the process tasks, and by specifying their execution
properties (e.g., data types, participant assignment rules).

The process automation with BPMS improves the quality and the efficiency
of the business processes. A BPMS is able to reduce the workload by automati-
cally assigning the tasks to the process participants and gathering all the relevant
information needed for their execution. It enables organizations to become more
flexible in managing and updating their business processes and applications and
allows for the creation of a unified IT infrastructure by integrating all the appli-
cations within the organizations. Another advantage of automation with BPMS is
the execution transparency, which leads to improvements in organizational con-
trol, as the organizations get better knowledge about their processes and resources.
Finally, a BPMS ensures that the processes are executed as designed. It assures
that the processes are performed in the best way possible and guarantees their
compliance with the established policies and norms.

The main disadvantage of this type of automation is that it usually demands
massive changes in the organizations. The existing IT systems have to be entirely
redesigned or reconfigured to be integrated with a BPMS, as they are usually not
designed to be process-aware. Therefore, the costs and benefits of automating
certain processes must be thoroughly analyzed before applying such heavyweight
automation.

Alternatively, the processes can be automated via Robotic Process Automation
(RPA). RPA works at the level of user interfaces and does not require a lot of
integration effort, thus allowing automation at a relatively low cost. In the next
section, we overview RPA and show how it is different from traditional business
process automation. Then, we will talk about different RPA types, present the
RPA lifecycle and discuss what tasks are the best candidates for automation via
RPA.

20



2.2. Robotic Process Automation

Several partially overlapping definitions of RPA can be found in the research and
industry literature. For example, [5] defines RPA as a category of software tools
designed “to automate rules-based business processes that involve routine tasks,
structured data, and deterministic outcomes”. Meanwhile, [3] defines RPA as
“an umbrella term for tools that operate on the user interface of other computer
systems in the way a human would do”. On the other hand, Gartner [13] defines
RPA as a class of tools that perform [if, then, else] statements on structured data,
typically using a combination of user interface interactions, or by connecting to
APIs to drive client servers, mainframes, or HTML code. An RPA tool operates by
mapping a process in the RPA tool language for the software robot to follow, with
runtime allocated to execute the script by a control dashboard. Three elements
come out from the above definitions. First, RPA tools are designed to automate
routine tasks that involve structured data, driven by rules (e.g., if-then-else rules)
and have “deterministic outcomes”. Second, RPA tools can execute tasks that
involve user interactions and other operations accessible via APIs (in any case,
automated actions). And, third, RPA tools allow one to specify scripts and to
operate (i.e., to run and monitor via control dashboards) software bots that execute
these scripts. By synthesizing these elements, we define RPA as a class of tools
that allow users to specify deterministic routines involving structured data, rules,
user interface interactions, and operations accessible via APIs. These routines
are encoded as scripts that are executed by software bots, operated via control
dashboards.

Depending on how the control dashboard is used, we can distinguish two RPA
use cases: attended and unattended [13]. In attended use cases, the bot is trig-
gered by a user. During its execution, an attended bot may provide and take in
data to/from a user. Also, in these use cases, the user may run the bot’s script
step-by-step, stop the bot, or otherwise intervene during the script’s execution.
Attended bots are suitable for routines where dynamic inputs (i.e., inputs gath-
ered during a routine execution) are required, where some decisions or checks
need to be made that require human judgment, or when the routine is likely to
have unforeseen exceptions. It is important to detect such exceptions. For exam-
ple, entering data from an invoice in a spreadsheet format into a financial system
is an example of a routine suitable for attended RPA, given that in this setting,
some types of errors may have financial consequences. Unattended RPA bots, on
the other hand, execute scripts without human involvement and do not take inputs
during their execution. Unattended RPA bots are suitable for executing determin-
istic routines where all execution paths (including exceptions) are well understood
and can be codified. Copying records from one system into another via their user
interfaces through a series of copy-paste operations is an example of a routine that
an unattended bot could execute?.

’In this thesis, we focus on discovering unattended RPA bots

21



In light of the above, we can classify RPA as a specific type of process automa-
tion technology — a broader class of software tools that include BPMS, document
workflow systems, and other types of workflow automation tools [1]. A key dif-
ference between RPA on the one hand and BPMSs, and workflow systems on the
other is that RPA is meant to automate deterministic routines that involve auto-
mated steps where either an interaction is performed with the user interface of an
application or an API is called (in both cases the steps are automated). In contrast,
BPMS and workflow systems are designed to automate processes that involve
combinations of automated and manual tasks. Related to this distinction, BPMS,
and workflow systems are designed to automate end-to-end processes consisting
of multiple tasks performed by multiple types of participants (e.g., roles, groups).
Meanwhile, RPA tools are developed to automate smaller routines, which corre-
spond to individual tasks in a process, or even steps within a task, such as creating
an invoice or a student record in an information system. As such, RPA tools and
BPMSs are complementary, e.g., a BPMS may trigger an RPA tool to perform a
given step in a process.

Figure 3 shows the RPA lifecycle, which consists of the following four phases:

7N

Deployment
and
maintenance

'\-I

Figure 3: RPA lifecycle

Development

o Analysis. During this phase, analysts identify candidate routines for au-
tomation, examine the current ways of their execution (e.g., by constructing
the as-is process model), assess the costs and benefits of their automation
as well as the related risks, and analyze whether the identified routines can
be automated without being redesigned.

o Development. In this phase, the routines identified earlier are automated.
This involves constructing a process model representing the desired execu-
tion of the routines to be automated (i.e., the to-be process model). Then
RPA developers implement the routine using a specialized development en-

22



vironment by creating an executable software script, a.k.a. RPA bot. De-
pending on the complexity of the task to be automated, this requires a dif-
ferent amount of coding. Large enterprise RPA tools such as UiPath® or
Automation Anywhere* allow for the creation of the scripts by dragging
and dropping the required functions (e.g., open a file, copy a cell). Since
this step requires a large amount of manual, error-prone work, a code review
and script evaluation are required.

o Testing. During this phase, the implemented bot undergoes testing in a pre-
production environment. It is evaluated in the different scenarios to examine
whether it works as intended and how it handles exceptions. If the tests are
successful, the bot proceeds to the deployment phase. If the tests fail, it is
sent back to the developers that identify and fix the errors that caused the
failure.

o Deployment and maintenance. After successful testing, the bot can be
deployed in the production environment and is ready to be used by the cus-
tomers. However, in case any other issues arise, it is sent back to testing
and development. Otherwise, it becomes available for the public. Starting
from this point, continuous support and maintenance are provided to the
customers if they find any bot defects.

The candidates for automation are selected based on a set of criteria. Good
candidates for automation are characterized by a large number of executions and
a high level of standardization. They should have a well-defined structure, follow
rule-based logic, and should not require a lot of exception handling. The tasks to
be automated should have low complexity and work with structured data available
in a digital form. Additionally, the tasks are good candidates for automation if they
are time-consuming and require much error-prone manual labor.

2.3. Process Mining

Process Mining [14] is a family of approaches that extract information about busi-
ness processes from process execution data, a.k.a. event logs, recorded by standard
enterprise systems available in organizations (e.g., CRM, ERP systems).

Each event in a log refers to an activity (i.e., a well-defined step in a business
process) and is related to a particular case (i.e., a process instance). Events that
belong to a case are ordered and constitute a single “run” of the process (often re-
ferred to as a trace of events). Event logs may store additional information about
events such as resources (i.e., people and devices) executing or initiating the activ-
ities, timestamps indicating when the events occur, and data elements associated
with the events. Data elements stored in the log can be either event attributes, i.e.,
data produced by the activities of a business process, or case attributes, namely

3w uipath.com
“yww.automat ionanywhere.com

23


www.uipath.com
www.automationanywhere.com

data associated with the whole process instance. Table 2 shows an example of an
event log.

Table 2: Example of an event log

Case ID Activity Timestamp
1 Create Fine 14/02/2021 14:00:10
2 Create Fine 14/02/2021 15:00:26
1 Send Bill 14/02/2021 15:05:31
2 Send Bill 14/02/2021 15:07:45
1 Process Payment | 15/02/2021 14:30:15
1 Close Case 15/02/2021 14:32:24
2 Send Reminder | 18/02/2021 18:56:00
2 Send Reminder | 20/02/2021 19:01:04
2 Process Payment | 21/02/2021 14:32:00
2 Close Case 21/02/2021 14:35:53

There are similarities between Ul logs and event logs used in process mining.
Specifically, both types of logs consists of timestamped records, such that each
record refers to the execution of an action (or task) by a user. Also, each record
may contain a payload consisting of one or more attribute-value pairs. Some
commercial process mining vendors have exploited the similarities between Ul
logs and business process event logs to offer RPA-related features.

Depending on the input data type, we distinguish two classes of process mining
techniques: tactical and operational. Tactical techniques work with historical
data; their goal is to extract the information about process execution, such as how
the process is performed or how much time it takes to complete the process [1,
Chapter 11]. In contrast, operational techniques are applied to real-time data, and
their goal is to provide insights into ongoing processes. A typical example of such
insights is the information about the remaining execution time of the process [15]
and its outcome [16]. Below, we describe the tactical process mining, as the
problem addressed in the thesis is tactical in nature.

In general, tactical process mining techniques can be classified into four cate-
gories:

o Process discovery. Given an event log as input, process discovery aims is
to construct a model (e.g., a flowchart) that depicts the behavior captured in
the log.

o Conformance checking. Conformance checking aims at comparing exist-
ing process models against event logs that capture the same process, verify
whether the model conforms to the real execution of the process, identify
mismatches, and highlight the differences in behavior.

o Performance mining. Performance mining analyzes the performance ef-
ficiency of the processes using the information from the event logs. The
output of performance mining are performance statistics (e.g., throughput

24



time, average activity execution time, waiting time), that can be used for
process improvement, e.g., to identify the bottlenecks within the process.

o Variant analysis. The goal of variant analysis is to compare the executions
of multiple variants of the same business process to identify the differences
and what may cause them.

Discovering RPA routines is closely related to process discovery. Process dis-
covery allows one to analyze the processes by extracting insights about their exe-
cution in the form of a model that describes how the process is conducted. Such
a model captures the activities performed during the process and their control-
flow relationships. A process model can be discovered in different formats, e.g.,
BPMN, EPC, YAWL models, Petri nets.

The simplest representation of a process is a process map. A process map is a
directed weighted graph, where each vertex represents an activity of the process,
and each edge corresponds to a directly-follows relation between two activities.
Every edge and vertex is annotated with its frequency (number of times the activ-
ity/relation has been observed in the log). Figure 4 shows an example of a process
map constructed from the event log presented in Table 2.

Start

Figure 4. Example of a process map

Process maps capture only the sequential order of the activities within the pro-
cess and do not identify more complex relations, for example, parallelism or ex-
clusive choice. They are used as a basis by many process discovery techniques to
construct more advanced models, e.g., BPMN models.

The quality of the discovered model can be assessed with respect to four crite-
ria [14]:

o Fitness. The discovered model should describe the behavior observed in

the event log, i.e., it should be able to replay each trace in the log.

25



o Precision. The discovered model should not allow the behavior that is not
present in the event log.

o Generalization. The discovered model should generalize the behavior ob-
served in the event log, i.e., it should support traces that are likely to be
generated by the underlying process even if they are not present in the log.

o Simplicity. The discovered model should be as simple as possible.

As can be seen clearly, some of these criteria are contradicting. For exam-
ple, to achieve high precision, one has to sacrifice generalization, and vice versa.
Balancing these quality metrics is the main challenge of process discovery.

The problem of automated process discovery (APD) has been studied inten-
sively in the past two decades, and a wide range of APD techniques has been pro-
posed [17]. However, most of these techniques focus on discovering the control-
flow models that represent a high-level abstraction of the underlying processes.

While there are similarities between UI logs on the one hand and event logs
used for process mining, on the other hand, there are four notable differences.
First, event logs capture events at a higher level of abstraction. Specifically, a
record in an event log typically refers to the execution of an entire task within a
business process, such as Check purchase order or Transfer student records. Such
tasks can be seen as a composition of lower-level actions, which may be recorded
in a Ul log. For example, task Transfer student records may involve multiple
actions to copy the records associated with a student (name, surname, address,
course details) from one application to another.

Second, UI logs do not come with a notion of case identifier (or process in-
stance identifier), whereas event logs typically do. In other words, events in a Ul
log are not explicitly correlated, and for this reason, they may need to be seg-
mented.

Third, a record in an event log often does not contain all input or output
data used or produced during the corresponding task’s execution. For example,
a record in an event log corresponding to an execution of task Transfer student
records, is likely not to contain all attributes of the corresponding student (e.g.,
the address). Meanwhile, the presence of every input and output attribute in a Ul
log is necessary for RPM purposes. If some input or output attributes are missing
in the UI log, the resulting routine specification would be incomplete, and hence
the resulting RPA bot would not perform the routine correctly.

A fourth difference is that event logs are typically obtained as a by-product of
transactions executed in an information system rather than explicitly recorded for
analysis purposes. The latter characteristic entails that event logs are more likely
to suffer from incompleteness, including missing attributes as discussed above
and missing events. For example, in a patient treatment process in a hospital, it
may be that the actual arrival of the patient to the emergency room is not always
recorded when the patient arrives, but it is only recorded when the patient arrives
via an ambulance. In other words, the presence or absence of an event in an event

26



log depends on whether or not the information system is designed to record it and
whether or not the workers record it. Meanwhile, a Ul log is explicitly recorded
for analysis purposes, which allows all relevant events to be collected subject to
the Ul recording tool’s capabilities.

2.4. Task Mining

Every business process can be represented as a sequence of tasks (e.g., process
payment, register application) performed within an organization to achieve a busi-
ness goal. At a lower level, each task is composed of steps that specify how to
execute the task in detail. For example, registering the application may require the
worker to create an instance of a new form in the Web-based information system,
fill in its fields (e.g., name, address, date of birth), and click a button to save it in
the system. Figure 5 shows an example of the fines handling process and the steps
required to complete the first task in the process, namely Create Fine.

Process
Create Fine H Send Bill H Process Payment H Close Case ’
1
Task
2
Click button _ Edit field _ Edit field _ Edit field _ Click button
“New Fine” “First Name” “Last Name” “Amount” “Create”

Figure 5: Process vs. task

Task mining [18] is a technology that extracts valuable insights about the tasks
within a process from low-level event data available in UI logs. In contrast to
process mining which is focused on end-to-end processes, task mining works at a
lower level of abstraction. In particular, it concentrates on the discovery and anal-
ysis of the tasks within the processes. While process mining aims at discovering in
what order the tasks are performed, task mining also discovers how they are per-
formed, i.e., what actions have to be executed to complete the tasks. In addition to
discovering the control-flow model of the underlying tasks, it also identifies what
data is used by each of the steps of the task and how it is transformed.

Depending on the goal of analysis, we can distinguish three main use cases of
task mining:

o Task optimization. In this use case, the main goal is to discover how a task
is performed, to detect inefficiencies and deviations with respect to work
policies and instructions, and to identify the opportunities for its improve-
ment.

o Resource optimization. In this use case, the main goal is to analyze the
resource productivity, i.e., what applications are frequently used, how pro-

27



ductive the workers are, and how much time do they spend on different
applications. This can be used to identify and improve the applications that
workers struggle to use efficiently.

o Task automation. In this use case, the main goal is to identify opportunities
for task-level automation, i.e. to identify what tasks can be potentially au-
tomated and how much value could this automation bring to the company.
The automation of a task can be achieved using a variety of technologies.
For example, one could develop a middleware software to connect the ap-
plications involved in a task via their APIs to replace a manual flow with an
automated (programmatic) flow. An alternative approach is to implement
an RPA bot that would automate a task by replicating user actions on the
target applications. Task automation, and synthesis of automatable specifi-
cations that can be used for RPA developments, in particular, are the main
focus of the thesis.

Both, task mining and process mining belong to a wider family of process an-
alytics tools (see Figure 6). They analyze business processes from different per-
spectives, thus, complementing each other. The combination of task mining and
process mining enables a deeper analysis of the business processes of an organi-
zation and allows organizations to obtain a full picture of their processes. Given
that task mining and process mining operate on different levels of abstraction,
they also take different inputs. While process mining works with event logs that
capture high-level information about the process execution, task mining operates
over Ul logs consisting of fine-grained interactions with desktop applications.

Process Analytics

Process Mining Task Mining \

Automated Conformance Task optimization Resource )
process discovery checking P optimization Robotic process

automation

{ Perfqrmance } { Variant analysis 1 Task automation
mining
APIl-based
automation

Figure 6: Process analytics overview

28



3. ROBOTIC PROCESS MINING: AREA, DEFINITION,
ARCHITECTURE

RPA tools are able to automate a wide range of routines, raising the question how
to identify routines in an organization that may be beneficially automated using
RPA? [19] We envision a new class of tools, namely Robotic Process Mining
(RPM) tools, that address this question. Specifically, we define RPM as a class of
techniques and tools to analyze data collected during the execution of user-driven
tasks to support identifying and assessing candidate routines for automation and
discovering routine specifications that RPA bots can execute. In this context, a
user-driven task is a task that involves interactions between a user (e.g., a worker
in a business process) and one or more software applications. Accordingly, the
primary source of data for RPM tools consists of user interaction (UI) logs. RPM
aims at assisting the analysts in drawing a systematic inventory of candidate rou-
tines for automation and help them to produce executable specifications that can
be used as a starting point for the automation. Thus, RPM focuses on the first two
phases of the RPA lifecycle: analysis and development.

In line with the above definition, we distinguish three main phases in RPM:
(1) collecting and pre-processing Ul logs corresponding to the executions of one
or more tasks; (2) identifying candidate routines for RPA; and (3) discovering
executable RPA routines.! In this chapter?, we analyze the concepts involved
across these three phases (Section 3.1), and we refine these phases into a tool
pipeline (Section 3.2).

3.1. Concepts

The main input for RPM is a Ul log, which has to be recorded beforehand. A Ul
log is a chronologically ordered sequence of user interactions, or Uls in short, per-
formed by a single user in a single workstation and involving interactions across
one or more applications (including Web and desktop applications). An example
of a Ul log, which we use herein as a running example, is given in Table 3.

Each row in this example corresponds to one UI (e.g., clicking a button or
copying the content of a cell). Each Ul is characterized by a timestamp, a type,
and a set of parameters, or payload (e.g., application, button’s label or value of
a field), sufficient enough to reconstruct the performed activity. The payload of a
Ul is not standardized and depends on the UI type and application. Consequently,

'Once an RPA routine has been automated via an RPA bot, a fourth phase is to monitor this bot
to detect anomalies or performance degradation events that may signal that the bot may need to be
adjusted and re-implemented or retired. While relevant from a practical perspective, this phase is
orthogonal to the three previous phases since it is relevant both for bots developed manually and
bots developed using RPM techniques. Furthermore, previous work has shown that existing process
mining tools are suitable for analyzing logs produced by RPA bots for monitoring purposes [20].

2Corlresponding to [21]

29



- - juqns jugns LU ne-qrauIun mMAy//:sdng (qop) uonng yor11D 76:60:61L£0-€0-610C | 1
- YL X0Q3d3yd [euoneuIajul Juopmg§ [euoreuIaIu] ne-qowunmmm//:sdny (M) PIoL 11pH 8%:60:61.L£0-€0-610C | 0¥
- Auewon, ndur Anunod QOUAPISAI JOo A1Uno) ne'qrowrun'mmm//:sdny (99M0) PIoTI 1P GE:60:61LE0-€0-610C | 6€
Luewon,, con ndur Anunod Q0UdPISAl Jo AUNo) ne'qrawIun mmm//:sdny (9ap) QIsed 7€:60:611L£0-€0-610T | 8¢
- ndur Anunod QOUQPISAI JOo AUNno)) ne'qrowrun'mmm//:sdny (9Q9M) PIOT 19919 92:60:611L£0-€0-6107 | LE
Avewrp, | Auewon, € a 11934 SpI029YUAPNIg (12oxg) 119D Ado) | 12:60:61.LE0-€0-610T | 9¢€
- Auewnen,, € a 1399Ys Sploayjuepms ([99x7) 19D 19918 LT1:60°61.L£0-€0-610C | SE€
- «6861-60-80,, ndur 2ep oeq ypurg ne-qawun MM My//:sdny (M) P 11pg T1:60:61.L€0-€0-610C | ¥¢€
«6861/60/80,, indur drep areq yHrg ne-qpauIun mMAy/:sdny (9o sed 01:60:61LE0-€0-610C | €€
- ndur 2ep oreq yurg neqawun MmMy//:sdny (49M) PIRL] 199[S L0:60:61.L£0-€0-610C | T¢
«6861/60/80,, | 6861/60/80,, € o) 1199Ys SplodoyIuapmg (10xq) 119D Ado) 20:60:61L£0-€0-610C | 1€
- «6861/60/80,, € 9) 13994§ SPIOdoyIuepmg ([99Xg) 12D 19915 65:80:61.L€0-€0-610C | 0¢
- Jney,, indur se| QuieN 1se] ne-qpEuIun mMA/:sdny (92M) PIOLL 1P ¥6:80:61LE0-€0-610C | 6T
«Jney,, ndur se| QWeN 1Se] ne-qrawunmmm//:sdny (qom) 21sed £€5:80:61.L£0-€0-610C | 8T
- ndur se| QuieN 1se] ne‘qpEuIun mMA//:sdny (99M) PIRL] 199195 TS'80:61LE0-€0-610C | LT
Jney,, JNeY,, € dq 1399Ys SpIOdoyIuapmg (19xq) 112D Ado) 67:80:61.L£0-€0-610C | 9T
- Jney,, € d 1199Ys SplodayIuapmg ([20xg) [[3D 199[3§ Ly*80:61.L£0-€0-610C | ST
- 1V, ndut Is1g QWIEN ISIL{ ne-qrawun mMmAy//:sdny (M) P 11pg ¥7:80:61L£0-€0-610C | #T
HqIV,, ndut 3s1y QuIeN ISIL{ ne-qRuIun mMAy/sdny (qop) Ased £9'80:61LE0-€0-610C | €T
- ndut 1 QUIEN ISIL{ ne-qrauIun mMmAy//:sdng (M) PIRL 193]S Tr'80:61L£0-€0-610C | TT
HqLV,, JqLV,, € \4 1199y SpIodayIuapmg (190xg) 119D Ado) 0t:80:6.L£0-€0-610T 1T
- JqIV,, € \4 1399Ys SpIodayIuepmg (129xg) (12D 199128 8¢:80:61.L£0-€0-610C | 0T
- - uonng plIodaymau PI0931 MON ne‘qRuIunmMA/sdny (9opm) uonng o1n S¢:80:611£0-€0-610C | 61
- - juqns juqgns jiugng ne-qrauIun mMAy//:sdny (qop) uonng yoI1D 1€:80:61L£0-€0-610C | 81
- Brensny,, ndur Anunoo QouopISal JO ANuno) neqowrun mmm//:sdny (9oM) PIRL] Mpg £7:80:61.LE0-€0-610C | LI
- ndur Anunod QOUAPISAI JOo AUNno)) ne'qrowrunmmm//:sdny (9Q9M) PIOI 19919 +2:80:61LE0-€0-6102 | 91
- «C661-11-81,, ndut 2ep oeq parg ne-qrowunmmm//:sdny (M) PIoL 11pH 0T:80:61LE0-€0-610C | SI
- ndut arep areq yHrg ne-qrauIun mMA//:sdny (99M) PIPL] 199[ 91:80:61L£0-€0-610C | V1
- «20d., ndur se| QureN 1se] ne-qrowunmmm//:sdny (99M) PIoL 11pg C1:80:61L€0-€0-610C | €1
- «£0d,, indur se| QueN e ne-qpauIun mMAy//:sdny (q9M) PIPL] 199[ 80:80:61.L£0-€0-610C | TI
- «£0d,, ndur se| QweN 1se] neqewun MMmay//:sdny (M) P 11Pg S0-80:61.L£0-€0-610C | TI
- indur se| QweN 1se] ne-qauIun mMAy/:sdny (q9M) PIPL] 199[ 20:80:61L£0-€0-610C | OI
- - - UOeaId pI033I MON 0T neqRwun MMmay//:sdny (M) ge1, 199198 0S:L0:61.L€0-€0-610T 6
- - - qeL, MON 61T WOd00qadey MMM //:sdny (oM 01 d1ESIARN S0:70:61.LE0-€0-610C 8
- - - qeL MON 61T /8ed-qe)-mou/oworys//:sdny (M) ge1, 199198 96:€0:61.L£0-€0-610T L
- - - qeL, MON 61T /93ed-qe)-mau/eworyd//:sdny | (qopm) qeL MON Jea1) | 96:¢0:61.LE0-€0-610T 9
- «uyof,, ndut 1y QWEN ISIT] ne-qrawun mMmay//:sdny (9aM) PR 11Pg LET0:61.LE0-€0-610T S
- indur 381y QUIEN ISIL] ne-qEuIun mMA//:sdny (92M) PR 199198 1€:20°61.L£0-€0-610C 14
- «uyof,, [ v 1399Ys SpIOdoyIuepmg (199Xg) 19D 199198 87:70:61.L£0-€0-610T €
- - uonng PIOOIYMOU PI0OAT MON ne'qowrun mmm//:sdny (9oA0) uonng o1 92:20:61.L£0-€0-610T F4
- - - 913008 ur yoreas - 9[3003 0T ne‘quwiIun mmm//:sdny (qop) 01 AeS1aeN €T:20:611E£0-€0-610C 1

9 d tq & 4 g adLy, durejsaury, YO |

peojieq n n

3o[ uonoeraur 1osn © Jo juswdel :¢ 9[qel,

30



the Uls recorded in the same log may have different payloads. For example, the
payload of Uls performed within a spreadsheet contains information regarding the
spreadsheet name and the location of the target cell (e.g., cell row and column). In
contrast, the payload of the Uls performed in a web browser contains information
regarding the webpage URL, the name and identifier of the UI’s target HTML
element, and its value (if any). Table 4 shows Uls and their associated payloads
recorded by the Action Logger tool [22]. The Uls are logically grouped, based
on their type, into three groups: navigation, read, and write Uls. Every Ul in a
log is an instantiation of one of the Ul types from Table 4, with every parameter
assigned with a specific value.

Table 4: User interaction types and their parameters

U1 U1 Parameter Names
Group Type P1 P2 P3 P4 P5 P6
Create New Tab (Web) URL 1D Title
Select Tab (Web) URL 1D Title
Close Tab (Web) URL D Title
Navigate To (Web) URL Tab ID Tab title
Navigation Add Worksheet (Excel) ‘Workbook name ‘Worksheet name
Select Worksheet (Excel) ‘Workbook name Worksheet name
Select Cell (Excel) ‘Workbook name ‘Worksheet name Cell column Cell row Value
Select Range (Excel) ‘Workbook name ‘Worksheet name Range columns Range rows Value
Select Field (Web) URL Name D Type Value
Copy (Web) URL Name ID Value Copied content
Read Copy Cell (Excel) Workbook name Worksheet name Cell column Cell row Value Copied content
Copy Range (Excel) ‘Workbook name ‘Worksheet name Range columns Range rows Value Copied content
Paste Into Cell (Excel) ‘Workbook name Worksheet name Cell column Cell row Value Pasted content
Paste Into Range (Excel) ‘Workbook name ‘Worksheet name Range columns Range rows Value Pasted content
Paste (Web) URL Name ID Value Pasted content
Click Button (Web) URL Name D Type
Write Click Link (Web) URL Inner text Href
Edit Field (Web) URL Name D Type Value
Edit Cell (Excel) ‘Workbook name ‘Worksheet name Cell column Cell row Value
Edit Range (Excel) ‘Workbook name ‘Worksheet name Range columns Range rows Value

To obtain a Ul log, all Uls related to a particular task have to be recorded. This
recording procedure can be long-running, covering a session of several hours of
work if the user performs multiple instances of this task one after the other. During
such a session, a worker is expected to perform a number of tasks of the same or
different types. The Ul log shown in the example above describes the execution of
a task corresponding to transferring student data from a spreadsheet into the Web
form of a study information system. The Web form requires information such as
the student’s first name, last name, date of birth, and country of residence. If the
country of residence is not Australia, the worker needs to perform one more step,
indicating that the student will be registered as an international student.

Each execution of a task (herein also called a task instance) is represented by
a task trace. In our running example, there are two traces belonging to the new
record creation task. From the log, we can see that the worker performed this task
in two different ways. In the first case, she manually filled in the form (Uls 1 to
18), while in the second case, she copied the data from a worksheet and pasted it
into the corresponding fields (UIs 19 to 41).

Given a collection of task traces, the goal of RPM is to identify a repetitive
sequence of Uls that can be observed in multiple task traces, herein called a
routine, and identify routines amenable for automation. For each such routine,

31



RPM then aims at extracting an executable specification (herein called a routine
specification). This routine specification may initially be captured in a platform-
independent manner and then compiled into a platform-dependent RPA script to
be executed in a specific RPA tool.

To summarize, Figure 7 presents a class diagram capturing the above concepts
and their relations.

User interaction
N timestamp
Information system 1 1.* |type 1 1 User
impacts payload %engages
0..* 1.%
1 é 1
User interaction log Task trace
name 1.
>
Text
Routine
RPA script Routine specification activation condition
1 1 0..* 1 0.*
implements —describes%

Figure 7: Class diagram of RPM concepts

3.2. Architecture

As mentioned earlier, the three main phases of RPM are (1) UI log collection
and preprocessing, (2) candidate routine identification, and (3) executable routine
discovery. To provide a more detailed view of the steps required to achieve the
goals of RPM, we decompose the first phase into the recording step itself and
two preprocessing steps, namely the segmentation of the log into task traces and
the simplification of the resulting task traces. We map the second phase into a
single step. Then, we decompose the third phase into three steps: the discovery of
platform-independent routine specifications, the aggregation of routines with the
same effects, and the compilation of the discovered specifications into platform-
specific executable scripts. This decomposition of the three phases into steps is
summarized in the RPM pipeline depicted in Figure 8. Below we discuss each
step of this pipeline.

Recording. The recording of a Ul log involves capturing low-level Uls, such
as selecting a field in a form, editing a field, opening a desktop application, or

32



Recording Ul log Segmentation

Task Traces II

Candidate
routines

Simplified
Task Traces

Simplification

identification

Executable
Candidate (sub)routines Routine
routines discovery Specifications
Aggregation
]  —
. Non-redundant
RPA Seript | || Compilation Routine ]
Specifications

Figure 8: RPM pipeline

opening a Web page. UI log recording may be achieved by instrumenting the
software applications (including Web browsers) used by the workers via plug-in
or extension mechanisms. Logs collected by such plug-ins or extensions may
be merged to produce a raw UI log corresponding to the execution of one or
more tasks by a user during a period of time. This raw log usually needs to be
preprocessed to be suitable for RPM.

The main challenge in this step is to identify what Uls must be recorded. The
same UI (e.g., mouse click) can either be important or irrelevant in a given context.
For example, a mouse click on a button is an important UI, but a mouse click on
a Web page’s background is an irrelevant UL. Also, when a worker selects a Web
form, we need to record Uls at the level of the Web page (the Document Object
Model — DOM) in order to learn routines at the level of logical input elements
(e.g., fields) and not at the level of pixel coordinates, which are dependent on
screen resolution and window sizes. Existing Uls recording tools, such as JitBit
Macro Recorder®, TinyTask*, and WinParrot’, save all the Uls performed by the
user at a too low level of granularity, with reference to pixel coordinates (e.g.,
click the mouse at coordinates 748,365). As a result, the Ul logs generated by
these tools are not suitable for extracting useful routines. RPA tools (e.g., UiPath

3h‘l:tps ://www.jitbit.com/macro-recorder/
4h‘l'.tps ://www.tinytask.net/
5http: //www.winparrot.com/

33


https://www.jitbit.com/macro-recorder/
https://www.tinytask.net/
http://www.winparrot.com/

Enterprise RPA Platform®, and Automation Anywhere Enterprise RPA) provide
recording functionality. However, this functionality is intended to record RPA
scripts. These tools do not capture details about different fields’ values, as these
values are not relevant for RPA script generation. For example, an RPA script
must know which cell in a spreadsheet has to be copied, and it is agnostic to the
value stored in that cell. Hence, a new family of recording tools is needed to
record UI logs required for RPM. To this end, a proposal has been made [23].
However, at the moment, the paper only presents a conceptual design of a tool.

Segmentation. In its raw form, a UI log consists of one single sequence of Uls
recorded during a session. During this session, a user may have performed several
executions of one or multiple tasks, that may be mixed up in the log. Moreover, in
case of multi-tasking, Uls of multiple concurrent task executions may be mixed to-
gether. Before identifying candidate routines for automation, we, therefore, need
to segment a Ul log into traces, such that each trace corresponds to the execu-
tion of one task instance. This involves the identification of the boundaries of the
tasks and the assignment of Uls to specific task traces. Given the fragment of the
UI log demonstrated in the running example, we can extract two segments, each
corresponding to the processing of a specific entry in the spreadsheet containing
students’ data (UIs 1 to 18 and 19 to 41 in Table 3).

Simplification. Ideally, Uls recorded in a log should only relate to the exe-
cution of the task(s) of interest. However, in practice, a log often also contains
Uls that do not contribute to completing the recorded task(s). We can consider
such Uls to be noise. Examples of noise Uls include a worker browsing the web
(e.g., social networking) while executing a task that does not require doing that,
or a worker committing mistakes (e.g., filling a text field with an incorrect value
or copying a wrong cell of a spreadsheet). Uls 6, 7, 8, 9, 10, and 11 are noise in
our running example. During the creation of the student record, the worker de-
cided to make a small pause, switched to a new tab in the Web browser (6-7), and
navigated to Facebook (8), where she spent almost 4 minutes browsing the news
feed, before going back to the tab with the active student form (9). All these Uls
do not have any relation to the task being recorded; thus, they constitute noise.
When performing the task, the worker selected a surname field in the form (10)
and made a mistake by accidentally misspelling the surname of the student (11).
She then had to select the same field again (12) and fill it in with the correct value
(13). Although the Uls 10 and 11 belong to the performed task, their effects are
overwritten by successive Uls (e.g., UI 11 is overwritten by UI 13) and, there-
fore, they do not affect the outcome of the routine and are considered to be noise.
The presence of the noise may negatively affect the further steps of the pipeline
(e.g., the discovery of the candidate routines). Accordingly, the next step is sim-
plification, which aims at noise identification and removal. The Uls in the log

6https ://www.uipath. com/
"https://www.automationanywhere.com/

34


https://www.uipath.com/
https://www.automationanywhere.com/

are removed so that the resulting log captures the same effects as the original one
while being simpler (i.e., having fewer Uls). We also remove the Uls that are not
important for the automation (e.g., selecting a field or a cell).

A vast majority of noise Uls can be discovered even before the segmentation.
Removal of noise at this stage can help in identifying task traces. However, some
noise can be identified only after the segmentation, when the information about
Uls in task traces is available. A typical example of such noise is a Ul that corre-
sponds to overwriting the value of a field. In the unsegmented log, removing the
previous Ul of type edit may be an error if the second UI of type edit belongs to a
successive task execution. Hence, we apply simplification two times: before and
after segmentation, where we remove different types of noise.

Candidate routines identification. Given a set of simplified task traces, the
next step is to identify candidate routines for automation. This step aims at ex-
tracting repetitive sequences of Uls that occur across multiple task traces, a.k.a.
routines, and identify which such routines are amenable for automation. This
step’s output is a set of automatable or semi-automatable routines, ranked accord-
ing to their automation potential (e.g., based on their execution frequency and
length)®.

Lacity and Willcocks [4] propose high-level guidelines for determining if a
task is a candidate for automation in the context of a case study at Telefonica.
However, this work does not provide a formal and precise definition of an au-
tomatable task, which would allow for the automatic identification of automatable
routines. In a recent systematic review of the RPA literature, Syed et al. [19] con-
clude that “there is a need for formal, systematic and evidence-based techniques to
determine the suitability of tasks for RPA.”. In particular, a major challenge is how
to formally characterize what makes a routine suitable for RPA in a sufficiently
precise way to enable the design of efficient algorithms to identify candidates for
RPA from large volumes of Ul logs. In this thesis, we use the notion of determin-
ism to assess the routine’s amenability for automation. A routine can be automated
if every Ul belonging to the routine is deterministically activated and uses the data
produced from the previous Uls (e.g., manual input into a text field is an example
of a non-deterministic UI). We say that a Ul is deterministically activated if we
know when to execute it (e.g., tick the box International if the student’s country
of residence is not Australia).

Considering the running example provided in Table 3 and assuming that the
identified task traces frequently occur in the log, we would discover two candi-
date routines, handling the domestic and international students, respectively. Note
that the routine in the first task trace is only partially automatable. The worker
manually filled in the form by looking at the corresponding entry values in the

8We also observe that not every routine is worth being automated. The automation of one routine
can bring much more benefits than the automation of another. Thus, the cost-benefit analysis of
routine automation is an important task [4]. However, this is a separate topic and is out of the scope
of this thesis.

35



spreadsheet. Since she did not read the data values explicitly (e.g., by copying
the values into the clipboard), these values are unknown for the recording tool.
Hence, it is not possible to understand how the values used for editing the form’s
fields were obtained. On the other hand, the routine from the second task trace
is fully automatable, as it is clear how to compute the values for the fields of the
web form in the target application (i.e., by copying them from the spreadsheet).

Executable routines discovery. After the candidate routines for automation
are identified, the next step is the executable (sub)routines discovery. For each
candidate routine, this step identifies the activation condition (Uls 2 and 19 in Ta-
ble 3), which indicates when an instance of the routine should be triggered, and the
routine specification, which specifies what Uls should be performed within that
routine, what data is used by each Ul in the routine, and how it can be obtained.
The discovery of the routine specification involves identifying and synthesizing
the transformation functions that have to be applied to the input data to convert
it to the required format in the target application. In the running example, we
can see that the web form requires a different date format than the one used in
the spreadsheet (Uls 29 to 34). Hence, transferring the date of birth via simple
copy and paste operations is insufficient, and the transformation function must be
applied to achieve the desired result.

Aggregation. The result of the executable (sub)routine discovery step is a
set of executable routine specifications for all the automatable candidate routines.
However, some of these specifications may produce identical effects, as they de-
scribe different variants of the same routine (e.g., filling in a web form in different
orders). These variants are considered as duplicates and should be ignored, as
their automation will not bring any benefits to the organization. Therefore, the
next step in the RPM pipeline is aggregation. During this step, the discovered
routine specifications leading to the same effects are replaced with one specifica-
tion that captures the optimal way of performing the underlying routine. Several
routine specifications may also be combined into a more complex specification
that contains instructions on how to deal with different cases. Figure 9 shows
an example of a specification that can be discovered from the running example
shown in Table 3 (assuming that the full-length UI log contains traces capturing
a fully automatable routine that handles domestic students). The output of the
aggregation step is a set of non-redundant routine specifications.

Compilation. The executable (sub)routine discovery and the aggregation steps
lead to a platform-independent representation of the routine, which can then be
compiled into a script targeted at a specific RPA tool via a final compilation step.
This step generates an executable script by mapping Uls from the routine spec-
ification into commands in the target RPA tool’s scripting language. This step
requires the correct identification of the application elements involved during the
routine execution (e.g., button or text field on the Web form). For example, when
converting a Ul of clicking a button on a Web page into an executable command,
we need to identify the HTML element representing this button and extract its

36



DOM position. Such information can be captured by a logging tool during the
recording stepg.

Once the script has been generated, it may be manually refined by an RPA
developer, tested, and deployed into a production environment. The bot can be
executed in attended or unattended settings. In attended settings, given an activa-
tion condition extracted from the routine specification, it can notify the user about
its “readiness" to perform the routine when the condition is met and can be paused
during execution, so that the user can make small corrections if needed and then
resume the work. In unattended settings, the bot works independently without
human involvement.

The information about the exact location of an element involved in a UI sometimes may be
missing or not available at all (e.g., when working with custom applications). In such a case,
intelligent recognition of the elements is required. In this regard, technologies such as OCR may
be used, but the challenge here is to preserve the semantics of the Uls recorded and capture all the
data involved during their execution.

37



JewIo} NJNJ g ut paiuasaid uoneoyroads aunnoi e jo ojdurexy :g 2In3ig

sp.

D81 JUBPNIS MO J33YSHIOM

papalas
S| J93ysylom

T1 UopeLLIojsuely zm_m_qu_ B Ul ¥ Moy

LBlledIsny, = sauaplsal
Jo Aljunod

A

e o] xsas aeq ¢ a1eQ yiIg X$2% SUIEN J5t X585 SHEN 35113 XSS
B,._uﬁmmm l152 Ados PIzY g_um oquy 235 12 Adoy [€] 0w aiseq [#] 192 Adon [*] o arseq [¢] 1122 Adoo

yuwgns
uonng

wuapnis
[EDENIENT
P14 31p3

panpIP S| ploday
M3N uong

38



3.3. Summary

This chapter presented Robotic Process Mining, a new family of techniques to
automate routine tasks within business organizations’ processes. We aggregated
these techniques into a pipeline to analyze logs of fine-grained user interactions
with IT systems to identify routines amenable for automation using RPA tools,
and synthesize executable specifications of such routines that RPA developers can
use as a basis for implementing further automation. In the following chapters, we
will review the state-of-the-art techniques that can be used to perform the steps in
this pipeline and present our own approaches to implement them that address the
limitations of the existing works.

39



4. STATE OF THE ART

In the previous chapter, we presented RPM and the pipeline to discover executable
specifications of routines for RPA from UI logs. The underlying pipeline can be
divided into three main phases: 1) recording and preprocessing of the Ul logs; 2)
discovery of candidate routines for automation; 3) discovery of executable rou-
tines. In this chapter, we overview the works focused on realizing these phases,
and identify their limitations. Section 4.1 focuses on the segmentation of the Ul
logs, which is the core step of preprocessing. Section 4.2 presents state-of-the-art
on discovering candidate routines for automation. Finally, Section 4.3 reviews the
works on discovering executable routines, and Section 4.4 concludes the chapter.

4.1. Segmentation

Given a Ul log (i.e., a sequence of Uls), the main goal of segmentation is to
break it into non-overlapping subsequences of Uls, namely segments, where each
segment represents the execution of a task performed by an employee from start
to end. In other words, the purpose of segmentation is to identify the boundaries
of tasks captured in a log, i.e., to find the points in a log where one task execution
ends and another starts.

The problem of segmentation is similar to the problem of web session recon-
struction [24], whose goal is to identify the beginning and the end of web nav-
igation sessions in server log data (e.g., streams of clicks and web page naviga-
tion) [24]. Methods for session reconstruction are usually based on heuristics that
rely on the structural organization of web sites or time intervals between events.
The former approach covers only the cases where all the user interactions are per-
formed in the web applications. In contrast, the latter approach assumes that users
make breaks in-between two consecutive segments — in our case, two routine in-
stances.

In the context of desktop assistants, research proposals such as TaskTracer and
TaskPredictor have tackled the problem of analyzing Ul logs generated by desktop
applications to identify the current task performed by a user and to detect switches
between one task and another [25,26]. These approaches can potentially be used
to split the Ul logs into segments corresponding to different tasks. However, such
approaches are not able to distinguish different instances of the same task.

Segmentation can also be seen as a problem of discovering periodic patterns
in time series. While several studies addressed the latter problem over the past
decades [27, 28], most of them require information regarding the length of the
pattern to discover or assume a natural period to be available (e.g., hour, day,
week). This makes the adaptation of such techniques to solve the problem of
segmentation challenging unless periodicity and pattern length are known a priori.

Segmentation also relates to the problem of correlating uncorrelated event logs
in process mining. In such logs, each event should normally include an identifier

40



of a process instance (case identifier), a timestamp, an activity label, and possibly
other attributes. When the events in an event log do not contain explicit case
identifiers, this log is said to be uncorrelated. Various methods have been proposed
to extract correlated event logs from uncorrelated ones [29-31]. However, existing
methods in this field address the problem in restrictive settings. Ferreira et al. [29]
assume that the underlying process is acyclic, whereas Bayomie et al. [30, 31]
assume that a process model is given as input, which means that the model of the
routine is known. Both these assumptions are unrealistic in our setting: a process
model is not available since we are precisely trying to identify the routines in the
log, and a routine may contain repetitions. Also, these approaches were shown
to produce rather inaccurate results. In contrast, RPM seeks to identify routines
with high confidence levels, given that replicating a routine inaccurately can lead
to costly errors, especially in unattended bot contexts.!

The segmentation problem resembles the event abstraction problem in Pro-
cess Mining [32], where low-level events are grouped into high-level business
activities. However, most of the existing techniques that address this problem are
supervised, i.e., they require a reference model [33, 34], mapping examples [35]
or time intervals [36]. This information is not usually available in advance. Al-
though these techniques can identify semantic groups of events, they are not able
to discover entire tasks consisting of events performed in various orders often
interspersed with noise.

In some scenarios, segmentation may be accomplished by combining transac-
tional data recorded by enterprise information systems and user interactions logs,
as proposed in [37]. However, the problem of this approach is that such transac-
tional data often provides only a limited information about the process context,
which is not enough to identify the boundaries of tasks captured in the user inter-
actions logs.

In [38], an approach for real-time task recognition based on a sequence of
events using supervised machine learning is proposed. While this approach is
capable of identifying the switches between tasks, it does not discover the actual
task boundaries, and, hence, it is unable to achieve the main goal of segmentation.

Recent work on UI log segmentation [39] proposes to use trace alignment be-
tween the logs and the corresponding interaction models to identify the segments.
In practice, however, such interaction models are not available beforehand.

4.2. Candidate routines identification

Dev and Liu [40] have noted that the problem of routine identification from (seg-
mented) Ul logs can be mapped to that of frequent pattern mining, a well-known
problem in the field of data mining [41]. Indeed, routine identification aims at

'In the case of attended RPA, it is not necessary to discover routines with 100% confidence
given that a user verifies the outcome of the routine and may correct errors.

41



identifying repetitive (frequent) sequences of interactions, which can be repre-
sented as symbols. In the literature, several algorithms are available to mine fre-
quent patterns from sequences of symbols. Depending on their output, we can
distinguish two types of frequent pattern mining algorithms: those that discover
only exact patterns [42,43] (hence vulnerable to noise), and those that allow fre-
quent patterns to have gaps within the sequence of symbols [44,45] (hence noise-
resilient).

Depending on their input, we can distinguish between algorithms that operate
on a collection of sequences of symbols and those that discover frequent patterns
from a single long sequence of symbols [43]. The former algorithms can be ap-
plied to segmented Ul logs, while the latter can be applied directly to unsegmented
ones although they only scale up when identifying exact patterns. While such ap-
proaches discover the frequently repeated routines, they do not analyze whether
they are automatable. In other words, these approaches focus on the discovery of
the control-flow models and not on the discovery of executable specifications.

The identification of frequent routines from sequences of actions is related to
the problem of Automated Process Discovery (APD) [17], which has been studied
in the field of process mining. Recent works [20,46,47] show that RPA can ben-
efit from process mining. In particular, [46] and [47] propose to apply traditional
APD techniques to discover process models of routines captured in UI logs. How-
ever, traditional APD approaches can not be used to discover routines that can be
automated via RPA for several reasons.

First, they focus on discovering models that capture the behavior observed in
a log from a control-flow perspective. They do not consider the data taken as
input and produced as output by the tasks of the process, nor the data used by
a process execution engine to evaluate branching conditions. A subset of APD
approaches targets the problem of discovering process models with data-driven
branching conditions [48] as well as control-flow relations that only hold under
certain conditions [49]. These approaches can be used as a starting point for
developing techniques for discovering RPA routines. Indeed, to discover RPA
routines, we need to discover the activation conditions that trigger a routine and
possibly other conditions within the routine.

Second, APD techniques generalize, i.e., they produce models with traces that
have not been observed. However, in the context of RPA, we seek to discover only
routines that have been previously observed (many times) in order to reproduce
these routines. Automating a routine that has never been observed is risky because
the probability of letting a bot do something that should not be done is high.
If these errors go undetected, they can later lead to costly mistakes and time-
consuming corrective actions. APD approaches are also approximate, meaning
that they can produce models that do not fit 100% with the log. Instead, routines
for RPA must be precise, as the lack of precision can lead to potential errors when
executing a bot.

Also, process discovery techniques operate over event logs consisting of coarse-

42



grained events, such as events indicating the start and completion of a task, as
opposed to low-level actions such as clicks and keystrokes. Commercial process
mining vendors address this granularity difference by providing features to dis-
cover two-level process models. For example, the Minit? process mining tool pro-
vides a multi-level process discovery feature to support RPM tasks. Specifically,
given an event log recording task executions and a Ul log, Minit can generate a
two-level process map. The first level shows the tasks recorded in the log ex-
tracted from the enterprise system. Each task can be expanded into a second-level
process map showing the Ul actions and their control-flow relations. In this way,
the tool supports the (visual) identification of tasks with relatively simple internal
structures and could, therefore, be potentially automated. However, it cannot de-
termine if a task contains fully automatable (sub-)routines. Also, the tool assumes
that there is a clear relationship between the events in the Ul log and those in the
high-level log.

Another commercial tool, namely Kryon Process Discovery,” identifies candi-
date routines for RPA by analyzing UI logs in conjunction with screenshots taken
while users perform their work on one or more applications. However, not all
routines identified as candidates for automation by this tool can be automated.
Suppose the data values that are entered in a particular step cannot be determined
from the previously observed values. In that case, it means that the user is provid-
ing inputs either from external data sources (not observed in the UI) or from their
own domain knowledge, and hence that step of the routine is not automatable.

Another technique for routine identification [50] attempts to identify tasks
amenable for automation from textual documents. This approach, however, may
lead to imprecise results due to the complexity of natural language analysis. Also,
it requires textual documentation of suitable quality and completeness, and as-
sumes that tasks are performed exactly as documented. In reality, workers may
perform steps that are not fully documented to deal with exceptions and variations.
Hence, a task that might appear as automatable according to its work instructions
might turn out not to be automatable in practice. This approach is suitable for
earlier stages of routine identification and could be used to determine which pro-
cesses or tasks could be recorded and analyzed to identify routines.

Recent work [51] proposes to leverage data distribution in recorded logs to
identify automation opportunities. Specifically, it shows how the Pareto principle
can be used to select routines that maximize the expected benefit.

The discovery of data transfer routines that are amenable to RPA automation
has been addressed in [52]. This paper proposes a technique to discover sequences
of actions such that the inputs of each action in the sequence (except the first
one) can be derived from the data observed in previous actions. However, this
technique can only discover perfectly sequential routines and is hence not resilient

2https ://www.minit.io/
3h‘l:tps ://www.kryonsystems. com/process-discovery/

43


https://www.minit.io/
https://www.kryonsystems.com/process-discovery/

to noise and variability in the order of the actions.

[53] presents a vision for Intelligent Process Automation, a new class of tools
that combine machine learning and artificial intelligence to identify automation
opportunities and achieve more complex automation than the one provided by
RPA. Specifically, it focuses on the automation of complex tasks involving de-
cision making, coordination and collaboration of multiple RPA solutions. The
paper reports artificial intelligence challenges that have to be overcome to realize
this vision.

4.3. Executable routines discovery

The discovery of executable routines has been widely studied in the context of
table auto-completion and data wrangling. For example, the Excel’s Flash Fill
feature detects string patterns in the values of the cells in a spreadsheet and uses
these patterns for auto-completion [54]. Similarly, the authors in [55] propose an
approach to extract structured relational data from semi-structured spreadsheets.
However, such approaches can discover only the executable routines performed
in one application and have a limited area of usage. In practice, the RPA routines
often involve many of these applications.

A subset of process discovery approaches focuses on discovering simulation
models [56] that can be given as input to business process simulators, which ex-
ecute them in a stochastic sense. However, we are not aware of techniques that
discover executable process models ready to be deployed or compiled (without
significant manual enhancement) into a business process execution engine. In
particular, we are not aware of any work on automated process discovery that au-
tomatically discovers the data transformations (i.e., the mappings between inputs
and outputs) in the discovered processed models. Nevertheless, these data trans-
formations are essential for process models that have to be executed by a process
execution engine or by an RPA tool.

Recent work [52] suggests that this step in the discovery of executable rou-
tines can be implemented using existing methods for automated discovery of data
transformations “by example” [57,58]. However, these methods suffer from scal-
ability issues. The approach presented in [59] to extract rules from segmented Ul
logs that can automatically fill in forms. However, this approach only discovers
branching conditions that specify whether a certain activity has to be performed
or not (e.g., check a box in a form) and only focuses on copy-paste operations
without identifying more complex manipulations. In [60] and [61], the authors
present an approach to automatically discover routines from segmented UI logs
and automate them in the form of scripts. This approach, however, assumes that
all the actions within a routine are automatable. In practice, it is possible that
some actions have to be performed manually, and they can not be automated.

44



Year

2003

2005
2007
2007
2009
2011
2015
2016
2016

2017
2017
2018
2018
2018
2018
2018

2019
2019

2019
2019
2019
2020
2020

2020
2020

2020
2020
2021
2021

2021

Paper title Ref | S tation | Candid: Aut ble routines
discovery discovery

A framework for the evaluation of session reconstruction heuristics in web [24] v

usage analysis

Tasktracer: a desktop environment to support multi-tasking knowledge workers [26] v

Discovery of periodic patterns in spatiotemporal sequences [27] v

Real-time detection of task switches of desktop users [25] v

Discovering process models from unlabelled event logs [29] v

Automating string processing in spreadsheets using input-output examples [54] v

Flashrelate: extracting relational data from semi-structured [55] v

Correlating unlabeled events from cyclic business processes execution [31] v

The use of process mining in business process simulation model construction - [56] v

structuring the field

Time series chains: A new primitive for time series data mining [28] v

Identifying frequent user tasks from application logs [40] v

Process mining and robotic process automation: A perfect match [20] v

Efficiently interpreting traces of low level events in business process logs [33] '

Guided process discovery - a pattern-based approach [34] v

Desktop activity mining - a new level of detail in mining business processes [37] v v

Identifying candidate tasks for robotic process automation in textual [50] v

process descriptions

A probabilistic approach to event-case correlation for process mining [30] v

Machine learning-based framework for log-lifting in business process mining [35] v

applications

A method to improve the early stages of the robotic process automation lifecycle [46] v v

Discovering automatable routines from user interaction logs [52] v

Automated robotic process automation: A self-learning approach [59] v v

Event-log abstraction using batch session identification and clustering [36] v

Iot-based activity recognition for process assistance in human-robot disaster [38] v

response

Automated segmentation of user interface logs using trace alignment techniques [39] v

On the Pareto principle in process mining, task mining, and robotic process [51] v

automation

From robotic process automation to intelligent process automation [53] v

Automated generation of executable RPA scripts from user interface log [60] v v

Event abstraction in process mining: literature review and taxonomy [32] v

Candidate digital tasks selection methodology for automation with robotic [47] v

process automation

SmartRPA: A tool to reactively synthesize software robots from user interface logs | [61] v v

Table 5: Summary of prior work related to the three phases of RPM

4.4. Summary

This chapter gave an overview of the state-of-the-art techniques that aim at ad-
dressing the problems envisioned in the RPM pipeline. Specifically, it reported
techniques focused on the three main phases of the pipeline: segmentation, dis-
covering candidate routines for automation, and discovering executable routines.
The overview of the related literature is provided in Table 5. The review high-
lights that existing approaches do not solve the problem posed in the thesis. Ex-
isting approaches for routine identification assume that the input Ul log is already
segmented, while in practice, all UI logs originally are represented by a single
sequence of Uls. Moreover, they have many limitations, e.g., focusing on the

45



control-flow and ignoring the data-flow of routines, discovering imprecise rou-
tines, and intolerance to noise. Also, currently available approaches for segmen-
tation are too restrictive. They make assumptions that are not realistic in the RPM
context. Finally, although there are some approaches to discover executable rou-
tines, they only allow for partial automation and limited usage can not discover
executable specifications that can be used for RPA. Therefore, discovering rou-
tines that can be fully automated using RPA and generating the corresponding
executable specifications (scripts) is still an open challenge.

46



5. DISCOVERY OF CANDIDATE ROUTINES

In this chapter', we address RQ1: “Given a user interaction log, how to identify
the routines that can be potentially automated via an RPA tool?”. The review
of approaches for discovering candidate routines for automation (see Chapter 4)
highlights that there is no efficient technique to identify candidate routines from
unsegmented Ul logs. Moreover, these techniques focus only on the control-flow
perspective and are not robust to noise. Therefore, there is the need to develop
a new approach to identify candidate routines for automation. In this chapter,
we present a noise-resilient approach to discover candidate routines from unseg-
mented Ul logs. This chapter is structured as follows. Section 5.1 describes the
approach, Section 5.2 reports its empirical evaluation and Section 5.3 summarizes
the chapter.

5.1. Approach

In this section, we describe our approach for identifying candidate routines in UI
logs. As input, the approach takes a Ul log and outputs a set of candidate routines.
The approach follows the RPM pipeline demonstrated in Chapter 3. It consists of
a preprocessing/normalization phase followed by two macro steps in which the
UI log is decomposed into segments and, then, candidate routines are identified
by mining frequent sequential patterns from the segments. The approach is sum-
marized in Figure 10. Next, we describe the steps in detail, including the required
Ul log preprocessing and normalization.

Segmentation

Preprocessing and CFG Back-edges Segments
normalization construction detection identification

Candidate routines identification

Candidates Candidates
identification selection

Figure 10: Outline of the approach for discovering candidate routines

Candidate
routines

5.1.1. Ul Log Preprocessing and Normalization

Before we proceed, we give the formal definitions necessary to support the subse-
quent discussions.

lCorresponding to [62] and partially [63]

47



Definition 5.1.1 (User Interaction (UI)). A user interaction (Ul) is a tuple u =
(t,7,P:,Z,9), where: t is a Ul timestamp; T is a Ul type (e.g., click button, copy
cell); Py is a set of Ul parameters (e.g. button name, worksheet name, URL, etc.);
Z is a set of Ul parameters values; and ¢ : P — Z is a function that maps Ul
parameters onto values.

Definition 5.1.2 (UI Log). A Ul Log ¥ is a sequence of user interactions ¥ =
(ui,uz, ... uy), ordered by timestamp, i.e. uj, < uj, (where u;, is the timestamp
of u;) forany i, j| 1 <i< j<n. Inthe remainder of this thesis, we refer to Ul log
also as a log.

Table 6 shows an example of a Ul log, which we will use herein as running

example.

Table 6: Running example for the candidate routines discovery approach

Ul Ul Payload
Row Ti Type 2 P, 12 12 s I3
1 2019-03-03T19:02:18 Click button (Web) https://unimelb.edu.au New Record newRecord button - -
2 Select cell (Excel) StudentRecords Sheetl A 2 Albert Rauf -
3 Copy cell (Excel) StudentRecords Sheet1 A 2 Albert Rauf Albert Rauf
4 Select field (Web) https://unimelb.edu.au Full Name name o - -
5 Paste (Web) https://unimelb.edu.au Full Name name o Albert Rauf -
6 Edit field (Web) https://unimelb.edu.au Full Name name text Albert Rauf —
7 Select cell (Excel) StudentRecords Sheetl B 2 11/04/1986 -
8 Copy cell (Excel) StudentRecords Sheetl B 2 11/04/1986 11/04/1986
9 Select field (Web) https://unimelb.edu.au Date date — —
10 Paste (Web) https://unimelb.edu.au Date date 11/04/1986 -
11 Edit field (Web) https://unimelb.edu.au Date date text 11-04-1986 -
12 Select cell (Excel) StudentRecords Sheet] C 2 +61 043 512 4834 —
13 Copy cell (Excel) StudentRecords Sheet C 2 +61 043 512 4834 +61 043 512 4834
14 Select field (Web) https://unimelb.edu.au Phone phone o - -
15 2019-03-03T19:07:46 Paste (Web) https://unimelb.edu.au Phone phone +61043 5124834 -
16 2019-03-03T19:07:48 Edit field (Web) https://unimelb.edu.au Phone phone text 043-512-4834 -
17 Select cell (Excel) StudentRecords Sheetl D 2 Germany -
18 Copy cell (Excel) StudentRecords Sheet1 D 2 Germany Germany
19 Select field (Web) https://unimelb.edu.au Country of residence country o — —
20 Paste (Web) https://unimelb.edu.au Country of residence country o Germany -
21 Edit field (Web) https://unimelb.edu.au Country of residence country text Germany —
22 Edit field (Web) https://unimelb.edu.au Student status status select Domestic -
23 Edit field (Web) https://unimelb.edu.au Student status status select International -
24 Click button (Web) https://unimelb.edu.au Submit submit submit — —
25 Click button (Web) https://unimelb.edu.au New Record newRecord button - -
26 Select cell (Excel) StudentRecords Sheetl B 3 20/06/1987 -
27 Copy cell (Excel) StudentRecords Sheet] B 3 20/06/1987 20/06/1987
28 Select field (Web) https://unimelb.edu.au Date date o - -
29 Paste (Web) https://unimelb.edu.au Date date o 20/06/1987 -
30 2019-03-03T19:08:28 Edit field (Web) https://unimelb.edu.au Date date text 20-06-1987 -
31 2019-03-03T19:08:32 Select cell (Excel) StudentRecords Sheetl C 3 +61 519 790 1066 -
32 2019-03-03T19:08:34 Copy cell (Excel) StudentRecords Sheetl C 3 +61 519 790 1066 +61 519 790 1066
33 2019-03-03T19:08:36 Select field (Web) https://unimelb.edu.au Phone phone - -
34 2019: 03T19:08:38 Paste (Web) https://unimelb.edu.au Phone phone o +61 519 790 1066 —
35 2019-03-03T19:08:39 Edit field (Web) https://unimelb.edu.au Phone phone text 519-790-1066 -
36 2019-03-03T19:08:40 Select cell (Excel) StudentRecords Sheet1 A 3 Audrey Backer —
37 Copy cell (Excel) StudentRecords Sheet A 3 Audrey Backer Audrey Backer
38 2019-03-03T19:08:42 Select field (Web) https://unimelb.edu.au Full Name name o - -
39 2019 03T19:08:44 Paste (Web) https://unimelb.edu.au Full Name name Audrey Backer —
40 2019-03-03T19:08:46 Edit field (Web) https://unimelb.edu.au Full Name name text Audrey Backer -
41 2019-03-03T19:08:50 Select cell (Excel) StudentRecords Sheetl D 2 Germany -
42 2019-03-03T19:08:52 Copy cell (Excel) StudentRecords Sheet1 D 2 Germany Germany
43 2019-03-03T19:08:58 Select cell (Excel) StudentRecords Sheetl D 3 Australia -
44 2019 03T19:09:01 Copy cell (Excel) StudentRecords Sheetl D 3 Australia Australia
45 2019-03-03T19:09:05 Select field (Web) https://unimelb.edu.au Country of residence country — —
46 2019-03-03T19:09:08 Paste (Web) https://unimelb.edu.au Country of residence country o Australia —
47 2019-03-03T19:09:10 Edit field (Web) https://unimelb.edu.au Country of residence country text Australia -
48 2019-03-03T19:09:14 Edit field (Web) https://unimelb.edu.au Student status status select Domestic —
49 2019-03-03T19:09:20 Click button (Web) https://unimelb.edu.au Submit submit submit - -

An Ul log often may contain Uls that do not contribute to the routine(s) we

48



intend to discover. On the one hand, some Uls are completely independent of
the operations in a routine. For example, a worker might perform web browsing
operations (e.g., visiting a social networking site) while executing a routine. On
the other hand, some Uls correspond to operations that are normally part of a
routine, but that do not change the effect of the routine (i.e. they are redundant).
For example, copying twice consecutively from the same cell in a spreadsheet has
the same effect as copying a single time from that cell (i.e., copying from a cell
is an idempotent operation, unless another operation changes the contents of the
cell in-between the two copy operations). Such Uls are considered to be noise
and have to be removed in order to obtain correct routines. The first type of noise
(i.e., Uls that are not related to routine execution) is expected to be irregular and
infrequent. Such noise will be handled during the discovery of candidate routines.
To identify and remove the second type of noise (i.e., redundant Uls), we rely
on three search-and-replace rules defined as regular expressions that operate as
follows.

1. Remove Uls of type copy that are not eventually followed by UI of type
paste before another Ul of type copy occurs (e.g., Table 6, row 42). This
rule captures the fact that multiple subsequent copy operations have the
same effect as the last copy operation, unless in the middle, the contents
that are copied into the clipboard are used via a paste operation.

2. Remove Uls of type type edit (or paste) that are followed by another UI of
the same type that targets the same object and overwrites its content before
the current value was copied (e.g., Table 6, row 22). This rule captures
the overriding effect of paste and edit operations (i.e., the last paste edit
operation on a field of cell overrides previous paste/edits on that cell).

3. Remove Uls of type select cell and select field (e.g., Table 6, rows 2, 4, 7).
The rationale for this rule is that, in the representation of Ul logs we have
adopted, the cell (or field) upon which an operation is applied is recorded
as part of the operation, and therefore the position of this cell (or field) does
not need to be inferred from the navigation operations in the Ul log.

Note that, given an unsegmented log, it is impossible to apply the third rule
straightforward, as removing the first UI of type edit (considered redundant) may
be an error if the second UI of type edit belongs to successive task execution.
Therefore, we postpone the application of the third rule after the segmentation
step. The filtering rules are applied recursively on the log until no more Uls are
removed, and the log is assumed to be free of detectable noise.

The above rules capture basic properties of copy, paste and edit operations.
We do not claim that these rules capture every type of redundancy in a Ul log.
Devising and applying more sophisticated filtering algorithms is outside the scope
of this thesis, and we leave it as an avenue for future work.

After filtering the log, the vast majority of the Uls are unique because they
differ by their unique payload. Even the Uls capturing the same action within

49



the same task execution (or different task executions) would appear different. To
discover each task execution recorded in the log, we need to detect all the Uls that
even having different payloads correspond to the same action within the same or
different task execution(s).

Given a Ul, its payload can be divided into data parameters and context pa-
rameters. The former store the data values used during the execution of the tasks,
e.g., the value of text fields or copied content. Consequently, data parameters
usually have different values in different task executions. In contrast, the latter
capture the context in which the Uls were performed, e.g., the application and
the location within the application. Therefore, context parameters of the same Ul
within a task are likely to have the same values across different task executions.
For example, the payload of a Ul of type copy cell has the following parameters:
workbook name (the Excel file name); worksheet name (within the Excel file); cell
column (i.e., the column of the cell in the worksheet that was selected for the Ul);
cell row (i.e., the row of the cell in the worksheet that was selected for the UI);
value (i.e., the current value of the cell selected for the Ul); copied content (the
content copied as the result of the UI). Here, workbook name, worksheet name,
cell column/row are context parameters, while copied content and value are data
parameters. Different context parameters characterize different UI types. For ex-
ample, a Ul of type click button performed in a web browser has only these context
parameters: URL; name (i.e., the label of the button); ID (of the button, as an ele-
ment in the HTML page); and fype. Often, context parameters are determined by
the type of UI, however, to reduce the chance of possible automated misinterpre-
tations, we allow the user to configure the context parameters of various Ul types
manually.

To segment an input Ul log, we rely on the context parameters of the Uls. We
call a UI whose payload has been reduced to its context parameters a normalized
Ul

Definition 5.1.3 (Normalized Ul). Given a Ul u = (t,7,P;,Z,9), the Ul i =
(t,7,P,Z,9) is its normalized version, where Z contains only the values of the
parameters in Py, where Py is a set of context parameters.

Two normalized Uls u; = (t1,7,P;,Zy,¢1) and up = (t2, T, P;, Zo, §2) are equiv-
alent, denoted by u; = uy iff Vp € P, = ¢1(p) = ¢a2(p).

A log in which all the Uls have been normalized is a normalized log, and
we refer to it with the notation £ = (i, i3, ...,1,). Table 6 and Table 7 show,
respectively, a fragment of a log and its normalized version.

Intuitively, in a normalized log, the chances that two executions of the same
task have the same sequence (or set) of normalized Uls are high because they
have only context parameters. We leverage such a characteristic of a normalized
log to identify its segments (i.e., start and end of each executed task) and then the
routine(s) within the segments.

50



Table 7:

Normalized running example after preprocessing

Ul Ul Payload
Row Timestamp Type P P P Py
1 2019-03-03T19:02:18 | Click button (Web) | http://www.unimelb.edu.au New Record newRecord | button
2 2019-03-03T19:02:23 | Copy cell (Excel) StudentRecords Sheetl A -
3 2019-03-03T19:02:26 Paste (Web) http://www.unimelb.edu.au Full Name name -
4 2019-03-03T19:02:28 Edit field (Web) http://www.unimelb.edu.au Full Name name text
5 2019-03-03T19:02:31 | Copy cell (Excel) StudentRecords Sheet] B -
6 2019-03-03T19:02:37 Paste (Web) http://www.unimelb.edu.au Date date -
7 2019-03-03T19:02:40 | Edit field (Web) | http://www.unimelb.edu.au Date date text
8 2019-03-03T19:07:33 | Copy cell (Excel) StudentRecords Sheet! C -
9 2019-03-03T19:07:40 Paste (Web) http://www.unimelb.edu.au Phone phone -
10 | 2019-03-03T19:07:48 | Edit field (Web) | http://www.unimelb.edu.au Phone phone text
11 2019-03-03T19:07:50 | Copy cell (Excel) StudentRecords Sheetl D -
12 | 2019-03-03T19:07:55 Paste (Web) http://www.unimelb.edu.au | Country of residence country -
13 | 2019-03-03T19:08:02 Edit field (Web) http://www.unimelb.edu.au | Country of residence country text
14 | 2019-03-03T19:08:05 Edit field (Web) http://www.unimelb.edu.au Student status status select
15 2019-03-03T19:08:08 | Click button (Web) | http://www.unimelb.edu.au Submit submit submit
16 | 2019-03-03T19:08:12 | Click button (Web) | http://www.unimelb.edu.au New Record newRecord | button
17 | 2019-03-03T19:08:17 | Copy cell (Excel) StudentRecords Sheetl B -
18 | 2019-03-03T19:08:21 Paste (Web) http://www.unimelb.edu.au Date date -
19 | 2019-03-03T19:08:28 Edit field (Web) http://www.unimelb.edu.au Date date text
20 | 2019-03-03T19:08:35 | Copy cell (Excel) StudentRecords Sheetl C -
21 2019-03-03T19:08:38 Paste (Web) http://www.unimelb.edu.au Phone phone -
22 | 2019-03-03T19:08:39 Edit field (Web) http://www.unimelb.edu.au Phone phone text
23 | 2019-03-03T19:08:40 | Copy cell (Excel) StudentRecords Sheet1 A -
24 | 2019-03-03T19:08:42 Paste (Web) http://www.unimelb.edu.au Full Name name -
25 2019-03-03T19:08:43 Edit field (Web) http://www.unimelb.edu.au Full Name name text
26 | 2019-03-03T19:08:45 | Copy cell (Excel) StudentRecords Sheet1 D -
27 | 2019-03-03T19:08:47 Paste (Web) http://www.unimelb.edu.au | Country of residence country -
28 | 2019-03-03T19:08:49 Edit field (Web) http://www.unimelb.edu.au | Country of residence country text
29 | 2019-03-03T19:08:52 Edit field (Web) http://www.unimelb.edu.au Student status status select
30 | 2019-03-03T19:08:53 | Click button (Web) | http://www.unimelb.edu.au Submit submit submit

51



5.1.2. Segmentation

A log may capture long working sessions, where a worker performs multiple in-
stances of one or more tasks. The next step of our approach decomposes the log
into segments that identify the start and the end of each recorded task in the log.
Given a normalized log, we generate its control-flow graph (CFG). A CFG is a
graph where each vertex represents a different normalized UI, and each edge cap-
tures a directly-follows relation between the two normalized Uls represented by
the source and the target vertices of the edge. A CFG has an explicit source vertex
representing the first normalized Ul recorded in the log.
Given a log, the directly follows relation on Ul is defined as follows.

Definition 5.1.4 (Directly-follows relation). Let £ = (i1}, ify,...,i,) be a nor-
malized log. Given two Uls, iiy, ity € Y, we say that ity directly-follows iy, i.e.,
iy~ fy, iff iy < dlyy APitz € | digy < ity < iy
Definition 5.1.5 (Control-Flow Graph (CFG)). Given a normalized log, ¥ =
(U, 11, .., 1), let A be the set of all the normalized Uls in £. A Control-Flow
Graph (CFG) is atuple G= (V,E,V,é), where: V is the set of vertices of the graph,
each vertex maps one Ul in A; E CV x V is the set of edges of the graph, and
each (vi,v;) € E represents a directly-follows relation between the Uls mapped by
vi and vj; ¥ is the graph entry vertex, such that v € VH(v,9) € EAB(V,v) € E;
while é = (V,vy) is the graph entry edge, such that vo maps ;. We note that v ¢V,
and é ¢ E, since they are artificial elements of the graph.

A CFG is likely cyclic since a loop represents the start of a new execution of
the task recorded in the log. Indeed, in an ideal scenario, once a task execution
ends with a certain UI (a vertex in the CFG), the next UI (i.e., the first UI of the
next task execution) should have already been mapped to a vertex of the CFG,
and a loop will be generated. In such a case, all the vertices in the loop represent
the Uls performed during the execution of the task. If several different tasks are
recorded in sequence in the same log, we would observe several disjoint loops in
the CFG, while if a task has repetitive subtasks, we would observe nested loops
in the CFG. Figure 12 shows the CFG generated from the log captured in Table 7,
we note that for simplicity we collapsed some vertices as shown in Figure 11.

[+
Copy cell Paste Edit Field Edit Field
A Full Name Full Name Full Name

(a) Before (b) After

Figure 11: Collapsed vertices

Once the CFG is generated, we turn our attention to identifying its back-edges
(i.e., its loops). By identifying the CFG back-edges and their Uls, we extract the
start and end Uls of the repeated task. These Uls are used to mark the boundaries
between task executions. The back-edges of a CFG can be identified by analyzing

52



Start

Y

Click Button New Record

v

[+]
Edit Field Full Name

v

[+]
Edit Field Date

v

[+]
Edit Field Phone

v

[+]
Edit Field Country of origin

\ ¢ J
'd N\
Edit Field Student status
\ ¢ J
s N

Click Button Submit

& J

Figure 12: Control-flow graph for the running example

the CFG Strongly Connected Components (SCCs). Given a graph, an SCC is a
subgraph where for all its pairs of vertices, there exist a set of edges connecting
the pair of vertices such that all the sources and targets of these edges belong to
the subgraph.
Definition 5.1.6 (CFG Path). Given a CFG G = (V,E,V,é), a CFG path is a
sequence of vertices py, v, = (Vi,...,vk) such that for each i € [1,k—1] = v; €
Vu {\7} VAN 3(V,',V,'+1) ceFEU {é}
Definition 5.1.7 (Strongly Connected Component (SCC)). Given a graph G =
(V,E,V,é), a strongly connected component (SCC) of G is a pair 6 = (V,E),
where V.= {vi,va,....,vm} CV and E = {ey,ea,...,ex} C E such that Vv;,v; €
V3pyv, |V Ep=veV. Givenan SCC & = (V,E), we say that § is non-trivial
iff V| > 1. Given a graph G, Ag denotes the set of all the non-trivial SCCs in G.
Algorithm 1 and Algorithm 2 describe how we identify the SCCs of the CFG.
Given a CFG G = (V,E,V,¢é), we first build its dominator tree ® (Algorithm 1,
line 2), which captures domination relations between the vertices of the CFG.

53



Algorithm 1: Back-edges detection

input :CFG G
output : Back-edges Set B

B+ @,

Dominator Tree ® <— computeDominatorTree(G);
Set Ag < findSCCs(G);

foreach 6 € A do AnalyseSCC(6, ©, B) ;

5 return B;

AW =

Algorithm 2: Analyse SCC
input  :SCC 6 = (V,E), Dominator Tree ©, Back-edges Set B
1 Header / + findHeader(8, ©);
2 if i # null then
3 Set I < getIncomingEdges(8, h);
B+ BUI,
E+ E\IL

else
Set L + findLoopEdges(d);
Edge e + getTheDeepestEdge(5, L);
remove ¢ from E;

e ® N s

—

0 Set Ag < findSCCs(d);
11 foreach y € A5 do AnalyseSCC(y, ©, B) ;

Figure 13 shows the dominator tree of the CFG in Figure 12.

Then, we discover the set of all non-trivial SCCs (Ag) by applying the Kosaraju’s
algorithm [64] and removing the trivial SCCs (Algorithm 1, line 3).

The main idea behind Kosaraju’s algorithm is that if vertex u can be visited
from vertex v and, at the same time, vertex v can be visited from vertex u then these
two vertices are strongly connected and belong to the same strongly connected
component. Accordingly, the algorithm requires two Depth-first search (DFS)
traversals [65] over the graph to find all strongly connected components. First, a
DEFS is performed on the original graph, and a post-order of the explored search
tree is saved. Then, starting from the last vertex in the post-order, a DFS on
the transposed graph is performed. Transposed graph G’ of a directed graph G
is a graph with the same set of vertices as G and all edges of G with reversed
orientation, such that if G contains an edge (u, v), then G/ contains an edge (v,
u) and vice versa. As a result, we will obtain a forest consisting of trees that
contain all the nodes that are reachable from the corresponding root. If a pair of
vertices is present in the same tree of the original and the transposed traversal,
these vertices are placed in the same strongly connected component. If a vertex in
the transposed graph is not connected to any other vertex, it is placed in a separate
strongly connected component, and the next vertex in the reversed post order is
taken as the start vertex for the DFS. The algorithm stops when all the vertices are
assigned to strongly connected components.

For each § = (V,E) € Ag, we discover its header using the dominator tree
(Algorithm 2, line 1). The header of a dominator tree 0 is a special vertex heV,
such that Vpy, | v € V=he Dy, 1.€., the header h (a.k.a. the SCC entry) is

54



Start

Click Button
New Record
- J
+] ( [+] N ( +] )
Edit Field Edit Field Edit Field
Full Name Date Country of origin
- J - J
(om0 )
Edit Field Edit Field
Phone Student status
- J
)
Click Button
Submit

Figure 13: Dominator tree for the running example

the SCC vertex that dominates all the other SCC vertices. Once we have /1, we
can identify the back-edges as (v,fz) with v € V (line 3). Finally, the identified
back-edges are stored and removed (lines 4 and 5) in order to look for nested
SCCs and their back-edges by recursively executing Algorithm 2 (line 11), until
no more SCCs and back-edges are found. However, if we detect an SCC that does
not have a header vertex (formally, the SCC is irreducible), we cannot identify the
SCC back-edges. In such a case, we collect via a depth-first search of the CFG
the edges (vy,vy) € E such that vy is topologically deeper than v, - we call these
edges loop-edges of the SCC (line 7). Then, out of all the loop-edges, we store
(and remove from the SCC) the one having target and source connected by the
longest simple path entirely contained within the SCC (lines 8 to 9).

Given the CFG presented in Figure 12 and its corresponding dominator tree
(see Figure 13), we identify the SCC that consists of all the vertices except the
entry vertex. Then, by applying Algorithm 2, we identify: the SCC header — Click
Button [New Record]; and the only back-edge — (Click Button [Submit], Click But-
ton [New Record]), which we save and remove from the SCC. After the removal
of this back-edge, we identify the nested SCC that contains edits of the Full Name,
Date, and Phone fields. Note that this second SCC does not have a header because
it is irreducible, due to its multiple entries (Edit Field [Full Name] and Edit Field
[Date]). However, by applying the depth-first search, we identify as candidate
loop-edge for removal: (Edit Field [Phone], Edit Field [Full Name]). After we
remove this edge from the CFG, no SCCs are left, so Algorithm 2 terminates.

55



At this point, we collected all the back-edges of the CFG. Next, we use them
to segment the log. We do so by applying Algorithm 3.

Algorithm 3: Segmentation

input  : Normalized UI log £, Back-edges Set B
output : Segments List ¥

1 SetV¥ + o,

2 Set T < getTargets(B);

3 Set S < getSources(B);

4 Boolean WithinSegment < false;

5 Normalized UI ug < null;

6 Queue s + O,

7 for i+ 1 to size(L) do

8 Normalized UI i <+ getUI(L, i);

9 if 7 € T then

10 if WithinSegment = false then
11 54— I

12 append i to s;

13 Uy < u;

14 WithinSegment < true;
15 else

16 | appendiitos;

17 else

18 if WithinSegment = true then
19 append i to s;

20 if it € SA (it,up) € B then
21 Y PU{s};

22 L WithinSegment < false;

23 return ¥;

First, we retrieve all the targets and sources of all the back-edges in the CFG
and collect their corresponding Uls (lines 2 and 3). Each UI mapped onto a back-
edge target is an eligible segment starting point (from now on, segment-start UI).
A back-edge conceptually captures the end of a task execution, while its target
represents the first Ul of the next task execution. By applying the same reasoning,
each UI mapped onto the source of a back-edge is an eligible segment ending
point (from now on, segment-end UI). Then, we sequentially scan all the Uls in
the log (line 7). When we encounter a segment-start Ul (line 9), and we are not
already within a segment (see line 10), we create a new segment (s, a list of Uls),
we append the segment-start Ul (i), and we store it in order to match it with the
correct segment-end Ul (line 11 to 14). The following underlying assumption
drives our strategy to detect segments in the log: a specific segment-end UI will
be followed by the same segment-start Ul to match segment-end and segment-
start Uls exploiting back-edge’s sources and targets (respectively). If the Ul is
not a segment-start (line 17), we check if we are within a segment (line 18) and,
if not, we discard the UI, assuming it is noise since it fell between the previous
segment-end Ul and the next segment-start UL. Otherwise, we append the UI to
the current segment, and we check if this Ul is a segment-end matching the current

56



segment-start Ul (line 20). If that is the case, we reached the end of the segment,
and we add it to the set of segments (line 21); otherwise, we continue reading the
segment.

Table 8 shows the segment-start and the segment-end Uls (highlighted in green

and red, respectively), delimiting two segments within the normalized Ul log of
our running example (see Table 7).

Table 8: Segments identification

Ul Ul Payload

Row Timestamp Type P P, P P
2 2019-03-03T19:02:23 | Copy cell (Excel) StudentRecords Sheetl A -
3 2019-03-03T19:02:26 Paste (Web) http://www.unimelb.edu.au Full Name name -
4 2019-03-03T19:02:28 Edit field (Web) http://www.unimelb.edu.au Full Name name text
5 2019-03-03T19:02:31 | Copy cell (Excel) StudentRecords Sheetl B -
6 2019-03-03T19:02:37 Paste (Web) http://www.unimelb.edu.au Date date -
7 2019-03-03T19:02:40 Edit field (Web) http://www.unimelb.edu.au Date date text
8 2019-03-03T19:07:33 | Copy cell (Excel) StudentRecords Sheetl C -
9 2019-03-03T19:07:40 Paste (Web) http://www.unimelb.edu.au Phone phone -
10 | 2019-03-03T19:07:48 | Edit field (Web) | http://www.unimelb.edu.au Phone phone text
11 | 2019-03-03T19:07:50 | Copy cell (Excel) StudentRecords Sheetl D -
12 | 2019-03-03T19:07:55 Paste (Web) http://www.unimelb.edu.au | Country of residence country -
13 | 2019-03-03T19:08:02 Edit field (Web) http://www.unimelb.edu.au | Country of residence country text
14 | 2019-03-03T19:08:05 Edit field (Web) http://www.unimelb.edu.au Student status status select
17 | 2019-03-03T19:08:17 | Copy cell (Excel) StudentRecords Sheetl B -
18 | 2019-03-03T19:08:21 Paste (Web) http://www.unimelb.edu.au Date date -
19 | 2019-03-03T19:08:28 Edit field (Web) http://www.unimelb.edu.au Date date text
20 | 2019-03-03T19:08:35 | Copy cell (Excel) StudentRecords Sheet1 C -
21 | 2019-03-03T19:08:38 Paste (Web) http://www.unimelb.edu.au Phone phone -
22 | 2019-03-03T19:08:39 Edit field (Web) http://www.unimelb.edu.au Phone phone text
23 | 2019-03-03T19:08:40 | Copy cell (Excel) StudentRecords Sheetl A -
24 | 2019-03-03T19:08:42 Paste (Web) http://www.unimelb.edu.au Full Name name -
25 | 2019-03-03T19:08:43 Edit field (Web) http://www.unimelb.edu.au Full Name name text
26 | 2019-03-03T19:08:45 | Copy cell (Excel) StudentRecords Sheetl D -
27 | 2019-03-03T19:08:47 Paste (Web) http://www.unimelb.edu.au | Country of residence country -
28 | 2019-03-03T19:08:49 Edit field (Web) http://www.unimelb.edu.au | Country of residence country text
29 | 2019-03-03T19:08:52 Edit field (Web) http://www.unimelb.edu.au Student status status select

5.1.3. Candidate routines identification

Once the log has been segmented, we move to the identification of the candidate
routines. The identification step is based on the CloFast sequence mining algo-
rithm [45]. CloFast discovers closed frequent sequences of itemsets by exploiting
sparse and vertical id-lists. Specifically, it uses sparse and vertical id-lists to fast
count the support of patterns, check their closure, and prune the search space
with the minimal number of database scans. It does not need to maintain already
mined closed sequences for pruning and checking whether the newly discovered
patterns are closed. Thus, it outperforms state-of-the-art algorithms both in time

and memory consumption, especially when mining long closed sequences.
To integrate CloFast in our approach, we have to define the structure of the

sequential patterns we want to identify. In the context of our problem, we define

57



a sequential pattern within a Ul log as a sequence of normalized Uls always oc-
curring in the same order in different segments, yet allowing gaps between the
Uls belonging to the pattern. For example, if we consider the following three seg-
ments: (1, iy, us,u3), (U1, us,uy,u3), and (u,uy, ur,u3); they all contain the same
sequential pattern that is (u;,up,u3).

Furthermore, we define the support of a sequential pattern as the ratio of seg-
ments containing the pattern and the total number of segments. We refer to closed
patterns and frequent patterns (relatively to an input threshold) as they are known
in the literature. Specifically, a frequent pattern is a pattern that appears in at
least a number of occurrences indicated by the threshold, while a closed pattern
is a pattern that is not included in another pattern having exactly the same sup-
port. By applying CloFast to the log segments, we discover all the frequent closed
sequential patterns.

Some of these patterns may be overlapping, which (in our context) means that
they share some Uls. An example of overlapping patterns is the following, given
three segments: (i1, uy, up, U3, uy, Usa), (U1, Uy, U2, Uy, U3, 14), and (U1, e, U2, u3,us);
(uy,up,uz,uq) and (uy,u,,us) are sequential patterns, but they overlap due to the
shared Uls: u; and u4. In practice, each Ul belongs to only one routine. Therefore,
we are interested in discovering only non-overlapping patterns. For this purpose,
we implemented an optimization that we use on top of CloFast. Given the set of
patterns discovered by CloFast, we rank them by a pattern quality criterion, and
we select the best pattern (i.e., the top one in the ranking). We integrated four
pattern quality criteria to select the candidate routines: pattern frequency, pattern
length, pattern coverage, and pattern cohesion score [40].

Definition 5.1.8 (Pattern length). Given a pattern P = (ul, ... u,), pattern length
is the length of sequence P.

Definition 5.1.9 (Pattern frequency). Given a pattern P = (uy,...,u,), and a
segmented log Lseq = {S1,...,Sm}, where S;,i € [1,m] are segments, pattern fre-
quency is the number of segments that contain P as a subsequence.

Definition 5.1.10 (Pattern coverage). Given a pattern P = (uy,...,u,), and a
segmented log Yoo = {S1,...,Sn}, where S;,i € [1,m] are segments, pattern cov-

m
erage is the ratio of Uls in the log belonging to P to the total size of the log Z |S;
i=1

i

where |S;| is the length of S;.

In order to explain the pattern cohesion, we first need to define the notions of
minimum occurrence window and outlier.
Definition 5.1.11 (Minimum occurrence window). The minimum occurrence
window Wps of a pattern P in a segment S is the shortest subsequence of S that
contains P.
Definition 5.1.12 (Outlier). Given a minimum occurrence window Wps € S for
pattern P in segment S, an outlier is a Ul o € Wps that does not belong to a pattern
P or that appears at wrong position with respect to P.

58



Definition 5.1.13 (Pattern cohesion score). Given a pattern P = (uy, ... ,u,) and
a segmented 10g Lgoq = {S1,...,Sm}, where S;,i € [1,m] are segments, pattern co-
hesion is a signed difference between the pattern length |P| and a median number
of outliers in the minimum occurrence windows Wps,, where i € [1,m).

Cohesion prioritizes the patterns whose Uls appear consecutively without (or
with few) gaps while also considering the pattern length. As noted by Dev and
Liu [40], the cohesion metric captures the fact that the instances of a given pattern
may be interspersed by infrequent Uls corresponding to noise.

Given a segmented log X = {S1 = (u1, 1y, un,u3,uy,us),S2 = (U, uty, u, tt, u3,
us),S3 = (uy,uy,up,u3,us) } and a pattern Py = (uy,up,u3,us), we can compute
all its metrics as follows. Length(P) = 4; Frequency(Py) = 3; Coverage(P,) =
12/17 = 0.706; Cohesion(P,) = 4 — Median(2,2,1) =4 -2 =2.

Meanwhile, for a pattern P, = (uj,u,,us) we will have the following values:
Length(P,) = 3; Frequency(P,) = 3; Coverage(P,) =9/17 = 0.529; Cohesion(P;)
3 —Median(3,3,2) =3-3=0.

Based on most of the metrics (except frequency) pattern P; is more preferable
than P, and therefore, it will be selected.

For the candidate routine that we identified as the best pattern for a given
quality criterion, we collect and remove all its occurrences from the log. An
occurrence of a candidate routine is called a routine instance. Formally, a routine
instance is a sequence of (non-normalized) Uls, e.g., r = (uj,up,usz,uq). After
removing all the instances of the best candidate routine from the log, we repeat
this identification step until no more candidate routines are identified. After this
step, we obtain a set of candidate routines, referred to as %%, such that, for each
candidate routine ¢; € 6%, we can retrieve the set of its routine instances, referred
to as Z.,.

Considering our running example, refer to Table 8, assuming that the two rou-
tine instances that we identified in the previous step (by detecting their segment-
start and segment-end Uls) frequently occur in the original log (a snapshot of
which is captured in Table 6), and choosing length as a selection criterion, at the
end of this step, we would discover two candidate routines, each consisting of
15 normalized Uls (as shown in Table 8). An example of a routine instance for
each of the two candidate routines can be easily observed in the original log, in
Table 6 rows 1 to 24 and 25 to 49 (excluding the Uls filtered in the first step of our
approach).

5.2. Evaluation

We implemented our approach as an open-source Java command-line applica-
tion.? The goal of our evaluation is threefold. First, we assess to what extent our
approach can rediscover routines that are known to be recorded in the input UI

2 Available at https://github.com/volodymyrLeno/RPM_Segmentator

59



logs. Second, we analyze how the use of different candidate routine selection cri-
teria such as frequency and cohesion impact the quality of the discovered routines.
Last, we assess the efficiency and effectiveness of our approach when applied to
real-life Ul logs. Accordingly, we define the following research questions:
o RQ1. Does the approach rediscover routines that are known to exist in a UI
log?
o RQ2. How do the candidate routine selection criteria affect the quality of
the discovered routines?

o RQ3. Is the approach applicable in real-life settings in terms of both effi-
ciency and effectiveness?

5.2.1. Datasets

To answer our research questions, we rely on a dataset of seventeen Ul logs, which
can be divided into three subgroups: artificial logs, real-life logs recorded in a
supervised environment, and real-life logs recorded in an unsupervised environ-
ment.® Table 9 shows the characteristics of the logs.

Table 9: UI logs characteristics

UI Log # Routine Variants | # Task Traces | # Uls | # Uls per trace (avg)
CPN1 1 100 1400 14.000
CPN2 3 1000 14804 14.804
CPN3 7 1000 14583 14.583
CPN4 4 100 1400 14.000
CPN5 36 1000 8775 8.775
CPN6 2 1000 9998 9.998
CPN7 14 1500 14950 9.967
CPN8 15 1500 17582 11.721
CPN9 38 2000 28358 14.179
Student Records (SR) 2 50 1536 30.720
Reimbursement (RT) 1 50 3108 62.160
SRRT, 3 100 4643 46.430
RTSR 3 100 4643 46.430
SRRT| 3 100 4643 46.430
RTSR| 3 100 4643 46.430
Scholarships 1 (S1) - 693

Scholarships 2 (S2) - 509

The artificial logs (CPN1-CPN9) were generated from Colored Petri Nets
(CPNs) [52]. The CPNs have increasing complexity, from low (CPN1) to high
(CPN9). These logs are originally noise-free and segmented. We removed the
segment identifiers to produce unsegmented logs.

The Student Records (SR) and Reimbursement (RT) logs record the simulation
of real-life scenarios. The SR log simulates the task of transferring students’ data
from a spreadsheet to a Web form. The RT log simulates the task of filling re-
imbursement requests with data provided by a claimant. Each log contains fifty

3The real-life logs were recorded with the Action Logger tool [22]. All the logs are available at
https://doi.org/10.6084/m9.figshare.12543587

60


https://doi.org/10.6084/m9.figshare.12543587

recordings of the corresponding task executed by following strict guidelines on
how to perform the task. These logs contain little noise, which only accounts
for user mistakes, such as filling the form with an incorrect value and performing
additional actions to fix the mistake. We know how the underlying task was exe-
cuted for both logs, and we use such information as ground truth when evaluating
our approach. Additionally, we created four more logs (SRRT, RTSR, SRRT|,
RTSR|) by combining SR and RT. SRRT. and RTSR capture the scenario where
the user first completes all the instances of one task and then moves to the other
task. These logs were generated by concatenating SR and RT. SRRT) and RTSR;|
capture the scenario where the user is working simultaneously on two tasks. To
simulate such behavior, we interleaved the segments of SR with those of RT, i.e.,
the first segment of SR is followed by the first segment of RTand so on.

Finally, the Scholarships logs (S1 and S2) were recorded by two employees
of the University of Melbourne who performed the same task. The logs record
the task of processing scholarship applications for international and domestic stu-
dents. The task mainly consists of students’ data manipulation with transfers be-
tween spreadsheets and Web pages. Compared to the other logs, we have no a-
priori knowledge of how to perform the task in the Scholarships logs (no ground
truth). Also, when recording the UI logs, the University employees were not
instructed to perform their task in a specific manner, i.e., they were left free to
perform the task as they would normally do when unrecorded.

5.2.2. Setup

To answer RQ1 and RQ2, we analyzed the quality of the segmentation and that of
the discovered routines, using the first 15 logs described above (CPN1 to CPN9,
SR, RT, SRRT., RTSR,, SRRTH, RTSRH), against the four candidate routine se-
lection criteria in Section 5.1.3, i.e., frequency, length, coverage, and cohesion.
We discuss the results of this part of our experiment from two perspectives: the
quality of the segmentation, and the quality of the discovered routines. To assess
the quality of the segmentation, we use the normalized Levenshtein Edit Distance
(LED), where a segment and its normalized Uls represent the string and its char-
acters, respectively. Precisely, for each discovered segment, we collect all the
ground truth segments that have at least one shared UI with the discovered seg-
ment, calculate the LED between the discovered segment and the ground truth
segments and assign the minimum LED to the discovered segment as its quality
score. Finally, we assess the overall quality of the segmentation as the average of
the LEDs of each discovered segment.

One of the underlying assumptions of our approach is to provide minimal to no
input for the segmentation step. Given that all existing segmentation techniques
are supervised, their comparison with our approach for segmentation is out of
scope of this thesis.*

4N0te, that in a semi-automated context, the use of such techniques is reasonable.

61



The quality of the discovered routines is measured with the Jaccard Coefficient
(JC), which captures the level of similarity between discovered and ground truth
routines in a less strict manner compared to LED. In fact, the JC does not penalize
the order of the Uls in a routine. This follows from the assumption that a routine
could be executed performing some actions in a different order, and the ordering

should not be penalized. The JC between two routines is the ratio —, where n is

the number of Uls contained in both routines, while m is the total n’gmber of Uls
in each of the two routines (i.e., the sum of the lengths of the two routines).

Given the set of discovered routines and the set of ground truth routines, for
each discovered routine, we compute its JC with all the ground truth routines and
assign the maximum JC to the discovered routine as its quality score. Finally,
we assess the overall quality of the discovered routines as the average of the JC
of each discovered routine. As the ground truth, we used the segments of the
artificial logs and the guidelines used to perform the tasks in SR and RT.

However, we cannot rely on the JC alone to assess the quality of the discovered
routines, as this measure does not consider the routines we may have missed in
the discovery. Thus, we also measure the total coverage to quantify how much
log behavior is captured by the discovered routines. We would like to reach high
coverage with as few routines as possible. Thus, we prioritize long routines over
short ones by measuring the average routine length alongside coverage.

To answer RQ3, we tested our approach on the S1 and S2 logs. Given that the
ground truth for these logs is not available and therefore, the quantitative metrics
cannot be computed, we performed a qualitative assessment of the results with
the help of the employees who performed the task. Specifically, we asked them
to compare the rediscovered routines and the actions (i.e., Uls) they performed
while recording.

All experiments were conducted on a Windows 10 laptop with an Intel Core
15-5200U CPU 2.20 GHz and 16GB RAM with the minimum support threshold
set to 0.1 and the minimum coverage threshold equal to 0.05.

5.2.3. Results

Table 10 shows the results of the segmentation. As we can see, the LED for all
the CPN logs is 0.0, highlighting that all the segments were discovered correctly.
On the other hand, the segments discovered from the SR, RT, SRRT., RTSR.,
SRRT|, and RTSR logs slightly differ from the original ones. The main differ-
ence between the CPN logs and those recorded in a controlled environment is that
the former contain routines always having the same starting UI, while the latter
contain routines with several different starting Uls. As a result, we identified the
correct number of segments from all the logs except SRRT| and RTSR, where
we could not discern the ending UI of the routine belonging to one task and the
starting UI of the routine belonging to the other task, consequently merging the
two routines and discovering only half of the total number of segments (50 out of

62



100). From the table, we can also see that the time performance of our approach
1s reasonable, with a maximum execution time of 3.6 seconds.

Table 10: Segmentation results

UI Log | # Uls | # Original Segments | # Discovered Segments | LED (avg) | Execution Time (sec)
CPNI1 1400 100 100 0.000 0.571
CPN2 | 14804 1000 1000 0.000 1.705
CPN3 14583 1000 1000 0.000 0.835
CPN4 1400 100 100 0.000 0.461
CPN5 8775 1000 1000 0.000 1.025
CPN6 9998 1000 1000 0.000 0.707
CPN7 14950 1500 1500 0.000 1.566
CPN8 17582 1500 1500 0.000 1.596
CPN9 | 28358 2000 2000 0.000 3.649
SR 1536 50 50 0.059 0.535
RT 3107 50 50 0.096 1.507
SRRT, | 4643 100 100 0.077 1.707
RTSR; | 4643 100 100 0.077 1.560
SRRT| | 4643 100 50 0.331 2.166
RTSR | 4643 100 50 0.331 2177

Table 11 shows the quality of the discovered routines for each selection crite-
rion when setting 0.1 as the minimum support threshold of CloFast. Overall, the
results highlight that the routines with the highest JC and the longest length are
those discovered using cohesion as a selection criterion, followed closely by those
discovered using length as the criterion. Even though we do not always achieve
the highest coverage using these criteria, the coverage scores are very high, above
0.90 for all the logs except CPNS.

Following these results, we decided to use cohesion as the selection criterion to
discover the routines from the scholarships logs. From the S1 log, we discovered
five routine variants. The first routine variant consists in manually adding graduate
research student applications to the student record in the university’s information
system. The application is then assessed, and the student is notified of the out-
come. The second routine variant consists in lodging a ticket to verify possible
duplicate applications. When a new application is entered into the information
system and its data matches an existing application, the new application is tem-
porarily put on hold. The employee fills in and lodges a ticket to investigate the
duplicate. The remaining three routine variants represent exceptional cases, where
the employee executed either the first or the second variant in a different manner
(i.e., by altering the order of the actions or overlapping routines executions). To
assess the results, we showed the discovered routine variant to the employee of
the University of Melbourne who recorded the S1 log, and they confirmed that the
discovered routines correctly capture their task executions. Also, they confirmed
that the last three routine variants are alternative executions of the first routine
variant.’

While the results from the S1 log were positive, our approach could not dis-

SDetailed results at https://doi.org/10.6084/m9.figshare.12543587

63


https://doi.org/10.6084/m9.figshare.12543587

cover any correct routine from the S2 log. By analyzing the results, we found out
that the employee worked with multiple worksheets at the same time, frequently
switching between them for visualization purposes only. Such behavior recorded
in the log negatively affects the construction of the CFG and its domination tree,
ultimately leading to the discovery of incorrect segments and routines. This also
impacted the execution time; indeed, while it took only 41.7 seconds to discover
the routines from the S1 log, it took 426.3 seconds to discover the routines from
the S2 log.

5.2.4. Threats to validity

The reported evaluation has a number of threats to validity. First, a potential threat
to internal validity is the fact that the context parameters (i.e., the attributes in the
log that capture the notion of “user interaction”) were manually selected. These
context parameters are required as one of the inputs of the proposed method (in
addition to the UI log). To mitigate this threat, we selected the parameters in-
dependently and then cross-checked them to reach a mutual agreement. Another
possible threat to internal validity is the limited use of parameter values to config-
ure the approach at hand. To ensure we do not miss any significantly important
behavior in the logs, we used very low support and coverage, equal to 0.1 and
0.05, respectively.

A potential threat to external validity is given by the use of a limited number
of real-life logs (four). These logs focus on one type of task that can be auto-
mated via RPA, namely data transferring. These logs, however, exhibit different
characteristics in terms of the complexity of the captured processes and log size.
To mitigate this threat, we additionally performed a more extensive evaluation
on a battery of artificial logs. For the two real-life logs, we had no information
about the underlying processes. Therefore, we evaluated the results qualitatively
with the workers responsible for their execution. To ensure the full reproducibil-
ity of the results, we have released all the logs, both real-life and artificial, used
in our experiments. The only exceptions are S1 and S2 as they contain sensitive
information.

5.3. Summary

This chapter addressed RQ1 posed in the thesis®, presenting an approach to dis-
cover candidate routines for automation from UI logs. The approach starts by
decomposing the Ul log into segments corresponding to paths within the Control-
Flow Graph’s connected components derived from the log. Once the log is seg-
mented, a noise-resilient sequential pattern mining technique is used to extract

SGiven a user interaction log, how to identify the routines that can be potentially automated via
an RPA tool?

64



Table 11: Quality of the discovered routines

UI Logs | Selection Criterion | # Discovered Routines | Routine Length | Total Coverage | JC | Execution Time (sec)
Frequency 1 14.00 1.00 1.000 2.643
CPNI Length 1 14.00 1.00 1.000 1.553
Coverage 1 14.00 1.00 1.000 3.702
Cohesion 1 14.00 1.00 1.000 1.530
Frequency 3 6.33 0.99 0.452 3.908
CPN2 Length 2 14.50 0.95 1.000 4.789
Coverage 2 14.00 0.99 0.964 3.166
Cohesion 2 14.50 0.95 1.000 3.730
Frequency 4 5.75 0.95 0.511 4.682
CPN3 Length 3 14.33 0.93 1.000 4.324
Coverage 3 9.67 0.96 0.833 3.940
Cohesion 3 14.33 0.93 1.000 6.237
Frequency 1 12.00 0.86 0.857 3512
CPN4 Length 4 14.00 1.00 1.000 3.118
Coverage 1 12.00 0.86 0.857 3.470
Cohesion 4 14.00 1.00 1.000 3.799
Frequency 6 1.67 0.86 0.206 6.418
CPN5 Length 7 7.29 0.83 0.849 9.715
Coverage 4 3.75 0.80 0.462 6.587
Cohesion 8 7.5 0.86 0.910 18.206
Frequency 3 4.67 1.00 0.485 4.250
CPN6 Length 2 10.00 1.00 1.000 2.924
Coverage 3 4.67 1.00 0.485 2.483
Cohesion 2 10.00 1.00 1.000 4.678
Frequency 7 243 0.91 0.257 10.118
CPNT Length 7 9.57 0.88 0.986 8.957
Coverage 6 3.67 0.91 0.385 7.203
Cohesion 7 9.43 0.93 0.971 11.983
Frequency 5 4.20 0.75 0.337 11.801
CPNS Length 6 10.67 0.91 0.967 9.070
Coverage 5 7.60 0.89 0.618 7.354
Cohesion 6 10.67 0.91 0.967 11.250
Frequency 5 5.20 0.82 0.401 13.784
CPNO Length 6 14.67 0.95 1.000 8.265
Coverage 5 6.60 0.88 0.511 8.603
Cohesion 6 14.67 0.95 1.000 13.943
Frequency 2 15.00 0.96 0.533 2.042
SR Length 2 30.00 0.92 0.967 3.547
Coverage 2 15.50 0.98 0.532 2.001
Cohesion 2 30.00 0.92 0.967 3.621
Frequency 3 19.00 0.91 0.295 3.565
RT Length 2 61.00 0.90 0.875 4.225
Coverage 1 58.00 0.86 0.857 3.408
Cohesion 2 61.00 0.90 0.875 4.765
Frequency 4 21.25 0.91 0.472 6.771
SRRT. Length 4 45.25 0.93 0.929 5.201
Coverage 2 43.00 0.88 0.929 5.207
Cohesion 4 45.25 0.93 0.929 6.885
Frequency 4 21.25 0.91 0.472 7.193
RTSR, Length 4 45.25 0.93 0.929 5.581
Coverage 2 42.50 0.88 0.929 5.269
Cohesion 4 45.25 0.93 0.929 7.199
Frequency 3 28.33 0.91 0.228 7.436
SRRT Length 4 90.25 0.92 0.595 14.595
I'l Coverage 1 86.00 0.85 0.593 7.818
Cohesion 4 90.25 0.92 0.595 17.935
Frequency 3 28.33 0.91 0.228 7.211
RTSR Length 4 90.25 0.92 0.595 14.194
I'l Coverage 1 86.00 0.85 0.593 7.22
Cohesion 4 90.25 0.92 0.595 17.858

65



frequent routines. The routines are then ranked according to four quality criteria:
frequency, length, coverage, and cohesion.

The approach has been implemented as an open-source tool and evaluated us-
ing synthetic and real-life logs. The evaluation shows that the approach can redis-
cover routines injected into a synthetic log and that it discovers relevant routines
in real-life logs. The execution times range from seconds to a few dozen seconds,
even for logs with tens of thousands of interactions.

The proposed approach makes a number of limiting assumptions. First, it relies
on the information recorded in the log to identify segments and discover routines.
Thus, its effectiveness is correlated with data quality. Since the Ul log is fine-
grained, deviations occurring during the routine execution affect the effectiveness
of our approach. In our evaluation, we observed this phenomenon to varying
degrees when dealing with real-life logs. In practice, the approach can identify
correct routines only if they are observed frequently in the UI log. Recurring
noise affects the accuracy of the results (see the S2 log).

Second, the approach is designed for logs that capture consecutive routine exe-
cutions. In practice, routine instances may sometimes overlap (cf. the S2 real-life
log in the evaluation). A possible avenue to address this limitation is to search for
overlapping frequent patterns directly in the unsegmented log instead of first seg-
menting it and then finding patterns in the segmented log. This approach has been
previously investigated in the context of so-called Local Process Mining (LPM),
where the goal is to discover process models capturing frequently repeated (and
possibly overlapping) behavior in an unsegmented sequence of events [66].

Finally, while our approach is robust against routine executions with multiple
ends, it is sensitive to multiple starts. Ideally, all routine executions should start
with the same Ul unless different starts are recorded in batch (e.g., first only rou-
tines with a start, then routines with another start, etc.). In general, our approach
can handle logs containing multiple different routines, provided that each routine
does not share any Uls with other routines, except their start Uls.

At the current stage, we have no information on the automatability of identified
candidate routines. In the next chapter, we present an approach to assess the
candidates’ amenability for automation and synthesize executable specifications
for the automatable routines.

66



6. DISCOVERY OF EXECUTABLE ROUTINES

In the previous chapter, we presented an approach to identify candidate routines
for automation. This chapter! focuses on the discovery of executable specifica-
tions of such routines. Specifically, we present two approaches to obtain such
specifications. In Section 6.1, we present an approach that maps the problem
of discovering executable routines to the problem of discovering data transfor-
mations and produces routine specifications in the form of data transformation
programs. In Section 6.2, we adapt the approach from Section 6.1 to assess the
degree of automatability of candidate routines and to discover more flexible ex-
ecutable specifications. Next, in Section 6.3, we present a method to identify
semantically equivalent routines to produce a non-redundant set of automatable
routines. Section 6.4 reports the empirical evaluation of the proposed approaches,
and Section 6.5 concludes the chapter.

6.1. Global transformations approach

One of the recurrent use cases for RPA bots is to automate data transfers across
multiple applications, especially when these applications do not provide suitable
APIs to enable their programmatic integration. Figure 14 illustrates an example of
a data transferring task, where student records (e.g., name, surname, phone, email,
and address) from an Excel spreadsheet have to be transferred to the data-entry
Web form of a students management system, as part of the student admission pro-
cess at the university. For each row in the spreadsheet (representing a student), a
student admission staff member manually copies every cell in that row and pastes
that into the corresponding text field in the Web-form. Once the data transfer
for a given student has been completed, the staff member presses the “Submit”
button to submit the data into the students management system, and repeats the
procedure for the next row. Such data transferring task often involves data trans-
formations as source and target data can be in a different format (e.g., spreadsheet
and web form have different formats for the date of birth). Therefore, she has to
copy data from a certain cell, paste it into the corresponding field and do some
manual manipulations to convert it into the required format.

The transferring of data from one application to another can be seen as a data
transformation process, where the data from the source application has to be trans-
formed into the data in the target application. Indeed, the final effect of a data
transferring task is that one or more records (with an implicit schema) are mapped
to one or more records with the same or a different schema. For each data ele-
ment of the target in the example presented above, Figure 14 shows the mapping
to the corresponding data elements from the source. Such manipulations can be
automated via an RPA bot so long as they are described via a transformation pro-

1Corresponding to [67] and [63]

67



A B C D E F G

1 |Firstname Lastname Dateofbirth Phone number Email Country of origin Address
2 |John Doe 11/03/1986 +61 039 6899324 jdoe@gmail.com Australia 122 Albert St, Port Melbourne, VIC 3207, Australia
3 [Abert | [Rauf | [11/04/1986| [+61043 5124834 ||arauf@gmail.com|[Germany | | 99 Beacon Rd, Port Melbourne, VIC 3207, Australia |
[ |
I
New Record
Full name
1
) =JIAIbert Rauf |
Date of birth Country of origin
(2) (3)
>II 11-04-1986 | |Germany le
Phone Email
Dl : l©
* 043-512-4834 arauf@gmail.com [
Street City/Suburb
6) | L™
* 99 Beacon Rd | | Port Melbourne |
Zip code State
(8) T 1. (9
>I 3207 VIC 14
Country

(10)

apr
K

Australia

SUBMIT

Figure 14: Routine as a transformation

gram. Hence, instead of discovering repetitive sequences of actions to transfer
data across applications, we propose to discover the transformations that the users
effectively perform when executing these sequences of actions.

Depending on the number of source and target elements involved in a transfor-
mation, transformations can be of four different types. One-to-one (1 - 1) transfor-
mations involve one source and one target element. Usually, they are represented
by manipulations that correspond to characters replacement (#2 in Figure 14) or
partial copying (#4). When the data is already in the target format, no manip-
ulations are required and the user has to perform a simple copy-paste operation
(#3, #5). The next transformation type is one-fo-many (1 - N). This type usually
describes manipulations that require a split operation. In the example depicted
in Figure 14, the user has to split the full address from the spreadsheet into five
different elements: street, city, ZIP code, region and country (#6-#10). Next,
many-to-one (N - 1) transformations require a merge operation over several ele-
ments. In our example, cells from the spreadsheet that contain the student’s first
and last names have to be joined to fill in the text field that corresponds to the
full name in the Web form (#1). Finally, many-to-many (N - N) transformations
involve manipulations such as copying and pasting a range of cells, pivoting a row

68



into a column in a spreadsheet, etc. These are not shown in Figure 14.

The underlying transformations can be learned from the examples present in
Ul logs. All the Uls representing a read operation (e.g., copy a cell) provide us
with the information about the data stored in a source application, while all the
edit Uls describe how it is saved in a target application. Given a set of such
input and output examples, we can synthesize a data transformation program to
convert raw input data into the format required by the target application. Figure 15
presents a general approach to discover executable routines in the form of data
transformation programs from UI logs.

_.Pa_. &
— // ——1

Routine Examples Transformation Data transformation
instances extraction discovery program

Figure 15: Baseline approach for discovering data transformations in UI logs

Given a collection of routine instances of a particular routine, the approach
extracts a set of transformation examples that are then used for discovering data
transformations. The approach is described in Section 6.1.1, and we refer to it as a
baseline approach. In Sections 6.1.2 and 6.1.3, we will present two optimizations
that can improve its efficiency and to address its limitations.

6.1.1. Baseline Approach

Given a collection of routine instances, the first step of our baseline approach
for data transformation discovery is to extract transformation examples. A trans-
formation example is a tuple (I, O, S, T), where I is the raw data from a source
document S, and O is the data in a final format stored in a target document 7. A
document is an instance of an application used to accomplish a task (e.g., a spread-
sheet or a Web form). For each routine instance of a given candidate routine, we
extract all the values used in the source document S and the target document 7.
All these values are then used to build a transformation example. Considering the
example presented in Figure 14, the collection of target values is:

O = [“Albert Rauf”,“11-04-1986”, “Germany”, “043-512-4834",
“arauf@gmail.com”, “99 Beacon Rd”, “Port Melbourne”, “VIC”, “3207”,
“Australia” ],
while the corresponding collection of source values is:

I = [“Albert”, “Rauf”, “11/04/1986”, “+61 043 512 4834,
“arauf@gmail.com”, “Germany”, “99 Beacon Rd, Port Melbourne, VIC
3207, Australia’].

After all transformation examples are extracted, they are provided as input
to a transformation discovery technique. Specifically, we use a state-of-the-art

69



data transformation-by-example discovery technique, called Foofah [58]. Given
transformation examples summarized in the form of input and output tables, this
technique aims at synthesizing an optimal transformation program that describes
what manipulations have to be performed to convert raw input data into the re-
quired final format. Foofah describes program synthesis as a search problem in
a state-space graph, where each edge represents a modification operation (e.g.,
split, removal, etc.), start and end nodes describe raw and final data, and all other
nodes denote an intermediate value during the transformation process (see Fig-
ure 16). It then uses a heuristic search approach based on the A* algorithm to find
an optimal path from the initial state to the goal state. The cost function is defined
as the minimum number of manipulations required to transform one value into
another. Given the two possible transformation functions to change the format of
phone numbers depicted in Figure 16, the top transformation function will be se-
lected and retrieved by Foofah because it is characterized by the lowest cost (i.e.,
requires only two manipulations over input data, in contrast, the bottom trans-
formation function involves four manipulations). Foofah can handle both string
and tabular manipulations, supporting all four different transformations presented
earlier.®. It supports the Potter’s Wheel operations [68] and is extensible. We
assume that the output is noise- and error-free, meaning that the analyzed data
transformations are correct.

Output

+61 | 0396899324 0396899324
split_first(e, ¢ ’) drop(@)
+61 | 0353412938 0353412938

+61 | 079149 3015 0791493015

Input

+61039 689 9324

+61 035 341 2938

+61079 149 3015

Output

+61 | 039 [ 689 | 9324 039 | 689 | 9324 039 689 | 9324 0396899324
split(e, * °) drop() join(e,  *) join(e,  *)

+61 | 035 | 341 | 2938 035 | 341 | 2938 035 341 | 2938 0353412938

+61 | 079 | 149 | 3015 079 | 149 | 3015 079 148 | 3015 079149 3015

Figure 16: Example of Foofah execution

Figure 17 presents a sample transformation program that may be discovered by
Foofah for the example depicted in Figure 14. The program takes table I as input
and produces table O as output. The intermediate results of operations are stored
in variable ¢. The sample transformation program in Figure 17 consists of join and
split commands. For instance, the £_join_char command at line 1 of Figure 17
merges first name and last name into full name and places one space character
(cf. the third parameter) between them. The second parameter equal to O tells
that the element at the first position in table I (“Albert”) should be joined with its
immediate successor (“Rauf”); note that we count positions from zero and join
two subsequent elements. The f_split command at line 2 divides the date into

2For details on Foofah’s implementation, we refer the reader to [58]

70




a day, month, and year components using the ‘/* symbol; note that the command
takes the result of line 1, i.e., table t, as input, which in the second position,
referenced by the value of the second parameter, contains the string “11/04/1986”.
The main commands in Foofah’s language are provided in Table 12.

1 t =f join char(I, 0, ° ') 8 t = f join char(t, 2, "-")
2 t = f split(t, 1, /) 9 t = f split(t, 5, *,7)

3 t = f join char(t, 2, ‘=) 10 t = f split w(t, 7)

4 t = f join char(t, 1, =) 11 t = f split w(t, 9)

5 t = f split(t, 2, ° ") 12 t = f split w(t, 6)

6 t = f drop(t, 2) 13 O = f join char(t, 6, ° )
7 t = f join char(t, 3, “-7)

Figure 17: A sample transformation program

Table 12: List of the most commonly used Foofah’s commands

No. | Command Description

1 f_join_char(t, i, ¢) Join columns i and i+1 of table ¢ with character ¢ in between
2 f_join(t, 1) Join columns i and i+1 of table # with no separator in between
3 f_split(t, i, ¢) Split column i of table ¢ by character ¢

4 f_split_first(t, i, ) Split column i of table ¢ by the first occurence of character ¢
5 f_split_w(t, i) Split column i of table ¢ into words (split by space character)
6 f_split_tab(t, i) Split column i of table ¢ by tabulation symbol

7 f_move(t, i, j) Put column 7 before column j in table ¢

8 f_move_to_end(t, i) Put column i at the end of table ¢

9 f_move_from_end(t, i) Put the last column before column i in table ¢

10 f_wrap(t, i) Concatenate all rows of column i into one row

11 f_wrap_every_k_rows(t) | Concatenate every k rows

12 f_wrap_one_row(t) Concatenate all rows into one

13 f_fold(t, i) Collapse all columns after column i

14 f_unfold(t) Unfold all rows on last column

15 f_fill(t, 1) Fill empty cells in column i with the values from the upmost cell
16 f_delete(t, i) Remove all empty cells in column i

17 f_delete_empty_cols(t) Remove all empty columns in table ¢

18 f_transpose(t) Transpose table ¢

19 f_extract(t, i, regex) Extract first substring in column i that satisfies given regex pattern
20 f_drop(t, i) Remove column i from table ¢

Nonetheless, Foofah suffers from scalability issues when the number of the
transformation examples is large or when the target transformation is not trivial
(i.e., cannot be described using a single join or split command). Furthermore,
in some cases, Foofah may fail to discover a transformation program even if it
exists, which is caused by its inability to deal with heterogeneous data and handle
ambiguity.

The time complexity of Foofah technique is O((kmn)?), where m and n are,
respectively, the number of cells in the input and output tables, k is the number
of candidate data operations for each intermediate transformation result, and d is
the number of components in the synthesized program [58]. The number of cells
in the input and output tables can be calculated as the total number of columns
and rows in such tables. In our context, columns of the table correspond to the
fields of the document that were read or edited, while rows represent transforma-
tion examples given as input to Foofah. Next, we present two optimizations of the

71



baseline approach that aim at reducing both the number of data fields (horizon-
tal optimization) and transformation examples (vertical optimization) provided to
Foofah for processing, thus improving the overall performance.

6.1.2. Optimization 1: Grouping Examples by Target

Document-to-document transformations usually involve complex manipulations.
Thus, it takes a significant amount of time to synthesize a corresponding transfor-
mation program, and often Foofah fails to discover any transformation. We pro-
pose an optimization that aims at decomposing transformations from document-
to-document to source-to-target level. This is done by projecting transformation
examples onto target elements within a target document using the information
about data elements involved in task executions available in the UI log. For in-
stance, the transformation example with input table / and output table O from
Section 6.1.1 projected onto the target text field Full name results in the trans-
formation example with input I = [ “Albert”, “Rauf”] and output O' = [ “Albert
Rauf”]. For the obtained transformation example, it is easy to find the corre-
sponding transformation of join by space operation.

Algorithm 4 shows the procedure for extracting transformation examples con-
sidering this optimization. For each routine instance r, we iterate over its Uls
backwards starting from the last UI. For each UI (u;) of type edit, we extract the
target element from its payload #; (line 10) that can be the ID of a web browser
element or the location of a cell in a spreadsheet. We then check whether this
target element had already been modified (line 11). If it was edited previously,
we ignore the corresponding Ul and keep iterating. Otherwise, we add the target
element #; to a set of edited elements F (line 12), and read the payload of u; to
retrieve the value of the target element after the editing (O, line 13). We initialize
two queues, S (which stands for sources) and I (which stands for inputs). Queue S
stores the ID or location of the (source) element(s) that produced the data used by
the edit Ul instance u1; while queue / stores the data used by the edit Ul instance
uy. After this initialization, we iterate over all the Uls preceding u; in r (lines 16
to 27). Such iteration goes backward from u; to the first Ul in ». For each en-
countered u, of type paste (line 18), we check its target element and we compare
it to #; (line 20). If they are the same, we again traverse backward the routine
instance from the paste Ul until we find a copy Ul us (lines 21 to 27).3 . Then, we
retrieve the target element of u3, we add it to the queue S, and we add the copied
value of u3 to the queue I (lines 25 and 26). When we reach this point, we also
stop searching for copy Uls for the current paste u,, as we assume that a clipboard
may contain only one value at a time. After we found all the Uls that contributed
to the final value of u;, we create a transformation example (I, O, S, t1) and add it
to set 7' (line 28). Next, we continue searching for Uls whose target elements are

30ur filtering approach, described in Section 5.1.2 guarantees that there exists a u3 of type copy
preceding the paste Ul

72



Algorithm 4: Transformation examples extraction

input  :Routine Instances Set %,
output : Transformation Examples T

»

Set C <+ { “copy cell”, “copy range”, “copy field” };

Set P + { “paste into cell”, “paste into range”, “paste” };

Set T < @;

foreach r € %, do

Set F «+ @,

Integer n < getLength(r);

for i< nto I/ do

Ul uy < get(r, i);

if getType(u;) € E then

) < getTargetElement(u;);

ift; ¢ F then

F«+ FU{y };

O <— getParameterValue(u;, “Value”);

Queue S + T;

Queue [ + ;

for j«—i—1toIdo

uy < get(r, j);

if getType(u,) € P then

ty < getTargetElement(uy);

if 1, = t; then

for k< j—1to I do

u3 < get(r,k);
if getType(u3) € C then

s < getTargetElement(u3);
push s to S;
push getParameterValue(u3, “Value”) to [;
break

I - N VI S

Y
NRRBREBRREZSZISNE SR~

28 | T« TU{(l,0,5n)};

29 return 7

not yet marked as already modified and repeat the procedure described above.
After obtaining a set of transformation examples, the approach splits it into
smaller groups based on targets. For each obtained group, we then discover a
separate transformation program using Foofah. Figure 18 presents the transfor-
mations discovered using this approach.
As can be seen clearly, these transformations are concise and clear. They are
also discovered much faster in comparison to the baseline approach.

6.1.3. Optimization 2: Grouping Examples by Input Structure

The first optimization seeks to reduce the number of input fields that Foofah needs
to consider, but it does not reduce the number of transformation examples given
as input. Thus, when a complex transformation occurs between one or multi-
ple source elements and one target element, Foofah may still fail to synthesize
a transformation program. Accordingly, the number of transformation examples
used to synthesize the transformation program has to be reduced. On the other
hand, to discover a correct transformation program many examples that capture

73



Columns A,B — Full_Name Column G — Address_Street

1 o, = f join char(Iz, 0, ) 1 t = f split first(I3 0, °,")
2 o3 = £ drop(t, 1)
Column D — Phone_Number

Column G — Adress_ZipCode
t f split(Iz, 0, ° ")
t f drop(t, 0) 1 t
t f join char(t, 1, ‘-") t f drop(t, 0)
0, = £ join char(t, 0, ‘-") t f extract(t, 0, “\d+’)
B - o4 = £ drop(t, 0)

f_split_first(Is 0, *,’)

S Wik
o
o

S Wi

Figure 18: Transformation programs synthesized by the approach that groups
transformation examples by targets

different cases and behaviors are required. Therefore, it is crucial to preserve all
the behavior during the reduction process.

There are further limitations of Foofah that are not addressed by the improve-
ment presented in Section 6.1.2. For example, Foofah does not discover condi-
tional transformations, where different manipulations are applied depending on
the input. Consequently, it cannot deal with heterogeneous data. When the data
comes from different sources, it can be stored in different formats, and Foofah
will fail to discover a transformation program. Another limitation of Foofah is
that it can discover transformations only if the output is not ambiguous, i.e., it is
clear from which components it was obtained. Consider the example in Table 13,
where the user needs to extract a ZIP code from a full address. While for Example
3 it is clear that ZIP code “3205 was obtained from Address 3 (“396 Clarendon
St, South Melbourne, VIC 3205, Australia”), the origin of ZIP code “3207” is
ambiguous as it can be obtained from Address 1 (“122 Albert St, Port Melbourne,
VIC 3207, Australia”) or Address 2 (“99 Beacon Rd, Port Melbourne, VIC 3207,
Australia”). In this case, Foofah will not discover any transformation.

Table 13: Transformation example with ambiguous output

No. | Input Output
1 122 Albert St, Port Melbourne, VIC 3207, Australia 3207
2 99 Beacon Rd, Port Melbourne, VIC 3207, Australia 3207
3 396 Clarendon St, South Melbourne, VIC 3205, Australia 3205

To address these limitations, we group the data transformation examples into
equivalence classes, where each class represents a different structural pattern of
the input data. To create these equivalence classes, for each data sample in the
input data series, we discover its symbolic representation describing its structural
pattern by applying tokenization. The tokenization that we apply replaces each
maximal chained subsequence of symbols of the same type (either digits or letters)
with a special token character ((d)+ or (a)+, resp.), and leaves any other symbol
unaltered. Below, we show how a raw address value from our running example is
tokenized:

s = “99 Beacon Rd, Port Melbourne, VIC 3207, Australia”

74



1) Replace all alphabetic characters with tokens:

s =99 (a)+ (a)+, (a)+ (a)+, (a)+ 3207, (a)+”

2) Replace all digits with tokens:

s =“(d)+ (a)+ (a)+, (a)+ (a)+, (a)+ (d)+, (a)+”

Hence, the resulting pattern is “(d)+ (a)+ (a)+, (a)+ (a)+, (a)+ (d)+, (a)+". Note

that all the space characters as well as punctuation are preserved in the pattern.
We discover a data transformation function for each equivalence class by pro-

viding to Foofah one randomly selected data transformation example from the

equivalence class. The use of equivalence classes allows us to remove the het-

erogeneity of the input data and to facilitate the application of Foofah, which will

operate only on a single data transformation example.* Sometimes, several equiv-

alence classes may be characterized by the same transformation program. If this

occurs, the corresponding equivalence classes are merged. The transformation

programs synthesized by Foofah for our running example using this optimization

are shown in Figure 19.

6.2. Local transformations approach

Despite discovering executable specifications, the approach proposed in Sec-
tion 6.1 does not provide any information about the non-automatable steps within
a routine. Thus, it is difficult to identify the relative position of the automatable
steps, and when should the discovered specification be executed. Moreover, it al-
lows only partial automation as the activities unrelated to the editing of the fields
are ignored.

In this section, we propose an approach to discover sequential routine specifi-
cations containing the information about all activities performed during a routine,
specify what data they take as input and produce as output, and how to obtain it
(e.g., by applying data transformation). Accordingly, the specification discovered
by this approach is a pair (¢, A), where c is a sequence of Uls, or a candidate rou-
tine, and A is a set of data transformation steps. Each data transformation step is
a triplet that specifies: i) variables from which the data was read, ii) variables to
which the data was written, and iii) a function capturing the data transformation
(if any occurs). Such routine specifications can be compiled into software bots
that can be deployed on a tool like UiPath, > which would be able to replicate
the routine automatically. The approach takes as input a collection of candidate
routines and produces a set of their executable specifications.

1t may happen that the synthesized transformation does not generalize to all examples in a
group, e.g., due to ambiguity in the mapping from inputs to outputs. Hence, we check that the
transformation discovered from one example fits all examples in the group. If it does not, we try to
discover a transformation from all examples in the group. If the latter fails, the discovery procedure
fails.

3 A commercial tool available at www.uipath.com

75



Column G — Address_City
For pattern “<d>+ <a>+ <a>+, <a>+ <a>+, <a>+ <d>+, <a>+”:

1 t = f split first(Is, 0, °,")
= f drop(t, 0)

= f split first(t, 0, °,")
= f split w(t, 0)

= f join char(t, 0, ° ")

Os = f drop(t, 1)

o WN
t o o

For pattern “<d>+ <a>+ <a>+ <a>+, <a>+ <a>+, <a>+ <d>+, <a>+":

1 t =f split(Is, O, °,")

2 t = f drop(t, 0)
3 t = f split w(t, 0)
4 t =f join _char(t, 0, ° ")
5 t =f join char(t, 1, ° )
6 Os = f drop(t, 1)

Otherwise:

1 t = f split first(I7, 0, °,")

2 t = f drop(t, 0)

3 t = f extract(t, 0, ‘[A-Za-z0-9\ ]+)
4 t = f drop(t, 0)

5 07 = f split w(t, 0)

Figure 19: Transformation discovered by combining both optimizations

The candidate routines (and their instances) identified by the approach in
Chapter 5 represent behavior recorded in the log that frequently repeats itself, thus
being a candidate for automation. However, the fact that a routine is frequently
observed in a log is not sufficient to guarantee its automatability. Consider the fol-
lowing example; a worker fills in and submits 100 times the same web form, doing
it always with the same sequence of actions but inputting manually-generated data
(e.g., received over a phone call or copied from a hard-copy document). In such a
scenario, although we would identify the filling and submission of the web form
as a candidate routine, we would not be able to automate it because we cannot
automatically generate the data in input to the web forms. On the other hand, if
the data in the input to the web forms was copied from another digital document,
for example, a spreadsheet, we could probably automate the routine.

Accordingly, for each candidate routine capturing the frequently observed se-
quence of Uls, we have to assess the degree of its automatability. To do so, we
check whether all Uls of the routine are deterministic. We consider a Ul to be de-
terministic if a software robot can replicate its execution. This is possible when:
i) the input data of a UI can be determined automatically, or ii) the input data of a
UI can be provided as input by the user when deploying the software robot. Ac-
cording to such constraints, we can provide the following rules to check whether
a Ul is deterministic or not.

76



1. Uls belonging to the navigation group (see Table 4) are always determinis-
tic because they do not take in input any data; except the select cell, select
field, and select range Uls which are removed during the filtering of the log
(as described in Section 5.1.2);

2. Uls belonging to the read group are always deterministic because the only
input they require is the source of the copied content (e.g., row and column
of a cell), which is either constant or can be inputted by the user when
deploying the software robot in an RPA tool;

3. Uls belonging to the write group that are of type click are always deter-
ministic because they do not take in input any data, except the information
regarding the element to be clicked which is always constant for a given
candidate routine (by construction);

4. Uls belonging to the write group that are of type paste are always deter-
ministic because they always retrieve data from the same source (i.e., the
system clipboard).

5. Uls belonging to the write group that are of type edit are the only ones that
are not always deterministic. In fact, these Uls are deterministic only if it
is possible to determine the updated value of the edited elements (e.g., the
value of a cell in a spreadsheet or of a text field in the web browser after
the Ul is executed). Furthermore, it has also to be possible to determine the
target of the editing, although this is usually constant (if a web element) or
can be inputted by the user when deploying the software robot in UiPath.

Algorithm 5 shows how we check these five rules given as input a candidate
routine ¢; and its routine instances %,,, and how we compose the corresponding
routine specification of the input ¢;. The algorithm starts by initializing the set £
as a collection of edit Ul types (edit cell, edit range, edit field). Then, it iterates
over all the normalized Uls in the input ¢; by checking their types. If the type of
a normalized Ul i is not in E (line 6), i.e., one of the rules 1 to 4 applies, we add
it to the queue D, which stores all the deterministic Uls we identified. Otherwise,
rule 5 applies. While rules 1 to 4 are simple checks on the UI types, the com-
plexity of rule 5 required us to operationalize it through a separate algorithm, i.e.,
Algorithm 6, which is called within Algorithm 5 (line 8). Algorithm 6 returns a
pair (d,A), where d is a boolean (true if the input normalized Ul is deterministic),
and A is a data transformation step required to automate i and therefore available
only if & is deterministic. Once all the normalized Uls in the input ¢; have been
checked, Algorithm 5 outputs the routine specification of c;, as the pair (c;, A),
where A is the set of all the data transformation steps we collected by executing
Algorithm 6 (line 8).

In the following, we describe how Algorithm 6 verifies whether an input (nor-
malized) Ul of type edit (1) is deterministic. In essence, Algorithm 6 checks
whether the value of the element edited by the execution of # can be determinis-
tically computed from the Uls observed before i (in all the routine instances in

77



Algorithm 5: Routine automatability assessment

input : Candidate Routine ¢;, Routine Instances Set %,
output : Routine Specification (c;, A)
1 SetA <+ @;

2 Set E < { “edit cell”, “edit range”, “edit field” };
Queue D + @;

w

foreach Normalized Ul ii € c; do
if getType(it) ¢ E then
| append iito D;

else
k < checkUlof TypeEdit(i, c;, Z.,);
Boolean d < getDeterministic(k);

10 if d = true then

11 append i to D;

12 L A < A U getTransformationStep(k);

e ® N &

13 return (c;, A)

HK.,). To do so, the algorithm looks for a possible data transformation function to
compute the value of the edited element from the payloads of the Uls observed be-
fore i. If such a data transformation function exists, i is considered deterministic
and the algorithm returns the identified function in the form of a data transfor-
mation step (which also includes source(s) and target of the data transformation
function).

The algorithm starts by assuming that the UI in input is non-deterministic, and
it tries to prove the opposite. We initialize to false the boolean variable which we
will output at the end of the algorithm (line 1), and we create the necessary data
structures (line 2 to 7). Given the input candidate routine ¢; and the normalized
Ul i, we extract the index of i within ¢; (line 8). Then, for each routine instance
r € %.,, we iterate over all its Uls preceding # to collect the data required to
identify a possible transformation function (lines 9 to 36). We store this data
in three sets: T,K, and II. Set T contains the transformation examples for the
target element of # that are extracted similarly as in Algorithm 4. Specifically, we
extract only the transformation examples related to the given target element and
we save only the input and output values into queue / and variable O respectively
(lines 27,34 and line 13). Set K contains all the instances of iz (line 11), and set Il
stores all the instances of Uls preceding i (line 18), alongside the routine instance
they belong to (i.e., we store a pair (r,uz) in IT). To find the data transformation,
we leverage two state-of-the-art tools: Foofah [58]6 and TANE [69]. First, we try
to identify the data transformation function using Foofah. Then — if Foofah fails
— we use TANE.

These two approaches complement each other, as Foofah discovers syntactic
transformations (manipulations over strings or tables), and TANE identifies se-
mantical transformations (also known as functional dependencies [69]). TANE
requires in input a table where each row contains » — 1 input data values and an

Foofah was discussed in Section 6.1

78



Algorithm 6: Check UI of Type Edit

[N = N R SOOI S

10
11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47

48

input : Normalized UI i, Candidate Routine c¢;, Routine Instances Set Z.,
output : Boolean d, Transformation Step A

Boolean d < false;

Set C + { “copy cell”, “copy range”, “copy field” };

Set E <+ { “edit cell”, “edit range”, “edit field” };

Set P +— { “paste into cell”, “paste into range”, “paste” };
Set T < @;

Set I1 <+ &;

Set K + &,

Integer n <— getPosition(i, ¢;);

foreach r € %, do
Ul u; < get(r, n);
K+ KU{u};
1) < getTargetElement(u;);
O < getParameterValue(u;, “Value”);
Queue S «+ @;
Queue / + 9;
fori< nto I do
Ul uy <+ get(r, i);
I+ TTU{(r,u2)};
if getType(u;) € P then
tr < getTargetElement(uy);
if 1, = t; then
for j < ito I do
Ul u3 < get(r, j);
if getType(uz) € C then
s +— getTargetElement(u3);
append s to S;
append getParameterValue(us, “Value”) to /;
break

else

—
=

getType(u,) € E then
ty < getTargetElement(uy);
if 1, =t then
push #; to S;
push getParameterValue(uy,“Value”) to I;
break

T+ TU{(,0)};

Transformation ) < discoverTransformation(7);
if x # null then
d < true;
A+ (S, target, x);
else
Set D « discoverDependencies(K, IT);
if D # & then
d < true;
S < getSources(D);
X < extractTransformation(D);
A (S, target, x);

return (d, 1)

79



output data value in column 7 (this is conceptually similar to the input and output
series required by Foofah). TANE analyzes each row of such a table to check
if there exists any dependency between the values in the first n — 1 columns and
the value in column n.” An example of a semantical data transformation function
discovered by TANE would be: if the value of column i is X, then the value of
column 7 is always Y.

In our context, the input table for TANE is a table where each row represents
the output data observed in all the Uls preceding i in a routine instance, and the
last element of the row is the output data of the i instance in that routine (i.e., the
value of the element edited by the execution of i in that routine instance). To build
such a table, we require in input all the instances of i (which we stored in the set
K) as well as all the instances of any Ul preceding & (which we stored in the set IT).
If TANE identifies a semantical data transformation function (line 43), we set i
as deterministic (through the boolean d), and we compose the data transformation
step using the output of TANE (see lines 44 to 47).

Table 14 shows an example of the dependency table that we would build from
the log captured in Table 6 (assuming that the full-length Ul log contains nine
instances of the routine shown in rows 1 to 24). For example, given Table 14
as input to TANE, it would identify that the value of the last column (i.e., the
type of student, domestic or international) can be deterministically generated by
observing the value of column four (i.e., country of residence).

Table 14: Example of a dependency table

Full name Date Phone Country of residence Target

Albert Rauf 11-04-1986 | 043-512-4834 Germany International

John Doe 11-03-1986 | 024-706-5621 Australia Domestic

Steven Richards 18-06-1986 | 088-266-0827 Australia Domestic
Hilda Diggle 31-07-1993 | 073-672-5593 New Zealand International
Luca Bianchi 19-10-1998 | 029-211-4904 Italy International
Igor Honchar 13-08-1993 | 040-656-3417 Ukraine International

Ben Stanley 03-12-1991 | 244-557-2104 Australia Domestic
Olga Mykolenchuk | 11-04-2000 | 956-045-0703 Ukraine International
Daniel Brown 06-04-1994 | 032-660-0403 New Zealand International

If TANE does not discover any data transformation function, it means that we
cannot automatically determine the value of the element edited by the execution
of &1. Consequently, we assume that i is not deterministic. Otherwise, we output
the data transformation step discovered.

Table 15: Transformation steps

Transformation step | Sources Target Transformation function
M Cell A Full Name X1
Ay Cell B Date X2
A3 Cell C Phone 1
Ay Cell D Country X4
As Country Status zs

7For more details about TANE, refer to [69].

80



X1 (I) = For pattern <d>+/<d>+/<d>+: Xa(I) =

o=-1 t = f_split(I, 0, /") o=-1
t = £ _join_char(t,1, ‘-')

X2(I) = 0= f_join_char(t, 0, ‘=) Xs(I) =

For pattern <d>+.<d>+.<d>+: X3 (I) = I O:

split_first(I, 0, ) [“Germany”’] - “International”
“drop(t, 0) [“Australia”] — “Domestic”

t = £ split(L, 0, '.") t=f
t = f_join_char(t,1, ‘-’) t=1f . . " R
0= £ join char(t, 0, ‘=) t = £ split_w(t, 0) [“New Zealand"] — “International
t = £ join_char(t, 1, ‘-") [“Italy”] — “International”
0 = £ join_char(t, 0, ‘=’) [“Ukraine”] - “International”

Figure 20: Transformation functions discovered from the running example

Figure 20 shows the data transformations functions discovered by Foofah (t1
to t4) and by TANE (t5) when running Algorithm 6 on a hypothetical extended
version of the Ul log in Table 6 and giving as input the routine shown in rows 1
to 24 (Table 6) along with all its instances, and the edit Uls at rows 6, 11, 16, 21,
23 (respectively, for identifying the data transformation functions from t1 to t5).
Each data transformation function shows how the input data is turned into output
data.

Finally, the data transformation functions are integrated into the data transfor-
mation steps, including the instantiation of the input and the output of the function,
as shown in Table 15. The degree of the automatability of a routine can be then
quantified in the form of Routine Automatability Index (RAI). RAI can be used to
rank the routines according to their automatability potential and is calculated as
the ratio of automatable Uls (|c;|,) to all Uls in the routine (|c;|):

Ra1 = 6l ©.1)
cil
RAI is a real number that lies in the range [0, 1]. Naturally, the routine is fully
automatable when it consists only of automatable Uls, and its RAI is equal to 1.

6.3. Routines aggregation

When a routine can be performed by executing a set of Uls without following a
strict order, we may observe multiple execution variants of the same routine in the
log. For example, if a worker needs to copy the first name, the last name, and the
phone number of a set of customers from a spreadsheet to different web-forms,
she may choose to copy the data of each customer in any order (e.g., first name,
phone number, and last name, or last name, phone number, and first name). In
such a scenario, the Ul log would record several different execution variants of
the same routine. Routine execution variants do not bring any additional value;
rather, they generate redundancy within the log, leading to discovering different
routine specifications that would execute (once deployed as software bots) the
same routine. Such routine specifications are hence considered as duplicates and
have to be removed.

81



To identify duplicate routine specifications, we start by generating for each

discovered routine its data transformation graph.
Definition 6.3.1 (Data Transformation Graph). Given a routine specification
(ci, A), its data transformation graph is a graph Gx = (Da,La), where: Dy is the
set of vertices of the graph, and each vertex d € D maps one data transformation
step A € A; LA C Dp x Dy is the set of edges of the graph, and each edge (d;,d;) €
L represents a dependency between two data transformation steps capturing the
fact that the target of the data transformation step mapped by d; is (one of) the
source(s) of the data transformation step mapped by d,.

Figure 21 shows the data transformation graph of the routine we discovered in
the previous step in our running example.

Data transformation graphs can be used to check whether two routine speci-
fications are equivalent, in fact, two routine specifications, (c;, A1) and (c;, Az),
are equivalent if and only if the following two relations hold: i) their data trans-
formation graphs are the same, i.e., Dy, = Dy, and L, = Ly, ; ii) their candidate
routines ¢; and c¢; contain the same set of Uls, and all the Uls of type click button
appear in the same order in both ¢; and c;.

[({Cell A}, Full Name, XI)J [ ({Cell B}, Date, x,) J [ ({Cell C}, Phone, x3) J
[ ({Cell D}, Country, xa) H({Country}, Status, )(5)]

Figure 21: Data transformation graph example

By comparing each pair of routine specifications, we first create sets of equiv-
alent routine specifications, and, for each set, we discard all the routine specifi-
cations but one. Ideally, we would like to retain the best routine specification of
each set. In this regard, we need to define what it means to be the best one. We
can select the best routine specification by relying on different quantitative met-
rics, such as frequency, length, or duration of the candidate routine of a routine
specification. For example, we can choose frequency as a selection criterion and
retain from each set the routine specification whose candidate routine is the most
frequent in the Ul log.

Intuitively, the most frequent candidate routine represents the common routine
execution, so that one may be tempted to use that criterion by default. However,
the most frequent routine execution is not necessarily the optimal execution. For
example, length or duration could represent better selection criteria. Length pri-
oritizes short candidate routines over long ones, assuming that a candidate routine
should comprise as few steps as possible. Duration prioritizes execution times
over the number of steps. The duration of a candidate routine can be estimated
as the average execution time of each routine instance of the candidate routine

82



recorded in the Ul log. Note, however, that the duration could not always be reli-
able since, during the routine execution, the worker might perform activities that
do not appear in the log or are not relevant for the routine execution, thus invol-
untarily increasing the observed execution time of the routine. For this reason,
we implemented a combination of length and frequency to select the best routine
specification from each set. Precisely, we use length first and then compare the
frequencies of the candidate routines having the same length.

6.4. Evaluation

In this section, we report an empirical evaluation of the proposed approaches.
In Section 6.4.1, we evaluate the global transformations approach, and, in Sec-
tion 6.4.2, we assess the local transformations approach. Finally, Section 6.4.3
reports the threats to validity.

6.4.1. Global transformation approach

We conducted a series of experiments to evaluate the performance of our ap-
proaches (and proposed optimizations) when discovering different types of trans-
formations. In addition, we tested the approaches on a synthetically recorded UI
log that simulates a real-life use case to verify its applicability in real-life scenar-
ios. We built a dataset using the data transferring task presented in Section 6.1.
In this scenario, the students’ contact information stored in an Excel spreadsheet
is transferred into a Web form linked to a student management system. The task
involves a number of data transformations of various types. We recorded 50 exe-
cutions of such task by using the Action Logger tool [22]. We segmented this log
and filtered out the noise. The row and preprocessed logs are publicly available®.

Using this dataset, we evaluated the performance of three approaches: i) the
baseline approach as per Section 6.1.1 (Baseline), ii) the approach that involves
target grouping as per Section 6.1.2 (Opt 1), and iii) the approach that uses both
target grouping and grouping by input structure (Opt 1 + Opt 2). We measured the
time required to discover the transformation program using all three approaches
for different transformation types as well as for the entire Ul log. The exper-
iments were conducted on a PC with Intel Core i5-5200U CPU 2.20 GHz and
16GB RAM, running Windows 10 as a host OS and a VM with Ubuntu 16.04
LTS (64-bit) with 8GB RAM and JVM 11 (4GB RAM). We used the Foofah tool’
with a timeout of one hour. The tool we developed for this experiment, which
implements the three approaches, is publicly available.'”

Table 16 describes how the three approaches perform on different types of
transformations, while Table 17 shows their computational efficiency on the entire

8h‘l:tps ://figshare.com/articles/UI_logs/10269845
9h‘l'.tps ://github. com/umich-dbgroup/foofah
10https ://github. com/volodymyrLeno/RPM

83


https://figshare.com/articles/UI_logs/10269845
https://github.com/umich-dbgroup/foofah
https://github.com/volodymyrLeno/RPM

Ul log. The latter table also reports on the discovery quality of the approaches.
The execution time is shown in seconds.

Table 16: Global transformations approach discovery results

Transformation Example Execution time

type Baseline Opt 1 Opt1+Opt2

N-1 “Igor", “Honchar" = “Igor Honchar" 1.295 1.584 1.745

1-1 “18/08/1992" = “18-08-1992" 6.584 6.639 0.476

1-1 “+61 029 211 4904" = “029-211-4904" N/A (2306.036) N/A (2271.19) 0.5086

1-1 “New Zealand" = “New Zealand" 0.347 0.392 0.704

1-1 “wmacdonald @gmail.com" = “wmacdonald @gmail.com" 0.34 0.391 0.397

1-N “122 Albert St, Port Melbourne, VIC 3207, Australia" = timeout 7504.934 85.423

“122 Albert St", “Port Melbourne", “VIC", “3207"
1-1 “122 Albert St, Port Melbourne, VIC 3207, Australia" = - 1.243 1.55
“122 Albert St"
1-1 “122 Albert St, Port Melbourne, VIC 3207, Australia" = - N/A (1983.501) 54.777
“Port Melbourne"

1-1 “122 Albert St, Port Melbourne, VIC 3207, Australia" = - timeout 26.603
“vIC"

1-1 “122 Albert St, Port Melbourne, VIC 3207, Australia" = - N/A (1884.397) 2.49
“3207"

From Table 16, we can see that the baseline approach performs better than
the two optimizations for very simple examples (three out of ten cases). This
is because it does not require any additional steps (e.g., grouping transformation
examples into equivalence classes). However, in the case of complex transforma-
tions, its efficiency drops significantly. It spent around 2300 seconds discovering
the transformation to convert the phone numbers into the required format and
did not manage to synthesize any transformation program. At the same time, it
resulted in a timeout when identifying the transformation for the address. The sec-
ond approach (Opt 1) discovered more transformations compared to the baseline.
It outperforms the baseline in the case of complex 1-N transformations as it de-
composes the corresponding transformation into a set of small transformations of
1-1 type and then discovers them separately. However, this approach discovered
only a fraction of such transformations, as it could not deal with heterogeneous
data (e.g., for cities/suburbs) and ambiguous outputs (e.g., for zip codes). In these
cases, it took around 30 minutes to conclude that there is no transformation or that
it is impossible to discover one. In contrast, the third approach (Opt 1 + Opt 2)
discovered all data transformations within a reasonable time (up to 85 seconds).
By clustering the patterns, this approach handles heterogeneous data, while by
providing only one example from each equivalence class, it deals with ambiguous
output and speeds up the transformation discovery step. However, in some cases,
it was slightly slower than the other two approaches because of the high number of
input patterns. Moreover, even when the transformation is simple, this approach
discovers it for all patterns, thus requiring more time.

The baseline did not discover any transformation for the entire Ul log because
it was too complex and involved many source and target elements, thus resulting
in a timeout. Since grouping by target allows us to split a large transformation
problem into smaller problems so that each problem can be solved in isolation,

84



Table 17: Transformation discovery use case

Approach Execution time (sec) | Discovered transformations
Baseline 3742.669 0/9
Opt 1 10551.536 5/9
Opt 1 + Opt 2 130.854 9/9

Opt 1 could discover five out of nine data transformations. However, it took much
longer than the baseline because some minor problems were too difficult to solve
and required a considerable amount of time (nearly three hours). In contrast, Opt
2 discovered all nine transformations in around two minutes.

6.4.2. Local transformation approach

When evaluating the local transformation approach presented in Section 6.2,
we aimed at assessing whether it can correctly identify automatable (and non-
automatable) Uls within candidate routines discovered by the approach in Chap-
ter 5. Considering this task as a classification problem, we assess the quality of the
approach by measuring precision, recall, and F-score metrics. For each discovered
routine, we compute the corresponding confusion matrix, where true positives
(TP) are correctly identified automatable Uls, true negatives (TN) are correctly
identified non-automatable Uls, false positives (FP) are the Uls that were wrongly
marked as automatable, and false negatives (FN) are the Uls that were incorrectly
marked as non-automatable. From the constructed confusion matrix, we calculate
precision, recall, and F-score as follows:

TP
Precision = ——— (6.2)
TP+ FP
TP
Recall = —— (6.3)
TP+FN

Precision - Recall

F-score = (6.4)

" Precision + Recall

We report the averages of these metrics for all the discovered routines in the
log. In addition, we also report the average RAI for the routines in the log. Fi-
nally, to show the performance of the approaches, we present the execution times
measured in seconds. All experiments were conducted on a Windows 10 laptop
with an Intel Core 15-5200U CPU 2.20 GHz and 16GB RAM, using cohesion as a
routine selection criterion with the minimum support threshold set to 0.1 and the
minimum coverage threshold equal to 0.05. The approach is implemented as an
open-source tool.!!

Table 18 shows the quality of the automatable routines discovery. We correctly
identified all the automatable and non-automatable user interactions for the CPN3,
CPNG6, SR, and S1 logs. The routines recorded in the CPN3 and SR logs are fully

11 Available at https://github.com/volodymyrLeno/RPM_Miner

85


https://github.com/volodymyrLeno/RPM_Miner

automatable. Although the RT log contains automatable routines only, our ap-
proach failed to discover some of the underlying transformations and, therefore,
incorrectly marked some interactions as non-automatable. On the other hand,
some of the user interactions of the synthetic logs were wrongly identified as
automatable. Although the data values of such interactions can be deterministi-
cally computed, the locations of the edited elements were completely random as
intended in the corresponding models. Thus, in practice, such interactions are
non-automatable. The routines discovered from the CPN5 log are characterized
by the lowest number of automatable user interactions, and we achieved the low-
est recall for this log (0.805). Overall, F-score is high, above 0.85 for all the logs,
except CPN7 and CPNS8. We also achieved the lowest recall for these logs, mean-
ing that some interactions of the corresponding routines were wrongly identified
as non-automatable. Although in the CPN models used to generate the artificial
logs, some of the interactions are non-deterministic, they are automatable in the
context of the discovered routines. For example, for the CPN9 log, we discovered
six routines that correspond to the different branches within the model. For all the
executions of a branch, we use the same data values, and hence, the corresponding
user interactions are automatable.

Table 18: Local transformations approach discovery results

Ul Log | # Discovered RAI | Precision | Recall | F-score | Execution time
specifications | (avg) (avg) (avg) (avg) (sec)

CPN1 1 1.000 0.928 1.000 0.963 7.148
CPN2 2 0.931 0.926 1.000 0.961 17.408
CPN3 3 1.000 1.000 1.000 1.000 15.545
CPN4 4 0.786 1.000 0.846 0.917 18.409
CPN5 8 0.728 0.812 1.000 0.896 19.761
CPN6 2 0.742 1.000 1.000 1.000 6.102
CPN7 7 0.546 0.907 0.805 0.841 17.594
CPN8 6 0.612 0.897 0.823 0.845 17.399
CPN9 6 0.741 0.951 0.886 0.916 18.798
SR 2 1.000 1.000 1.000 1.000 845.255
RT 2 0.967 1.000 0.967 0.983 1066.041
S1 5 1.000 1.000 1.000 1.000 21.400

While the execution time is reasonably low for all the artificial logs (less than
20 seconds), it substantially increases for the SR and RT logs. This is caused
by the fact that the underlying transformations in these two logs were very com-
plex, often involving regular expressions or long sequences of manipulations. In
contrast, all the transformations in the CPN1-CPNO logs were simple copy-paste
operations. Our approach marked the routines discovered from the S1 log as fully
automatable, and an employee of the university confirmed that the results are cor-
rect. Since for the S2 log we did not manage to identify any meaningful routine,
we could not discover any executable specification.

6.4.3. Threats to validity

One of the threats to validity is a low number of the logs used in evaluation (es-
pecially when evaluating the global transformations approach), which leads to

86



limited generalizability of the findings. However, these logs are characterized by
different complexity and size. The tasks recorded in these logs intentionally in-
volve different types of data transformations to check the ability of our technique
to discover them. Although the amount of data transformations is limited, these
transformations are the most commonly seen in practice. Another potential threat
is that we do not use any baseline approach in our evaluation. However, this is
justified because there are no available approaches to discover executable routines
that can be directly implemented in software scripts. Finally, we used Foofah as
data transformation discovery technique because it is open-source, and thus, it
can be integrated into our approach. It is possible, however, that there exist more
efficient transformation discovery techniques.

6.5. Summary

In this chapter, we addressed RQ2 posed in the thesis'>. We presented two al-
ternative approaches to discover executable specifications of routines. The first
approach is focused on the data transferring tasks and discovers specification in
the form of a data transformation program that converts the values from the source
application into the values of the target application where the data is transferred
to. This approach exploits a state-of-the-art transformation discovery technique
called Foofah and proposes several optimizations to deal with Foofah’s limita-
tions and to improve its efficiency. The second approach covers a broader range
of routines that can be automated by discovering sequential routine specifications
that capture all activities that were performed. We showed how the transformation
discovery could be used to assess the automatability of routines and presented a
method to identify and filter out routines with identical effects.

Both approaches are implemented in the form of open-source tools and eval-
vated using synthetic and real-life logs. For the global transformation approach,
the evaluation results demonstrate that it can discover various transformation types
and that the proposed optimizations significantly improve its efficiency. The eval-
uation of the local transformation approach shows that it identifies automatable
and non-automatable Uls of the discovered routines with high accuracy. For the
majority of the tested logs, the execution time does not exceed 20 seconds. The
only exceptions are the logs with complex underlying data transformations.

The proposed approaches have two main limitations. First, when assessing the
automatability of a routine, they assume that the values of the edited fields are
entirely derived from the (input) fields that are explicitly accessed (e.g., via copy
operations) during the routine’s execution. Hence, they will fail to automate Uls
where a worker visually reads from a field (without performing a copy operation)
and writes what he sees into another fields. An avenue for addressing this limi-
tation is to complement the proposed methods with optical character recognition

2Given a routine how to discover its executable specification that can be executed via an RPA
tool?

87



techniques over screenshots taken during the Ul log recording, to be able to detect
that some of the outputs of a routine come from fields that have not been explic-
itly accessed via a copy-to-clipboard operation. The second limitation is that the
proposed approaches cannot discover conditional behavior, where the transforma-
tion function for the target field depends on the value of another field. Consider,
for example, a routine that involves copying delivery data. If the delivery coun-
try is USA, then the month comes before the day (MM/DD/YYYY), otherwise
the day comes before the month. Here, the transformation function depends on
a condition of the form “country = USA”, which the proposed approaches cannot
discover. In a similar vein, the proposed approaches are able to discover trans-
formations that depend on the structural pattern of the value of the input field(s),
but they fail to distinguish the patterns that, although having the same syntactical
structure, have different semantics. Following the example above, our approaches
will put both date types into the same equivalence class. Addressing this limi-
tation would require the development of more sophisticated data transformation
discovery techniques, beyond the capabilities of Foofah.

There are several criteria for determining whether or not a routine should be
automated, e.g., as presented in [47,51]. For example, one may select the most
frequently performed routines for automation. Alternatively, an amount of effort
spent on a routine (i.e., how much time is required to perform a routine from start
to end) can be considered when prioritizing routines for automation. This thesis
focuses on the automatability criterion, which captures the feasibility and cost of
the automation effort, and only considers the other criteria indirectly. In order
to maximize the benefits of task automation, the discovered automatable routines
may be ranked according to an organization’s own priorities.

88



7. SOFTWARE IMPLEMENTATION

In this chapter, we present the tools developed during this project.!. First, in
Section 7.1, we talk about Action Logger, a tool to capture user interactions with
IT systems and to record them in the form of UI logs. Then, in Section 7.2,
we give an overview of the Robidium, a tool that implements the rest of the RPM
pipeline and integrates the approaches presented in this thesis. Finally, Section 7.3
concludes the chapter.

7.1. Action Logger

The creation of an RPA bot requires an in-depth knowledge of the tasks to be auto-
mated, the IT systems involved, their interfaces, and how users interact with them.
In the current practice, this knowledge is gained via interviews and workshops
with the stakeholders, and analysis of unstructured data, e.g., video recordings of
users working with the systems. Unfortunately, this approach is time-consuming
and error-prone, which significantly affects the quality of the bots developed. In
addition, this leads to a significant amount of time spent on developing and testing
the bots.

Alternatively, the information about task executions can be saved in user in-
teractions (UI) logs. In this thesis, we presented a family of techniques, called
Robotic Process Mining, to identify automatable tasks from such logs and syn-
thesize their executable specifications that can be used as a starting point for the
automation efforts.

Hence, a question arises on how to obtain such logs. A typical Ul log can be
recorded by a logging tool that captures all the actions (e.g., click a button, edit
field) performed by a user across multiple applications during the execution of her
daily tasks. To generate UI logs suitable for Robotic Process Mining, a logging
tool should ensure the following functionality requirements:

o REQI1: Relevance. A tool should only record meaningful, value-adding
actions. For example, moving the mouse or clicking on the background of
a web site should not be recorded as it does not impact the outcome of a
task. However, button clicks and URI link clicks are essential actions and,
therefore, should be captured.

e REQ2: Granularity. A tool should record actions at a level of detail suffi-
cient to fully reconstruct the performed task. For example, the logger should
differentiate different types of mouse clicks, e.g., clicking on a button ver-
sus clicking a link in a web browser.

¢ REQ3: Data-awareness. In addition to performed actions, a tool should
record the data that supports them. This data is crucial in discovering the

lCorresponding to [22] and [70]

&9



rule-based decision-making logic of the process. The data can also be used
to discover data transformations to enhance the quality of the discovered
process model. To enable performance analysis, the tool should also record

timestamps associated with the performed actions.

e REQ4: Context-independence. A tool should record actions so that they
can be replayed with the same effects on different machines and platforms
under various circumstances and contexts, e.g., different Ul layouts.

o RESQS5: Interoperability. A tool should record UI logs in a structured

format, for example, CSV or XES [71].

To the best of our knowledge, no solution satisfies all the above requirements.
Available UI action recording tools, like WinParrot (www.winparrot.com) and
JitBit Macro Recorder (www.jitbit.com/macro-recorder), record low-level
actions only, e.g., clickstreams and keystrokes (see Figures 22 and 23). The
recorded actions refer to pixel coordinates (e.g., click the mouse at coordinates
341, 568) that depend on screen resolution and window size. Some tools, like
WinParrot, save information regarding the application where the action was per-
formed. However, they do not identify application-specific functionality, e.g.,
editing or copying a cell in a spreadsheet. Most of the tools do not capture times-
tamps. However, some of them save the delays between actions. None of the
existing tools generates files in a format that robotic process mining techniques

can directly consume.

Th. % DELAY
1 | @ MOUSE
__'d .| & DELAY
= | &mMousE
% DELAY
‘& MOUSE
= | I DELAY
% MOUSE
% DELAY
(= KEYBOARD
% DELAY
(= KEYBOARD
T DELAY
(= KEYBOARD
% DELAY
(= KEYBOARD
% DELAY
(= KEYBOARD
T DELAY
(= KEYBOARD
i DELAY
fEl- @KEYBO&HD
T DELAY
= KEYBOARD

kL

@ BN

vl RCK

Fs

Maove

16

Mave

Left Button Do
104

Left Button Up

KeyDown

og

Keylp
222
KeyDown
62

Keylp
109
KeyDown
121
Keylp
KeyDown
61
Keylp

W

"Capital"

"Capital"

g

e

Figure 22: Fragment of a log recorded by JitBit

90


www.winparrot.com
www.jitbit.com/macro-recorder

n° | Play ] Title ] Command="Text"eFunction{)&..;..7..

1 Qﬂ ¥ Program Manager SetMouseSpeed (30) ; SetKeySpeed(30); SetPixelTol({0)
2 ﬂ Zoho Forms - Google C WVerbose(7):; Ask3("Options:™,"No Debug - No Trace",
2 '\\ﬁ Zoho Forms - Google C "V[LBUITCN]"

4 ﬂ Zoho Forms - Google C "V[CAP]"™

5 ﬂ Zoho Forms - Google C "VWV[CRP]™

& Qﬂ | Zoho Forms - Google C© "olodymyr V[CRE]™

7 g Zoho Forms - Google C "LV[CRP]"™

g ﬁ Zoho Forms - Google C "enoV[LBUTTON]™

] Qf Zoho Forms - Google C "V[LBUTITCH]™

ll]ﬁ Zoho Forms - Google C "V[LBUTTCH]™

1157 B - "7 [LBUTTCHN] "

1237 N - ™ [RBUTTON] "

137 B - "7 [LBUTTCH] "

Figure 23: Fragment of a log recorded by WinParrot

RPA tools, like Automation Anywhere (www.automationanywhere.com)and
UTIPath (www.uipath.com), provide a wide range of instruments to program the
RPA bots manually. They also provide recording capabilities to generate bots au-
tomatically. However, the generated logs are only readable within the environment
of the RPA solutions themselves. Moreover, such logs capture user interactions at
a low level of granularity and often do not save the data used during the execution
of the routine. Figure 24 shows a fragment of a log recorded by the Automation
Anywhere RPA tool.

Mouze Move: (160,78) To (571.875)

Mouge Click: Left Button {(571,875) on "Running applications” in "Desktop”

Mouse Move: (570,875) To (532,221)

~ Mouse Click: Left Button (532,221) on "Chrome Legacy Window" in "Zoho Forms - Google Chrome™

@ Keystrokes: [CAPS LOCKN[CAPS LOCKolodymyr [CAPS LOCKJ[CAPS LOCK]eno in "Zoha Forms - Google Chrome™ with delay: 2124 ms
[ Mouse Move: (532,221) To (388,229)

[Z1 Mouse Click: Left Button {888.229) Pressed Down in "Zoho Forms - Google Chrome”

21 Mouse Click: Left Button (888.230) Pressed Lip on "Chrome Legacy Window" in "Zoho Forms - Google Chrome™

[2]  Mouse Move: (888.230) To (753.734)

Mouse Click: Left Button (753,734) on "Chrome Legacy Window" in "Zoho Forms - Google Chrome"

Figure 24: Fragment of a log recorded by Automation Anywhere

Based on the identified requirements, we designed and implemented our own
recording tool called Action Logger®>. The tool records user actions performed
in Excel and Chrome web browser, two of the most often used applications for
office tasks. It includes two separate plug-ins, one for each application. The plug-
ins are implemented as event listeners and send the information about performed
actions as JSON objects to the logging component, generating and updating the
Ul log on the fly. To record the actions, the logger uses APIs of the corresponding
applications. The browser actions are recorded at the Document Object Model
(DOM) level, capturing the involved web elements, e.g., text fields, buttons, and
links. The tool also monitors the clipboard to record relevant actions, e.g., copying
and pasting of data.

2The tool is available at https: //github. com/apromore/RPA_UILogger/releases
3The video tutorial on how to use the tool can be found at https://youtu.be/SvPuldWiByc

91


www.automationanywhere.com
www.uipath.com
https://github.com/apromore/RPA_UILogger/releases
https://youtu.be/SvPuOdWfByc

The architecture of the tool and the envisaged pipeline for employing the log-
ger for RPA are shown in Figure 25. The tool stores all the data values used in
the context of every recorded action. For example, for an action performed in
a spreadsheet, the tool captures the information about the cell, its current value,
workbook, and active sheet in which the action took place. The generated logs
are stored in a CSV format suitable for process mining investigations. This de-
sign choice was made to improve the efficiency and speed of the logger since the
actions are recorded at run time, and the XES format is too verbose.

Action Logger
-
Cell Events Excel [e] X
Excel »> - o g_
Plugin = = S
[ad o) o
Excel % E g' 3]
Backend applications Events 050 g - E
R 2 (1] 5 o
> o
| i Clipboard Events : g & g 8
|| OS Cllppoard > CSV Logger a % o A
| Monitor | Ul Log , @ rBD g
| 3 > ] =
e _ A& S 5 - [=]
a S/ 8] 8/ 3
rome = < (=) o
Events a =] P
g 3] &
| Chrome o =
Chrome > . S
Webpage Events Plugln

Figure 25: Action Logger architecture within the RPA pipeline

One typical task automated using RPA is the task of transferring data from
one system to another, for example, from a spreadsheet to a form of a web-based
information system. To demonstrate Action Logger, we use an Excel spreadsheet
containing students’ contact details, e.g., full name, date of birth, phone number,
email, and web form. We manually transferred the data about the first student in
the spreadsheet from Excel into the web form (refer to Figure 26) and recorded
all the performed actions using Action Logger. Figure 27 shows a fragment of the
Ul log produced by the logger; for simplicity, we do not show all the recorded UI
parameters (you can find the list of all recorded parameters and their description
in Table 19).

To validate Action Logger in practice, we established a cooperation with the
University of Melbourne, Australia. In particular, we worked closely with the Uni-
versity Services team responsible for the university’s admission and scholarship
allocation processes. The team used Action Logger to record the workers while
performing routine operations and provided feedback with respect to validity (all
recorded actions are correct and relevant) and completeness (all the important and
relevant actions are recorded) of the recorded logs; note that many of these rou-
tines involve work with spreadsheets and web-based front-ends of the university
IT systems, similar to the example presented in Figure 26. The collected feedback
was used to improve the tool. As a result, with Action Logger, we produced most
of the UI logs used to evaluate the approaches presented throughout the thesis.

92



A B C D
1 |Full Name Date of birth Phone number Email
2 |lohn Doe 11/03/1986 +61 039 689 9324 jdoe@gmail.com
3 |Albert Rauf 11/04/1986 +61 043 5124334 arauf@gmail.com Name
4 |Steven Richards 18/06/1936 +61 035 376 0669 srichards@gmail.com
5 |Gerard Dubois 08/04/1987 +610435326105  gdubois@gmail.com John poe
6 |Audrey Backer 20/06/1987 +61519 790 1066 abacker@gmail.com
7 |Carl Gustafsson 01/08/1987 +61 043 587 1823 cgustafsson@gmail.com Date of birth *
& |Sarah Johnson 25/03/1989 +61 035 341 2938 sjohnson@gmail.com PRy =
9 |Andrea Bolzano 22/07/1989 +61 031 023 0066 abolzano@gmail.com
10 |Hannah Dietmeier 12/07/1990 +61 0722378681 hdietmeier@gmail.com o
11 |Igor Honchar 28/03/1992 +610968261262  ihonchar@gmail.com Phone * Email *
12 |Oliver Dunkan 04/08/1994 +61 079 149 3015 odunkan@gmail.com 039-689-9324 jdoe@gmail.com
13 |Terry Klint 23/08/1994 +61035 3904126 tklint@gmail.com FEE gp gpsr
14 | Volodymyr Leno 17/10/1994 +61 096 652 4777 vleno@gmail.com P
15 |william Macdonald 19/06/1995 +618142397588  wmacdonald@gmail.com

(a) Student records spreadsheet

Figure 26: Use case to demonstrate the work of Action Logger

(b) New Record creation form

A B C D E F G H | J
1 [timeStamp userlD targetApp eventType url content target.workbookName target.id target.name target.value
2 |2019-06-11T05:19:19.768Z vleno Excel getCell StudentRecords.xlsx A2 John Doe
3 |2019-10-18T01:19:20.301Z 05-Clipboard copy John Doe
4 |2019-10-18T01:19:22.209Z vleno Chrome clickTextField https://forms.zoho.com Name_First
5 |2019-10-18T01:19:22.5722 vleno Chrome paste https://forms.zoho.com John Doe Name_First
6 |2019-10-18T01:19:23.129Z vleno Chrome editField https://forms.zoho.com Name_First  John
7 |2019-10-18T01:19:26.915Z vleno Chrome clickTextField https://forms.zoho.com Name_Last
8 |2019-10-18T01:19:27.404Z vleno Chrome paste https://forms.zeho.com John Doe Name_Last
2 |2019-10-18T01:19:28.137Z vleno Chrome editField https://forms.zoho.com Name_Last Doe
10 |2019-10-18T01:19:30.032Z vieno Excel getCell StudentRecords.xlsx B2 11/03/1986
11 |2019-10-18T01:19:30.091Z 05-Clipboard  copy 11/03/1986
12 (2019-10-18T01:19:31.916Z vleno Chrome clickTextField https://forms.zoho.com Date-date date
13 [2019-10-18T01:19:32.196Z vleno Chrome paste https://forms.zoho.com 11/03/1986 Date-date date
14 [2019-10-18T01:19:36.740Z vleno Chrome editField https://forms.zoho.com Date-date date 11/03/1986
15 |2019-10-18T01:19:44.518Z vleno Excel getCell StudentRecords.xlsx  C2 +61039 689 9324
16 |2019-10-18T01:19:44.5502 0S-Clipboard  copy +61039 689 9324
17 |2019-10-18T01:19:46.176Z vleno Chrome clickTextField https://forms.zoho.com PhoneNumber countrycode
18 |2019-10-18T01:19:46.466Z vleno Chrome paste https://forms.zoho.com +61 039 689 9324 PhoneNumber countrycode
19 |2019-10-18T01:19:52.9227 vleno Chrome editField https://forms.zoho.com PhoneNumber countrycode 039-683-9324

Figure 27: Fragment of a log recorded by Action Logger

7.2. Robidium

Robidium is a Software as a Service (SaaS) tool*>'% that implements the Robotic
Process Mining pipeline presented in Chapter 3. It identifies and automates the
routine tasks present in UI logs. Unlike simple macro-recording tools that allow
one to record and replay an already well-scoped routine, Robidium discovers rou-
tines from long-running recordings of user interactions, for example, a recording
of a full working day. Given a Ul log, Robidium proceeds by identifying recorded
task instances and filtering out redundant behavior. Next, it discovers frequently
repeated sequences of Uls (with gaps), which are then tagged as candidates for
automation. Finally, each candidate pattern is assessed for its amenability to au-
tomation. To this end, the tool discovers dependencies between data elements
within each candidate and uses this information to synthesize automatable speci-
fications. Such specifications are then compiled into executable RPA scripts.

4 Available at http://robidium.cloud.ut.ee/
STutorial available at https://github.com/volodymyrLeno/Robidium
®A video about the tool can be found at https://youtu.be/3M8qveblmeY

93


http://robidium.cloud.ut.ee/
https://github.com/volodymyrLeno/Robidium
https://youtu.be/3M8qveb1meY

Table 19: UI parameters recorded by Action Logger

Attribute Description

timeStamp Date and time when the action was performed
userID Name of the user who performed the action
targetApp Application where the action was performed
eventType Type of the action (e.g., copyCell, paste)

url URL of the website where the action was performed
content Content copied or pasted during the action

target.workbookName

Excel workbook where the action was performed

target.SheetName

Excel sheet where the action was performed

target.id

Identifier of the element involved in the action (id of a web element or
address of a cell in Excel)

target.class

Class of the element involved in the action

target.tagName

Tag of the element involved in the action

target.type

Type of the element involved in the action

target.name

Name of the element involved in the action

target.value

Value of the element involved in the action

target.innerText

Label of the element involved in the action (the text visible on the page)

target.checked If the involved element is a check box or a radio button, shows whether
it is checked
target.href The URL of the page the element leads to

target.option

Shows the possible options for select action

target.title

Title of the element involved in the action

Figure 28: Robidium architecture

target.innerHTML HTML representation of the element involved in the action
Preprocessor otz -
P Extractor el
I v
Simplified Candidate
> ! Automatable
Segmenter tasks traces routines Routine Specification
| RPA
Ullog * ] script
Automatable
ti .
o Evaluator o » Synthesizer
Simplifier
Automatable Routines Discoverer

Robidium’s architecture consists of six components (Figure 28) as detailed

below.

Segmenter. Robidium takes as input a Ul log in which each row includes a times-
tamp, one or more attributes that (combined) denote an action (e.g., “Edit cell”
+ cell ID in Excel), and other attributes capturing the action’s payload (e.g., the
value of the Excel cell after the action). UI logs that fulfill these requirements can
be produced using the Action Logger tool presented in Section 7.1, supporting
Excel and the Chrome browser. Other loggers can be used provided that they are
converted to the Action Logger’s format. By default, Robidium takes as input a UL

94



log consisting of a single sequence of actions recorded during a working session.
This session may contain multiple executions of one or more tasks (e.g., creating
a new student record, adding new credentials to an existing student record). The
Segmenter assumes that the user only performs one instance of one task at a time
(no overlapping task instances), that the instances of multiple tasks do not share
any identical actions, and that instances of multiple tasks do not always appear
contiguously, but are rather separated by some events that are not part of a task in-
stance. Under these assumptions, the Segmenter breaks down the single-sequence
Ul log into a set of sequences.

Simplifier. A Ul log may contain redundant behavior that does not affect the
outcome of the recorded task. For example, the user could fill in the field with
the wrong value by mistake and then correct it. This can lead to incorrect iden-
tification of routines. The Simplifier component eliminates such redundant sub-
sequences of actions in a semantics-preserving manner. The Simplifier works in
two steps. First, it converts operating system level actions into application-level
actions (e.g., a get cell and a clipboard copy actions are merged into a copy cell
action). Next, it removes redundant actions from the log by applying a set of
regular expression find-and-replace rules. Some of these expressions are purely
control-flow-based (e.g., navigation events and double copying), while others are
data-aware (e.g., double editing of a text field with replacement of its value). The
Simplifier consists of three sub-modules responsible for different types of redun-
dancies related to read, write, and navigation actions.

Routines extractor. The Simplifier returns a list of task traces without redun-
dant actions. These task traces are then provided as input to Routines extractor,
which identifies routine candidates for automation. Each user interaction in the
log is converted into its symbolic representation by combining type and context
attributes that capture where the action was performed (e.g., application, URL,
field name, and button label). The user selects the context attributes. To find
repeats, user interactions across the traces must have identical symbolic represen-
tations. Therefore, we do not use the attributes that contain the data used during
the execution of an action (e.g., the value of a field, copied content). The tool ap-
plies sequential pattern mining to identify frequently repetitive execution patterns
from sequences of symbolic representations of user interactions. Such patterns
are then considered to be candidates for automation. The routine candidates can
be selected accordingly to different criteria such as length, frequency, coverage,
or cohesion.

Evaluator. Each candidate routine then must be assessed for its amenability to
automation by the Evaluator. The Evaluator extracts its instances from the log for
each candidate and verifies whether all the actions are automatable. In particular,
an action can be automated if its input values can be computed from the outcomes
of the previous actions using a constant or deterministic function. To this aim, the
Evaluator discovers the data transformations between the actions in the instances
of the routine candidate. It discovers the syntactic and semantical transformations

95



as described in Section 6.2. By default, all non-edit actions (e.g., copy cell, click
button) are considered to be automatable. For each routine, it then calculates a
routine automatability index (RAI) as the ratio of its automatable actions.
Synthesizer. Given a set of candidate routines annotated with RAI, the user can
select which routine should be implemented. The Synthesizer then prepares the
automatable specification for the selected routine. Finally, it annotates the actions
of a routine with the corresponding data transformations and extracts the informa-
tion required to map the actions to the application elements involved during the
routine execution (e.g., button or text field in the web form).
Compiler. The automatable routine specifications are then given as input to the
Compiler that generates an RPA bot by mapping each action of the routine into the
corresponding executable command of the selected RPA tool. At the moment, Ro-
bidium creates RPA bots for the UIPath Enterprise RPA Platform.” These scripts
can then be executed via command line or via the UIPath interface. The Compiler
also identifies the variables in the script (e.g., row in the spreadsheet) that can then
be used as input parameters during its execution.

Figure29 shows the Robidium’s interface. Here, a user can upload a Ul log,
select the context attributes and specify the input parameters for the algorithm that
will be used to identify candidate routines for automation.

C A Notsecure | robidiumcioudutee * BE OB @

& UPLOAD

Import an Ul Log
A sample Ul 0g can be found nere [ studentrecora s

0.01 0.05

CloFast ~ Cohesion ~

[ Segmented SELECT CONTEXT ATTRIBUTES

Figure 29: Robidium interface

7.3. Summary

In this chapter, we presented two major tools that were developed as a result of
this project. These tools aim at enabling analysis techniques to improve the early
stages of the RPA lifecycle, specifically the identification of automatable routines
and their implementation.

Taww. uipath.com

96


www.uipath.com

The main obstacle in introducing such techniques is the absence of tools ca-
pable of recording Ul logs of a quality sufficient for insightful analysis. To close
this gap, we developed our logging tool, called Action Logger, that captures user
interactions with Excel and Web browser applications and stores them in UI logs.
Unlike most existing recording tools, Action Logger captures Uls at the applica-
tion level instead of clickstreams and keystrokes. This allows one to understand
what activities were executed by a worker and implement the bots with better
awareness. The bots generated from such logs are more flexible and do not de-
pend on the environment (e.g., screen resolution, applications currently opened).
Action Logger extracts and saves all the information vital for automating the cap-
tured Uls, such as the elements involved in the action, their exact locations, and
the values. However, to correctly capture the Uls, the tool heavily relies on the
APIs of the applications under recording. Hence, it is challenging to extend it
to applications without available APIs (e.g., pdf readers). To address this prob-
lem, one may consider using image recognition techniques and OCR alongside
the Action Logger tool.

Robidium combines all the approaches and methods presented in this thesis
into an end-to-end pipeline for automating routine tasks. The tool aims at reducing
the amount of time spent on the identification and analysis of the candidates for
automation, and allows instead to focus on their implementation. Unlike record-
and-replay features provided by commercial RPA tools, Robidium takes as input
a UI log that is not explicitly recorded to capture a pre-identified task. Instead,
the log may contain mixtures of automatable and non-automatable routines, inter-
spersed with Uls that are not part of any routine, as well as redundant or irrelevant
Uls. The output of Robidium is an executable bot that implements a routine se-
lected by a user. This bot can then be used as a starting point for the automation
effort and can be further refined by RPA developers. For future work, we plan
to address some of the Robidium’s limitations. First, Robidum can only gener-
ate scripts of fully automatable routines. It does not support steps that require
intermediate user input. Second, the tool automates only one variant of a routine
at a time. If a routine has multiple variants (e.g., handling different use cases),
multiple bots are generated. We plan to add a functionality to combine multiple
variants of a routine into a single more complex executable specification that can
be compiled into a single bot. Finally, we plan to improve the efficiency of the
various algorithms implemented in the tool to support larger and more complex
Ul logs.

97



8. CONCLUSION

8.1. Summary of contributions

In this thesis, we have exposed a vision for a new class of techniques, namely
Robotic Process Mining (RPM), capable of analyzing logs of fine-grained user
interactions with IT systems in order to identify routines that can be automated
using RPA tools. RPM aims at helping RPA developers and analysts in the early
stages of the RPA lifecycle. Specifically, it assists the analysts in drawing a sys-
tematic inventory of the tasks that can be automated with RPA and synthesizes
executable specifications of such tasks that can be used as a starting point for their
automation.

This thesis makes four contributions to the RPA community. The first contri-
bution is the design of a format to store Ul logs and the development of a tool to
record them. The main challenge in introducing RPM is the lack of logging tools
capable of recording Ul logs suitable for analysis. The logs recorded by such tools
capture the user’s interactions at a too low level of granularity (e.g., clickstreams
and keystrokes), thus losing the information about semantics and effects of the
performed actions. Hence, it is nearly impossible to extract any valuable insights
about tasks’ execution from such logs. The format we propose specifies what in-
formation is required to be captured by the logging tool to analyze, improve and
automate the underlying user interactions. Our tool records user interactions per-
formed in two selected applications, namely Chrome and MS Exce that cover the
majority of routine tasks performed on top of these applications. It captures all the
data values used during the execution of these interactions so that the correspond-
ing routines can be analyzed with respect to their automatability and implemented
in the form of executable scripts.

The second contribution is an end-to-end pipeline to automate routines. The
underlying pipeline takes a Ul log as input and produces executable specifications
of the automatable routines captured in the log. It starts from removing redundant
activities that are not important for analysis and segmenting the log into traces,
each representing an execution instance of the task under recording. Given a set of
task traces, it then identifies automatable routines, collects variants of each identi-
fied routine, standardizes and streamlines the identified variants, and synthesizes
an executable specification for each streamlined and standardized variant. The
pipeline is abstract, meaning that any step can have multiple different instantia-
tions. We implemented our own instantiation in the form of an open-source tool
called Robidium, which is publicly available.

The literature review conducted in this thesis shows that existing approaches to
identify routines assume that the Ul log given in input is already segmented, i.e.,
consists of a set of task traces, each representing an instance of a task execution.
In practice, however, a Ul log is a single sequence of Uls capturing multiple hours
of work. Thus, although the current approaches work in theory, they have no prac-

98



tical applications. Accordingly, the third contribution of this thesis is an approach
capable of identifying candidate routines for automation from unsegmented UI
logs. The approach consists of two main phases: segmentation of the log into a
set of task traces and discovery of the candidate routines. It is also possible to
use the segmentation technique separately so that it can be combined with any
other discovery technique. The results of the evaluation show that the proposed
approach efficiently discovers routines present in the Ul logs.

The fourth and final contribution of the thesis is an approach to evaluate the
degree of automatability of routines and discover their executable specifications.
The proposed approach exploits state-of-the-art data transformation discovery
techniques to discover the deterministic functions to compute the values produced
during the execution of a routine (e.g., what value should be assigned to a text
field or a cell). Using such information, our approach identifies automatable (and
non-automatable) Uls and quantifies the degree of routine automatability. The
discovered transformation functions together with the Uls of the routine are then
used to construct the executable specification. Besides, we propose a technique to
identify duplicate routines that lead to identical effects. The technique leverages
the produced specifications to compare routines’ effects, identifies duplicates, and
removes them, leaving the most optimal variant of routine execution.

The approaches presented in the thesis were successfully applied in practice
at the University of Melbourne, Australia. Specifically, they were used to dis-
cover potentially automatable routines in scholarship assessment and allocation
processes within the university. The proposed techniques promise to significantly
reduce the time spent on the first phases of a task automation project, in particu-
lar the discovery of routines that can be automated, and the automated synthesis
of RPA bot scripts. This will allow the project stakeholders to focus their ef-
forts more on the validation of the automation opportunities identified by our ap-
proaches, and subsequent refinement and testing of the synthesized RPA scripts,
rather than on the actual implementation of the scripts.

8.2. Future work

This thesis has laid the foundations for Robotic Process Mining, a new family of
tools to facilitate RPA initiatives. Our research contributions open up a number
of directions for future work. The segmentation approach presented in this the-
sis is designed to deal with logs that capture consecutive executions of routines.
However, in practice, it is possible that some routine executions may overlap,
e.g., when a user works on multiple tasks in parallel. A possible avenue to ad-
dress this limitation is to search for overlapping frequent patterns directly in the
unsegmented log instead of first segmenting it and then finding patterns in the
segmented log. However, this task is very challenging and computationally heavy
when the patterns are not exact (i.e., contain gaps between their Uls).

Another limitation of the segmentation approach is that it assumes every task

99



captured in a Ul log to have clear start and end points. If such points do not exist,
e.g., there is no strictly defined way of performing the underlying task, we may
discover incorrect segments, affecting the quality of the discovered routines.

The presented approaches for discovering automatable routines allow the iden-
tification of syntactical data transformations and the transformations in the form
of substitution mappings. This set of transformations is limited and should be ex-
tended. In particular, one possible type of transformations that can be discovered
is the transformations where the output value is computed as a result of a math-
ematical function over the input values (e.g., currency conversion, a sum of the
values in a row).

RPM heavily relies on the information present in a Ul log and follows the
following principle: “Anything that is not captured in the log does not exist.”
Thus, it may discover imprecise routines when some of their Uls were performed
with applications not supported by a logging tool or without explicitly accessing
the information (e.g., a worker visually reading the content of a cell and then
manually editing the corresponding field of a form with the value that she saw).
Therefore, a natural direction for future work is to extend our Action Logger to
support more applications. In this regard, one can explore the possibility of using
optical character recognition techniques over screenshots taken during the Ul log
recording to support the applications without available APIs and to track user
activities that are not performed explicitly.

The proposed RPM pipeline focuses on discovering routines that can be exe-
cuted in an end-to-end manner by an RPA bot. This assumption is constraining.
In reality, routines may be automated for a specific subset of cases but not for all
cases (i.e., automation may only be partially achievable). A key challenge beyond
the proposed RPM pipeline is how to discover partially deterministic routines.
While a fully deterministic routine can be executed end-to-end in all cases, a par-
tially deterministic routine can be stopped if the bot reaches a point where the
routine cannot be deterministically continued given the input data and other data
that the bot collects during the routine’s execution. For example, while copying
records of purchase orders from a spreadsheet or an enterprise system, the bot
does not find the PO number (empty cell), and hence it cannot proceed. Discov-
ering conditions under which a routine cannot be deterministically continued (or
started) is a major challenge for RPM.

In the context of partial automation, a possible direction for future work is
to discover automation blueprints, i.e., step-by-step human-readable descriptions
of routines to be automated, that can be used by RPA developers to implement
industry-level bots. Such descriptions may be used as specifications and guide-
lines on how to implement routines, while leaving the decision making to the RPA
developers. In this way, the RPA developers can decide, for example, whether
the routine should be automated entirely via Ul-level automation scripts, or via
a combination of Ul-level automated steps and API calls, in cases where one of
the applications involved in the routine provides suitable APIs. This approach

100



also provides more flexibility when it comes to implementing RPA bots for semi-
automatable routines, as the RPA developer can decide how the hand-offs between
the automated and the manual part of the routine should be implemented.

The vision of RPM exposed in this thesis focuses on discovering automatable
routines, which is only one of a broader set of RPM operations that we foresee,
namely robotic process discovery. Besides robotic process discovery, we envision
that the field of RPM will encompass complementary problems and questions
such as performance mining of RPA bots, e.g., “What is the success or defect rate
of a bot when performing a given routine?”, “What patterns are correlated with or
are causal factors of bot failures?”, as well as anomaly detection problems, e.g.,
“Are there cases where the behavior of the bot or the effects of the bot’s actions
are abnormal and hence warrant manual inspection and rectification?”.

101



(1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]

BIBLIOGRAPHY

M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals of
Business Process Management, Second Edition. Springer, 2018.

L. Willcocks and M. Lacity, Service Automation: Robots and the Future of
Work. A Steve Brookes Publishing book, Steve Brookes Publishing, 2016.
W. M. Aalst, M. Bichler, and A. Heinzl, “Robotic process automation,” Busi-
ness & Information Systems Engineering, vol. 60, no. 4, pp. 269-272, 2018.
M. Lacity and L. P. Willcocks, “Robotic process automation at telefonica
02,” MIS Quarterly Executive, vol. 15, no. 1, 2016.

S. Aguirre and A. Rodriguez, “Automation of a business process using
robotic process automation (RPA): A case study,” in Proceedings of the 4th
Workshop on Engineering Applications (WEA), pp. 65-71, Springer, 2017.
L. P. Willcocks, M. Lacity, and A. Craig, “Robotic process automation at
xchanging,” Ise research online documents on economics, London School of
Economics and Political Science, LSE Library, 2015.

M. Lacity, L. Willcocks, and A. Craig, “Service automation: cognitive vir-
tual agents at seb bank,” The Outsourcing Unit Working Research Paper
Series, 2017.

L. P. Willcocks, M. Lacity, and A. Craig, “Robotizing global financial shared
services at royal dsm,” Journal of Financial Transformation, no. Automa-
tion# 46, 2017.

M. Schmitz, C. Dietze, and C. Czarnecki, “Enabling digital transformation
through robotic process automation at deutsche telekom,” in Digitalization
cases, pp. 15-33, Springer, 2019.

A. M. Radke, M. T. Dang, and A. Tan, “Using robotic process automation
(rpa) to enhance item master data maintenance process,” LogForum, vol. 16,
no. 1, 2020.

B. Agaton and G. Swedberg, “Evaluating and developing methods to as-
sess business process suitability for robotic process automation: A design
research approach,” Master’s thesis, Chalmers University of Technology,
2018.

R. H. Von Alan, S. T. March, J. Park, and S. Ram, “Design science in infor-
mation systems research,” MIS quarterly, vol. 28, no. 1, pp. 75-105, 2004.
C. Tornbohm, “Gartner market guide for robotic process automation soft-
ware,” Report G00319864, Gartner, 2017.

W. M. Aalst, Process Mining - Data Science in Action, Second Edition.
Springer, 2016.

I. Verenich, M. Dumas, M. L. Rosa, F. M. Maggi, and I. Teinemaa, “Sur-
vey and cross-benchmark comparison of remaining time prediction methods

102



in business process monitoring,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 4, pp. 34:1-34:34, 2019.

I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi, “Outcome-oriented
predictive process monitoring: Review and benchmark,” ACM Trans. Knowl.
Discov. Data, vol. 13, no. 2, pp. 17:1-17:57, 2019.

A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. M. Maggi, A. Marrella,
M. Mecella, and A. Soo, “Automated discovery of process models from
event logs: Review and benchmark,” IEEE Trans. Kn. Data Eng., vol. 31,
no. 4, pp. 686-705, 2019.

M. Kerremans and T. Srivastava, “Discover the differences and use cases
of process mining versus task mining,” Research Note G00723821, Gartner,
April 2020.

R. Syed, S. Suriadi, M. Adams, W. Bandara, S. J. J. Leemans, C. Ouyang,
A. H. M. ter Hofstede, I. van de Weerd, M. T. Wynn, and H. A. Reijers,

“Robotic process automation: Contemporary themes and challenges,” Com-
put. Ind., vol. 115, p. 103162, 2020.

J. Geyer-Klingeberg, J. Nakladal, F. Baldauf, and F. Veit, “Process min-
ing and robotic process automation: A perfect match,” in Proceedings of
the Dissertation Award, Demonstration, and Industrial Track at BPM 2018,
pp- 124-131, CEUR-WS.org, 2018.

V. Leno, A. Polyvyanyy, M. Dumas, M. L. Rosa, and F. M. Maggi, “Robotic
process mining: Vision and challenges,” Business & Information Systems
Engineering, 2020.

V. Leno, A. Polyvyanyy, M. L. Rosa, M. Dumas, and F. M. Maggi, “Ac-
tion logger: Enabling process mining for robotic process automation,” in
Proceedings of the Dissertation Award, Doctoral Consortium, and Demon-
stration Track at BPM 2019, vol. 2420 of CEUR Workshop Proceedings,
pp- 124-128, CEUR-WS.org, 2019.

J. M. Lopez-Carnicer, C. D. Valle, and J. G. Enriquez, “Towards an open-
source logger for the analysis of RPA projects,” in Business Process Man-
agement: Blockchain and Robotic Process Automation Forum - BPM 2020
Blockchain and RPA Forum, Seville, Spain, September 13-18, 2020, Pro-
ceedings, vol. 393 of Lecture Notes in Business Information Processing,
pp- 176-184, Springer, 2020.

M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa, “A frame-
work for the evaluation of session reconstruction heuristics in web-usage
analysis,” Informs journal on computing, vol. 15, no. 2, pp. 171-190, 2003.

J. Shen, L. Li, and T. G. Dietterich, “Real-time detection of task switches
of desktop users,” in IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,

2007, pp. 2868-2873, 2007.

103



[26]

A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. R. McLaughlin, L. Li,
and J. L. Herlocker, “Tasktracer: a desktop environment to support multi-
tasking knowledge workers,” in Proceedings of the 10th International Con-
ference on Intelligent User Interfaces, 1UI 2005, San Diego, California,
USA, January 10-13, 2005, pp. 75-82, 2005.

H. Cao, N. Mamoulis, and D. W. Cheung, “Discovery of periodic patterns
in spatiotemporal sequences,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 4, pp. 453-467, 2007.

Y. Zhu, M. Imamura, D. Nikovski, and E. Keogh, “Matrix profile vii: Time
series chains: A new primitive for time series data mining,” in 2017 IEEE In-
ternational Conference on Data Mining (ICDM), pp. 695-704, IEEE, 2017.
D. R. Ferreira and D. Gillblad, “Discovering process models from unlabelled
event logs,” in Proceedings of the 7th International Conference on Business
Process Management (BPM), pp. 143—158, Springer, 2009.

D. Bayomie, C. Di Ciccio, M. La Rosa, and J. Mendling, “A probabilistic
approach to event-case correlation for process mining,” in Proceedings of
the Int. Conference on Conceptual Modeling (ER2019), Lecture Notes in
Computer Science, Springer, 2019.

D. Bayomie, A. Awad, and E. Ezat, “Correlating unlabeled events from
cyclic business processes execution,” in Proceedings of the 28th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE),
pp- 274-289, Springer, 2016.

S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider, “Event
abstraction in process mining: literature review and taxonomy,” Granular
Computing, vol. 6, no. 3, pp. 719-736, 2021.

B. Fazzinga, S. Flesca, F. Furfaro, E. Masciari, and L. Pontieri, “Efficiently
interpreting traces of low level events in business process logs,” Information
Systems, vol. 73, pp. 1-24, 2018.

F. Mannhardt, M. de Leoni, H. A. Reijers, W. M. van der Aalst, and P. J.
Toussaint, “Guided process discovery—a pattern-based approach,” Informa-
tion systems, vol. 76, pp. 1-18, 2018.

G. Tello, G. Gianini, R. Mizouni, and E. Damiani, “Machine learning-based
framework for log-lifting in business process mining applications,” in Busi-
ness Process Management - 17th International Conference, BPM 2019, Vi-
enna, Austria, September 1-6, 2019, Proceedings, vol. 11675 of Lecture
Notes in Computer Science, pp. 232-249, Springer, 2019.

M. de Leoni and S. Diindar, “Event-log abstraction using batch session iden-
tification and clustering,” in SAC °20: The 35th ACM/SIGAPP Symposium
on Applied Computing, online event, [Brno, Czech Republic], March 30 -
April 3, 2020, pp. 36—44, ACM, 2020.

104



[37]

[38]

C. Linn, P. Zimmermann, and D. Werth, “Desktop activity mining - A
new level of detail in mining business processes,” in Workshops der IN-
FORMATIK 2018 - Architekturen, Prozesse, Sicherheit und Nachhaltigkeit,
pp- 245-258, 2018.

A. Rebmann, J.-R. Rehse, M. Pinter, M. Schnaubelt, K. Daun, and P. Fet-
tke, “Iot-based activity recognition for process assistance in human-robot
disaster response,” in International Conference on Business Process Man-
agement, pp. 71-87, Springer, 2020.

S. Agostinelli, “Automated segmentation of user interface logs using trace
alignment techniques (extended abstract),” in Proceedings of the ICPM Doc-
toral Consortium and Tool Demonstration Track 2020 (C. D. Ciccio, B. De-
paire, J. D. Weerdt, C. D. Francescomarino, and J. Munoz-Gama, eds.),
vol. 2703 of CEUR Workshop Proceedings, pp. 13-14, CEUR-WS.org,
2020.

H. Dev and Z. Liu, “Identifying frequent user tasks from application logs,”
in Proceedings of IUI 2017, pp. 263273, Springer, 2017.

J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” Data mining and knowledge discovery, vol. 15,
no. 1, pp. 55-86, 2007.

S. D. Lee and L. De Raedt, “An efficient algorithm for mining string
databases under constraints,” in International Workshop on Knowledge Dis-
covery in Inductive Databases, pp. 108—129, Springer, 2004.

E. Ohlebusch and T. Beller, “Alphabet-independent algorithms for finding
context-sensitive repeats in linear time,” Journal of Discrete Algorithms,
vol. 34, pp. 23-36, 2015.

J. Wang and J. Han, “Bide: Efficient mining of frequent closed sequences,’
in Proceedings of the 20th international conference on data engineering,
pp- 79-90, IEEE, 2004.

F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba, “Clofast: closed se-
quential pattern mining using sparse and vertical id-lists,” Knowledge and
Information Systems, vol. 48, no. 2, pp. 429-463, 2016.

A. Jimenez-Ramirez, H. A. Reijers, 1. Barba, and C. Del Valle, “A method
to improve the early stages of the robotic process automation lifecycle,” in
International Conference on Advanced Information Systems Engineering,
pp- 446461, Springer, 2019.

D. Choi, H. R’bigui, and C. Cho, “Candidate digital tasks selection method-
ology for automation with robotic process automation,” Sustainability,
vol. 13, no. 16, p. 8980, 2021.

M. de Leoni, M. Dumas, and L. Garcia-Baifiuelos, “Discovering branch-
ing conditions from business process execution logs,” in Proceedings of the

105



[49]

[55]

[58]

16th International Conference on Fundamental Approaches to Software En-
gineering - (FASE), pp. 114-129, 2013.

F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst,
“Data-driven process discovery — revealing conditional infrequent behavior
from event logs,” in Proceedings of the 29th International Conference on
Advanced Information Systems Engineering, pp. 545-560, Springer, 2017.
H. Leopold, H. van der Aa, and H. A. Reijers, “Identifying candidate tasks
for robotic process automation in textual process descriptions,” in Proceed-
ings of BPMDS and EMMSAD, pp. 67-81, Springer, 2018.

W. M. van der Aalst, “On the pareto principle in process mining, task mining,
and robotic process automation.,” in DATA, pp. 5-12, 2020.

A. Bosco, A. Augusto, M. Dumas, M. L. Rosa, and G. Fortino, “Discover-
ing automatable routines from user interaction logs,” in Proceedings of the
Business Process Management Forum (BPM Forum), Springer, 2019.

T. Chakraborti, V. Isahagian, R. Khalaf, Y. Khazaeni, V. Muthusamy,
Y. Rizk, and M. Unuvar, “From robotic process automation to intelligent
process automation,” in International Conference on Business Process Man-
agement, pp. 215-228, Springer, 2020.

S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011, pp. 317—-
330, 2011.

D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn, “Flashrelate: extracting
relational data from semi-structured spreadsheets using examples,” in Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation 2015, pp. 218-228, 2015.

N. Martin, B. Depaire, and A. Caris, “The use of process mining in business
process simulation model construction - structuring the field,” Business &
Information Systems Engineering, vol. 58, no. 1, pp. 73-87, 2016.

Z. Abedjan, J. Morcos, 1. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker, “Dataxformer: A robust transformation discovery system,” in 32nd
IEEFE International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016, pp. 1134-1145, 2016.

Z.Jin, M. R. Anderson, M. J. Cafarella, and H. V. Jagadish, “Foofah: Trans-
forming data by example,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, pp. 683-698, 2017.

J. Gao, S. J. van Zelst, X. Lu, and W. M. van der Aalst, “Automated robotic
process automation: A self-learning approach,” in OTM Confederated In-
ternational Conferences” On the Move to Meaningful Internet Systems'",
pp. 95-112, Springer, 2019.

106



[60]

S. Agostinelli, M. Lupia, A. Marrella, and M. Mecella, “Automated gener-
ation of executable RPA scripts from user interface logs,” in Business Pro-
cess Management: Blockchain and Robotic Process Automation Forum -
BPM 2020, vol. 393 of Lecture Notes in Business Information Processing,
pp- 116-131, Springer, 2020.

S. Agostinelli, M. Lupia, A. Marrella, and M. Mecella, “Smartrpa: A tool to
reactively synthesize software robots from user interface logs,” in Interna-
tional Conference on Advanced Information Systems Engineering, pp. 137—
145, Springer, 2021.

V. Leno, A. Augusto, M. Dumas, M. L. Rosa, F. M. Maggi, and
A. Polyvyanyy, “Identifying candidate routines for robotic process automa-
tion from unsegmented Ul logs,” in 2nd International Conference on Process
Mining, ICPM 2020, Padua, Italy, October 4-9, 2020, pp. 153-160, IEEE,
2020.

V. Leno, A. Augusto, M. Dumas, M. La Rosa, F. M. Maggi, and
A. Polyvyanyy, “Discovering data transfer routines from user interaction
logs,” Information Systems, p. 101916, 2021.

M. Sharir, “A strong-connectivity algorithm and its applications in data
flow analysis,” Computers & Mathematics with Applications, vol. 7, no. 1,
pp- 67-72, 1981.

R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on
computing, vol. 1, no. 2, pp. 146-160, 1972.

N. Tax, N. Sidorova, R. Haakma, and W. M. P. van der Aalst, “Mining local
process models,” J. Innov. Digit. Ecosyst., vol. 3, no. 2, pp. 183-196, 2016.

V. Leno, M. Dumas, M. L. Rosa, F. M. Maggi, and A. Polyvyanyy, “Au-
tomated discovery of data transformations for robotic process automation,”
ArXiv, vol. abs/2001.01007, 2020.

V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive data clean-
ing system,” in VLDB 2001, Proceedings of 27th International Conference
on Very Large Data Bases, pp. 381-390, 2001.

Y. Huhtala, J. Karkkdinen, P. Porkka, and H. Toivonen, “TANE: an efficient
algorithm for discovering functional and approximate dependencies,” Com-
put. J., vol. 42, no. 2, pp. 100-111, 1999.

V. Leno, S. Deviatykh, A. Polyvyanyy, M. L. Rosa, M. Dumas, and F. M.
Maggi, “Robidium: Automated synthesis of robotic process automation
scripts from Ul logs,” in Proceedings of the Best Dissertation Award, Doc-
toral Consortium, and Demonstration & Resources Track at BPM 2020,
vol. 2673 of CEUR Workshop Proceedings, pp. 102-106, CEUR-WS.org,
2020.

107


http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf

[71] C. W. Giinther and E. Verbeek, “XES standard definition,” 2014. http:
//www.xes-standard.org/_media/xes/xesstandarddefinition-2.
0.pdf.

108


http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf

ACKNOWLEDGEMENT

I am genuinely grateful to everyone who has encouraged and helped me to write
this thesis. First of all, I would like to thank my supervisors, Marlon Dumas,
Marcello La Rosa, Artem Polyvyanyy, and Fabrizio Maria Maggi, for their ideas,
feedback, and guidance. Second, I am grateful to the University of Tartu and the
University of Melbourne for their financial support and outstanding educational
base. I would also like to thank Stanislav Deviatykh, Andre McGuire, and Iliyar
Yi for their help with the implementation. Finally, this would not have been pos-
sible without my family. Thank you for your encouragement, support, and belief
in me, no matter what.

109



SISUKOKKUVOTE

Robot Protsesside Kaevandamine: Robot Protsesside
Automatiseerimise kasutuselevotu kiirendamine

Ténapéeval koosnevad suur enamus adriprotsessidest iiksluisetest ja korduvatest
tegevustest. Nendeks vdivad olla andmete viimine 14bi erinevate siisteemide voi
andmete tdstmine iihest formaadist teise. Selliste iilesannete automatiseerimine
voiks vihendada vigasid, tdsta joudlust ja standardiseerida to6voosid ning tdsta
nende libipaistvust.

Korduvate tegevuste automatiseerimise muudavad lihtsamaks viimase aja teh-
noloogilised arengud, peamiselt aga Robootiline Protsesside Automatiseerimine
(Robotic Process Automation, RPA). RPA on tehnoloogia, mis voimaldab orga-
nisatsioonidel automatiseerida korduvaid digitaalseid tegevusi kiivitades tarkva-
raskripte, mis koosnevad interaktsioonidest (veebi)rakendustega.

Kuigi RPA annab vdimaluse automatiseerida mitmeid erinevaid protseduure,
on nende tuvastamine ja piiritlemine ajamahukas t66. Analiiiitikud vdivad identi-
fitseerida kandidaatprotseduure intervjuude, iilesannete proovimise voi t60 varju-
tamise abil. Need meetmed ei ole aga sobivad suuremahuliste kontekstide jaoks.

Viitekiri kasitleb, kuidas RPA tooriistade abil leida protseduure interaktsioo-
nilogidest. Antud probleem on jagatud alamprobleemide jadaks, kuhu kuuluvad
logide kogumine ja eeltootlemine, kandidaatrutiinide tuvastamine, protseduuride
hindamine, et mdista automatiseerimise vdoimalikkust ja tdide viivate spetsifikat-
sioonide koostamine protseduuride elluviimiseks. Vditekiri analiiiisib iga alamp-
robleemi ja toob vilja valdkonnad mida saab parandada.

Tehtud analiiiisi pohjal esitleb viitekiri nelja panust. Esimeseks panuseks on
formaat milles ladustada siindmuste interaktsioonilogisid ja tooriist nende salves-
tamiseks. Olemasolevate lahenduste analiiiis nditas, et need ei suuda salvestada
interaktsioonilogisid mida saaks kasutada kasulike rutiinide avastamiseks. Nad
salvestavad kasutajate toiminguid védga granulaarsel tasemel, klahvivajutused ja
lehed, mida kasutajad kiilastavad, jéttes vilja andmed mis luuakse nende interakt-
sioonide jooksul. Viitekirjas esitletud formaat kirjeldab millist informatsiooni lo-
gimistooriist peab salvestama, et analiilisida, parandada ja automatiseerida kasuta-
jate interaktsioone. Kirjeldatud logimistddriist todtab Chrome ja MS Excel raken-
dustes. See salvestab kasutajate sisendeid rakendusse loogilisel tasemel. Tooriist
salvestab andmed, mida kasutaja sisestab, et tuletatud protseduure oleks voimalik
analiilisida automatiseerimise seisukohast ja luua nende jaoks spetsifikatsioonid.

Teiseks panuseks on libitdotatud protsess rutiinsete tegevuste automatiseeri-
miseks. Loodud protsess kaardistab automatiseeritavad protseduurid stindmus-
te logi pdhjal. Lisaks, protseduurid piiritletakse ning iga protseduuri eri varian-
did kogutakse kokku, mis standardiseeritakse ja muudetakse efektiivseks. Lopuks
avastatakse protseduuri variantidele spetsifikatsioonid. Protseduurid kirjutatakse
keeles, mis on platvormidest iseseisev, ja mida saab kompileerida skriptiks ja kéi-

110



vitada RPA todriistas.

Kaks viimast panust on meetodid pakutud protsessile. Uks neist aitab avastada
kandidaatprotseduurid RPA-le siindmuste logist. Logi jagatakse l6ikudeks kasuta-
des graafiteooria meetodeid. Iga 16ik esindab konkreetset t66 teostust. Loikudest
kaevandatakse mustrid, mis esindavad potentsiaalseid protseduure. Teine mee-
tod kontsentreerub protseduuride analiilisimisele automatiseerimise seisukohast
ja neile spetsifikatsioonide loomisele. Antud meetod kasutab moodsaid andmete
transformatsioonide avastamise tehnikaid ja esitleb mitmeid parandusi nende toi-
mimisse ja kvaliteeti. Samuti esitleb viitekiri meetodit, kuidas leida ja eemaldada
protseduure mis on semantiliselt samavéadirsed.

Kirjeldatud meetodid loovad uue meetodite perekonna, mida saab nimetada
Robootiliseks Protsesside Kaevandamiseks (Robotic Process Mining RPM). RPM
eesmirk on aidata RPA arendajaid ja analiilitikuid RPA elutsiikli alguses. RPM
abil saavad analiiiitikud kaardistada tegevused mida saab RPA abil automatisee-
rida ja siinteesida spetsifikatsioonid tegevustele mida saab automatiseerimisprot-
sesside lahtepunktina kasutada.

Kbik viitekirja tulemid on avalikult kittesaadavad kédsurea rakendused avatud
lahtekoodiga. Nad on koondatud tarkvara teenuse pohilisse todriista, mille nimi
on Robidium. Kavandatud meetodite tdhusust ja potentsiaalset kasulikkust on hin-
natud siinteetiliste ja tegelike kasutajate interaktsioonilogide abil. Eksperimendid
nditasid, et need meetodid suudavad leida automatiseeritavaid protseduure eluli-
setest interaktsioonilogidest, mida kasutajad tunnistavad omast kogemustest.

111



CURRICULUM VITAE

Personal data

Name: Volodymyr Leno

Date of Birth: 17.10.1994

Citizenship: Ukrainian

Language: Ukrainian, English
Education

2018-2021 joint doctor of philosophy program in computer science —
University of Tartu and University of Melbourne
2015-2017 master’s degree in software engineering — University of

Tartu
2011-2015 bachelor’s degree in computer science — Lviv Polytechnic
University
Employment
2021-present day software developer — Apromore
2021 research support — University of Melbourne
2016-2017 researcher and analyst — Minitlabs

Scientific work

Main fields of interest:
- robotic process automation
- process mining
- task mining

112



ELULOOKIRJELDUS

Isikuandmed
Nimi: Volodymyr Leno
Siinniaeg: 17.10.1994
Kodakondsus: Ukrainlane
Keelteoskus: ukrainlane, inglise
Haridus

20182021  Tartu Ulikooli ja Melbourne’i Ulikooli iihine doktoridpe
informaatika erialal

2015-2017 Tartu Ulikooli, tarkvaratehnika magistriope

2011-2015 Lviv Poliitehniline Ulikooli, informaatika bakalaureusedpe

Teenistuskaik

2021-ténapéev Apromore, tarkvara arendaja

2021 Melbourne’i Ulikooli, teadusuuringute tugi
2016-2017 Minitlabs, teadlane ja analiiiitik
Teadustegevus

Peamised uurimisvaldkonnad:
- robotprotsesside automatiseerimine
- protsessi kaevandamine
- lilesannete kaevandamine

113



I

II

III

v

VI

VII

II

LIST OF ORIGINAL PUBLICATIONS

Publications in the scope of the thesis

Leno, V. (2018). Multi-perspective process model discovery for Robotic Pro-
cess Automation. In CEUR Workshop Proceedings, vol. 2114, pp. 37-45.
Leno, V., Polyvyanyy, A., La Rosa, M., Dumas, M., & Maggi, F. M. (2019).
Actiong logger: Enabling Process Mining for Robotic Process Automation.
In Proc. of the Dissertation Award, Doctoral Consortium, and Demonstra-
tion Track of the International Conference on Business Process Management
(BPM) 2019, pp. 124-128.

Leno, V., Dumas, M., La Rosa, M., Maggi, F. M., & Polyvyanyy, A. (2020)
Automated Discovery of Data Transformations for Robotic Process Automa-
tion. In Proc. of the AAAI Workshop on Intelligent Process Automation (IPA)
2020. [Awarded as the Best Paper]

Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F. M., &
Polyvyanyy, A. (2020). Identifying candidate routines for Robotic Process
Automation from unsegmented Ul logs. In International Conference on Pro-
cess Mining (ICPM) 2020, pp. 153-160, IEEE.

Leno, V., Deviatykh, S., Polyvyanyy, A., La Rosa, M., Dumas, M., & Maggi,
F. M. (2020) Robidium: Automated Synthesis of Robotic Process Automa-
tion Scripts from Ul logs. In Proc. of the Dissertation Award, Doctoral
Consortium, and Demonstration Track of the International Conference on
Business Process Management (BPM) 2020. [Awarded as the Best Demo
Paper]

Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., & Maggi, F. M. (2021).
Robotic Process Mining: Vision and Challenges. Business and Information
Systems Engineering, pp. 1-14, Springer.

Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi, F. M., &
Polyvyanyy, A. (2021). Discovering data transfer routines from user inter-
action logs. Information Systems, p. 101916.

Publications out of the scope of the thesis

Leno, V., Dumas., M., & Maggi, F. M. (2018). Correlating activation and tar-
get conditions in data-aware declarative process discovery. In International
Conference on Business Process Management (BPM) 2018, pp. 176-193.
Springer.

Leno, V., Dumas, M., Maggi, F. M., La Rosa, M., & Polyvyanyy, A. (2020).
Automated discovery of declarative process models with correlated data con-
ditions. Information Systems, 89, p. 101482.

114



19.

22.
23.

24.

27.

29.
45.

49.

53.

55.

56.

59.

61.

62.

64.

66.

67.

71.
72.

73.

DISSERTATIONES INFORMATICAE
PREVIOUSLY PUBLISHED IN
DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

Kaili Miiiirisep. Eesti keele arvutigrammatika: siintaks. Tartu, 2000, 107 1k.
Varmo Vene. Categorical programming with inductive and coinductive
types. Tartu, 2000, 116 p.

Olga Sokratova. Q-rings, their flat and projective acts with some appli-
cations. Tartu, 2000, 120 p.

Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline {ihesta-
mine. Tartu, 2001, 138 1k.

Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

Hirmel Nestra. Iteratively defined transfinite trace semantics and program
slicing with respect to them. Tartu 2006, 116 p.

Marina Issakova. Solving of linear equations, linear inequalities and
systems of linear equations in interactive learning environment. Tartu
2007, 170 p.

Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.
Tartu 2007, 162 p.

Mart Anton. Mechanical modeling of IPMC actuators at large deforma-
tions. Tartu 2008, 123 p.

Reimo Palm. Numerical Comparison of Regularization Algorithms for
Solving I11-Posed Problems. Tartu 2010, 105 p.

Jiiri Reimand. Functional analysis of gene lists, networks and regulatory
systems. Tartu 2010, 153 p.

Ahti Peder. Superpositional Graphs and Finding the Description of Struc-
ture by Counting Method. Tartu 2010, 87 p.

Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

Mark FiSel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
Margus Treumuth. A Framework for Asynchronous Dialogue Systems:
Concepts, Issues and Design Aspects. Tartu 2011, 95 p.

Dmitri Lepp. Solving simplification problems in the domain of exponents,
monomials and polynomials in interactive learning environment T-algebra.
Tartu 2011, 202 p.

115



74.

77.

78.
79.

81.

83.

84.

87.

90.

91.

92.

94.

100.

101.

102.

103.

104.

108.

109.

110.

111.

112.

Meelis Kull. Statistical enrichment analysis in algorithms for studying
gene regulation. Tartu 2011, 151 p.

Bingsheng Zhang. Efficient cryptographic protocols for secure and
private remote databases. Tartu 2011, 206 p.

Reina Uba. Merging business process models. Tartu 2011, 166 p.

Uuno Puus. Structural performance as a success factor in software deve-
lopment projects — Estonian experience. Tartu 2012, 106 p.

Georg Singer. Web search engines and complex information needs. Tartu
2012, 218 p.

Dan Bogdanov. Sharemind: programmable secure computations with
practical applications. Tartu 2013, 191 p.

Jevgeni Kabanov. Towards a more productive Java EE ecosystem. Tartu
2013, 151 p.

Margus Freudenthal. Simpl: A toolkit for Domain-Specific Language
development in enterprise information systems. Tartu, 2013, 151 p.

Raivo Kolde. Methods for re-using public gene expression data. Tartu,
2014, 121 p.

Vladimir Sor. Statistical Approach for Memory Leak Detection in Java
Applications. Tartu, 2014, 155 p.

Naved Ahmed. Deriving Security Requirements from Business Process
Models. Tartu, 2014, 171 p.

Liina Kamm. Privacy-preserving statistical analysis using secure multi-
party computation. Tartu, 2015, 201 p.

Abel Armas Cervantes. Diagnosing Behavioral Differences between
Business Process Models. Tartu, 2015, 193 p.

Fredrik Milani. On Sub-Processes, Process Variation and their Interplay:
An Integrated Divide-and-Conquer Method for Modeling Business Pro-
cesses with Variation. Tartu, 2015, 164 p.

Huber Raul Flores Macario. Service-Oriented and Evidence-aware
Mobile Cloud Computing. Tartu, 2015, 163 p.

Tauno Metsalu. Statistical analysis of multivariate data in bioinformatics.
Tartu, 2016, 197 p.

Riivo Talviste. Applying Secure Multi-party Computation in Practice.
Tartu, 2016, 144 p.

Siim Orasmaa. Explorations of the Problem of Broad-coverage and
General Domain Event Analysis: The Estonian Experience. Tartu, 2016,
186 p.

Prastudy Mungkas Fauzi. Efficient Non-interactive Zero-knowledge
Protocols in the CRS Model. Tartu, 2017, 193 p.

Pelle Jakovits. Adapting Scientific Computing Algorithms to Distributed
Computing Frameworks. Tartu, 2017, 168 p.

Anna Leontjeva. Using Generative Models to Combine Static and Se-
quential Features for Classification. Tartu, 2017, 167 p.

Mozhgan Pourmoradnasseri. Some Problems Related to Extensions of
Polytopes. Tartu, 2017, 168 p.

116



113.

114.

116.

121.

122.

Jaak Randmets. Programming Languages for Secure Multi-party Com-
putation Application Development. Tartu, 2017, 172 p.

Alisa Pankova. Efficient Multiparty Computation Secure against Covert
and Active Adversaries. Tartu, 2017, 316 p.

Toomas Saarsen. On the Structure and Use of Process Models and Their
Interplay. Tartu, 2017, 123 p.

Kristjan Korjus. Analyzing EEG Data and Improving Data Partitioning
for Machine Learning Algorithms. Tartu, 2017, 106 p.

Eno Tonisson. Differences between Expected Answers and the Answers
Offered by Computer Algebra Systems to School Mathematics Equations.
Tartu, 2017, 195 p.

117



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

DISSERTATIONES INFORMATICAE
UNIVERSITATIS TARTUENSIS

Abdullah Makkeh. Applications of Optimization in Some Complex Sys-
tems. Tartu 2018, 179 p.

Riivo Kikas. Analysis of Issue and Dependency Management in Open-
Source Software Projects. Tartu 2018, 115 p.

Ehsan Ebrahimi. Post-Quantum Security in the Presence of Superposition
Queries. Tartu 2018, 200 p.

Ilya Verenich. Explainable Predictive Monitoring of Temporal Measures
of Business Processes. Tartu 2019, 151 p.

Yauhen Yakimenka. Failure Structures of Message-Passing Algorithms in
Erasure Decoding and Compressed Sensing. Tartu 2019, 134 p.

Irene Teinemaa. Predictive and Prescriptive Monitoring of Business
Process Outcomes. Tartu 2019, 196 p.

Mohan Liyanage. A Framework for Mobile Web of Things. Tartu 2019,
131 p.

Toomas Krips. Improving performance of secure real-number operations.
Tartu 2019, 146 p.

Vijayachitra Modhukur. Profiling of DNA methylation patterns as bio-
markers of human disease. Tartu 2019, 134 p.

Elena Siigis. Integration Methods for Heterogeneous Biological Data.
Tartu 2019, 250 p.

Tonis Tasa. Bioinformatics Approaches in Personalised Pharmacotherapy.
Tartu 2019, 150 p.

Sulev Reisberg. Developing Computational Solutions for Personalized
Medicine. Tartu 2019, 126 p.

Huishi Yin. Using a Kano-like Model to Facilitate Open Innovation in
Requirements Engineering. Tartu 2019, 129 p.

Faiz Ali Shah. Extracting Information from App Reviews to Facilitate
Software Development Activities. Tartu 2020, 149 p.

Adriano Augusto. Accurate and Efficient Discovery of Process Models
from Event Logs. Tartu 2020, 194 p.

Karim Baghery. Reducing Trust and Improving Security in zk-SNARKs
and Commitments. Tartu 2020, 245 p.

Behzad Abdolmaleki. On Succinct Non-Interactive Zero-Knowledge Pro-
tocols Under Weaker Trust Assumptions. Tartu 2020, 209 p.

Janno Siim. Non-Interactive Shuffle Arguments. Tartu 2020, 154 p.

Ilya Kuzovkin. Understanding Information Processing in Human Brain by
Interpreting Machine Learning Models. Tartu 2020, 149 p.

Orlenys Lopez Pintado. Collaborative Business Process Execution on the
Blockchain: The Caterpillar System. Tartu 2020, 170 p.

Ardi Tampuu. Neural Networks for Analyzing Biological Data. Tartu
2020, 152 p.

118



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Madis Vasser. Testing a Computational Theory of Brain Functioning with
Virtual Reality. Tartu 2020, 106 p.

Ljubov Jaanuska. Haar Wavelet Method for Vibration Analysis of Beams
and Parameter Quantification. Tartu 2021, 192 p.

Arnis Parsovs. Estonian Electronic Identity Card and its Security Challen-
ges. Tartu 2021, 214 p.

Kaido Lepik. Inferring causality between transcriptome and complex
traits. Tartu 2021, 224 p.

Tauno Palts. A Model for Assessing Computational Thinking Skills. Tartu
2021, 134 p.

Liis Kolberg. Developing and applying bioinformatics tools for gene
expression data interpretation. Tartu 2021, 195 p.

Dmytro Fishman. Developing a data analysis pipeline for automated pro-
tein profiling in immunology. Tartu 2021, 155 p.

Ivo Kubjas. Algebraic Approaches to Problems Arising in Decentralized
Systems. Tartu 2021, 120 p.

Hina Anwar. Towards Greener Software Engineering Using Software
Analytics. Tartu 2021, 186 p.

Veronika Plotnikova. FIN-DM: A Data Mining Process for the Financial
Services. Tartu 2021, 197 p.

Manuel Camargo. Automated Discovery of Business Process Simulation
Models From Event Logs: A Hybrid Process Mining and Deep Learning
Approach. Tartu 2021, 130 p.



	Introduction
	Research Problem
	Requirements to solution
	Research Method
	Contributions to the Research Area
	Thesis Structure

	Background
	Business Process Management
	Robotic Process Automation
	Process Mining
	Task Mining

	Robotic Process Mining: area, definition, architecture
	Concepts
	Architecture
	Summary

	State of the Art
	Segmentation
	Candidate routines identification
	Executable routines discovery
	Summary

	Discovery of candidate routines
	Approach
	UI Log Preprocessing and Normalization
	Segmentation
	Candidate routines identification

	Evaluation
	Datasets
	Setup
	Results
	Threats to validity

	Summary

	Discovery of executable routines
	Global transformations approach
	Baseline Approach
	Optimization 1: Grouping Examples by Target
	Optimization 2: Grouping Examples by Input Structure

	Local transformations approach
	Routines aggregation
	Evaluation
	Global transformation approach
	Local transformation approach
	Threats to validity

	Summary

	Software implementation
	Action Logger
	Robidium
	Summary

	Conclusion
	Summary of contributions
	Future work

	Bibliography
	Acknowledgement
	Sisukokkuvõte (Summary in Estonian)
	Curriculum Vitae
	Elulookirjeldus (Curriculum Vitae in Estonian)
	List of original publications
	Publications in the scope of the thesis
	Publications out of the scope of the thesis




