
University of Tartu

Faculty of Mathematics and Computer Science

Institute of Computer Science

Information Technology

Stepan Bolotnikov

Usage of Fuzzy Classification
Algorithms in Brain-Computer Interfaces

Bachelor’s thesis (6 ECTP)

Supervisor: Ilya Kuzovkin, MSc

Seminar supervisor: Margus Niitsoo, PhD

Tartu 2014

Hägusate klassifikatsioonialgoritmide kasutamine

aju-arvuti liidestes

Lühikokkuvõte:

Selles lõputöös uuritakse hägusate klassifikatsioonialgoritmide kasutamist elek-
troentsefalograafial (electroencephalography, EEG) põhinevates aju-arvuti liidestes
(brain-computer interfaces, BCI). Uuritakse olemasolevat kirjandust BCI-des kasu-
tatavate klassifikatsioonialgoritmide, hägusate algoritmide olemuse ja nende kasu-
tamise kohta BCI-des. Hägusate algoritmide potentsiaalsete eeliste demonstreer-
imiseks realiseeritakse lihtne aju-arvuti liides, mis võimaldab kasutajal liigutada
kursorit arvuti ekraanil. Testid selle rakendusega näitavad, et hägusad algoritmid
sellist tüüpi rakendustes ei oma eelist traditsiooniliste algoritmide üle.

Võtmesõnad:

Aju-arvuti liidesed, klassifikatsioonialgoritmid, hägus klassifitseerimine

Usage of fuzzy classification algorithms in brain-

computer interfaces

Abstract:

In this thesis, the usage of fuzzy classification algorithms in brain-computer in-
terfaces (BCI) based on electroencephalography (EEG) is researched. We review
the existing literature on BCI, the traditional crisp algorithms often used in BCI
for classification, fuzzy classification algorithms and their application in BCI. A
simple BCI system is implemented that allows the user to move a cursor on the
computer screen. Tests conducted with this application show that fuzzy classifica-
tion algorithms do not have advantage over crisp classification algorithms in this
kind of BCI systems.

Keywords:

Brain-computer interfaces, classification algorithms, fuzzy classification

2

Contents

Introduction 5

1 Technological background 7

1.1 Electroencephalography in brain-computer interfaces 7

1.2 Classification algorithms in brain-computer interfaces 8

1.2.1 Linear classifiers . 9

1.2.2 Neural networks . 10

1.2.3 Nonlinenar Bayesian classifiers 11

1.2.4 Nearest neighbor classifiers 11

1.3 Fuzzy set theory . 11

1.4 Fourier transform . 12

2 Fuzzy classification algorithms 13

2.1 Principles and characteristics . 13

2.2 Popular fuzzy classification algorithms 13

2.2.1 Näıve Bayes . 14

2.2.2 Fuzzy neural networks . 14

2.2.3 Fuzzy support vector machines 16

2.2.4 Fuzzy k-nearest neighbor . 17

2.3 Previous research of fuzzy classification in EEG-based BCI 18

3 Implementing a BCI with fuzzy logic 20

3.1 Choice of technology . 21

3

3.2 Implementation process . 22

3.3 Results . 23

Conclusion 26

Bibliography 26

Appendix A. Test results 31

License 33

4

Introduction

Brain-computer interfaces (BCI) allow for a direct communication pathway be-
tween a human user’s brain and an external device, enabling the user to operate
the device without traditional interfaces like keyboards or mice. Research in this
field began in the 1970s at the University of California, Los Angeles. Modern
brain-computer interface research is primarily focused on neuroprosthetics, aim-
ing to create technologies for restoring hearing, sight and mobility in physically
disabled humans.

Brain-computer interfaces vary in invasivity from implants placed in or onto
the human brain to completely non-invasive methods like electroencephalogra-
phy (EEG) that use a set of electrodes fastened to the scalp to record electrical
activity of the brain and attempt to interpret the recorded brainwaves based on
previous knowledge. EEG is the most studied non-invasive technique partially
because of its mobility, ease of use and low cost.

Traditionally, the classification algorithms in EEG-based BCI are only used to
interpret each instance of data as one of the predefined classes or commands.
Classification algorithms that utilize fuzzy logic instead of traditional crisp logic
could potentially give more insight into the commands given by the user and even
process multiple commands at the same time, for example moving the cursor on
screen in a diagonal direction instead of only allowing a series of up-down and
left-right motions.

In this thesis, the author researches the existing material on EEG and fuzzy clas-
sification algorithms and tries to determine whether the implementation of fuzzy
logic in place of traditional methods in BCI is feasible and what benefits it pro-
vides.

The technological background is given in Chapter 1, introducing brain-computer
interfaces based on electroencephalography and traditional classification algorithms
used in this field.

Chapter 2 introduces fuzzy classification algorithms. In the beginning, we deter-
mine what are the main differences between crisp and fuzzy logic. After that we
review the history of previous usage of fuzzy classification algorithms in BCI and
describe some algorithms in greater detail.

5

Lastly, in Chapter 3, we implement a simple EEG-based BCI application using
a fuzzy classification algorithm for moving the cursor on a computer screen. We
explain the choice of technology, implementation process and conduct a series of
experiments to determine if a fuzzy classifier in this kind of BCI can be better
suited than a crisp classifier.

6

Chapter 1

Technological background

1.1 Electroencephalography in brain-computer in-

terfaces

Electroencephalography (EEG) is a technique of recording the electrical activity
in the brain with the help of electrodes placed on the scalp. EEG research on
humans began with the work of Hans Berger in 1924, who recorded the first
human electroencephalogram and gave the device its name.

EEG has been primarily used for diagnosing epilepsy[AKM05] and various other
focal brain disorders[eeg13]. Even though the use has declined due to emergence
of technologies with a higher spatial resolution, like Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT), EEG continues to be a valuable tech-
nique, especially where the requirements for high temporal resolution outweigh
the need for spatial precision.

In brain-computer interfaces (BCI), EEG is the most-studied non-invasive com-
munication method due to multiple factors, including the relatively low cost, high
mobility of the devices and a quick setup.

An electroencephalogram is produced by monitoring electrical signals that are gen-
erated by the changes of electrical charge in the membrane of neurons - electrically
excitable cells that comprise the core of the nervous system. Neurons transmit
information with electrical or chemical signaling via special junctions between neu-
rons called synapses. An impulse passing through a synapse causes the voltage on
the membrane of the neuron to change, which generates an electrical flow in the
membrane.

Most of the current generated by neurons’ activity remains in the brain, but a small
fraction still gets through the scalp in different areas, allowing us to measure the
activity of different parts of the brain and interpret this data.

7

BCI uses machine learning techniques to train the interface about the kinds of
actions that should be associated with a certain brain activity. This allows the
interface to recognise known patterns in new data and classify them as the appro-
priate activities. For example, a simple BCI for controlling a cursor on a computer
screen can be trained for commands “up”, “down”, “left” and “right” by asking
the test subject to give those commands to a computer while connected to an EEG
device. When later the subject attempts to reproduce these commands, similar
brain activity is read by the electrodes, the interface recognises the signal as one
of the commands and performs the action associated with it.

1.2 Classification algorithms in brain-computer

interfaces

While some research[MW05] suggests that using regression algorithms can pro-
vide better results in certain usage cases, most BCI use classification algorithms
for transforming user input into discrete commands. Classification algorithm is
provided with a dataset in which each instance is assigned a class and is concerned
with assigning classes to new unclassified units of data[IHW11].

In the context of BCI, when choosing an algorithm, two main domain-specific
problems arise:

• curse of dimensionality,

• bias-variance dilemma.

In machine learning, the curse of dimensionality refers to the fact that as the
dimensionality of the data increases, the predictive power of a classifier decreases,
needing more and more training instances to produce classification of sufficient
quality. In BCI the training sets are indeed often relatively small and the feature
vectors have high dimensionality, therefore the curse of dimensionality must be
accounted for. It’s usually suggested to use five to ten times as many training
samples for each class as the dimensionality of the feature vectors, otherwise the
classifier will probably give poor results[RJ91].

There are generally three sources of error in classification problems:

• The natural noise within the system being observed.

• Bias - the divergence of the estimated mapping of instances to classes and
the best possible mapping.

• Variance - sensitivity to the training set.

8

In order to have the lowest possible error rate, both bias and variance must be low,
but there is a natural tradeoff called the bias-variance dilemma. Stable classifiers
usually have high bias and low variance and unstable classifiers have low bias but
high variance. Stabilization techniques, such as regularization and combination of
classifiers, can be used to reduce variance.

The combination of classifiers refers to using several different classifiers instead of
just one and aggregating the results in one of three ways:

• Boosting - each classifier focuses on the errors made by previous classifiers.

• Voting - each classifier determines a class and the class chosen by the ma-
jority is assigned.

• Stacking - using several so-called “level-0” classifiers and a meta-classifier
that classifies the instance based on the results of all the level-0 classifiers.

Next we review some popular classification algorithms that have been successfully
applied in BCI research.

1.2.1 Linear classifiers

Probably the most popular choice in BCI are linear classifiers[LCL+07] - algo-
rithms using linear function for distinction between classes. Two main linear
classifiers that have been used are linear discriminant analysis (LDA) and support
vector machines (SVM) with linear kernel.

LDA uses a linear function to find hyperplanes separating instances into different
classes. It is created by finding a projection that maximizes the distance between
the means of different classes while minimizing the variance within classes.

With LDA, the one versus the rest (OVR), also known as one-against-all (OAA)
strategy is often used in multi-class problems (as opposed to two-class problems),
which consists of separating each class from all the others to find the hyperplane
separating it from others. It has low computational requirements, is simple to use
and generally provides good results. The main disadvantage of LDA is the implied
linearity, which can potentially cause it to perform poorly on complex nonlinear
data produced by EEG[GEV03].

A special version of LDA, called regularized Fisher’s LDA (RFLDA) has also been
used in BCI. It uses a regularization parameter that allows the classifier to better
process outliers in the data and generally get better generalization capabilities. As
outliers are common in data generated by EEG, this technique could give better
results in BCI than the regular kind of LDA, but so far it has been far less popular.

9

SVM has a number of similarities to LDA. It also uses a hyperplane to separate
instances into classes and like RFLDA it also has a regularization parameter, allow-
ing errors on training set and accomodation to outliers. Like LDA, it’s generally
applied to multi-class problems with OVR strategy.

Unlike LDA, the hyperplane is found by maximizing the margins - distance be-
tween the hyperplane and the nearest training instances.

SVM has been known to perform well and have good generalization. It is possible
to make it even more efficient with just a small increase of complexity by using
the kernel trick - implicitly mapping the training set to another set using a kernel
function. In BCI, a popular choice for a kernel function is the Gaussian or radial
basis function (RBF).

SVM using this technique is called Gaussian SVM or RBF SVM.

SVM, although slower than LDA[LCL+07], has several important advantages -
margin maximization and regulation term give SVM good generalization proper-
ties, decrease sensitivity to overtraining and the curse of dimensionality[BC00].

1.2.2 Neural networks

Neural networks (NN) are another popular category of classifiers in BCI. NN is
presented as a system of interconnected artificial neurons - nodes that can receive,
compute and output data and feed information through the network. This struc-
ture enables NN to produce nonlinear boundaries between the classes[Bis95]. As
NN can be used to classify any number of classes, they are considered very flexible
classifiers and have been successfully used in all kinds of BCI problems[LCL+07].

The most popular NN in BCI research is the Multilayer Perceptron (MLP)[LCL+07].
It is composed of several layers of neurons - input and output layers and one or
more hidden layers. Every neuron is connected to the output of the neurons from
the previous layer and the output layer determines the class of an instance. The
one major drawback that is worth noting is that MLP is sensitive to overtraining,
especially when noisy and non-stationary data is used as is the case with EEG.

Gaussian classifier is another NN worth noting as it was created specifically for
BCI purposes. Each node of the Gaussian classifier is a Gaussian discriminant
function that represents a class. The creators claim that the Gaussian classifier
outperforms MLP on EEG data and can efficiently reject samples classification of
which is not certain[dRMMF+02]. This classifier has also been successfully used
in various BCI research cases.

Several other types of NN, for example Fuzzy ARTMAP NN, have been used in
BCI, but with less significance[LCL+07].

10

1.2.3 Nonlinenar Bayesian classifiers

In BCI, two nonlinear Bayesian classifiers have been applied in various research -
Bayes quadratic and the hidden Markov model (HMM). Another, Bayesian graph-
ical network (BGN) has also been attempted, but is not as common as the others
and at present is too slow for use in real-time BCI.

Bayesian classifiers produce nonlinear boundaries and are able to perform quite
efficient rejection of uncertain samples, but they are still far less popular than
linear classifiers and NN[LCL+07].

In these classifiers, the Bayes rule is used to calculate the probability of each
instance to fall into each class and then the highest probability is used to assign
the class[IHW11].

The Bayes quadratic assumes a different normal distribution of data. While not
very popular in BCI research, it has been successfully applied to motor imagery
and mental task classification.

HMM can be seen as a probabilistic automaton, representing a probability of a
given sequence of feature vectors, each state of which can modelize the probability
of a feature vector occuring. In BCI, Gaussian mixture models (GMM) are usually
used as the probabilities. HMM are not widespread in BCI research, but it has
been shown that they are a perfect fit for classifying time series, which can be
beneficial, as temporal occurence is an important factor in EEG data.[Rab89].

1.2.4 Nearest neighbor classifiers

Nearest neighbor classifiers assign a class to a feature vector according to the near-
est neighbors. In the case of k nearest neighbors (kNN), the neighbors are actual
feature vectors from the training set whereas classifiers based on Mahalanobis dis-
tance assign a class that corresponds to the nearest class prototype, according to
a metric called the Mahalanobis distance.[CST+03]

kNN attempts to assign a class to a new instance based on its k nearest neighbors
from the training set. This technique isn’t popular in the BCI research community,
partially due to its sensitivity to the curse of dimensionality. It has, however, been
successfully used in BCI systems with low-dimensional feature vectors.[BMBB04]

1.3 Fuzzy set theory

Fuzzy logic is a kind of many-valued logic, a logic in which there are more than
two truth values. Unlike traditional binary logic, where a variable can take on
one of two possible values (0 or 1, where 0 is false and 1 is true), in fuzzy logic

11

a variable may have any value that is between 0 and 1.[PM99] This allows for a
representation of partial truth, which in many cases is more natural and closer to
the way humans perceive the surrounding world and as such has applications in
various fields like artificial intelligence.

Fuzzy logic deals with fuzzy sets, which extend the traditional understanding of a
mathematical set.

A fuzzy set is a pair (U,m), where U is a set of objects and m : U → [0, 1] is a
membership function that maps each object to a membership grade. It is said that
for x∈U , if m(x) = 1 then x is fully included and if m(x) = 0, it is not included
in the set U . For each 0 < m(x) < 1, x is said to be a fuzzy member of the set U .

A simple way to understand fuzzy logic is to imagine the classification of temper-
atures or colours by humans - say we wish to divide the temperatures of water
into three categories - “cold”, “warm” and “hot”. Probably everyone would agree
that water with the temperature 90◦C is “hot”, so this temperature might be
considered fully included in the set “hot”, but for many other temperatures it’s
debatable whether they should be considered “hot” or “warm”, so for example
40◦C could be said to be a fuzzy member of the set “hot” with a membership
degree of 0.5 and a fuzzy member of the set “warm” with a membership degree of
0.5.

This thesis deals with fuzzy classification algorithms that utilize fuzzy logic in
their classification process, allowing for simultaneous assignment of several class
labels with different membership grades to one data instance.

1.4 Fourier transform

The Fourier transform is a mathematical transformation used to transfer signals
between time or spatial and frequency domains. It is very useful in all kinds of
signal processing problems as it is fully reversible, allowing transformation from
either of the domains into the other and therefore can greatly improve understand-
ing of a signal.

The electric activity of the brain is composed of periodic signals that are sometimes
called brain waves, so the data being recorded and interpreted in EEG is by nature
periodic. This allows us to view the activity as a periodic signal and use the Fourier
transform to find the discrete set of simple frequencies that compose this signal.
Such technique allows for inspection of a series of successive EEG measurements
as a single unit of data.

12

Chapter 2

Fuzzy classification algorithms

2.1 Principles and characteristics

Traditional classifiers, like the ones introduced in Section 1.2, typically use bi-
nary logic and assign so-called crisp labels. This means that classes are mutually
exclusive and only one class can be assigned to each instance.

Fuzzy classifiers use fuzzy logic or fuzzy sets in their training and decision pro-
cess. This allows for assignment of so-called soft labels. No longer is one class
assigned fully to an instance, instead the instance can be a member of all classes
simultaneously. This is done by assigning fuzzy pairs instead - pairs that contain
the class being assigned and the probability that the instance is a member of said
class.

Fuzzy classification represents knowledge more naturally to the way of human
thinking and is more robust in tolerating imprecision, conflict, and missing infor-
mation. [HL98]

2.2 Popular fuzzy classification algorithms

Many papers have been written on various attempts of “fuzzifying” traditional
classification methods - modifying the algorithms to either work with fuzzy input
or produce fuzzy decisions, as described previously. This section describes some
approaches that we decided to view in detail.

13

2.2.1 Näıve Bayes

Näıve Bayes is a very simple probabilistic classifier. It uses the Bayes’ theorem
to calculate the probability of class membership for each instance while assuming
that all the features of an instance are equally important in the decision process
and that they are all independent. It calculates the probability for all classes
and assigns the class that gets the highest probability. Both are very näıve as-
sumptions, but the classifier has been known to provide suprisingly good results
in various machine learning problems.

The näıve Bayes is designed to work with nominal features that have a finite
number of possible values, not real numbers, but several techniques have been
proposed for working with numeric data.

The simplest solution to the problem is to discretize the numeric features - divide
them into a finite number of groups and work explicitly with those groups. A
more advanced technique is to apply a clustering algorithm to the data, dividing
it into clusters instead of equal groups and then using the transformed data to
train the näıve Bayes.

For example, a study has suggested to use the fuzzy c-means clustering algorithm
in conjuction with näıve Bayes in machine learning problems that deal with con-
tinuous features.[TPLX02]

Another solution is to calculate the probability of class membership with a suitable
probability density function - a function describing the relative likelihood for the
feature to have the set value - instead of Bayes theorem when dealing with numeric
features[IHW11]. In many cases, using the probability density function for normal
distribution is enough:

f(x) =
1√
sπσ

e
(x−µ)2

2σ2

Usually, the näıve Bayes is used to assign just one class label to each feature
vector - the one that gets has the highest probability. However, a simple way of
constructing a fuzzy classifier would be to view all the probabilities calculated by
the näıve Bayes as membership grades of the classes. This gives us additional
insight into the nature of the data being classified, allowing us to draw further
conclusions from it.

2.2.2 Fuzzy neural networks

As discussed previously, traditional neural networks work on binary logic, but
several studies have been conducted on ways to include fuzzy set theory into
artificial neural networks.

For example, Hon Keung Kwan and Yaling Cai[KC94] propose a four-layer fuzzy

14

NN and apply it to text recognition problems.

The NN was trained with 16 × 16 pixels images of the 26 letters of the English
alphabet and 10 arabic numerals. The original patterns were then shifted in eight
directions first by 1 pixel and then by 2 pixels. The NN, trained with the original
36 training patterns, was able to recognise all of the original patterns with 100%
accuracy, patterns shifted by 1 pixel with 100% accuracy and patterns shifted
by 2 pixels with an average accuracy of 92.01%. The NN was then trained with
original patterns as well as 72 shifted patterns and was then able to recognise
original patterns and those shifted by 1 pixel with 100% accuracy and patterns
shifted by 2 pixels with 98.61% accuracy.

Their network works with discrete data and produces nonfuzzy (crisp) output,
but uses fuzzy logic internally, fuzzifying the input pattern and calculating the
similarities of the given input pattern to all the learned patterns before selecting
the learned pattern with the highest similarity score and assigning it as the label
of the input pattern.

It is possible to modify the algorithm to omit the last step that defuzzifies the
data and outputs only the label that is determined to be the most accurate and
inspect the similarity scores for all of the learned patterns. The authors also write
that the algorithm can be modified for use in other pattern recognition problems.

The more popular fuzzy NN’s are the fuzzy adaptive resonance theory (ART) and
the fuzzy ARTMAP models.

Fuzzy ART extends the ART 1 neural network, based on adaptive resonance
theory[Gro03] models by implementing fuzzy logic into the pattern recognition.
Fuzzy ART also includes an optional but very useful feature - a normalization
procedure called complement coding that allows for including the absence of fea-
tures in feature vectors into the pattern classification process.[CGR91b]

It has been said that both ART 1 and fuzzy ART neural networks are not con-
sistent, because the results critically depend on the order in which data is being
processed. This effect can be somewhat reduced by using a slower learning rate,
but cannot be completely removed.[Sar95]

ARTMAP, also known as predictive ART, is a hierarchical neural network archi-
tecture that is built from up from two slightly modified ART 1 or ART 2 modules.
During training, the first ART module receives the feature vectors and the second
receives their correct labels. Predictions are made in the first module and com-
pared to the correct values given to the second module, allowing the network to
rapidly self-organise.[CGR91a]

Fuzzy ART models have been incorporated into ARTMAP, creating the fuzzy
ARTMAP architecture. Just like the original ARTMAP, fuzzy ARTMAP is a
rapidly self-organising hierarchical architecture that works with fuzzy logic, like
fuzzy ART.[CGM+92]

15

In the original paper that introduced fuzzy ARTMAP, the NN was tested in four
situations:

• Identifying which points of a square lie inside and which lie outside of a
circle with an area half that of the square. After one training epoch with
100 exemplars, fuzzy ARTMAP achieved accuracy of 88.6% on the training
set. At 100000 exemplars, the accuracy increased to 98.0%.

• Learning to tell two spirals apart. After one training epoch with 194 training
points, fuzzy ARTMAP achieved a 100% accuracy. With 47 training points,
the accuracy was 96.4%.

• Incremental approximation of the function f(a) = (sin2πa)2 for 0≤a≤1.
After training the fuzzy ARTMAP with 50 exemplars, the accuracy of 72.3%
was achieved.

• Optical text recognition. The best achieved simulation had a 94.7% correct
prediction rate on a 4000-item dataset, showing lower error rates than in the
original study[FS91] that proposed this simulation as a benchmark.

2.2.3 Fuzzy support vector machines

With SVM, multi-class problems are often solved by applying the OVR strategy.
For each class, a hyperplane is found that best separates the instances of that
class from all the others. When classifying a new feature vector, its position to
all the separating hyperplanes is found and ideally the feature vector will fall on
the “correct” side of only one of the hyperplanes and be assigned the label of that
class. A problem arises when more than one classes claim the instance or when
none of them do.

A paper by Takuya Inoue and Shigeo Abe[IA01] proposes fuzzy support vector
machines (FSVM). Their technique defines a fuzzy membership function for each
class based on the decision functions generated by the SVM. If a feature vec-
tor falls into only one class, the classification works just like with conventional
SVMs. Otherwise, distances to all the separating hyperplanes are calculated. If
the feature vector falls into more than one class, it is assigned to the class with the
biggest distance and if it falls into none, it’s assigned to the class with the smallest
distance. It is possible to skip the last step and instead view all the calculated
distances to gain more insight into the nature of the data that is being classified.

They evaluate the performance of the FSVM on three datasets. On thyroid
dataset[WK90] FSVM performed better than conventional SVM with all the tested
kernels. For example, with the dot kernel, conventional SVM achieved accuracy
of 93.03% whereas FSVM achieved accuracy of 95.27%.

16

With blood cell data[Has88] and using the dot kernel the conventional SVM
achieved accuracy of 67.58% and FSVM achieved accuracy of 85.38%.

With the hiragana dataset[TAT+91], the conventional SVM got to 82.86% accu-
racy and FSVM got to 93.32% accuracy.

In a latter study, the authors extend their method to another popular technique
for handling multi-class problems with SVM - pairwise classification. In this tech-
nique, a separating hyperplane is learned for each pair of classes. The SVM was
tested on the same datasets as in the previous study. On thyroid data, their
pairwise FSVM achieved 96.62% accuracy with the polynomial kernel whereas a
conventional pairwise SVM achieved 96.27% accuracy. On blood cell data the
accuracy was 92.35% and 91.26% respectively. Hiragana dataset with 13 inputs
yielded accuracy of 99.63% and 99.46% respectively and the hiragana dataset with
50 inputs yielded accuracy of 98.24% and 98.00% respectively.[AI02]

Another paper by Chun-Fu Lin and Sheng-De Wang[LW02] describes FSVM as
an extension of SVM that deals with fuzzy data. Each feature vector is associ-
ated with a membership value, so that it’s possible to for example mark noisy,
uncertain instances as less important than other instances. Each feature vector
then makes different contribution to the generation of the separating hyperplane.
The usefulness of such approach is demonstrated in three experiments, including
giving newer feature vectors more weight than to older ones, giving more weight
to one of the classes and using class centers to reduce the weight of outliers. Au-
thors claim that this technique allows for usage of SVM in more problem types
and close with proposition that further research must be done to automatically or
adaptively determine a fuzzy membership function for the input data.

This technique is further reviewed in a paper by Tai-Yue Wang and Huei-Min
Chiang[WC07], where they introduce OAA-FSVM concept based on Lin and
Wang’s FSVM that is designed for multi-class problems. Their OAA-FSVM is
tested in text categorization and it is shown that OAA-FSVM is more accurate
than conventional OAA-SVM.

2.2.4 Fuzzy k-nearest neighbor

James Keller, Michael Gray and James Givens write in a paper[KGG85] that one of
the problems of the traditional k nearest neighbor algorithm is that each training
feature vector is assumed to be equally important in assigning a class label to a
new feature vector, which can cause problems in some situations, especially where
classes overlap, because outliers, atypical feature vectors, are given as much weight
in decision as the vectors that are truly representative of the cluster.

They propose a fuzzy kNN algorithm for dealing with those situations and show
that it outperforms the standard kNN algorithm. For example, on the iris dataset
using 9 nearest neighbors for classification a crisp kNN algorithm misclassified 6

17

out of 150 feature vectors whereas the fuzzy kNN misclassified 4.

In their algorithm, the distance from the feature vector being classified to the
neighbors that are being used in classification is used as a weight, giving nearer
neighbors more importance in the decision process. They also propose several
different ways of giving membership degrees to labeled feature vectors - crisply
labeling them as full members of their assigned class and non-members of other
classes, calculating membership degrees based on the distance from the nearest
neighbors of the same class and calculating membership degrees based on distance
from class mean.

2.3 Previous research of fuzzy classification in

EEG-based BCI

The research of usage of fuzzy classification algorithms in BCI is limited, but
certain papers definitely deserve to be mentioned.

In a paper[CMP08], Damien Coyle et al. have analysed the neural-time-series-
prediction-preprocessing (NTSPP) framework, in which a self-organising fuzzy
neural network (SOFNN) is used to preprocess raw EEG data. SOFNN is trained
to specialize in predicting the EEG time-series, after which features are extracted
from the signals predicted by the SOFNN. It has been shown that features ex-
tracted in this way are easier to classify than raw EEG data. The authors demon-
strate that a SOFNN-based NTSPP framework is effective in multi-class BCI
applications.

In another paper[CPM09] they propose a number of modifications to the design of
the learning algorithm of the SOFNN used in NTSPP that are shown to greatly
reduce computational costs. They demonstrate their work with a two-class EEG-
based BCI. Furthermore, they perform a sensitivity analysis of the parameters of
the SOFNN using EEG data recorded from three subjects in a left/right motor-
imagery-based BCI experiment to create a general set of parameters that allows
for creation of a completely parameterless BCI application that is capable of au-
tonomous adaptation.

A paper[PPNS02] by Ramaswamy Palaniapan et al. proposes a new design for
a EEG-based BCI built around a fuzzy ARTMAP neural network. The aim of
their design is to classify the three best out of five available mental tasks for each
test subject and they show that the design is accurate and can be successfully
used in a tri-state switching device. To demonstrate this, they implement a tri-
state Morse code scheme, that recognises three mental tasks - a dot, a dash and a
space. In their implementation the construction of language is only dependent on
the sequence of mental tasks, not their duration. They propose that this system
could be further developed to provide communication for paralysed patients.

18

A paper[Lot06] by Fabien Lotte proposes a BCI design that uses a fuzzy inference
system for classification of EEG data in a two-class BCI application based on motor
imagery. The inference system reached accuracy (79%) comparable to a multilayer
perceptron (78.9%) and SVM (79.4%) and outperformed a linear classifier (76.2%).
The average computation time for classification of a feature vector was 0.008 ms,
making it both fast and accurate enough for real-time BCI systems.

19

Chapter 3

Implementing a BCI with fuzzy
logic

In order to demonstrate the usage of fuzzy classification algorithms, it was de-
cided to implement a simple BCI application using EEG technology and fuzzy
classification algorithms.

The application can be used to partially control the mouse cursor on a computer
screen and to better illustrate the usefulness of fuzzy classifiers specifically, it
is able to detect and carry out multiple directions simultaneously, which is not
possible with traditional classification algorithms based on binary logic.

Firstly, the application collects training data from the user. The user is asked
to give each of the three possible commands - “neutral”, “right” and “up” for
seven seconds ten times. This data is processed and then used to train train the
classifier.

When the classifier is trained, the user is given the task of moving the computer
cursor from the bottom left corner of a 200 by 200 pixel canvas, where it is initially
placed to the top right corner, indicated by a green area (Figure 3.1).

The application records the data used to train the classifier, the data used to move
the cursor and the cursor trajectory into comma-separated values (CSV) files and
the trajectory of the cursor is saved as a bitmap image for later examination.

Ideally, the user would move the cursor in one straight diagonal line. With tradi-
tional classifiers trained for the same three mental tasks that would be impossible,
as only one command would be recognised at a time - the cursor could only be
moved in a series of up/right motions. We hope to show with experiments that
using fuzzy classification allows us to move the cursor not only in the two trained
directions but also diagonally.

The following sections describe the technology that was chosen for the implemen-

20

Figure 3.1: The user is tasked with moving the cursor from the bottom left to the
top right corner of the canvas.

tation of the BCI and the process of implementation.

3.1 Choice of technology

The main part of the BCI is of course the EEG device. In this thesis, the Emotiv
EPOC[sys] neuroheadset is used for this purpose.

Emotiv EPOC is a wireless neuroheadset that was developed by Emotiv Systems,
an Australian electronics company, with the main purpose of being used as ad-
ditional input for controlling computer games. It has 14 sensors for capturing
electrical activity of the brain and muscles as well as a gyroscope for detecting
the position of the user’s head. For the purpose of this thesis, this headset is only
used for recording EEG data and other sensors are ignored.

Due to the headset’s low price, high portability and access to raw EEG data, it is
useful for scientific EEG research.

The headset comes with proprietary software package for Microsoft Windows and
Apple Mac OS X operating systems that allows for training of various actions,
calibrating and monitoring the connectivity and signal quality of the headset and
several versions of a Software Development Kit (SDK) are provided, but the easiest
way of programmatically accessing raw EEG data is with Emokit[KM], an open
source library for the C and Python programming languages that was built by
reverse-engineering the encrypted protocol used by the EPOC headset.

For faster and easier prototyping and implementation of the BCI, the Python
programming language was chosen. SciPy[JOP+] and NumPy[Oli] libraries are
used for processing the raw EEG data and Python Extensions for Windows[Ham]
package is used to control the cursor on the Microsoft Windows platform.

21

The Emokit Python library has some issues with USB device connectivity in Apple
Mac OS X operating system so for this application it was decided to focus on
having the application working in Microsoft Windows operating system.

3.2 Implementation process

The implementation of the BCI consists of three main steps:

1. Capturing EEG data

2. Processing the data for machine learning

3. Training and classification

The Emokit library makes the first task very straightforward - the initialization
process automatically detects the headset, connects to it and begins collecting
packets of data. A process in a separate thread is used to read the packets out
of Emokit’s internal queue, filter out the unneeded data, leaving only the EEG
readings and add the packet to the queue used by the rest of the application.

Each packet of data represents a single reading of all 14 sensors of the neurohead-
set. By itself, this data isn’t helpful enough to use it to directly train a classification
algorithm. Instead, sets of successive packets are collected and processed as one
instance of data.

The Emotiv EPOC headset produces a reading 128 times per second so it was
decided to process each second separately. In order to treat a second (128 samples)
of EEG data (readings from 14 sensors) as a single instance, the raw data must be
transformed in a number of ways before it can be used to train the classification
algorithm to produce meaningful results.

As described previously, electric activity of the brain is periodic in nature and the
most popular way of analysing periodic signals is to apply the Fourier transform to
transform the signal from time domain to frequency domain. Before transforming
the signal, linear trends should be removed, because raw EEG data is noisy and
the linear trend of the signal in time is of no interest to us. These transformations
are made using the NumPy and SciPy Python libraries.

The Emotiv EPOC headset only captures electrical activity of frequency below
45Hz, so after the necessary transformations, the feature space consists of 630
features - 45 frequency components from each of the 14 sensors. For the training
data, one additional field is added - the class of the instance.

This data can be used to train the classification algorithm.

22

First, an attempt was made to manually implement the näıve Bayes algorithm
that would output the probability of all classes instead of just one. The algorithm
worked as intended, but turned out to be too slow and not accurate enough for
use in the application. It was decided to use a näıve Bayes classifier from the
scikit-learn[PVG+11] Python library, which also had a method for outputting all
the calculated probabilities.

The application was implemented so that both crisp and fuzzy classification can
be used. When the crisp classification is being used, if the classifier labels an
instance of data as “right”, the cursor is moved 10 pixels to the right and if it is
clasified as “up”, the cursor is moved 10 pixels up.

In the case of fuzzy classification, probabilities for each class are calculated for
each feature vector. If the probability of the “neutral” class is the highest, the
cursor does not move, otherwise the cursor is moved to the right the amount of
pixels that is the probability of the “right” class multiplied by 10 and up by the
amount of pixels that is the probability of the “up” class multiplied by 10. For
example, if the probability of both the “up” and “right” class is calculated as 0.5,
the cursor is moved in a diagonal direction, 5 pixels to the right and 5 pixels up.

The experiment stops when the cursor reaches the top right corner of the canvas.

3.3 Results

Six experiments were performed with each of the five test subjects - three using
crisp classification and three with using fuzzy classification. All the test subjects
were briefly introduced to the technology and to what the aim of the experiment
is and the difference between crisp and fuzzy classification was explained.

The test results for the subject ‘at’ are displayed in Figure 3.2. The figure shows
the cursor trajectories of the three tests with crisp classification and the three
tests with fuzzy classification. Time, in seconds, that it took the test subject to
reach the goal is displayed under each test.

Similar figures for other test subjects can be viewed in Appendix A.

Our initial hopes were that the usage of the fuzzy classification algorithm in the
BCI would allow the user to move the cursor in a diagonal direction, achieving a
cursor trajectory closer to the ideal trajectory (a straight line from beginning to the
end) than with crisp classification. The results clearly show that the movement
during the tests with the fuzzy classification was mostly comprised of series of
upward and rightward movements just like in the case of crisp classification and
diagonal movement was only achieved a couple of times. To demonstrate the
results in a more objective way, the area of the shape formed between the ideal
trajectory and the actual achieved trajectory was measured. The results can be

23

Figure 3.2: Test results for subject ‘at’

seen in Table 3.1.

A statistical test was performed on those numbers to determine whether the tests
conducted with fuzzy classification produced a better trajectory than those with
crisp classification.

The null hypothesis is that the average area of the shape produced by the trajec-
tory of the cursor in an experiment with crisp classification is smaller or equal to
that of an experiment with fuzzy classification and the alternative hypothesis is
that the area is smaller in the case of fuzzy classification.

To test the hypothesis, we perform a one-tailed t-test with unequal variances. In
our case, the z-statistic is 0.2176, which translates to a p-value of 0.4139, which
is not significant at even a confidence level of 0.1. This shows that based on our
data, we cannot prove that fuzzy classification provides significantly better results.

The test subjects themselves said that it was hard for them to come up with a set
of mental commands that would move the cursor as desired in the case of fuzzy
classification. Choosing two distinct commands for “up” and “right” was a much

24

Subject Crisp (pixels) Fuzzy (pixels)
tk 8986 7640

1564 5074
9604 6407

at 3279 3484
1602 1928
1009 7808

jm 4186 8254
5995 3897

10878 4820
mp 9131 4632

6424 10878
9993 5001

sb 4164 7476
9575 1746
4010 3249

Mean 6025,4667 5486,2667
Standard deviation 3330,8681 2467,6186

Table 3.1: Area of the shape formed between the ideal trajectory and the actual
trajectory

more intuitive way of controlling the cursor than attempting to combine commands
to perform a diagonal motion and simply thinking of an upwards, rightwards and
diagonal motion didn’t seem to yield the desired results.

Based on the results of the tests, we can say that there is no evidence to sup-
port the claim that fuzzy classification provides some sort of advantage over crisp
classification in BCIs of this kind. However, there are still uncertainties in this
method that could be further researched.

Other fuzzy classification methods, for example the fuzzy SVM, can be applied to
EEG-based BCI and different ways of attempting to combine commands can be
tested. A further research into the way such commands are detected would give
more insight into the nature of the problem and perhaps show what sort of mental
tasks are best suited for such applications.

25

Conclusion

This thesis examined the usage of fuzzy classification algorithms in brain-computer
interfaces (BCI) based on electroencephalography (EEG). The goal was to see if
fuzzy classification can be more efficient than crisp classification for the purpose of
moving a cursor on a computer screen with a BCI because it can detect multiple
mental commands simultaneously and move the cursor in a diagonal direction
when the classifier is only trained with horisontal and vertical mental tasks.

The existing literature concerning the use of traditional crisp classifiers in BCI,
the research of fuzzy classification and its use in BCI was examined.

A simple BCI application using fuzzified Näıve Bayes was implemented and a
series of experiments were carried out in which test subjects were tasked with
moving a cursor from the bottom left corner of a canvas to the upper right corner.
The test results show that there is no evidence to support the claim that a fuzzy
classifier is better, more efficient or more intuitive than a crisp classifier in this
kind of applications. In fact, most test subjects found it hard to come up with
appropriate mental commands for such an application.

26

Bibliography

[AI02] Shigeo Abe and Takuya Inoue. Fuzzy support vector machines for
multiclass problems. In ESANN, pages 113–118, 2002.

[AKM05] Bassel Abou-Khalil and Karl E Misulis. Atlas of EEG & Seizure
Semiology: Text with DVD. Butterworth-Heinemann, 2005.

[BC00] Kristin P Bennett and Colin Campbell. Support vector machines:
hype or hallelujah? ACM SIGKDD Explorations Newsletter,
2(2):1–13, 2000.

[Bis95] Christopher M Bishop. Neural networks for pattern recognition.
Oxford university press, 1995.

[BMBB04] Jaimie F Borisoff, Steven G Mason, Ali Bashashati, and Gary E
Birch. Brain-computer interface design for asynchronous con-
trol applications: improvements to the lf-asd asynchronous brain
switch. Biomedical Engineering, IEEE Transactions on, 51(6):985–
992, 2004.

[CGM+92] Gail A Carpenter, Stephen Grossberg, Natalya Markuzon, John H
Reynolds, and David B Rosen. Fuzzy artmap: A neural net-
work architecture for incremental supervised learning of analog
multidimensional maps. Neural Networks, IEEE Transactions on,
3(5):698–713, 1992.

[CGR91a] Gail A Carpenter, Stephen Grossberg, and John H Reynolds.
Artmap: Supervised real-time learning and classification of nonsta-
tionary data by a self-organizing neural network. Neural networks,
4(5):565–588, 1991.

[CGR91b] Gail A Carpenter, Stephen Grossberg, and David B Rosen. Fuzzy
art: Fast stable learning and categorization of analog patterns by an
adaptive resonance system. Neural networks, 4(6):759–771, 1991.

[CMP08] Damien Coyle, T Martin McGinnity, and Girijesh Prasad. A multi-
class brain-computer interface with sofnn-based prediction prepro-
cessing. In Neural Networks, 2008. IJCNN 2008.(IEEE World

27

Congress on Computational Intelligence). IEEE International Joint
Conference on, pages 3696–3703. IEEE, 2008.

[CPM09] Damien Coyle, Girijesh Prasad, and T Martin McGinnity. Faster
self-organizing fuzzy neural network training and a hyperparameter
analysis for a brain–computer interface. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, 39(6):1458–
1471, 2009.

[CST+03] F Cincotti, A Scipione, A Timperi, D Mattia, MG Marciani, J Mil-
lan, S Salinari, L Bianchi, and F Bablioni. Comparison of different
feature classifiers for brain computer interfaces. In Neural Engi-
neering, 2003. Conference Proceedings. First International IEEE
EMBS Conference on, pages 645–647. IEEE, 2003.

[dRMMF+02] J del R Millan, Josep Mouriño, Marco Franzé, Febo Cincotti,
Markus Varsta, Jukka Heikkonen, and Fabio Babiloni. A local
neural classifier for the recognition of eeg patterns associated to
mental tasks. Neural Networks, IEEE Transactions on, 13(3):678–
686, 2002.

[eeg13] Eeg: Medlineplus medical encyclopedia, 2013. http://www.nlm.

nih.gov/medlineplus/ency/article/003931.htm.

[FS91] Peter W Frey and David J Slate. Letter recognition using holland-
style adaptive classifiers. Machine Learning, 6(2):161–182, 1991.

[GEV03] Gary N Garcia, Touradj Ebrahimi, and Jean-Marc Vesin. Support
vector eeg classification in the fourier and time-frequency correla-
tion domains. In Proc. 1st IEEE-EMBS Conf. on Neural Engineer-
ing (Capri Island, Italy), pages 591–4, 2003.

[Gro03] Stephen Grossberg. Adaptive resonance theory. Wiley Online Li-
brary, 2003.

[Ham] Mark Hammond. pywin32, python extensions for windows. http:

//sourceforge.net/projects/pywin32/.

[Has88] A Hashizume. Fully automated blood cell differential system and
its application. In Proc. IUPAC 3rd International Congress on
Automation and New Technology in the Clinical Laboratory, pages
297–302, 1988.

[HL98] Tzung-Pei Hong and Chai-Ying Lee. Learning fuzzy knowledge
from training examples. In Proceedings of the seventh international
conference on Information and knowledge management, pages 161–
166. ACM, 1998.

28

http://www.nlm.nih.gov/medlineplus/ency/article/003931.htm
http://www.nlm.nih.gov/medlineplus/ency/article/003931.htm
http://sourceforge.net/projects/pywin32/
http://sourceforge.net/projects/pywin32/

[IA01] Takuya Inoue and Shigeo Abe. Fuzzy support vector machines
for pattern classification. In Neural Networks, 2001. Proceedings.
IJCNN’01. International Joint Conference on, volume 2, pages
1449–1454. IEEE, 2001.

[IHW11] Mark A. Hall Ian H. Witten, Eibe Frank. Data Mining Practi-
cal Machine Learning Tools and Techniques. Morgan Kaufmann
Publishers, 2011.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python, 2001–. http://www.scipy.org/.

[KC94] Hon Keung Kwan and Yaling Cai. A fuzzy neural network and its
application to pattern recognition. Fuzzy Systems, IEEE Transac-
tions on, 2(3):185–193, 1994.

[KGG85] James M Keller, Michael R Gray, and James A Givens. A fuzzy k-
nearest neighbor algorithm. Systems, Man and Cybernetics, IEEE
Transactions on, (4):580–585, 1985.

[KM] Cody Brocious Kyle Machulis. Emokit. https://github.com/

qdot/emokit.

[LCL+07] Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice Lamarche,
Bruno Arnaldi, et al. A review of classification algorithms for eeg-
based brain–computer interfaces. Journal of neural engineering, 4,
2007.

[Lot06] Fabien Lotte. The use of fuzzy inference systems for classification
in eeg-based brain-computer interfaces. In 3rd International Brain-
Computer Interfaces Workshop and Training Course, 2006.

[LW02] Chun-Fu Lin and Sheng-De Wang. Fuzzy support vector machines.
Neural Networks, IEEE Transactions on, 13(2):464–471, 2002.

[MW05] Dennis J McFarland and Jonathan R Wolpaw. Sensorimotor
rhythm-based brain-computer interface (bci): feature selection by
regression improves performance. Neural Systems and Rehabilita-
tion Engineering, IEEE Transactions on, 13(3):372–379, 2005.

[Oli] Travis Oliphant. Numpy, 2006–. http://www.numpy.org.

[PM99] Irina Perfilieva and Jǐŕı Močkoř. Mathematical principles of fuzzy
logic. Springer, 1999.

[PPNS02] Ramaswamy Palaniappan, Raveendran Paramesran, Shogo
Nishida, and Naoki Saiwaki. A new brain-computer interface
design using fuzzy artmap. Neural Systems and Rehabilitation
Engineering, IEEE Transactions on, 10(3):140–148, 2002.

29

http://www.scipy.org/
https://github.com/qdot/emokit
https://github.com/qdot/emokit
http://www.numpy.org

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[Rab89] Lawrence Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.

[RJ91] Sarunas J Raudys and Anil K. Jain. Small sample size effects in
statistical pattern recognition: Recommendations for practitioners.
IEEE Transactions on pattern analysis and machine intelligence,
13(3):252–264, 1991.

[Sar95] Warren S Sarle. Why statisticians should not fart. Cary, NC, USA,
1995.

[sys] Emotiv systems. Epoc neuroheadset. http://www.emotiv.com/

apps/epoc/299/.

[TAT+91] Hiroshi Takenaga, Shigeo Abe, Masao Takato, Masahiro Kayama,
Tadaaki Kitamura, and Yoshiyuki Okuyama. Input layer opti-
mization of neural networks by sensitivity analysis and its appli-
cation to recognition of numerals. Electrical Engineering in Japan,
111(4):130–138, 1991.

[TPLX02] Yongchuan Tang, Wuming Pan, Haiming Li, and Yang Xu. Fuzzy
naive bayes classifier based on fuzzy clustering. In Systems, Man
and Cybernetics, 2002 IEEE International Conference on, vol-
ume 5, pages 6–pp. IEEE, 2002.

[WC07] Tai-Yue Wang and Huei-Min Chiang. Fuzzy support vector ma-
chine for multi-class text categorization. Information Processing &
Management, 43(4):914–929, 2007.

[WK90] Sholom M Weiss and Ioannis Kapouleas. An empirical comparison
of pattern recognition, neural nets and machine learning classifica-
tion methods. Readings in machine learning, pages 177–183, 1990.

Internet URLs were valid on 14.05.2014

30

http://www.emotiv.com/apps/epoc/299/
http://www.emotiv.com/apps/epoc/299/

Appendix A
Test results

Figure 1: Test results for the subject ‘sb’

Figure 2: Test results for the subject ‘mp’

31

Figure 3: Test results for the subject ‘jm’

Figure 4: Test results for the subject ‘tk’

32

License

Non-exclusive license to reproduce thesis and make

thesis public

I, Stepan Bolotnikov (date of birth: 21.02.1992),

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1.1. reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

“Usage of fuzzy classification algorithms in brain-computer interfaces”, su-
pervised by Ilya Kuzovkin,

2. am aware of the fact that the author retains these rights.

3. certify that granting the non-exclusive licence does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection
Act.

Tartu, 14.05.2014

	Introduction
	Technological background
	Electroencephalography in brain-computer interfaces
	Classification algorithms in brain-computer interfaces
	Linear classifiers
	Neural networks
	Nonlinenar Bayesian classifiers
	Nearest neighbor classifiers

	Fuzzy set theory
	Fourier transform

	Fuzzy classification algorithms
	Principles and characteristics
	Popular fuzzy classification algorithms
	Naïve Bayes
	Fuzzy neural networks
	Fuzzy support vector machines
	Fuzzy k-nearest neighbor

	Previous research of fuzzy classification in EEG-based BCI

	Implementing a BCI with fuzzy logic
	Choice of technology
	Implementation process
	Results

	Conclusion
	Bibliography
	Appendix A. Test results
	License

