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ABSTRACT

Smartphones have become an inseparable component of our lives. With the pop-
ularity of smartphones continuously rising, already today more time is spent on
smartphones than on desktop computers. There is an app for everything: mes-
saging, online banking, unlocking the car. We trust these applications with our
personal data and expect them to keep this data safe. Unfortunately, many of these
applications are discovered to be insecure. Even when only looking at some very
popular mobile applications, such as Facebook, TikTok, and WhatsApp, many
vulnerabilities have been discovered over the last few years. The severity of such
vulnerabilities can range from information disclosure and account high jacking to
remote code execution. Due to the nature of how we use our smartphones and
carry them with us everywhere, these severe vulnerabilities jeopardize our most
private data. Security is one dimension of software quality. Another important,
but less visible aspect is maintainability. Low code quality can lead to high main-
tenance costs and decrease the budget for feature development. It is therefore im-
portant to ensure that developers have sufficient tool support to build high-quality
mobile applications.

Due to its more open nature, plentiful open-source Android applications ex-
ist that can be used to conduct research. Many studies have been conducted on
Android applications analyzing different aspects of code quality such as maintain-
ability and security. Similarly, useful tools have been introduced by researchers.
Unfortunately, very little tool support and almost no research exist on iOS appli-
cations. Given that iOS is the second most popular mobile operating system, it is
important to support developers in building quality applications both in regard to
security and maintainability for iOS.

The goal of this thesis is to improve tool support for both developers and re-
searchers and to fill some of the research gaps for maintainability and security
analyses for iOS apps. First, we developed GraphifySwift, a tool that detects code
smells in projects written in Swift. We then applied GraphifySwift to open-source
iOS applications and analyzed the distribution and frequency of code smells. Ad-
ditionally, we used GraphifySwift and PAPRIKA to compare code smells in iOS
and Android applications.

We analyzed iOS applications for 34 object-oriented code smells and com-
pared the occurrence of 19 object-oriented code smells in iOS and Android. We
found that iOS applications tend to contain more code smells related to small and
data classes whereas Android applications contain more code smells related to
complex and large classes.

Based on the experience gained from developing and using GraphifySwift we
decided to substantially increase the capability of our tool suite and developed
GraphifyEvolution, an extended version of GraphifySwift. GraphfiyEvolution is
an extendable tool that can analyze both snapshots and the evolution of projects.
We used GraphifyEvolution for a preliminary code smell evolution analysis.
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By implementing additional external analyzers it is possible to extend Graphi-
fyEvolution with more analysis capabilities. We implemented SwiftDependen-
cyChekcer, a tool that extracts information on third-party library dependencies
from iOS apps and detects vulnerable dependencies. We implemented an external
analyzer based on SwiftDependencyChecker for GraphifyEvolution and used it
to build a library dependency network (LDN) dataset for third-party libraries in
the Swift ecosystem encompassing libraries available through the three package
managers used in iOS development: CocoaPods, Carthage, and Swift Package
Manager. We used this dataset to study different aspects of the Swift LDN. We
analyzed the overall evolution of the Swift LDN, the use of package managers,
technical lag in library dependencies, and the spread of vulnerabilities in the LDN.

We found that the Swift LDN is growing in terms of both the number of li-
braries and the number of library versions. CocoaPods is the most popular pack-
age manager, Carthage has stopped growing and Swift PM is becoming more and
more popular over time. The technical lag for library dependencies is growing.
It is higher when more restrictive dependency requirement types are used by de-
velopers. Lastly, the percentage of libraries with vulnerable library dependencies
is lower than in other ecosystems which can be explained by an overall lower
number of transitive dependencies.
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1. INTRODUCTION

Modern life is difficult to imagine without smartphones. The popularity of smart-
phones is continuously rising, and already today, more time is spent on smart-
phones than on desktop computers [Mee18]. We use mobile applications for al-
most everything, from messaging over online banking to unlocking the car. We
trust these applications with our personal data and expect them to keep this data
safe. Unfortunately, many of these applications turn out to be unsafe.

Even in very popular mobile applications, such as Facebook, TikTok, and
WhatsApp, many vulnerabilities have been discovered over the last years [Abd20;
Tea22; Wha19]. The severity of such vulnerabilities ranges from information dis-
closure and account high-jacking to remote code execution. Due to the nature of
how we use our smartphones and carry them with us everywhere, these severe
vulnerabilities jeopardize our most private data. Therefore, it is crucial to ensure
developers have sufficient support and tools to build high-quality mobile applica-
tions.

Code quality has many dimensions that could be measured, such as, among
others, maintainability and security. One possible way to measure the maintain-
ability of a code base is to search for code smells. Code smells are bad practices
such as too long methods or too complex classes that make code less readable,
and testable and decrease code maintainability [KDG09; Olb+09].

The security of an application can be tested in different ways. An app consists
mainly of three types of code: custom code, system libraries, and third-party li-
braries. Custom code is the code that is written for a specific application. This
is the part of the code a developer has the most influence and responsibility over.
Custom app code can be tested by using static and dynamic code analysis tools
or even performing manual testing. Dukes et al. [DYA13] showed that different
types of security testing complement each other and are needed to discover as
many vulnerabilities as possible. They found that the largest number of security
vulnerabilities was found through static code analysis.

Next to custom code, an app often relies on libraries that have already imple-
mented solutions to common problems. There are two types of libraries: system
libraries which are provided by the programming language or operating system
and third-party libraries. Some programming languages, such as JavaScript have
very small system libraries forcing developers to rely more heavily on third-party
libraries. Other programming languages, such as Swift, provide extensive system
libraries, allowing developers to rely less on third-party solutions. Using third-
party libraries to speed up development is a common practice. The Open Web
Application Security Project (OWASP), for example, strongly recommends us-
ing existing cryptography libraries instead of implementing a custom algorithm
[OWA16]. Nevertheless, vulnerabilities can be found in even popular and well-
tested third-party libraries. For example, in 2015 vulnerabilities were discovered
in the popular networking library AFNetworking that affected 25,000 applications
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on the Apple App Store [Kum15].
To ensure that an application does not depend on vulnerable third-party li-

braries it is necessary to either check for openly reported vulnerabilities manually
or rely on tools that notify developers when a vulnerability was discovered in a
library dependency so that the library dependency can be upgraded to a patched
version. Unfortunately, such tools do not exist for every package management
system that is used to include library dependencies.

1.1. Problem Statement

Most smartphones run either Android or iOS operating systems, with iOS being
the second most popular mobile operating system. In 2022, most of the global
market share (72%) was held by Android, while iOS held 27% [Sta23] with the
exception of some regions (e.g. the USA) where the majority of users preferred
iOS [Sta22]. At the same time, overall earnings on the iOS App Store are con-
siderably larger than on the Google Play Store [Per18]. This makes both Android
and iOS very attractive targets for developers. It is, therefore, important to sup-
port developers in building quality applications with regard to both security and
maintainability not only for Android but also for iOS. Currently, tool support for
iOS is lacking behind Android. Swift, the official language for iOS development,
is relatively new and the iOS/macOS ecosystem is seen as rather exotic.

Due to its more open nature, plentiful open-source Android applications exist
that can be used to conduct research [All+16]. Additionally, closed-source An-
droid applications are much easier to analyze than closed-source iOS applications.
Many studies have been conducted on Android applications analyzing different
aspects of code quality such as maintainability [GJW14; Hec+15a; Hec+15b] and
security [GGN17; Enc+11; Ngu+20]. Useful tools have been introduced by re-
searchers [Ngu+20; Hec15; Pal+17] and industry [ash23; OWA23] to help devel-
opers improve the quality of Android applications.

Unfortunately, very little tooling support and almost no research exist on iOS
applications. Our goal is to improve tool support for both developers and re-
searchers that wish to analyze code quality in iOS applications written in Swift.

1.2. Research Approach

Our research approach aims at providing tools that support the analysis of projects
developed in Swift, targeting both developers and researchers. Developers need
tooling that helps improve the maintainability and security of their projects, which
requires analyzing a snapshot of a single project. Researchers, on the other hand,
need to analyze a large set of projects at a time, possibly taking into account the
evolution of the project.

Once available, we use these tools to demonstrate their usefulness by con-
ducting a large-scale analysis of apps and third-party libraries in the iOS/macOS
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Figure 1. Research approach

ecosystem. An iOS application contains three types of code: custom code, third-
party libraries, and system libraries. We apply our tools to analyze the maintain-
ability of custom code by analyzing code smells in open-source iOS libraries. We
then analyze the maintainability and security of library dependencies by conduct-
ing extensive analyses on the library dependency network in the iOS ecosystem.

An overview of the research approach is given in Figure 1.
The initial goal requiring tool development was to provide support for main-

tainability analysis by detecting code smells in Swift projects. We developed
GraphifySwift, an analysis tool for the Swift language that analyses the project
source code, enters relevant data on classes, methods, and variables to a Neo4J
database, and then finds code smells defined as database queries. GraphifySwift
allows for the analysis of code smells in Swift applications. We showed how
GraphfifySwift can be used to analyze open-source iOS applications. We com-
pared the prevalence and distribution of code smells in iOS applications and An-
droid applications and answered the following research questions:

• RQ1.1: What is the distribution and frequency of code smells in iOS appli-
cations?

• RQ1.2: How do code smells in iOS applications compare to Android?
Based on the experience gained from using GraphifySwift to analyze open-

source iOS applications, we revised the initial development goal. GraphifySwift is
built on snapshot analysis of code smells. The revised development goal became
to provide tooling that can be extended with additional analysis types and that
allows the analysis of the evolution of a project in addition to snapshot analysis.
These additional qualities make the tooling more valuable to researchers.

We extended GraphifySwift and developed a modular and extendable tool
called GraphifyEvolution that allows analysis of both a snapshot and the evo-
lution of projects. The tool is extendable with external analyzers that can easily
be plugged into the analysis flow. This approach makes it possible to extend
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the tool’s capabilities with other existing tools. All analysis results are stored in a
neo4j database, making it possible to later detect patterns by querying the database
directly. Furthermore, we developed two external analyzers for GraphifyEvolu-
tion: a code smell analyser and a library dependency checker. The second external
analyzer can be used as a stand-alone tool. It is called SwiftDependencyChecker.

We showed how GraphifyEvolution and the code smell analyzer can be used to
analyze the evolution of code smells in open-source iOS applications, answering
the following research question:

• RQ1.3: How have code smells in iOS applications evolved over time?
After showing how GraphifyEvolution can be used to analyze the custom code

of an application, we wanted to highlight its capabilities by additionally analyzing
maintainability and security issues related to third-party libraries used in iOS ap-
plications. We started by using GraphifyEvolution and SwiftDependencyChecker
to build a dataset of third-party library dependencies of the Swift ecosystem. We
analyzed this dataset regarding different aspects. We first analyzed the Swift Li-
brary dependency Network (LDN) evolution to better understand the ecosystem
and to put it into the context of other ecosystems. We analyzed how the use of
package managers has evolved in the ecosystem and discussed how different prop-
erties of these package managers influence their acceptance. We then investigated
which aspects affect the dependency lag in the ecosystem, specifically analyzing
the relationship between version requirement types and library dependency up-
dates. Lastly, we analyzed how far vulnerabilities spread in the Swift LDN to
better understand security risks stemming from third-party libraries and the po-
tential need for tool support. We answer the following research questions:

• RQ2.1: How has the Swift LDN evolved?
• RQ2.2: How has the package manager use evolved in the Swift LND?
• RQ2.3: Do version requirement types influence library dependency up-

dates?
• RQ2.4: How far do vulnerabilities spread in the Swift LDN?

1.3. Contributions of the Thesis

In this thesis, we present three main contributions consisting of tool support, anal-
ysis of code smells, and analysis of the Swift library dependency network.

• Contribution 1: Tool support for analyzing code quality in iOS applica-
tions

• Contribution 2: Empirical evidence on code smells in open-source iOS
applications

• Contribution 3: Extensive analysis of library dependency networks in the
Swift ecosystem

Figure 1 illustrates the three contributions as dotted boxes. Contribution 1 is
the development of tool support, Contribution 2 covers the analysis of RQ1, and
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Contribution 3 covers the analysis of RQ2. The following subsections explain
these contributions in more detail.

1.3.1. Tool Support for Analysing Code Quality in iOS Applications

We provide tool support for analyzing applications written in Swift. Addition-
ally, applications written in Java and C++ are supported. GraphifyEvolution is a
modular and easily extendable tool that allows a range of different kinds of anal-
ysis from a snapshot of a single project to the evolution of many projects. We
show how GraphifyEvolution can be extended with external analyzers by imple-
menting code smell analysis of iOS applications and library dependency analysis
for the three package managers used in iOS development: CocoaPods, Carthage,
and Swift Package Manager. The main target group for GraphifyEvolution is re-
searchers who wish to analyze a large set of applications, but the tool can also be
used by developers who wish to analyze the code quality of their projects. The
output of GraphifyEvolution can be used for different purposes, for example, data
analysis or visualization. Multiple prototypes have been developed by master stu-
dents that visualize the code quality of projects analyzed with GraphifyEvolution.

The standalone tool SwiftDependencyChecker which is used as an external
analyzer with GraphifyEvolution can be used to detect vulnerable dependencies
in iOS applications. It is a lightweight tool that can be integrated into the Xcode
build process and it allows developers to detect vulnerable library dependencies
in their applications.

All tools123 are open source and written in Swift.

1.3.2. Empirical Study on Code Smells in Open Source iOS
Applications

We analyze 273 open-source iOS applications and report the variety and density of
34 object-oriented code smells found. Using PAPRIKA [Hec15] we also compare
the distribution of code smells in 273 iOS applications and 694 Android applica-
tions. We present the first study on iOS code smells that reports data on this many
code smells.

1.3.3. Extensive Analysis of Library Dependency Networks in the
Swift Ecosystem

Using GraphifyEvolution and SwiftDependencyChecker we create a LDN dataset
for the Swift ecosystem encompassing libraries used through CocoaPods, Carthage,
and Swift PM. Based on this dataset we conduct several studies analyzing the
Swift LDN:

1. We analyze the evolution of the Swift LDN.

1https://github.com/kristiinara/GraphifySwift
2https://github.com/kristiinara/graphifyevolution
3https://github.com/kristiinara/swiftdependencychecker
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2. We analyze the evolution of the package managers in the Swift LDN
3. We analyze the relationship between updating practices and library depen-

dency requirements.
4. We analyze how vulnerabilities spread in the Swift LDN.
With our research, we provide the first insights into the Swift LDN. Addition-

ally, using the Swift ecosystem as an example ecosystem, we analyze how the
introduction of new package managers affects the LDN evolution.

1.4. Structure of the Thesis

The rest of the thesis is structured as follows.
In Chapter 2 we provide background on the iOS/macOS ecosystem, on the

development of iOS applications, and different types of code quality analyses.
In Chapter 3 we summarise related work on code smells and LDN analysis

and outline the research gap.
In Chapter 4 we describe the developed tools GraphifySwift, GraphifyEvo-

lution, and SwiftDependencyChecker covering Contribution 1. This chapter is
based on work from [RP20b; RP21; RP22c]. This work was published in the
proceedings of the IEEE/ACM International Conference on Mobile Software En-
gineering and Systems (MobileSoft’20, MobileSoft’21, and MobilSoft’22).

In Chapter 5 we report results on research questions RQ1.1, RQ1.2, and
RQ1.3 covering Contribution 2. This chapter is based on work from [RP20b;
RP20a; RP21]. This work was published in the proceedings of the IEEE/ACM
International Conference on Mobile Software Engineering and Systems (Mobile-
Soft’20, MobileSoft’21) and in the proceedings of the 8th International Workshop
on Quantitative Approaches to Software Quality (QuASoQ’20).

In Chapter 6 we report results on research questions RQ2.1, RQ2.2, RQ2.3,
RQ2.4 and describe the construction of the LDN dataset covering Contribution 3.
This chapter is based on work from [RP22b; RP23a; RP22a; RP23b]. This work
was published in the proceedings of the IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MobileSoft’23), in the proceedings
of the 19th International Conference on Mining Software Repositories (MSR’22),
and in the proceedings of the 23rd International Conference on Product-Focused
Software Process Improvement (PROFES’22).

In Chapter 7 we conclude the thesis and provide ideas for future research.
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2. BACKGROUND

In the following, we briefly describe the macOS/iOS ecosystem. Apple has cre-
ated a fairly unique ecosystem where both hardware and the operating systems
running on the hardware are developed by the same company. Considering the
wide selection of devices from personal computers to smartphones and smart-
watches this allows the optimization of hardware and software and the interop-
erability between these devices. The closedness of the ecosystem makes it an
interesting subject to study as it minimizes the potential effects of other ecosys-
tems. Additionally to macOS and iOS the ecosystem also incorporates the less
known operating systems iPadOS, watchOS and tvOS.

Figure 2 gives an overview of some of the main highlights of the macOS/iOS
ecosystem over the years. In 2001, the first Mac OS X version (10.0) was released.
The X in the name was supposed to indicate that the operating system was a Unix
system. The Macintosh computers built by Apple at the time were based on Pow-
erPC. In 2003, Apple released the first Xcode version to improve the development
of Mac OS X applications. The official language to develop these applications was
Objective-C, a language built on C with the purpose of making it object-oriented.
In 2007 Apple released the first iPhone and its operating system iPhone OS 1. A
year later the App Store was launched. The red area in Figure 2 shows the growth
of the App Store as the number of iOS applications in millions [Cur23]. In 2009
Apple switched the Macintosh processors from PowerPC to Intel. The Mac App
Store was launched two years later. Mac OS X was renamed as OS X in 2012
with the release of OS X 10.8. Later, in 2016, it was renamed again to macOS
with the release of macOS 10.12. The iPad was launched in 2010, this coincided
with the time when the number of iOS apps on the App Store started rapidly
growing, reaching 1 million in 2013. In 2012, iPhones gained 64-bit support, and
the support of 32-bit apps was finally dropped in 2017. Apple introduced Swift, a
new and official programming language, in 2014. The first couple of years saw big
changes in the language design. With the release of Swift 3.0 in 2016 the language
stabilized. The use of the Swift programming language was further eased by the
introduction of SwiftUI, a UI framework that was not reliant on the Objective-C
heavy Cocoa Touch. In 2020 Apple released Mac computers equipped with the
new Apple silicon chips, bringing the macOS architecture from Intel to ARM.

Applications for iOS are natively written in either Objective-C, Swift, or a
combination of the two languages. Since Objective-C is an extension of C, using
C and C++ from Objective-C code is fairly straightforward. In addition to native
app development cross-platform app development and hybrid app development
exist. With cross-platform app development, developers use frameworks such as
Xamarin, React Native, or Flutter to build apps that can be compiled for both iOS
and Android. The app code written in C# (for Xamarin), JavaScript (for React
Native), and Dart (for Flutter) is compiled into native application packages. In
hybrid app development, a web application is developed that is packaged inside an
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Figure 2. Timeline of the macOS/iOS ecosystem

application that displays the web application in a web view. This approach makes
it rather easy to convert web pages into mobile applications. Cross-platform and
hybrid app development carry many advantages in regard to targeting multiple
platforms, but they may not provide the same level of performance or functionality
as native apps. The remainder of this thesis handles the native development of iOS
applications written in the officially recommended language Swift. Applications
typically consist of three types of code:

1. Custom code that is written for a specific application.
2. System libraries that are provided by Apple.
3. Third-party libraries that are developed by other developers and can be in-

cluded through package managers.
Figure 3 illustrates the division of an application into code types. In the fol-

lowing subsections, we describe custom code, system libraries, and third-party
libraries in the iOS context.

2.1. Custom Code

Custom code in native iOS applications is mostly written in either Objective-C
or Swift. New projects mostly default to Swift as it is the official recommended
language for iOS development. Native iOS applications are typically written in
Xcode, the official IDE for iOS and macOS development. An Xcode project con-
tains the source files and build settings for an application. It also handles code
signing.

A minimal iOS application might include the AppDelegate, SceneDelegate,
and ViewController classes. The AppDelegate class handles the life cycle of the
application and the SceneDelegate class handles the life cycle of different win-
dows. The ViewController class handles a single view, defining its UI and han-

23



Figure 3. Application code structure

dling user events. However, most applications contain far more classes than the
minimal example. The architecture for an iOS app recommended by Apple is
Model-View-Controller (MVC), allowing the separation of an application’s data
(model), user interface (view), and control flow (controller).

2.1.1. Maintainability

The use of good architecture patterns increases the maintainability of a project.
Code smells are recurring patterns in code that have been identified as bad prac-
tices [Fow18]. They can lead to technical debt and long-term maintainability
problems [Fow18]. Code smells and their implications have been studied a lot
for desktop applications, especially Java desktop applications [KDG09; Moh+09;
Olb+09]. Code smells can lead to more change-prone [KDG09] and fault-prone
[Lin+14] code increasing the maintainability effort [Olb+09]. Fowler defined 22
object-oriented code smells in his book "Refactoring: Improving the Design of
Existing Code" [Fow18] and many more code smells types have been introduced
ever since.

Many tools exist that detect code smells in Java code [Pai+17]. A few tools
(e.g. SonarQube1, SwiftLint2 and Codebeat3) exist that can analyse Swift code.
However, there are no tools that would cover all 22 object-oriented code smells
introduced by Fowler[Fow18]. Some of the Fowler object-oriented code smells
include Long Method, Long Parameter List, Feature Envy, and Speculative Gen-
erality. The full list of code smells with their definitions is given in A.2.

1https://rules.sonarsource.com/swift/type/Code%20Smell
2https://github.com/realm/SwiftLint
3https://github.com/marketplace/codebeat
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2.1.2. Security

Another important quality aspect of custom application code is security. By test-
ing the security of mobile applications, potential vulnerabilities can be identified
and mitigated that could otherwise result in data breaches, unauthorized access,
and other security risks. OWASP has provided a list of source code analysis tools
that can be used to find potential security vulnerabilities [OWA23]. Multiple tools
exist that can also be applied to source code written in Swift. Most of these tools
rely on patterns in code that are deemed to be potentially unsafe. For example,
Insider CLI marks any use of the function withUnsafeBytes()4 in Swift as un-
safe. Such an approach highlights potentially unsafe patterns for developers, but
can often lead to false positives when the use of the potentially unsafe function
is intended. Other approaches to security testing exist, such as manual security
testing and dynamic testing, but they are not contingent on source code access.

2.2. System Libraries

System libraries provide access to the underlying operating system and device
capabilities through system APIs. The iOS ecosystem provides a very rich set of
system libraries providing developers with access to a wide range of features and
functionality specific to iOS and macOS platforms. Some of the more important
libraries are listed below:

• Foundation5 provides fundamental classes and utilities for many essential
data types such as collections, dates, and files.

• UIKit6 contains the core components for building the user interface of an
iOS application, including buttons, labels, and views.

• CoreData7 provides a persistence framework for managing data.
• AVFoundation8 provides a framework for working with audio and video

media.
• Core ML9 allows the integration of machine learning models into iOS ap-

plications.
In comparison to some other languages, for example, JavaScript, the system

libraries available for Swift, especially when developing iOS or macOS applica-
tions, are more extensive, allowing developers to rely less on third-party libraries.

4https://github.com/insidersec/insider/blob/master/rule/ios.go
5https://developer.apple.com/documentation/foundation
6https://developer.apple.com/documentation/uikit
7https://developer.apple.com/documentation/coredata
8https://developer.apple.com/documentation/avfoundation/
9https://developer.apple.com/documentation/coreml
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2.3. Third-Party Libraries

In addition to system libraries that are developed by Apple, developers can include
third-party libraries in their applications. Third-party libraries are libraries that are
developed by someone other than Apple or the application developer themselves.
Using third-party libraries is a common practice in software engineering and al-
lows the reuse of existing solutions to common problems. This can make the
development process faster and easier.

It can, however, be tedious to maintain multiple dependencies manually. Auto-
mated solutions make this process easier, therefore, package managers have been
created where the developer simply states the library name and exact version or
version requirements. The package manager takes care of downloading and in-
stalling the suitable library version.

2.3.1. Package Managers

There are three package managers in the iOS ecosystem: CocoaPods, Carthage,
and Swift Package Manager (Swift PM).

CocoaPods10 was released in September 2011 and is the oldest package man-
ager with around 88 thousand libraries. CocoaPods is a centralized package man-
ager. Dependencies are declared in Podfile. When CocoaPods is executed it
downloads and compiles libraries declared in Podfile. It generates a new Xcode
Workspace that has all libraries included. This makes CocoaPods very easy to
use, as there is no additional manual work needed. Information on all libraries
and library versions is uploaded to the central Specs repository11. This means
that it is possible to extract information for all packages that have ever been avail-
able through CocoaPods. Resolved dependencies are listed in Podfile.lock under
"PODS:" and are given in the following format:

PODS:
- <libraryName> (<exactVersion>)

- <transitiveDependency> (= <version>)
- <transitiveDependency> (<exactVersion>)

DEPENDENCIES:
- <libraryName> (>= <version>)

Carthage12 was released in November 2014. According to Libraries.io, it in-
cludes 4.5 thousand libraries [Lib22]. This number, however, is an estimate as
Carthage is a decentralized package manager and no official central repository

10https://cocoapods.org
11https://github.com/CocoaPods/Specs
12https://github.com/Carthage/Carthage

26

https://cocoapods.org
https://github.com/CocoaPods/Specs
https://github.com/Carthage/Carthage


of libraries exists. Carthage was created as a counterweight to the more heavy-
weight CocoaPods. Libraries can be included through Carthage by simply adding
a repository address of a library to the Cartfile. Carthage downloads and com-
piles these libraries but does not automatically include them in the app projects.
Manual work on adding the library to the app project is still needed. This makes
using Carthage slightly more complicated than CocoaPods, but it is also a lot more
lightweight and developers are not forced to use a generated app project. No offi-
cial list of repositories exists for Carthage. Libraries.io [Lib22] provides a list of
4498 Carthage libraries that are extracted from Cartfiles hosted on GitHub. With
Carthage, dependencies are declared in a Cartfile. The dependencies are specified
by giving the type of source, name of library, and the version requirement, for
example:

github "<userName/projectName>" "<version>"
git "<repoAddress>" >= "<version>"

Swift Package Manager (Swift PM)13 was released in December 2017. It
is the official package manager created by Apple. Swift PM is a decentralized
package manager like Carthage. Differently to the other two package managers
Swift PM can also be used to create Swift packages that can be both libraries
or applications. This means that Swift PM can be used for example to create a
new command line application. Support for iOS applications was not added to
Swift PM until 2019 [Ell20]. Since 2019 it is also possible to use Swift PM di-
rectly through Xcode (the main IDE for iOS and macOS development). Swift
PM has no official centralized list of repositories. There are multiple reposito-
ries containing information on Swift PM libraries. Libraries.io contains 4,207
libraries, swiftpackageregisty14 contains 4,348 libraries and Swiftpack.co15 con-
tains 12,143 Swift packages. Packages on Swiftpack.co, however, do not seem to
be all libraries. With Swift PM dependencies are declared in Package.swift files.
The resolution file Package.resolved is a JSON file containing information on all
resolved dependencies, both direct and transitive

{
"pins" : [

{
"identity" : "<libraryName>",
"kind" : "remoteSourceControl",
"location" : "<repoAddress>",
"state" : {

13https://www.swift.org/package-manager/
14https://swiftpackageregistry.com
15https://swiftpack.co/
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"revision" : "<revisionHash>",
"version" : "<exactVersion>"

}
}

]
}

2.3.2. Maintainability

For better maintainability, library developers are encouraged to implement seman-
tic versioning schemes16 where each version number consists of three compo-
nents: major, minor, and patch. The patch version number is supposed to change
if only bug fixes are implemented with the change that does not alter how the
library works. The minor version number is supposed to change if new features
are added, but the library remains backward compatible. If breaking changes to
the library API are introduced then the major version number should change. The
version number should then be given as <major>.<minor>.<patch>. Such a ver-
sioning scheme allows developers that use these libraries to quickly assess the
effort needed for upgrading the library version.

CocoaPods, Carthage, and Swift PM support different types of dependency
version requirements. Generally, there are eight different kinds of version re-
quirements: latest, ==, ∼>, >=, >, <=, < and ..<. The version requirement
types latest, >= and > behave similarly, by requiring the latest possible version
with the only difference that latest does not define a minimum version. The
version requirement types <=, < provide an upper bound for the version number,
while ..< provides both an upper bound, as well as, a lower bound for the version
number. The version requirement ∼> behaves similarly to ..< where the version
following ∼> is the lower bound and the next minor or major version is the upper
bound for the version number. Each package manager has slightly different ways
of declaring the version requirements. Table 1 lists how the dependency require-
ment types were unified in this thesis. A blank entry signifies, that this version
requirement type is not supported by the package manager. Entry "empty" means
that this version requirement type is used if no version requirement is listed in the
manifest file.

For example when using the library version requirement∼>1.2 in CocoaPods
or Carthage, bug fixes introduced in 1.2.1 and 1.2.2 would be included by the
package manager automatically. However, a change of the minor version to 1.3
would require a developer to manually upgrade the version in the package man-
ager manifest file. Similarly the library version requirement ∼>1 would allow
updates up to, but excluding version 2.0.

One of the most popular version requirement type for many package managers

16https://semver.org
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Table 1. Unification of version requirement types

Requirement type CocoaPods Carthage Swift PM
latest empty empty

== = == exact
∼> ∼> x.y ∼> x.y upToNextMajor
∼> ∼> x.y.y ∼> x.y.z upToNextMinor
== branch branch branch
== tag version revision
>= >= >= from
> >
<= <=
< <

..< ..<

is the ˆ requirement type. This version requirement type does not exist in the exact
same way in the Swift ecosystem, but is included by the ∼> type. With the latter
it depends on how the version is given, either as x.y or x.y.z, if it is equivalent
to the popular ∼> type.

2.3.3. Security

Third-party solutions are often better vetted than custom solutions. The Open
Web Application Security Project (OWASP), for example, strongly recommends
against the use of custom encryption algorithms [OWA16]. Nevertheless, vulner-
abilities can be found in even very popular and well-tested libraries. For example,
in December 2021, a security vulnerability was discovered in the widely used
Log4J Java logging library. This vulnerability affected 4% of all Java applications
[WR21] and made them vulnerable to remote code execution attacks.

When a vulnerability in an open source library or a popular software applica-
tion is discovered the product vendor or vulnerability researchers that found the
vulnerability can submit the vulnerability to a CVE Numbering Authority (CNA),
who will then assign a Common Vulnerabilities and Exposures identifier (CVE)
to the vulnerability. The CVE identifier is then used to uniquely identify the vul-
nerability. Once a CVE is assigned to the vulnerability, information about the
vulnerability is added to vulnerability databases, such as the National Vulnerabil-
ity Database17 (National Vulnerability Database (NVD)). The entry for the afore-
mentioned Log4J18 vulnerability, for example, includes a short description and
numerous links to third-party advisories, patches and exploits.

Developers can search these vulnerability databases to check if the third-party
library versions they include in their applications contain publicly reported vul-
nerabilities. Tools, such as GitHub Dependabot19, have been developed that allow

17https://nvd.nist.gov
18https://nvd.nist.gov/vuln/detail/CVE-2021-44228
19https://github.com/dependabot
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the automatic checking of vulnerable dependencies. However, there are no tools
that support all three package managers used in iOS development.
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3. RELATED WORK

This chapter describes related work on code smells, library dependency network
evolution, technical lag in library dependencies, and on vulnerability analysis in
library dependency networks.

3.1. Code Smells

Fowler [Fow18] defined 22 object-oriented code smells and provided refactor-
ings for these code smells. Khomh et al. [KDG09] studied the impact of code
smells. They found that code smells affect classes negatively and that classes with
more code smells were more prone to changes [KDG09]. Olbrich et al. [Olb+09]
studied the evolution and impact of code smells based on two open-source sys-
tems. Their findings confirmed that code smells negatively affect the way how
code changes. They were also able to identify different phases of evolution in
code smells [Olb+09]. Linares et al. [Lin+14] made a large-scale analysis of
Java Mobile applications and discovered that anti-patterns negatively impact soft-
ware quality metrics such as fault-proneness [Lin+14]. Tufano et al. [Tuf+15]
studied the change history of 200 open-source projects and found that most code
smells are introduced when the corresponding code is created and not when it is
changed. They also found that when code does become smelly through evolution
then it can be characterized by specific code metrics. Contrary to common belief
[Sha19] they discovered that most code smells are not introduced by newcomers
but by developers with high workloads and high release pressure [Tuf+15].

Different kinds of code smells have been studied for Android, such as object-
oriented, Android-specific, security-related, and energy-related code smells. Gott-
schalk et al. proposed an approach to detect energy-related code smells on mobile
applications and validated this approach on Android and showed that it is possi-
ble to reduce energy consumption by refactoring the code [GJW14]. Cruz et al.
analysed how performance based guidelines affect energy efficiency [CA17] and
how energy efficiency can be increased by automatic refactoring of energy-related
code smells [CA19]. Ghafari et al. [GGN17] studied security-related code smells.
They discovered that most applications contain at least some security-related code
smells. Reis et al. [RAC21] investigated how security patches affect the maintain-
ability of the related code. They found that security fixed tend to increase code
complexity suggesting that extra care should be taken when implementing such
fixes.

Hecht [Hec15] proposed an approach to detect code smells and anti-patterns
on Android systems and implemented this approach in a tool called PAPRIKA.
This tool analyses the Android APK, creates a model of the code, and inserts this
model into the Neo4J database. Code smells are then defined as database queries
which makes it possible to query code smells on a large number of applications
at the same time. He analyzed 15 popular applications for the occurrences of four
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object-oriented and three Android code smells. Hecht et al. [Hec+15b] tracked
the software quality of 106 popular Android applications downloaded from the
Google Play Store along their evolution. They calculated software quality scores
for different versions of these applications and tracked their evolution. There
were different evolution graphs, such as constant decline, constant rise, stabil-
ity, or sudden change in either direction depending on the programming prac-
tices of the team [Hec+15b]. This shows that code quality is not necessarily
linked to app size but to the programming practices of the developers. Mateus et
al. [MM18] used PAPRIKA to analyze Android applications written in Java and
Kotlin. They analyzed a set of 2167 open-source Android applications combin-
ing different databases of open-source Android applications and compared code
smell occurrences in both languages. They concluded that applications that were
initially written in Java and later introduced Kotlin were of better quality than
other Android applications [MM18].

In these papers using PAPRIKA, the number of code smells studied was lim-
ited due to the number of code smells PAPRIKA is able to detect and ranged
from three to four object-oriented code smells and four to six Android-specific
code smells [Hec+15a][Hec+15b][MM18]. Mannan et al. [Man+16] decided to
broaden this scope and studied 21 object-oriented code smells using the commer-
cial tool InFusion. They analyzed open-source Android and Java desktop appli-
cations for these 21 code smells and compared their occurrences. Mannan et al.
analyzed 500 Android and 750 Java desktop applications randomly selected from
GitHub and detected that most code smells occur in both systems in a similar fre-
quency with major differences only for a few code smells. They concluded that
studying code smells on mobile platforms can be done with tools meant for desk-
top applications and that these results should also hold for other languages. They
also found that the code smells that have been studied so far are not the same ones
that occur most and that the focus should change to more relevant code smells
[Man+16].

Habchi et al. [Hab+17] used PAPRIKA to detect code smells in iOS appli-
cations. To be able to use PAPRIKA they used ANTLR4 grammars to generate
parsers for Swift and Objective-C code. They analyzed the AST generated by
these parsers to create the applications graphs used by PAPRIKA. They then de-
fined three iOS-specific code smells similar to how Android-specific code smells
were defined by Hecht et al. [Hec+15a]. They analyzed 176 iOS applications
written in Swift and 103 iOS applications written in Objective-C gathered from
a collaborative list of open-source iOS applications. They analyzed these appli-
cations for three iOS-specific and four object-oriented code smells. They com-
pared code smell occurrences on iOS and Android and concluded that Android
applications were more prone to code smells [Hab+17]. They also found that al-
though applications written in Objective-C and Swift had different thresholds for
code metrics, the results in proportions of code smell occurrences were similar
[Hab+17]. To the best of our knowledge, this has been the only study looking at
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code smells on iOS applications before conducting our analyses. Our work will
build on the work of Habchi et al. [Hab+17] by analyzing 34 object-oriented code
smells in iOS applications.

3.2. Library Dependency Network Evolution

Kikas et al. [Kik+17] analyzed the evolution of LDNs of three languages: JavaScript,
Ruby, and Rust. They found that for each package manager, the number of li-
braries is growing. Similarly, the number of direct dependencies and total de-
pendencies per project is increasing. The increase was especially concerning for
JavaScript, where the average number of total dependencies grew from one per
project to almost 60 between 2011 and 2016. Decan et al. [DMC17] analyzed
the LDNs of three package managers npm, CRAN, and RubyGems. They found
that proportionally there are more packages with dependencies in CRAN (70%)
than in npm and RubyGems (60%). They also found that on average there are few
direct dependencies and a much higher number of transitive dependencies. The
median number of transitive dependencies for CRAN was five, for RubyGems 8,
and for npm 22.

In follow-up work, Decan et al. analyzed the evolution of seven package man-
agers LDNs [DMG19]. They defined and calculated three metrics describing the
LDN evolution: the Changeability Index, the Re-usability Index, and the P-Impact
Index. They used the libraries.io dataset to analyze how these package manager
LDNs change over time. They found that the growth of the number of libraries
and dependencies depends on the package manager. Some LDNs have grown lin-
early, while others have grown exponentially. For most package managers 50% of
libraries were updated within two months and libraries that are referenced by other
libraries are updated significantly more often than libraries, that are not referenced
by other libraries. They also found that 26% to 33% of libraries were never up-
dated. They showed that the number of transitive dependencies is significantly
higher than the number of direct dependencies. For some of the package man-
agers, the ratio between transitive and direct dependencies is growing. They also
pointed out that the average dependency depth is between three and six, depend-
ing on the package manager. The libraries.io data set includes partial data about
CocoaPods, Carthage, and Swift Package Manager (the three package managers
used in iOS development), but according to Decan et al. this data was incomplete
and therefore, these package managers were excluded from the analysis.

Bogart et al. [Bog+21] analyzed the policies and practices for 18 LDNs. Their
analysis showed that ecosystems share values on stability and compatibility, but
other values tend to differ. The three top values cited by developers for Co-
coaPods were quality, stability, and compatibility. Blanthorn et al. [BCN19] used
tensor decomposition to study different communities within LDNs. They found
big differences between package managers, particularly between Elm and R and
the more widespread Python, Java, and JavaScript ecosystems. Korkmaz et al.
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[Kor+20] found that libraries with a higher number of dependencies tend to have
less impact in terms of number of dependents in the LDN. Our work will look
into how the number of libraries and dependencies has evolved for the yet to be
analysed Swift LDN.

3.3. Technical lag and Semantic Versioning in Library
Dependency Networks

Kula et al. [Kul+18] analyzed if developers update their library dependencies
and found that over 80% of projects used outdated dependencies. They plotted
library usage curves and discovered that new library versions are mostly used by
new dependent projects. They also found that affected developers were not likely
to respond to a security advisory. The reasons cited by developers to not up-
date libraries were perceived extra workload and added responsibility. Salza et al.
[Sal+20] analyzed how developers update library dependencies in Android apps
and found that library dependencies are rarely updated. Their analysis showed
that mainly only libraries related to Graphical User Interfaces were updated. De-
velopers cited compatibility with newer Android versions and bug propagation as
the main reasons for upgrades. Huang et al. [Hua+19] analyzed how often library
dependency updates would break Android apps and found that this was rarely the
case.

Technical lag can be defined by selecting a distribution to compare to, defin-
ing a function to calculate lag for each component, and defining a function to
aggregate over the lag of all components [Gon+17]. Typically technical lag for
library dependencies can be defined by taking the set of library versions available
at the time of release as the distribution of components, taking the time between
commits of two components as the lag and aggregating lag time between different
versions by taking the maximum to find the lag to the newest available library de-
pendency version. Zerouali et al. [Zer+18] analyzed technical lag in npm library
dependencies. They found that the median dependency lag time in npm libraries
was 3.5 months which corresponded to a median version lag of one minor and
two patch versions. They also found that major releases tend to take longer to
receive a patch update. Zeroauli et al. [Zer+19] introduced a formal framework
for measuring the technical lag of library dependencies. They analyzed 500.000
npm libraries and concluded that there is a need for more awareness of depen-
dency lag and more integrated tool support for controlling the dependency lag in
libraries. Decan et al. [DMC18] showed that dependency lag could be reduced
by over 17% if library dependency constraints would rely on semantic version-
ing that enabled automatic updates of backward compatible changes. Decan et
al. [DM19] analyzed semantic versioning for multiple package managers. They
found that most version constraints in Cargo, npm, and Packagist are compliant
with semantic versioning and that most ecosystems become more compliant over
time. They also found that more permissive constraints are updated less often.
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Stringer et al. [Str+20] analyzed the technical lag of dependencies in 14 package
managers. They found that the majority of library dependencies with fixed version
requirements were outdated and were only updated in major updates. They found
that semantic versioning would remove most of the lag and recommended tooling
uptake.

One way to encourage developers to update lagging dependencies is through
automated pull requests. These pull requests rely on semantic versioning1 to eval-
uate the probability of breaking changes that may be introduced by the new ver-
sion. Mirhosseini et al. [MP17] studied if automated pull requests could encour-
age software developers to upgrade lagging dependencies. They found that only
a third of the automated pull requests were actually merged. However, projects
that used pull request notifications were more likely to upgrade their library de-
pendency versions. Ochoa et al. [Och+22] analysed over 119,879 library updates
and found that 83.4% of these upgrades complied with semantic versioning with
compliance increasing over time. They also found that only 7.9% of projects are
affected by breaking changes as most code with breaking changes in the library
dependencies is not used by the projects. Hejderup et al. [HG22] analyzed if tests
could be used to automate dependency updates. They found that tests in well-
tested Java projects only cover 58% of direct and 21% of transitive dependency
calls and that injected faults could be detected only for 47% of direct and 35% of
indirect dependencies on average. They conclude that a combination of static and
dynamic analysis should be used in future library dependency updating systems.

Suwa et al. [Suw+17] analyzed library dependency downgrades in Java li-
braries. They found that library dependencies with shorter release cycles were
more likely to have a rollback. Equally, projects that responded to new library ver-
sions quicker were more likely to have a rollback. Cogo et al. [COH19] found that
if a downgrade is performed then the version requirement type is often changed
to exact.

Our work will analyse technical lag for the three package managers CocoaPods,
Carthage and Swift PM and how the choice of package managers changes how de-
velopers update their dependencies.

3.4. Vulnerabilities in Library Dependency Networks

Decan et al. [DMC18] analyzed vulnerable third-party libraries with nearly 400
vulnerabilities in the npm LDN encompassing 610 thousand libraries. They found
that a third of the vulnerabilities are fixed before their discovery date and half of
the vulnerabilities are fixed after the discovery date but before the publication
date. They found that over 40% of library versions with vulnerable dependencies
could not automatically update the vulnerable dependency version due to unsuit-
able dependency constraints. Zerouali et al. [Zer+22] studied how long it takes

1https://semver.org
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for vulnerabilities in libraries from npm and RubyGems to be fixed, how vulner-
abilities spread through the LDN, and if vulnerable libraries are updated. They
matched vulnerability data from Snyk to npm and RubyGems libraries and found
that more than 15% of the latest library versions are directly dependent on vulner-
able libraries. Additionally, dependencies to vulnerable libraries affected 42.1%
of npm and 39% of RubyGems libraries. They found that one-third of vulnerable
dependencies could be fixed by updating the vulnerable dependency version.

Düsing et al. [DH21] matched vulnerabilities from Snyk to libraries from the
Maven, NuGet, and npm LDNs. They, then, analyzed how vulnerabilities in direct
and transitive dependencies affect different LDNs. They found that only 1% of
libraries in NuGet and 8% of libraries in npm are affected by vulnerable depen-
dencies. Whereas, 29% of libraries served through Maven have dependencies on
vulnerable library versions. They also studied how long it takes for libraries to up-
date their vulnerable dependencies after vulnerability disclosure and found, that at
least some libraries are probably using automated tools that follow vulnerability
databases and update all vulnerable dependencies automatically.

Li et al. [Li+21] analyzed LDNs of Java projects from Maven and GitHub.
They matched vulnerability data from NVD to these Java projects and found 503
vulnerabilities matching 174 Maven projects and 3326 vulnerabilities matching
840 GitHub projects. They observed libraries with vulnerable dependencies from
2019 to 2020 and found that only 5% vulnerable dependencies were fixed in this
time frame.

Zimmermann et al. [Zim+19] studied security risks in the npm LDN. They
found, that when installing an average npm library the user implicitly trusts 80 de-
pendent libraries. They also studied risks related to project maintainers and found,
that the average maintainers’ control in the LDN has been increasing over the
years. When analyzing publicly reported vulnerabilities from Snyk, they found,
that up to 40% of all libraries have (direct or transitive) vulnerable dependen-
cies. Alfadel et al. [Alf+20] analyzed the use of vulnerable npm dependencies in
Node.js applications. They found, that although 67.93% of examined applications
depended directly on vulnerable libraries, 94.91% of these vulnerabilities were
not known at the time. For Python projects, Alfadel et al. [ACS23] found that
(40.86%) of the vulnerabilities are only fixed after they were publicly released.
They also found that over 50% of projects with dependencies have a dependency
on a vulnerable third-party library.

Prana et al. [Pra+21] analyzed publicly reported vulnerabilities in Java, Python,
and Ruby LDNs. They found that the most vulnerable dependencies (mean of
78.4% for Java, 97.7% for Python, and 66.4% for Ruby) were not updated to
patched versions during their observation period. Vulnerable dependencies that
were updated to a patched version took three to five months to update.

Massacci et al. [MP21] defined leverage as how much code is imported from
third-party libraries in comparison to custom code. They found that medium-
sized libraries import proportionally more code than large libraries. They also
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found that libraries with higher leverage are more likely to have vulnerabilities.
Gkortzis et al. [GFS21] studied the distribution of vulnerabilities in custom code
and included third-party libraries for 1244 open-source projects. Their analysis
was based on both publicly reported vulnerabilities and potential vulnerabilities
reported by static analysis tools. They found that larger projects were associated
with more vulnerabilities, both in custom code and in the included third-party
library dependencies. A higher number of library dependencies was strongly cor-
related with the number of vulnerabilities.

Alfadel et al. [Alf+21] analyzed 2,904 JavaScript projects on GitHub that are
subscribed to Dependabot (an automatic update system that monitors vulnerable
dependencies). They found that the majority (65%) of Dependabot pull requests
related to security are accepted and often merged within a day. They also found
that only 3.2% of the pull requests they examined manually broke the build. In
contrast, Chinthanet et al. [Chi+21] analyzed the fixing commits of vulnerable
npm libraries and found that a fixing release is rarely simply a fix for a vulnera-
bility, but often also included other changes.

Pashchenko et al. [Pas+18] analyzed vulnerable Java library dependencies and
found that in 20% of the cases, the vulnerable dependency was not deployed and
therefore the vulnerability did not affect the project. They found that the majority
of the vulnerable dependencies (81%) could have been fixed by upgrading to the
patched version. Zapata et al. [Zap+18] analyzed the use of three vulnerable
JavaScript libraries in 60 projects and found that 73.3% of projects dependent
on vulnerable libraries were not vulnerable themselves. Ponta et al. [PPS18]
combined static and dynamic analysis to determine if the vulnerable code in a
third-party library is reachable. They implemented a tool called Vulas that makes
it possible to find library versions that are not vulnerable and provides update
recommendations to users. Later Ponta et al. [PPS20] release more mature version
called Eclipse steady. They compare the analysis results of Eclipse steady with
OWASP Dependency Check. They find that findings that are only reported by
Eclipse steady are true positives while 88.8% of findings reported by OWASP
Dependency Check are false positives proving the effectiveness of their code-
centric analysis approach. Imtiaz et al. [ITW21] conduct an in-depth comparison
of 9 source code analysis tools on a large web application composed of Maven
and npm projects. They find that vulnerability reporting varies greatly between
tools and that the accuracy of the underlying vulnerability database has a great
impact on the output quality.

Sometimes developers decide to include library dependencies by copying the
library into their project without using a package manager. This makes updating
library dependencies more difficult, but allows developers to modify the library
before using it. Dann et al. [Dan+21] show that the use of modified third-party
libraries is common in Java projects and that conventional vulnerability scanners
struggle to analyze such dependencies correctly.

Our work will analyse how vulnerabilities spread in the Swift LND. We will
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quantify how much public information is available on the publicly reported vul-
nerabilities in the Swift ecosystem to see if refinement of tools analysing vulner-
able dependencies would be feasible in this ecosystem.
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4. TOOLS

This chapter covers Contribution 1. So far the tool support for applications written
in Swift is lacking. In this chapter, we describe the three developed tools that allow
maintainability and security analysis of projects written in Swift:

• GraphfiySwift: analysis of code smells in snapshots of projects.
• GraphifyEvolution: analysis of the evolution of projects, an extendable

tool that can be used for code smell analysis and beyond.
• SwiftDependencyChecker: detection of vulnerable library dependencies

in Swift projects. The tool can be integrated into the Xcode build process.
The initial goal for tool development was to provide tool support for the main-

tainability analysis of applications developed in Swift. The tool GraphfiySwift
was developed to facilitate code smell analyses of applications written in Swift.
Section 4.1 describes the tool GraphifySwift in detail. Based on our experiences
gained from developing and using GraphifySwift the enhanced goal was to build
a modular code analysis tool that can be used for both maintainability and secu-
rity analysis. A tool called GraphifyEvolution was developed that could be easily
extended with external analyzers. The source code analysis part of GraphifySwift
was used as the base of GraphifyEvolution and the code smell analysis part be-
came an external analyzer for code smell analysis. Section 4.2 describes the tool
GraphfiyEvolution in detail. Lastly, SwiftDependencyChecker was developed to
allow the analysis of library dependencies including the detection of vulnerable
library dependencies. Section 4.3 describes the tool SwiftDependencyChecker in
detail.

4.1. GraphifySwift

Code smells are reoccurring patterns in code that have been identified as bad prac-
tices [Fow18]. They can lead to technical debt and long-term maintainability
problems [Fow18]. Code smells and their implications have been studied a lot
for desktop applications, especially Java desktop applications [KDG09; Moh+09;
Olb+09]. Code smells can lead to more change-prone [KDG09] and fault-prone
[Lin+14] code, increasing the maintainability effort [Olb+09]. Given the signifi-
cance of the smartphone market, it is important to study code smells on Android
and iOS, too.

Most of the research on code smells in mobile applications has been carried out
on the Android platform [Hec+15a][Pal+13] [Tuf+15][Ver13][Man+16]. Man-
nan et al. [Man+16] analyzed 21 object-oriented code smells in open source An-
droid applications. They also compared code smell occurrences on Android and
Java desktop applications and suggested that this result should hold for other lan-
guages as well. Mateus et al. on the other hand have shown that code quality
does differ for different languages used [MM18]. Hecht [Hec15] developed a tool
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called PAPRIKA to analyze four object-oriented and six Android-specific code
smells in Android applications. This tool analyses the Android APK, generates a
model, and saves it in a graph database. Code smells are then defined as queries
[Hec+15a]. This approach relies on metric and rule-based code smell detection.
For iOS, Habchi et al. [Hab+17] compared code smell occurrences in iOS and
Android applications using PAPRIKA by translating iOS code to a suitable for-
mat. They analyzed four object-oriented code smells and three iOS-specific code
smells. Their analysis showed that Android applications were more susceptible
to code smells than iOS applications. To the best of our knowledge, Habchi et al.
[Hab+17] were the only ones to study code smells on iOS so far, and the scope of
their study was limited to a set of four object-oriented and three iOS-specific code
smells, where they studied 279 open source iOS applications.

Our goal is to provide tool support that allows studying code smells in iOS ap-
plications in more depth and breadth. To get a broad overview of object-oriented
code smells and their occurrences in iOS applications, we combined 21 code
smells studied by Mannan et al. [Man+16], 22 code smells that were defined
by Fowler [Fow18] and six out of seven code smells studied by Habchi et al.
[Hab+17] resulting in 36 code smells.

GraphifySwift is a tool that allows code smell analysis of applications written
in Swift. This section is based on work from [RP20]. GraphfiySwift can be used
by developers to find code smells in their applications. The tool can additionally
be used by researchers who wish to analyze a large set of applications at once.

4.1.1. Architecture

GraphifySwift takes as input either a folder path to a Swift project or a list of
source code repositories. It then analyses each of these projects and enters infor-
mation about the project, such as classes, methods, and method calls into a Neo4J
database. After the database is populated it is possible to use GraphifySwift to de-
tect code smells by querying the database. Each code smell is defined as a cypher
query.

The project structure of GraphifySwift is presented in Figure 4. The architec-
ture of the tool is fairly simple and consists of four main entities. The Application
class contains the overall program logic. The commands AnalysisCommand and
QueryCommand define the behavior of the two types of activities the tool is capable
of, namely: analyzing the source code of a project, and querying code smells from
the database. The third entity GraphifySwift handles the source code analysis and
the GraphAnalyser entity handles the analysis of the database.

4.1.2. Implementation

GraphifySwift analyses Swift code, generates a model of this code, and enters it
into a Neo4J graph database. For indexing the source code and generating the
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Figure 4. Code structure of GraphifySwift

Table 2. Relationships between database entities

Relationship name Between entities

APP_OWNS_MODULE App and Module
MODULE_OWNS_CLASS Module and Class
CLASS_OWNS_METHOD Class and Method
CLASS_OWNS_VARIABLE Class and Variable
USES Method and Variable
CALLS Method and Method
IS_TYPE_OF Variable and Class

or Argument and Class
DUPLICATES Class and Class

structure of the Swift code we used a framework called SourceKittenFramework1

that acts as a wrapper around Apple’s powerful SourceKit. Code duplication was
detected using an external tool called jscpd2. The graph database contains the
following nodes: App, Module, Class, Function, Variable, and Argument. These
nodes are connected through the relationships listed in Table 2. This model dif-
fers slightly from the one used in PAPRIKA. We added the Module node and
the following relationships APP_OWNS_MODULE, MODULE_OWNS_CLASS,
IS_TY PE_OF , and DUPLICAT ES.

In GraphifySwift, code smells are defined as queries. To give an example we
show the query definition for Long Method. Other query definitions can be found
in Appendix A.3. A code smell query can be simply based on a metric calculated
statistically as seen in this example or it can be defined through more complex
relationships between classes of an application. As Neo4J is a graph database it is
especially well optimized for this kind of pattern matching.

1https://GitHub.com/jpsim/SourceKitten
2https://GitHub.com/kucherenko/jscpd
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Long Method is normally defined as a method, that has more lines than a given
threshold. In the case of Swift code, we decided to use the number of instructions
instead of the number of lines since number of instructions ignores comments
and empty lines. This metric is more easily accessible as well through the used
SourceKittenFramework.

MATCH
(c:Class)-[r:CLASS_OWNS_METHOD] -> (m:Method)

WHERE
m.number_of_instructions >

veryHighNumberOfInstructions
RETURN

distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

4.1.3. Usage

The code analysis in GraphifySwift can be run with the following command:
GraphifySwiftCMD analyse --appkey <applicationKey>

<pathToRepository>
The appkey should be a unique token, for example, the app name, for each

project that is entered into the database. The command can be run with the addi-
tional options:

--includModules -m
--noDatabase -n
--resultOutput -o

Here includeModules divides code not only into classes but additionally into
different modules depending on the project structure. The option noDatabase
allows running the analysis without entering anything into the database, which is
sometimes useful for testing purposes. Lastly, the option resultOutput prints
out verbose output into the console.

Additionally, it is possible to run the analysis on a large set of projects at once
by running:

GraphifySwiftCMD analyseBulk --fileName <pathToJsonFile>
<folderToSaveFilesTo>

The pathToJsonFile should contain data on repositories to analyze in JavaScript
Object Notation (JSON) format. The JSON format was chosen to allow the use
of the collaborative list of open-source iOS applications3 as a direct input. The
folderToSaveFilesTo folder is used to save downloaded project repositories.

Running code smell queries using this tool generates CSV files for each code
smell and allows us to analyze the results. The CSV option was chosen to allow

3https://github.com/dkhamsing/open-source-ios-apps
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Table 3. Comparison: our results vs results in [Hab+17]

Code smell Our result results in [Hab+17]

Long method 86.4% 85.6%
Complex class 53.6% 65.6%
Massive View Controller 8.8% 8%
Ignoring Low Memory Warning 73.6% 88%

BLOB Class 10.4% 37.6%
Swiss Army Knife 3.2% 11.2%

easy analysis with common data analytics tools such as pandas4. Another option
is to choose the HTML result output which combines results for all code smells
and allows browsing the analysis results easier. Results can be queried by running

GraphifySwiftCMD query -q all --csvFolder <pathToFolder>
Lastly, a prototypical feature exists that allows the generation of class dia-

grams:
GraphifySwiftCMD classDiagram <pathToRepository>

Code smell queries are defined using thresholds that should be calculated for
each analysis set. These thresholds can be calculated using the box-plot technique.
A value is seen as very high if it is higher than Q3+ 1.5 ∗ IQR where Q3 is the
third percentile and IQR is the inter-quartile range[Hec+15b].

4.1.4. Evaluation

To validate our GraphifySwift tool, we replicated results from Habchi et al. [Hab+17].
We updated thresholds in our code smell queries to match those used in [Hab+17].
The thresholds used are listed on in Appendix A.1. The replication is done using
the the same version of the collaborative list of iOS applications as was used by
Habchi et al. [Hab+17]. To get matching results to those in the article we recalcu-
lated the percentages using their data set of applications that showed which apps
were affected by which code smells (see results in Table 3).

For four code smells (Long Method, Complex Class, Massive View Controller,
and Ignoring Low Memory Warning), the percentages were very similar. For two
code smells (BLOB Class and Swiss Army Knife) the results differed a lot. We
investigated why this was the case for Swiss Army Knife and looked at the source
code of each application where the decision did not match. We discovered that
Habchi et al. [Hab+17] included dependencies in the code they analyzed while we
did not. Therefore, for code smells concerning view controllers, the results were
very similar as most dependencies do not include view controllers. They do how-
ever often contain additional interfaces and might contain more complex classes
which explain the differences between BLOB Class and Swiss Army Knife. We

4https://pandas.pydata.org
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decided in our implementation to only count code smells in the application code,
as opposed to also in the dependencies, as this is the code that developers have
control over and whose maintainability they are concerned of.

We also compared the distribution of code smells detected by Habchi et al.
[Hab+17] and detected by our tool. The differences in the distribution of code
smells are presented in Figure 5. The code smell Swiss Army Knife appears more
than twice often in the analysis done by Habchi et al. [Hab+17] since their analysis
included a lot more interfaces than our analysis. For the same reason, proportion-
ally fewer classes were View Controllers which resulted in a lot more instances of
Ignoring Low Memory Warning in our case. Despite these differences, the results
are very similar and we conclude that our implementation of code smell detection
is valid.

SwissArmyKnife
LongMethod
BlobClass

ComplexClassPaprika
MassiveViewController

IgnoringLowMemoryWarning

% of code smells

0 10 20 30 40

Results in [9]
Our results

Figure 5. Comparison of the distributions of code smells using PAPRIKA [Hab+17] vs
GraphifySwift (our tool)

4.1.5. Application

We used GraphifySwift to analyze code smells in open-source iOS applications.
Further, we used the code smell queries from GraphifySwift in combination with
PAPRIKA and compared code smells in iOS and Android. These results are de-
scribed in detail in Chapter 5 and used to answer research questions 1.1 and 1.2.

4.2. GraphifyEvolution

For analyzing the evolution of mobile applications, multiple approaches have been
used. To track the software quality of Android applications, Hecht et al. [Hec+15]
used PAPRIKA to find Android-specific code smells in multiple versions of the
same application. Mateus et al. [MM18] used PAPRIKA to analyze the evolution
of Android applications, applying the tool for each commit. They analyzed differ-
ences in Android applications written in Java and Kotlin. Tufano et al. [Tuf+17]
implemented a tool called HistoryMiner that runs DECOR on each commit, but
only for changed files. The output of the tool is a list of commits for each source
file where that file was added, modified, or deleted and if it had a code smell.
Habchi et al. [HRM19; HMR19] implemented a tool called SNIFFER that ex-
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tracts commits from a git repository, detects code smells in each commit using
PAPRIKA, and outputs the code smell evolution of a project.

To the best of our knowledge, no studies exist analyzing the code smell evo-
lution of iOS applications. We extended the tool GraphifySwift and implemented
a tool called GraphifyEvolution 5 that can analyze applications written in vari-
ous languages, including iOS applications written in Swift. Different from pre-
vious tools that output data about the code smell evolution, we took an approach
where the output of the analysis is a graph database containing structural infor-
mation about all versions of the application. GraphifyEvolution detects which
classes, methods, and variables are changed during a commit and records only
these changes. This makes it possible to query code smells for all versions of the
application at once. Additionally, we implemented the tool in a modular man-
ner making it easy to add support for additional languages and external analysis
tools that can be run for each commit. Currently, we have implemented support
for Swift and preliminary support for Java, and C++. Support for external tools
is added for jscpd6 that finds code duplicates and insider7 that detects security
vulnerabilities.

GraphifyEvoltuion can analyze the evolution of applications in bulk or analyze
a single application. We built the tool mainly to analyze open-source applications
and frameworks written in Swift. GraphifyEvolution enters the application data
into a Neo4J database. Using a graph database allows for easy querying of pat-
terns in the database, for example code smells. This database can then be queried
with GraphifyEvolution or directly through the Neo4J browser. The possibility of
running custom queries from the browser makes the tool more versatile. Query
results can be exported in .csv files and analyzed in the user’s tool of choice as
illustrated in Figure 6.

4.2.1. Architecture

The tool consists of eight main elements as described in the following sub-sections
and illustrated in Figure 7. The tool is comprised of the following main entities:

1. Main: parsing application arguments and setup
2. AppAnalysisController: Language-independent source code analysis us-

ing the output of the syntax analyzer.
3. SyntaxAnalyser (C++, Swift, and Java): Language-specific source code

analyzer that outputs language-independent code structure.
4. LocalFileManager (C++, Swift, and Java): Language-specific manage-

ment of source code files.
5. AppManager (Simple, Git, and Bulk): Manager for analysis process de-

pending on the analysis type.

5https://github.com/kristiinara/GraphifyEvolution
6https://github.com/kucherenko/jscpd
7https://github.com/insidersec/insider
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Figure 6. Using GraphifyEvolution for data analysis.

Figure 7. Architecture and usage of GraphifyEvolution

6. DependencyManager (Simple, Maven, Gradle): Managers that filter out
dependency-related source code that is not part of the custom code of a
project.

7. ExternalAnalyser (Duplication, InsiderSec, Metrics, Smells, Dependency,
Import, Language, Vulnerability): Implementations of different external an-
alyzers, for example for analyzing code duplication, security vulnerabilities
code smells, dependencies, import statements, and languages.

8. Database (Neo4J): Communication with the Neo4J database.
The application starts with Main.swift where the command-line arguments
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are parsed and the application is set up. The command-line arguments decide
which implementation of the SyntaxAnalyser, the LocalFileManager, the App-
Manager, the DependencyManager, and the ExternalAnalyser are used. Fig-
ure 7 shows how the command-line arguments correspond to the tool implemen-
tation.

An important feature of GraphifyEvolution is that it is fairly easy to extend
the tool by implementing additional syntax analyzers for other programming lan-
guages or additional external analyzers.

4.2.2. Implementation

The Main class handles input arguments and setups the application controller.
Depending on input arguments the correct implementations for LocalFileMan-
ager, SyntaxAnalyser (both language-specific), DependencyManager (platform-
specific), AppManager (either simple, git, or bulk), and ExternalAnalyser (if ex-
ternal analysis tools are included) are chosen.

The analysis of applications is done in the AppAnalysisController class.
This analysis is language-agnostic. It relies on the SyntaxAnalyser to find
classes in source code files. AppAnalysisController decides which files should
be analyzed, depending on whether they have changed compared to the previ-
ous version of the application. For files that have not changed, classes from
the previous application version are used. For files that are added or changed,
AppAnalysisController calls the SyntaxAnalyser to find classes in these
files. New classes found in these files are added to the application. For classes
that have changed, a parent class is found and potential methods and variables are
handled. For potential methods and variables AppAnalysisController decides,
based on changed lines, if a method or variable is added, removed, or changed
and handles them accordingly. The control flow graph of this decision process is
given in Appendix B.

The class LocalFileManager is used to find source code files in a given
project folder. Currently, there are implementations for three different languages:
Swift, Java, and C++. Each of these implementations defines allowed file types
and ignored folders and can include any other language-specific differences. In
future versions, these managers will be able to deal with different dependency
management systems, for example if an iOS app requires dependencies through
CocoaPods, Carthage or Swift PM.

The class AppManager handles the different app versions to be analyzed. Cur-
rently, there are three different AppManager implementations: SimpleAppManager,
GitManager, and BulkAppManager. SimpleAppManager takes a project folder
of an application and creates one AppVersion to be analyzed. GitManager takes
a project folder of an application and as its name suggests creates app versions
for each git commit. The implementation uses git log to find all git commits and
git diff to find changes for each commit. GitManager also tries to set the branch
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from which a commit originates. This is done by finding the next merge commit
and trying to find the branch name from the commit message. In most cases, this
works correctly, but sometimes developers change the default git message, then
the branch name can be incorrect. This is currently the most reliable way to find
branch names as git does not keep a record of deleted branches. BulkManager
takes a JSON file that contains information about projects to be analyzed such
as name and project folder path or repository Uniform Resource Locator (URL).
BulkManager can be setup to use a SimpleAppManager or GitManager if the
evolution of multiple applications should be analysed. Other types of managers
can be added. Possible implementations can be for a manager that adds new
changes to an existing application in the database.

The class DependencyManager handles the setup of dependencies of an appli-
cation. Each type of dependency management needs its own DependencyManager.
Currently three implementations exist: SimpleDependencyManager, Gradle-
DependencyManager, and MavenDependencyManager. SimpleDependency-
Manager does not update any dependencies and GradleDependencyManager
updates dependencies with Gradle and the MavenDependencyManager updates
project dependencies with Maven.

The class SyntaxAnalyser is language-specific and handles analyses of source
files. For Swift, the class SwiftSyntaxAnalyser uses the SourceKittenFrame-
work to index and analyze Swift code. CPPSyntaxAnalyser calls a Python script
that uses clang to index C++ source code. JavaSyntaxAnalyser calls a small
Java program that uses JavaParser and JavaParserTypeSolver to index and
analyse source code written in Java. In principle, SyntaxAnalyser can be imple-
mented in two ways. The quickest implementation is to use an external library or
tool to index the source code and pass a JSON object to the default implementa-
tion of the parseClassFrom function. This JSON object needs to have a specific
structure8 containing classes, variables, methods, and instructions. If converting
source code into this structure is unfeasible it is possible to override methods for
parsing classes, methods, variables, and instructions. In this case, a Class ob-
ject needs to be returned. SwiftSyntaxAnalyser, JavaSyntaxAnalyser, and
CPPSyntaxAnalyser all follow the first approach.

The class ExternalAnalyser makes it possible to run additional external
analyses on each app version. External analyses can be either on the app or class
(file) level. The findings of the analyses will then be attached to the corresponding
app or class, respectively. Additionally, ExternalAnalyser needs to declare for
which programming languages it can be used. Currently, there are 8 analyzers that
implement ExternalAnalyser. The first analyzer is DuplicateCodeAnalyser
and uses jscpd9 to find code duplication. InsiderSecurityAnalyser, the sec-

8https://github.com/kristiinara/GraphifyEvolution/blob/master/
documentation/syntax_analyser.md

9https://github.com/kucherenko/jscpd

48

https://github.com/kristiinara/GraphifyEvolution/blob/master/documentation/syntax_analyser.md
https://github.com/kristiinara/GraphifyEvolution/blob/master/documentation/syntax_analyser.md
https://github.com/kucherenko/jscpd


ond analyzer, uses insider10 to find vulnerabilities in source code. The third and
fourth analyzer are used to find and save data related to code smells to the appli-
cation database. The MetricsAnalyzer calculates class-based metrics and the
SmellsAnalyzer queries code smells for new and changed classes. It is possible
to query code smells without using these analyzers but they make it possible to ex-
tract code smell data faster later on. The fifth analyzer is DependencyAnalyser
which finds dependencies of an application declared with CocoaPods, Carthage,
or Swift Package Manager. It finds the names and versions of the library depen-
dencies and adds them to the database. The sixth analyzer is ImportAnalyser
which finds import statements in Swift classes and adds them to the database. The
seventh analyzer is LanguageAnalyser which detects the language of a file and
adds that information to the database. The last analyzer is VulnerabilityAnalyser
which finds if a project to be analyzed has a publicly reported vulnerability in the
NVD.

GraphifyEvolution uses the Neo4J graph database platform that has previously
been used for similar purposes [Hab+17; Hec+15; RP20]. Neo4J makes it possi-
ble to easily query different patterns in code to find code smells in applications,
as was demonstrated in [RP20]. For more complex analyses, Neo4J has a data
science plugin that can be used to run cluster analyses. Before running Graphi-
fyEvolution, a Neo4J database instance needs to be running (either on localhost
or remotely). Queries to the database are done through the HTTP interface.

The Neo4J database stores data of nodes and relationships between nodes.
There are 6 types of nodes: App, Class, Method, Variable, Argument, and Exter-
nal, and 7 types of relationships that describe the structure of the application.

• APP_OWNS_CLASS
• CLASS_OWNS_METHOD
• CLASS_OWNS_VARIABLE
• CALLS
• USES
• CLASS_REF
• EXTERNAL_REF

Additionally, there are two types of relationships that describe the evolution
of the application. The two relationships CLASS_CHANGED_TO and CHANGED_TO
connect class and application versions, respectively.

Nodes and relationships have attributes that store information about these en-
tities. A more detailed description of the database structure can be found in Ap-
pendix B.2.

4.2.3. Usage

Code smell analysis of a single application can be run as follows:

10https://github.com/insidersec/insider
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GraphifyEvolution analyse <app folder>
--external-analysis smells

Here app folder is the project folder path. The flag external-analysis
lets the user choose what external analyzer to use. It can be omitted or used
multiple times. After the analysis has finished, all code smells found by Graph-
fiyEvolution can be extracted in CSV format by running

GraphifyEvolution query
If GraphifyEvolution should run a specific query, instead of all code smell

queries, it is possible to pass this as a command-line argument.
Bulk analysis of Java projects analyzing the evolution of these projects can be

run as follows:
GraphifyEvolution analyse <apps folder>

--bulk_json_path <json path>
--language java --evolution

The bulk-json-path points to the JSON file containing information about
applications to be analyzed. The evolution flag determines whether the evo-
lution or a single version of the application is analyzed. Language can be set
by the language option and can be either Swift, C++, or Java. It describes the
project language. It is not yet possible to analyze projects that comprise multiple
programming languages.

All options how GraphifyEvolution can be run is shown in Figure 7. Here
path is either the project folder path or (in case of bulk analysis) folder path
where analyzed applications are downloaded.

A prerequisite of running GraphifyEvolution is a running Neo4J database. The
username and password for the Neo4J database need to either match the default
values in the code or the user needs to pass them with command-line arguments.

4.2.4. Evaluation

For a preliminary evaluation, we analyzed the code smell evolution of 30 open-
source iOS apps. We chose apps that were open source and whose repositories
contained all the required code to run the application. This means we used apps
that either did not use any dependency management or used Carthage and com-
mitted all the dependency files. Future versions of the tool will support other
dependency management solutions, such as CocoaPods and Git submodules.

In total, we analyzed 30 applications, 3878 app versions, 7086 classes, 7965
methods, and 7794 variables. The analysis took 17 hours, this analysis included
code smell analysis, duplication analysis, and vulnerability analysis with insider.
Generated data can be downloaded from the tool web page 11 and browsed using
the Neo4J community version. The results of the analysis are reported in Subsec-
tion 5.2.3.

11https://github.com/kristiinara/GraphifyEvolution/blob/master/example_
data/overview.md
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Our evaluation showed that it is feasible to analyze the evolution of multiple
applications. However, we did observe that the time required to analyze the evolu-
tion of very old and large applications was extensive. To better handle applications
with large git histories we added the option to only analyze git tags. This results in
a less detailed history of the applications, but allows faster analysis while keeping
the most important versions of the application. Additionally we added the option
to start at a given git commit to allow the analysis of the most recent application
versions. To better handle large applications we modified the code that handles
syntax analysis by rewriting functions that relied on recursion. Our experience
showed that in some cases the recursive nature of these methods led to call stack
overflows.

4.2.5. Application

In addition to the preliminary evaluation, we used GraphifyEvolution to construct
the LDN of the Swift ecosystem. The resulting dataset is described in detail in
Section 6.1.2. We analyzed a total of 60533 libraries, 572131 library versions
and detected 23419 dependencies between library versions. We used this dataset
to analyze the Swift LDN. These results are described in detail in Chapter 6 and
used to answer the research questions 2.1, 2.2, 2.3, and 2.4.

4.3. SwiftDependencyChecker

In 2015, a vulnerability in the popular iOS third-party library AFNetworking was
found. The vulnerability affected around a thousand iOS applications with mil-
lions of users [Kum15]. A fixed version of this library was published over six
years ago and the vulnerability was publicly reported. We analyzed open-source
iOS applications and found four applications that there are still actively main-
tained and used applications on the app store that use this old vulnerable version
of the library.

Developers can search for publicly reported vulnerabilities in public vulnera-
bility databases such as the National Vulnerability Database (NVD)12. Such vul-
nerability databases can be difficult to search and checking for vulnerabilities can
be tedious. To make this task easier for developers, several tools have been de-
veloped that automatically analyze project dependencies and detect vulnerable
library versions. Some of these tools include experimental support for the Co-
coaPods package manager but no existing tool supports all three package man-
agers used in iOS app development.

We developed SwiftDependencyChecker 13 , a tool that checks dependencies in
Swift projects by analyzing the CocoaPods, Carthage, and Swift Package Manager
manifest files. It then queries the NVD database and checks if any of the used

12https://nvd.nist.gov/
13https://GitHub.com/kristiinara/SwiftDependencyChecker
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Figure 8. Architecture pipeline of SwiftDependencyChecker

libraries have publicly disclosed vulnerabilities. To increase the usability of the
tool it can be easily integrated into the Xcode build process. Xcode then displays
warnings generated by SwiftDependencyChecker in the source code editor.

4.3.1. Architecture

SwiftDependencyChecker has a simple architecture. It consists of five compo-
nents that are executed in a pipeline as shown in Figure 8. Each component en-
capsulates one mostly self-contained analysis step that takes the output of the
previous step as input. The components are:

1. Detecting dependencies: analysing the package manager manifest file to
extract information on library names and version.

2. Matching project names to CPEs: matching library names to project ids
(CPE - Common Project Enumeration) used by vulnerability databases.

3. Querying the NVD database: finding up-to-date vulnerability information
on given CPEs from the NVD database.

4. Matching library uses to vulnerable versions: finding library uses that match
vulnerable library versions found earlier.

5. Analysing source code: finding import statements of vulnerable library in-
stances.

The implementation of these components is described in more detail in the
next subsection.
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4.3.2. Implementation

First, package manager resolution files Podfile.lock, Cartfile.resolved and Pack-
age.resolved are analyzed. SwiftDependencyChecker detects which library ver-
sions the given project depends on and stores this data in the libraries.csv file.
This analysis is rerun every time and data in the libraries.csv file is currently only
used for debugging purposes. How dependencies are defined differs for each of
these package managers. Carthage and Swift Package Manager are both decen-
tralized package managers and it is possible to include a library by providing its
repository URL. CocoaPods on the other hand has a central repository that con-
tains details on all libraries that can be installed through CocoaPods. To make
library definitions better comparable CocoaPods library names are "translated".
For this, the CocoaPods central repository is cloned and details for each library
are extracted. To speed up the "translation" process all translations are stored in
translations.csv and only new occurrences of libraries are "translated" by analyz-
ing the CocoaPods repository.

Next, SwiftDependencyChecker goes through all libraries and uses the official
Common Platform Enumeration (CPE) dictionary provided by NVD to match li-
braries to CPE values used in NVD. For each library that NVD references in
the vulnerability database, there is a CPE that uniquely identifies this library. To
match libraries to their corresponding CPE values SwiftDependencyChecker goes
through the CPE dictionary14 and searches for a line that contains the libraries
username/projectname value (which is used as library name). If a match is found
it means that the line contains a reference to the project repository. A reference
to a project repository is followed by a CPE item. SwiftDependencyChecker then
extracts the CPE string from the found CPE item. All CPE values are stored in
the cpes.json file to speed up future runs of the tool.

SwiftDependencyChecker then queries the public NVD Application Program-
ming Interface (API) for each CPE value. The NVD API returns all vulnerabili-
ties connected to the given CPE value. Vulnerability data is parsed and saved in
the vulnerabilities.json file. The CVE data includes values (among others) such
as vulnerability description, impact, who reported the vulnerability, and affected
versions. Data on affected versions is a tree with CPEs of affected versions and
operators (such as "and" and "or") that define which combinations of versions
are vulnerable. Currently, the operator value is ignored and all linked CPEs are
considered vulnerable.

Matches between the used library versions and vulnerable library versions are
determined by first matching CPEs. As a next step, SwiftDependencyChecker
tries to match library versions. Library versions can be matched if versions are
given as numbers separated by dots. Library matching can for example ignore "v"
as a prefix and "-beta" as a suffix. Other kinds of special values are ignored as well
and the library version is considered vulnerable. Library versions are compared

14https://nvd.nist.gov/products/cpe
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Figure 9. Integration of vulnerability detection into Xcode (screenshot)

by going through major, minor, and revision values of the version, first comparing
the major version, then the minor version and last the revised version. If the
versioning scheme of a library has changed during the lifetime of a library, such
as going from version 2018.1.4 to 3.4.1, SwiftDependencyChecker may report
false positive results.

After uses of vulnerable library versions are determined, SwiftDependency-
Checker traverses all Swift files and all package manager resolution files to find
references to vulnerable library versions. For each match, a warning is printed
including the file path, line number, and warning message. If SwiftDependency-
Checker is run as a build script under build phases, Xcode displays these warnings
in the source code editor as shown in Figure 9.

4.3.3. Usage

SwiftDependencyChecker is a lightweight tool that can be easily installed and
integrated into the Xcode build process.

SwiftDependencyChecker can be installed through homebrew with the follow-
ing commands:

brew tap kristiinara/SwiftDependencyChecker
brew install SwiftDependencyChecker

SwiftDependencyChecker can either be run from the command line or it can
be added as a build script under build phases in Xcode. The build script in Xcode
should include the following line:

SwiftDependencyChecker analyse --action sourceanalysis
When the project is built in Xcode then the source code analysis is run by

SwiftDependencyChecker. The tool outputs warnings about files that contain ref-
erences to library versions with known vulnerabilities. These warnings are shown
in the source code editor of Xcode as can be seen in Figure 9.

4.3.4. Evaluation: Functional Correctness

Functional correctness testing was performed on real-world apps that contained
references to vulnerable third-party dependencies. To identify examples of such
applications we used GraphifyEvolution [RP21] to analyze dependencies used in
open-source iOS applications. We implemented a new external analyzer that was
able to parse package manager resolution files for Cocoapods, Carthage, and Swift
Package Manager.
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We used a collaborative list of open-source iOS applications15 that contains a
total of 1318 projects. We first filtered out applications where the app metadata
contained an iTunes link, which indicated that these apps were published on the
app store. This was done to discard demo applications that were not meant for
production use as many toy applications are published on GitHub. GraphifyEvo-
lution was then run on the list of 374 applications of which 365 applications were
successfully analyzed. All used library names and versions were entered into the
Neo4J database. Of the analyzed applications 133 had at least one dependency.

We then queried the list of used library names from the database. We down-
loaded the CPE dictionary used by NVD and wrote a script that searched for a
matching CPE value for each of these libraries. For each CPE found the script
queried the NVD API to find vulnerabilities related to the given CPE value. Vul-
nerability data received from the NVD API was stored in a JSON file.

As a next step, we went through the received vulnerability data and manually
matched vulnerable library versions to library versions used by the analyzed open-
source iOS apps. We found 16 uses of third-party library versions with a publicly
reported vulnerability. For each match, we then went to the repository page of
the open-source library and checked if the repository is still maintained. Of these
found matches we found four open source applications that were still maintained
and published on the app store. We contacted the developers of these applications
to inform them about the vulnerable dependencies in their projects. Then, for each
of these apps we cloned the repository and ran SwiftDependencyChecker. We ver-
ified that SwiftDependencyChecker successfully identified all uses of vulnerable
libraries that we were able to find manually. So far none of the developers have
updated these vulnerable dependencies.

We did not check for false positives. False positives can only happen if a
sub-target of a library is referenced and the published vulnerability only affects
another part of the library, as the analysis ignores sub-targets.

4.3.5. Evaluation: Performance

The four applications with vulnerable third-party dependencies that we identified
previously were also used when testing the performance of SwiftDependency-
Checker. These applications were a good fit for performance testing because they
included a high number of dependencies and analyzing them ought to be more
time-consuming than smaller applications.

We analyzed how long it takes to run SwiftDependencyChecker in three sce-
narios:

1. analyzing a new project.
2. analyzing a project that has been analyzed before

15https://github.com/dkhamsing/open-source-ios-apps/tree/
eb43f2d00158579fe2d8710b8e738b887c26ac6d
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We selected these scenarios because SwiftDependencyChecker caches results
between runs in order to speed up analysis. The recommended use of SwiftDe-
pendencyChecker is to include it as a build script in Xcode, meaning that long run
times would not be appreciated because it slows down development.

The performance of SwiftDependencyChecker was measured on a 2020 Mac-
book Air with the M1 processor and 16GB of RAM running macOS 12.1. This is
a typical computer that could be used for iOS development.

Running SwiftDependencyChecker on each of the four applications for the
first time took 8.5 to 13 minutes. The variation stems from the number of de-
pendencies included in a project. We assumed that a run conducted the first time
after installation of the tool might take some extra time for downloading the CPE
dictionary and the CocoaPods Spec repository. However, it turned out that the
difference was negligible.

Rerunning the analysis of a project that had previously been analyzed took
between 0.07 and 0.08 seconds. In other words, repeated runs were very fast and
small enough for the recommended usage of SwiftDependencyChecker at every
build during development.

Running SwiftDependencyChecker for the first time and analyzing a new project
was relatively slow and might discourage developers from using the tool. As a
possible solution, we are currently looking into the possibility of including JSON
files with CPE and spec translation values for common libraries.

4.3.6. Evaluation: Novelty

Similar tools exist and are quite popular for other languages and platforms. In
this subsection, we will mainly discuss tools that provide some support for either
CocoaPods, Carthage, or Swift Package Manager and therefore overlap with our
tool.

DependencyCheck16 is a tool developed by OWASP that provides experimen-
tal support for CocoaPods and Swift Package Manager. It analyses the package
manager resolution files and queries data from NVD and Sonatype. Dependency-
Check can generate XML and HTML reports. There is no easy way to integrate
analysis results with Xcode.

Snyk CLI17 is developed by Snyk. The tool provides support for CocoaPods
and queries the Snyk vulnerability database. The Snyk CLI did not detect all
vulnerabilities found by DependencyCheck and SwiftDependencyChecker. Snyk
CLI is a commercial tool that requires sign up through the Snyk web page. There
is no easy way to integrate analysis results with Xcode.

FOSSA18 provides an enterprise solution that can detect vulnerable third-party
dependencies included through among others CocoaPods, Carthage, and Swift

16https://jeremylong.github.io/DependencyCheck/analyzers/swift.html
17https://docs.snyk.io/features/snyk-cli/
18https://fossa.com/product/open-source-security-management
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Package Manager. Analysis for FOSSA requires an API key and analysis is done
on either the cloud or in a separately set up client-server.

Veracode SCA19 (Source Composition analysis) is a tool developed by Ve-
racode that analyses whether dependencies used in a project match vulnerable
library versions and checks where and if the vulnerable library is used in the
project. Veracode SCA provides support for CocoaPods. Finding vulnerable li-
braries based on library names is done in the cloud, matching uses to project code
is done offline. The analysis tool is commercial and there is no direct integration
with Xcode.

While existing tools provide at least partial support for the three package
managers targeted by SwiftDependencyChecker, none of them can be directly
integrated into Xcode. For other platforms, similar tools exist. For example,
Dependency-Check-Gradle20 makes it possible to integrate dependency checking
as a gradle plugin in Android projects and the Snyk Vulnerability Scanner21 al-
lows integrating detection of vulnerable libraries in Visual Studio.

4.3.7. Evaluation: Usefulness and Usability

We posted links to SwiftDependencyChecker to Linkedin, Reddit, and Medium
and asked iOS developers to try it out. Overall, the feedback we received con-
firmed the usefulness of the tool. Some developers made improvement sugges-
tions. One concern was that the tool seemed to be unresponsive when run for the
first time after installation (cf. Section 4.3.5). We took the feedback into account
and improved logging. In addition, we will consider how the initial run of the tool
could be sped up by including translation and CPE files.

4.3.8. Application

We used SwiftDepnendencyChecker in combination with GraphifyEvolution to
generate the Swift LDN dataset described in 6.1.2. We used this dataset to analyze
the Swift LDN. These results are described in detail in Chapter 6 and used to
answer the research questions 2.1, 2.2, 2.3, and 2.4.

19veracode.com
20https://github.com/dependency-check/dependency-check-gradle
21https://marketplace.visualstudio.com/items?itemName=snyk-security.

snyk-vulnerability-scanner
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5. CODE SMELL ANALYSES

Code smells are recurring patterns in code that have been identified as bad prac-
tices [Fow18]. They have been analyzed extensively, for example, in Java desktop
applications [KDG09][Moh+09][Olb+09]. For mobile applications, most of the
research has been done for Android with very little research done for iOS. Al-
though Android has the largest market share, iOS is a very popular platform. Our
goal is to understand code smells in iOS applications.

5.1. Method

In this section, we describe the three research questions and the corresponding
research methodology.

5.1.1. Research Questions

To better understand code smells in iOS applications we first analyze the distri-
bution and frequency of code smells in iOS applications by analyzing how many
applications are affected by each code smell and by calculating the proportion of
each code smell type of the number of all code smells. We then analyze how this
compares to Android applications and lastly, we look into how code smells in iOS
applications evolve over time. We answer the following research questions:

• RQ1.1: What is the distribution and frequency of code smells in iOS appli-
cations?

• RQ1.2: How do code smells in iOS applications compare to Android appli-
cations?

• RQ1.3: How have code smells in iOS applications evolved over time?
The answers to these research questions help bring attention to Swift develop-

ers for which code smells they should watch out for when developing iOS applica-
tions. Additionally the comparison of code smells in iOS and Android helps tool
developers understand if and how code smell analysis tools should be adapted for
iOS developers.

5.1.2. RQ1.1: Code Smells in iOS applications

Fowler defined 22 object-oriented code smells in his book "Refactoring: Improv-
ing the Design of Existing Code" [Fow18]. Mannan et al. [Man+16] used a com-
mercial tool called InFusion to detect 21 object-oriented code smells in Android
applications. Habchi et al. [Hab+17] used a tool called PAPRIKA, which was
developed to detect code smells in Android applications, to analyze three iOS-
specific and four object-oriented code smells in iOS applications. We combined
these three lists of code smells into a single list of 34 object-oriented code smells
and two iOS-specific code smells. The descriptions of the code smells and the
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four excluded code smells are presented in A.2. We created a tool called Graphi-
fySwift that analysis Swift code, generates a model of this code, and enters it into
a Neo4J graph database. This tool is described in detail in Section 4.1.

A shortcoming of GraphifySwift in comparison to PAPRIKA is that we are not
able to analyze compiled applications. With Android, it is possible to decompile
an APK, while iOS applications are encrypted which makes them more difficult
to reverse engineer. Due to these limitations, we limited our scope of applica-
tion to open-source applications written in Swift. Habchi et al. [Hab+17] used a
collaborative list of open-source iOS applications from GitHub1. The collabora-
tive list of open source applications is assembled by open source contributors and
contains information for each application added such as application name, repos-
itory address, the language used and app store link if applicable. We downloaded
open-source iOS applications written in Swift from this list of applications.

Since this list is collaborative in nature it has been updated, old applications
have been removed and new applications added. For our analysis, we used the
2019-11-13 version of the list of open-source iOS applications2. We downloaded
iOS applications written in Swift from the collaborative list. We downloaded
454 open-source iOS applications from GitHub. For some applications in the
collaborative list, the source code was no longer available or we were not able to
access the needed dependencies. We were able to successfully analyze 273 iOS
applications written in Swift.

In the following, we refer to two different lists of applications:
• all_new_apps refers to all 273 successfully analyzed applications from the

collaborative list of open source applications
• appstore_new_apps refers to 68 applications from

all_new_apps that are available on the app store
We ran our analyses on these lists of applications. First, our tool analyzed these

applications and entered the corresponding data into the graph database. Next, we
calculated thresholds for code smells such as a very high number of instructions
using the box-plot technique. According to the box-plot technique thresholds are
calculated as Q3+1.5∗ IQR where Q3 is the third percentile and IQR is the inter-
quartile range. Established thresholds based on the all_new_apps list are listed in
Appendix A.1. Using these thresholds we were able to update and execute code
smell queries. These code smell queries are listed in Appendix A.3.

We then executed code smell queries to find code smells in these iOS applica-
tions. Using the list of code smells we plot the distribution and frequency of code
smells in iOS applications.

1https://GitHub.com/dkhamsing/open-source-ios-apps/tree/
4d62674195711c580166d9e7859f82e30695dcf2

2https://GitHub.com/dkhamsing/open-source-ios-apps accessed: 2019-11-13
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5.1.3. RQ1.2: Code Smells in iOS vs Android

For the analysis of Android apps, we took the list of apps provided by Habchi
et al. [Hab+17]. Since the list only included app package names, we queried
AllFreeAPK API3 to find and download these apps. We decided to search All-
FreeAPK instead of GitHub, as PAPRIKA uses APKs for analysis, and this way
we were able to skip the step of compiling these apps. Later during the analysis
we needed to discard some of the very big apps (apps with more than 100 classes)
due to performance issues. In total, we included 694 open-source Android apps
in our analysis.

For these Android apps, we used PAPRIKA to populate the Neo4J database.
We then took the queries defined for GraphifySwift (listed in Appendix A.2) to
find code smells. Since GraphifySwift was built to analyze iOS apps we had to
adapt the code smell queries so that they could be used on the database produced
by PAPRIKA. We made the following changes to the code smell queries:

We removed references to Module nodes, i.e., the relationship
(app)-APP_OWNS_MODULE->(module)-

MODULE_OWNS_CLASS->(class)
was substituted by the relationship

(app)-APP_OWNS_CLASS->(class)
We removed references to argument type or substituted them with argument

name. Argument names are not accessible in Java bytecode and therefore the
argument name provided by PAPRIKA is actually the argument type. Finally, we
added the relationship

(variable|argument)-IS_OF_TYPE
->(class)

by finding classes whose names matched the argument name or variable type.
After these modifications of the database and queries, 19 of the 34 Graphi-

fySwift code smell queries could be used on the Android app database produced
by PAPRIKA. The adapted code smell queries are available on FigShare4. The
code smell queries that had to be excluded contained metrics or attributes that
were not provided by PAPRIKA. We excluded for example queries referring to
code duplication, maximum nesting depth, number of switch statements, and
number of comments. For the analysis of Android apps, we calculated new thresh-
olds based on the apps that we analyzed using the box-plot technique. The list of
iOS and Android thresholds is included in Appendix A.1.

Using the results from the code smell queries, we checked whether any of the
19 identified code smells occurred in at least one app on each platform. Then, we
calculated the densities of code smells for Android apps and compared these to

3https://m.allfreeapk.com/api/
4https://figshare.com/articles/conference_contribution/GraphifySwift_

queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994
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iOS. Code smell density was calculated by counting the number of code smells
(total and per code smell type) and dividing by the number of app instructions.
The number of app instructions here is the number of class instructions found by
the SourceKittenFramework for each class added together. We use instructions
instead of number of lines of code as the number of instructions ignores white-
space and comments. Additionally the number of instructions is readily available
through the code parsing library used.

Lastly, we calculated the relative frequencies of code smells per code smell
type on each platform. We counted the code smells of a type in all apps and
divided by the total code smell count. We did this per platform. To calculate the
code smell distributions on the app and class levels per platform, we counted how
many apps (and classes) contain at least one code smell of a certain type and then
divided it by the total number of apps (and classes).

5.1.4. RQ1.3: Code Smell Evolution

For a preliminary evaluation, we analyzed the code smell evolution of 30 open-
source iOS apps. We chose apps that were open source and whose repositories
contained all the required code to run the application. This means we used apps
that either did not use any dependency management or used Carthage and com-
mitted all the dependency files. Future versions of the tool will support other
dependency management solutions, such as CocoaPods and Git submodules.

We used GraphfiyEvolution to analyze the evolution of these applications. As
external analyzers, we used code smell analysis and security analysis with in-
didersec. For a preliminary analysis, we then queried the LongMethod code smell
in all versions of these applications. Additionally, we analyzed when potential
vulnerabilities were introduced.

5.2. Results

We present our results on Code Smell analysis in the following section.

5.2.1. RQ1.1: Code Smells in iOS applications

We analyzed 273 open-source iOS applications written in Swift using our code
smell detection tool which is able to detect 34 object-oriented and two iOS-
specific code smells. When looking at applications that have at least one oc-
currence of a given code smell, iOS applications are most often affected by Lazy
Class, Long Method, Message Chain, Ignoring Low Memory Warning, and Data
Class as can be seen in Figure 10.

The distribution of code smells can be seen in Figure 11. The most com-
mon code smell is Internal Duplication, followed by Lazy Class, Long Method,
Message Chain, and Primitive Obsession. This distribution was established by
counting occurrences of a given code smell through all applications.
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Figure 10. Percentage of apps with at least one code smell of a given type

We also compared the distribution of code smells in applications that can be
found on the App Store (applications in list appstore_new_apps) to all open-
source applications analyzed. As shown in Figure 11 the distribution of code
smells is very similar, the biggest difference (by two percentage points) seems to
be Internal Duplication. It could be that applications in the App Store are slightly
better maintained and less copy-pasting is allowed.
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Figure 11. Comparison of the distribution of code smells in applications on the App Store

5.2.2. RQ1.2: Code Smells in iOS vs Android

We analyzed 694 open-source Android apps using PAPRIKA and modified code
smell queries from GraphifySwift to answer our research question. We analyzed
the apps with regards to 19 code smells BlobClass, ComplexClass, CyclicClass-
Dependency, DataClass, DataClumpFields, DistortedHierarchy, DivergentChange,
InappropriateIntimacy, LazyClass, LongMethod, LongParameterList, MiddleMan,
ParallelInheritanceHierarchies, PrimitiveObsession, SAPBreaker, ShotgunSurgery,
SpeculativeGeneralityProtocol, SwissArmyKnife and TraditionBreaker. When
comparing the occurrence of code smells on each platform, we found that 18
of the 19 identified code smells occurred in apps on both platforms, i.e., Android
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mean std min 25% 50% 75% max

BlobClass 0.9 3.4 0.0 0.0 0.0 1.0 48.0
ComplexClass- 3.7 11.1 0.0 0.0 1.0 3.0 149.0
Paprika
DataClass 8.0 18.8 0.0 1.0 3.0 7.0 228.0
DataClumpFields 3.7 13.1 0.0 0.0 0.0 2.0 159.0
DistortedHierarchy 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DivergentChange 8.9 29.4 0.0 0.0 2.0 7.0 375.0
Inappropriate- 1.1 3.9 0.0 0.0 0.0 0.0 38.0
Intimacy
LazyClass 17.2 38.8 0.0 2.0 7.0 17.0 510.0
LongMethod 14.9 36.4 0.0 2.0 5.0 12.0 377.0
LongParameterList 8.4 25.5 0.0 0.0 3.0 7.0 351.0
MiddleMan 0.5 1.8 0.0 0.0 0.0 0.0 19.0
ParallelInheritance- 0.1 0.8 0.0 0.0 0.0 0.0 12.0
Hierarchies
PrimitiveObsession 8.4 17.9 0.0 0.0 2.0 8.0 130.0
SAPBreaker 6.1 13.6 0.0 0.0 2.0 6.0 147.0
ShotgunSurgery 6.9 19.7 0.0 0.0 2.0 5.0 241.0
SpeculativeGenera- 0.8 2.8 0.0 0.0 0.0 1.0 35.0
lityProtocol
SwissArmyKnife 0.3 1.5 0.0 0.0 0.0 0.0 18.0
TraditionBreaker 0.0 0.1 0.0 0.0 0.0 0.0 1.0

Table 4. Description of code smell data for iOS applications

and iOS. Code smell DistortedHierarchy never occurred in iOS apps.
Tables 4 and 5 show the mean, standard deviation, percentiles and extremes

for each code smell type for iOS and Android applications, respectively. We
used the Mann–Whitney U test with a Bonferroni corrected significance thresh-
old of 0.0027 to test if the distribution of each code smell differs between iOS
and Android. We saw that the difference is significant for code smells Complex-
ClassPaprika (p < 0.001), DataClass (p < 0.001), DistortedHierarchy (p < 0.001),
LongMethod (p < 0.001), LongParameterList (p < 0.001), MiddleMan (p < 0.001),
PrimitiveObsession (p < 0.001), ShotgunSurgery (p < 0.001), SpeculativeGeneral-
ityProtocol (p < 0.001), and SwissArmyKnife (p < 0.001). The difference was not
significant for code smells BlobClass (p = 0.013), DataClumpFields (p = 0.668),
DivergentChange (p = 0.044), InappropriateIntimacy (p = 0.004), LazyClass (p =
0.392), ParallelInheritanceHierarchies (p = 0.618), SAPBreaker (p = 0.802), and
TraditionBreaker (p = 0.565).

The results of our code smell density analysis are shown in Figure 12. Ac-
cumulated over all code smells it turned out that the apps on the iOS platform
had a density of 41.7 smells/kilo-instructions while the apps on Android only had
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mean std min 25% 50% 75% max

BlobClass 0.9 2.1 0.0 0.0 0.0 1.0 27.0
ComplexClass- 1.9 3.6 0.0 0.0 1.0 2.0 37.0
Paprika
DataClass 0.1 0.8 0.0 0.0 0.0 0.0 12.0
DataClumpFields 2.7 10.1 0.0 0.0 0.0 2.0 184.0
DistortedHierarchy 1.1 3.1 0.0 0.0 0.0 0.0 42.0
DivergentChange 5.4 16.1 0.0 0.0 1.0 5.0 327.0
Inappropriate- 1.6 5.5 0.0 0.0 0.0 1.0 111.0
Intimacy
LazyClass 9.7 10.3 0.0 3.0 6.0 13.0 81.0
LongMethod 25.4 49.2 0.0 3.0 11.0 30.0 782.0
LongParameterList 16.3 29.9 0.0 2.0 7.0 21.0 448.0
MiddleMan 0.0 0.1 0.0 0.0 0.0 0.0 1.0
ParallelInheritance- 0.1 0.6 0.0 0.0 0.0 0.0 10.0
Hierarchies
PrimitiveObsession 4.0 15.0 0.0 0.0 1.0 4.0 329.0
SAPBreaker 5.7 8.7 0.0 0.0 2.0 7.0 51.0
ShotgunSurgery 14.0 26.8 0.0 1.0 5.0 17.0 410.0
SpeculativeGenera- 0.2 0.8 0.0 0.0 0.0 0.0 14.0
lityProtocol
SwissArmyKnife 0.1 0.4 0.0 0.0 0.0 0.0 4.0
TraditionBreaker 0.0 0.3 0.0 0.0 0.0 0.0 4.0

Table 5. Description of code smell data for Android applications
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Figure 12. Comparison of code smell densities between Android (blue) and iOS (red)
apps

a density of 34.4 smells/kilo-instructions. Moreover, it can be seen from Figure
12 that the code smell densities differ between iOS and Android. Code smells in
iOS applications have a smaller smaller variance (Gini index 0.55) compared to
code smells in Android applications (Gini index 0.67). Code smells LazyClass,
DivergentChange, PrimitiveObsession, and DataClass had a particularly high den-
sity in iOS apps (with 7.8, 4.1, 3.8, and 3.7 per 1000 instructions, respectively).
On the other hand, code smells LongMethod, LongParameterList and Shotgun-
Surgery were clearly more frequent in Android apps (with 9.8, 6.3, and 5.4 per
1000 instructions, respectively).

Figure 13 shows the relative frequency of code smell occurrences over all apps
on the Android platform (blue bars) and the iOS platform (red bars). The results
confirm what we had seen when we compared code smell densities: the propor-
tions of code smells differ between platforms. In addition, we see that code smells
are more evenly distributed in iOS apps (Gini index 0.55) as compared to Android
apps (Gini index 0.67).

Then we analyzed how large the share of smelly apps on each platform is and
how large the share of smelly classes is on each platform. We did these analyses
for each code smell type separately. Figures 16 and 17 show the percentages of
apps and classes, respectively, containing code smells of a certain type.

We found that the percentages of smelly apps are relatively similar between
platforms (with Gini index 0.38 for iOS and 0.43 fro Android). The biggest dif-
ferences occur for code smell DataClass (79% of iOS apps have at least one af-
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Figure 13. Code smell proportions on Android (blue) and iOS (red)

fected class while only 7% of Android apps are affected), MiddleMan (15% of
iOS apps are affected but only 1% of Android apps), and DistortedHierarchy (25
% of Android apps are affected but none of the iOS apps is). The distribution of
number of code smells per application is shown in Figure 14 and in Figure 15. For
some code smells like LongMethod and LongParameterList the number of code
smells per application is more evenly distributed in Android applications than in
iOS applications. This means that a higher percentage of iOS applications has
a lower number of smells of the the given type. For code smells like LazyClass
and SAPBreaker this is opposite and there is a higher concentration of Android
applications with a small number of these smells.

In addition, we analyzed the occurrence of the method-based code smells
LongMethod and LongParameterList separately. We found that in iOS apps 9% of
methods are considered LongMethod while this is the case for 14% of the meth-
ods in Android apps. In iOS apps 5% of the methods have a LongParameterList
while this is the case for 9% of methods in Android apps.

5.2.3. RQ1.3: Code Smell Evolution

In total, we analyzed 30 applications, 3878 app versions, 7086 classes, 7965 meth-
ods, and 7794 variables. The analysis took 17 hours, this analysis included code
smell analysis, duplication analysis, and vulnerability analysis with insider. Data
generated can be downloaded from the tool web page 5 and browsed using the

5https://github.com/kristiinara/GraphifyEvolution/blob/master/example_
data/overview.md
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Figure 14. Distribution of number of code smells in Android (blue) and iOS (red) appli-
cations
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Figure 15. Distribution of number of code smells in Android (blue) and iOS (red) appli-
cations (continued)
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Figure 16. Comparison of code smell frequencies on app level between Android (blue)
and iOS (red)
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Figure 17. Comparison of code smell frequencies on the class level between Android
(blue) and iOS (red)
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Neo4j community version.
In the following we describe three examples of different kinds of information

we can extract from this Neo4j database using cypher queries.
Firstly, as an example, we choose the Tweetometer app which has 373 analyzed

app versions and 19 long methods. We query all app versions with the name
"Tweetometer" and count long method instances that are connected to these app
versions. We then save the results as a .csv file and plot the results using R. Then
we observe how the number of long methods grew in the first half of the project
development, then plateaued. In the end, almost all long methods were removed.

Secondly, we analyze if methods were created as long methods or if they be-
came too long over time. We queried the count of changes before a method be-
came a long method. By count of changes we mean the number of commits that
altered the given method. The result of this query shows that of 158 unique long
method instances, 131 methods were too long when they were added. Ten meth-
ods became too long after one and two changes, four became too long after three
changes and one became too long after three, five, and six changes, each.

Lastly, we ran app analysis with the InsiderSecAnalyser enabled, which saved
vulnerabilities into the application database as nodes and added relationships to
vulnerable classes and methods. We queried class changes where a vulnerability
was removed and collected commits for each application where this change oc-
curred. We found removed vulnerabilities in three applications. In the Arex appli-
cation, two vulnerabilities were removed in the same class during two commits.
In iCepa application, two vulnerabilities were removed in two different classes
during two different commits. In the Tweetometer application, one vulnerability
was removed.

Example queries used to extract this data are described in Appendix B.3.

5.3. Discussion

We discuss our results on Code Smell analysis in the following section.

5.3.1. RQ1.1: Code Smells in iOS applications

We identified the most common code smells in iOS applications. In terms of the
percentage of applications affected by a specific code smell the five most com-
mon code smells are Lazy Class, Long Method, Message Chain, Ignoring Low
Memory Warning, and Data Class. In terms of the total number of instances per
code smell type, the five most common code smells are Internal Duplication, Lazy
Class, Long Method, Message Chain, and Primitive Obsession. This shows that
the analyzed open-source Swift applications have many small classes and a few
large classes with long and perhaps complicated methods. For developers and
educators, this means that it makes sense to pay more attention to balancing the
complexity of code.
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Different from what is often seen in iOS developer blogs, Massive View Con-
troller was one of the least common code smells. Under 18% of the applica-
tions were affected by this smell. At the same time, the Massive View Controller
smell is very often discussed in the developer community [Mir20; Hud19; Kha15;
DeL17; tea19; Law19]. It might be that being aware of this possible smell devel-
opers try to actively avoid introducing it. If this is true, it would be beneficial to
give more attention to more common code smells, such as Internal Duplication,
Long Method, or Message Chain.

One of the most common code smells, IgnoringLowMemoryWarning, occurs
when developers miss to implement a low memory warning method that is called
when the device is low on memory. This method allows the app time to reduce
its memory footprint to avoid being shut down. In some applications it might not
be possible to deal reasonably with a low memory alert. But any application that
uses or cashes a slightly smaller amount of data (which might just be images in
a table view), it makes sense to implement the method. Regardless of being well
documented in official documentation our results show that most application have
at least one view controller where the implementation is missing. This can lead to
poor user experience when using a smelly application.

Many applications having a single LongMethod code smell instance is not
a big problem as a longer method is sometimes warranted. LongMethod being
one of the most often occurring code smells, however, shows that there is a need
to educate app developers on better practices. Code smells like LongMethod,
MessageChange and LongParameterList make application code difficult to read
and modify.

The most frequent code smell InternalDuplication is something that should be
easily preventable if following best practices on code reuse. Duplicated code can
lead to maintainability problems as changes would require editing code in multiple
places. Duplicated code might not affect user experience directly, but worsen the
effort needed to maintain the application.

Overall our results show that developers of open source iOS applications could
increase the quality of their applications in terms of both maintainability and us-
ability when applying code smell detection tools. This gives incentive to continue
developing our tool set to imporove tool support for Swift developers.

5.3.2. RQ1.2: Code Smells in iOS vs Android

We saw that the code smell distribution can vary a lot between different mobile
app platforms. Same code smells can occur on both platforms but different code
smells are most common. During our analysis, we discovered that contrary to the
assumption by Mannan et al. [Man+16], not all object-oriented code smells oc-
cur in all object-oriented languages. For example, RefusedParentBequest, which
was detected by Infusion and used for Android analysis in [Man+16], was ex-
cluded from the list of code smells for GraphifySwift as it does not apply to Swift.
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Namely, there is no protected keyword in Swift.
The only code smell that did not occur in iOS applications was DistortedHier-

archy. DistortedHierarchy finds chains of inheritance that are too deep. The lack
of this smell is a possible indication that deep inheritance trees do simply not cor-
responds to common patterns when writing applications in Swift. A recommen-
dation by Apple is to use immutable structures instead of classes where possible.
Given that structures cannot inherit from parent structures their use might make
the occurrence of the DistortedHierarchy smell less likely.

We saw that the frequencies and proportions of code smells in iOS and Android
differ. But contrary to previous results they are not always higher in Android apps.
Some code smells, such as DataClass, LazyClass, MiddleMan, PrimitiveObses-
sion, and SpeculativeGeneralityProtocol are more common in iOS apps. This
means that apps on one platform are not necessarily smellier than on the other
platform, but different proportions of code smells might be caused by different
programming paradigms and frameworks used.

This result should be interesting to developers that move from one platform to
the other. These kinds of results show that we have to pay attention to different
issues on different platforms. On Android, we have to be more careful to not
write too long and complex methods. On iOS, especially with protocol-oriented
programming, it makes sense to consider if we generalize too much and create too
general protocols or too many small classes.

Our results show that tool developers need to take into account differences
between platforms as developers on iOS and Android need support with different
code smells. This results supports the need for dedicated tool support for Swift
developers.

5.3.3. RQ1.3: Code Smell Evolution

The small preliminary study on code smell evolution showed that most too-long
methods that were added were already too long at creation. This corresponds to
the findings of Chatzigeorgiou et al. [CM14] that smelly code is introduced when
the corresponding artifact is created.

5.4. Threats to Validity

Internal Validity: In our case, internal validity might be affected by how our
code smell tool detects code smells. For code smells that had already been stud-
ied on iOS we validated our implementation by replicating the study performed
by Habchi et al. [Hab+17] which we report in Section 4.1. For the differences in
results, we checked the source code and determined that the differences were due
to the scope of the projects analyzed and not due to the code smell detection meth-
ods themselves. For other code smells we made sure to use code smell definitions
from reputable sources. All code smell definitions used are cited in Appendix A.2.
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External Validity: Since iOS applications on the App Store are encrypted,
using closed-source applications for analysis is a lot more difficult for iOS ap-
plications than for Android applications. To mitigate this risk we compared the
distribution of code smells in open-source applications that are on the app store
to the whole set of applications analyzed. The distributions differ slightly but are
very similar. This shows that open source applications that were not written to
be submitted to the app store are not completely different in terms of code smells
than the applications that were meant to be submitted to the app store.

Construct Validity: We used standard definitions of code smells found in
the literature. In code smell queries we use thresholds calculated based on the
application set analyzed. Using thresholds is a common approach for detecting
code smells. We used the same method to determine thresholds as was used by
Hecht et al. [Hec+15] and Habchi et al. [Hab+17]. Thresholds might differ
between languages, but since they are calculated based on the set of apps analyzed,
language-specific differences should be resolved.

Reliability: For iOS we used a collaborative list of open-source iOS applica-
tions written in Swift. All these applications are available on GitHub. The list of
successfully analyzed iOS applications can be found on the GraphifySwift GitHub
page. GraphifySwift code smell analysis tool is open source and also available on
the tool GitHub page5. For Android analysis we used the list of apps analyzed by
[Hab+17], the list of successfully analyzed apps can be found in the list of apps6.
PAPRIKA is open source and also available on GitHub. The adapted code smell
queries used for Android analysis can be found in the list of Android code smell
queries7.

6https://figshare.com/articles/dataset/iOS_and_Android_app_analysis_
data/13103012

7https://figshare.com/articles/conference_contribution/GraphifySwift_
queries_adapted_for_PAPARIKA_for_Android_code_smell_analysis/13102994
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6. LIBRARY DEPENDENCY NETWORK ANALYSES

Third-party libraries allow developers to use existing solutions for common tasks
and speed up development. For almost every popular programming language there
is at least one package manager that can be used to manage these dependencies.

A recent vulnerability in the popular Log4J java logging library affected around
four percent of all projects in the Maven repository [WR21]. In 2015, a vulnera-
bility in the popular iOS third-party library AFNetworking was found. The vul-
nerability affected around 1000 iOS applications with millions of users [Kum15].
Apps can not only be affected when they directly depend on these libraries but
also when their direct or indirect dependencies depend on these vulnerable library
versions.

The library dependency network (LDN) of a package manager contains all
libraries distributed through this package manager and their dependency relation-
ships with other libraries. Dependency networks, including their growth and vul-
nerability, have been studied thoroughly for many package managers such as,
among others, npm, RubyGems, and Cargo [Kik+17; DMG19]. Both Decan et
al. [DMG19] and Kikas et al. [Kik+17] highlighted differences between pack-
age managers and how policies and quality of the standard library of a language
can affect the dependency network structure. So far the dependency networks for
the package managers used in iOS development (CocoaPods, Carthage, and Swift
Package Manager) have not been studied.

6.1. Method

In this section we describe the research questions and the corresponding method-
ology.

6.1.1. Research Questions

The goal of the Swift LDN analysis is twofold. Firstly, we aim to understand the
Swift LDN better by analyzing its evolution and the spread of vulnerabilities in
the LDN. Secondly, we use the Swift LDN as an example to study general aspects
affecting LDNs that have not been studied before. We ask how the introduc-
tion of new package managers influences the LDN and provide insights for tool
developers who wish to work on successful package managers. We also analyze
how different version requirement types influence library dependency updates and
provide insights for developers who wish to keep their dependencies updated and
secure. We start by building a dataset for the Swift LDN as no such database exist
so far. We answer the following research questions:

• RQ 2.1: How has the Swift LDN evolved?
• RQ 2.2: How has the package manager use evolved in the Swift LND?
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• RQ 2.3: Do version requirement types influence library dependency up-
dates?

• RQ 2.4: How far do vulnerabilities spread in the Swift LDN?

6.1.2. Building the dataset

For data collection, it was necessary to identify libraries that are available through
each package manager, to collect dependency and vulnerability data for each
library. The total process of the LDN dataset creation is visualized in Figure
18. The whole process consisted of five steps. Some of the analysis steps were
done manually, for others we applied GraphifyEvolution and SwiftDependency-
Chekcer. Which steps were performed with which tool is shown using different
colors. The orange color corresponds to GraphifyEvolution which we described
in detail in Section 4.2. The yellow color corresponds to LibraryDependency-
Analysis which is a helper script we wrote that can be found on GitHub1. Green
corresponds to SwiftDependencyChecker which we described in detail in Section
4.3. Blue corresponds to steps that were performed manually. Purple corresponds
to data sources and white corresponds to data that was discarded.

Developers can include third-party libraries in projects in multiple ways. Li-
braries can be either directly downloaded and imported manually or developers
can use package managers. The use of a package manager makes it easier to
include a new library and foremost it makes it easier to keep the library up to
date. The package managers used in Swift development (i.e. for iOS, macOS, and
watchOS applications) are CocoaPods, Carthage, and Swift Package Manager.
These package managers are fundamentally different. CocoaPods is a package
manager with a central database of libraries. If a developer wants to distribute
their library through CocoaPods they need to create a Podspec file and add it to
the CocoaPods Spec repository. This repository is public and can be accessed by
anyone. Swift Package Manager (Swift PM) is the official package manager for
Swift. It is however not the most popular package manager and compatibility with
iOS projects was not added until 2019 [Ell20]. Swift PM does not have a central
list of libraries. Any library that includes a Package.swift manifest file can be in-
cluded through Swift PM by providing its repository address. Carthage, similarly
to Swift PM, is a decentralized package manager. A library can be included by
providing its repository address, binary location, or path on the local file system.

Step 1: Due to the differences in the package managers, we identified libraries
for CocoaPods differently than for Carthage and Swift PM. For CocoaPods, we
cloned the Spec repository2 and extracted all repository URLs from the Podspec
files. The extracted list included 79557 repository URLs. Among these URLs
were incorrect values, such as "./", ".git", "someone@gmail.com". Some URLs
were correct URLs, but they were links to private repositories on company do-

1https://github.com/kristiinara/LibraryDependencyAnalysis
2https://github.com/CocoaPods/Specs
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Figure 18. Dataset creation diagram
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mains. We discarded all URLs that did not contain github.com or bitbucket.org to
combat this issue and 73243 URLs (92%) remained. We looked through these
values and noticed that some of the URLs contained references to passwords
and usernames of the form username:password@github.com. We decided to strip
these values before the analysis. This leads to us not being able to access some of
the repositories. Nevertheless, we assumed that it might have been the developers’
intention to not make the library code accessible to everyone, although the pass-
word and username combination would be accessible to anyone through the pub-
lic Spec repository. For Carthage and Swift PM we used the libraries.io dataset
[Lib22] to get a list of library names. The set of library names is not complete
since the dataset was compiled in 2020 and new libraries may have been created
after that. We extracted 3880 names for Carthage libraries and 4207 names for
Swift PM libraries.

Step 2: We ran our analysis on these three sets of libraries. The analysis
was successful for 56822 CocoaPods libraries, 2118 Swift PM libraries, and 3094
Carthage libraries. We then merged the three databases. The merged database
contained 60084 successfully analyzed libraries. We then queried libraries that are
referenced as dependencies but that are not analyzed. There were a total of 4728
library dependencies of which 1047 were not analysed. We gathered the names
of these libraries and performed a second round of analysis. We refer to this as
library snowballing. There may still exist libraries, that are available through one
of the three package managers, that are missed by our approach. These libraries
however will not have any dependents and would not be essential to dependency
network analysis.

Dependency data was collected by parsing the manifest files Package.swift,
Podfile and Cartfile, and package manager resolution files Package.resolved, Pod-
file.lock and Cartfile.resolved. We extracted Library names, versions, and version
constraints from the manifest files and stored the data as library definitions. We
parsed package manager resolution files and extracted library dependencies with
names and versions. Package resolution files contain the exact version of each
library that the package manager deemed to be the best match at the time when
the developer last updated the dependencies. Package resolution files also contain
information on all transitive dependencies. Information on both direct and tran-
sitive dependencies was stored in the database. To match library names extracted
from the three package managers it is necessary to "translate" library names. The
translation was done by finding information on the library repository URL from
the CocoaPods Spec repository. We used the repository username/projectname
combination as the library name.

Step 3: We queried libraries that are referenced as dependencies from other
libraries but were not yet analyzed. These libraries included open-source libraries
that had not been analyzed yet and closed-sourced or local libraries that were not
accessible to us. For each library name that is a dependency through CocoaPods,
we were able to extract the repository URL from the Spec repository. These li-
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braries should have been already analyzed. If some of these URLs were discarded
previously but the repository is accessible to us the project was included in the
analysis. For each library name that was not a dependency through CocoaPods,
the name was of the form username/projectname. For each name, we tried to
query the repository. If we were able to access the repository the library was an-
alyzed. If we were not able to access the repository the library was ignored. The
snowballing process added 451 additional libraries to the database.

Step 4: For vulnerability data we used the NVD database3. For each project
that has publicly reported vulnerabilities, there is a unique CPE value. We down-
loaded the CPE dictionary4. We then went through the dictionary and extracted
all repository URLs and their corresponding CPEs. We are analyzing open-source
libraries, therefore we decided to extract repository URLs and ignore all entries
that did not include a source reference. We found 5885 CPE values. Next, for
each library name, we checked if it matched the entries in the CPE list. We found
51 matching values. For each CPE value, we queried the NVD database to find
vulnerabilities related to each CPE. We checked each library that was matched to a
CPE value to determine if the library was indeed part of the CocoaPods, Carthage
and Swift PM ecosystem. We removed two libraries that were included through
libraries.io but were not relevant to the ecosystem. We then matched library ver-
sions from the vulnerability data with library versions in our database. We found
159 vulnerabilities in total that affected 41 libraries and 1339 library versions.

Step 5: We prepared for data analysis by adding additional library depen-
dencies based on LibraryDefinition relationships and by creating direct depen-
dency relationships between library nodes. These direct relationships between li-
brary versions make it possible to more easily query transitive dependency chains.
Matching LibraryDefinition objects to Library objects was done using cypher
queries in a semi-manual way. Versions were transformed into tuples of major,
minor, and patch, and depending on the constraint type a different cypher query
is constructed to find matching Library objects. Used cypher queries are avail-
able on GitHub5. First, we queried LibraryDefinition dependencies and matched
them to Library objects. The match is made by first parsing the version con-
straint and then matching all Library objects with the same name and matching
version. For example a LibraryDefinition with a version constraint "⇝ 1.2.3" was
matched to Library objects with the same name and versions "1.2.3", "1.2.4" and
"1.2.5" but not to "1.3.0". For LibraryDefinition objects where both name and ver-
sion matched a MATCHES relationship was added. For LibraryDefinition objects
where the name matched but no version matches were found NAME_MATCHES
relationships were added to all versions. We then queried libraries that include de-
pendencies through manifest files, but where the resolution file was missing from

3https://nvd.nist.gov
4https://nvd.nist.gov/products/cpe
5https://github.com/kristiinara/LibraryDependencyAnalysis/blob/main/

scripts/parsing_library_definitions.txt
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the repository and therefore, no dependency relationships to Library objects were
added. We queried matched Library nodes for each LibraryDefinition and filtered
out the latest possible version that matched the tag commit version for the given
repository. If a match was found we added DEPENDS_ON relationships to the
Library nodes. Finding the most recent dependency version that would have been
available at the time the library version was released emulates how the package
manager would have resolved the version constraint.

Lastly, we added direct dependency relationships between libraries. For this,
we queried all dependency relationships:

MATCH
(l:Library)<-[:IS]-(a:App)

-[:DEPENDS_ON]->(d:Library)
and created direct relationships between library versions:

CREATE
(l)-[:LIBRARY_DEPENDS_ON]->(d)

6.1.3. RQ 2.1: Evolution of LDNs

Although several studies analyzed LDNs, especially for npm and Maven, no stud-
ies exist for the LDNs of CocoaPods, Carthage and Swift PM. To better under-
stand the Swift ecosystem we first analyse how the combined Swift LDN and the
LDNs of the three package managers have evolved over time. Analysing the evo-
lution of the LDNs lays the groundwork in understanding the ecosystem. Many
problems in a LDN are amplified through a rapid growth. For example the poten-
tial risk from vulnerable libraries grows if the number of dependencies grows.

Using the created LDN dataset we plot the cumulative number of all libraries
and library versions including libraries that have no dependencies and no depen-
dents. This might include unused libraries.

In further analysis, we only consider connected libraries, i.e., libraries with at
least one dependent or dependency. We first look at how the number of libraries
has grown for each package manager. For this, we find the first version of each
library, group by the month of its commit timestamp, and count the number of
unique libraries cumulatively. We plot the cumulative curve for each package
manager. We then calculate how the number of library versions has grown for
each package manager. Again, we group the library versions by the months of
commit timestamps. We count the number of library versions released each month
and take the cumulative sum. The cumulative curve is plotted for each package
manager.

Lastly, we plot the mean number of direct and transitive dependencies for each
month, as a monthly snapshot. The monthly snapshot is calculated by finding
library versions released during each month and for each library taking the last
library version for each month. The number of direct and transitive dependencies
is found by querying LIBRARY_DEPENDS_ON chains with a length of up to 10.
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A maximum threshold for the dependency chain needs to be set for performance
reasons, we did, however, confirm that very few dependencies existed beyond that
level. The ratio of the total number of dependencies to the number of libraries is
then calculated and plotted.

6.1.4. RQ 2.2: Evolution of Package Managers

The objective of this research question is to understand what properties make
a newly proposed package manager attractive to developers. Existing research,
so far, has analyzed each package manager ecosystem separately. The LDNs of
many package managers have been studied and compared. For example, Kikas et
al. [Kik+17] created a dependency dataset and studied the LDNs of JavaScript,
Ruby, and Rust. Decan et al. [DMG19] used the libraries.io dataset to study
the growth of LDNs of seven package managers. Decan et al [Dec+16] anal-
ysed the intersection of GitHub and CRAN in the R ecosystem. They showed
that GitHub is not only used to develop R libraries, but also to distribute them as
the growth of CRAN has diminished some of the benefits of distributing libraries
thorugh the package manager. No study so far, however, has analyzed the evo-
lution of multiple package managers in the same ecosystem. Many ecosystems
exist where multiple package managers can be used. Sometimes a non-official
package manager is released that serves a niche subset of the ecosystem (for ex-
ample Bioconductor6 for Python that is used for bioinformatics-related libraries).
Sometimes a new package manager is released, but the underlying library reposi-
tory stays the same (for example npm and Yarn for JavaScript [Yar23]). In other
cases, each package manager has its own separate library dependency network.
The Swift ecosystem is a fairly unique ecosystem that contains multiple popular
package managers, that have been introduced over the lifetime of the ecosystem
allowing us to analyze how the introduction of new package managers affects the
library dependency network. First, we need to understand how existing package
managers have been used and how the introduction of new package managers has
influenced the ecosystem. We then discuss properties of package managers that
may increase their adoption by developers.

First, we are interested in how the overall popularity of package managers
has evolved over time. Our assumption is that over time a larger percentage of
developers adapt package managers for their projects. For the years 2012 to 2021,
we count the number of unique libraries that have declared a dependency through
CocoaPods, Carthage, Swift PM or that were using no package manager. For each
year we find the newest version of each library and group unique libraries by their
use of package managers. If a library uses multiple package managers then it is
counted under each of the used package managers. We calculate and report the
percentage of libraries using CocoaPods, Carthage, Swift PM, and no package
manager for each year.

6https://www.bioconductor.org
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After analyzing the popularity of package managers we question if package
managers are used concurrently. Our assumption is that most popular libraries are
available through more than one package manager and are therefore also using
multiple package managers. For an average library, however, using multiple pack-
age managers should not be necessary. Libraries can belong to a package manager
in two different ways. They can either have dependencies or dependents through a
package manager. If a library has dependencies through a package manager then
the developers of that library actively use this package manager. If a library has
dependents through a package manager then developers of other libraries include
this library as a dependency through the given package manager. For all libraries
that have dependencies, we count the number of libraries that include dependen-
cies through each package manager and each combination of package managers.
For all libraries that have dependents, we count the number of libraries that are
included as dependencies through each package manager and each combination
of package managers. The percentages of all these combinations are calculated
for four different years: 2016, 2018, 2020, and 2021. Each yearly snapshot is
derived by only including libraries, that have had updates in the given year and
taking into account the last version of that library within the year.

The first package manager in the Swift ecosystem, CocoaPods, was released
in 2011. During the last 10 years, two more package managers were introduced
to the Swift ecosystem. We ask how the introduction of new package managers
influences the evolution of the package manager ecosystem. It is probable that
new package managers were released because of a lack of desired features in the
existing package managers. We see two possible evolution patterns:

1. Each new package manager brings new users that adopt using third-party
libraries in their applications.

2. New package managers introduce new features and take over users from
older package managers.

To better understand the evolution of the package managers’ ecosystems, we first
ask if existing libraries are switching to the newest package manager and then ask
if new libraries prefer the newest package manager. Given that a migration be-
tween package managers might be costly we assume that there is little migration
between package managers, but that more and more new libraries would prefer
the newest package manager. We analyze how libraries migrate between pack-
age managers by recording yearly changes of package manager use and drawing
a Sankey diagram. For this, we group libraries by year and package manager.
For each year, library and package manager we then record if the library used
the same package manager in the previous year. If not, we record if the library
used a different package manager in the previous year. If yes, we count this as a
migration between package managers. We then plot and interpret a Sankey dia-
gram displaying the migrations between package managers and between using a
package manager and not using a package manager. We also plot and interpret the
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percentage of libraries migrating from each of the package managers to using no
package manager or other package managers. Additionally, we report how many
new libraries use each package manager each year

6.1.5. RQ 2.3: Upgrades vs Version Requirement Types

Kikas et al. [Kik+17] studied the evolution of three library dependency net-
works. When looking at the dependency version requirement types, they found
that the most popular requirement types were different for the three ecosystems.
JavaScript libraries preferred the ˆ notation (up to the next major version), Ruby
libraries preferred the any notation (allowing any version of a library) while Rust
libraries mostly required an exact version of a library. Our expectation is that
the choice of the version requirement type affects how library dependencies are
updated. With the insight of how version requirement types affect dependency
updates we can make recommendations to developers to help reduce technical
lag.

First, we measure the technical lag as dependency updating lag for each pack-
age manager. Since developers seem to be reluctant to update their library depen-
dencies our expectation is that this is also the case in the Swift ecosystem. We
do, however, not know to what extent. Given that Swift is a relatively new lan-
guage and not backward compatible [Ils22], we expect the lag time to be lower
than, e.g., for Java projects. Since all three analyzed package managers belong
to the same ecosystem, we do not expect big differences between them. For each
analyzed project version, i.e., App node, we find library versions it depends on.
We then find the latest version of each dependent library that was released be-
fore the analyzed project version. If the latest library version is already used as
a dependency then the dependency updating lag time is zero. If a newer library
version exists, then the dependency updating lag time is calculated by subtract-
ing the commit timestamp of the newest library version from the analyzed project
version. We record how many dependencies have a dependency updating lag and
calculate the mean dependency updating lag time for dependencies that are not
up to date. Next, we calculate monthly snapshots of the library dependencies and
calculate the mean dependency updating lag time for each month. We then plot
the mean dependency updating lag time in days for each package manager.

Second, we analyze how a chosen version requirement type affects the depen-
dency updating speed. Previous work has shown that developers are reluctant to
update library dependencies [DMC18; Sal+18]. Thus, our expectation is that ∼>
is the most often used version requirement type for all the three analysed package
managers. This requirement type allows updating until (but not including) the next
minor or major version. This provides benefits from updating, such as including
security fixes, while avoiding problems from major changes to the library func-
tionality. Furthermore, we expect that version requirements that do not provide
an upper bound result in a smaller updating lag time. If our assumption holds, it
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provides a good incentive for developers to use such version requirements. We
analyze the frequency of dependency version requirements used with each of the
package managers by finding all

(App)-[DEPENDS_ON]->(LibraryVersion)
chains. The LibraryVersion node contains information on the version requirement
type and the DEPENDS_ON relationship contains information on the package
manager used. Then, we group the version requirements by package manager and
version requirement type and plot the frequencies for each package manager. To
investigate how the used version requirement affects the dependency updating lag,
we first need to match the correct LibraryDefinition and Library nodes. The App-
to-LibraryDefinition node relationship corresponds to how the developer-defined
the library dependency in the package manager manifest file. The App-to-Library
node relationship corresponds to which actual library version was resolved by the
package manager a the given time. We match LibraryDefinition and Library nodes
by first finding the Library and LibraryDefinition nodes connected to the same
App node. We then pair the Library and LibraryDefinition nodes where the name
of the Library node ends with the name of the LibraryDefinition node. We use the
ends with a match instead of an exact match to account for cases where the Li-
braryDefinition only contains a shorter version of the library name. To analyze the
relationship between version requirement types and the dependency updating lag,
we first find the percentage of dependencies with lag for each version requirement
type and package manager. Then we calculate the mean dependency updating
lag time for each version requirement type over all dependencies that are not up
to date. We plot the dependency updating lag time for each version requirement
type. To take into account possible differences between package managers we
plot the dependency updating lag time per version requirement type additionally
for each package manager.

Third, we analyze whether rerunning the package manager version resolution
affects the updating of dependency versions. We expect that when developers do
not rerun the package manager version resolution then library dependency ver-
sions are not updated although the version requirement would allow an update,
yielding increased dependency updating lag time. To analyze whether or not
rerunning the package manager version resolution affects version updating, we
check whether the library dependency versions between two consecutive versions
of a project changed. We then distinguish between (i) library dependency versions
that were directly extracted from package manager resolutions files in the project
repositories and (ii) library dependency versions that were calculated based on
the version requirement in the package manager manifest file. For the latter case,
the calculation is done as if the developers of the library had rerun the package
manager version resolution for each new library version. We match App nodes
connected to matching LibraryDefinition and Library node pairs. We then find
the consecutive version of the App node and check if it is connected to the same
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Library node as the previous version. If the Library node changes and it is a previ-
ous version of the same library we record this as a downgrade. If the Library node
is a later version of the library we record this as an upgrade. If the Library node
remains the same we record this as no change. In addition, we check whether
the Library node was originally extracted from the package manager resolution
file. Once having found all upgrades, downgrades, and no changes in versions,
we plot the difference between version changes where the library version was ex-
tracted from the package manager resolution file and version changes that were
calculated based on the package manager manifest file.

Lastly, we investigate how often a vulnerable library dependency could be
fixed by upgrading the library dependency version. Additionally, we check how
often the vulnerable library dependency could be fixed by simply rerunning the
package manager version resolution. Previous research shows that the most vul-
nerable dependencies could be fixed by upgrading the library dependency version
[Der+17]. Our expectation is that this should also be the case in the Swift ecosys-
tem. We also expect that in some cases these vulnerable dependencies could
already be fixed by rerunning the package manager version resolution without
changing the version requirement itself. The Swift LDN dataset includes, in addi-
tion to data on library dependencies, data on vulnerable library versions. For each
project version with a dependency to a vulnerable library version, we check if the
vulnerable library dependency could be fixed by upgrading the library dependency
version. Additionally, we check if simply rerunning the package manager version
resolution would have resulted in fixing the vulnerable dependency. For this, we
find App-Library-Vulnerability chains which indicate that the project version de-
pends on a vulnerable library version. For each of these App and Library pairs
we find the corresponding LibraryDefintion. We then check if there is a Library
node that is a future version of the previously found Library node, but which is
not connected to a vulnerability and where the library version was released before
the App commit time. In other words, we find the next library version that does
not have a publicly reported vulnerability. We then check if the LibraryDefintion
is connected to the new Library node. If yes, then it means that the vulnerable
library dependency could be fixed by re-running the package manager version
resolution. If not, then the vulnerable library dependency could be fixed by up-
grading the library dependency version. If no such Library node was found then
it means that the vulnerable library dependency could not be fixed at the time of
the project version release. We then plot the number of projects with vulnerable
library dependencies that could have been fixed by a version update, that could
have been fixed by rerunning the version resolution and that could not have been
fixed through a version update.
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6.1.6. RQ 2.4: Spread of Vulnerabilities

Third-party solutions are often better vetted than custom solutions. The Open
Web Application Security Project (OWASP), for example, strongly recommends
against the use of custom encryption algorithms[OWA16]. Nevertheless, vulnera-
bilities can be found in even very popular and well-tested libraries. For example,
in December 2021, a security vulnerability was discovered in the widely used
Log4J Java logging library. This vulnerability affected 4% of all the Java ap-
plications [WR21] and made them vulnerable to remote code execution attacks.
The spread of vulnerabilities in package manager library dependency networks
has been studied for some package managers. Zerouali et al. [Zer+22] stud-
ied how long it takes for vulnerabilities in npm and RubyGems to be fixed and
how these vulnerabilities spread through the library dependency network. They
found that around 40% of libraries have a direct or transitive dependency on a
vulnerable library version. Düsing et al. [DH21] analyzed how vulnerabilities
in transitive dependencies affect the NuGet, npm, and Maven package manager
library dependency networks. They also studied how fast developers update their
library dependencies when a vulnerability is publicly disclosed. They found that
there is a significant difference in how many libraries are affected by vulnerable
dependencies depending on the package manager. They also found that develop-
ers probably rely on automated dependency updates, which are triggered when a
vulnerability is disclosed.

Although there are many studies that analyze library dependency networks,
especially for npm and Maven, there are no studies analyzing the Swift LDN.
Our goal is a) to understand the scope of the library dependency network affected
by vulnerabilities, b) if vulnerable dependencies could be effectively fixed via
upgrading, and c) if there is enough public information available about these vul-
nerabilities such that the functionality of existing tools could be complemented
with more detailed yet lightweight vulnerability analyses. This understanding can
help tool developers in developing tool support for Swift developers that can help
reduce impact from vulnerable dependencies. The analysis on publicly available
information helps estimate the effort needed for more detailed vulnerability anal-
yses.

To better understand the risks imposed by vulnerabilities in the library depen-
dency network, we ask how libraries in Carthage, CocoaPods and Swift PM are
affected by vulnerabilities. To get started, it is necessary to investigate which
libraries have publicly reported vulnerabilities. We are aware that the actual num-
ber of vulnerabilities will be higher, as not every vulnerability is publicly reported
or even detected. Nevertheless, it is reasonable to look at publicly reported vul-
nerabilities instead of running a vulnerability scanner, to avoid the multitude of
false positive results that these tools usually produce. Looking at publicly reported
vulnerabilities we can be reasonably certain that these vulnerabilities are true pos-
itives and no manual double-checking is required. We expect to find publicly
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reported vulnerabilities in a certain amount of third-party libraries of the Swift
ecosystem. Yet, this is not sufficient. Since we expect vulnerabilities to spread
through dependency chains, we analyze the library dependency network, i.e., the
occurrences and lengths of dependency chains along which vulnerabilities might
propagate. In addition, we refine our analysis by including information about
the predominantly used project language of the vulnerable library and the severity
level of the vulnerability. Libraries in the Swift ecosystem can be written in differ-
ent languages. The most common languages are Swift, Objective-C, C and C++
[DGC], with Swift and Objective-C covering the vast majority of the libraries. We
expect the vulnerable libraries to have a similar distribution of languages as the
rest of the ecosystem.

To understand how vulnerable library versions may impact other libraries, we
first find all library versions that are connected to vulnerable library versions
through DEPENDS_ON chains. A dependency chain of length zero implies that
the library version itself is vulnerable. A dependency chain of length one implies
that the library version has a direct dependency on a vulnerable library version.
Dependency chains longer than one imply that the library version has a transitive
dependency on a vulnerable library version. For each library version that depends
on a vulnerable library, we find the shortest path to a vulnerable library version.
We do this because we assume that the risk of using vulnerable code is higher
when the dependency chain is the shortest. We then report the number of libraries
for each dependency chain length by filtering out duplicate library names. The
resulting numbers indicate how many libraries have publicly reported vulnerabil-
ities and how many libraries depend on vulnerable libraries (either through direct
or transitive dependencies).

Additionally, we analyze how the language of the vulnerable library and the
severity level of the vulnerability is associated with how far the vulnerabilities
spread in the library dependency network. We gather library dependency chains
for libraries that depend on vulnerable library versions and plot the number of
affected libraries for each dependency level. For libraries with multiple depen-
dencies to vulnerable libraries, we count the library on each dependency level
where it depends on a vulnerable library version. We first plot the dependency
level graph distinguished by the programming language and then by the severity
level of the vulnerability. The language of the library is determined by querying
the main project language from GitHub.

The simplest way to fix a dependency on a vulnerable library version is to up-
grade to a library version where the vulnerability is fixed if such a fix exists. Given
that many developers are wary of upgrading their library dependencies [Zim+19;
Li+21; Zer+22] our hypothesis is that, as in other programming language ecosys-
tems, many dependencies to vulnerable libraries remain unchanged although an
easy fix is possible via upgrading the library dependency version. To check our
hypothesis, we analyze how often vulnerable dependencies could have been fixed
by upgrading the library dependency version.
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Figure 19 shows eight dependency chains:
• ABC1: (A v1)←(B v1)←(C v1)
• ABC2: (A v1)←(B v1)←(C v2)
• ABC3: (A v2)←(B v2)←(C v3)
• AB1: (A v1)←(B v1)
• AB2: (A v2)←(B v2)
• BC1: (B v1)←(C v1)
• BC2: (B v1)←(C v2)
• BC2: (B v2)←(C v3)

Three of the dependency chains corresponded to vulnerable dependencies:
ABC1, AB1, and ABC2. For dependency chain ABC2, Library C could have
resolved the vulnerable dependency by upgrading the dependency to Library B
from version 1 to version 2. We study how often such chains to vulnerable de-
pendencies could have been fixed via upgrading the dependency version. For this
analysis, we first filter out library dependencies where the package manager reso-
lution file was missing. These dependency versions were calculated based on the
manifest file and are therefore not suitable for upgradeability analysis.

Figure 19. Illustration of dependency chains in a library dependency network with three
libraries A, B, and C.

To analyze how vulnerable dependencies could be fixed via upgrading, we
first identify all dependency chains to vulnerable library versions. For each of
these chains, we then check if a newer version of the direct dependency (like
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B:v2 for dependency chain ABC2 in Figure 19) exists that is not dependent on
the vulnerable library version. The process of finding the newer version of the
direct dependency takes into account release times for each of the library versions
such that the release time of the dependency has to always be before the release
time of the dependent. This means that in Figure 19 it would have been possible
to upgrade the dependency chain ABC2, but not the dependency chain ABC1
because B:v2 was released after C:v1. For each dependency level, we plot the
number of dependency chains that could have been fixed via an upgrade and the
number that could not have been fixed via an upgrade. Additionally, we count how
many library dependencies could have been fixed for each vulnerability severity
level and vulnerable library programming language.

The above analysis shows the upgradeability of vulnerable dependencies over
the whole time frame of the dataset. To understand the potential impact of up-
grades to the most recent state of the library dependency network, we also analyze
how many of the latest versions of libraries’ vulnerable dependencies could have
been fixed via upgrading.

Tools exist that can find dependencies to vulnerable libraries when using Co-
coaPods, Carthage, or Swift Package Manager. There are, however, no tools for
Swift and Objective-C that could perform more detailed analyses and determine
if a vulnerability from a library dependency really affects the program. For such
analyses, it would either be necessary to have data on where the vulnerability is
located in the library or an extensive analysis of the vulnerable library would be
needed. Our goal is to check if information about the location of a vulnerabil-
ity in the code is publicly available for the reported vulnerabilities in the Swift
ecosystem. For each vulnerability, we check the public vulnerability description
on NVD and record if it contains information about the class or method that con-
tains the vulnerability. Additionally, we check, if available, the patch link to see
if the patch of the vulnerability reveals where the vulnerability was fixed in the
code.

6.2. Results

In this section wer present results for the four research questions.

6.2.1. RQ 2.1: Evolution of LDNs

We analyzed 60,533 libraries in total. Figure 20 shows the cumulative number
of libraries (red) and library versions (blue) over time. The subset of connected
libraries and their versions are shown as dotted lines. The total number of libraries
grew very fast after the release of the Swift programming language in 2014. From
2019 onward the number of new libraries added has slightly slowed down. A
similar pattern can be observed for library versions. Moreover, we see similar
trends for the subset of connected libraries, i.e., libraries that either use a package
manager or are used through a package manager.
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Figure 20. Cumulative number of libraries and library versions. Solid lines show numbers
for all libraries, and dotted lines for connected libraries.

In the following analysis, we constrain ourselves to libraries that have at least
one dependency or dependent. This means that these libraries are indeed part of
at least one package manager LDN. These libraries are called connected libraries.
We analyzed the cumulative number of connected libraries for each package man-
ager. In total, there are 9,755 connected libraries. Of these libraries, 6,600 be-
longed to the CocoaPods LDN, 2,856 belonged to Carthage, and 2,150 belonged
to Swift PM. A library can belong to multiple package manager LDNs.

The change in the number of libraries can be seen in Figure 21. The number
of libraries is growing fastest for the newest and smallest package manager Swift
PM. The number of libraries for CocoaPods is still growing, but the growth has
slowed after 2019. The growth of the number of libraries for Carthage has almost
completely stagnated. Figure 22 shows the same data as proportion form the
combined number of libraries. The proportion of CocoaPods and Carthage has
been declining since 2017, while the proportion of Swift PM libraries has been
increasing.

Figure 23 shows the mean number of direct dependencies for each monthly
snapshot. For CocoaPods, the mean number of direct dependencies fluctuated
strongly until 2016. After 2016 the mean number leveled to values around three,
which is slightly higher than the mean number of direct dependencies for Carthage
and Swift PM, each averaging around 2.5. The mean number of direct dependen-
cies has a slight upwards trend for all three package managers. At the same time
the median number of direct dependencies has fluctuated between one and two for
Carthage and Swift PM. For CocoaPods the median number has mostly fluctuated
between one, two and tree, expect for in 2014 and 2015 where the median value
jumped to four for a few months.

In addition, we calculated the mean number of direct and transitive dependen-
cies for all connected libraries. The data shown in Figure 24 is not differentiating
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Figure 21. Cumulative number of libraries.
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Figure 22. Percentage of cumulative number of libraries.
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Figure 23. Mean number of direct dependencies for each monthly snapshot.
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Figure 24. Mean number of direct and transitive dependencies for each monthly snapshot.

between package managers, as calculating transitive dependency chains condi-
tional to package managers were difficult. We did, however, count the number of
unique library names as total dependencies in order to not accidentally include the
same library twice if it was referenced through multiple package managers. The
mean number of dependencies in Figure 24 shows a clear upwards trend. Similarly
to the mean number of direct dependencies, the mean number of all dependencies
fluctuates considerably until 2016. Between 2016 and 2022, however, there is a
clear upwards trend where the mean number of direct and transitive dependencies
rises from around 3 to 5.5.

91



Figure 25. Overlap of package managers (four snapshots)

6.2.2. RQ 2.2: Evolution of Package Managers

We analyzed how many libraries are using a package manager vs. not using a
package manager. Table 6 shows that the percentage of libraries using no package
manager has steadily decreased from 97.8% in 2012 to 84.3% in 2021. Surpris-
ingly, the overall number of actively maintained libraries in the Swift ecosystem
grew up to 2018 and has been falling since.

Table 6. Percentage of libraries using each package manager for years 2012 to 2022.

Year None Carthage CocoaPods Swift PM Total

2012 97.8 0.0 2.7 0.0 1067
2013 95.6 0.0 6.1 0.0 3085
2014 93.6 0.5 8.5 0.0 5837
2015 92.5 3.4 7.9 0.0 9920
2016 91.6 5.5 7.3 0.0 15068
2017 90.3 5.4 7.7 0.9 16432
2018 88.5 5.1 8.0 2.2 16523
2019 87.4 5.2 8.6 4.3 15668
2020 86.3 4.7 8.4 6.7 12667
2021 84.3 4.6 8.0 9.0 9504

For all analyzed libraries we counted how many libraries used no package
managers, one package manager, or multiple package managers. We took into
account the last version of each library, in total 60527 library versions. We found
that 52869 (87.3%) libraries did not use any package managers. Of the 7540 li-
braries that had dependencies 4718 (62.6%) libraries used only CocoaPods, 1141
(15.1%) libraries used only Carthage, and 1001 (13.3%) libraries used only Swift
PM. In total 6860 (91.0%) of libraries with dependencies only use one package
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Figure 26. Sankey diagram for all libraries.

Figure 27. Sankey diagram for libraries that use a package manager.
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manager. The remaining 680 (9%) libraries use multiple package managers di-
vided between Carthage and Swift PM with 352 (4.7%) libraries, Carthage and
CocoaPods with 162 (2.1%) libraries, CocoaPods and Swift PM with 126 (1.7%)
libraries and 41 (0.5%) libraries use all three package managers.

We also calculated these numbers for four snapshots for the years 2016, 2018,
2020, and 2021. Years 2016 and 2018 were considered to capture the change in
the LDNs after the introduction of Swift PM in 2017. Years 2020 and 2021 were
considered to see the current trends in the LDNs. The snapshots were constructed
by only considering the last version of a library for each year. If a library did not
have any versions released during a specific year it was not counted. The first row
in Figure 25 shows how the concurrent use of the three package managers has
evolved. In 2016, 63% of libraries with dependencies used CocoaPods and 40%
of libraries used the Carthage package manager. After Swift PM was introduced in
2017 more and more libraries started using it. In the following years 370 (14.5%),
857 (38.2%), and 857 (46.6%) of libraries used Swift PM in 2018, 2020, and 2021
respectively. Multiple package managers were concurrently used by 62 (3%),
258 (11%), 377 (17%), and 317 (17%) libraries in 2016, 2018, 2020, and 2021
respectively.

We analyzed all dependencies between libraries and counted the number of
libraries that are included through each package manager. For each library, we
took into account the last version of the dependent library. In total, there were
3891 libraries with dependents. We found that 2410 libraries (61.9%) were only
used through CocoaPods. Additionally, 562 (14.4%) and 469 (12.0%) libraries
were only used through Carthage and Swift PM respectively. The remaining
450 (11.6%) libraries were included through multiple package managers. This
number comprises the following usages: 121 (3.1%) libraries through all three
package managers, 120 (3.1%) libraries through Carthage and CocoaPods, 103
(2.6%) libraries through Carthage and Swift PM and 79 (2.0%) libraries through
CocoaPods and Swift PM. Overall 2730 (70.2%) libraries were used through Co-
coaPods, 906 (23.3%) libraries were used through Carthage, and 799 (20.5%)
libraries were used through Swift PM.

We also analyzed the dependencies between libraries for four snapshots for
the years 2016, 2018, 2020, and 2021. The snapshots were calculated by only
considering dependents that had a released version in the given year. The last
version of the dependent in each year was taken into account. For each library that
had dependents in the given year, we counted how many of these dependents were
declared through each package manager. The distribution of libraries for these
four different snapshots can be seen in the second rows of Figure 25. In 2016, 721
(68.7%) libraries were referenced through CocoaPods, 415 (39.6%) libraries were
referenced through Carthage, and 87 (8.3%) libraries were referenced through
both package managers. After Swift PM was introduced in 2017 the percentage of
libraries referenced through Swift PM grew to 207 (14.5%) in 2018, 489 (33.1%)
in 2020 and 508 (38.6%) in 2021. At the same time, the number of libraries
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included through Carthage shrunk from 415 (39.6%) in 2016, to 288 (21.9%) in
2021.

We analyzed how the introduction of package managers has influenced the evo-
lution of the Swift package manager ecosystem by studying how libraries migrate
between package managers and if new libraries prefer the newest package man-
agers. Figures 26 and 27 provide an overview of the package manager ecosystem
evolution. Here ’None’ signifies libraries that use no package manager and ’New’
signifies newly added libraries in the following year. Figure 26 shows the evolu-
tion for all libraries. We see, as discussed earlier, that most libraries do not use a
package manager. There is however migration between all package managers and
from no package manager to using a package manager and the other way around.
Figure 27 zooms into the same picture by discarding libraries that use no package
manager and that also do not participate in migrations between using a package
manager and not using a package manager. We can see that there are rather large
migrations from Carthage to Swift PM between the years 2018 and 2021. In the
following sections, we analyze these migrations in more detail.

We analyzed the number of libraries that migrate to other package managers
for each of the package managers. Figure 28 shows migrations from CocoaPods.
We see that most libraries keep using CocoaPods. There are however small migra-
tions to the newer package managers after Carthage and Swift PM are released.
The percentage of libraries migrating from CocaPods to Swift PM is slowly grow-
ing. Figure 29 shows migrations from Carthage. In contrast to CocoaPods there is
a large percentage of libraries migrating away from Carthage from the beginning.
Since the release of Swift PM, the largest migration is towards Swift PM. Fig-
ure 30 shows the migrations from Swift PM. There are small migrations towards
Carthage and CocoaPods. The majority of the libraries use Swift PM, however,
keep using Swift PM. We analyzed which package managers are used by new
libraries. Figure 31 shows how the percentage of libraries using each package
manager has changed over time. After Carthage was released in 2014 the percent-
age of libraries using CocoaPods has stayed between 50% and 70%. The most
popular years among new libraries for Carthage were 2015, 2016, and 2017. Af-
ter the release of Swift PM in 2017 its popularity among new libraries has steadily
increased.

6.2.3. RQ 2.3: Upgrades vs Version Requirement Types

First, we studied to what extent dependency updates were lagging behind. The
proportions of dependencies having a lag were similar for all package managers,
i.e., 43% of dependencies in CocoaPods, 32% of dependencies in Carthage, and
39% of dependencies in Swift PM. For dependency updates that had a lag, the
mean lag time was 92 days for CocoaPods, 45 days for Carthage, and 58 days for
Swift PM, as shown in Table 7. The median lag time was 34.4 days, 17,4 days,
and 25.6 days for CocoaPods, Carthage, and Swift PM, respectively. We used the
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Figure 28. Percentage of libraries migrating from CocoaPods
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Figure 29. Percentage of libraries migrating from Carthage
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Figure 30. Percentage of libraries migrating from Swift PM
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Figure 31. Percentage of new libraries using each of the package managers.
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Table 7. Lag time in days for dependencies with updating lag for each PM.

PM count mean std min 25% 50% 75% max

CocoaPods 52975 91.6 170.5 <0.1 10.6 34.4 97.2 2625.4
Carthage 19957 44.8 86.1 <0.1 4.7 17.4 50.0 1827.0
Swift PM 7863 58.2 86.8 <0.1 6.2 25.6 75.5 869.8
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Figure 32. Mean dependency updating lag time per package manager.

Mann-Whitney U test to compare the distributions for dependency updating lag
between the three package managers. For each combination of two package man-
agers the p-value from the U test was smaller then 0.0001 and therefore smaller
than the Bonferroni corrected significance threshold of 0.008. We conducted this
test separately for dependencies with updating lag and for all dependencies.

The mean lag time for monthly snapshots is shown in Figure 32. The data
indicates that the lag time has been growing over time for all package managers.
In 2022, the mean dependency updating lag time for CocoaPods is over 80 days,
for Carthage, it is over 40 days, and for Swift PM around 50 days.

We investigated the relationship between version requirements and the depen-
dency updating lag. Our expectation was that version requirements without an
upper bound would have a smaller lag time than version requirements with upper
bound or strict version requirements. We analyzed which version requirements
are used through CocoaPods, Carthage, and Swift PM. Figure 33 shows the pro-
portion of each version requirement type. The analysis showed that when us-
ing CocoaPods, developers use the latest version option almost exclusively. For
Carthage, the most often used requirement type is ∼>, followed by the exact ver-
sion and the latest version. For Swift PM the most common requirement type is
>=, which is very similar to the latest, followed by ∼> and the exact version.

Table 8 presents for each package manager the percentages of dependencies
with updating lag of the four most popular version requirement types. For Co-
coaPods types ∼> and >= were excluded as there were no or too few such depen-
dencies. For all three package managers, we see that the more restrictive version
requirement types have a larger percentage of dependencies with lag than the less
restrictive requirement types. For Carthage and Swift PM this difference is par-
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Table 8. Percentage of dependencies with updating lag per package manager and version
requirement type.

PM == ∼> >= latest

CocoaPods 52% - - 44%
Carthage 46% 29% 27% 25%
Swift PM 47% 40% 38% 25%

ticularly big, as for the most restrictive == version requirement type almost 50%
of dependencies experience lag, while for the least restrictive requirement type
latest the percentage is only 25%.

Table 9 presents information on the lag time for each dependency requirement
type and package manager. We excluded version requirement types with less than
50 uses (!= with 10 uses and ∼> with 4 uses for CocoaPods; ..< with 30 uses for
Swift PM). The overall trend for CocoaPods and Carthage is that dependencies
with more restrictive version requirement types inhibit longer updating lag time.
Exceptions to this rule are requirement types that are used relatively little, i.e.,
>= for Carthage. These results confirm the initial expectation that less restrictive
version requirement types yield smaller lag time.

The results for Swift PM are not as conclusive. The lag times seem to be
relatively similar for all four version requirement types.

Figure 3 (a) shows the evolution of lag time for the four most used version re-
quirement types overall package managers. The biggest lag time can be observed
for the latest and the exact version requirements.

Figures 3 (b)-(d), however, indicate that looking at each package manager sep-
arately, the latest requirement has one of the smallest lag times. For all package
managers, the largest lag time corresponds to the exact version requirement. The
results for Swift PM, again, are less conclusive and the lag time seems to converge
for all version requirement types. Results for CocoaPods and Carthage, however,
show that the choice of version requirement type has a noticeable effect on the lag
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Table 9. Lag time in days for dependencies with updating lag.

PM type count mean std 25% 50% 75% max

CocoaPods == 907 207.5 280.6 16.6 69.4 296.8 1268.2
latest 52054 89.6 167.3 10.5 34.0 96.1 2625.4

Carthage == 5527 62.0 118.8 8.7 28.7 71.2 1827.0
∼> 11535 38.5 68.3 3.9 14.3 42.4 1146.8
>= 299 48.8 68.6 3.6 15.3 53.3 270.4

latest 2596 35.5 69.5 3.0 11.8 35.0 751.7

Swift PM == 695 63.9 101.8 7.7 29.0 70.8 671.4
∼> 2232 55.6 67.0 8.0 30.1 81.1 613.3
>= 4777 58.4 91.5 5.4 23.2 74.2 869.8

latest 121 65.8 84.0 12.9 33.7 90.6 390.7

time.
Similar results can be seen for the median dependency updating lag time in

Figure 6.2.3 with the exception of Swift PM where the median dependency lag
time is similar between the requirement types, but not converging like the mean
dependency lag time.

Third, we investigated how often library dependency versions are updated de-
pending on the version requirement and if the library dependency version was
extracted directly from the package manager resolution file or if it was resolved
based on the manifest file. Figure 36 shows the proportions of library upgrade,
downgrade, and no change for Carthage and Swift PM. We chose the most fre-
quent library version requirement types for the respective package managers. From
the data of both package managers, it is evident that library versions are upgraded
more often when the package manager version resolution is rerun for each new
project version (left column of each column pair). We have no results for Co-
coaPods, as all library dependency versions were extracted from package manager
resolution files.

Fourth, we investigated how not updating library dependency versions can lead
to more vulnerable projects. Figure 37 shows the number of projects with a direct
dependency on a vulnerable library over time that could have been and could not
have been fixed by a library dependency version upgrade. We found that 30% of
the projects with a direct dependency on a vulnerable library could have been fixed
by simply rerunning the package manager version resolution (3%) or by updating
the library version in the manifest file and then rerunning the package manager
version resolution (27%).

6.2.4. RQ 2.4: Spread of Vulnerabilities

We found a total of 149 known vulnerabilities in 61222 libraries. This corresponds
to 24.3 vulnerabilities per 10000 libraries. We found that only 5.9% of connected
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Figure 34. Mean dependency updating lag time per requirement type for (a) all package
managers combined, (b) CocoaPods, (c) Carthage, and (d) Swift PM.
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Figure 35. Median dependency updating lag time per requirement type for (a) all package
managers combined, (b) CocoaPods, (c) Carthage, and (d) Swift PM.
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Figure 36. Proportions of downgrades and upgrades for each new project version for
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Figure 37. Number of projects with dependencies to vulnerable libraries that could not
have been fixed by an upgrade of the dependency (red line) versus those that could have
been fixed (blue and green lines).
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Figure 38. The cumulative number of libraries affected by vulnerabilities for each de-
pendency level classified by the shortest dependency level to a vulnerable library version
for each library.

libraries had dependencies to vulnerable library versions. For 3% of connected
libraries, even the latest version of the library had a dependency on a vulnerable
library version.

Figure 38 shows how publicly reported vulnerabilities propagate through the
Swift library dependency network. There are 41 libraries with publicly reported
vulnerabilities (dependency tree level 0). Of those libraries only 12 have depen-
dents. There are 202 libraries without a publicly reported vulnerability that have
a direct dependency on at least one vulnerable library version (dependency tree
level 1). A considerable number of libraries are added on level two (83) and level
three (126). Libraries with dependencies to multiple vulnerable library versions
are counted at the lowest dependency tree level where a dependency to a vulnera-
ble library version exists. In total, 415 libraries have dependencies on vulnerable
library versions, and 456 libraries are affected by publicly reported vulnerabilities
in total if we include libraries that are vulnerable themselves. Moreover, we can
say that in case a library has at all a (possibly indirect) dependency on a vulner-
able library version, then the longest chain to the first vulnerable library version
has at most six levels in the dependency tree.

Table 10 shows the results of the analysis that explored whether the program-
ming language in which a library is written has an influence on how vulnerabilities
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potentially spread through the dependency network. We determined the program-
ming language of each vulnerable library based on data from GitHub on the main
project language of the library. Table 10 indicates that most vulnerabilities orig-
inate in libraries written in C (88) and C++ (24). Libraries written in Swift and
Objective-C contribute only 19 and three vulnerabilities, respectively. However,
the highest impact on the Swift ecosystem comes from vulnerabilities in libraries
written in Swift and Objective-C. Table 10 shows that vulnerable libraries writ-
ten in Swift and Objective-C have significantly more dependents (98 for Swift
and 313 for Objective-C) than projects written in other programming languages
(56 and 14 for C and C++). Figure 39 shows how far vulnerabilities from li-
braries written in the different languages spread across the dependency network.
Although there are some libraries that have dependencies to libraries written in C
and C++, there are significantly longer dependency chains to libraries written in
Swift and, especially, to libraries written in Objective-C. In the case of Objective-
C dependency chains to vulnerable library versions can have up to 14 levels of
indirection. Differently to Figure 38, libraries in Figure 39 are counted on each
level of indirection they occur.

Table 10. Vulnerabilities by project language

Project language vulnerabilities libraries dependent libraries

C 88 19 56
C++ 24 8 14
Swift 19 6 98
Go 12 1 1
JavaScript 4 4 4
Objective-C 3 3 313

In the following, we present our results on how vulnerabilities of different
severity propagate throughout the library dependency network. Vulnerabilities
have four levels of severity: CRITICAL, HIGH, MEDIUM, and LOW. Table 11
provides information on the distribution of severity levels of the vulnerabilities
found in the Swift ecosystem, as well as dependent libraries affected by these
vulnerabilities. Most vulnerabilities (80) are of level HIGH, 31 and 37 vulnerabil-
ities are CRITICAL and MEDIUM, respectively. Only one vulnerability has the
level LOW. Most libraries (353) are affected by MEDIUM-level vulnerabilities
through dependencies. Figure 40 shows how vulnerabilities with different sever-
ity levels propagate through the library dependency network. Vulnerabilities with
severity level MEDIUM propagate the furthest through the dependency network.
However, vulnerabilities with severity levels CRITICAL and HIGH can both be
observed with levels of indirection in the dependency tree up to Level 5.

We analyze how many vulnerable dependencies could have been fixed via a
dependency upgrade at the time a library version was released. For the upgrad-
ability analysis, we require that the version data for direct dependencies originates
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Figure 39. Number of libraries affected by vulnerabilities for each dependency level
classified by main project language.

Table 11. Vulnerabilities by severity

Vulnerability severity vulnerabilities libraries dependent libraries

CRITICAL 31 15 73
HIGH 80 31 136
MEDIUM 37 14 353
LOW 1 1 1
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Figure 40. Number of libraries affected by vulnerabilities for each dependency level
classified by severity level of the vulnerability.

from package manager resolution files and that the direct dependency is to a li-
brary included in the set of libraries available for our analysis. After filtering out
dependencies that did not meet our criteria 341 out of 415 libraries with vulner-
able dependencies remain. First, we analyze how updating direct dependencies
would have fixed a vulnerable dependency for different levels of indirection. Fig-
ure 41 shows that 27% (498 of 1833 in total) of vulnerable direct dependencies
could have been fixed via an upgrade. Furthermore, upgrading direct dependen-
cies would also have fixed 16% (244 of 1555 in total) of second-level vulnerable
dependencies and 64% (694 of 1082 in total) of third-level vulnerable dependen-
cies. Note that the levels of the dependency tree in Figure 41 are greater than 0
and less than 10. They must be greater than 0 because there are no dependencies
at level 0. There is no data beyond level 9 as the data on those library chains
happened to not be compatible with the upgradability analysis.

Table 12. Vulnerable dependency fixes by severity

Vulnerability all versions latest version
severity fixed not fixed fixed not fixed

CRITICAL 31% 69% 71% 29%
HIGH 33% 67% 52% 48%
MEDIUM 30% 70% 39% 61%

Next, we analyze how many vulnerable dependencies could have been fixed
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Figure 41. Number of dependency chains to vulnerable library versions that could be
fixed (green) and not fixed (red) by an upgrade of the first dependency in the dependency
chain. The numbers are shown for each dependency level.

via upgrading depending on the severity of the vulnerability. Table 12 shows
that over all dependency chains, the probability of fixing the vulnerability via a
dependency upgrade is around 30%. However, if we look at the latest version of
each library, the percentage of fixing dependencies to critical vulnerabilities via
upgrading is 71%, fixing dependencies to vulnerabilities of level HIGH is 52%,
and fixing dependencies to vulnerabilities of level MEDIUM is 39%. Finally, we
explore whether there are differences in the percentages of fixing vulnerabilities
via upgrading between the project languages of the vulnerable libraries. Table 13
shows percentages of vulnerable dependencies being fixed via upgrading for each
of the four most prominent languages. Over all library versions, the probability of
fixing a vulnerable dependency is around 30%, with the exception of C++ where
the probability is considerably smaller. For the latest versions of each library,
the probability of fixing a vulnerable dependency via an upgrade is highest for
C (67%) and Swift (60%), and lowest for Objective-C (38%) and C++ (33%).
Looking at the success rates of fixing a vulnerable dependency via upgrading
from the point of view of the different vulnerabilities in Table 14 we see that for
25% of vulnerabilities, the success of upgrading is over 89% and for another 25%
of vulnerabilities the failure of fixing the dependency via an upgrade is over 94%.
These numbers indicate that fixing a vulnerable dependency via upgrading is very
successful for some of the vulnerabilities and not possible for others.

We checked whether the public descriptions of vulnerabilities in the Swift
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Table 13. Vulnerable dependency fixes by project language

Project over all versions latest version only
language fixed not fixed fixed not fixed

C 24% 76% 67% 33%
C++ 6% 94% 33% 67%
Objective-C 30% 70% 38% 62%
Swift 36% 64% 60% 40%

Table 14. Percentage of dependents that can be fixed through upgrading per vulnerability

Percentage of
dependents that count mean std min 25% 50% 75% max

can be fixed 14 0.43 0.43 0.0 0.06 0.25 0.90 1.0
cannot be fixed 14 0.57 0.43 0.0 0.10 0.75 0.94 1.0

ecosystem include information on the class or method that contains the described
vulnerability. This kind of detailed information could be used to fine-tune the
analysis and detection of vulnerable dependencies by identifying the piece of
code that contains the vulnerability. In situations where a library is dependent
on a vulnerable library version, it might be good to know whether the code of
the vulnerable library is used by the dependent library. Analyzing the description
of each vulnerability and including data from patch links showed that most vul-
nerability descriptions do not include detailed enough information to determine
the vulnerable class or method. Table 15 shows that not a single vulnerability in
a project written in Swift specified both the vulnerable method and the vulner-
able class. Similarly, very little information is available about vulnerabilities in
projects written in Objective-C. There is more information on vulnerabilities in
projects written in C and C++ but these vulnerabilities also affect significantly
fewer libraries in the Swift ecosystem.

Table 15. Precision of public information on vulnerabilities

Project language vulnerabilities method class both

Swift 19 1 7 0
Objective-C 3 1 1 1
C 88 43 29 16
C++ 24 18 15 12

6.3. Discussion

We discuss our findings in the following section.
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6.3.1. RQ 2.1: Evolution of LDNs

From Figure 20 it is evident that some of the libraries in the Swift ecosystem were
created before the introduction of the first package manager, CocoaPods, or before
the release of the language Swift. Firstly, it is important to note that, although we
call it the Swift ecosystem, it also encompasses Objective-C libraries. Objective-
C, the predecessor of Swift, was introduced in 1984 and it is inter-operable with
Swift. Additionally, libraries written in C and C++ can be used in both Swift
and Objective-C projects. Some of these libraries are also available through these
package managers. Some of the C/C++/Objective-C libraries written before the
release of CocoaPods were later added to the package managers. In our analy-
sis, we use git tags and commit timestamps to date library versions. Therefore,
as we have no information on when a library or library version was added to a
package manager, we simply assume that it was added when the library version
was released. In the following, we will ignore any library versions added before
September 2011, i.e., prior to when CocoaPods was introduced.

When Decan et al. [DMG19] analyzed the LDNs of seven package managers,
they found that the number of libraries grew for each package manager either lin-
early or exponentially. Given these results, we expected to see a similar trend in
the number of libraries and library versions for CocoaPods, Carthage, and Swift
PM. However, the growth we observed has slowed in recent years. The decline
in growth for CocoaPods and Carthage is also clear when looking at the number
of new library versions added per month. To check if the number of updates per
month for CocoaPods is really declining, we conducted an additional analysis of
the git history of the CocoaPods Spec repository. In this analysis, we searched
for the latest git commit for each month and then queried the difference between
commits of consecutive months. Additions and deletions were recorded for each
file. We discarded all file names that were not Podspec files and then counted
the number of additions for each month. This analysis confirmed that the number
of updates (i.e., file additions) was indeed falling. Our hypothesis is that more
and more developers are moving to Swift PM. Therefore, Carthage has lost most
of its appeal. First, when Apple introduced Swift PM it was a standalone ter-
minal application that could be used to create macOS applications and packages.
Furthermore, in 2019, Apple added support for iOS and Xcode, which is the of-
ficial IDE for iOS and macOS development. Now a dependency can be declared
through Swift PM by simply searching for a library in Xcode. This makes Swift
PM the easiest-to-use package manager in the Swift ecosystem.

We expected the number of direct dependencies and total dependencies to grow
over time as has been observed by Kikas et al. [Kik+17]. We observed that the
number of direct dependencies was very volatile and growing rapidly between
2012 and 2016. After 2016 the number of direct dependencies stabilized and
started growing slowly. Although the mean number of direct dependencies is
consistently higher for CocoaPods than for Carthage, the trend is similar for all
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three package managers. Our hypothesis is that this change was a consequence
of the introduction of Swift in 2014 and developers migrating from Objective-C
to Swift in the following years. The growth of the mean number of dependencies
after 2016 for all three studied package managers is lower than for JavaScript,
Ruby, and Rust [Kik+17]. The mean number of direct dependencies is compa-
rable to other package managers [DMG19], but the mean number of transitive
dependencies is significantly lower. For example, the median number of transitive
dependencies for a library available through the Cargo, NuGet, and npm package
manager is 41, 27, and 21, respectively. In comparison, the median number of
transitive dependencies in the LDNs of the Swift ecosystem is only two.

6.3.2. RQ 2.2: Evolution of Package Managers

We saw that the percentage of libraries not using a package manager decreased
from 97.8% in 2012 to 84.3% in 2021. We compared this trend to other pack-
age managers by additionally calculating the percentage of libraries with depen-
dencies over time for 10 package managers with sufficient dependency data in
libraries.io[Lib22] (Maven, Packagist, NPM, CPAN, Hex, NuGet, Pub, Puppet,
PyPi, and Rubygems). We found that for all 10 package managers the percentage
of libraries with dependencies grew over time. Different from the Swift ecosys-
tem, however, the general trend is significantly steeper with most libraries using
package managers to declare dependencies by 2020. The only package managers
with a slightly similar trend to the Swift ecosystem are Maven and PyPi with
43.1% and 28.5% of libraries declaring dependencies through a package manager
for Maven and PyPi respectively. However, libraries in these package managers
still declare dependencies more often than in the Swift ecosystem. The reason
for this might be that developers in the Swift ecosystem seem rather conserva-
tive in terms of declaring dependencies, a sentiment that can also be observed in
developer forums [kut22].

Three package managers are used in the Swift ecosystem: CocoaPods, Carthage,
and Swift PM. We expected that the LDNs of these ecosystems overlap, but that
there are also libraries that are available only through CocoaPods, Carthage, or
Swift PM respectively. This assumption proved to be true. Another, more silent,
assumption was that CocoaPods is the largest package manager. The assump-
tion was based on the number of libraries reported by different sources, claiming
the number of libraries served by CocoaPods to be around 89000 and the num-
ber of libraries served by Carthage and Swift PM to be around 4500 each. Our
analysis showed that although this is true, the difference between the package
managers is not as big as assumed. In 2016, 63% of libraries with dependencies
used CocoaPods and 40% of libraries used Carthage. In 2021 48% of libraries
with dependencies used CocoaPods and 47% of libraries used Swift PM.

An explanation for the smaller difference is that, while CocoaPods has an offi-
cial central repository, Carthage and Swift PM do not. Therefore, it is not possible
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to gather all libraries served through Carthage and Swift PM. At the same time,
the official CocoaPods repository has many incorrect references to libraries. When
looking at libraries that either use or are referenced through a package manager
the difference between package manager sizes is significantly smaller. This is an
interesting insight for developers who might choose CocoaPods with the expecta-
tion of it providing access to 10 times more libraries. We saw that this expectation
might not hold true for libraries that are referenced and popular.

Over time the popularity of CocoaPods remains stable. Some libraries switch
from CocoaPods to other package managers, but the percentage of these libraries
is relatively low. Many libraries, on the other hand, switch away from Carthage.
Over time more project switch from Carthage to Swift PM than from Carthage to
CocoaPods, which might be due to the underlying similarity of Carthage and Swift
PM. Additionally Swift PM is integrated into Xcode, making it very easy to use
for developers. In conclusion, the introduction of a new package manager does not
necessarily make libraries switch to the newest package manager. Wether libraries
switch between package managers is dependent on the features of the package
managers involved. Unique features of a package manager, such as a central
repository, can provide stable popularity among developers. If Apple wanted to
bring more libraries to Swift PM, it might be beneficial to add some features that
only exist for CocoaPods so far, for example, a centralized repository (or perhaps
a repository for officially vetted libraries).

6.3.3. RQ 2.3: Upgrades vs Version Requirement Types

The lag time is similar for Carthage and Swift PM, but considerably larger for
CocoaPods. For all package managers, the lag time is growing linearly with ap-
proximately the same speed. When Swift PM was released in the second half of
2017 it understandably started out with a near-zero lag time which then quickly
rose to the same level as that of Carthage. A possible explanation for the growing
lag time is that there are projects that never update their dependencies.

It is surprising that the version requirement type used with CocoaPods is al-
most always latest. In terms of how requirements are declared in the Podfile,
this means that developers simply declare the library name without a version re-
quirement. The official documentation for CocoaPods7 suggest the use of∼>, but
it seems that developers prefer to use an even simpler notation.

For Carthage, version requirements are more restrictive. Over half of the time,
a version requirement specifying the major or minor version is given. This corre-
sponds to the recommendation in the Carthage documentation8. Surprisingly, an
exact version is used relatively often (20%). Perhaps developers using Carthage
prefer to be more in control of when a library version is installed and they update
the exact version requirement manually when needed. Most library dependencies

7https://guides.cocoapods.org/using/using-cocoapods.html
8https://github.com/Carthage/Carthage
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in Swift PM are declared with the >= requirement. This is the version require-
ment type suggested by the official documentation9. It can be seen as equivalent
to the latest requirement in terms of potential dependency updating lag, as it
does not limit new updates. We checked the version requirement types used in
the README files of 30 popular libraries and found no connection between the
version requirement type in the README and how developers declared library
version requirements for these libraries. A possible explanation for the difference
between the version requirement choices for CocoaPods and Carthage are that
Carthage was created as an alternative to CocoaPods. Some developers did not
like that using CocoaPods forced them to use the Xcode workspace generated by
the package manager. Carthage was introduced as a more lightweight alternative
that gave the developers more control over the app project and how the library
dependencies were integrated. It might be that the desire for more control carried
over to how developers declare their dependency requirements.

The results for Swift PM are less conclusive. It might be that the nature of
Swift PM - not being solely a package manager but a build system - results in it
being used differently than the other package managers. The lag time seems to
converge for all version requirement types. Results for CocoaPods and Carthage,
however, show that the choice of version requirement type has a noticeable ef-
fect on the lag time. This is an indication that developers should prefer less strict
version requirements, where possible. If a less strict version requirement is not
possible, then developers should update library dependency versions manually on
a regular base to keep the lag time low. Another option is relying on an auto-
matic dependency monitoring tool such as Dependabot or Renovatebot in case
developers use a supported package manger.

Our results indicate that it is not enough if developers choose a library depen-
dency version requirement type that allows for frequent automatic updates, poten-
tially resulting in shorter lag time for dependency updates. It is also necessary to
rerun the library dependency version resolution by running the package manager
more often. There might be different reasons for developers not wanting to rerun
the package manager version resolution, e.g., fear of incompatibilities, no time
to check if everything works correctly, and forgetting about the need to rerun the
package manager. Although sometimes problems can be introduced by upgrading
library dependency versions, some of these concerns could be alleviated by using
a more restrictive version requirement such as ∼>.

The results on upgrading vulnerable library versions show that, at least in terms
of vulnerable dependencies, keeping the library dependency versions up to date
results in safer projects. In this analysis, we did not consider transitive dependen-
cies, but it is possible that the dependency updating lag accumulates over depen-
dencies of dependencies and therefore results in even fewer projects that include
the necessary security fixes. To better understand the scope of the project in the

9https://www.swift.org/package-manager/
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Swift LDN we analyzed the vulnerability propagation in RQ 2.4.

6.3.4. RQ 2.4: Spread of Vulnerabilities

The total amount of 149 vulnerabilities in 61222 libraries in the Swift ecosystem
corresponds to 24.3 vulnerabilities per 10000 libraries. This ratio is much higher
than that for npm where Zimmermann et al. found the ratio to be around 8 in 2018
[Zim+19]. The difference between the two ecosystems could be due to the high
number of very small libraries in npm. In contrast, Li et al. found the ratio to
be 113.5 for Java projects [Li+21]. The Java ecosystem is older and might have
larger libraries, but we do not have a definite reason for the big difference.

Our results show that only 5.9% of connected libraries have dependencies to
vulnerable library versions. For 3% of connected libraries, its latest version is still
dependent on a vulnerable library version. In contrast, Düsing et al[DH21] found
that 9% of libraries in npm had direct dependencies to vulnerable libraries. Zim-
mermann et al. [Zim+19] found that 40% of npm projects they studied depended
(directly or transitively) on vulnerable libraries. Alfadel et al. [Alf+20] found
that 67% of all npm applications had at least one vulnerable direct dependency.
Zerouali et al. [Zer+22] found that for more than 15% of npm and RubyGems
libraries, the latest version of the library is directly dependent on a vulnerable li-
brary version. Additionally, they found that for 42.1% of all npm libraries and
for 30% of RubyGems libraries the latest version of the library had a transitive
dependency on a vulnerable library version. Therefore, in comparison to other
ecosystems, the Swift ecosystem is considerably less affected by vulnerable li-
brary dependencies. A possible reason could be that libraries in the Swift ecosys-
tem have fewer dependencies on average than libraries in other ecosystems, such
as npm. Another possibility is that there are fewer vulnerabilities reported for the
libraries in the Swift ecosystem but our analysis shows that this is not true, at least
in comparison to npm.

Looking at the severity of the vulnerabilities, the vulnerabilities with severity
level MEDIUM spread the most in the library dependency network. A possible
explanation is that vulnerabilities with a MEDIUM severity level are not taken
as seriously as vulnerabilities with higher severity levels and, therefore, are able
to exist longer and spread further in the library dependency network. Most vul-
nerabilities in the Swift ecosystem originate from libraries written in C and C++.
When looking at the impact on the whole library dependency network, however,
vulnerabilities in libraries written in Swift and Objective-C spread considerably
further. Libraries written in Swift and Objective-C have more dependents and
therefore a higher impact on the overall library dependency network. Domınguez-
Alvarez et al. [DGC] found that most libraries available through the CocoaPods
package manager are written in Swift and Objective-C. It might be, that libraries
written in C and C++ are very specialized and therefore not used by many other
libraries.
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Overall, around 30% vulnerable dependencies could have been fixed via an
update of direct dependencies. Surprisingly, there is not much difference between
vulnerability severity levels when looking at upgradability over all library ver-
sions. When looking at the latest version of each library, however, our results
show that vulnerabilities with severity level CRITICAL could have been fixed in
70% of the cases. This is a strong indication for developers to keep up with library
dependency upgrades as a means to avoid dependence on vulnerable libraries. If
upgrading to each new version is not possible, developers should at least check
if their dependencies have publicly reported vulnerabilities, for example using
automated tooling such as SwiftDependencyCheker.

We did not check if vulnerable library dependencies could have been fixed
via downgrading. Although this might be possible in some cases, it is rather
difficult in the Swift ecosystem due to the backwards incompatibility of Swift.
Additionally to this the affected versions data from NVD is not always accurate
making it difficult to find the correct unaffected library version. Given the lack
of detailed data on where the vulnerability is located it would also be difficult to
correctly assert blame to a vulnerability introducing commit.

Currently, tools exist that can be used to check for vulnerable dependencies
when using CocoaPods, Carthage, or Swift Package Manager. There are, how-
ever, no tools for the Swift ecosystem that could check if a vulnerability in a
dependency really affects the developed application. Existing tools could be ex-
tended if detailed information about the exact code location of a vulnerability was
available. Our results suggest that NVD does not include enough detailed infor-
mation on vulnerabilities in libraries written in Swift and Objective-C. Therefore,
the best solution for developers is to upgrade to a version of the library where the
vulnerability has been fixed - if such a version is available.

6.4. Threats to Validity

We discuss threats to validity in the following section.

6.4.1. Construct Validity

We only look at libraries declared through package managers. It might be pos-
sible that some projects are using dependencies, but through other means (e.g.
by manually downloading them). Our analysis is based on third-party libraries.
Additional analyses are needed to confirm if our results can be generalized to all
projects written in Swift, including apps.

Due to the dependency updating lag definition used, our analysis only takes
into account library updating lag times in libraries that are actively developed.
The updating lag time is calculated based on the library dependency versions that
were available at the time the project version was released. This means that if a
project is no longer updated its dependency lag time is not growing. The advan-
tage of this approach is that projects that have been discontinued will not inflate

115



the dependency updating lag time. Nevertheless, it is possible that some of these
projects are still being used and could therefore result in other projects having
outdated transitive dependencies.

In our analysis, we assume that every vulnerable dependency implies that the
dependent library is (indirectly) vulnerable as well. However, the presence of
vulnerable dependencies does not necessarily imply that the library is actually
vulnerable. In a preliminary study [Zap+18] Zapata et al. analyzed dependen-
cies of 60 projects using the npm package manager and showed that most projects
with vulnerable dependencies do not actually use the vulnerable code. Hejderup
et al. [Hej+22] analyzed libraries written in Rust and showed that not all resolved
dependencies are really called, which means that dependencies to vulnerable li-
braries might not necessarily affect the library itself. Given that our results show
that relatively few libraries depend on vulnerable libraries in the library depen-
dency networks of the Swift ecosystem, a more detailed analysis would not affect
this conclusion. A detailed analysis of call graphs might reduce the percentage
of libraries with dependencies to vulnerable libraries even further. However, as
we show in our answer to RQ3, the data needed for such an analysis is often not
available.

Our analyses using information about the programming languages, in which
the vulnerable libraries are written, depend on the information provided by GitHub
about the main programming language. A library could, however, be written in
several programming languages and the vulnerability itself could be located in
code that was written in a programming language different from the main pro-
gramming language. To understand the level of correctness of the information
provided by GitHub in the context of our analysis, for those vulnerabilities where
class/file level data was available, we also checked the language of the class/file
and compared it to the main programming language indicated by GitHub. In only
two of the 92 cases where such information is available, the vulnerability is lo-
cated in a file written in a different language than the main programming language
of the library. None of these two cases occurs in libraries classified as written in
Objective-C or Swift.

6.4.2. Internal Validity

The Swift LDN dataset includes open-source libraries only. Additionally, some
libraries were excluded as the repository contained no tags. The library depen-
dency data mostly relies on package manager resolution files. Not every library
that uses a package manager includes the corresponding resolution files in the
repository. For such repositories, the package manager manifest files are parsed
and the dependency requirements are resolved. Building the dependency graph
by only declaring the exact version of a dependency means that transitive depen-
dencies could in practice be resolved differently. When a transitive dependency is
resolved at a later date then it is possible that the actual version of the transitive
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dependency would not match the version in our dataset. The data on the version
ranges do, however, exist in the dataset and could be checked as future work.

For the vulnerability data, we rely on data from NVD. This means that we need
to trust that the data is correct. It is possible that there are incorrect entries if they
have not been checked by third parties. We do, however, believe the data to be
reliable as it is an official and public database that is continuously reviewed and
maintained.

6.4.3. External Validity

We claim that our results hold for all open source libraries in the LDNs of the Swift
ecosystem, i.e. all open source libraries that are available through CocoaPods,
Carthage, and Swift PM. For CocoaPods, the official repository that contains in-
formation on libraries available through CocoaPods was used. For Carthage and
Swift PM, the information on libraries.io was used as the initial set of libraries.
To make sure that newer libraries than 2020 are included and that we do not rely
solely on libraries.io snowballing was used to analyze referenced dependencies
that were not analyzed in our dataset yet. This additional step should ensure that
we also include libraries that should be in the dataset but that did not exist in
the initial set of libraries. We analyzed the LDNs of the Swift ecosystem between
September 2011 and December 2021. We make no claims to how the LDNs might
evolve in the future. We saw in our analysis that the introduction of a new package
manager can disrupt any trends that might have existed before. All data and all
tools are open source and available on public repositories. We tried to describe
each manual process in as much detail as possible. Therefore, our study should
be reproducible.

The vulnerability data in the dataset is based on public data from the NVD.
When using other vulnerability databases, for example, Snyk, the results might
be different. Vulnerabilities in NVD are publicly reported, which adds to the
trustworthiness of the data.
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7. CONCLUSION

Code quality has many dimensions that can be measured, among them, maintain-
ability and security. Low maintainability can lead to high cost of maintaining and
updating an application. Security impacts can lead to compromised systems, loss
of trust to the owner of the application, and financial loss in a case of a data breach.
From a user’s perspective, higher maintainability can lead to a higher quality user
experience, such as a more responsive user interface or less strain on the device
battery. Given the data an average user entrusts to their smartphone, it is important
to ensure the security of these applications.

Most smartphones run either Android or iOS operating systems, with iOS be-
ing the second most popular mobile operating system. So far the tool support
to improve code quality for iOS applications, especially iOS applications written
in Swift, has been lacking. Different aspects of code quality can be measured,
two of these aspects are maintainability and security. With the aim to improve
tool support for analysing the quality of iOS applications we implemented three
open-source tools, validated these tools, and showed how the tools can be used to
conduct interesting and insightful empirical analyses. We presented three contri-
butions:

• Contribution 1: Tool support for analyzing the quality of iOS applications.
• Contribution 2: Empirical evidence on code smells in open-source iOS

applications.
• Contribution 3: Extensive analysis of library dependency networks in the

Swift ecosystem.

7.1. Tools

To improve tool support for analyzing code quality in iOS applications we imple-
mented three open-source tools:

GraphifySwift, a first prototype that can be used to measure the maintain-
ability of iOS applications by detecting common object-oriented code smells in
Swift applications. GraphifyEvolution can be used by app developers to detect
code smells in the applications they are developing and by researchers to analyze
a bulk of source code repositories.

GraphfiyEvolution is a more advanced tool that builds on our experiences
developing and using GraphifySwift. GraphfiyEvolution is a modular tool that
can be used to analyze code smells and beyond. It is easily extendable and can be
used to incorporate analysis results from many external tools. Additionally to the
capability of analyzing a snapshot of a project, it allows analyzing the evolution of
projects. This can be applied for example for code smell or vulnerability evolution
analysis. Although GraphfiyEvolution is mostly aimed at researchers interested in
analyzing the evolution of applications, it would be possible to extend the tool to,
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for example, visualize the architecture of an application, including code smells.
SwiftDependencyChecker, a lightweight tool that detects vulnerable library

dependencies. It can be seamlessly integrated into the Xcode build process mak-
ing it easy for developers to be notified if their library dependencies have publicly
reported vulnerabilities. The option to include SwiftDependencyChecker in the
Xcode build process allows developers to be notified about vulnerable library de-
pendencies used without the need to actively run a detection tool.

7.2. Empirical Analyses

We showed how the tools can be used to conduct interesting and insightful em-
pirical analyses. First, we applied GraphfiySwift to analyze code smells in open-
source iOS applications (RQ1). Second, we applied GraphifyEvolution combined
with SwiftDependencyChecker to analyze the evolution of the Swift library de-
pendency network (RQ2).

7.2.1. Code Smells in Open-Source iOS Applications

We analyzed the frequency and distribution of object-oriented code smells in iOS
applications. We compared code smell distributions on iOS and Android and
found significant differences between the two platforms. Our results indicate that
tool developers need to take platform-specific coding standards into account when
building supporting software for developers.

7.2.2. Library Dependency Network Analysis

We created a LDN dataset with over 60 thousand libraries for the iOS ecosys-
tem and analyzed its evolution. We saw that although the LDN is growing, the
growth is not as fast as on many other platforms. We analyzed the evolution of the
package managers in the Swift LDN and discussed properties of package man-
agers that increase their acceptance by developers. These insights could be used
by package manager developers to improve adoption of their tools. Our analysis
shows that unique characteristics of package managers might influence the rate of
adaption by users. Based on this we hypothesise that Apple could improve adap-
tion of Swift PM by implementing features that are currently only available for
CocoaPods, such as a central repository of libraries.

When analysing how vulnerabilities spread in the LDN of the iOS ecosystem,
we found that libraries in this LDN are considerably less affected by vulnerable
libraries than many other platforms, such as npm. This does not mean that there
is no risk in using third-party libraries, but due to a smaller average number of
transitive dependencies, this risk is lower than on other platforms. We showed
that many projects could fix their vulnerable dependencies by upgrading the li-
brary dependency version motivating the need for tools such as SwiftDependen-
cyChecker or GitHub Dependabot. Although these tools overestimate the number
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of vulnerabilities as vulnerable code from third-party libraries is not always used
in the given project, it might not be feasible to increase the detail of analysis. We
found that not enough public data exists on the publicly reported vulnerabilities in
the third-party libraries in the iOS ecosystem that could be incorporated into de-
pendency analysis tools without additional manual work. Developers can increase
the security of their projects by keeping their library dependencies up to date and
by using dependency analysis tools that detect vulnerable dependencies.

7.3. Future Research Directions

GraphifyEvolution provides many options for future analysis due to its modular
nature. We have implemented two additional external analyzers: the extraction
of import statements and the extraction of the file language. The idea behind the
import statement analysis is threefold. First, we would like to analyze the use of
system libraries, which can additionally be used for the classification of classes to
fit them into architecture patterns. This would allow the analysis of how different
architecture patterns (e.g. MVC, MVVM) evolve in an iOS project and how this
evolution is connected to code smells. Second, we would like to analyze how
often libraries in iOS are included in projects without using package managers.
Including library dependencies manually would make these libraries invisible to
analyses such as ours that relied on package manager metadata. Third, this anal-
ysis would allow us to see if and where the vulnerable library dependencies are
used in a project. If no import statements correspond to a vulnerable library depen-
dency, then most likely the project itself is not vulnerable. When a corresponding
import statement exists, however, it would be possible to extend GraphifyEvolu-
tion to analyze if the vulnerable code is really called. Additionally, it would be
possible to implement other code smell queries, for example for security-related
code smells.

The dataset created by running GraphifyEvolution provides class, method, and
variable-level information about a project. This data could be used to visual-
ize code smells or other project-specific data. Two prototypes have been created
[Sto21; Bad21] that analyze a Java project and visualize its evolution based on the
output of GraphifyEvolution. Such visualizations could be extended to show the
health of a codebase and alert developers or project managers if the maintainabil-
ity of a project starts to decline.

The Swift LDN dataset we created can be used for additional analyses, e.g.
analysis of updating patterns or switching between libraries. We analyze when
and how developers switch between package managers and provided insights for
tool developers on how they could increase the acceptance of their package man-
agers. Similar analyses could be done on third-party libraries to see when and
why developers switch from one third-party library to another. This could provide
useful insights for library developers on how to keep existing users and how to
gain new users.
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Appendix A. CODE SMELLS

A.1. Code Smell Thresholds

Table 16. Thresholds used in replicating [Hab+17]

metric vhigh
number_of_attribues 15
number_of_methods 18.5
number_of_instructions_class 375
class_complexity 41.5
number_of_instructions_method 10.4
number_of_methods_in_interface 6

Table 17. Thresholds calculated using the box plot technique for iOS apps

metric Q1 median Q3 very_high max
number_of_attribues 1.0 2.0 5.0 11.0 182
number_of_methods 1.0 2.0 6.0 13.5 136
number_of_instructions_ 5.0 21.0 66.0 157.5 2939
class
number_of_comments 7.0 10.0 17.25 32.625 225
class_complexity 1.0 4.0 15.0 36.0 466
complexity_method_ratio 1.0 1.33 3.0 6.0 48.0
coupling_between_ 0.0 0.0 0.0 0.0 8
object_classes
number_of_methods_ 2.0 5.0 10.0 22.0 269
and_attributes
lack_of_cohesion_ 0.0 1.0 9.0 22.5 6124
in_methods
cyclomatic_complexity 1.0 1 3.0 6.0 156
number_of_direct_calls 0.0 0 1.0 2.5 46
number_of_callers 0.0 0 0.0 0.0 89
number_of_instructions_ 3.0 7 15.0 33.0 2620
method
number_of_parameters 0.0 1 1.0 2.5 10
number_of_ 0.0 1 2.0 5.0 8
chained_message_calls
number_of_ 0.0 0 0.0 0.0 13
switch_statement
number_of_methods_ 1 1 2 3.5 32
in_interface
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Table 18. Thresholds calculated using the box-plot technique for Android

metric Q1 med Q3 vhigh max
number_of_attributes 1 2 7 16 1482
number_of_methods 2 5 11 24.5 430
number_of_instructions_class 16 45 115 263.5 19215
class_complexity 3 9 22 50.5 3906
complexity_method_ratio 1 1.47 2.22 46 653.5
coupling_between_object_classes 0 1 3 7.5 83
number_of_methods_and_attributes 4 8 18 39 1486
lack_of_cohesion_in_methods 0 4 26 65 72643
number_of_calls_between_classes 2 4 8 17 1120
cyclomatic_complexity 1 1 2 3.5 1301
number_of_called_methods 0 1 2 5 4560
number_of_callers 0 0 1 2.5 892
number_of_instructions_method 3 4 10 20.5 12701
number_of_parameters 0 1 1 2.5 49
number_of_methods_in_interface 1 2 4 8.5 132
primitive_variable_use 1 2 3 6 454
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A.2. Code Smell Definitions

Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

AlternativeClasses-
WithDifferent-
Interfaces

x Matches classes that have at least
a minimum count of methods in
common that have the same types
of parameters (considering methods
with at least a minimum number of
parameters), but where the classes do
not extend/implement the same parent
class/protocol and do not extend/imple-
ment each other [Fow18]. Thresholds:
minimum_common_method_count is
2, minimum_number_o f _parameters
is 2.

BlobClass x Query matches all classes where
lack_o f _cohesion_in_methods is very
high, number_o f _methods is very
high and number_o f _attributes is
very high. [Hec+15]. Thresholds:
determined using the box-plot
technique.

LargeClass x
BLOB x

BrainMethod x Matches methods with high
cyclomatic_complexity, a max
nesting depth of several, many ac-
cessed variables that belong to classes
with high number_o f _instructions
[LM07]. Thresholds:
max_nesting_depth_o f _several
set to 3, many_accessed_variables
is short-term memory cap set to 7,
other thresholds determined using the
box-plot technique.

Comments x Matches all classes where
number_o f _comments is high
[Fow18]. Thresholds: determined
using box-plot technique.
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Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

ComplexClass Matches classes that have very high
class_complexity [Hec+15].
Thresholds: determined using box-plot
technique.

CC x

CyclicClass-
Dependency

Matches all cycles between
Class-Variable-Class, finds the shortest
cycle and counts it as a code smell
instance [AFT19] [Man+16].

CyclicDependency x

DataClass x x Matches all classes where number of
methods is 0 [Fow18].

DataClump-
Arguments

Matches methods with at least a high
number of arguments with the same
name and type [Zha+08]. Thresholds:
high_number_o f _repeating_arguments
is 3 by def.

DataClumps* x x

DataClumpFields Matches classes that have at least a
high number of variables with the
same name and type [Zha+08].
Thresholds:
high_number_o f _repeating_variables
is 3 by def.

DataClumps* x x

DistortedHierarchy x Matches classes that have an unusually
deep inheritance tree. Finds classes
with depth of inheritance larger than
the short term memory cap [Man+16].
Thresholds: short_term_memory_cap
is set to 7.

DivergentChange x Matches methods that call a very high
number of methods [Fow18][GSS13].
Thresholds:
very_high_number_o f _direct_calls
determined using box-plot technique.

SchizophrenicClass x

ExternalDuplicat-
ionQuery

x Matches classes that belong to
different modules and that share
duplicated code [Man+16].DuplicatedCode* x
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Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

FeatureEnvy x x Matches methods that access more
variables outside of the class than in-
side of the class [LM07]. Thresh-
olds: f ew_access_to_local_variables
commonly between 2 and 5, set to 2.
locality f raction common threshold set
to 0.33.

GodClass x Matches classes where class cohesion
is tight, number of weighted methods
is very high and access to foreign
data is at least few [LM07]. Thresh-
olds: tight_class_cohesion is 0.33,
f ew_access_to_ f oreign_variables
is 2 by definition,
high_number_o f _weighted_methods
is found using the box-plot technique.

IgnoringLow-
MemoryWarning

Matches classes that are view
controllers and do not override method
called didReceiveMemoryWarning
[Hab+17].

ILMW x

Inappropriate-
Intimacy

x Matches pairs of classes that have more
method calls between them than a high
number of calls between classes.
[Pal+18] [Fow18]. Thresholds:
high_number_o f _calls_between_classes
determined using box-plot technique.

IntensiveCoupling x Matches methods where number of
method calls is larger than the short
memory cap and coupling dispersion
is lower than half or if the number of
methods it calls is larger than few and
coupling dispersion is smaller than few
and the maximum nesting depth of the
method is larger than shallow [LM07].
Thresholds: short_term_memory_gap
is 7, hal f _coupling_dispersion is 0.5,
quarter_coupling_dispersion is 0.25,
shallow_number_nesting_depth is 1
and f ew_coupling_intensity is 2.
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Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

InternalDuplication x Matches classes that belong to the
same module and that share duplicated
code [Man+16].

DuplicatedCode* x

LazyClass x Matches classes with either no meth-
ods, or medium number of instructions
and low class complexity method ratio
or smaller than medium coupling be-
tween object classes and some depth
of inheritance [Mun05]. Thresholds:
some_depth_o f _inheritance is set to 1
by definition. Other thresholds deter-
mined using the box-plot technique.

LongMethod x Matches matches all methods where
the number of instructions is bigger
than a very high number of
instructions [Hec+15]. Thresholds:
determined using the box-plot
technique.

BlobOperation x
LM x

LongParameter-
List

x Matches methods that have a very long
parameter list [Fow18]. Thresholds:
determined using the box-plot tech-
nique.

MassiveView-
Controller

Matches classes that are view
controllers and where number of
methods, number of attributes and
number of instructions is very high
[Hab+17]. Thresholds: determined
using the box-plot technique.

MAVC x

MessageChain x x Matches all methods, where the maxi-
mum number of chained message calls
is larger than very high [BRH13].
Thresholds: determined using the box-
plot technique.
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Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

MiddleMan x Matches all classes where more than
half of the methods are delegation
methods. Delegation methods have at
least one reference (uses/calls) to an-
other class but have less than a small
number of lines [Zha+08]. Thresholds:
delegation_to_all_methods_ratio set
to 0.5, small_number_o f _lines deter-
mined using the box-plot technique.

MissingTemplate-
Method

x Matches methods that call the
same methods and use the same
variables [Fow18]. Thresholds:
minimal_common_method_and
_variable_count set to 5,
minimal_method_count set to 2.

Parallel-
Inheritance-
Hierarchies

x Matches parallel hierarchy trees
for classes that start with the
same prefixes [Fow18][GSS13].
Thresholds: pre f ix_length is 3,
minimum_number_o f _classes_in
_hierarchy is 5.

PrimitiveObsession x Matches variables whose type is
not a type defined in this applica-
tion and that are used by multiple
methods [GSM17]. Thresholds:
very_high_primitive_variable_use is
determined using the box-plot tech-
nique.

RefusedBequest x Not implemented. Definition relies on
protected members [LM07] and there
are no protected variables/methods in
Swift.

RefusedParent- x
Bequest

SAPBreaker Matches classes where class
abstractness + instability is far from
the 1-x mainline [Blo19][Man+16].
Thresholds:
allowed_distance_ f rom_main is set
to 0.5.

SAPBreakers* x
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Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

SAPBreakerModule Matches modules where class
abstractness + instability is far from
the 1-x mainline [Blo19][Man+16].
Thresholds:
allowed_distance_ f rom_main is set
to 0.5.

SAPBreakers* x

ShotgunSurgery x x Matches all methods that
are called by more than a
very_high_number_o f _callers
[Fow18][Man+16]. Thresholds:
determined using the box-plot tech-
nique.

SiblingDuplication x Matches classes that have a common
parent class (somewhere in the
hierarchy) and that share duplicated
code. [Man+16]DuplicatedCode* x

Speculative-
GeneralityMethod

Matches methods that have unused pa-
rameters [Zha+08].

Speculative-
Generality*

x

Speculative-
GeneralityProtocol

Matches interfaces that are not imple-
mented or extended [Zha+08].

Speculative-
Generality*

x

SwissArmyKnife Matches classes that are interfaces and
have a very high number_o f _methods
[Hec+15]. Thresholds: determined
using the box-plot technique.

SAK x

SwitchStatements x Matches all methods, where the num-
ber of switch statements is higher
than very_high_number_o f _switch
_statements [Fow18]. Thresholds: de-
termined using the box-plot technique.

139



Code smell name Included in Code smell description
alternative names
(*split smells) [F

ow
18

]

[M
an

+1
6]

[H
ab

+1
7]

TraditionBreaker x Matches classes that do not
have any sub-classes, where
number_o f _methods_and_attributes
is low and where they in-
herit from a class whose
number_o f _methods_and_attributes
is very high [Moh+09][Tea14].
Thresholds: determined using the
box-plot technique.

A.3. Code Smell Queries for GraphifySwift

A.3.1. Long method

MATCH (c:Class)-[r:CLASS_OWNS_METHOD]->(m:Method)
WHERE m.number_of_instructions > veryHighNumberOfInstructions
RETURN

distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.2. Large class / Blob class

MATCH (cl:Class)
WHERE

cl.lack_of_cohesion_in_methods
> veryHighLackOfCohesionInMethods AND

cl.number_of_methods > veryHighNumberOfMethods AND
cl.number_of_attributes > veryHighNumberOfAttributes

RETURN
distinct cl.app_key as app_key,
count(distinct cl) as number_of_smells

A.3.3. Shotgun surgery

MATCH (other_m:Method)-[r:CALLS]->(m:Method)
<-[:CLASS_OWNS_METHOD]-(c:Class)

WITH
c,
m,
COUNT(r) as number_of_callers

WHERE number_of_callers > veryHighNumberOfCallers
RETURN
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distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.4. Switch statements

MATCH (c:Class)-[r:CLASS_OWNS_METHOD]->(m:Method)
WHERE m.number_of_switch_statements >

veryHighNumberOfSwitchStatements
RETURN

distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.5. Lazy class

MATCH (c:Class)
WHERE

c.number_of_methods = 0 OR
(c.number_of_instructions < mediumNumberOfInstructions AND
c.class_complexity/c.number_of_methods <=

lowComplexityMethodRatio) OR
(c.coupling_between_object_classes <

mediumCouplingBetweenObjectClasses AND
c.depth_of_inheritance > numberOfSomeDepthOfInheritance)

RETURN
distinct(c.app_key) as app_key,
count(distinct c) as number_of_smells

A.3.6. Message chains

MATCH (c:Class)-[CLASS_OWNS_METHOD]-(m:Method)
WHERE m.max_number_of_chaned_message_calls >

veryHighNumberOfChainedMessages
RETURN

distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.7. Data class

MATCH (c:Class)
WHERE c.number_of_methods = 0
RETURN

distinct(c.app_key) as app_key,
count(distinct c) as number_of_smells

A.3.8. Refused bequest / refused parent bequest

Not applicable for swift since swift does not have the keyword protected.
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A.3.9. Comments

MATCH
(c:Class) where c.number_of_comments >

veryHighNumberOfComments
RETURN

distinct(c.app_key) as app_key,
count(distinct c) as number_of_smells

A.3.10. Cyclic dependencies (dependencies between classes)

MATCH
(c:Class)-[:CLASS_OWNS_VARIABLE]->(v:Variable)

-[:IS_OF_TYPE]->(c2:Class)
WHERE

c <> c2
MATCH

cyclePath=shortestPath((c2)-
[:CLASS_OWNS_VARIABLE|:IS_OF_TYPE*]->(c))

WITH
c,
v,
[n in nodes(cyclePath) | n.name ] as names

RETURN
distinct(c.app_key) as app_key,
count(distinct c) as number_of_smells

A.3.11. Cyclic dependencies (dependencies between modules)

Normally when discussing cyclic dependencies the dependencies between mod-
ules are meant. Dependencies between modules are not possible in swift as the
build of such projects fails.

A.3.12. Intensive coupling

MATCH
(c:Class)-[r:CLASS_OWNS_METHOD]->(m1:Method)

-[s:CALLS]->(m2:Method),
(c2:Class)-[r2:CLASS_OWNS_METHOD]->(m2)

WHERE id(c) <> id(c2)
WITH

c,
m1,
count(distinct m2) as method_count,
collect(distinct m2.name) as names,
collect(distinct c2.name) as class_names,
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count(distinct c2) as class_count
WHERE

((method_count >= maxNumberOfShortMemoryCap and
class_count/method_count <= halfCouplingDispersion) or

(method_count >= fewCouplingIntensity
and class_count/method_count <=

quarterCouplingDispersion))
and m1.max_nesting_depth >= shallowMaximumNestingDepth

RETURN
distinct(m1.app_key) as app_key,
count(m1) as number_of_smells

A.3.13. Distorted hierarchy

MATCH (c:Class)
WHERE c.depth_of_inheritance > shortTermMemoryCap
RETURN

distinct(c.app_key) as app_key,
count(distinct c) as number_of_smells

A.3.14. Tradition Breaker

MATCH (c:Class)-[r:EXTENDS]->(parent:Class)
WHERE

NOT ()-[:EXTENDS]->(c) AND
c.number_of_methods + c.number_of_attributes <

lowNumberOfmethodsAndAttributes AND
parent.number_of_methods + parent.number_of_attributes >=

veryHighNumberOfMethodsAndAttributes
RETURN

distinct(c.app_key) as app_key,
count(distinct c) as number_of_smells

A.3.15. Sibling Duplication

MATCH
(firstClass:Class)-[:EXTENDS*]-> (parent:Class)

<-[:EXTENDS*]-(secondClass:Class),
(firstClass:Class)-[:DUPLICATES]->(secondClass:Class)

WHERE
firstClass.data_string contains d.fragment or
secondClass.data_string contains d.fragment

RETURN
distinct(firstClass.app_key) as app_key,
count(distinct d) as number_of_smells
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A.3.16. Internal Duplication

MATCH
(firstClass:Class)-[r:DUPLICATES]->(secondClass:Class),
(module:Module)-[:MODULE_OWNS_CLASS]->(firstClass),
(module:Module)-[:MODULE_OWNS_CLASS]->(secondClass)

WHERE
firstClass.data_string contains r.fragment or
secondClass.data_string contains r.fragment

RETURN
distinct(firstClass.app_key) as app_key,
count(distinct r) as number_of_smells

A.3.17. External Duplication

MATCH
(firstClass:Class)-[:DUPLICATES]->(secondClass:Class),
(module:Module)-[:MODULE_OWNS_CLASS]->(firstClass),
(secondModule:Module)-[:MODULE_OWNS_CLASS]->(secondClass)

WHERE
id(module) <> id(secondModule) and
firstClass.data_string contains d.fragment or
secondClass.data_string contains d.fragment

RETURN
distinct(firstClass.app_key) as app_key,
count(distinct d) as number_of_smells

A.3.18. Divergent Change/Schizophrenic Class

MATCH
(c:Class)-[:CLASS_OWNS_METHOD]->(m:Method)-[r:CALLS]

->(other_method:Method)
WITH

c,
m,
COUNT(r) as number_of_called_methods

WHERE
number_of_called_methods > veryHighNumberOfCalledMethods

RETURN
distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.19. Long parameter list

MATCH
(c:Class)-[:CLASS_OWNS_METHOD]->(m:Method)-
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[r:METHOD_OWNS_ARGUMENT]->(a:Argument)
WITH

c,
m,
count(a) as argument_count

WHERE argument_count > veryHighNumberOfParameters
RETURN

distinct(m.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.20. Feature envy

MATCH
(class:Class)-[:CLASS_OWNS_METHOD]->(m:Method)-[:USES]->
(v:Variable)<-[:CLASS_OWNS_VARIABLE]-(other_class:Class)

WHERE
class <> other_class

WITH
class,
m,
count(distinct v) as variable_count,
collect(distinct v.name) as names,
collect(distinct other_class.name) as class_names,
count(distinct other_class) as class_count

MATCH
(class)-[:CLASS_OWNS_METHOD]->(m)-[:USES]->

(v:Variable)<-[:CLASS_OWNS_VARIABLE]-(class)
WITH

class,
m,
variable_count,
class_names,
names,
count(distinct v) as local_variable_count,
collect(distinct v.name) as local_names,

class_count
WHERE

local_variable_count + variable_count > 0
WITH
class,

m,
variable_count,
class_names,
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names,
local_variable_count,
local_names,

class_count,
local_variable_count*

1.0/(local_variable_count+variable_count) as locality
WHERE

variable_count > fewAccessToForeignVariables and
locality < localityFraction and

class_count <= fewAccessToForeignClasses
RETURN

distinct(class.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.21. Data clumps (class variables)

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-

[:MODULE_OWNS_CLASS]->(class:Class)-
[:CLASS_OWNS_VARIABLE]->(variable:Variable)

MATCH
(app)-[:APP_OWNS_MODULE]->(module:Module)-

[:MODULE_OWNS_CLASS]->(other_class:Class)-
[:CLASS_OWNS_VARIABLE]->(other_variable:Variable)

WHERE
class <> other_class and
variable.type = other_variable.type and
variable.name = other_variable.name

WITH
app,
class,
other_class,
variable
order by variable.name

WITH
app,
class,
other_class,
collect(distinct variable.name) as variable_names,
count(DISTINCT variable) as variable_count

WITH
app,
class,
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other_class,
variable_names,
variable_count
order by id(class)

WITH
app,
collect(distinct class.name) as class_names,
variable_names,
variable_count

WHERE
variable_count >= highNumberOfRepeatingVariables

RETURN
distinct(app.app_key) as app_key,
count(distinct class_names) as number_of_smells

A.3.22. Data clumps (function arguments)

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-
[:MODULE_OWNS_CLASS]->(class:Class)-[:CLASS_OWNS_METHOD]
->(method:Method)-[:METHOD_OWNS_ARGUMENT]

->(argument:Argument)
MATCH

(app)-[:APP_OWNS_MODULE]->(module:Module)-
[:MODULE_OWNS_CLASS]>(other_class:Class)-
[:CLASS_OWNS_METHOD]->(other_method:Method)-
[:METHOD_OWNS_ARGUMENT]->(other_argument:Argument)

WHERE
method <> other_method and
argument.name = other_argument.name and
argument.type = other_argument.type

WITH
app,
class,
other_class,
method,
other_method,
argument
order by other_method.name

WITH
app,
class,
other_class,
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method,
other_method,
argument
order by argument.name

WITH
collect(argument.name) as argument_names,
count(argument.name) as argument_count,
method,
other_method,
app,
class

WHERE
argument_count >= highNumberOfRepeatingArguments

WITH
collect(other_method.name) + method.name as method_names,
collect(id(other_method)) + id(method) as method_ids,
count(distinct other_method) as method_count,
method,
app,
argument_names,
argument_count,
class

WITH
collect(class.name) as class_names,
method_names,
app,
argument_names,
argument_count,
method_ids,
method_count

MATCH
(app)-[:APP_OWNS_MODULE]->(:Module)-[:MODULE_OWNS_CLASS]

->(class:Class)-[:CLASS_OWNS_METHOD]->(method:Method)
-[:METHOD_OWNS_ARGUMENT]->(argument:Argument)

WHERE
id(method) in method_ids and
argument.name in argument_names

WITH
argument,
app,
method,
argument_names,
argument_count,
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class order by argument.name
WITH

collect(distinct argument.name) as new_argument_names,
app,
method,
argument_names,
argument_count,
class

WITH
collect(method.name) as new_method_names,
collect(class.name) as class_names,
new_argument_names,
app,
argument_names,
argument_count

RETURN
distinct(app.app_key) as app_key,
count(distinct class_names) as number_of_smells

A.3.23. Speculative generality (interfaces)

MATCH
(class:Class)

WHERE NOT
()-[:IMPLEMENTS|EXTENDS]->(class) and
class.is_interface = true

RETURN
distinct(class.app_key) as app_key,
count(distinct class) as number_of_smells

A.3.24. Speculative generality (methods)

MATCH
(class)-[:CLASS_OWNS_METHOD]->(m:Method)-
[:METHOD_OWNS_ARGUMENT]->(p:Argument) -[:IS_OF_TYPE]

->(other_class:Class)
WHERE

NOT (m)-[:CALLS|USES]->()
<-[:CLASS_OWNS_VARIABLE|CLASS_OWNS_METHOD]-

(other_class) AND
NOT m.data_string contains (\"=\" + p.name) AND
NOT m.data_string contains (\"= \" + p.name) AND
NOT m.data_string contains (\":\" + p.name) AND
NOT m.data_string contains (\": \" + p.name) AND
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NOT m.data_string contains (\"(\" + p.name + \")\") and
NOT m.data_string contains (\"(\" + p.name + \",\") and
NOT m.data_string contains (\"(\" + p.name + \" ,\") and
NOT m.data_string contains (\", \" + p.name + \")\") and
NOT m.data_string contains (\", \" + p.name + \",\") and
class.is_interface = false

RETURN
distinct(class.app_key) as app_key,
count(distinct m) as number_of_smells

A.3.25. Middle man

MATCH
(class:Class)-[:CLASS_OWNS_METHOD]->(method:Method)-
[:USES|CALLS]->(ref)

<-[:CLASS_OWNS_VARIABLE|CLASS_OWNS_METHOD]-
(other_class:Class)

WHERE
class <> other_class and
method.number_of_instructions <

lowNumberOfInstructionsMethod
WITH

class,
method,
collect(ref.name) as referenced_names,
collect(other_class.name) as class_names

WITH
collect(method.name) as method_names,
collect(referenced_names) as references,
collect(class_names) as classes,
collect(method.number_of_instructions) as
numbers_of_instructions,
class,
count(method) as method_count,
count(method)*1.0/class.number_of_methods as method_ratio

WHERE
method_ratio > delegationToAllMethodsRatioHalf

RETURN
distinct(class.app_key) as app_key,
count(class) as number_of_smells

A.3.26. Parallel inheritance hierarchies

MATCH
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(parent:Class)<-[:MODULE_OWNS_CLASS]-(:Module)
<-[:APP_OWNS_MODULE]-(app:App)

MATCH
(app)-[:APP_OWNS_MODULE]->(:Module)-[:MODULE_OWNS_CLASS]

->(other_parent:Class)
WHERE

parent <> other_parent
MATCH

path = (class:Class)-[:EXTENDS*]->(parent)
MATCH

other_path = (other_class:Class)-[:EXTENDS*]
->(other_parent)

WHERE
length(path) = length(other_path) and
length(path) > 0 and
class.name starts with

substring(other_class.name, 0, \(self.prefixLength))
and parent.name starts with

substring(other_parent.name, 0, \(self.prefixLength))
WITH

collect(distinct [n in nodes(path) | n.name ]) as first,
collect(distinct [n in nodes(other_path) | n.name]) as second,
parent,
other_parent

WITH
REDUCE(output = [], r IN first | output + r) as first_names,
REDUCE(output = [], r IN second | output + r) AS second_names,
parent,
other_parent

UNWIND
first_names as first_name

WITH
collect(distinct first_name) as first_names,
second_names,
parent,
other_parent

UNWIND
second_names as second_name

WITH
collect(distinct second_name) as second_names,
first_names,
parent,
other_parent
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WHERE
size(first_names) >= minimumNumberOfClassesInHierarcy and
size(second_names) >= minimumNumberOfClassesInHierarcy

RETURN
distinct(parent.app_key) as app_key,
count(parent)/2 as number_of_smells

A.3.27. Inappropriate intimacy

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)

-[:MODULE_OWNS_CLASS]->(class:Class)-
[:CLASS_OWNS_METHOD]->(method:Method)

MATCH
(app:App)-[:APP_OWNS_MODULE]->(other_module:Module)-
[:MODULE_OWNS_CLASS]->other_class:Class)-

[:CLASS_OWNS_METHOD]->(other_method:Method)
WHERE

class <> other_class
MATCH

path = (method)-[r:CALLS]-(other_method)
WITH

count(distinct r) as number_of_calls,
collect(distinct method.name) as method_names,
collect(distinct other_method.name) as other_method_names,
class,
other_class

WHERE
number_of_calls > highNumberOfCallsBetweenClasses

RETURN
distinct(class.app_key) as app_key,
count(class)/2 as number_of_smells

A.3.28. Brain method

MATCH
(class:Class)-[:CLASS_OWNS_METHOD]->(method:Method)

WHERE
class.number_of_instructions >

highNumberOfInstructionsForClass and
method.cyclomatic_complexity >=

highCyclomaticComplexity and
method.max_nesting_depth >= severalMaximalNestingDepth

MATCH
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(method)-[:USES]->(variable:Variable)
WITH

class,
method,
count(distinct variable) as number_of_variables,
collect(distinct variable.name) as variable_names

WHERE
number_of_variables > manyAccessedVariables

RETURN
distinct(class.app_key) as app_key,
count(distinct method) as number_of_smells

A.3.29. God class

MATCH
(class:Class)-[:CLASS_OWNS_METHOD]->(method:Method)

MATCH
(class)-[:CLASS_OWNS_METHOD]->(other_method:Method)

WHERE
method <> other_method

WITH
count(DISTINCT [method, other_method]) as pair_count,
class

MATCH
(class)-[:CLASS_OWNS_METHOD]->(method:Method)

MATCH
(class)-[:CLASS_OWNS_METHOD]->(other_method:Method)

MATCH
(class)-[:CLASS_OWNS_VARIABLE]->(variable:Variable)

WHERE
method <> other_method and
(method)-[:USES]->(variable)<-[:USES]-(other_method)

WITH
class,
pair_count,
method,
other_method,
collect(distinct variable.name) as variable_names,
count(distinct variable) as variable_count

WHERE
variable_count >= 1

WITH
class,
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pair_count,
count(distinct [method, other_method])

as connected_method_count
WITH

class,
connected_method_count*0.1/pair_count as class_cohesion,
connected_method_count,
pair_count

WHERE
class_cohesion < tightClassCohesionFraction and
class.class_complexity >= veryHighWeightedMethodCount

OPTIONAL MATCH
(class)-[:CLASS_OWNS_METHOD]->(m:Method)-[:USES]
->(variable:Variable)<-[:CLASS_OWNS_VARIABLE]-

(other_class:Class)
WHERE

class <> other_class
WITH

class,
class_cohesion,
connected_method_count,
pair_count,
count(distinct variable) as foreign_variable_count

WHERE
foreign_variable_count >= fewAccessToForeignData

RETURN
distinct(class.app_key) as app_key,
count(distinct class) as number_of_smells

A.3.30. SAP Breaker

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-

[:MODULE_OWNS_CLASS]->(class:Class)
MATCH
(app:App)-[:APP_OWNS_MODULE]->(other_module:Module)-

[:MODULE_OWNS_CLASS]->(other_class:Class)
WHERE
(other_class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()

<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(class) and
class <> other_class
WITH

count(distinct other_class) as number_of_dependant_classes,
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class,
app

WITH
class,
number_of_dependant_classes as efferent_coupling_number,
app

MATCH
(app)-[:APP_OWNS_MODULE]->(module:Module)-

[:MODULE_OWNS_CLASS]->(other_class:Class)
WHERE

(class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(other_class)
and class <> other_class

WITH
count(distinct other_class) as afferent_coupling_number,
class,
efferent_coupling_number

WITH
efferent_coupling_number*1.0/(efferent_coupling_number +

afferent_coupling_number) as instability_number,
class,
afferent_coupling_number,
efferent_coupling_number

OPTIONAL MATCH
(class)-[:CLASS_OWNS_METHOD]->(method:Method)

WHERE
method.is_abstract

WITH
count(distinct method)/class.number_of_methods

as abstractness_number,
instability_number,
afferent_coupling_number,
efferent_coupling_number,
class

WITH
1 - (abstractness_number + instability_number)^2

as difference_from_main,
instability_number,
abstractness_number,
class

WHERE
difference_from_main < - allowedDistanceFromMain or
difference_from_main > allowedDistanceFromMain
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RETURN
distinct(class.app_key) as app_key,
count(distinct class) as number_of_smells

A.3.31. SAP Breaker for Modules

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-

[:MODULE_OWNS_CLASS]->(class:Class)
MATCH

(app:App)-[:APP_OWNS_MODULE]->(other_module:Module)-
[:MODULE_OWNS_CLASS]->(other_class:Class)

WHERE
(other_class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(class) and
module <> other_module

WITH
count(distinct other_class) as number_of_dependant_classes,
module

WITH
module,
number_of_dependant_classes as efferent_coupling_number

MATCH
(module:Module)-[:MODULE_OWNS_CLASS]->(class:Class)

MATCH
(other_module:Module)-[:MODULE_OWNS_CLASS]

->(other_class:Class)
WHERE

(class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(other_class)
and module <> other_module

WITH
count(distinct other_class) as afferent_coupling_number,
module,
efferent_coupling_number

WITH
efferent_coupling_number*1.0/(efferent_coupling_number +

afferent_coupling_number) as instability_number,
afferent_coupling_number,
efferent_coupling_number,
module

OPTIONAL MATCH
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(module)-[:MODULE_OWNS_CLASS]->(class:Class)
WHERE

class.is_interface
WITH

count(distinct class)/module.number_of_classes
as abstractness_number,

instability_number,
afferent_coupling_number,
efferent_coupling_number,
module

WITH
1 - (abstractness_number + instability_number)^2

as difference_from_main,
instability_number,
abstractness_number,
module

WHERE
difference_from_main < - allowedDistanceFromMain or
difference_from_main > allowedDistanceFromMain

RETURN
distinct(module.app_key) as app_key,
count(distinct module) as number_of_smells

A.3.32. Unstable dependencies

MATCH
(class:Class)

MATCH
(other_class:Class)

WHERE
(other_class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(class)
and class <> other_class

WITH
count(distinct other_class) as number_of_dependant_classes,
class

WITH
class,
number_of_dependant_classes as efferent_coupling_number

MATCH
(class:Class)

MATCH
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(other_class:Class)
WHERE

(class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(other_class)
and class <> other_class

WITH
count(distinct other_class) as afferent_coupling_number,
class,
efferent_coupling_number

WITH
efferent_coupling_number*1.0/(efferent_coupling_number

+ afferent_coupling_number) as instability_number,
class,
afferent_coupling_number,
efferent_coupling_number

MATCH
(comparison_class:Class)

WHERE
(comparison_class)-[:CLASS_OWNS_METHOD]->(:Method)-
[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-(class)
and comparison_class <> class

MATCH
(other_class:Class)

WHERE
(other_class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]->()
<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-

(comparison_class)
and comparison_class <> other_class

WITH
count(distinct other_class) as number_of_dependant_classes2,
comparison_class,
class,
instability_number

WITH
comparison_class,
number_of_dependant_classes2 as efferent_coupling_number2,
class,
instability_number

MATCH
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(comparison_class:Class)
MATCH

(other_class:Class)
WHERE

(comparison_class)-[:CLASS_OWNS_METHOD]->()-[:USES|:CALLS]
->()<-[:CLASS_OWNS_METHOD|:CLASS_OWNS_VARIABLE]-

(other_class)
and comparison_class <> other_class

WITH
count(distinct other_class) as afferent_coupling_number2,
comparison_class,
efferent_coupling_number2,
class,
instability_number

WITH
efferent_coupling_number2*1.0/(efferent_coupling_number2

+ afferent_coupling_number2) as
instability_number2,
comparison_class,
afferent_coupling_number2,
efferent_coupling_number2,
class,
instability_number

WHERE
instability_number2 < instability_number

RETURN
comparison_class.app_key as app_key,
count(distinct comparison_class) as number_of_smells

A.3.33. Primitive obsession

MATCH
(class:Class)-[:CLASS_OWNS_VARIABLE]->(variable:Variable)

<-[use:USES]-(method:Method)
WHERE

not (variable)-[:IS_OF_TYPE]->()
WITH

collect(distinct method.name) as uses,
count(distinct use) as use_count,
variable,
class

WHERE
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use_count > veryHighPrimitiveVariableUse
RETURN

distinct(class.app_key) as app_key,
count(distinct variable) as number_of_smells

A.3.34. Alternative classes with different interfaces

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-
[:MODULE_OWNS_CLASS]->(class:Class)-[:CLASS_OWNS_METHOD]
->(method:Method)-[:METHOD_OWNS_ARGUMENT]
->(argument:Argument)

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-
[:MODULE_OWNS_CLASS]->(other_class:Class)-
[:CLASS_OWNS_METHOD]->(other_method:Method)-
[:METHOD_OWNS_ARGUMENT]->(other_argument:Argument)

WHERE
not (class)-[:IMPLEMENTS|:EXTENDS]->()
<-[:IMPLEMENTS|:EXTENDS]-(other_class) and
not (class)-[:IMPLEMENTS|:EXTENDS]-(other_class) and
class.app_key = other_class.app_key and
class <> other_class and
method.number_of_parameters =

other_method.number_of_parameters and
method.number_of_parameters >= minimumNumberOfParameters
and argument.type = other_argument.type and
method.return_type = other_method.return_type

WITH
class,
other_class,
method,
other_method,
argument
order by argument.type

WITH
collect(distinct argument) as arguments,
count(distinct argument) as number_of_arguments,
method,
other_method,
class,
other_class

WHERE
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number_of_arguments = method.number_of_parameters
WITH

[argument in arguments | argument.type] as arguments,
number_of_arguments,
method,
other_method,
class,
other_class
order by method.name

WITH
collect(distinct class.name +"."+method.name) as method_names,
count(distinct method)

as method_count,
class,
other_class,
collect(number_of_arguments) as number_of_arguments,
collect(distinct arguments) as types

WHERE
method_count >= \(minimumCommonMethodCount)

WITH
collect(distinct method_names) as method_names,
collect(distinct class.name) as class_names,
types,
class.app_key as app_key,
count(distinct class.name) as class_count

WHERE
class_count >= 2

RETURN
distinct app_key,
count(distinct class_names) as number_of_smells

A.3.35. Missing template method

MATCH
(app:App)-[:APP_OWNS_MODULE]->(module:Module)-
[:MODULE_OWNS_CLASS]->(class:Class)-[:CLASS_OWNS_METHOD]
->(method:Method)-[:USES|:CALLS]->(common)<-[:USES|:CALLS]-
(other_method)<-[:CLASS_OWNS_METHOD]-(other_class:Class)

WHERE
method <> other_method

WITH
collect(distinct common) as commons,
count(distinct common) as common_count,
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class, other_class, method, other_method
WHERE

common_count >= minimalCommonMethodAndVariableCount
WITH

[common in commons | class.name+"."+common.name]
as common_names,

class,
other_class,
method,
other_method,
common_count

WITH
collect(class.name) as class_names,
collect(class.name + "." + method.name) as method_names,
count(distinct method) as method_count,
class.app_key as app_key,
common_names, common_count

WHERE
method_count >= \(self.minimalMethodCount)

RETURN
distinct(app_key),
count(distinct common_names) as number_of_smells

A.3.36. Swiss army knife

MATCH
(cl:Class)

WHERE
cl.is_interface AND
cl.number_of_methods > veryHighNumberOfMethods

RETURN
distinct(cl.app_key) as app_key,
count(distinct cl) as number_of_smells

A.3.37. Complex class

MATCH
(cl:Class) WHERE cl.class_complexity >

veryHighClassComplexity
RETURN

distinct(cl.app_key) as app_key,
count(distinct cl) as number_of_smells
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A.3.38. Ignoring low memory warning

MATCH
(class:Class)

WHERE
class.name contains ’ViewController’ and
not (class)-[:CLASS_OWNS_METHOD]

->(:Method{name:’didReceiveMemoryWarning()’})
RETURN

distinct(class.app_key) as app_key,
count(distinct class) as number_of_smells

A.3.39. Massive view controller

MATCH
(class:Class)

WHERE
class.name contains ’ViewController’ and
class.number_of_methods > veryHighNumberOfMethods and
class.number_of_attributes

> veryHighNumberOfAttributes and
class.number_of_instructions >

veryHighNumberOfInstructionsClass
RETURN

distinct(class.app_key) as app_key,
count(distinct class) as number_of_smells
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Appendix B. CODE ANALYSIS

B.1. GraphifyEvolution Evolution Decision Chart

Figure 42. Decision Flowchart for GraphifyEvolution
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B.2. GraphifyEvolution Database Structure

B.2.1. Nodes and properties

Variable.
• app_key - unique key to identify application, will be added
• code - snippet of code where given variable is defined, currently disabled,

will be made optional
• kind - defines if variables is instance, class or static variable
• modi f ier - private/public/internal/fileprivate/open - will be added
• name - name of variable
• type - type of variable, f.ex. String, [Int]?, App
• usr - unique identifier of variable inside app (provided by SourceKit)
• start_line - starting line of variable declaration
• end_line - ending line of variable declaration
• version_number - version number of variable, showing how many times the

variable was changed
Method.
• app_key - unique key to identify application, will be added
• cyclomatic_complexity - cyclomatic complexity of method
• code - snippet of code where given method is defined, currently disabled,

will be made optional
• is_getter - defines if method is a getter method, (not yet correctly imple-

mented)
• is_setter - defines if method is a setter method (not yet correctly imple-

mented)
• is_constructor - defines if method is a constructor
• kind - defines if method is instance, class or static method
• max_nesting_depth - maximal nesting depth of if/else/while/for/etc in a

method – will be added
• max_number_o f _chaned_message_calls - maximal number of chained mes-

sage calls, for example: test.values(). f indFirst().doSomething() is 3 chained
message calls (not yet implemented)

• modi f ier - modifier of method one of the following private/public/internal/-
fileprivate/open

• name - name of method
• number_o f _callers - number of methods that call this method
• number_o f _declared_locals - will be added
• number_o f _called_methods - number of methods called from this method
• number_o f _instructions - number of instructions in method
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• numbero faccessedvariables - number of variables used by this method
• number_o f _parameters - will be added
• number_o f _switch_statements - will be added
• type - return type of function
• usr - unique identifier of method inside this application
• start_line - starting line of method declaration
• end_line - ending line of method declaration
• version_number - version number of method, showing how many times the

variable was changed
App.
• app_key - unique key to identify application, optional
• category - app category, information taken from .json file for bulk analysis

- will be added
• developer - app developer, information taken from .json file for bulk anal-

ysis - will be added
• in_app_store - specifies if app is in the app store, information taken from

.json file for bulk analysis – will be added
• language - language of the application code - will be added
• name - name of application, information taken from .json file for bulk anal-

ysis
• plat f orm - platform of app, currently for all swift apps set as "iOS" – will

be added
• star - number of app repository stars, information taken from .json file for

bulk analysis – will be added
• version_number - version number of method, showing how many times the

variable was changed
• commit - commit hash
• tree - commit tree from git log
• branch - branch name, calculated by finding the following merge commit

and extracting branch name from commit description. Sometimes incorrect,
but currently only way to include names of deleted branches

• tag - tag of commit if it exists
• time - time of commit
• author - author of commit
• message - commit message
• parent_commit - parent commit
• alternative_parent_commit - commit of parent that was merged
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Class.
• app_key - unique key to identify application – will be added
• code - source code of class
• is_inter f ace - specifies if class is a protocol (or interface in Java) – will be

added
• name - name of class
• parent_name - name of parent class - will be added
• usr - unique identifier inside application
• kind - class kind
• path - file path where class is located
• version_number - version number of class

Added through metrics queries.
• number_o f _attributes - number of attributes in class
• number_o f _children- number of children class has – will be added
• number_o f _comments - number of comments – will be added
• number_o f _implemented_inter f aces - number of implemented interfaces

– will be added
• number_o f _instructions - number of instructions
• number_o f _methods - number of methods
• lack_o f _cohesion_in_methods - lack of cohesion in methods is calculated

as lackOfCohesionInMethods = noOfMethodsWith_noVariableInCommon
- noOfMethodsThat_haveVariableInCommon or 0 if previous value is neg-
ative

• depth_o f _inheritance - number of parents a class has – will be added
• coupling_between_ob ject_classes - CBO represents the number of other

classes a class is coupled to. This metrics is calculated from the callgraph
and it counts the reference to methods, variables or types once for each
class. – will be added

• class_complexity - class complexity, sum of all methods cyclomatic com-
plexities

External.
• name - name of external object
• usr - usr of external object

B.2.2. Relationships

• App

– APP_OWNS_CLASS Class

• Class

– CLASS_OWNS_VARIABLE Variable
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– CLASS_OWNS_MET HOD Method
– IMPLEMENT S Class
– EXT END Class

• Method

– USES Variable
– CALLS Method
– CLASS_REF Class
– EXT ERNAL_REF External

• Variable

– IS_OF_TY PE Class

B.2.3. Relationships and nodes added through external analysers

DuplicationAnalyser.
• Class

– DUPLICAT ES Class

InsiderSecAnalyser.
• Vulnerability

– cvss - common vulnerability score
– cwe - vulnerability class
– line - line on which vulnerability exists
– method - vulnerable method called
– description - description of vulnerability
– classPath - path of vulnerable file
– recommendation - recommendation for removing vulnerability

• Class HASVULNERABILITY Vulnerability
• Method HASVULNERABILITY Vulnerability

B.3. GraphifyEvolution Code Smell Evolution Queries

B.3.1. How did the number of long methods evolve in Tweetometer
app?

As an example we chose the Tweetometer app that has 373 analysed app versions.
Of these app versions 173 are affected by a total of 19 long methods. We can
query all long methods from the app Tweetometer with the following query:
MATCH (app:App)-[:APP_OWNS_CLASS]->()

-[:CLASS_OWNS_METHOD]->(method:Method)
WHERE

app.name = "Tweetometer" and
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method.is_long_method = true
WITH

app, count(distinct method) as long_methods
RETURN

app.version_number as version, long_methods

B.3.2. Did methods become too long over time?

To analyse if methods were created as long methods or if they became too long
over time we can query the count of changes before a method became long method
with the following query:
MATCH (m:Method)
WHERE

m.is_long_method = true
OPTIONAL MATCH

p=(:Method)-[:CHANGED_TO*]->(m)
OPTIONAL MATCH

(m2)-[:CHANGED_TO]->(m)
WHERE

m2.is_long_method = true
WITH

m, count(relationships(p)) as changes, m2
WHERE

m2 is null
RETURN count(*), changes

B.3.3. Can we find commits that removed vulnerabilities from code?

We ran app analysis with the InsiderSecAnalyser enabled, which saved vulnerabil-
ities into the application database as nodes and added relationships to vulnerable
classes and methods. The following query finds commits that removed a vulnera-
bility from a class:
MATCH

(prev_app)-[:APP_OWNS_CLASS]->(c:Class)-[:HAS_VULNERABILITY]
->(v:Vulnerability)

MATCH
(c)-[:CLASS_CHANGED_TO]->(c2)

<-[:APP_OWNS_CLASS]-(app:App)<-[:CHANGED_TO]-(prev_app)
WHERE

NOT (c2)-[:HAS_VULNERABILITY]->()
RETURN

app.name, collect(distinct app.commit), count(v)
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SISUKOKKUVÕTE

Mobiilirakenduste kvaliteedi analüüs rõhuga hooldatavuse ja
turvalisuse aspektidele

Nutitelefonidest on saanud lahutamatu osa meie igapäeva elus. Nutitelefonide po-
pulaarsuse pideva tõusuga veedetakse juba täna rohkem aega nutitelefonides kui
lauaarvutis. Iga asja jaoks on olemas äpp: sõnumite saatmisekt, internetipanga
külastamiseks, auto luku avamiseks. Usaldame nendele rakendustele oma isiku-
andmeid ja eeldame, et nad hoiavad neid andmeid turvaliselt. Kahjuks on paljud
neist rakendustest ebaturvalised. Isegi kui vaadata ainult mõnda väga populaar-
set mobiilirakendust, nagu Facebook, TikTok ja WhatsApp, on viimastel aastatel
avastatud palju turvaauke. Selliste turvaaukude raskusaste võib ulatuda teabe ava-
likustamisest ja konto ülevõtmisest kuni koodi kaugkäitamiseni. Arvestades kui-
das me kasutame oma nutitelefone ja kanname neid kõikjal kaasas, seavad need
tõsised turvavead ohtu meie kõige privaatsemad andmed. Turvalisus on tarkvara
kvaliteedi üks mõõde. Teine oluline, kuid vähem nähtav aspekt on hooldatavus.
Madal koodikvaliteet võib põhjustada suuri hoolduskulusid ja vähendada uute
funktsionaalsuste arendamise eelarvet. Seetõttu on oluline tagada, et arendajatel
oleks kvaliteetsete mobiilirakenduste loomiseks piisav tööriistatugi.

Tänu oma avatumale olemusele on olemas palju avatud lähtekoodiga Androidi
rakendusi, mida saab uuringute läbiviimiseks kasutada. Androidi rakenduste kohta
on läbi viidud palju uuringuid, mis analüüsivad koodi kvaliteedi erinevaid aspekte,
nagu hooldatavust ja turvalisust. Samuti on uurijate poolt välja töötatud kasulikke
tööriistu. Kahjuks on iOS-i rakenduste jaoks väga vähe tööriista tuge ja peaaegu
puuduvad vastavad uuringud. Arvestades, et iOS on populaarsuselt teine mobiilne
operatsioonisüsteem, on oluline toetada arendajaid kvaliteetsete iOS-i rakenduste
loomisel nii turvalisuse kui ka hooldatavuse osas.

Selle töö eesmärk on täiustada tööriista tuge nii arendajatele kui ka teadlas-
tele ning täita mõned uurimustöö lüngad iOS-i rakenduste hooldatavuse ja tur-
beanalüüside osas. Esiteks töötasime välja GraphifySwift-i, tööriista, mis tuvas-
tab Swift-is kirjutatud projektides kasinaid koodimustreid. Seejärel rakendasime
GraphifySwift-i avatud lähtekoodiga iOS-i rakendustele ning analüüsisime kasi-
nate koodimustrite levikut ja sagedust. Lisaks kasutasime iOS-i ja Androidi ra-
kenduste kasinate koodimustrite võrdlemiseks GraphifySwift-i ja PAPRIKA-t.

Analüüsisime iOS-i rakendustes 34 objektorienteeritud kasinat koodimustrit ja
võrdlesime 19 objektorienteeritud kasina koodimustri esinemist iOS-is ja Androi-
dis. Leidsime, et iOS-i rakendused kipuvad sisaldama rohkem väikeste ja andme-
klassidega seotud kasinaid koodimustreid, samas kui Androidi rakendused sisal-
davad rohkem keerukate ja suurte klassidega seotud kasinaid koodimustreid.

Tuginedes GraphifySwift-i arendamisel ja kasutamisel saadud kogemustele,
otsustasime oma tööriistakomplekti võimekusi oluliselt suurendada ja arendasime
välja GraphifySwift-i laiendatud versiooni GraphifyEvolution-i. GraphfiyEvolu-
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tion on laiendatav tööriist, millega saab analüüsida nii projektide hetktõmmiseid
kui ka projektide arengut. Kasutasime GraphifyEvolution-it esialgseks kasinate
koodimustrite evolutsiooni analüüsiks.

Täiendavate väliste analüüsijate lisamiel on võimalik GraphifyEvolution-it laien-
dada lisaanalüüsivõimalustega. Rakendasime SwiftDependencyChekcer-it – töö-
riista, mis leiab iOS-i rakendustest teavet kolmandate osapoolte teekide sõltuvuste
kohta ja tuvastab ebaturvalisi sõltuvusi. Rakendasime GraphifyEvolution-i jaoks
SwiftDependencyChecker-il põhineva välise analüüsija ja kasutasime seda Swift-i
ökosüsteemi kolmandate osapoolte teekide jaoks teekide sõltuvusvõrgu andmes-
tiku loomiseks. See andmestik hõlmab teeke, mis on saadaval iOS-i arenduses
kasutatava kolme paketihalduri kaudu: CocoaPods, Carthage ja Swift Package
Manager. Kasutasime seda andmestikku Swift-i teekide sõltuvusvõrgu erinevate
aspektide uurimiseks. Analüüsisime Swift-i teekide sõltuvusvõrgu üldist arengut,
paketihaldurite kasutamist, tehnilist mahajäämust teekide sõltuvustes ja turvavi-
gade levikut teekide sõltuvusvõrgus.

Leidsime, et Swift-i teekide sõltuvusvõrk kasvab nii teekide arvu kui ka tee-
giversioonide arvu poolest. CocoaPods on antud ökosüsteemi populaarseim pake-
tihaldur, Carthage-i kasv on peatunud ja Swift PM muutub aja jooksul aina po-
pulaarsemaks. Teekide sõltuvuste tehniline mahajäämus kasvab. Mahajäämus on
kõrgem, kui arendajad kasutavad piiravamaid sõltuvusnõude tüüpe. Viimaks leid-
sime, et ebaturvaliste sõltuvuste protsent on madalam kui teistes ökosüsteemides,
mis on seletatav üldiselt väiksema transitiivsete sõltuvuste arvuga.
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