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1 INTRODUCTION 

In many contemporary societies, people find themselves in a prosperous environ-
ment with lots of sedentary jobs and leisure activities, and an online environment 
where different firms compete for the attention of people sitting on chairs and 
looking at screens (Bonnet & Cheval, 2022). On the caloric intake side, free 
market capitalism provides favorable circumstances for developing a food and 
beverage industry which maximize their profits by taking advantage of our pre-
ference to consume fast carbohydrates (Drewnowski et al., 2012; Lustig et al., 
2012). This environment has appeared very quickly while our bodies are still 
largely adapted to constrained diets entailing much less sugar, and to a lifestyle 
of hunting, gathering, and perhaps some agricultural work (Lieberman, 2015; Lee 
et al., 2016; Li et al., 2018). These adaptations lead to energy frugality in a setting 
where energy is abundant – avoiding movement more than necessary, eating 
more, and storing more energy in body fat than we need. The mismatch of our 
adaptations to contemporary society reflects well in the trend of last-mile food 
delivery: the customer can obtain very tasty calorie-dense food by only standing 
up from their chair to pick up the food at the front door. In this case at least the 
delivery people using non-electric bicycles utilize their muscle tissue vigorously, 
but even these workers may eventually be replaced by drone operators sitting on 
chairs. Technological and social innovations of the past two centuries lead to 
unprecedented increases in wellbeing and comfort in our daily lives. Instead of 
foraging, chasing prey, working long hours in the field or factory, increasingly 
more people can earn a living while working shorter hours often completing their 
work tasks in the comfort of a chair. Indeed, owning a comfortable chair and 
being employed at a well-paying desk job can be seen as symptoms of human 
development, some of the distinguished accomplishments of our civilization. 
Significant parts of economic growth can likely be attributed to the will to do 
work easier (e.g., automating manual labor) and to live a comfortable life: the 
desire1 to earn a high enough income that would allow to purchase products that 
increase comfort and to hire other people to do the uncomfortable tasks. But when 
such human development leads to epidemiological findings such as physical 
inactivity causing 7.2% of all-cause mortality globally (4.4% in low-income, 
6.8% in middle-income, and 9.3% in high-income countries) or 3.6 million deaths 
in 2016 (Katzmarzyk et al., 2022), the value of all this comfort appears question-
able. Modern prosperity and socio-technical environment (e.g., affordable com-
puters and smartphones) combined with an energy conservation tendency (Booth 
et al., 2017) and a sweet tooth have led to a global public health crisis (French 
et al., 2001). Overweight and obesity are becoming increasingly more prevalent 
(Afshin et al., 2017) including in children (Sahoo et al., 2015). Physical inactivity, 
affecting cardio-vascular health directly and through contributing to overweight, 

 
1  This is not to downplay the goal of social status attainment in the desire to earn a high 
income, but comfort is relevant as well. 



9 

itself is seen as a global pandemic (Kohl et al., 2012; Guthold et al., 2018) and a 
major contributor to the burden of non-communicable disease (Ding et al., 2016; 
Katzmarzyk et al., 2022; World Health Organization, 2022). Increasing physical 
activity (PA) levels could reduce the risk of many types of cancers (Moore et al., 
2016) and provide various mental health benefits (Biddle et al., 2019). 

To mitigate the negative health effects of such an environment, societies would 
be wise to prepare children accordingly. Many years of healthy life could be 
added to the population if the education- and social protection systems were able 
to effectively cultivate healthy habits for coping with the energy conservation 
pressures in this energy-abundant environment. 

There is some evidence that school-based PA interventions can be sustainable 
(Lai et al., 2014) and cost-effective (Abu-Omar et al., 2017) pathways for in-
creasing PA among youth, but the evidence for long-term cost-effectiveness is 
limited (Batorova & Sørensen, 2019). Recent meta-analyses imply the effects of 
school-based intervention, even if relatively cost-effective compared to some other 
intervention strategies, have so far been minuscule to small (Love et al., 2019; 
Jones et al., 2020; Neil-Sztramko et al., 2021; van Sluijs et al., 2021). Despite 
limited success of school-based PA interventions, childhood and youth are 
considered high-priority intervention targets for life-course health behavior 
(GAPA, 2012; Sawyer et al., 2012), and schools as already existing standardized 
educational infrastructure should be an obvious intervention setting (Pate et al., 
2006). Just as schools should teach reading skills and habits of critical thinking, 
they should as well teach physical literacy2 (Whitehead et al., 2018) and promote 
healthy habits. Public health authorities are stressing the importance of devel-
oping a theoretically well-grounded (Gourlan et al., 2016) evidence base (Lewis 
et al., 2017) for PA interventions so that the best practices could be scaled up for 
maximum public health impact (Reis et al., 2016; Ding et al., 2020). 

While it is important to measure theoretically grounded mediating variables 
(e.g., enjoyment/discomfort, attitudes, and motivation), the efficacy of PA inter-
vention is ultimately judged by measuring the (sustained) change of actual move-
ment behaviors. To generate the evidence base for school-based PA intervention, 
accelerometers, pedometers, and to a lesser degree, questionnaires can be used to 
estimate average PA intensity of students during the school day. However, such 
individual measures are intrusive and do not provide any information on where 
in this specific environment are children active or sedentary (Study I). Additio-
nally, the datafication of society brings increased sensitivity to privacy issues and 
new strict data protection regulations (e.g., Regulation 2016/679/EC) which com-
plicate individual-level privacy-intrusive research with human subjects. Intru-
siveness of using wearable sensors burdens the subjects and requires researchers 

 
2  Physical literacy can be defined as the interactive and simultaneous consideration of compe-
tence in physical skills, confidence, motivation towards physical pursuits, and the valuing of 
physical movement and/or interacting with the physical world (Edwards et al., 2017). It is 
expected that high physical literacy means a person can maintain a state of mind and body 
which leads to being physically active to a healthy degree throughout their life course. 
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to inform and obtain consent from the parents of all the subjects. Then the 
researchers must rely on the children adhering to accelerometer wear protocols. 
The intrusiveness of wearable sensors also limits the possible duration of conti-
nuous measurement. This leads to research designs where long-term sustainment 
is assessed with a follow-up study (possibly requiring a second round of obtaining 
informed consent) instead of continuously monitoring PA to detect sustainment 
or relapse. School is a very specific environment (schoolhouse, sports infrastruc-
ture, and playground) with specific behavioral patterns (mandatory education often 
with standard curriculum delivered in a similar manner). When administering and 
researching PA intervention in schools, this specificity of the setting can be 
exploited in the design of interventions and intervention studies. Continuous 
long-term ambient measurement of PA in the school building could provide a 
new perspective on the implementation, adoption, and sustainment of interven-
tions and their effects. Knowledge on the spatio-temporal distribution of PA in 
the school environment could carry important information: finding areas that 
facilitate or hinder PA and detecting changes in PA patterns associated with inter-
vention efforts. Ambient measurement with wall-mountable sensors can circum-
vent the problem of accelerometer wear protocol adherence. If such ambient 
measurement was conducted in a data-secure and privacy-preserving manner, 
then this method could be more ethical, possibly removing the necessity for ob-
taining informed consent. Privacy-intrusive methods may require more time and 
effort to navigate research ethics and data protection requirements, but privacy-
preserving methods could alleviate this bottleneck. Increasing methodical diver-
sity in PA intervention research should generally support developing the evidence 
base necessary for improving public health. School-level ambient PA measure-
ment could be especially useful for discovering simple and efficient interventions 
that affect the largest share of students throughout the school day – the critical 
interventions that would be scalable even in low-income regions. Acknowledging 
the potential utility of such long-term spatial/ambient measurement of PA and 
observing concurrent explosive development of computer vision and deep 
learning technologies (the “artificial intelligence/AI revolution”), this thesis set 
out to develop a methodology and a real-time video analysis sensor for mea-
suring PA of children in the field of view of a camera without violating their 
privacy (blind observation3). 
 
To achieve this goal, the following research questions were posed: 

RQ1: How to model physical activity intensity of children in video data? 

RQ2: Which video analysis approach can provide a stable physical activity signal? 

RQ3: How does automatic blind observation compare to human observation 
methods on a fundamental level?

 
3  The concept, introduced in this work, of collecting observational data through the visual 
modality without anyone having access to the visual information. 
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RQ4: How viable is the proposed method for research practice? 

RQ5: How to use such sensors in physical activity intervention research? 
 
As blind observation is a novel approach to collecting observational data on 
humans, another goal of this thesis is to reflect on the various implications of such 
methods (privacy, ethics, and trust). 

The substance of this thesis is generally methodological entailing the use of 
several technologies and methods to model and measure movement behaviors. 
The goal is to leverage recent technological advances to develop a method with 
desirable novel properties: unintrusive, privacy-preserving, location-specific PA 
estimation with a theoretically unlimited measurement duration. Contributing 
novelty to its arsenal of methods could move forward the research field currently 
struggling to promote PA. 

While this work develops a method for use in research tackling a specific 
public health problem4, some properties of the method could have implications 
for the sociology of scientific knowledge as well. For knowledge produced by 
traditional observational research, scientists and publics have had to rely on 
trusting the senses and reasoning of human observers. Automation of obser-
vational methods by computer vision and machine learning (ML) entails different 
trust relations5 and practices of scrutiny6 in the production of scientific knowl-
edge. Automatic observation, when conducted in a privacy-preserving manner 
(no video frames are exposed to human eyes), also has positive implications for 
research ethics. Privacy preservation is especially useful when studying children 
who may not be capable of truly informed consent to privacy-intrusive data col-
lection methods. Instead of obtaining written informed consent from the parent 
and child, the proposed method should allow to circumvent consent altogether 
and make it easier to obtain human research ethics approval. 

The research conducted for this thesis is inherently multidisciplinary. The 
nature of the problem regards health sociology, particularly the change of socio-
technical systems in modernization which lead to the proliferation of physically 
inactive lifestyles. The rationale to develop the method stems from epidemiology 
(the extent of inactivity and its health outcomes) and behavioral science (inter-
vention into health behavior). At the core lies kinesiology – quantifying the 
kinetic energy produced in human muscle tissue. Computer science sub fields of 

 
4  While the proposed method is designed for school-based PA intervention research, it could 
also be used in health sociology: comparing long-term PA patterns of schools in rich and poor 
regions/neighbourhoods or comparing urban and rural schools or schools of different societies. 
5  As social creatures, scientists may be inclined to trust a poorly performing but well-man-
nered smiling human observer more than a better performing machine which does not express 
social cues. 
6  The skill of human observers can be evaluated against test data or a known skilled ob-
server, but this does not guarantee they will perform as well in the field throughout the whole 
observation period. In case of a ML model, the training data can be thoroughly analysed, and 
the model can be tested under controlled conditions by independent research teams. Additio-
nally, researchers can be certain that the skill of the system is consistent over time. 
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machine learning, pattern recognition, and computer vision provide the knowl-
edge base and technologies to realize the proposed method in form of a privacy-
preserving video analysis sensor prototype. 

Research started out with a multidisciplinary scoping review article with an 
empirical section exploring correlations of hip-worn accelerometer signals with 
motion information in video (Study I). After the first batch of multimodal data 
had been collected and partially annotated, Study II was conducted to calibrate 
the measurement construct in the computer vision data set being developed. This 
was a knowledge transfer exercise where PA researchers’ domain knowledge was 
used to define the moderate to vigorous PA (MVPA)7 threshold in the eventual 
deep learning data set by using an online survey of video classification. Study II 
also explored hip and shoulder joint angle changes computed from 2D pose-esti-
mated kinematic skeletons as a novel PA intensity indicator. Expert knowledge 
was extracted by asking researchers to classify PA intensity in 24 short videos 
synchronized with hip-worn accelerometers. Then the expert group’s under-
standing of the MVPA threshold was extrapolated to the rest of the data set using 
the same accelerometers and pose-estimated hip angle features. Study III entails 
realization and demonstration of the method proposed in Study I in form of a 
real-time video analysis sensor prototype deploying a deep neural network trained 
on the collected data set. After demonstrating the possibility of privacy-preserving 
direct observation of PA, the discussion chapter of the cover article tackles privacy 
and trust issues concerning the development and deployment of such sensors in 
schools. 

The cover article is structured as follows. The theory section first covers the 
main theoretical paradigms underlying PA intervention research and provides 
speculations on the potential uses of video analysis under these paradigms. The 
theory section continues with an overview of PA intensity as the measurement con-
struct for the developed method. After this, classical observation methods are dis-
cussed and compared to a hypothetical privacy-preserving video analysis approach 
as an automatic equivalent to obtaining observational data. The theory section 
concludes with a brief overview of supervised machine learning and artificial 
neural networks as the basis for the video analysis approach. The methodology 
section covers majority of the research and development work conducted for this 
thesis: from developing the training data collection method up to the deployment 
of the trained model on the hardware of the prototype. The methodology section 
concludes with a reflection on the mistakes in the development process and offers 
considerations for future development. The results section provides assessment 
of the automatic observation processing pipeline and introduces indicators that 
can be used in eventual application of the method. The discussion section first 
comments on the viability of the developed method and proceeds to discuss issues 
of privacy, trust, and ethics related to development and potential application of 
blind observation methods. The cover article concludes with answers to the 
research questions.

 
7  A widely adopted PA intensity construct discussed in Chapters 2.2 and 3.3 
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2 THEORETICAL FRAMEWORK 

The following section covers some major theoretical paradigms in PA inter-
vention and how an automatic video analysis approach could be used in research 
under these paradigms. This is followed by sections on the measurement construct 
(PA intensity), a theoretical comparison of human and automatic observation, and 
a brief overview of supervised machine learning and artificial neural networks as 
the basis of the method. 
 
 

2.1 Theoretical bases for physical activity intervention 

In the mid-70s, the discourse in public health started shifting from curing to pre-
venting illness (Parish, 1995). The concept of health promotion stated to emerge 
from policy documents, but at first, the focus was on individual’s responsibility 
to adopt healthy behaviors with the public health authorities assuming an edu-
cational role – informing the populace on positive and negative health effects of 
various behaviors. As a turning point, Parish (1995) notes the World Health Orga-
nization’s (1985) Health For All programme which acknowledged health in-
equalities and introduced proactive concepts such as improving access to health, 
developing an environment conducive to health, and promoting positive health 
behavior and appropriate coping mechanisms. Baum and Fisher (2014) note that 
throughout the history of public health policy, there have been two conflicting 
views on health promotion: whether efforts should be focused on modifying un-
healthy behaviors or whether state intervention should focus on the underlying 
social and economic factors as the primary determinants of health behavior. This 
chapter is divided by the same logic applied to the theoretical bases of PA inter-
vention. First, I present theories that explain movement behaviors and sedentari-
ness at the level of the individual. Then I cover theories where the individual and 
their movement behaviors are seen as situated in social and ecological context. 
To give an overview and comparison of the theories and their application in PA 
intervention, I have compiled Table 1. 
 

2.1.1 Individual-level theories 

Majority of theory-based PA interventions are individual-level approaches (the 
four first entries in Table 1) (Rhodes et al., 2019) focusing on how and why 
individuals move or avoid movement; how can they be influenced to move or to 
avoid longer periods of sedentariness? Rhodes and colleagues (2019) give an 
overview of the historical development of theoretical bases for PA interventions. 
They describe how the social cognitive framework developed in the mid-20th 
century and has since replaced behaviorism and become the dominant paradigm 
for explaining PA and informing interventions. While automatic responses to 
stimuli can explain some PA behaviors (e.g., rushing across the street when 
observing an approaching vehicle), physical labor and exercise require a more 
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cognitive explanation. When psychologists realized the inability of behaviorism 
to explain many complex mental states and behaviors, cognitive theories started 
to emerge. The theory of reasoned action (Fishbein & Ajzen, 1975) suggested that 
behavior is a consequence of behavioral intention which itself is determined by a 
combination of subjective norms and attitudes towards the behavior and/or its 
expected outcomes. Out of this grew the theory of planned behavior (Ajzen, 1991) 
which added the concept of perceived behavioral control as a third antecedent of 
behavioral intention – if one has a positive attitude towards jogging and deems it 
socially desirable, but believes that they cannot find the time to jog, they may not 
go jogging. Somewhat like the construct of perceived behavioral control, Ban-
dura’s (2004) social cognitive theory proposes the concept of self-efficacy as a 
major factor influencing health habits directly and through its impact on goals, 
outcome expectations and perception of sociostructural factors. Self-efficacy is 
an individual’s belief in their capacity to perform a particular task (Bandura, 1997) 
and has been widely studied in context of PA promotion (Williams & French, 
2011; Ramirez et al., 2012; Tang et al., 2019). Constructs of social cognitive 
theories have been estimated to explain one-third of PA in adolescents (Plotnikoff 
et al., 2013). Rhodes and colleagues (2019) suggest the lasting popularity of social 
cognitive theories in PA intervention is partly due to the methodological effi-
ciency they allow: attitudes, subjective norms, perceived control, and intentions 
can be studied with questionnaires.  

More recent theories try to consolidate behaviorism and cognitivism by ac-
knowledging that some bodily movements (or their lacking) can result mainly 
from cognitive processing while others may have more non-conscious reasons 
(Rebar et al., 2016; Ekkekakis, 2017; Strobach et al., 2020). A survey respondent 
claiming to have motivation and intention to go to the gym does not guarantee 
that they will as demonstrated by the intention-behavior gap revealed in a meta-
analysis by Rhodes and Dickau (2012). Dual-process theories could help to 
explain habitual PA (e.g., developing a habit for active transport when motorized 
options are available or vice versa) and sedentariness [e.g., neurochemical pro-
cesses associated with various screen-viewing behaviors (Burhan & Moradzadeh, 
2020; Lindström et al., 2021; Westbrook et al., 2021; Aru & Rozgonjuk, 2022) 
and the energy conservation tendency (Lee et al., 2016; Cheval et al., 2018)]. 
Cognitivist theories are more relevant to exercise behaviors which constitute just 
one very specific part of the overall PA dose. Re-introducing stimulus-reward 
learning allows to consider multi-target interventions where some components 
try to induce cognitions conducive to life-long participation in regular exercise 
while other components try to induce persistent PA responses to common cues 
(e.g., a habit of taking the stairs or taking regular breaks from prolonged sitting). 
The automatic pathway of behavior regulation could be exploited for associating 
movement behaviors generally with positive affective experiences [e.g., inducing 
reward when significant movement is performed or exercise discomfort is felt 
(Conroy & Berry, 2017; Maltagliati et al., 2022)].  



15 

Table 1. Major theoretical bases for PA intervention. 

Theoretical 
paradigm 

PA promotion 
pathway 

Negative 
features 

Positive 
features 

Intervention effect 
estimation 

Behaviorist Associating PA 
with positive 
reward, sitting 
with negative 
reward 

Inducing reward 
at exactly the 
right time is 
difficult; mea-
suring affect is 
hard

Potential lasting 
behavior change 
(developing PA-
seeking habits) 

Observe behavioral 
reactions related to 
stimulus before and 
after intervention 

Social 
cognitivist 

Teaching to 
value PA and 
promoting self-
efficacy 

Improving 
attitudes do not 
guarantee 
improved 
behavior

Relatively easy 
to administer 
and measure 

Knowledge and 
attitudes before and 
after intervention; 
PA measures 

Dual-
process 
theories 

Targeting both 
cognitions and 
affects, reflective 
and automatic 
processing 
associated with 
movement 
behaviors 

More complex 
intervention and 
study design; 
measuring affect 
in general and at 
the right time is 
hard 

Considers both 
behavior regu-
lation pathways 

Test both affective 
and cognitive vari-
ables, PA measures 

Humanistic/ 
organismic 
(mainly 
SDT*) 

Alluding to 
universal 
psychological 
needs when 
promoting PA 

Associations 
between inter-
vention stimuli 
and psycho-
logical needs are 
difficult to ope-
rationalize

Universality: 
everyone desires 
autonomy, 
competence, and 
relatedness 

Measure moti-
vation-related 
variables with a 
questionnaire; PA 
measures 

Social 
practice 
theories 

Influencing 
practices and/or 
their context to 
increase PA 

Hard to ope-
rationalize 
concrete 
constructs 

Sustaining 
intervention 
delivery by 
shifting culture 
/habituating 
practices of PA 
intervention

Study qualitatively, 
quantitatively or 
observe changes in 
practices, signs of 
resistance and 
adoption; PA 
measures 

Socio-
ecological 
models 

Facilitating PA 
through as many 
social-environ-
mental factors/ 
levels as possible

Expensive; hard 
to operationalize 
concrete con-
structs; hard to 
disentangle 
intervention 
effects of dif-
ferent levels and 
their inter-
actions

Potentially 
largest and 
widest impact on 
PA 

Monitor population-
level PA for overall 
intervention effects, 
study efficacy of 
specific components 
separately 

Compiled by author based on literature cited in this chapter. 
* Self-determination theory 



16 

Recently a dual-process theory has been proposed specifically for movement 
behaviors. The theory of effort minimization in PA (TEMPA) (Cheval & Bois-
gontier, 2021) combines the controlled and automatic evaluations of movement-
related cues with effort minimization – a neuropsychological process that op-
timizes for cost-efficiency of behaviors. TEMPA suggests that movement-related 
cues are perceived as effortful which, in combination with the organismic 
tendency to conserve energy, provides a cost context for the automatic and cogni-
tive evaluation systems to predict whether the behavior is worth the effort. When 
noticing a juicy apple on a branch, the decision to climb the tree could depend on 
several considerations. It can likely be influenced by affect towards apples of that 
color based on prior experience, and the blood glucose level at the time of ob-
serving the apple. On the controlled evaluation side, one may consider potential 
negative outcomes (“Can I climb the tree safely without injuring myself?”), alter-
natives (“Where is the nearest food place?”), or social acceptability (“Am I al-
lowed to get that apple? Is it appropriate for my age and social status?”). By the 
effort minimization theory, these evaluation processes happen in context of per-
ceived effort – how hard/strenuous the task seems. The person could decide that 
getting the apple is desirable, acceptable, and worth the effort so they start 
climbing. The experienced effort of the behavior and associated discomfort im-
mediately feed back to the dual processes to constantly re-evaluate the cost-
effectiveness of the endeavor. Indeed, one may decide, after a few attempts, that 
the apple is not worth the effort. A more cognition-heavy example behavior on a 
longer time scale could be choosing between job offers based on the description 
of work tasks and later considering the experienced effort in employment conti-
nuation decisions. TEMPA could help explain how school-based interventions 
have not been able to significantly reduce daily sedentary time or increase PA. It 
has been suggested (Ridgers et al., 2014; Jones et al., 2020) that increased PA 
during the school day may lead to compensatory behaviors after school. From the 
effort minimization perspective, it makes sense that engaging in high-effort 
movement behaviors during the day can lead to physiological states (fatigue) 
which in turn leads to perceiving increased effort in movement-related cues later 
in the day. Intervention components could possibly be designed to target effort 
perception of common movement-related cues (Maltagliati et al., 2022) ap-
pearing in school. If particular cues are fixed in space (e.g., an exergame8 inter-
face or a set of stairs next to an elevator) or space and time (e.g., teachers enfor-
cing active breaks during class), then visual room-level estimation of PA can 
reveal the PA reactions to these cues and changes in these reactions over time. 

The fourth individual-level paradigm approaches PA intervention through 
universal humanistic/organismic attributes (Rhodes et al., 2019). Maslow’s 
hierarchy of needs (Maslow, 1943) was among the first theories describing uni-
versal psychological mechanisms of behavior motivation although its successors 
have seen wider application in PA intervention. Self-determination theory (Deci 
& Ryan, 1985; Ryan & Deci, 2000) suggests that people want to feel autonomy 

 
8  Exergames are videogames which require significant PA e.g., Staiano et al. (2013). 
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(e.g., engaging in PA on one’s own volition rather than as a reaction to external 
power), competence (e.g., higher motivation to play basketball if one feels they 
are good at it), and relatedness (e.g., higher motivation to play basketball with 
friends than with strangers). In the PA domain, self-determination theory has 
been applied mainly to exercise behaviors and with consistent success (Teixeira 
et al., 2012). From the perspective of state intervention into public health, such 
universalist approaches appear desirable as they imply a “one size fits all” stra-
tegy which should be theoretically equitable and relatively easy to implement top-
down. 
 

2.1.2 Social- and environmental theories 

The dominating individualist approaches to PA intervention have been criticized 
for being theoretically blind to the social context and -nature of sedentary and 
active behaviors (Spotswood, Wiltshire, et al., 2021). When focusing on the indi-
vidual and their internal processes - trying to influence a child to move more and 
sit less – one may neglect important social-environmental determinants of PA. 
Social practice theories focus on organized/coordinated and routinized forms of 
activity (practices) where individual behavior is seen an expression of taking part 
in social practices, performing a (role in a) practice or carrying a practice (Welch, 
2017). Welch (2017) argues that practice theories promise a reframing or even a 
resolution to the attitude-behavior gap which he sees as a clear sign of failure of 
the cognitivist paradigm to explain human activity – these theories ignore the 
possibility of various barriers unrelated to norms, attitudes, and values. From a 
practice theory viewpoint, the physical inactivity pandemic could be explained 
by global changes in existing practices and/or the appearance and proliferation of 
new practices with a smaller PA content. Applying such thinking to school-based 
PA intervention can shift the target from the behavior of individual students to 
the practices or the social environment and -structures that enable or encourage 
practices of various PA content. Instead of asking “Why is this child sedentary? 
or “Why is this child active?”, it may be more useful to ask questions like: “In 
which contexts do children tend to move and in which do they tend to sit?”; 
“Which common practices entail more movement and which more sitting?”; 
“How and in which contexts do these practices emerge?”; “Which properties of 
those practice contexts are conducive to movement or sedentariness?”; “Can we 
manipulate these contextual properties to induce healthier behaviors?” and most 
importantly: “How can we scale up inducing contexts where healthier practices 
appear?”. In school-based PA intervention, part of the social-environmental con-
text at intervention time is fixed. Children of the same society are sent to the same 
institution for the same reasons at the same times, then attempting to get them to 
engage in the same practices in hopes of achieving the same results: educated, 
well-socialized, healthy, and happy citizens. This property should allow research 
designs where various contextual elements can be manipulated and changes (if 
any) in practices, their performance, and their PA content observed. Whole-of-
school interventions (Colabianchi et al., 2015; Mooses et al., 2021; Pulling Kuhn 
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et al., 2021; McMullen et al., 2022; Webster, 2022) aim to increase PA of youth 
before, during, and after school by engaging school staff, students, parents, and 
the wider community. A practice theory lens can help understand the resistance 
to and adoption of new practices necessary for sustained implementation and 
eventual habituation of intervention components delivered by school staff (Spots-
wood, Vihalemm, et al., 2021). Combining practice theory analysis of intervention 
delivery with automatic PA observation could provide valuable information on 
the dynamics of adoption and sustainment of whole-school interventions and their 
effects on the average level and distribution of PA in the schoolhouse throughout 
and after the school day. 

Finally, there are intervention strategies attempting to cover a whole range of 
social-environmental influences on movement behaviors. Ecological models 
(Sallis et al., 2006; Sallis & Owen, 2015) view behavior as resulting from various 
environmental influences from multiple levels acting on and interacting with the 
intrapersonal core (e.g., demographics, phenotype, health status, psychology of 
the individual). Social-environmental influences can range from the level of the 
immediate social and physical environment (e.g., home, parents, school route, 
school, classmates, teachers, access to a smartphone) to the organization (e.g., 
school PA policy and resources), community (e.g., availability of football fields 
and football players), state (e.g., youth sport participation subsidies), up to the 
global environment (e.g., climate, technological megatrends, internet, World 
Health Organization policy, global economy, and energy prices). In addition to 
covering the PA effects of the physical environment, this perspective unites the 
intervention efforts of actors at multiple levels into a single framework: public 
health policy at global, international, national, local, and organizational levels 
together with PA intervention efforts of parents, teachers, community members, 
and society in general (rituals, traditions, and cultural attitudes related to various 
sedentary or active behaviors like smartphone usage or different modes of trans-
portation). While they may provide stronger and wider public health impacts, 
implementing such multi-level interventions and obtaining evidence on inter-
vention effects is difficult and expensive especially when considering interactions 
of effects at multiple levels and differences at the intrapersonal level (Sallis & 
Owen, 2015). In a holistic multi-level PA intervention program encompassing 
state policy, media campaigns, spatial planning, community, school, and family 
levels it could be nearly impossible to disentangle the PA effects of stimuli at 
different intervention levels specific to age, gender, and socio-economic status. 
Paradoxically, the more thorough and successful an intervention program is 
(maximizing the number and quality of intervention stimuli at all levels), the 
harder it will be to isolate its unique effects: with increased integration and main-
streaming of health promotion comes decreased visibility of particular interven-
tions (Dooris et al., 2007, p. 339). To enhance the effectiveness of multi-level 
ecological PA interventions, individual components could be studied separately 
using (quasi)experimental designs. Computer vision-based automatic observation 
could be useful for testing the efficacy of certain location-specific intervention 
components (school gym and playground) and comparing different con-
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figurations of the physical environment (temperature, markings, stationary PA 
equipment, playground, and its parts). 

As ecological models can theoretically cover all the environmental influences 
on our movement behaviors, what remains is our genes which have been found 
to explain from 20% to 90% of the variation of PA in adults (Lightfoot et al., 2018). 
A comprehensive PA promotion strategy would likely combine knowledge of 
genetic correlates (Z. Wang et al., 2022) of movement behaviors (personalized 
preventive medicine), known risk groups [e.g., the inactivity tendency of ado-
lescent girls (Duffey et al., 2021)] while maintaining a unified strategy for the 
total population (e.g., universal PA-promoting environmental configurations, inter-
ventions targeting the universal preference for low effort behaviors and universal 
psychological needs as per the self-determination theory). 
 

2.1.3 Synthesis 

Privacy-preserving location-based automatic PA observation could be useful for 
PA intervention research in all the described theoretical paradigms given an ap-
propriate setting and research design. In school-based intervention (and possibly 
other interventions where the same population appears consistently in the ob-
served area), constructs of individual-level theories can be monitored with ques-
tionnaires (less so for affective variables) at multiple time points while conti-
nuously monitoring PA levels in the building using video analysis. Practice theory-
based interventions could benefit similarly but perhaps using more qualitative 
methods to monitor practices. In case of ecological models, continuous privacy-
preserving location-based monitoring of PA draws an obvious connection to 
research concerning the built environment and stationary equipment meant to 
induce PA. Surveilling a larger area of interest for a longer period using many video 
analysis sensors can provide insight into the spatio-temporal dynamics of move-
ment behaviors in a specific ecological setting throughout the seasons. An under-
standing of possible seasonality of PA at different time scales (PA in the morning 
and after lunch, during colder and warmer months) could enhance the evidence 
base for PA intervention by contributing to theory and informing the timing of 
certain types of interventions. 

To synthesize a PA intervention policy and research strategy, combining an 
ecological model of health behavior (Sallis & Owen, 2015) with the theory of 
effort minimization in PA (Cheval & Boisgontier, 2021) seems appealing. Eco-
logical approaches have the potential for the widest public health impact, and are 
easily communicable to policymakers in charge of sustaining and changing the 
environment we live in. The ecological model also implies a role and respon-
sibility of parents, teachers, and the wider community in the health behavior of 
children and youth. TEMPA is favorable due to its specificity to bodily move-
ment when the other individual-level theories were developed for different pur-
poses and fit better to specific meaningful actions. Cognitivist theories deal with 
attitudes, which, by definition, require a concrete object – attitude towards some-
thing specific such as the act of watching television or taking part in dance classes. 
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TEMPA on the other hand deals with PA and its avoidance in general – the ten-
dency to prefer actions that require less energy expenditure. Planting TEMPA at 
the intrapersonal core of a holistic ecological model could already hint at inter-
vention strategies: what can various actors at various places/settings do to reduce 
effort perception of various movement-related cues perceived by children and 
youth? Can we build automatic effort perception modification systems into the 
physical environment? Can we adopt a pedagogy and culture of convincing 
children how easy and fun it is to perform all kinds of physical activities? Can we 
consistently provide enjoyable experiences and/or outcomes whenever and 
wherever children engage in vigorous movement? 

 
 

2.2 Physical activity and its intensity 

When developing a method for measuring anything, one needs a thorough under-
standing of the measurement construct. Caspersen and colleagues (1985, p. 126) 
defined PA as “any bodily movement produced by skeletal muscles that results in 
energy expenditure”. The dose of PA consists of the components of activity type/ 
mode, duration, frequency, and intensity. As this thesis develops a method for 
location-based PA estimation, the frequency and duration components are not 
discussed further – these are not captured in a stationary video camera feed. 
Study I provides an overview of the various methods used for measuring PA, but 
here I focus on inferring PA intensity from wearable triaxial accelerometers 
(Figure 1) which are used for developing the proposed method. Intensity of PA 
refers to the quantity of energy expended on bodily motion often expressed rela-
tive to the resting energy expenditure9 of the person – that is in metabolic equiva-
lent of task units (METs). When an activity requires twice the calories burned 
when sitting quietly, the intensity of that activity is two MET. Strictly, the MET 
concept is individual as people have different bodies and metabolisms, however 
an oxygen utilization rate of 3.5 ml per kg of body mass per minute has been used 
as convention for one standard (adult) MET. Resting metabolism is higher in pre-
pubescent children and generally higher in males (Harrell et al., 2005) so using 
the standard adult metabolism to define PA intensity is not very meaningful in 
the school-age population. For PA measurement in youth, the variability of 
anthropometrics, metabolisms, and the rate of their change (girls reaching puberty 
earlier) make it very difficult to translate accelerometer signals to a standard PA 
intensity construct (Figure 1). Some have suggested an age-based approach 
(Freedson et al., 2005) to account for differences in metabolic development and 
anthropometrics. In such cases however, the same accelerometer cut-off value is 
applied to people of same age but different body composition and fitness level 
while actually, a heavier person needs to expend more energy to achieve the same 
acceleration (Raiber et al., 2017; Raiber et al., 2019). Due to the complexities of 

 
9  Resting energy expenditure (REE) is the absolute energy expenditure in the resting 
position and resting metabolic rate (RMR) is REE per unit of body mass. 
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translating accelerometer data to standard PA metrics in youth (McMurray et al., 
2015), a compendium-based approach (Butte et al., 2018) has been developed: 
anchoring PA measurement to a collection of energy costs of many common 
activities (e.g., reading, playing board games while standing, trampoline, etc., 
altogether 196 activities in 16 categories) measured in several age groups. Even 
this approach is not strictly correct because instead of measuring resting meta-
bolic rate, it relies on defining the MET based on Schofield’s regression equations 
(1985) for predicting basal10 metabolic rate in youth from age, sex, and body 
weight. For developing the machine learning data set used for the video analysis 
method, this thesis opted to rely on expert knowledge in dealing with the un-
certainty and complexity of translating accelerometers to PA intensity (Study II 
and Chapter 3.3). 
 

 
Figure 1. Some factors influencing the accelerometer signal and its translation to a stan-
dard PA intensity scale based on (individual) MET. As this diagram is only meant to give 
a brief overview of the complexity of measuring PA in the school-age population, not all 
the relations and interactions between all these elements are brought out or elaborated on. 
* BMI – the body mass index (weight/height2 in kg/m2) as an indicator body fat. 
 
 

 
10  Since basal metabolic rate refers to the metabolism in a state of total relaxation (the number 
of calories per kg body weight necessary for the most basic life-sustaining functions), it is 
lower than resting metabolic rate measured from sedentary position which is used for the 
classic definition of MET. Hence it is called the youth MET – METy. Also, the regression 
equations are not guaranteed to predict the true basal metabolic rate (Bottà et al., 2020). 
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Associating PA intensity levels, their prevalence, and distribution in daily life to 
health outcomes (dose-response relations) is a complex research topic (Shephard, 
2001; Warburton et al., 2006; Arem et al., 2015; Oja et al., 2017; Ekelund et al., 
2019). Performing a few short bouts of intensive PA may have different health 
effects than doing a longer bout of less intense PA. These effects could be dif-
ferent between sexes, age groups, body types, and fitness levels. How does one 
even draw the line between not so healthy lower PA intensities and the healthier 
higher intensities? These questions have been tackled by various public health 
authorities and their advisory committees based on reviewing state of the art 
research discussed below. 

While prior public health guidelines were focused on promoting vigorous 
exercise, by the mid-90s evidence had accumulated that convinced leading experts 
to start stressing the importance of moderate intensity PA (MPA) as activities with 
an intensity of 3–6 MET (Pate et al., 1995). The Physical Activity Guidelines 
Advisory Committee (2008) determined that roughly 500 to 1000 MET-minutes 
of moderate to vigorous PA (MVPA) per week should bring sufficient health 
benefits for the majority of people (walking for 200 minutes at 3 MET intensity 
would be 600 MET-minutes). Instead of using the concepts of METs and MET-
minutes, the guidelines developed from this research (U.S. Department of Health 
and Human Services, 2008) encourage to communicate MPA as the equivalent 
of brisk walking. For children and youth, at least 60 minutes of daily MPVA has 
been recommended (Janssen & LeBlanc, 2010), however the authors admit that 
there is a lack of evidence on the health effects of lower intensity activities and 
that the MPA threshold is inconsistently set at either 3 or 4 MET11 in youth. As 
such, the MVPA intensity threshold and prescribed dose used in public health 
recommendations are somewhat arbitrary. Oversimplifications made in the inte-
rest of communication may introduce a problem. Blair et al. (1992) noted an 
apparent incorrect dichotomous view of PA intensities among professionals and 
the general public – as if PA has health benefits only when exceeding the daily 
recommended dose. In actuality the dose-response relationship is gradual: even 
some PA is better than just sitting all day (Lee, 2007). The WHO 2020 guidelines 
for PA (Bull et al., 2020) acknowledge these issues, putting less emphasis on 
minutes of MVPA while stressing that some PA is better than none and more PA 
is better for optimal health outcomes. These latest recommendations also parti-
cularly prescribe muscle-strengthening activities and focus more on reducing 
sedentary behaviors (sitting, reclining, or lying) as a separate target not just con-
sidering sedentariness as low intensity PA to be treated similarly to standing. 
 

 
11  Assumptions on both the numerator (PA intensity threshold for MVPA - how brisk a walk 
should be to constitute MVPA) and the denominator (resting energy expenditure) in MET 
definition can lead to these discrepancies. When assuming a low resting energy expenditure, 
brisk walking may require 4 MET. When measuring the actual resting energy expenditure in 
prepubescent children, brisk walking could possibly be achieved even below 3 MET. 
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2.3 Direct observation and its automation 

Humans are highly visual creatures (Kaas & Balaram, 2014) so one might assume 
that observation as a research method should come naturally to us. Indeed, we 
have evolved brain structures for visual processing unprecedented in mammals 
(Kaas & Balaram, 2014). However, we are also social creatures with adaptations 
for processing visual information specifically from other people and their 
behaviors (Pitcher & Ungerleider, 2021). Taken together we have powerful means 
for processing visual information in general, but for methodically observing our 
own species, there may be blind spots to some visual cues (e.g., those which have 
not provided a fitness advantage if noticed quickly) and over-attention to others 
(e.g., noticing signs of aggression). It has been shown that during action obser-
vation, the mirror neuron system generates motor simulations of observed actions 
and this process is modulated by various factors including the actor, the observer, 
their relationship (even race, ethnicity, in-group/out-group membership) and the 
context (Kemmerer, 2021). It is not clear how the involvement of the mirror 
neuron system and its motor simulations impact the quality of observational data. 
But intuitively, observation of other animals which do not activate the mirror 
neuron system at all should be less biased. 

Observation methods can vary greatly in data collection procedures, observed 
behavioral categories, and the type of inference they allow. On the one end, there 
is strict ethological observation of natural behavior which aims to fully describe 
behavioral sequences constrained in time and space based on a predefined 
ethogram (e.g., Jones et al., 2016) of mutually exclusive behavioral categories. 
On the other end there is participant observation in sociology where the observer, 
instead of taking a cold external view, takes part in the activities of the group they 
study and where behavioral categories12 are not determined a priori, but emerge 
gradually throughout fieldwork and are often combined with interviews (Platt, 
1983). 

Already the pioneers of ethnography and cultural anthropology noted the 
conflicting nature of methodical observation of human behavior. Bronislaw 
Malinowski stated in “Argonauts of the Western Pacific”: 

 
As to the actual method of observing and recording in field-work these imponder-
abilia of actual life [“…a series of phenomena of great importance which cannot 
possibly be recorded by questioning or computing documents, but have to be 
observed in their full actuality”] and of typical behaviour, there is no doubt that 
the personal equation of the observer comes in here more prominently, than in the 
collection of crystallised, ethnographic data. (Malinowski, 1922/2017, p. 21). 
 

While naturalistic observation promises objective knowledge in the sense of re-
cording behaviors as they occur in their natural setting (except for the presence 
of the observer), the “personal equation” of the observer still influences attention 

 
12  Quantifying the prevalence of specific behaviors is not the goal. In participant observation, 
visual information on behaviors and interactions are combined qualitatively with other sources 
of data to reveal (social) meanings. 
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and thereby also the data. If different observers are predisposed to notice different 
cues and aspects of behavior, then they are also likely to produce different 
recordings. While such individual differences may not be a major source of error 
in ethological studies of humans observing other animals, the life experience, 
cultural background, and social position of the observer can affect results much 
more when studying humans. For this, social scientists are taught to “switch off” 
their cultural background as much as possible to reduce bias in observation and 
interpretation of the phenomena being studied. Human observation of humans is 
also complicated by our own familiarity with human behavior such that research-
wise relevant and visible behavioral information may be missed or left un-
recorded since it seems so natural and trivial (Richer, 2017). Striving to minimize 
subjectivity by viewing the observed person as a biological machine, as opposed 
to a moral agent, can feel uncomfortable and amoral as we are not used to such 
cold objectification of people (Richer, 2017). 

Aside from the methodological problem of gaining objective knowledge from 
subjective experience, observational research also entails a difficult ethical 
problem. While it was not considered a major issue during the early days of cultural 
anthropology, privacy is now considered a fundamental right. As such, the very 
act of observing a person could be considered a rights’ violation. Researchers can 
get past this by obtaining consent from the research subjects [this introduces 
potential subject reactivity – the Hawthorne effect (McCarney et al., 2007)] or by 
doing the study in a public space where people observing each other is unavoidable. 

Direct observation has been used to assess children’s PA often with methods 
designed for specific contexts (e.g., recess, physical education class, playground, 
or at home) and focusing on context-specific research questions (McKenzie, 2002). 
Since observation allows to capture rich contextual information associated with 
the observed behaviors, it is especially useful for studying cognitive-behavioral 
and ecological antecedents of PA (Sallis & Owen, 2015). As such, observation is 
a natural fit to school-based PA intervention research that aims to understand 
which properties of the school environment and which strategies of intervention 
facilitate or hinder PA. 

There are several possible sampling protocols for PA observation: one could 
mark down whether a behavior occurs during a time interval [partial time re-
cording or interval recording (McKenzie & van der Mars, 2015)] or one could try 
to estimate the average PA intensity level for the time interval similar to Study II. 
But most commonly momentary time sampling is used: collecting the observation 
sample at the end of the time interval (PA intensity of the observed subject at the 
moment of the audio cue), allowing more attention for observing contextual 
factors (McKenzie, 2002). In several established instruments, the intensity of PA 
is defined by a combination of semantic categories of body position, locomotion 
(foot-to-foot movement), and a more obscure notion of energy expenditure for 
the higher intensity class. In the System for Observing Fitness Instruction Time 
(SOFIT) (McKenzie, 2015), the activity levels are defined as (1) lying down, 
(2) sitting, (3) standing, (4) walking (considered as MPA), and (5) vigorous which 
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corresponds to energy expenditure beyond what is needed for ordinary13 walking. 
McKenzie (2015) specifies: “When the student is in transition from one category 
to another, enter the code for the higher category”. From the sampling method and 
observed categories, time spent in MVPA is estimated. SOFIT was shown to be 
valid for measuring children’s PA by using heart rate as criterion measure (Rowe 
et al., 1997). It has been suggested that combining SOFIT observations with sub-
jects’ body weight can even provide a relatively robust measure of PA energy 
expenditure (Honas et al., 2008). SOFIT has been widely used in physical edu-
cation research (Smith et al., 2018). 

With the rapid development of deep learning and computer vision, the question 
arises whether direct observation methods could be automated. Human observers 
require food, bathroom breaks, sleep, and salary. As with the automation of 
manual labor, machines promise to overcome these basic human limitations. To 
the author’s knowledge, the first investigation into the potential of video-based 
PA measurement was conducted by Silva et al. (2015). They used a top-down 
view camera in a gymnasium combined with a tracking algorithm. Anchoring the 
pixels of the scene to real-world coordinates on the basketball court allowed them 
to obtain a measure of PA by computing the velocities of the tracked subjects. 
This system was designed as a semi-automated observation tool where video was 
recorded for later analysis by the researcher using the tool. Hence, full automation 
of PA measurement with privacy preservation was not the goal of this system. 
Carlson and colleagues (2017; 2020) were the first to develop a PA observation 
video analysis approach using deep neural networks (discussed in Study II). Their 
system outperformed human observers both in counting people and assessing the 
share of people active above the MVPA threshold determined by accelerometers 
(Carlson et al., 2020). Study I, conducted at a time when the new General Data 
Protection Regulation (Regulation 2016/679/EC) was causing concerns among 
European researchers working with human subjects, argues that automating 
observation can also provide major ethical and data security benefits if the video 
analysis was done at real-time speed without recording any of the pixels carrying 
personal information of the subjects. 

Inherent advantages of human direct observation methods for PA measure-
ment include flexibility, high internal validity, low inference, and low participant 
burden (McKenzie & van der Mars, 2015). On the negative side, McKenzie and 
van der Mars (2015) note the necessity for careful observer training and recali-
bration, inaccessibility to certain environments, and potential subject reactivity. 
Table 2 considers these advantages and disadvantages from the perspective of 
automating the observation method using a stationary video camera and a privacy-
preserving video analysis system. Which of these advantages can be maintained 
and which would be diminished? Which disadvantages can be improved on, and 
which will remain when replacing the human observer with a real-time video 
analysis machine?

 
13  This method classifies “ordinary walking” as MVPA while public health authorities re-
commend drawing the line at “brisk walking”. An example of the measurement construct defi-
nition problem addressed in Study II. 
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Table 2. Advantages and disadvantages of measuring PA by conventional trained human 
observers and privacy-preserving video analysis sensors. 

Method 
property 

Comparison of direct observation of PA by humans  
and privacy-preserving automatic video analysis +/– * 

Advantages of human direct observation of PA 

Fl
ex

ib
ili

ty
 While human observers can be trained to observe other relevant behaviors 

or contextual elements (including antecedent-behavior-consequence 
observations), a simple video analysis sensor is only recording PA 
intensity. Contextual/environmental factors of interest would have to be 
controlled by experimental design or other means. 

– 

H
ig

h 
in

te
rn

al
  

va
lid

ity
 

Instead of trusting the observations of trained human observers, in the 
video analysis case, researchers need to trust the camera placement and 
the capacity of the ML model to perform in this setting as well as it did on 
the validation set (equivalent of trusting the human observer to perform as 
well as they did during training/recalibration). A ML model can fail in 
some cases which would be trivial for humans (occlusion and unusual 
appearance). However, given a sufficiently large and varied training data 
set, a video analysis sensor could likely be more accurate on borderline 
cases. 

– 

Lo
w

  
in

fe
re

nc
e 

When both human- and automatic observation methods attempt to capture 
the same PA intensity construct from visual information, both can be 
considered low inference direct measures. However, an abstract 
probabilistic MVPA threshold learned by a ML model could fit theory 
(MVPA defined as >3 MET) better than an arguably lower inference 
semantic category (“walking” or “brisk walking”) learned by a human 
observer. Still, the researcher would have to trust a (thoroughly testable) 
black box model. 

– 

Lo
w

 
pa

rt
ic

ip
an

t 
ur

de
n 

Human observation of PA is considered to cause low participant burden 
when compared to attaching accelerometers to the subjects or asking them 
to fill out surveys. A privacy preserving real-time video analysis approach 
causes even less participant burden as it removes the human observer and 
their intrusive gaze. 

+ 

Disadvantages of human direct observation of PA 

O
bs

er
ve

r 
tr

ai
ni

ng
 a

nd
 

re
ca

lib
ra

tio
n Compared to training and recalibrating human observers, a ML model can 

be trained once, and the biases of the observation system are fixed in the 
model. This allows different researchers to use the same observer 
comparably and to trust each of the observation sensors having stable bias 
throughout the study. Creating a trustworthy ML data set as well as 
developing large 3D convolutional neural networks are still costly.  

+ 

In
ac

ce
ss

ib
ili

ty
 to

 
ce

rt
ai

n 
sp

ac
es

 If privacy preservation is certified and trusted, the sensors could be used 
in various spaces not accessible or viable for human observation. 
However, camera placement can restrict observation under some 
conditions where humans could perform easily (real-time processing 
restricts us to lower resolution video data which directly limits the 
maximum distance from the camera where person detection is viable). 

+ 

Su
bj

ec
t 

re
ac

tiv
ity

 Compared to the human gaze (Ricciardelli et al., 2000), a video analysis 
sensor is harder to notice so the behavioral reactions to observation 
should be much less. However, the presence of a camera, even when not 
recording any video, may still cause some behavioral reactions (van 
Rompay et al., 2009; Pfattheicher & Keller, 2015). 

+ 
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Table 2. (Cont.) Advantages and disadvantages of measuring PA by conventional trained
human observers and privacy-preserving video analysis sensors. 

Unique advantages of automatic observation of PA 

St
ab

le
 

su
bj

ec
tiv

ity
/ 

re
lia

bi
lit

ya 

Automating observation by machine learning solves a core reliability 
problem of human observation: dynamic subjectivity of the observer/ 
observer drift (observation performance can change over time). The 
subjectivity of a ML-based video analysis sensor at the deployment site is 
stable throughout the observation period (the weights and biases of the 
model are fixed). 

+ 

R
es

ea
rc

h 
et

hi
cs

a Real-time automatic video analysis removes objective privacy intrusion. 
Subjective privacy harm (Calo, 2010) may still be an issue – e.g. if one 
does not believe that nobody will see the video or if facial recognition and 
identification are suspected.

+ 

Sa
m

pl
in

g 
 

ra
te

/d
at

a 
co

ns
ist

en
cy

a Human observation instruments only sample PA momentarily in 
relatively long epochs (10–15 seconds observation and the same duration 
to take notes) or record whether/how often a behavior occurs within the 
long epoch (commonly a minute) (McKenzie, 2002). A video analysis 
approach would observe PA continuously, striving to classify all visible 
behavior in terms of PA intensity.
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Basic human needs severely limit the possible duration of continuous 
observation while a video analysis device can generate observational data 
indefinitely provided stable power supply, cooling, and integrity of its 
components. 

+ 

* “+” indicates that automatic observation has an advantage compared to human observation, “–” a 
disadvantage. 
a indicates method properties added by the author to ones listed by McKenzie and van der Mars 
(2015). 
 
In summary, these comparisons (Table 2) indicate that automating PA obser-
vation diminishes the flexibility allowed by human observation: ability to record 
subjects’ interactions and phenomena directly relevant to intervention research 
(how the observed behavior relates to intervention stimuli). Automation also 
ameliorates or removes completely some of the main weaknesses of human 
observation by enabling lower subject reactivity and stable subjectivity. As an 
additional benefit for interpreting research results, this subjectivity can be studied 
by analyzing the potential biases in the training data set and model performance 
under various conditions of interest. If such a thoroughly analyzed ML model 
would be available for researchers globally (and assuming the training data set is 
large and varied enough to be considered globally representative), then this 
research should be more-or-less comparable. Of course, different researchers 
could set up the sensors differently and the lighting conditions and their temporal 
patterns could be different around the world, but the MVPA threshold would be 
the same. Hypothetically, with enough effort, a ML data set could even be devel-
oped which reflects the correct MVPA threshold for different body types across 
the school-age population. On the negative side, a video analysis sensor would 
be susceptible to adversarial attack – a mannequin or a large poster of a person 
could register as a person thereby corrupting the data.
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2.4 Supervised machine learning 

Automating the task of observation can be seen as building a machine that can 
fulfill a similar function as a human observer – given the same input, to generate 
the same output as a human would. In other words, the method developed here 
requires approximating a function that could be considered intelligent14. As such, 
supervised machine learning and artificial intelligence form the basis of the 
proposed automatic observation method. 

Supervised machine learning entails learning a function that maps inputs to 
outputs based on observing valid input-output pairs (Russell et al., 2010). For 
example, one may be interested in learning a function that maps an input vector 
of health indicators (data/input) to a diagnostic output of whether the patient has 
a particular disease or not (label/output). To learn this function in a supervised 
manner, one needs examples of the health indicators for people who have the 
disease and for those who do not. These data-label pairs of known positive and 
negative cases form the machine learning data set. The data set is split into training 
and test sets and combined with a learning algorithm to generate the input-output 
mapping – this is called training or learning the model. In this example, the 
mapping (the function approximated by the supervised machine learning model) 
is a diagnostic classifier that one hopes is generalizable to new patients. For esti-
mating generalizability, the model learned from training data is fit to the test set, 
to evaluate its performance on unseen cases. As this example of supervised 
machine learning approximates a function mapping a vector to a binary output 
variable (the diagnosis), a confusion matrix of true positives, true negatives, false 
negatives, and false positives can be used to evaluate model performance. The same 
general principles of function approximation apply to mapping inputs to multi-
nomial and continuous (regression) outputs, but the latter case is evaluated with 
error metrics. 

Well-known algorithms like linear- and logistic regression can be used in a 
supervised learning framework, but these simple algorithms are not able to map 
an input of image or video data to an output of interest. To understand how to 
approximate functions given such inputs, some critical developments in the 
history of machine learning are noted. In 1943 the first mathematical model of an 
artificial neuron was published (McCulloch & Pitts, 1943) laying the foundations 
for modern artificial neural networks (ANNs). This simple mathematical model 
depicted the neuron as weighing each input, summing them, and comparing the 
result with a threshold value to determine whether the neuron “fires” (propagates 
the signal to the following neurons) or not. In 1957 Frank Rosenblatt built the first 
ANN which was an image recognition apparatus with 400 photocells connected 
to physical artificial neurons with weights encoded in potentiometers (Rosenblatt, 
1958). As a single-layer network, it was able to learn only linearly separable pat-
terns by tuning the weights of just one layer. Later it was shown that adding more 

 
14  Here I mean intelligent in the sense that one could teach a human to conduct PA obser-
vation, but not a dog. 
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(hidden) layers increases the range of functions such networks can approximate 
(Ivakhnenko, 1971). Eventually it was demonstrated that stochastic gradient decent 
backpropagation (Linnainmaa, 1976; Rumelhart et al., 1986) is a viable learning 
algorithm for networks with multiple layers. As one of the key breakthroughs 
enabling the current deep learning revolution, Krizhevsky and colleagues (2012) 
demonstrated the power of including additional hidden layers and the viability of 
training these deep networks efficiently on graphics processors (GPUs). 

Convolutional neural networks (CNNs) are a class of ANNs extensively used 
in computer vision. These networks use the convolution operation to produce 
various representations (feature maps) of digital image input. The convolution 
kernels which produce the feature maps are learned using gradient descent back-
propagation (Gu et al., 2018). A convolutional layer is usually followed by a 
pooling layer which reduces the resolution of the feature maps before the following 
convolutional or fully connected layer. LeCun and colleagues (1989) developed 
the first CNN and used it for handwritten digit recognition. This basic concept of 
convolution and pooling has been at the core of the computer vision revolution 
until transformer models (Vaswani et al., 2017) started to take over (Khan et al., 
2022). Convolution and pooling can also be implemented in three dimensions 
which is especially useful for video analysis. While 2D CNNs aggregate the RGB 
image data spatially to form the two-dimensional feature maps used in object 
detection, 3D CNNs (Ji et al., 2013; Tran et al., 2015) can also convolve over the 
time dimension in video allowing to form 3D spatio-temporal feature maps useful 
for recognizing actions, processes, and their properties such as intensity of move-
ment. 

It has been formally proven that multilayer feedforward networks can approxi-
mate any measurable function from one finite-dimensional space to another given 
a sufficient number of hidden units even with just one hidden layer (Hornik et al., 
1989). One can oversimplify this proof such that given a sufficiently deep and/or 
wide neural network, any measurable function between two finite-dimensional 
spaces can be approximated. Of course, this says nothing about how to do the 
mapping or whether it is technically viable. But it does indicate that a mapping 
of a video format to PA intensity levels of people visible in the video should be 
possible as PA is a visually measurable phenomenon.
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3 METHODOLOGY 

The overall research and development process of the blind observation method 
follows roughly the design science research methodology for information systems 
research (Peffers et al., 2007). Design science is concerned with designing arti-
facts with certain desired properties in order to address a problem (Simon, 1988). 
In the present case, the target artifact is a video analysis sensor for privacy-pre-
serving PA intensity estimation in the field of view of a camera to advance the 
field of PA intervention research. As the function of the developed device is to 
measure human behavior for scientific research via the visual modality, ethics 
and data security are prioritized from the beginning: a privacy by design approach 
(Cavoukian, 2009; Schaar, 2010). The six steps of the adapted methodology 
(Peffers et al., 2007) are presented in Table 3 with respect to the following three 
main criteria: a) a set of sensors should be able to reveal the spatio-temporal 
distribution of PA in school; b) the sensors must preserve the privacy of the 
people being sensed; and c) striving for general data security. 
 
Table 3. Design science research methodology for PA sensor development 

0 Initiation Observing the need for measuring PA in school-based PA 
interventions, preferably with low participant burden. 

1 Define problem Need to measure the (a) spatio-temporal distribution of PA in 
schools in a (b) privacy-preserving and (c) data-secure manner. 

2 Define objectives 
Build (a) a video action detection system able to classify MVPA 
(b) at real-time speed (c) on a low-power single-board 
computer.

3 Design and develop 

(a) Develop a data set reflecting MVPA classification using 
accelerometers, 2D pose estimation, and expert survey of video 
classification; (b) Identify neural network architectures with 
good speed-accuracy trade-offs and available code; (b) design 
and optimize PA detection pipeline for real-time processing 
given the (c) hardware constraints.

4 Demonstrate Video proof of real-time multiple concurrent action detection. 

5 Evaluate 

Test set performance for the PA intensity classifier; ball-park 
estimate of the whole action detection pipeline; qualitative 
examination and worst-case analyses of person detection and 
assessing computational cost in crowded scenes. Loop back to 
step 3 in future research and development.

6 Communication 
Published paper on designing the PA intensity data set; 
presented results and video proof at one international and one 
local conference. Publish thesis.
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Figure 2. Research and development process. 
 
The research and development process entailed several crucial design decisions 
requiring iterative search and testing to come to the eventual solution (Figure 2).  

For the overall video analysis approach a two-step spatio-temporal action 
detection method was adopted (for an overview of action detection approaches see 
Vahdani & Tian, 2022). A two-step approach first detects and tracks all people in 
a video and then classifies these tracks into behavioral categories as opposed to a 
single-step system which detects actions directly from video without prior person 
detection (e.g., detecting falling in a retirement home instead of constantly 
classifying all visible people in terms of falling). When the goal is to measure all 
visible PA via a stable signal (a fixed video analysis epoch/ sampling frequency), 
a two-step action detection approach has several benefits: 

1)  As opposed to the scene-level approach of Carlson et al (2017, 2020), indi-
vidual-level PA modeling should intuitively be more valid since the PA 
intensity concept is individual.  

2)  It is a natural fit for modeling PA intensity with the requirement of a fixed 
epoch length: whatever the goal or meaning of the behavior, we want to know 
the PA intensity of that person during that epoch. While there is a person, there 
is a PA intensity level. 

3)  As opposed to a single-step approach, it allows to develop the data set as a set 
of action tubes instead of a set of fully annotated video scenes. This means 
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that annotation can be selective15 and it enables the exclusion of borderline 
cases (Figure 3) to learn a more robust classification model while providing 
more reliability for interpreting test set performance. 

4)  It allows to optimize person detection/tracking and PA classification sepa-
rately thus increasing overall computational efficiency for achieving better 
performance at real-time processing speed on the constrained hardware of the 
prototype.  

 
The development process and the rationale for various design decisions are de-
scribed in the following subsections. 
 
 

3.1 Data collection 

Considering that wearable accelerometers are the go-to approach for objectively 
measuring PA in public health research, it was an obvious choice for assigning 
PA intensity labels for the video data set. I explored literature (Study I) to deter-
mine the most widely used wearable accelerometers and sampling frequencies to 
find a device that would allow good comparisons with existing and future PA 
research. While wrist-worn activity monitors could be preferable in free living 
studies of children and adolescents due to better adherence to device wear proto-
cols (Fairclough et al., 2016), hip placement was chosen as it has been found to 
perform better in PA intensity classification and energy expenditure estimation 
(Migueles et al., 2017). ActiGraph devices (in this case the wGT3X-BT model) 
(ActiGraph LLC, Pensacola, FL) with a 30 Hz frequency appear widely used and 
validated while conveniently fitting the 30 (29.97) FPS video frame rate standard. 
Despite this match, Gholamreza Anbarjafari suggested that PA intensity classi-
fication should be viable at lower frame rates as well – slow walking and brisk 
walking look different enough (e.g., motion blur and background change resul-
ting from displacement) to reduce the frame rate to 10 FPS. The decision to re-
duce the frame rate by 2/3 simplified work by reducing the size of the data set 
and greatly increased the chance of achieving real-time processing capacity neces-
sary for privacy preservation. In the interest of real-time processing while also 
considering the intended use in mainly indoor settings, I selected a 1280×720 
spatial resolution. In hindsight, a higher spatial resolution would have been a 
better choice as hardware and algorithms keep improving. The higher the spatial 
resolution, the larger the perceptive field of the sensor can be. Initially I collected 
data using a Logitec c922 webcam with autofocus disabled, and a custom script 
attempting to achieve a stable frame rate of 10 FPS while avoiding lossy com-
pression. For the last two data collection sessions (REC6 and REC7), Rain Eric 
Haamer developed a second custom camera using the eventual sensor prototype 

 
15  This allows to use sections of video where a person without an accelerometer is in view: 
one can just annotate and cut out action tubes for the subjects wearing accelerometers. This 
property should also allow to repurpose existing video data for creating PA data sets via 3D 
monocular pose estimation techniques as argued in Study II. 
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hardware. The second camera had some barrel distortion and a different recording 
method which achieved a more precise and stable frame rate but introduced some 
lossy compression. 

Having chosen the data format, I developed the data collection procedures. 
These choices try to obtain high validity and reliability for the sensor. Besides the 
size and quality of the data set, validity for a sensor using a supervised ML model 
can be gained from the general similarity of training data to the eventual appli-
cation setting. The method was developed with the Estonian school system in mind 
where grades one to six are often together in one schoolhouse. For this, I chose 
the age group of 7–14 years. In the beginning, I recruited subjects by convenience 
sampling as it is much easier to approach friends and acquaintances to allow video 
recording of their children than it would be strangers. I conducted one major data 
collection session (REC6) in a school gymnasium with a school contact (Sirje 
Ange) helping to organize the informing and recruitment of subjects. As a lucky 
coincidence in convenience sampling, the last recording session entails twin brot-
hers with substantially different body mass. The weight difference of these identi-
cal twins provides unique value to the data set by allowing to interpret the effects 
of anthropometrics on the hip-worn accelerometer signals, but this is outside of 
the scope of this thesis. 

In such multimodal data sets, the data quality is highly dependent on the syn-
chrony between the video feed and the accelerometers worn by subjects. The video 
capture system was implemented to record the 10 FPS video frames as .png images 
with the time stamp in the image name. I plotted the acceleration signals and 
explored time stamps to assess how to achieve best synchronization. It appeared 
that even for just a half-hour recording some minor accelerometer time drift 
appeared (largest discrepancy between two accelerometers was observed 567 ms 
over a 32 min period) and occasionally the webcam skipped a frame or several. 
To synchronize the accelerometers with each other and with the video feed, I 
adopted a strategy where I attached all accelerometers to my waist and jumped up 
and down repeatedly at the beginning and the end of each data collection session. 
The brief period of weightlessness before falling back toward the ground is clearly 
visible in acceleration signals and can be seen in video as well (Figure 2 in Study 
III). Plotting the accelerometers and visually assessing the time-stamped video 
frames allows to achieve near-perfect synchronization at the beginning and end 
of each session. I performed synchronization corrections by first imputing mis-
sing frames by copying the previous frame when the time elapsed between two 
consecutive frames exceeded 166 ms (two frames inserted if lag is above 300 ms, 
three inserted if lag is above 400 ms etc.). This introduces some noise to the data 
set since the eventual application camera does not repeat frames. Then I aligned 
the accelerometers at the synchronization moments in the beginning and end of 
the session revealing the extent of relative time drift. I imputed acceleration 
values as the median of each axis or removed with a strategy such that corrections 
are distributed equally in the period: if one value needs to be removed or imputed, 
it is done at the mid-point between synchronization moments, if two corrections 
need to be made, then the first around the 33% mark and second at 66% etc. 
Before committing to machine learning, I reassessed the synchrony of all data by 
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visualizing the acceleration signal in video as a circle on top of the bounding box 
with the radius defined by the acceleration signal (custom code written by Rain 
Eric Haamer). 

Variability in the ML data set plays a large role in the generalizability of the 
ML model and thereby the reliability of the sensor being developed. To enhance 
variability, I asked the children to bring a coat, school backpack, and an extra pair 
of indoor shoes. During data collection I asked the subjects to change their ap-
pearance while attempting to cover the whole PA intensity scale (sedentary… 
vigorous) for each change of appearance. Having material for the same subject 
wearing socks, soft-sole shoes, and heavier boots can provide visual variability 
in gait while also possibly providing variability in accelerometer signals for the 
same PA intensity category (hypothetical effect of footwear on the hip-worn 
accelerometer signals resulting from feet impacting the floor). Additionally, I 
slightly repositioned the camera(s) at one or two time points during recording. 
Depending on the recording location, the lighting of the area was also modified 
throughout the session where possible (turning lights on/off, closing/opening 
curtains). During the sessions, I asked the children occasionally to walk or run at 
a certain pace in a certain direction and to sit in certain positions towards the 
camera in hopes of recording as many different expressions of the PA intensity 
categories for each subject as possible. Conflicting with the guided part of data 
collection, another goal was to also capture natural movement behaviors in free 
play by allowing longer uninterrupted periods16. 

I collected the data in seven recording sessions but with greatly varying 
amounts of data per session (e.g., REC2 and REC3 only entail one child filmed 
with one camera for 15–20 minutes while REC6 entailed three groups of children 
in one location filmed with two cameras). At most there are five children wearing 
accelerometers per scene. Altogether, 24 children (15 girls and 9 boys) partici-
pated, however, two boys take part in two different sessions (one year apart, 
different clothing and hair) so the two instances are considered separate subjects. 
Anthropometrics of the sample are reported in Table 4 and an overview of the 
scenes is provided in Appendix I. 
 
Table 4. Age, weight, and height of subjects in train and test sets. Mean (SD). 

 Train (n= 19 
subjects) 

Test (n=7 
subjects) 

Weighted 
full train set 

(n=14228 
samples) 

Weighted 
full test set 

(n=7051 
samples) 

Weighted 
total (21279* 
2-s samples) 

Age, y 10.3 (1.9) 10.9 (1.2) 10 10.9 10.3 
Weight, kg 40.6 (11.5) 41.4 (9.4) 40 42.8 40.9 
Height, cm 147 (12.5) 150 (9.3) 146.2 148.5 147 

*This reflects the amount of unique material in the data set excluding partially occluded annotations 
and before various augmentation steps described in Chapter 3.4. 

 
16  Capturing natural behavior and free play was easiest for the youngest group (REC6 a) 
while the teenage groups (REC6 b and c) appeared more uncomfortable and rigid. 
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3.2 Data annotation 

Compared to the scene-level approach of Carlson and colleagues (2020), a spatio-
temporal action detection approach is much more work-intensive when it comes 
to data annotation. Instead of just assigning a people count and count of people 
active above the MVPA threshold to a video sequence, spatio-temporal action 
localization requires bounding box annotations to create the training and test 
samples in form of action tubes (e.g., Figure 1 in Study I). Computer Vision 
Annotation Tool (CVAT) (Sekachev et al., 2020) was used for action tube anno-
tation but the exact technique of annotation was modified during the project to 
reduce manual work. For the first session (REC1 – the data used in Study II), 
I used CVAT automatic annotation functionality17 to generate person bounding 
boxes. Then I annotated the people missed by the object detection model and 
adjusted some of the automatically generated boxes to be tighter around the 
persons and smoother/ more consistent across frames. REC 2-4 were annotated 
manually by Helis Ojala in video track mode providing frame-wise tighter and 
across-frames smoother action tubes. For the last recordings (REC 5-7), Klavs 
Jermakovs applied the FairMOT multiple person tracking model (Zhang et al., 
2021) for automatic annotation with manual annotation of gaps and assignment 
of subject ID later on by Helis Ojala. Since the annotation approach and the anno-
tator changed throughout the project, the overall consistency of annotations in the 
data set is relatively poor. Annotation instructions included annotating partially 
occluded persons when roughly 1/3 to 2/3 of the body area was occluded or out 
of frame. When more than 2/3 of the body was occluded, no box was annotated. 
At first, the partially occluded bounding box annotations were not used in training 
the model with the rationale to ease learning. Indeed, the model learned very 
quickly (Chapter 3.4, Figure 4 B), but the choice to discard the partially occluded 
annotations likely ended up seriously affecting PA classification accuracy when 
deployed in a setting where people do occlude each other (Chapter 4). Further 
models were trained including the partially occluded bounding boxes. 
 
 

3.3 Defining the MVPA threshold 

To achieve MVPA recognition in video analysis, a machine learning data set of 
bodily movement sequences paired with PA intensity labels is required. Given an 
arbitrary sequence of bodily movement, one must reliably assign a valid label 
corresponding to the PA intensity associated with that movement. For prescrip-
tion purposes in medicine, one can describe the MVPA threshold as being equi-
valent to brisk walking. One way of defining the ground truth would be to have 
an expert look at the video samples and classify whether the bodily movement 
entails more or less energy expenditure than that of their understanding of brisk 
walking or 3 METs. When considering the volume of data involved in deep 

 
17  Faster RCNN Inception Resnet v2 Atrous Model (Ren et al., 2015) trained on the COCO 
object detection data set (Lin et al., 2014). 
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learning, in this case almost 12 hours of PA sequences, then this approach does 
not seem viable. 

Another approach would be to have the subjects in the video wear an activity 
monitor/accelerometer which has been previously calibrated in terms of MVPA 
and validated in a similar population (metabolic development, height, and mass 
of the accelerating body in a particular age group), using the same attachment site 
(hip accelerations), and acceleration signal processing method. Due to the very 
specific and unconventional requirements in our use of the ActiGraph accelero-
meters, we were restricted to using raw acceleration data18. Triaxial accelerometer 
data can be reduced to acceleration vector magnitude by taking the Euclidean 
norm of its axes: 𝑥 + 𝑦 + 𝑧 . When standing perfectly still, the acceleration 
vector magnitude should show one gravitational unit (1 g). To better reflect the 
forces resulting from PA (van Hees et al., 2013), the gravitational component can 
be subtracted and resulting negative values rounded up to zero (Euclidean Norm 
Minus One g – ENMO). Hildebrand and colleagues (2014) developed MVPA cut 
points for ENMO using an earlier model of the ActiGraph device with hip 
placement in a group of children (30 7–11-year-olds) using indirect calorimetry. 
This study provided the initial anchor to other research, allowing to start inter-
preting the acceleration signals in terms of MVPA classification. The simplest 
way to assign PA intensity labels to the data set would be to just apply the 3-MET 
ENMO cut-point of 142 mg (Hildebrand et al., 2014). However, they used an 
accelerometer of a previous generation with a smaller dynamic range, their models 
are in part based on treadmill walking/running which may produce different signals 
than walking on a hard floor, their sample is younger, and they found a resting 
metabolic rate of 1 MET = 6.0 mL O2·kg−1·min−1 which is on the higher end 
compared to what others have found (Saint-Maurice et al., 2016).  

Considering these uncertainties and the visual nature of the data, I decided that 
rather than blindly trusting the accelerometer cut points, reaching out for expert 
opinion could help produce a data set that better reflects the MVPA construct. 
Experts in the field of PA research would presumably have a relatively deep 
understanding of the PA intensity level which has been associated with health 
benefits. The approach to defining MVPA in the data set combines elements of 
expert observation and accelerometer thresholding while introducing a novel PA 
intensity indicator: 2D pose-estimated hip angle changes between video frames 
(Study II). The hip angle change indicator [computed using HRNet (Sun et al., 
2019) from the AlphaPose repository (Fang et al., 2021)] showed almost as good 
discriminative power as ENMO in the small sample of Study II, but it is in-
herently flawed because it represents only the 2D projection19 of the body pose. 
Still, the hip angle features should increase the quality of the ML data set because 

 
18  The widely used ActiGraph counts algorithm (Neishabouri et al., 2022) was held secret at 
the time and ActiLife software did not allow to import the precisely synchronized raw data 
files to compute the counts. 
19  As argued in Study II, 3D monocular pose estimation (Liu et al., 2022) could get past this 
allowing to compute joint angle changes from three dimensional poses. This approach could 
allow to translate existing pose estimation data sets and other existing video to PA intensity 
recognition data sets without the use of accelerometers. 
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it represents a different, likely complementary aspect of PA compared to accelero-
meters. Complementing the manually synchronized acceleration signals with an 
indicator computable directly from video could as well help smooth out asyn-
chrony20. In Study II, the MVPA threshold was estimated in the ENMO and hip 
angle change space based on expert classification of 24 short PA sequences. Then 
this MVPA threshold was extrapolated to the rest of the data set while also re-
moving borderline cases in Study III (Figure 3). Knowledge engineering is 
classically seen as a process of finding rules and pattern features to imitate the 
deductive reasoning of the expert (Brey & Søraker, 2009). The method applied 
here is somewhat similar but perhaps better described as mental model engineering/ 
estimation: accelerometers (validated in similar population) and pose-estimated 
hip angle changes (existing ML model of the human body validated on large 
benchmark data sets) in video are considered as stable PA intensity signals, expert 
consensus is extracted via a survey of video classification, and applied as cut-off 
values on each of the PA indicators and as a plane through the combined label 
space (Figure 3). 

 

Figure 3. Removing borderline cases (red). Each dot represents a two-second action tube. 
Results of Study II and testing of the eventual prototype (Study III) imply that using the 
ENMO cut point21 by Hildebrand et al. (2014) could have led to a sensor that classifies 
the majority of walking as MVPA. The users of such sensors are likely more interested 
in PA intensities higher than that of comfortable walking. 

 
20  The hip angle change indicator also proved useful for detecting synchronization problems 
and mix-up of subject IDs during the development of the data set. 
21  Modeling expert opinion produced a cut point of 0.17 g ENMO, substantially higher than 
0.14 g found by Hildebrand et al. (2014). 
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3.4 Video analysis processing pipeline development 

For automatic observational data to be meaningful, a fixed time sampling method 
is required. Carlson and colleagues (2017; 2020) chose a one-second epoch length 
and even though their data set was large, the PA intensity estimation capacity of 
their automatic observation system was moderate [0.55 concordance correlation 
with the ground truth (Carlson et al., 2020)]. In Study II we speculate that in-
creasing the epoch length could increase the PA intensity classification perfor-
mance by reducing synchronization errors resulting from accelerometer time drift 
and by generally providing more temporal information on the observed behaviors. 
As a trade-off, a longer epoch length brings higher computational cost and in-
creases chances of people stepping into or out of the scene in the middle of an 
epoch. The latter is more of an issue in scene-level systems where each epoch 
requires a people count label: how many people are there really if two step in and 
one steps out during an epoch? For a spatio-temporal action detection approach 
with a fixed epoch, stepping into/out of the scene in the middle of an epoch can 
be handled by setting a minimal acceptable length for a valid action tube (Study I, 
Figure 1) and applying temporal padding on each end of the short tube (inserting 
blank frames to match the input shape of the action tube classifier). In Study III, 
I chose a two-second epoch length resulting in the video analysis unit of 
1280×720×20 every two seconds. 

Given the final data format, the two-step spatio-temporal action localization 
approach can be specified. The first stage requires detecting and tracking people 
in these two-second video samples. Then these tracks need to be formatted to a 
data structure which is the input of the PA intensity classifier (Figure 5 D). Person 
detection and tracking models are widely available because multiple object 
tracking (MOT) research is largely based on person detection and tracking bench-
mark data sets (Luo et al., 2021). Mateus Reis tested several freely available 
multiple-person tracking models on some of our videos (Bergmann et al., 2019; 
Wojke et al., 2017; Yang, 2020; Y. Zhang et al., 2021) and we chose one with 
favorable speed-performace trade-off [ByteTrack by Y. Zhang et al. (2022)] with-
out fine-tuning the person detector on our data set. ByteTrack (Y. Zhang, 2021/ 
2022) allows using different versions and configurations of the YOLO family of 
object detection models22 which makes it easy to find a model that uses optimally 
any computational overhead left over by the rest of the processing pipeline on 
particular hardware (Chapter 3.5, Figure 5). The sensor technology could likely 
benefit from fine-tuning the person detector on data form children as play 
behavior entails more unusual body positions than there are in MOT data sets of 
public spaces like malls and train stations. As the goal of Study III was to 
develop the first prototype, not a final product, work focused more on the second 
step of classifying the action tubes into PA intensity categories. 

The choice of neural network architecture for action tube classification was 
somewhat theoretical but mostly pragmatic. I explored video action recognition 

 
22  The AlexeyAB/darknet GitHub repository (Bochkovskiy, 2016/2023) covers most of the 
YOLO family of models initially developed by Redmon and colleagues (2016). 
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literature and GitHub repositories to find a model with a good speed-accuracy 
trade-off and freely available code with favorable license terms. As a lucky coin-
cidence, the code for the highly efficient X3D architecture (Feichtenhofer, 2020) 
was published as part of the PyTorchVideo repository (Fan et al., 2021) at a 
critical time during Study III. This model was advertised to perform at real-time 
speed on a smartphone, and the code appeared to be of high quality, so the choice 
was made. A TensorFlow implementation of the model (Ogidi, 2022) was adopted 
however as it was more familiar to Klavs Jermakovs. In the original work, 
Feichtenhofer (2020) expands the X3D architecture gradually across various axes 
(hyperparameters) to find a good accuracy-efficiency trade-off. These expandable 
hyperparameters include the temporal length and frame rate which make this 
architecture easy to adapt to our custom data format. In the interest of processing 
speed, the smallest version, X3D-XS, was chosen as the base model and Klavs 
Jermakovs adjusted the temporal parameters to fit our custom format. 

Transfer learning is the concept of using knowledge learned from one data set 
(pre-training) to increase the performance of a target model ultimately trained on 
a different data set (fine-tuning) (Zhuang et al., 2021). Instead of training a 
randomly initiated model directly on our rather limited data, the X3D network 
was first pre-trained on Kinetics 400 (Kay et al., 2017). This data set of human 
actions entails several categories which should intuitively be useful for transfer 
learning PA intensity classification. If the neural network learns to differentiate 
human actions, some of which also differ by their PA intensity (e.g., “presenting 
weather forecast” compared to “playing tennis”), then the network should already 
have learned some kind of representation of the human body and its movement 
intensity before starting to learn on our limited data set. Klavs Jermakovs down-
sampled the Kinetics 400 data to match our frame rate and trained the model for 
18 epochs until it surpassed 30% accuracy (Figure 4 A). Pre-training was spread 
over four Tesla-V100 GPUs and fine-tuning used one. 

Before fine-tuning this model for MVPA classification, several pre-processing 
steps were performed on our raw data set. In iterative development, these pre-
processing steps were modified producing two versions of the data set. The pre-
trained X3D backbone was used to train altogether three models (Figure 4 B, C, 
and D) each time fixing some shortcomings of the previous attempt. Klavs Jerma-
kovs fine-tuned the initial model (Figure 4 B) on a version of the data set which 
excluded the partially occluded bounding box annotations. Testing this model 
deployed on the prototype showed increased predicted probability of MVPA in 
cases of people walking past each other which I suspected was caused by excluding 
the partially occluded bounding boxes and not having any samples shorter than 
the full 20 frames (both conditions which can be expected in the application 
setting). To address this issue, Mateus Reis sampled a second version of the data 
set as described below. 

The continuous nature of PA allows to use the same video sequence to make 
several samples. A three-second action tube (30 frames) can be turned into two 
“unique” two-second action tubes by treating the last half of the first tube as the 
first half of the next tube. This shifted resampling strategy was used to roughly 
double the size of the data set to ~42700 action tubes (48003 including partially 
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occluded bounding boxes in the second version). After removing borderline cases 
(Figure 3), the PA intensity label (SED or LPA/ MVPA) was assigned to each of 
the remaining action tubes (~35100 in the initial version and 39600 in the second 
version with partially occluded samples). Then the data set was split into training 
and test sets such that the most thoroughly annotated and analyzed scene (REC1), 
and the last recording with twins (REC7) were assigned to the test set. Due to 
imbalance in our data set (~14% MVPA), many training samples had to be dis-
carded to avoid overfitting to the lower PA intensity category. The train set also 
required subject-wise balancing to avoid overfitting to specific individuals (e.g., 
the model learning to associate MVPA with red color if a subject with a red shirt 
was overrepresented in the MVPA class). These steps resulted in a training set of 
3253 (4330 in the second version) samples of sedentary behavior or light PA and 
an equal amount of MVPA samples such that each subject has an equal number 
of samples from each class. The test set remained unbalanced entailing 12326 
samples with 14.0% MVPA in the original and 13619 samples with 15.1% MVPA 
in the second version. The training set was doubled to 13012 samples (17320 in 
the second version) by data augmentation. Each action tube was either brightened 
by 30% or dimmed by 30% and each sample had 50% chance to be flipped hori-
zontally. For training the initial model, each tube was also rotated randomly from 
one to five degrees left or right. For the latter two models, the rotation augmen-
tation is replaced by pseudo shortening and temporal padding of the action tubes: 
each sample had an equal chance of replacing one to ten frames from the end(s) 
of the action tube with blank frames to simulate shorter action tubes likely en-
countered in the wild. In case of an odd number of frame replacements, the extra 
replacement was performed at the tail end of the action tube. 

Due to the complexities of developing custom ML training pipelines, Klavs 
Jermakovs fine-tuned the initial model using the 400-class output layer from pre-
training. The first two nodes of the output were assigned to the classes relevant 
to MVPA classification, but loss and accuracy were measured from the whole 
400-class head. This pseudo binary classification set up can cause below 50% 
accuracy in the first epochs of fine tuning (Figure 4 C) – at first the model is 
outputting higher probabilities for any of the 398 irrelevant output nodes and only 
later learns to reduce loss by focusing on the two relevant nodes. The first fine-
tuned model (Figure 4 B) learned from a data set of near perfect action tubes 
which is also reflected in the learning curve. As can be seen, test accuracy 
surpassed 80% already by the end of the first epoch while training accuracy was 
barely above 50%. This could be explained by the test set not being balanced and 
including many samples of sedentary behavior which are much easier to dif-
ferentiate from MVPA than LPA is (i.e., first learning to associate sedentary 
position and/or presence of a chair with the lower PA intensity category and later 
learning to differentiate slow walking from brisk walking which look more 
similar than sitting looks compared to MVPA). To test whether including the 
partially occluded bounding boxes and simulating shorter tubes can fix the issues 
of the first model, Mateus Reis trained the next model with the second version of 
the data set and using the same 400-class head (Figure 4 C). This time it took 
several training epochs before the model even started associating the relevant 
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output nodes with the task at hand. After the fourth epoch, the model started 
learning with the test accuracy again increasing faster, but overall learning slower 
than the initial model trained on a smaller but simpler version of the data set. For 
the final model (Figure 4 D), Mateus Reis added a binary output layer after the 
400-class layer to achieve a proper binary classification model. The same ten-
dency appears where test set performance increases faster. The final model also 
reveals a potential pattern of overfitting to training data after the test set accuracy 
levels off around 87% accuracy. Further metrics on test set performance of the 
action tube classifiers are provided in the results section along with preliminary 
performance assessment of the whole automatic PA observation pipeline. 

 

 
Figure 4. Pre-training custom X3D on Kinetics 400 (A); fine-tuning on our initial data set 
without partially occluded bounding boxes or temporal padding augmentations and using 
the 400-class output layer (B); fine-tuning on the second version of the data set including 
partially occluded samples, temporal padding augmentations, and a 400-class output layer 
(C); fine-tuning the final correct model including partially occluded samples, temporal 
padding augmentations, and using a binary output layer (D). Top-1 accuracy of the X3D 
model on 400-class action recognition task (A), pseudo binary MVPA classification task 
(B and C), and binary MVPA classification task (D). 
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3.5 Implementation of the sensor prototype 

Mateus Reis deployed the video analysis processing pipeline on a Nvidia Jetson 
Xavier NX development board23 (Study III). It has a Nvidia Volta GPU, a 6-core 
ARM CPU, two NVDLA deep learning accelerators, and 8GB of memory. The 
computational cost of analyzing one 2-second sample of video depends on the 
number of people visible. The more people are detected and tracked concurrently 
(K in Figure 5) the more action tubes need to be classified. To maximize the 
number of possible concurrent detections while maintaining real-time processing 
speed, the neural networks (the person detector and the MVPA classifier) were 
optimized using TensorRT24. 
 

 

Figure 5. Video analysis sensor processing pipeline. 
 
 
We assessed the sensor’s performance 
while setting the minimum length of a 
viable action tube (L in Figure 5) to 10 
and 15 frames. The former managed to 
capture more of the visible behavior 
and the latter caused a drop in overall 
detections. 

Due to earlier frugal decisions 
(selecting a low resolution and frame 
rate for video and the smallest version 
of X3D), Mateus Reis achieved real-
time processing capacity without exces-
sive parallelization of the various pro-
cessing steps while using just python 
code. This implies that cheaper hard-
ware could suffice for the current real-
time automatic PA observation pipe-
line if a faster language was used, and 
the computational resources were ex-
ploited optimally. 

 
 

23  https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/  
24  Nvidia’s framework for optimizing ML models for fast processing on Nvidia hardware. 

Figure 6. Prototype on a tripod 
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3.6 Limitations, ethics, and reflections 

A privacy by design approach in this case led to the mistake of early optimization 
due to overestimating the computational cost of the video analysis task and unde-
restimating the power of available hardware. This leads to an educational moment 
of really appreciating Donald Knuth’s famous quote: “Premature optimization is 
the root of all evil” (Knuth, 1974, p. 268). Even though the original quote refers 
to wasting labor in writing programs, the general sentiment seems to apply. The 
fear of not achieving real-time processing necessary for privacy preservation led 
to some poor decisions. A higher video resolution and frame rate could have 
increased the long-term value of the data set since the processing power of GPUs 
keeps growing. Super-resolution techniques (Anwar et al., 2020) could be used 
to artificially increase the resolution, but this could introduce unpredictable bias 
to the data when combined with real high-resolution recordings. Also, a larger, 
more capable X3D model could have been used if the work started out by getting 
a good understanding of the available computational resources and the com-
putational cost of different sized networks when deployed on this hardware. 

The semi-automatic annotation method should have been clearly defined and 
chosen at the beginning of the project and the same person should have done all 
the manual parts of annotation. In the current form, the annotations are not very 
consistent across the recordings. The objective of capturing natural behavior and 
free play lead to large imbalance in PA intensity categories (only ~14% MVPA) 
which causes waste of laboriously annotated data since the training set must be 
class-wise balanced. This should have been a predictable issue and measures 
should have been taken to avoid waste: leaving some sections of low activity 
without annotation and/or artificially inducing more intense movements during 
data collection. Another issue is low variation in the skin tone of the participants – 
one should not assume that a ML model trained on data from a majority white 
country could generalize very well to more varied conditions. Intuitively, PA 
intensity classification performance with 3D CNNs should be relatively robust to 
skin tone, but this is a risky assumption on the inner workings of a black box 
model. A globally representative video data set should cover more skin tones, 
school uniforms, and traditional dress. 

The processing pipeline in its current form is not end-to-end25 trainable. This 
makes it hard to evaluate its performance – we cannot compute one clear indicator 
to reflect the performance of the whole automatic PA observation system. Even 
if the test set was fully annotated26 to allow validating an end-to-end PA detection 
method, the current approach is incompatible as it relies on removing borderline 
cases. A 100% annotated end-to-end approach excludes the possibility of 

 
25  An end-to-end system would mean a ML task where the loss function covers the whole PA 
measurement pipeline from the 1280×720×20 video sample as the input layer to the action 
tube coordinates and PA intensity class as output. This would require a loss function with at 
least two parts: one measuring distance from the action tube coordinates of the sample and the 
other for the PA intensity class. 
26  This would require all people in all scenes to wear accelerometers and have valid PA inten-
sity labels. 
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increasing the model’s robustness by removing the low confidence cases. For 
further development of such methods, a regression approach might be preferable 
since capturing the correct MVPA threshold via binary classification does not 
provide much value if the goal is to detect the increase and drop of school-level 
PA intensity over long periods. Treating PA as a continuous phenomenon (very 
low PA…very intense PA) might not allow to interpret sensor output in terms of 
MVPA but it would also eliminate the problems arising from setting such a 
threshold – the category between slow and brisk walking is a real PA intensity 
level and can be treated as such in regression. 

Concerning research ethics, this work likely suffers from similar issues as any 
research involving underage children. Even informing the parents of the data 
subjects required certain effort – explaining the difference between research data 
for studying the data subjects and ML training data for developing video analysis 
applications. It would be too much to expect from an 8-year-old to comprehend 
the purpose of collecting this video to really be able to informedly consent. Even 
though the consent form was worded in a way that expressed intent of potentially 
publishing the data (Appendix II), this could be problematic for reasons covered 
in Chapter 5.2. Ethical issues concerning privacy in the potential application of 
blind observation methods are discussed in detail in Chapter 5.1. 
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4 RESULTS 

Testing the prototype while using the initial fine-tuned X3D model and different-
sized and differently optimized YOLO person detectors implies that there is 
significant computational overhead. With a relatively large person detection 
model [YOLOv4-CSP-512 (C.-Y. Wang et al., 2021)] at FP16 precision, a maxi-
mum of 15 people were detected, tracked, and classified within one 2-second 
epoch27. This performance was achieved without parallelization of the various 
processes and without excessive code optimization. This implies that using a 
newer generation device and optimizing code thoroughly, a larger X3D model 
should be viable and at a higher video resolution possibly even on a cheaper 
device. This in turn shows the maturity of hardware and algorithms necessary for 
real-time video analysis on edge devices – visual information on PA can be 
analyzed efficiently without recording the video and without humans having 
access to the video. 

Testing the initial model also revealed a potentially critical concern: when 
people walked past each other, ByteTrack was surprisingly good at tracking the 
correct person, but at the moment of passing each other, the predicted probability 
of MVPA increased for both (demo video 0:16-0:38). This was likely caused by 
excluding partially occluded bounding box annotations from the data set and 
possibly by not simulating short action tubes with temporal padding during 
training. If the model is trained and tested on “perfect” action tubes without people 
(partially) occluding each other, the momentary occlusion could increase variance 
along the action tube during inference which the 3D-convolutional model could 
associate with the higher PA intensity class (the more the body is moving, the 
more the background is also relatively moving thereby associating variance along 
the time dimension with higher PA intensity). The effect of not learning on tempo-
rally padded tubes but running inference on temporally padded tubes is harder to 
predict – in the padded case, there is no variance in the beginning and end of the 
action tube, but a sharp crossover from an image to blank frame(s). In hopes of 
fixing this, the second model was trained on a version of the data set including 
the partially occluded bounding boxes and simulated shorter, temporally padded 
action tubes. To test whether this bias could be fixed by data set design, the bias 
was quantified by repeatedly walking and running past a cardboard cutout and 
seeing how much its predicted probability of MVPA changed compared to the 
cutout standing alone. Figure 7 shows the comparison of the three models in this 
test. Using the original model, the cardboard cutout’s predicted probability of 

 
27  Due to the way the sensor operation was visualized during filming of the demo video, 
computational resources of the prototype were constrained. In the video, the sensor uses a 
smaller person detection model quantized to INT8 precision to maintain real-time processing, 
hence the poor person detection. Later testing by connecting a monitor directly to the prototype 
during a crowded event, major computational overhead appeared showing great potential for 
the processing pipeline. Demo: https://www.youtube.com/watch?v=RQHw2Z22pWc&ab_ 
channel=KEKA 
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MVPA increased on average by 0.21 when walking or running past it while using 
the directly comparable second model, it increased by 0.11 – the bias was reduced 
by a half. The final binary model reduced this effect further (average difference 
0.05 probability points). This means that proper data set design and augmentation 
techniques allow reducing occlusion-induced PA overestimation biases. The final 
model however consistently predicted a 0.5 chance of MVPA for the cutout alone – 
standing up perfectly still appears to be the MVPA threshold while it should be 
slightly below brisk walking. This could be specific to the body pose or appear-
ance of this cardboard cutout since standing still in different upright positions 
showed lower probabilities as well. The probability of MVPA drops significantly 
when sitting or squatting and increases starkly in brisk walking, so the model still 
appears to measure PA intensity. When running, the predicted probability of 
MVPA is close to 1. 

 

 
Figure 7. PA intensity overestimation bias in situations where people walk past each other. 
“Cutout alone” represents the predicted probability of MVPA of a cardboard cutout alone 
in view. “Passing low” represents the predicted probability of MVPA for the cutout in 
situations where I walk or run past (both front and behind) the cutout in the middle of an 
epoch. “Passing high” represents the predicted probability of MVPA for me in these pas-
sing epochs. A perfectly unbiased model would show equal means for the cutout alone and 
during passing. 
 
Different versions of the X3D classifier (Figure 5 E) achieved good performance 
on the test set overall but had more confusion with MVPA (Table 5). Large share 
of the test set entails sedentary behavior which is under the same category as 
standing and light activity in this data set. The high accuracy on sedentary and 
light intensity cases contrasting with mediocre performance on MVPA could point 
to the model being near perfectly accurate at differentiating sedentary behaviors 
from any standing and walking but properly discriminating light activity from 
moderate requires more/better data. Applying different accelerometer thresholds 
for smaller and larger subjects could possibly improve performance, but research-
grade validity and reliability likely require a larger and more varied data set. The 
models trained on the second, more difficult version of the data set reach 
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performance on par with the initial model while reducing the occlusion-induced 
bias towards MVPA. This reflects the general power of 3D convolutional neural 
networks and highlights the importance of properly annotating partially occluded 
samples28.  
 
Table 5. X3D action tube MVPA classification performance on the test set. 
 

Precision Recall F1-score n samples 
Initial model: no occluded samples, 400-class head 

SED or LPA 0.95 0.96 0.95 10594 
MVPA 0.74 0.68 0.71 1732 
Macro average 0.84 0.82 0.83 12326 
Weighted average 0.92 0.92 0.92 12326 

Second model: occluded samples, 400-class head 
SED or LPA 0.93 0.96 0.95 11565 
MVPA 0.75 0.59 0.66 2054 
Macro average 0.84 0.78 0.80 13619 
Weighted average 0.90 0.91 0.90 13619 

Final model: occluded samples, binary head
SED or LPA 0.94 0.96 0.95 11565 
MVPA 0.76 0.67 0.71 2054 
Macro average 0.85 0.82 0.83 13619 
Weighted average 0.92 0.92 0.92 13619 

 
Because the video analysis processing pipeline is not end-to-end trainable, and 
our test set is only partially annotated, the PA observation performance has not 
been rigorously validated. To proximally estimate the performance of the whole 
system, we refer to the multi-object tracking accuracy reported for ByteTrack 
(Y. Zhang, 2021/2022; Y. Zhang et al., 2022) on person tracking data sets (0.80 
and 0.78 on MOT17 and MOT20 data sets respectively). This performance metric 
is measured from detecting and tracking people (Figure 5 B and C) in rather 
crowded data sets and may not perfectly reflect the application setting of the sen-
sors. Still, our best estimate for the performance of the whole pipeline is to mul-
tiply the macro F1-score of our PA intensity classifier (assuming that both PA 
intensity classes are equally important) with the multi-object tracking accuracy 
of ByteTrack arriving at a ball-park performance estimate of ~0.66 for the proto-
type. This estimate assumes that the PA intensity labels assigned based on 
accelerometers and 2D pose-estimated hip angle changes correspond to the true 

 
28  Ideally the same person detection model and tracking algorithm should be used for semi-
automatic annotation of the data set as is used in the eventual automatic observation pipeline. 
The manually annotated bounding boxes for partially occluded cases should imitate the person 
detector and tracker – if only the upper part of the body is visible, one should still annotate the 
bounding box for the whole body area if that is how the detector and tracker behave. 
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MVPA construct. We can assume that some activities with high energy expen-
diture but low kinetic movement (e.g., slow push-ups or squats) are considered 
as low intensity because accelerometers cannot capture the energy expenditure of 
such activities either. The method should capture aerobic PA well, and relatively 
low prevalence of strength exercise behaviors can be assumed in primary school 
hallways.  

Five days of the first blind observation data are presented on Figure 8. 
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4.1 Computing indicators from sensor output 

This section introduces some indicators and approaches to analyze automatic ob-
servational data. 

A set of sensors 𝑆 = {𝑠 , 𝑠 , … , 𝑠 } start recording at time 𝑡 . Let 𝑑 ∈ 𝐷 ={𝑑 , 𝑑 , … , 𝑑 } be the PA intensity classification (the predicted probability of 
MVPA) for the 𝑖’th detected person during the 𝑗’th 2-second observation epoch 
where 𝑛  denotes the number of concurrent detections. Then 𝐷 ∈ 𝑇 ={𝐷 , 𝐷 , … , 𝐷 } is the sensor output at epoch 𝑗 within the data set 𝑇  
representing the observation period Δ𝑡 = [𝑡 , 𝑡 ] of duration 𝑚 ⋅ 2 seconds at 
sensor 𝑠 ∈ 𝑆. Total PA intensity observed at epoch 𝑗, 𝑥 , is the sum of the 
elements of 𝐷  when at least one person is detected. When no people are detected, 
total PA intensity is set to zero. 

 

 
 

 
 
Combined with the number of concurrent detections 𝑛 , 𝑥  can be used for spatial 
data visualization on the floor plan of the observation area where the size of the 
circle reflects the number of people present and a color scale defined by the range 
of 𝑥  represents group-level PA intensity. Creating a heatmap or animating these 
visualizations across all sensors over a period (whether it is a school day, semester, 
or year) can reveal spatio-temporal clusters of activity and sedentariness. Average 
PA intensity observed at epoch 𝑗, �̅� , is computed only for epochs where at least 
one person is detected. Epochs without people are removed, leaving a set of 
observations 𝑉  of size 𝑣 . 
 

 
 
Two main indicators can be computed for periods of interest. Average total 
activity intensity, 𝑈 , can be a very small value when analyzing a period with 
very few people present (e.g., over night) and requires contextual information for 
meaningful interpretation: comparison with other sensors in the surveilled area 
while considering the spatial distribution of sensors, the size of their perceptive 
fields and the temporal dynamics of the number of people present inside the 
building – controlling for student density estimates as proposed in Study I. 
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Average activity intensity when people are present, 𝑉 , is easier to interpret 
without much knowledge of the temporal dynamics of crowdedness and can be 
used in experimental studies with only a few sensors. 
 

 
 
All sensors could be plotted in a two-dimensional space of these indicators 
(Figure 8) and the movement of these data points throughout a longer observation 
period (e.g., before, during, and after intervention) can reveal changes in PA 
intensity and crowding at the sensor locations.  
 

 
Figure 9. Hypothetical comparison of sensor locations in a schoolhouse pre- and post-
intervention (beginning and end of the arrows) based on average total PA intensity (𝑈 ) 
and average PA intensity when people are present (𝑉 ). Size of the spheres indicates the 
average number of concurrent detections 𝑛  for the period as an indicator of crowding. 
 
Figure 9 A could represent a location with low crowding and above-average PA 
intensity. Compared to the first period (beginning of the arrow), average PA inten-
sity at sensor 𝑠  increased and more people started coming to this area, potentially 
indicating successful intervention. Figure 9 B could represent a situation where 
average PA intensity at the location increased but people started going there less. 
Figure 9 C could depict a location where average PA levels dropped due to stark 
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increase in crowding (total activity increased from many additional detections 
with low predicted probability of MVPA). In contrast, Figure 9 D depicts a location 
where both indicators increased but without change in crowding/ visiting fre-
quency – people just started moving more intensely at this location. 

Hypotheses could be posed around these indicators and intervention. Covering 
two schools of similar size/architecture and population, one could be assigned as 
control and the other as test. Then hypotheses could be posed that e.g., banning 
smartphones or playing dance music in the test school will lead to increases in 
these indicators in the test school while they would not change in the control 
school. The sensors could also be used in smaller research projects where only 
one or a few locations are covered with sensors to test various location-specific 
intervention stimuli (e.g., removing benches or introducing stationary PA equip-
ment). 
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5 DISCUSSION 

This thesis demonstrates the viability of automatically observing PA intensity in 
indoor settings at real-time processing speeds on a 15-watt device. Technical so-
lutions can be built on top to ensure data security – protecting the device from 
hacking to ensure near zero probability of any human seeing any of the video 
frames produced by the camera of the device. Based on the European Union 
definition, the technological readiness level (TRL) of the sensor technology is at 
a minimum of 3 – experimental proof of concept. Formally claiming TRL 4 
would likely require either validating the method against well-trained human 
observers and/or measuring a clear error metric on a fully annotated validation 
data set. Even if humans could be more accurate at classifying a given 2-second 
sequence of bodily movement, superior performance of the sensor can be assumed 
confidently when considering long observation periods (basic human limitations 
and unstable subjectivity). Given a large, varied, and well annotated data set, ML 
models should outperform humans in validity of MVPA classification. Humans 
cannot compete at all when it comes to the possible number of concurrent obser-
vations nor the frequency of these observations. This implies the technical viability 
of applying blind observation to research with human subjects. However, while 
the enabling technologies are mature, there could be significant obstacles to the 
adoption of such methods for developing the evidence base for school-based PA 
intervention. The following discussion sections tackle ethics and trust of the 
general public and the research community in developing and adopting blind ob-
servation. 
 
 

5.1 Privacy ethics in blind observation 

Even though video analysis can be conducted without people having access to the 
video, assessing the (research) ethics of such data collection is not trivial. A naïve 
person noticing a device with a camera lens in a school hallway could assume a 
security guard has access to the video. If a sign was set up claiming “Nobody can 
see the video, no video is recorded, and no people are identified”, the person would 
have to trust the truthfulness of the sign. In this section, I try to predict public 
acceptance of the blind observation method and evaluate its privacy ethics. 

A popular approach to assessing the privacy ethics of data processing is Helen 
Nissenbaum’s framework of privacy as contextual integrity (Nissenbaum, 2004; 
Nissenbaum, 2009). By this approach, the justice and ethics of data collection, 
processing, and transmission can be judged based on adherence to informational 
norms applicable to the context. Nissenbaum (2004) postulates that all infor-
mation flows in all contexts are governed by norms of appropriateness (what kind 
of information about persons is appropriate to reveal in a specific context) and 
norms of distribution (to which parties is it appropriate to transfer the information). 
If the collection and communication of a datum adheres to relevant contextual 
norms, then contextual integrity is preserved, and the data flow can be deemed 
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privacy-wise ethical. As this framework implies a seemingly straightforward 
approach to assessing the ethics of all information flows, it has become popular 
in privacy research and the development of information systems (Badillo-Urquiola 
et al., 2018). However, when assessing a novel data generation technology, pin-
pointing the relevant contextual norms may not be easy. When dealing with truly 
novel information flows, the existence of relevant contextual norms appears 
questionable since the wider society has not been exposed to the phenomenon 
long enough to develop a new norm or to collectively agree on the applicability 
of existing norms. Which norms should govern the appropriateness of light ref-
lecting from a student in a school hallway into the camera of a real-time video 
analysis sensor? Are there any norms relevant to automatic classification of pixels 
into PA intensity categories? Which norms should govern the flow of the ML 
model’s output to researchers and different actors in school? If human obser-
vation requires informed consent to be deemed ethical, could the consent require-
ment be circumvented by removing the human? 

Some have opted to discover contextual norms by asking people about their 
attitudes toward the collection and communication of various types of information 
in various imagined contexts (Apthorpe et al., 2018). While it would be convenient 
to develop research ethics guidelines based on such opinion surveys, this approach 
could lead to formal ethics based on the majority opinion in the survey sample fixed 
in time with the risky assumption that imagined context is a sufficient proxy for 
real context (tyranny of a momentary majority opinion pertaining to imaginary 
context at some point in the past). Rule (2019) argues that many norms are con-
stantly contested, and when considering privacy-related norms in a rapidly 
evolving information society, they may be especially volatile. If the blind obser-
vation method was proposed before the use of excessive facial identification in 
China (Leibold, 2020), public attitudes towards it could have been different than 
now when people have acknowledged the real dystopian potential of computer 
vision technologies. If a total facial recognition ban was adopted by the European 
Union, Europeans’ attitudes towards automatic observation methods might change 
in the opposite direction, reassured that identification of the students by the sensors 
is highly unlikely as it is illegal. 

A more nuanced approach to probing contextual norms would be to inquire 
about attitudes towards collecting and communicating specific kinds of data while 
in the context of interest. Shikun Zhang and colleagues (2021) studied privacy pre-
ferences concerning various video analytics applications in real world settings via 
a mobile phone-based research design. When prompted, respondents preferred to 
deny data collection for generic video surveillance 33% and for anonymous people 
counting video analytics 49% of the times. While these differences were not 
statistically significant in their regression model, such a discrepancy could indi-
cate certain reluctance to novel uses of video analysis in principle since there do 
not seem to be any legitimate privacy reasons to deny anonymous people counting 
more than standard surveillance recording pixels of faces. Across all scenarios, 
they did not find a statistically significant difference in allowing/denying data col-
lection whether the video was kept for 30 days or deleted immediately. This could 
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also be an issue of statistical power as most scenarios stated 30-day retention of 
raw video footage (personal communication with first author). If, however this 
was a real phenomenon (people being relatively indifferent to the retention of raw 
video), then privacy preservation via real-time processing might not be as crucial 
to public acceptance of the method as assumed. Their study did indicate that 
generally the purpose of data collection was the most important factor in respon-
dents’ decisions to allow or deny data collection. Assuming most people value 
health promotion among the youth, this result could speak in favor of public 
acceptance of blind observation of PA in schools. 

To further gauge potential public reactions to privacy-preserving video analysis, 
one might look at analogies or precedents. While not a perfect comparison, the 
transition from physical- to e-mail could be viewed as an analogy of automating 
observational methods in a privacy-preserving manner. In traditional mailing ser-
vices, people have had to trust a whole chain of postal workers to not read their 
private letters. If a seal is broken when receiving the letter, relevant parties could 
suspect privacy violation by a postal worker and may take it up with the postal 
service. Instead of passing private letters through the hands of postal workers, 
sending an e-mail is automatic. The sensitive content of e-mails from criminals, 
spies, and politicians are automatically analyzed to detect spam. As a digital pro-
cess, the recipient might not be able to even detect whether a human has accessed 
the content of the e-mail (i.e., a broken seal), yet there does not seem to be much 
panic around this issue. Tokson argues that processing of e-mails by spam classi-
fiers is not deemed privacy-wise problematic because “…our conception of a loss 
of privacy is bound up with the presence of a human observer” (Tokson, 2010, 
p. 611). His conclusion – that exposing personal information to automated pro-
cessing does not by itself constitute a privacy intrusion – is itself a claim on the 
existence of a social norm deduced in part from attitude surveys. Judging the 
acceptability of the automatic observation method based on the apparent accep-
tance of e-mail spam filtering could be problematic for several reasons. In the 
same work, Tokson brings the example of security cameras influencing people’s 
behavior precisely because of an implied likelihood of human observation 
(Tokson, 2010, p. 614). The whole purpose of imaging technologies has been to 
create images for people to see, so even the claims of automatic processing and 
privacy preservation may be hard to accept. Furthermore, when considering the 
specific context – children in school – the presence of a camera could evoke asso-
ciations to pedophilia which is a known subject of moral panic (Critcher, 2017). 
Even if most people would agree that automatic processing in general does not 
constitute a privacy violation, the type of information being processed in a con-
text, and the history of similar technologies could induce suspicions. These prob-
lems could possibly be addressed by certification by a trustworthy institution such 
as a research ethics committee and/or a data protection agency. If a data security 
audit would result in official privacy preservation certification of the sensor and 
the deployment team, part of public concerns could be relieved. Even then it is 
not guaranteed that everyone will trust the privacy preservation capacity of the 
sensor or the purported goals of data collection. 
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Calo (2010) describes two types of privacy harms. Objective privacy harms 
are external to the victim and involve the forced or unanticipated use of personal 
information. Importantly, Calo (2010, p. 18) specifies personal information as 
information about a person (e.g., John Smith was engaged in MVPA at 08:45:32 
at sensor #1) not as personally identifiable data (e.g., the video pixels where John’s 
face is visible). Light falling on the image sensor can surely be unanticipated, but 
this thesis demonstrates that a device can be built that generally29 does not cause 
objective privacy harm because the automatic observations cannot be associated 
with persons/identities. Subjective privacy harms however are outside of the 
researcher’s control. These are internal to the victim and result from the unwanted 
perception of observation. If one correctly perceives a camera, they might also 
incorrectly perceive observation which could be unwanted and uncomfortable 
whether or not any actual (human) observation occurs. Combining certification 
with reassuring notice signs could reduce the risk of subjective privacy harms, 
but this may not suffice for particularly paranoid individuals (e.g., someone who 
might believe in the existence of mass surveillance microchips in vaccines). Such 
people could generally have a hard time coping with the abundance of sensors 
and data processing in the age of pervasive computing. One could hope that in 
the primary school population, such personality traits have yet to develop/mature 
and subjective privacy harm should be relatively rare and mild. 

To conclude, provided that the sensors are certified by relevant authorities and 
reasonable measures are taken to minimize risks of subjective privacy harm, in-
formed consent should not be necessary for the application of the proposed 
method. Given it is a location-based method, and no individual measures are 
required30, obtaining informed consent itself presents an unnecessary privacy 
risk. The researchers doing the informing would have met the otherwise anony-
mous data subjects and there would be a stack of signed consent forms with the 
names of data subjects and their parent(s). If others should arrive at a different 
conclusion – that informed consent is necessary, even for privacy-preserving 
video analysis – then the method would be impractical since sensor deployment 
would require a 100% consent rate (including when a new student or employee 
joins the school during the research project). 

 
 

 

 

 
29  Objective privacy harm could occur when based on other information, the user knows that 
only one specific person was in the observation area at that time. Therefore, the school should 
only have access to aggregated data for relevant periods to rule out spying after employees. 
30  This is assuming a research design where researchers do not need to meet the students at 
all (e.g., testing the PA reactions to a school-wide smartphone ban). If researchers want to 
measure anthropometrics and conduct surveys before and during/after intervention, informed 
consent is required anyway. 
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5.2 Researchers’ trust in method 

I have argued that computer vision-based blind observation can provide unique 
advantages as a method for measuring PA (Table 2). Clearly human observers 
cannot compete with electronic devices when it comes to the possible duration of 
continuous observation. But humans could have an advantage when it comes to 
the primary researcher trusting the observational data and the research com-
munity trusting the results deduced from such data. The mind of a human ob-
server and a deep convolutional neural network could both be seen as black boxes 
which map visual information to PA intensity categories. The processes of peeking 
inside these black boxes and deducing whether the output can be trusted could be 
markedly different. The formal practices are similar: testing observer(s) perfor-
mance on example data and computing statistics to reflect reliability and validity31. 
But there could be a subjective difference. 

Hidalgo and colleagues (2021) compared how people judge machines and 
humans in equivalent simulated scenarios. Their experimentation led to the conc-
lusion that we judge humans more by their intentions and machines by their out-
comes. It is unlikely that researchers would recruit observers whom they suspect 
of ill intentions. They would prefer to hire someone who leaves an impression 
that they really do intend to maximize data quality. Any mistakes or imprecision 
of such human observers could be more readily forgiven than for a video analysis 
sensor which is not ascribed intention, and which is judged purely by perfor-
mance. Judging from the validation study of SOFIT (Rowe et al., 1997), even the 
formal approach to assessment of human observation might not be as rigorous as 
one would expect from ML experimentation. Validation of SOFIT (Rowe et al., 
1997) excludes slow walking (technically in the same category as walking with 
moderate speed in this observation instrument) from analysis, yet the paper 
exhibits confidence in its conclusion that SOFIT categories are valid. The same 
blind spot to slow walking is present in a further study validating SOFIT for high-
school students (Rowe et al., 2004). Pope and colleagues (2002) validated a 
modified version of SOFIT including slow walking/light PA as a separate cate-
gory and realized that it fits the theoretical PA scale much better32, but judging 

 
31  An important difference is that you can use the same test data only once for assessing the 
performance of a human observer since they could learn the data. Assessment of human ob-
servers relies more heavily on reliability analyses in form of inter-rater agreement when 
several observers are observing the same scene. Relatively high validity is likely assumed 
based on the original validation study of the observation method/PA categories and by trusting 
the vision and ability of the observer [e.g., the “What you see is what you get” assumption for 
assuming high internal validity for direct observation methods in McKenzie & van der Mars 
(2015)]. 
32  Referring to the results of a three-year national trial (Luepker et al., 1996; McKenzie et al., 
1996) where MVPA during physical education classes assessed by SOFIT increased signi-
ficantly but without significant change in physiological variables. If majority of the increase 
in “MVPA” comes from light intensity movement, then one should not expect great reduction 
in BMI or increase in aerobic fitness.  
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from inter-rater agreement, differentiating between light and moderate intensity 
activities proved rather difficult for the observers. Provided high-quality training 
data, a ML model could likely be more accurate at differentiating slow walking 
from brisk walking. We can also run more thorough analysis on a ML model, but 
we should not expect researchers to take its imprecisions as lightly as for human 
observers performing the equivalent task. 

Another aspect of trust in blind observation concerns the availability of the 
training- and test data. It would be harder to trust the black box model used in 
automatic observation if the research community would not have access to the 
training data. If the method was further developed by a company, then releasing 
the training data set would immediately devalue the company as everyone could 
train their own model on the data set and deploy it on their own hardware. On the 
other hand, when the development of the data set and the automatic observation 
method was conducted as open science, researchers would more readily trust the 
method, but the data set would have to be collected under conditions that allow 
open access publishing. Developing an open access data set of video depicting 
underage children could be difficult due to legal- and research ethics conside-
rations. While parents informed consent should legally suffice to collect research 
data on children, publishing video open access without blurring faces might be 
deemed unethical: the data would already be freely circulating by the time the 
child obtains active legal capacity and cognitive ability to really understand the 
purposes of data collection and use. The European General Data Protection Regu-
lation (Regulation 2016/679/EC) also gives data subjects the right to be forgotten – 
if a subject should at some point decide they do not wish to be in the data set, 
removing them from a freely circulating benchmark data set cannot be guaran-
teed. As such, collecting such ML benchmark video data sets in Europe seems 
inherently risky. Perhaps arguments could be made to not consider such video 
data as sensitive research data per se so that the full extent of data protection 
would not apply. Indeed, the purpose of such data is not to study the people in the 
data set, but to train and evaluate ML models. The data would represent PA 
intensities for movement sequences. Provided that age, height, and weight would 
already be accounted for during label assignment, these personal data would not 
have to be released together with the video data. However, the skin tone and 
general appearance of the data subjects would be clearly visible, which might be 
considered a sensitive personal data category of race. It appears that developing 
blind observation methods for measuring the behavior of underage children is 
currently viable only in secrecy while the research field and public health could 
benefit more from an open science approach. When it comes to visual infor-
mation, the European Union’s goals of open science and personal data protection 
are bound to conflict. A research ethics committee might however weight public 
(health) interest against the rigidity of data protection regulations and ethics of 
underage consent. If researchers really saw potential in developing a large and 
varied video dataset of PA, perhaps collecting and publishing such a data set 
could be excused. When considering the difficulty of measuring PA comparably 
in the school-age population (Figure 1) and the confusion in interpreting accelero-
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meters (Migueles et al., 2019), perhaps a large visual data set could bring some 
much-needed clarity to the research field – everyone could look at the accele-
ration values and the visual appearance of some movement sequences and col-
lectively decide how brisk a walk should really be to constitute MVPA. After all, 
society deserves to benefit from new technologies and data processing capacities. 
Rather than categorically blocking access to visual information, perhaps data 
governance should focus more on disincentivizing and punishing harmful uses of 
visual data. 
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6 CONCLUSIONS 

Computer vision algorithms and available low-power hardware allow estimating 
PA in the field of view of a camera via privacy-preserving real-time video analysis. 
The approach developed in this thesis can be susceptible to a bias of overesti-
mating PA intensity in situations where subjects walk past one-another. This bias, 
however, can be reduced or possibly eliminated via careful data set design and 
augmentation during training. A fully annotated data set and an end-to-end 
trainable processing pipeline could be preferable for future development as it 
would allow to evaluate the method more clearly. In such a case, a continuous 
PA intensity scale and a regression approach could be preferable since removing 
borderline cases in a classification approach is not viable when using a fully anno-
tated data set and an end-to-end trainable PA observation pipeline. Depending on 
the intended use of the sensors, an MVPA classification approach could be prefer-
able (when the user is interested in the prevalence of MVPA at a location) but for 
measuring the effect of school-based PA intervention inside the school building, 
a regression approach should suffice. The PA research field could benefit most 
from developing such a data set and method if it was done as open science in 
international collaboration. This assumes some prior clarifications concerning 
human research ethics and data protection law. 
 
Answers to the research question are provided below: 
 
RQ1: How to model physical activity intensity of children in video data? 
 
To allow comparability with other PA research, the most widely used accelero-
meters are recommended for assigning PA intensity labels for children in video. 
Even though wrist placement is preferable in typical research due to better 
compliance, a hip placement should be preferred for creating video data sets as it 
is closer to the body’s center of mass. However, using both hip and wrist place-
ment when creating such data sets could provide additional value if not so much 
for the ML applications, then more for interpreting wrist acceleration data in 
general. It is worth investing effort into precision synchronization of accelero-
meters and video to enhance data quality (some accelerometer time drift should 
be expected and not underestimated especially in longer data collection sessions). 
Data from twins with different body mass could possibly be used to design a data 
set that represents the correct MVPA threshold for children with different body 
types: shifting the accelerometer MVPA threshold for heavier and lighter children 
in the data set and observing model performance on the twins with different body 
mass until they are classified equally well. Study II showed some promise for 
using 2D pose estimation techniques for computing PA intensity indicators 
directly from existing video data. The author urges the research community to try 
out 3D monocular pose estimation methods for modeling PA intensity. If viable, 
these techniques could allow to translate existing video data to PA intensity 
detection training data. 
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RQ2: Which video analysis approach can provide a stable physical activity signal? 
 
A fixed video analysis epoch sets the constraints for obtaining a stable PA signal: 
the sensor must provide automatic observations at a fixed frequency (two seconds 
appears more reliable than one based on Study II). Subjects may step into and 
out of the scene at any point during each epoch and this requires setting a mini-
mum acceptable length for continuous detections (Figure 1 in Study I) and 
applying temporal padding for action tubes shorter than the epoch length. As the 
third main consideration for selecting the video analysis approach, the method 
should take advantage of the fact that a fixed amount of kinetic energy is pro-
duced in the muscle tissue of each person during each time interval: viewing PA 
as a property of any behavior as opposed to treating PA as a behavior. This allows 
using a person detection and tracking-based approach instead of directly detecting 
lower or higher PA intensity class from video (finding all people in an epoch and 
classifying their PA intensity as opposed to finding people engaged in SED or 
LPA and MVPA). This property also allows to use shifted resampling techniques 
to multiply the size of the data set. Based on these considerations it is demon-
strated that a stable PA signal can be obtained using a spatio-temporal action 
localization approach based on multiple person tracking with a fixed epoch length 
(untrimmed but equal sized video spatiotemporal action localization task) com-
bined with temporal padding of the action tubes feeding into a 3D convolutional 
neural network as the PA intensity classifier. 
 
RQ3: How does automatic blind observation compare to human observation 
methods on a fundamental level? 
 
Compared to human observation, the proposed method allows stable subjectivity, 
objective privacy preservation, continuous stable observation at high sampling 
frequencies, and enhanced comparability of observational data between studies 
(different researchers can use the same observer with the same stable biases). Com-
pared to human observation, a computer vision pattern recognition system may 
not be able to differentiate humans from human-looking objects (e.g., a poster 
depicting a human). As opposed to human observation, in its current form, the 
method cannot provide intelligent inferences on interactions of subjects or their 
reactions to specific intervention stimuli. ML-based automatic observation sys-
tems can be assessed more rigorously than human observers, but researchers might 
be more critical towards them than the human equivalent. 
 
RQ4: How viable is the proposed method for research practice? 
 
The algorithms and the hardware for privacy-preserving real-time video analysis 
applications have achieved maturity and will likely become cheaper in the future. 
The current state of the data set does not allow clear measurement of the perfor-
mance of the whole video analysis processing pipeline. But since the occlusion-
induced bias towards MVPA can be demonstrably fixed by training on partially 
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occluded action tubes, there is no reason to assume less than human-level perfor-
mance. However, a larger and more varied training data set is required to achieve 
a PA detection model which could be trusted to be generalizable. There could be 
significant research ethics and data protection hurdles related to open access pub-
lishing of the training data set and application of the privacy-preserving automatic 
observation sensors. If the issues described in Chapters 5.1 and 5.2 can be over-
come, the blind observation approach could potentially be applied to measuring 
other types of behavior as well. 
 
RQ5: How to use such sensors in physical activity intervention research? 
 
Ideally one should find at least two schools of similar architecture and population 
where the sensors should be deployed with a similar distribution (similar size of 
the average field of view and a similar distance between sensors). Then one school 
can be treated as control and the other as test where an intervention of interest is 
applied. Scientific knowledge on the efficacy and sustainment of intervention can 
be gained by comparing the automatic PA observation indicators (Chapter 4.1) 
for the period leading up to intervention, the period during active intervention, 
and period(s) after the active part of intervention. Smaller experimental studies 
could be designed using only a few sensors to evaluate specific intervention stimuli. 
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ANNEX I. SCENES FROM THE DATA SET 

 
Figure 10. REC1 (top row, this is the data used for modelling the MVPA threshold and 
belongs to the test set), REC2 (second row left), REC3, REC4 (third row right) and REC5 
(bottom row). REC 2-5 belong in the train set. Natural lighting in the Delta building 
atrium provides variable lighting conditions. First five sessions filmed with one camera. 
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Figure 11. REC6 A (top two rows) REC6 B (middle two rows) and REC 6 C. Filmed with 
two cameras. Train set. 
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Figure 12. REC7 A Twins with different body weight. Two cameras and two accelero-
meters each (left and right hip). Test set. 
 



80 

 
Figure 13. REC7 B. Test set. 
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ANNEX II. INFORMED CONSENT FORM 

Lugupeetud lapsevanem!  
 
Kutsun Teie last osalema kehalise aktiivsuse videoandmestiku filmimise seansis. Tegemist 
on masinõppe treeningandmestikuga, mille eesmärgiks on luua kehalise aktiivsuse nuti-
sensor. Kavandatava algoritmiga peaks saama analüüsida kooliõpilaste liikumist kaamera 
vaateväljas ilma videot salvestamata. Sellise tehisintellekti eesmärgiks on mõõta kehalist 
aktiivsust koolis ilma lapsi tülitamata ega isikuid tuvastamata. 

Andmekogumise käigus kinnitan laste puusale aktseleromeetri (kiirenduse mõõtja) ja 
filmin neid liikumas erineva kehalise aktiivsusega. Videole jäädvustatakse lapsi selliselt 
nagu nad võiksid välja näha kooli koridoris. Filmin neid vabas olekus, tegemas erinevaid 
võimlemisharjutusi ja mängimas mänge, et tehisintellekt saaks õppida erinevaid laste 
kehalise aktiivsuse väljendusi. Seanss kestab ligikaudu tund aega ning tegevused ei eelda 
rasket füüsilist pingutust. Mõõdan ka lapse kaalu ja pikkuse. Nime ega teisi andmeid ei 
salvestata, küll aga jääb kogutud videomaterjali lapse nägu ning muud silmaga nähtavad 
tunnused. Filmimise ajal võib kasutatav kaamera ka salvestada heli, aga selle eemaldan 
videomaterjalilt esimesel võimalusel ning kustutan heli sisaldavad failiversioonid. 
Andmestik on mõeldud tehisnärvivõrkude õpetamiseks, mitte filmitud laste uurimiseks. 

Kogun videoandmeid 2021. aasta mai kuus Põltsamaa Ühisgümnaasiumi ruumides. 
Kutsun Teie last osalema ühes seansis, mille täpse aja ja koha kohta saate küsida täpsus-
tusi minult kui andmete kogujalt. 

Soovin kogutud andmestiku avaldada internetis avaandmetena. Sedasi oleks töö-
mahukas andmestik kättesaadav kõigile masinõppest huvitatud tudengitele ja teadlastele 
üle maailma ilma, et nad peaksid ise lapsi filmima. Kuna andmestik ei ole ühekordseks 
kasutamiseks, vaid mõeldud muuseas ka õppevahendiks, ei saa määrata andmete säilita-
mise lõppkuupäeva (andmestiku eesmärgi täitumine ei ole selgelt piiritletav). Kui nõus-
tute oma lapse osalemisega, peate arvestama, et kui teie või teie laps soovite nõusolekut 
tagasi võtta ja kasutada isikuandmete kaitse üldmäärusest tulenevat õigust olla unustatud, 
saame garanteerida teie lapse andmete kustutamise üksnes Tartu Ülikooli andmekogust. 

 
Andmekogumist on kirjeldatud ka järgmisel veebilehel: icv.tuit.ut.ee/KEKA 
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Andmekogumises osaleva lapse vanema/seadusliku esindaja teadliku nõusoleku 
vorm 
 
Mind (lapsevanema/ seadusliku esindaja nimi), ……………………….…….……………  

(lapse nimi) ………………............................... on informeeritud ülalmainitud andme-

kogumisest ja ma olen teadlik läbiviidava teadustöö eesmärgist ja andmekogumise 

metoodikast ja kinnitan oma nõusolekut selles osalemises allkirjaga. 

 
Tean, et andmekogumises osalemine on lapsele vabatahtlik ning ta võib sellest igal hetkel 
loobuda. 
 
Tean, et teadustöö käigus tekkivate küsimuste kohta saan vajalikku täiendavat infor-
matsiooni andmete kogujalt. 
 
 
Luban oma last kujutavat videomaterjali vabalt jagada ja publitseerida. 

Filmitava informeerimise ja teadliku nõusoleku leht vormistatakse 2 eksemplaris, millest 
üks jääb osaleva lapse vanemale ja teine andmekogujale. 

Küsimuste korral võtke palun ühendust teadustöö teostajatega: 
 
Andmete peamine koguja, valdaja ja käitleja: 
Hans Hõrak 
Tartu Ülikool, doktorant 
e-post: hans.horak@ut.ee                
Tel +372 5331 6215 
Narva mnt 18–3048, 51009, Tartu 
 
Doktorandi juhendajad: 
Triin Vihalemm 
Tartu Ülikool, kommunikatsiooniuuringute professor 
e-post: triin.vihalemm@ut.ee           
Tel +372 525 7731 
 
Gholamreza Anbarjafari 
Tartu Ülikool, masinnägemise professor 
e-post: gholamreza.anbarjafari@ut.ee  
Tel +372 737 4855 
 
 
Lapsevanemale andis infot (nimi, kuupäev, allkiri) ...Hans Hõrak 11.05.21.…................ 

Lapsevanema/seadusliku esindaja allkiri: ………………………………………….…… 

Kuupäev, aasta………………………….………………………………………………... 
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TRANSLATED 
 
Dear parent, 
 
I invite your child to participate in a physical activity video dataset filming session. It is 
a machine learning training dataset for developing a smart physical activity sensor. The 
proposed algorithm should be able to analyze the movement of school students in the 
camera’s field of view without recording any video. The goal of this artificial intelligence 
is to measure physical activity at school without bothering the children or identifying any 
individuals. 

During data collection, I will attach an accelerometer to the child’s hip and film them 
moving with different levels of physical activity. The video aims to capture children as 
they might look in the school hallway. I film them in their natural state, doing various 
exercises, and playing games so that artificial intelligence can learn different expressions 
of children’s physical activity. The session lasts approximately an hour, and the activities 
do not require strenuous physical effort. I will also measure the weight and height of the 
child. The name and other data are not recorded, but the face and other visual features of 
the child will be visible in the video. While filming, the camera can also record audio, but 
I will remove it from the footage as soon as possible and delete the versions with audio. 
The dataset is meant for training artificial neural networks, not for studying the children 
filmed. 

I collect the video data at the premises of Põltsamaa Ühisgümnaasium in May 2021. 
I invite your child to participate in a single session, the exact time and place of which you 
can clarify with myself as the primary data collector. 

I want to publish the collected data openly on the internet. In this way, a laborious 
dataset would be available to all students and researchers around the world interested in 
machine learning without having to film children themselves. Since the data set is not a 
one-off, but is also intended as a learning tool, the end date for storing the data cannot be 
determined (the fulfilment of the purpose of the data set can not be clearly defined). If 
you consent to your child’s participation, you must consider that if you or your child wish 
to withdraw your consent and exercise the right to be forgotten under the General Data 
Protection Regulation, we can only guarantee that your child’s data will be deleted from 
the University of Tartu database. 
 
The data collection is also described on the following website: icv.tuit.ut.ee/KEKA 
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Form of informed consent of the parent/legal representative of the child partici-
pating in the data collection. 
 
I (name of parent/legal representative), ………………….…………… (child’s name) 

…………………....... have been informed of the above-mentioned data collection and 

am aware of the purpose of the research being carried out and the methodology of the 

data collection and confirm my consent to this participation by signing. 

 
I know that participating in the data collection is voluntary for the child and he or she can 
refuse at any moment. 
 
I know that I will receive the necessary additional information from the data collector on 
the issues arising from the research. 
 
 
I allow to freely share and publish video footage depicting my child. 
 
The informed consent form shall be prepared in 2 copies, one of which shall be kept by 
the parent of the participating child and the other by the data collector. 
 
If you have any questions, please contact the researchers: 
 
The main collector, possessor, and handler of the data: 
Hans Hõrak 
University of Tartu, PhD student 
e-post: hans.horak@ut.ee                
Phone: +372 5331 6215 
Narva mnt 18–3048 ,51009, Tartu 
 
PhD supervisors: 
Triin Vihalemm 
University of Tartu, professor of communications studies 
e-mail: triin.vihalemm@ut.ee           
Phone: +372 525 7731 
 
Gholamreza Anbarjafari 
University of Tartu, professor of computer vision 
e-mail: gholamreza.anbarjafari@ut.ee   
Phone: +372 737 4855 
 
 
Parent was informed by (name, date, signature) ...Hans Hõrak 11.05.21.…........................ 

Signature of parent/legal representative: ………………………………………………… 

Date, year …….……………………………………………………….…………………. 
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SUMMARY IN ESTONIAN 

Privaatsust säilitava raalnägemise meetodi arendamine kehalise 
aktiivsuse automaatseks jälgimiseks koolis 

Tänapäeval elab suur osa inimkonnast oludes, mis võimaldavad sissetulekut 
teenida ja meeldivalt vaba aega veeta ilma oma keha oluliselt liigutamata. Istuva 
eluviisi laialdane, lausa pandeemiline levik (Kohl et al., 2012) on viinud rahva-
tervise kriisini, kus 7,2% globaalsest üldsuremusest tuleneb ebapiisavast keha-
lisest aktiivsusest (Katzmarzyk et al., 2022). Liikumisaktiivsuse edendamiseks 
ühiskonna tasemel on üheks tähtsaks strateegiliseks sekkumiskohaks kooli-
süsteem. Koolipõhised kehalise aktiivsuse sekkumised võiksid valmistada inimesi 
ette tervislikumaks eluks istumist soosivas keskkonnas (GAPA, 2012; Sawyer 
et al., 2012). Võitlemaks vähese kehalise aktiivsuse pandeemiaga on tähtis tõen-
duspõhiselt (Lewis et al., 2017) välja selgitada parimad praktikad kehalise aktiiv-
suse edendamiseks, et siis neid sekkumismeetmeid võimalikult kiiresti ja laialt 
rakendada (Reis et al., 2016; Ding et al., 2020). See omakorda eeldab uuringuid, 
kus sekkumismeetmete proovimisel mõõdetakse ka mõjutatavate kehalist aktiiv-
sust. 

Käesolevas doktoritöös arendati privaatsust säilitavat videoanalüüsipõhist 
kehalise aktiivsuse mõõtmise meetodit, mida saaks kasutada koolipõhiste keha-
lise aktiivsuse sekkumiste tõhususe hindamiseks. Kehalist aktiivsust saab mõõta 
sammulugejate ja aktseleromeetritega, aga sedalaadi indiviidipõhised meetodid 
on privaatsust riivavad ning seetõttu eeldavad laste uurimisel lapsevanema infor-
meeritud nõusolekute omandamist. Kui raalnägemise ja masinõppe põhine auto-
maatne videoanalüüs võimaldaks mõõta kehalist aktiivsust koolimajas sedasi, et 
videot ei salvestata ning inimesed neid kaadreid näha ei saa, siis saaksime koguda 
vaatlusandmed kehalise aktiivsuse kohta ilma vaadeldavate privaatsust rikku-
mata. Kuna selline tehnoloogia võimaldaks analüüsida visuaalset infot ilma seda 
nägemata, nimetan meetodit pimevaatluseks. Doktoritöö eesmärgiks oli välja 
selgitada ja demonstreerida, kuidas sellistele kriteeriumitele vastav videoanalüüsi 
meetod saavutada ning kuidas seda rakendada. 

Uurimuses I anti ülevaade olemasolevatest kehalise aktiivsuse mõõtmise 
meetoditest ning raalnägemise valdkonna arengutest, mis viitavad automaatse, 
reaalaja kiirusel toimiva videoanalüüsi võimalikkusele. Seejärel esitati uuri-
muses I algne visioon kavandatavast sensortehnoloogiast ning selle arendamise 
protsessist koos toetava empiirilise osaga, kus uuriti puusal kantavate aktselero-
meetrite signaalide korrelatsioone liikumisinfoga videos. Meetod põhineb juhen-
damisega masinõppel, kus videoandmetele määratakse kehalise aktiivsuse inten-
siivsuse märgend kasutades puusal kantavaid aktseleromeetreid. Masinõppe 
treeningandmestiku kogumiseks värvati mugavusvalimina 7–14-aastaseid lapsi, 
kelle puusale kinnitati aktseleromeeter ning filmiti statsionaarse, üle kahe meetri 
kõrgusel asuva kaameraga. Kiirenduse signaalid sünkroniseeriti videoga ning 
andmesubjektid annoteeriti ristkülikutega, et moodustada masinõppeks kasutatav 
andmestruktuur – kehalise aktiivsuse märgendiga teotoru (uurimus I, Joonis 1). 
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Annoteeritud andmestikus on kokku 12 tundi unikaalseid kehalise aktiivsuse 
väljendusi 24-lt lapselt. 

Selleks, et tõlkida andmestikus kajastuvad kiirenduse signaalid üldtunnus-
tatud kehalise aktiivsuse skaalale, viidi läbi uurimus II. Veebiküsitlusega paluti 
kehalise aktiivsuse teadusvaldkonna ekspertidel klassifitseerida kehalist aktiiv-
sust 24-s lühikeses videoklipis – kas see laps liigub nendel sekunditel mõõduka 
kehalise aktiivsuse piirist (hoogsa kõnniga võrdsustatav liikumise intensiivsuse 
tase, kus kulub kolm korda rohkem energiat, kui sellel inimesel kulub puhke-
asendis) rohkem või vähem intensiivselt. Lisaks kiirendussignaalidele, kasutati 
moodustunud ekspertmudelit ka uudse, videost arvutatava kehalise aktiivsuse 
indikaatori tõlgendamiseks. Nimelt rakendati videoandmetele kahemõõtmelise 
poosituvastuse mudeleid (Sun et al., 2019) ning kehalise aktiivsuse indikaatoriks 
arvutati tuvastatud poosi puusa nurkade muutumise määr kaadrite vahel – mida 
kiiremini muutub põlve ja kaela vaheline nurk tuvastatud poosi kahemõõtmelises 
projektsioonis, seda intensiivsemat liikumist võib eeldada. Ekspertide küsitle-
misest moodustunud mõõduka kehalise aktiivsuse piiri mudel laiendati nende 
kahe indikaatori kaudu kogu masinõppeandmestikule. 

Doktoritöö viimases faasis (uurimus III) arendati meetod prototüübini. 
Videoanalüüs toimub kahesekundilise väljundsagedusega, kus analüüsiühiku 
mõõtmeteks on 1280×720×20 (kümme kaadrit sekundis RGB video). Andme-
töötlusjada esimeses etapis kasutatakse kahemõõtmelist konvolutsioonilist tehis-
närvivõrku (C.-Y. Wang et al., 2021) inimeste tuvastamiseks sissetulevates kaad-
rites. Siis rakendatakse ByteTrack järgimisalgoritmi (Y. Zhang, 2021/2022), mis 
ühendab tuvastused järjestikustes kaadrites teotorudeks. Järgmiseks transfor-
meeritakse teotorud vastamaks kehalise aktiivusse klassifitseerija sisendile: 
järjestikused tuvastused viiakse kujule 160×160 pikslit ilma pilti moonutamata 
ning kui teotoru on lühem kui 20 kaadrit, sisestatakse toru algusesse või/ja lõppu 
vastav hulk tühje kaadreid. Moodustunud 160×160×20 teotorud klassifitseeri-
takse kolmemõõtmelise konvolutsioonilise tehisnärvivõrguga (Feichtenhofer, 
2020), mis on treenitud kogutud andmestikult. Kehalise aktiivsuse klassifitseeri-
mise mudel saavutab testandmestikul makrokeskmise F1 skoori 0,83 ning kogu 
pimevaatlussüsteemi võimekuseks antud kujul hindame ligikaudu 0,66. Andme-
töötlusjada rakendati väiksele, 15W võimsusega seadmele (Nvidia Jetson Xavier 
NX 8GB) ning reaalaja andmetöötlusvõimekus saavutati ilma väga põhjaliku 
koodi optimeerimiseta. Prototüüp suudab reaalaja võimekust säilitada vähemalt 
kuni 15 korraga tuvastatud inimesega kaamera vaateväljas. 

Doktoritööst saab järeldada, et tehnoloogiad on küpsed inimese käitumise 
automaatseks vaatlemiseks reaalaja kiirusel videoanalüüsiga. Kuigi kogutud 
masinõppeandmestik on teaduslike mõõtmiste jaoks soovitava täpsuse saavuta-
miseks liiga väike, pakub doktoritöö korralduslikke, tehnilisi, juriidilisi ja teadus-
eetilisi suuniseid meetodi edasiseks arendamiseks ning rakendamiseks kooli-
põhistes kehalise aktiivsuse sekkumisuuringutes. Doktoritöö katusartiklis laha-
takse vaatlusmeetodeid ka laiemalt, et mõtestada automaatsete, tehisintellektil 
põhinevate vaatlusmeetodite potentsiaali ja võimalikke kaasnevaid probleeme 
inimkäitumise uurimisel. 



  

 

PUBLICATIONS 

 



CURRICULUM VITAE 

Name:   Hans Hõrak 
Date of Birth:  26.08.1988 
Phone:  +372 5331 6215 
E-mail:  hans.horak@ut.ee 
 
Education 
2019–2023  University of Tartu, PhD studies in sociology 
2012–2015  University of Tartu, Master studies in sociology (cum laude) 
2008–2011  University of Tartu, Bachelor studies in sociology, social work, 

and social policy 
 
Work experience 
2023–present  Statistics Estonia, Data Scientist 
2021–2022  University of Tartu, Faculty of Social Sciences, Institute of 

Social Studies, Project Manager 
2020–2021  University of Tartu, Faculty of Social Sciences, Institute of 

Social Studies, Junior Research Fellow 
2017–2020  University of Tartu, Faculty of Social Sciences, Johan Skytte 

Institute of Political Studies, Center for Applied Social Sciences, 
Analyst 

 
Teaching experiences:  
Co-instructor: Big Data and Society, University of Tartu, Faculty of Social 
Sciences, Institute of Social Studies. Spring 2021, 2022 and 2023. 
  

155 



ELULOOKIRJELDUS 

Nimi: Hans Hõrak 
Sünniaeg: 26.08.1988 
Telefon: +372 5331 6215 
E-post: hans.horak@ut.ee 
 
Haridus 
2019–2023 Tartu Ülikool, sotsioloogia doktoriõpe 
2012–2015 Tartu Ülikool, sotsioloogia magistriõpe (cum laude) 
2008–2011 Tartu Ülikool, sotsioloogia, sotsiaaltöö ja sotsiaalpoliitika baka-

laureuseõpe 
 
Teenistuskäik 
2023–täna Statistikaamet, andmeteadur 
2021–2022 Tartu Ülikool, Sotsiaalteaduste valdkond, ühiskonnateaduste 

instituut, projektijuht 
2020–2021 Tartu Ülikool, Sotsiaalteaduste valdkond, ühiskonnateaduste 

instituut, automatiseeritud vaatluse meetodite nooremteadur 
2017–2020 Tartu Ülikool, Sotsiaalteaduste valdkond, Johan Skytte poliiti-

kauuringute instituut, sotsiaalteaduslike rakendusuuringute keskus 
(RAKE), analüütik 

 
Õpetamiskogemus:  
Kaaslektor ja praktikumide läbiviija: Big Data and Society, Tartu Ülikool, Sotsiaal-
teaduste valdkond, ühiskonnateaduste instituut. 2021, 2022 ja 2023 kevad. 
 

156 



157 

DISSERTATIONES SOCIOLOGICAE 
UNIVERSITATIS TARTUENSIS 

1. Veronika Kalmus. School textbooks in the field of socialisation. Tartu, 
2003, 206 p.  

2. Kairi Kõlves. Estonians’ and Russian minority’s suicides and suicide risk 
factors: studies on aggregate and individual level. Tartu, 2004, 111 p.  

3. Kairi Kasearu. Structural changes or individual preferences? A study of 
unmarried cohabitation in Estonia. Tartu, 2010, 126 p. 

4. Avo Trumm. Poverty in the context of societal transitions in Estonia. Tartu, 
2011, 215 p. 

5. Kadri Koreinik. Language ideologies in the contemporary Estonian public 
discourse: With a focus on South Estonian. Tartu, 2011, 128 p. 

6. Marre Karu. Fathers and parental leave: slow steps towards dual earner/ 
dual carer family model in Estonia. Tartu, 2011, 125 p. 

7. Algi Samm. The relationship between perceived poor family commu-
nication and suicidal ideation among adolescents in Estonia. Tartu, 2012, 
121 p.  

8. Tatjana Kiilo. Promoting teachers’ efficacy through social constructivist 
language learning: challenges of accommodating structure and agency. The 
case of Russian-speaking teachers in Estonia. Tartu, 2013, 156 p. 

9. Ave Roots. Occupational and income mobility during post-socialist trans-
formation of 1991–2004 in Estonia. Tartu, 2013, 130 p. 

10. Tarmo Strenze. Intelligence and socioeconomic success A study of corre-
lations, causes and consequences. Tartu, 2015, 119 p. 

11. Mervi Raudsaar. Developments of social entrepreneurship in Estonia. 
Tartu, 2016, 141 p. 

12. Ero Liivik. Otsedemokraatia Eestis: õigussotsioloogilisi aspekte. Tartu, 
2017, 166 p. 

13.  Mai Beilmann. Social Capital and Individualism – Collectivism at the 
Individual Level. Tartu, 2017, 145 p. 

14.  Rainer Reile. Self-rated health: assessment, social variance and association 
with mortality. Tartu, 2017, 123 p. 

15.  Katri Lamesoo. Social Construction of Sexual Harassment in the Post-
Soviet Context on the Example of Estonian Nurses. Tartu, 2017, 185 p. 

16.  Andu Rämmer. Sotsiaalse tunnetuse muutused Eesti siirdeühiskonna 
kontekstis. Tartu, 2017, 230 p. 

17. Kadri Rootalu. Antecedents and consequences of divorce in Estonia from 
longitudinal and multigenerational perspectives. Tartu, 2017, 128 p. 

18.  Kairi Talves. The dynamics of gender representations in the context of 
Estonian social transformations. Tartu, 2018, 129 p. 

19. Aare Kasemets. Institutionalisation of Knowledge-Based Policy Design 
and Better Regulation Principles in Estonian Draft Legislation. Tartu, 2018, 
252 p. 



20.  Dagmar Narusson. Personal-recovery and agency-enhancing client work in 
the field of mental health and social rehabilitation: Perspectives of persons 
with lived experience and specialists. Tartu, 2019, 139 p. 

21.  Oliver Nahkur. Measurement of Interpersonal Destructiveness: the Societal 
Perspective. Tartu, 2019, 164 p. 

22.  Tayfun Kasapoglu. Algorithmic Imaginaries of Syrian Refugees: Ex-
ploring Hierarchical Data Relations from the Perspective of Refugees. Tartu, 
2021, 152 p. 

23. Kristjan Kikerpill. Crime-as-communication: detecting diagnostically use-
ful information from the content and context of social engineering attacks. 
Tartu, 2021, 162 p. 

24.  Taavi Laanepere. Looking at the Military Service Readiness of Estonian 
Reserve Soldiers through the Prism of Bourdieu’s Theory of Practice. Tartu, 
2021, 174 p. 

25.  Tiia-Triin Truusa. The entangled gap: the male Estonian citizen and the 
interconnections between civilian and military spheres in society. Tartu, 
2021, 159 p. 

26.  Kadri Soo. School as a source of child subjective well-being in the frame-
work of children’s rights: Perspectives of children and young adults. Tartu, 
2023, 146 p. 


	Study I.pdf
	Introduction 
	Methods of Assessing Physical Activity of Children 
	Spatio-Temporal Distribution of Physical Activity in School 
	Method Proposition 
	The Promise of Computer Vision 
	Action Intensity Classification by Acceleration Vector Magnitude Estimation 
	Discussion 
	Conclusions and Future Work 
	References




