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Introduction

This Master’s thesis is in the field of functional analysis, more specifically, in Banach
space geometry. In the thesis we study Daugavet- and ∆-points in Lipschitz-free
Banach spaces. This is a fairly new direction in the investigation of the famous
Daugavet property and diameter-2 properties; Daugavet- and ∆-points were first
introduced in 2018 [1] by T. A. Abrahamsen, R. Haller, V. Lima and K. Pirk.

This new line of study has received the interest of several researchers, in particular
interest to us is the very recent preprint [11] by M. Jung and A. Rueda Zoca. They
obtained several results both on Daugavet-points and on ∆-points in Lipschitz-free
spaces. Most importantly, the following characterization were provided in [11]:

• If M is a compact metric space, then µ ∈ SF(M) is a Daugavet-point if and
only if ‖µ− ν‖ = 2 for every denting point µ;

• If M is a metric space and x 6= y ∈ M , then mxy ∈ SF(M) is a ∆-point if
and only if for every ε > 0 and slice S with mxy ∈ S there exist u 6= v ∈M
such that muv ∈ S and d(u, v) < ε.

This left open two important questions:

• How to characterize Daugavet-points in Lipschitz-free spaces when M is not
compact?

• How to characterize ∆-points that are not molecules in Lipschitz-free spaces?

The goal of the thesis was to provide answers to these questions.

The thesis are divided into three chapters. In the first chapter we will introduce
main concepts as well as some useful auxiliary results.

The second chapter is dedicated to Daugavet-points. We shall present two results
from [11] and then add some new results. Our main purpose here is to provide
a characterization for Daugavet-points in Lipschitz-free spaces that works for any
metric space M . Two such characterizations are provided in Theorem 2.6. Subse-
quently we will apply this theorem to construct an example of a metric space M
such that the corresponding Lipschitz-free space F(M) has the Radon–Nikodým
property and also contains a Daugavet-point.

In the third chapter we examine ∆-points. First we will present several results
from [11] and then add a few original results to the existing ones. Our main purpose
of here is to provide a characterization for ∆-points among convex combinations
of molecules, which is archived by Theorem 3.7. We shall apply our new result to
construct an example showing that a convex combination of molecules that are not
∆-points can be a ∆-point.
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In the thesis, we consider only real Banach spaces. We use common notation. For
Banach space X we will denote the closed unit ball by BX , the unit sphere by SX
and the dual space by X∗.
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1 Preliminaries

In this chapter we will introduce some concepts and results that will be used
throughout the thesis.

First let us recall the definition of closed convex hull.

Definition 1.1. Let A be a subset of Banach space X. The convex hull of subset
A is the set

convA = {
n∑
i=1

λixi : n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn > 0, λ1 + · · ·+ λn = 1}.

The closed convex hull convA of subset A is the closure of the convex hull.

1.1 Daugavet- and Delta-points

There are many different ways to define Daugavet- and ∆-points. In this thesis, we
will define these points using slices.

Definition 1.2. Let X be a Banach space. A slice of the unit ball BX is a set

S(x∗, α) = {y ∈ BX : x∗(y) > 1− α},

where x∗ ∈ SX∗ and α > 0.

Definition 1.3 (see [1, Lemmas 2.1,2.2]). We say that a norm-1 element x of a
Banach space X is a Daugavet-point, if for every slice S of BX and for every
ε > 0 there exists y ∈ S such that ‖x− y‖ ≥ 2− ε.
We say that a norm-1 element x of a Banach space X is a ∆-point, if for every slice
S of BX with x ∈ S and for every ε > 0 there exists y ∈ S such that ‖x−y‖ ≥ 2−ε.

The concepts of Daugavet-point and ∆-point were first introduced in 2018 by the
authors of the article [1], where they defined these points by using convex com-
binations and also presented the equivalent definition used above. The concepts
are closely related to the Daugavet property and the diametral local diameter two
property.

Definition 1.4 (see [14, Lemma 2.2]). We say that a Banach space X has the
Daugavet property, if for every x ∈ SX , for every ε > 0 and for every slice S of
BX there exists y ∈ S such that ‖x− y‖ ≥ 2− ε.

Definition 1.5 (see [5, Page 2]). We say that a Banach spaceX has the diametral
local diameter two property, if for every slice S of BX , for every ε > 0 and for
every x ∈ SX ∩ S there exists y ∈ S such that ‖x− y‖ ≥ 2− ε.
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It is easy to see that a Banach space X has the Daugavet property if and only if
every x ∈ SX is a Daugavet-point, and X has the diametral local diameter two
property if and only if every x ∈ SX is a ∆-point.

We will provide another equivalent criterion for ∆-points that will be used in the
thesis.

Lemma 1.6 (see [11, Remark 2.4]). Let X be a Banach space, x ∈ SX and let
A ⊂ BX be such that convA = BX . Then x is a ∆-point if and only if for every
slice S with x ∈ S and ε > 0, there exists y ∈ A ∩ S such that ‖x− y‖ ≥ 2− ε.

The last lemma of this section allows us to choose however small α when proving
an element is a ∆-point.

Lemma 1.7 (see [10, Lemma 2.1]). Let X be a Banach space, x∗ ∈ SX∗ and
α > 0. Then for every x ∈ S(x∗, α) and every δ > 0 there exists y∗ ∈ SX∗ such
that x ∈ S(y∗, δ) and S(y∗, δ) ⊂ S(x∗, α).

1.2 Lipschitz-free Banach spaces

Definition 1.8. Let M and N be metric spaces and f : M → N . We say that a
mapping f is Lipschitz if there exists a constant L ≥ 0 such that

d
(
f(p), f(q)

)
≤ L · d(p, q)

for all p, q ∈ M . The least such number L is called the Lipschitz constant of f
and is denoted by Lip(f).

Definition 1.9. A metric space M together with a fixed point 0 ∈ M is called a
pointed metric space.

From here on we assume that all metric spaces M are in fact pointed. We will
denote by Lip0(M) the vector space of all such Lipschitz functions f : M → R that
f(0) = 0. It is a known fact (see, e.g., [13, Proposition 1.29]) that Lip0(M) with
the norm

‖f‖ = Lip(f)

is a Banach space.

Let δ : M → Lip0(M)∗ be the canonical isometric embedding of M into Lip0(M)∗,
which is given by x 7−→ δx, where δx(f) = f(x). The norm closed linear span of
δ(M) is called the Lipschitz-free space and denoted by F(M). An element in
Lip0(M)∗ of the form

mxy =
δx − δy
d(x, y)
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for x 6= y ∈M is called amolecule. We denote the set of all molecules by Mol(M).
It is well-known and easy to prove that ‖mxy‖ = 1 for every x 6= y ∈M . Also, note
that

conv
(

Mol(M)
)

= BF(M),

therefore we can use Lemma 1.6 when deriving results about ∆-points.

Theorem 1.10 (see, e.g., [13, Theorem 3.3]). Let M be a pointed metric space.
Then F(M)∗ ∼= Lip0(M).

By Theorem 1.10, in Banach space F(M) we can choose the defining functional
of the slice from SLip0(M). Note that for convex combinations of molecules, f and
f + a give the same value for every f ∈ Lip0(M) and constant a. Therefore, we do
not need to ensure that f(0) = 0, when creating slices.

Theorem 1.11 (see, e.g., [13, Theorem 1.33]). Let M be a metric space, let M0 be
a nonempty subset of M and let f0 be a Lipschitz function from M0 into R. Then
there exists an extension f : M → R of f0 which has the same Lipschitz constant
as f0.

1.3 Auxiliary lemmas

In this section, we will introduce some lemmas that will be used throughout the
thesis. The results of this chapter hold for all metric spaces M .

Lemma 1.12 (see [13, Proposition 1.32]). Let f, g ∈ Lip0(M). Then we have
min{f, g},max{f, g} ∈ Lip0(M). Furthermore,∥∥min{f, g}

∥∥ ≤ max
{
‖f‖, ‖g‖

}
and ∥∥max{f, g}

∥∥ ≤ max
{
‖f‖, ‖g‖

}
.

When proving that a unit sphere element is a Daugavet-point or a ∆-point we
usually examine elements that are almost at distance two from each other. We
shall provide two lemmas that assist us with this.

Lemma 1.13. Let x 6= y, u 6= v ∈ M and ε > 0. The following statements are
equivalent:

(i) ‖mxy +muv‖ ≥ 2− ε;

(ii) d(x, v) + d(u, y) ≥ d(x, y) + d(u, v)− εmax
{
d(x, y), d(u, v)

}
.
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Proof. Without loss of generality, let us assume that d(x, y) ≥ d(u, v).

(i)⇒ (ii). Assume that ‖mxy +muv‖ ≥ 2− ε. Then

2− ε ≤ ‖mxy +muv‖

=

∥∥mxvd(x, v) +muyd(u, y) +muv

(
d(x, y)− d(u, v)

)∥∥
d(x, y)

≤ d(x, v) + d(u, y) + d(x, y)− d(u, v)

d(x, y)
.

Therefore

d(x, v)+d(u, y) ≥ (1−ε)d(x, y)+d(u, v) = d(x, y)+d(u, v)−εmax
{
d(x, y), d(u, v)

}
.

(ii)⇒ (i). Assume that

d(x, v) + d(y, u) ≥ d(x, y) + d(u, v)− εmax
{
d(x, y), d(u, v)

}
,

i.e.,
d(v, x) + d(y, u)− d(u, v) ≥ (1− ε)d(x, y).

Let us examine the function f : M → R,

f(p) = min
{
d(y, p), d(v, p) + d(y, u)− d(u, v)

}
.

According to Lemma 1.12, f ∈ Lip0(M) and ‖f‖ ≤ 1. Let us note that

f(x) = min
{
d(y, x), d(v, x) + d(y, u)− d(u, v)

}
≥ (1− ε)d(x, y),

f(y) = min
{

0, d(v, y) + d(y, u)− d(u, v)
}

= 0,

f(u) = min
{
d(y, u), d(v, u) + d(y, u)− d(u, v)

}
= d(y, u),

f(v) = min
{
d(y, v), 0 + d(y, u)− d(u, v)

}
= d(y, u)− d(u, v).

Therefore

‖mxy +muv‖ ≥
f(x)− f(y)

d(x, y)
+
f(u)− f(v)

d(u, v)
≥ 1− ε+ 1 = 2− ε.

We will derive our next lemma from the following theorem.

Theorem 1.14 (see [11, Theorem 2.6]). Let (un), (vn) be two sequences in M such
that un 6= vn for every n ∈ N and d(un, vn)→ 0. Then for every µ ∈ SF(M) we get
that

‖µ+munvn‖ → 2.

Lemma 1.15. Let µ ∈ SF(M). Then for every ε > 0 there exists δ > 0 such that
if u 6= v ∈M satisfy d(u, v) < δ, then ‖µ−muv‖ ≥ 2− ε.
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Proof. Fix ε > 0. Assume for the sake of contradiction that for every n ∈ N there
exist un 6= vn ∈ M such that d(un, vn) < 1/n and ‖µ − munvn‖ < 2 − ε. Then
d(un, vn)→ 0 and ‖µ−munvn‖ 6→ 2, which contradicts Theorem 1.14.

Therefore there must exists n ∈ N such that ‖µ−muv‖ ≥ 2−ε for every u 6= v ∈M
with d(u, v) < 1/n. By choosing δ = 1/n, we conclude the proof.

Some results about ∆-points in Lip0(M) are achieved by constructing a special
Lipschitz function. The last two lemmas we introduce in this chapter will assist us
with that.

Lemma 1.16. Let n ∈ N, λ1, . . . , λn > 0, x1 6= y1, . . . , xn 6= yn ∈ M and f ∈
SLip0(M) be such that

f
( n∑
i=1

λimxiyi

)
=
∥∥∥ n∑
i=1

λimxiyi

∥∥∥ =

n∑
i=1

λi.

If m ∈ {1, . . . , n} and k1, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise distinct
and km+1 = k1 are such that

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj ),

then f(xk1) − f(yk2) = d(xk1 , yk2). In particular, f(xi) − f(yi) = d(xi, yi) for all
i ∈ {1, . . . , n}.

Proof. Let m ∈ {1, . . . , n} and k1, . . . , km+1 ∈ {1, . . . , n} be such that k1, . . . , km
are pairwise distinct, km+1 = k1 and

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj ).

Set
λ0 = min

i∈{1,...,n}

λi
d(xi, yi)

and

li =

{
λi − λ0d(xi, yi), if i ∈ {k1, . . . , km},
λi, if i ∈ {1, . . . , n} \ {k1, . . . , km}.
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Clearly li ≥ 0 for every i ∈ {1, . . . , n}. Then

n∑
i=1

li + λ0

m∑
i=1

d(xki , yki+1
) =

n∑
i=1

λi =

n∑
i=1

λi
f(xi)− f(yi)

d(xi, yi)

=

n∑
i=1

li
f(xi)− f(yi)

d(xi, yi)
+ λ0

m∑
i=1

(
f(xki)− f(yki)

)
=

n∑
i=1

li
f(xi)− f(yi)

d(xi, yi)
+ λ0

m∑
i=1

(
f(xki)− f(yki+1

)
)

≤
n∑
i=1

li + λ0

m∑
i=1

d(xki , yki+1
).

In particular, f(xk1)− f(yk2) = d(xk1 , yk2).

Lemma 1.17. Let n ∈ N, λ1, . . . , λn > 0 and x1 6= y1, . . . , xn 6= yn ∈ M
be such that

∑n
i=1 λi =

∥∥∑n
i=1 λimxiyi

∥∥. There exists f ∈ SLip0(M) such that
f
(∑n

i=1 λimxiyi

)
=
∥∥∑n

i=1 λimxiyi

∥∥ and for all k1, k2 ∈ {1, . . . , n} the following
conditions are equivalent:

(i) f(xk1)− f(yk2) = d(xk1 , yk2);

(ii) Then either k1 = k2 or there exist m ∈ {1, . . . , n} and k3, . . . , km+1 ∈
{1, . . . , n} with k1, . . . , km pairwise distinct and km+1 = k1 such that

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj ).

Proof. Write µ =
∑n

i=1 λimxiyi . From Lemma 1.16 we see that if for f ∈ SLip0(M)

we have f(µ) = ‖µ‖, then (ii) ⇒ (i) holds true. Therefore our goal is to find
such f ∈ SLip0(M) that f(µ) = ‖µ‖ and (i) ⇒ (ii) holds true. We will start with
a function g ∈ SLip0(M) such that g(µ) = ‖µ‖ and use g to define new functions.
Note that in case n = 1 we can choose f = g, therefore from here on we will assume
n > 1.

Let A ⊆ {1, . . . , n}×{1, . . . , n} be such that (k1, k2) ∈ A if and only if k1 6= k2 and
for every m ∈ {1, . . . , n} and k3, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise
distinct and km+1 = k1 we have

m∑
j=1

d(xkj , ykj+1
) 6=

m∑
j=1

d(xkj , ykj ).

For each k = (k1, k2) ∈ A we will define a function hk ∈ SLip0(M) such that
hk(µ) = ‖µ‖ and hk(xk1)− hk(yk2) < d(xk1 , yk2).
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Fix k = (k1, k2) ∈ A. If g(xk1)− g(yk2) < d(xk1 , yk2), then let hk = g.

Now we consider the case where g(xk1)− g(yk2) = d(xk1 , yk2). Set

M0 = {x1, . . . , xn, y1, . . . , yn} ⊆M.

Let us first define a function h̃k onM0. To do so, we will first define a set of indexes.
Let B ⊆ {1, . . . , n} be such that i ∈ B if and only if there exist m ∈ {2, . . . , n}
and k3, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise distinct and km+1 = i such
that

g(xkj )− g(ykj+1
) = d(xkj , ykj+1

)

for every j ∈ {1, . . . ,m}.
From Lemma 1.16 we get that g(xk2)− g(yk2) = d(xk2 , yk2). Therefore we can take
m = 2 and k3 = k2, giving us k2 ∈ B.

Let us assume that k1 ∈ B. Then there exist m ∈ {2, . . . , n} and k3, . . . , km+1 ∈
{1, . . . , n} with k1, . . . , km pairwise distinct and km+1 = k1 such that

g(xkj )− g(ykj+1
) = d(xkj , ykj+1

)

for every j ∈ {1, . . . ,m}. By reshuffling we get

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

(
g(xkj )−g(ykj+1

)
)

=

m∑
j=1

(
g(xkj )−g(ykj )

)
=

m∑
j=1

d(xkj , ykj ),

contradicting (k1, k2) ∈ A. Therefore k1 /∈ B.

Let us show that if g(xi) − g(yi′) = d(xi, yi′) for i ∈ B and i′ ∈ {1, . . . , n}, then
i′ ∈ B. There exist m ∈ {2, . . . , n} and k3, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km
pairwise distinct and km+1 = i such that

g(xkj )− g(ykj+1
) = d(xkj , ykj+1

)

for every j ∈ {1, . . . ,m}. If i′ = kj for some j ∈ {3, . . . ,m+ 1}, then k3, . . . , kj are
suitable indexes, giving us i′ ∈ B. Otherwise by the pigeonhole principle we must
have m < n and therefore k3, . . . , km+1, i

′ are suitable indexes, giving us i′ ∈ B.

Now let C = {xi : i ∈ B}∪{yi : i ∈ B}. Assume that g(p)− g(q) = d(p, q) for some
p ∈ C and q ∈M0. Let us show that then q ∈ C. Let i ∈ B, j ∈ {1, . . . , n} be such
that p ∈ {xi, yi} and q ∈ {xj , yj}. Then

g(xi)− g(yj) = g(xi)− g(p) + g(p)− g(q) + g(q)− g(yj)

= d(xi, p) + d(p, q) + d(q, yj)

≥ d(xi, yj).

This gives us that j ∈ B, i.e., q ∈ C. From this we deduce that if p ∈ C, q ∈M0\C,
then g(p)− g(q) < d(p, q).
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Let δ > 0 be such that for every p, q ∈ M0, if g(p) − g(q) < d(p, q), then g(p) −
g(p) + δ < d(p, q). Finally we are ready to define the function h̃k. Let

h̃k(p) =

{
g(p) + δ, if p ∈ C,
g(p), if p ∈M0 \ C.

First we will show that ‖h̃k‖ ≤ 1. Let p ∈ C and q ∈ {x1, . . . , xn, y1, . . . , yn} \ C.
We showed previously that in this case g(p) − g(q) < d(p, q) and therefore g(p) −
g(q) + δ < d(p, q). Now we see that

h̃k(p)− h̃k(q) = g(p)− g(q) + δ < d(p, q)

and
h̃k(q)− h̃k(p) = g(q)− g(p)− δ < d(p, q)

giving us |h̃k(p)− h̃k(q)| < d(p, q). Therefore Lip(h̃k) ≤ 1.

Let us also note that for every i ∈ {1, . . . , n} we have either xi, yi ∈ C or xi, yi /∈ C
giving us that h̃k(xi)− h̃k(yi) = g(xi)− g(yi). Therefore

h̃k(µ) = g(µ) = ‖µ‖.

Last we point out that

h̃k(xk1)− h̃k(yk2) = g(xk1)− g(yk2)− δ < d(xk1 , yk2).

We will extend h̃k by Theorem 1.11 to a Lipschitz map hk on M , with Lip0(hk) =
Lip0(h̃k) = 1

Now we have defined hk for every k ∈ A. Let

f :=
1

|A|
∑
k∈A

hk.

By the triangle inequality ‖f‖ ≤ 1 and

f(µ) =
1

|A|
∑
k∈A

n∑
i=1

λi
hk(xi)− hk(yi)

d(xi, yi)
= ‖µ‖.

Furthermore, for every k = (k1, k2) ∈ A we have

f(xk1)− f(yk2) =
1

|A|
∑
l∈A

(
hl(xk1)− hl(yk2)

)
≤ |A| − 1

|A|
d(xk1 , yk2) + hk(xk1)− hk(yk2) < d(xk1 , yk2).
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2 Daugavet-points in Lipschitz-free Banach spaces

In this section, we study Daugavet-points in Lipschitz-free spaces. We present pre-
viously known results and generalize some of them.

In order to present these results we first need to introduce the concept of denting
points, extreme points and preserved extreme points.

Definition 2.1 (see, e.g., [7, Definition 3.59], [6, Page 119]). Let K be a bounded
closed convex subset of a Banach space X. We say that x ∈ K is an extreme
point of K if x1 = x2 = x whenever x1, x2 ∈ K and x = 1/2(x1 + x2).

We say that x ∈ K is a denting point of K if x /∈ conv
(
K \ B(x, ε)

)
for every

ε > 0.

We denote the set of all extreme points of K by ext(K) and the set of all denting
points of K by dent(K).

We say that an extreme point x ∈ ext(BX) is a preserved extreme point of
BX if x ∈ ext(BX∗∗). Note that in Lipschitz-free spaces the concepts of denting
point and preserved extreme point of BF(M) are equivalent (see [8, Theorem 2.4]).
Therefore any result attained for preserved extreme point holds for denting points
as well.

Lemma 2.2 (see [13, Corollary 3.44], [8, Theorem 2.4]). Let M be a complete
metric space and let µ ∈ dent(BF(M)). Then µ = muv for some u 6= v ∈M .

Let us introduce some more notation. For every u, v ∈M and δ > 0 we denote

[u, v] =
{
p ∈M : d(u, p) + d(v, p) = d(u, v)

}
and

Line(u, v, δ) =
{
p ∈M : d(u, p) + d(v, p) < (1 + δ)d(u, v)

}
.

This first set contains all points that are on the segment between u and v and the
second set contains all points that are close to the segment between u and v.

Theorem 2.3 (see [8, Theorem 2.6]). Let M be a metric space and u 6= v ∈ M .
The following are equivalent:

(i) The molecule muv is a denting point of BF(M).

(ii) For every ε > 0 there exists δ > 0 such that

Line(u, v, δ) ⊆ B(u, ε) ∪B(v, ε).
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2.1 Characterization of Daugavet-point in Lipschitz-free
Banach spaces

The following necessary condition for a norm-1 element to be a Daugavet-point
was presented in [11].

Proposition 2.4 (see, e.g. [11, Proposition 3.1]). Let X be a Banach space and
x ∈ SX be a Daugavet-point. Then for every y ∈ dent(BX) we have ‖x− y‖ = 2.

It was shown in [11] that in Lipschitz-free spaces over compact metric spaces the
previous condition is, in fact, an equivalent condition.

Theorem 2.5 (see [11, Theorem 3.2]). Let M be a compact metric space and
µ ∈ SF(M). The following statements are equivalent:

(i) µ is a Daugavet-point.

(ii) For every ν ∈ dent(BF(M)) we have ‖µ− ν‖ = 2.

Moreover, if µ is of the form mxy for x 6= y ∈M , then the previous two statements
are equivalent to:

(iii) If u, v ∈M satisfy [u, v] = {u, v} then

d(x, y) + d(u, v) ≤ min{d(x, u) + d(y, v), d(x, v) + d(y, u)}. (2.1)

Here we would like to point out that according to Lemma 1.13 the condition 2.1 is
equivalent to ‖mxy ±muv‖ = 2.

This theorem was used to provide an example of a Lipschitz-free space that contains
a Daugavet-point, but does not have the Daugavet property (see [11, Example 3.3]).

In this thesis we will not present the original proof of Theorem 2.5 (for the original
proof please see [11]). Instead we will provide a characterization of Daugavet-point
for any metric space M and use that to prove Theorem 2.5.

Theorem 2.6. Let M be a metric space and µ ∈ SF(M). The following statements
are equivalent:

(i) µ is a Daugavet-point;

(ii) For every ν ∈ dent(BF(M)) we have ‖µ− ν‖ = 2;

(iii) For every u 6= v ∈M and ε > 0, if there exists δ > 0 such that

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) = ∅,

then ‖µ−muv‖ ≥ 2− 4ε.

14



• ••
u v

p

Figure 1: Illustration of Lemma 2.7

Our proof of Theorem 2.6 is long, therefore we shall divide the proof into parts and
first introduce two lemmas used in the proof.

Lemma 2.7. Let u 6= v ∈ M , δ > 0 and let p ∈ Line(u, v, δ). Then there exists
δ′ > 0 such that

Line(p, v, δ′) ⊆ Line(u, v, δ)

and
Line(u, p, δ′) ⊆ Line(u, v, δ).

Proof. Since p ∈ Line(u, v, δ) then there exists δ′ > 0 such that

(1 + δ′)
(
d(u, p) + d(v, p)

)
< (1 + δ)d(u, v).

If q ∈ Line(p, v, δ′), then

d(u, q) + d(v, q) < d(u, q) + (1 + δ′)d(v, p)− d(p, q)

≤ d(u, p) + (1 + δ′)d(v, p)

< (1 + δ)d(u, v)

giving us Line(p, v, δ′) ⊆ Line(u, v, δ). The inclusion Line(u, p, δ′) ⊆ Line(u, v, δ)
can be proved analogously.

Lemma 2.8. Let u 6= v ∈M , ε ∈ (0, 1/2) and δ > 0 be such that

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) = ∅.

For every α > 0, there exist β > 0, x ∈ B
(
u, (1 − ε)d(u, v)

)
∩ Line(u, v, δ) and

y ∈ B
(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) such that the following holds

(1) B
(
x, (1− α)d(x, y)

)
∩B

(
y, (1− α)d(x, y)

)
∩ Line(x, y, 4β) = ∅,

(2) Line(x, y, β) ⊆ Line(u, v, δ),

(3) d(x, y) ≤ d(u, v),

(4) d(u, x) + d(v, y) + d(x, y) < (1 + δ)d(u, v).
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u vx y

S
(
v, (1− εu)d(u, v)

)
S
(
u, (1− εv)d(u, v)

)

Figure 2: Illustration of Lemma 2.8

Proof. Fix α > 0. Let δu > 0 be such that δu < δ and 3δu < α(1− 2ε). Then

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δu) = ∅.

Set

εu = sup
{
ε0 : B

(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε0)d(u, v)

)
∩ Line(u, v, δu) 6= ∅

}
.

We see that 0 ≤ εu ≤ ε. If εu = 0, then let γu = 0 and x = u, otherwise let γu > 0
be such that γu < εu and γu < δu/2 and let

x ∈ B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− εu + γu)d(u, v)

)
∩ Line(u, v, δu).

Note that γu − εu ≤ 0. Furthermore, d(x, v) ≥ (1− εu)d(u, v) since

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε0)d(u, v)

)
∩ Line(u, v, δu) = ∅

for every ε0 > εu. According to Lemma 2.7 there exists δv > 0 such that

Line(x, v, δv) ⊆ Line(u, v, δu).

We may assume that δv is small enough to satisfy δv(1− εu + γu) < γu/2,

d(u, x) + (1 + δv)d(x, v) < (1 + δu)d(u, v),

and if εu > 0, then also (1 + δv)(1− εu + γu) < 1. Note that from Line(x, v, δv) ⊆
Line(u, v, δu) we get

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− εu − γu)d(u, v)

)
∩ Line(x, v, δv) = ∅.

16



Now set

εv = sup
{
ε0 : B

(
u, (1−ε0)d(u, v)

)
∩B
(
v, (1−εu−γu)d(u, v)

)
∩Line(x, v, δv) 6= ∅

}
.

We see that 0 ≤ εv ≤ ε. If εv = 0, then let γv = 0 and y = v, otherwise let γv > 0
be such that γv < εv and γv < γu/2 and let

y ∈ B
(
u, (1− εv + γv)d(u, v)

)
∩B

(
v, (1− εu − γu)d(u, v)

)
∩ Line(x, v, δv).

Note that γv − εv ≤ 0 and d(y, u) ≥ (1− εv)d(u, v). According to Lemma 2.7 there
exists β > 0 such that

Line(x, y, β) ⊆ Line(x, y, 4β) ⊆ Line(x, v, δv) ⊆ Line(u, v, δu) ⊆ Line(u, v, δ).

Hence (2) holds. Note that

d(u, x) + d(v, y) + d(x, y) < d(u, x) + (1 + δv)d(x, v) < (1 + δu)d(u, v)

and therefore condition (4) is also true.

If εu = 0, then x = u and

d(x, y) = d(u, y) ≤ (1− εv + γv)d(u, v) ≤ d(u, v).

If εu > 0, then

d(x, y) < (1 + δv)d(x, v)− d(v, y)

≤ (1 + δv)(1− εu + γu)d(u, v)− d(u, v) + d(u, y)

< d(u, v)− d(u, v) + (1− εv + γv)d(u, v)

≤ d(u, v).

Therefore d(x, y) ≤ d(u, v), i.e., (3) is true. Also,

d(x, y) < (1 + δv)d(x, v)− d(v, y)

≤ (1 + δv)(1− εu + γu)d(u, v)− d(u, v) + d(u, y)

≤ δv(1− εu + γu)d(u, v) + (γu − εu)d(u, v) + (1− εv + γv)d(u, v)

< (1− εu − εv + 2γu)d(u, v)

< (1− εu − εv + δu)d(u, v).

Assume that there exists

z ∈ B
(
x, (1− α)d(x, y)

)
∩B

(
y, (1− α)d(x, y)

)
∩ Line(x, y, 4β).

Recall that d(x, v) ≥ (1− εu)d(u, v) and therefore

d(u, z) ≤ d(u, x) + d(x, z)

< (1 + δu)d(u, v)− d(v, x) + (1− α)d(x, y)

≤ (1 + δu)d(u, v)− (1− εu)d(u, v) + (1− α)(1− εv − εu + δu)d(u, v)

= (1− εv)d(u, v) + 2δud(u, v)− α(1− εv − εu + δu)d(u, v)

< (1− εv)d(u, v) +
(
2δu − α(1− 2ε)

)
d(u, v)

< (1− εv − δu)d(u, v).
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Analogously, d(v, z) < (1− εu − δu)d(u, v).

Notice that z ∈ Line(x, y, 4β) ⊆ Line(x, v, δv) and therefore

z ∈ B
(
u, (1− εv − δu)d(u, v)

)
∩B

(
v, (1− εu − δu)d(u, v)

)
∩ Line(x, v, δv),

which is a contradiction since this intersection is empty. This gives us

B
(
x, (1− α)d(x, y)

)
∩B

(
y, (1− α)d(x, y)

)
∩ Line(x, y, 4β) = ∅.

Therefore (1) holds.

Now we are ready to prove Theorem 2.6

Proof of Theorem 2.6. (i)⇒ (ii). Is a consequence of Proposition 2.4.

(ii) ⇒ (iii). Assume that ‖µ − ν‖ = 2 for every ν ∈ dent(BF(M)). First we will
prove (ii)⇒ (iii) assuming M is complete.

Note that the case ε ≥ 1/2 is trivial. Fix u 6= v ∈ M and ε ∈ (0, 1/2), such that
there exists δ > 0 with

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) = ∅.

Note that we can choose δ to be however small. Therefore, if we show ‖µ−muv‖ ≥
2 − 4ε − 4δ, then from that we can derive ‖µ −muv‖ ≥ 2 − 4ε. Additionally, we
assume that δ < 1/2− ε.
Let us find x ∈ B

(
u, (1 − ε)d(u, v)

)
∩ Line(u, v, δ) and y ∈ B

(
v, (1 − ε)d(u, v)

)
∩

Line(u, v, δ) such that mxy is a denting point. To do so, we shall inductively con-
struct two Cauchy sequences (un) and (vn) of elements in the sets

B
(
u, (1− ε)d(u, v)

)
∩ Line(u, v, δ)

and
B
(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ),

respectively, and also find positive numbers δn and εn for every n ∈ N. We will
define these in such a way that for every n ∈ N we have

(1) B
(
un, (1− εn)d(un, vn)

)
∩B

(
vn, (1− εn)d(un, vn)

)
∩ Line(un, yn, 4δn) = ∅;

(2) Line(un, vn, δn) ⊆ Line(u, v, δ/4);

(3) d(un+1, vn+1) ≤ d(un, vn);

(4) d(un, un+1) + d(vn, vn+1) + d(un+1, vn+1) < (1 + δn)d(un, vn);

(5) max
{
d(u, un), d(v, vn)

}
< (1− ε− δ/2n−1)d(u, v);
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(6) δn+1, εn+1 < δn/2;

starting by δ1 = δ/4, ε1 = ε, u1 = u and v1 = v. Then (un) and (vn) converge to
the elements x and y we are looking for.

It is easy to see that conditions (1), (2), (5) and (6) hold for δ1 = δ/4, ε1 = ε,
u1 = u and v1 = v. Assume that we have found un, vn, δn and εn for n ∈ N.

Let εn+1 ∈ (0, δn/2). By Lemma 2.8 (taking u = un, v = vn, δ = δn, ε = εn and
α = εn+1) choose δn+1 (= β), un+1 (= x) and vn+1 (= y). Additionally assume
that δn+1 < δn/2.

Note that un+1 ∈ B
(
un, (1− εn)d(un, vn)

)
∩ Line(un, vn, δn). Therefore

d(vn, un+1) ≥ (1− εn)d(un, vn)

and we get

d(un, un+1) < (1 + δn)d(un, vn)− d(vn, un+1)

≤ (1 + δn)d(un, vn)− (1− εn)d(un, vn)

= (δn + εn)d(u, v).

If n = 1, then recall that δ + ε < 1/2 and therefore

d(u, u2) = d(u1, u2) < (δ1 + ε1)d(u, v) < (δ + ε)d(u, v) < (1− ε− δ)d(u, v).

If n 6= 1, then

d(u, un+1) ≤ d(u, un) + d(un, un+1)

<
(

1− ε− δ

2n−1

)
d(u, v) + (εn + δn)d(u, v)

<
(

1− ε− δ

2n−1

)
d(u, v) +

δ

2n
d(u, v)

=
(

1− ε− δ

2n

)
d(u, v).

Therefore
d(u, un+1) < (1− ε− δ/2n)d(u, v).

Analogously,
d(v, vn+1) < (1− ε− δ/2n)d(u, v).

Now we have two sequences (un) and (vn). Let us show that these are Cauchy
sequences. Note that for every m > n ∈ N \ {1} we have

d(un, um) ≤
m−1∑
i=n

d(ui, ui+1) <

m−1∑
i=n

(δi + εi)d(u, v) <

m−1∑
i=n

δ

2i
d(u, v) <

δ

2n−1
d(u, v).
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Therefore d(un, um) → 0 and there exists x ∈ M such that un → x. Analogously
we see that (vn) is a Cauchy sequence and there exists y ∈ M such that vn → y.
Note that

un ∈ B
(
u, (1− ε)d(u, v)

)
∩ Line(u, v, δ/4)

and
vn ∈ B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ/4),

for every n ∈ N. Therefore

x ∈ B
(
u, (1− ε)d(u, v)

)
∩ Line(u, v, δ)

and
y ∈ B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ).

Furthermore by (3) we have d(x, y) ≤ d(un, vn) for every n ∈ N.
Now we show that mxy is a denting point. Fix ε′ > 0. Let n ∈ N be such that
d(un, x) < ε′/2, d(vn, y) < ε′/2 and (εn + 4δn)d(un, vn) < ε′/2. Note that

B
(
un, (1− εn)d(un, vn)

)
∩B

(
vn, (1− εn)d(un, vn)

)
∩ Line(un, vn, δn) = ∅.

There exists m > n such that d(um, x) + d(vm, y) < δnd(un, vn). By conditions (4)
and (6) we get

d(un, um) + d(vn, vm) ≤
m−1∑
i=n

(
d(ui, ui+1) + d(vi, vi+1)

)
=

m−1∑
i=n

(
d(ui, ui+1) + d(vi, vi+1) + d(ui+1, vi+1)

)
−
m−1∑
i=n

d(ui+1, vi+1)

<

m−1∑
i=n

(1 + δi)d(ui, vi)−
m−1∑
i=n

d(ui+1, vi+1)

=
m−1∑
i=n

δid(ui, vi) + d(un, vn)− d(um, vm)

≤
m−1∑
i=n

δn
2i−n

d(un, vn) + d(un, vn)− d(um, vm)

< 2δnd(un, vn) + d(un, vn)− d(um, vm).

If p ∈ Line(x, y, δn), then

d(un, p) + d(vn, p) ≤ d(un, um) + d(vn, vm)

+ d(um, x) + d(vm, y) + d(x, p) + d(y, p)

< 2δnd(un, vn) + d(un, vn)− d(um, vm)

+ δnd(un, vn) + (1 + δn)d(x, y)

≤ (1 + 4δn)d(un, vn).
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Therefore
Line(x, y, δn) ⊆ Line(un, vn, 4δn).

Let p ∈ Line(x, y, δn). Our aim is to show that p ∈ B(x, ε′) ∪ B(y, ε′). Note that
δn + εn < 1/2. Hence

d(un, p) + d(vn, p) < (1 + 4δn)d(un, vn) < 2(1− εn)d(un, vn)

and either p ∈ B
(
un, (1 − εn)d(un, vn)

)
or p ∈ B

(
vn, (1 − εn)d(un, vn)

)
. We only

consider the case p ∈ B
(
un, (1−εn)d(un, vn)

)
, the case p ∈ B

(
vn, (1−εn)d(un, vn)

)
is analogous. Then p /∈ B

(
vn, (1− εn)d(un, vn)

)
. Now we get

d(x, p) ≤ d(x, un) + d(un, p) <
ε′

2
+ (1 + 4δn)d(un, vn)− d(vn, p)

≤ ε′

2
+ (1 + 4δn)d(un, vn)− (1− εn)d(un, vn) < ε′.

Therefore Line(x, y, δn) ⊆ B(x, ε′) ∪ B(y, ε′). According to Theorem 2.3, mxy is a
denting point and by assumption (ii) we have ‖µ−mxy‖ = 2.

Since x ∈ B
(
u, (1− ε)d(u, v)

)
∩ Line(u, v, δ) and

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) = ∅,

we have

d(x, u) ≤ (1 + δ)d(u, v)− d(x, v) ≤ (1 + δ)d(u, v)− (1− ε)d(u, v) = (ε+ δ)d(u, v).

Analogously, d(y, v) ≤ (ε+ δ)d(u, v). Therefore

‖mxy −muv‖ =

∥∥mxud(x, u) +mvyd(v, y)−muv

(
d(u, v)− d(x, y)

)∥∥
d(u, v)

≤
d(x, u) + d(y, v) +

∣∣d(u, v)− d(x, y)
∣∣

d(u, v)

≤ 2(ε+ δ)d(x, y) + d(x, u) + d(y, v)

d(u, v)

≤ 4(ε+ δ).

Consequently,

‖µ−muv‖ ≥ ‖µ−mxy‖ − ‖mxy −muv‖ ≥ 2− 4(ε+ δ).

Hence ‖µ−muv‖ ≥ 2− 4ε. This closes the case when M is complete.

Now assumeM is not complete and letM ′ be its completion. Then F(M) = F(M ′)
and therefore for every ν ∈ dent(BF(M ′)) we have ‖µ− ν‖ = 2.
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Let us note that, if for u 6= v ∈M and ε > 0 there exists δ > 0 such that in M we
have

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) = ∅,

then in M ′ we have

B
(
u, (1− ε′)d(u, v)

)
∩B

(
v, (1− ε′)d(u, v)

)
∩ Line(u, v, δ′) = ∅

for every ε′ ∈ (0, ε) and δ′ ∈ (0, δ). Then by the first case we get ‖µ−muv‖ ≥ 2−4ε′

for every ε′ ∈ (0, ε) and therefore ‖µ−muv‖ ≥ 2− 4ε.

This is what we wanted to prove.

(iii)⇒ (i). Assume that (iii) holds. We will show that µ is a Daugavet-point. Fix
f ∈ SLip0(M) and α, ε > 0. We will prove that there exist u 6= v ∈ M such that
muv ∈ S(f, α) and ‖µ−muv‖ ≥ 2− ε.
Let u0 6= v0 ∈ M be such that f(u0) − f(v0) > (1 − α)d(u0, v0). According to
Lemma 1.15 there exists γ > 0 such that if x 6= y ∈ M satisfy d(x, y) < γ, then
‖µ−mxy‖ ≥ 2− ε. Let n ∈ N and δ > 0 be such that(

1− ε

4

)n
d(u0, v0) < γ

and f(u0)− f(v0) > (1− α)(1 + δ)nd(u0, v0).

If ‖µ−mu0v0‖ ≥ 2− ε, then we have found suitable points u and v.

Consider the case where ‖µ−mu0v0‖ < 2− ε. By (iii) there exists

p ∈ B
(
u0,
(
1− ε

4

)
d(u0, v0)

)
∩B

(
v0,
(
1− ε

4

)
d(u0, v0)

)
∩ Line(u0, v0, δ).

Therefore

f(u0)− f(p) + f(p)− f(v0) > (1− α)(1 + δ)nd(u0, v0)

> (1− α)(1 + δ)n−1
(
d(u0, p) + d(v0, p)

)
.

Then either
f(u0)− f(p) > (1− α)(1 + δ)n−1d(u0, p)

or
f(p)− f(v0) > (1− α)(1 + δ)n−1d(v0, p).

Additionally we have

max
{
d(u0, p), d(v0, p)

}
≤
(

1− ε

4

)
d(u0, v0).

Therefore there exist u1 6= v1 ∈M such that

f(u1)− f(v1) > (1− α)(1 + δ)n−1d(u1, v1)
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and d(u1, v1) < (1− ε/4)d(u0, v0).

Now we will repeat this step as many times as needed, but no more than n times.
Assume for k ∈ {1, . . . , n− 1} that

f(uk)− f(vk) > (1− α)(1 + δ)n−kd(uk, vk)

and d(uk, vk) < (1− ε/4)kd(u0, v0).

If ‖µ−mukvk‖ ≥ 2− ε, then uk and vk are suitable points, since f(uk)− f(vk) >
(1− α)d(uk, vk).

If ‖µ−mukvk‖ < 2− ε, then as we did before, we can find uk+1 6= vk+1 ∈M such
that

f(uk+1)− f(vk+1) > (1− α)(1 + δ)n−k−1d(uk+1, vk+1)

and d(uk+1, vk+1) < (1− ε/4)k+1d(u0, v0).

If by the n-th step we have not found suitable points, then we have f(un)−f(vn) >
(1− α)d(un, vn) and

d(un, vn) <
(

1− ε

4

)n
d(u0, v0) < γ,

which gives us ‖µ−munvn‖ ≥ 2− ε. Now we have found suitable points u and v,
therefore µ is a Daugavet-point.

The following corollary can be directly derived from Theorem 2.6 and Lemma 1.13
in case µ is a molecule.

Corollary 2.9. LetM be a metric space and x 6= y ∈M . The following statements
are equivalent:

(i) mxy in a Daugavet-point;

(ii) For every u 6= v ∈M and ε > 0, if there exists δ > 0 such that

B
(
u, (1− ε)d(u, v)

)
∩B

(
v, (1− ε)d(u, v)

)
∩ Line(u, v, δ) = ∅,

then

d(x, u) + d(y, v) ≥ d(x, y) + d(u, v)− 4εmax
{
d(x, y), d(u, v)

}
.

Another natural question to consider is whether ε and δ are indeed needed in
condition (iii) of Theorem 2.6. From Theorem 2.5 we see that in case of compact
spaces the characterization can be presented without using ε and δ. In Theorem
2.6 we examine only bounded sets, which indicates that ε and δ can be left out in
case of proper metric spaces, i.e., metric spaces in which all closed bounded sets
are compact. This is indeed so, as can be seen by following lemma.
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Lemma 2.10 (see [4, Proposition 2.3], [8, Theorem 2.4]). LetM be a proper metric
space. Then the following are equivalent for all u 6= v ∈M :

(i) muv ∈ dentBF(M);

(ii) [u, v] = {u, v}.

Note that if M is proper then it is complete and by Lemma 2.2 all denting points
are molecules.

Corollary 2.11. Let M be a proper metric space and µ ∈ SF(M). Then the fol-
lowing statements are equivalent:

(i) µ is a Daugavet-point;

(ii) For every u 6= v ∈M if [u, v] = {u, v}, then ‖µ−muv‖ = 2.

Let us notice by using Lemma 1.13 we can also simplify Corollary 2.11 when µ is
a molecule.

Corollary 2.12. Let M be a proper metric space and x 6= y ∈ M . The following
statements are equivalent:

(i) mxy in a Daugavet-point;

(ii) For every u 6= v ∈M , if [u, v] = {u, v}, then

d(x, u) + d(y, v) ≥ d(x, y) + d(u, v).

Now we see that Theorem 2.5 can be derived from Theorem 2.6 and Corollary 2.12.

As a last part of this section, we ask if positive ε and δ are really needed in Theorem
2.6 in case M is not proper. Our aim is to present an example of complete metric
space M such that there exists x 6= y ∈ M such that mxy is a Daugavet-point,
but condition (ii) from Corollary 2.11 does not hold true. This example is far from
trivial and it also serves as an example of a metric space M such that F(M) has
the Radon–Nikodým property and a Daugavet-point. This example is provided in
the following chapter.

2.2 Example of Lipschitz-free Banach space with Radon–
Nikodým property and with Daugavet-point

In this chapter, we will provide an example of a Lipschitz-free space with the
Radon–Nikodým property and a Daugavet-point. We will first show that the Lipschitz-
free space in our example has the Schur property and then apply Theorem 2.15
to conclude that this space also has the Radon–Nikodým property. First, let us
introduce these properties.

24



Definition 2.13 (see [12]). We say that a Banach space X has the Radon–
Nikodým property if every nonempty bounded closed convex set has a denting
point.

Definition 2.14 (see [7, Page 253]). We say that a Banach space X has the Schur
property if every weakly convergent sequence in X is norm convergent.

Theorem 2.15 (see [2, Theorem 4.6]). For Lipschitz-free Banach spaces these
properties are equivalent:

(i) F(M) has the Radon–Nikodým property;

(ii) F(M) has the Schur property.

To show that F(M) in our example has the Schur property we will use following
result.

Lemma 2.16 (see [3, Corollary 2.7]). Let M be a countable complete metric space.
Then F(M) has the Schur property.

Now we are ready to present our example.

Example 2.17. Let x = (0, 0), y = (1, 0) and S0 = {x, y}. For every n ∈ N let

Sn =
{( k

2n
,

1

2n

)
: k ∈ {0, 1, . . . , 2n}

}
.

0 1
4

1
2

3
4

1

1
4

1
2

x y• •

• • •

• • • • •

• • • • • • • • •
• • • • • • • • • • • • • • • • •

Figure 3: The sets S0, . . . , S4

Let

M =

∞⋃
n=0

Sn
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be a metric space with metric

d
(
(a1, a2), (b1, b2)

)
=

{
|a1 − b1|, if a2 = b2

min{a1 + b1, 2− a1 − b1}+ |a2 − b2|, if a2 6= b2.

Let us convince that d is indeed a metric. Let a = (a1, a2) and b = (b1, b2) ∈ M .
Clearly d(a, b) ≥ 0 and d(a, b) = d(b, a). If d(a, b) = 0, then we must have a2 = b2,
which implies also a1 = b1.

Let us show that d(a, b) ≤ d(a, c) + d(b, c) for c = (c1, c2) ∈M by examining three
cases.

1. If a2 = b2 = c2, then

d(a, b) = |a1 − b1| ≤ |a1 − c1|+ |b1 − c1| = d(a, c) + d(b, c).

2. If a2 6= c2 and b2 = c2 (the case where a2 = c2 and b2 6= c2 is analogous),
then let us notice

min{a1 + b1, 2− a1 − b1} = min{a1 + c1 + b1 − c1, 2− a1 − c1 + c1 − b1}
≤ min{a1 + c1, 2− a1 − c1}+ |b1 − c1|

and therefore d(a, b) ≤ d(a, c) + d(b, c).

3. Consider the case where a2 6= c2 and b2 6= c2. Clearly |a1− b1| ≤ a1 + b1, and
since a1, b1 ≤ 1 we conclude that |a1 − b1| ≤ 2− a1 − b1. This gives us

|a1 − b1| ≤ min{a1 + b1, 2− a1 − b1}.

Therefore, it is enough, if we examine only the case when a2 6= b2.

If 2− a1 − c1 ≤ a1 + c1 and 2− b1 − c1 ≤ b1 + c1, then

2− a1 − b1 ≤ 2− a1 − c1 + 2− b1 − c1

by using c1 ≤ 1. Otherwise

a1 + b1 ≤ min{a1 + c1, 2− a1 − c1}+ min{b1 + c1, 2− b1 − c1}

by using a1, b1 ≤ 1. This gives us d(a, b) ≤ d(a, c) + d(b, c).

We conclude that d(a, b) ≤ d(a, c) + d(b, c) and therefore the triangle inequality
holds.

Next we show that M is complete. Let (an) be a Cauchy sequence in M . To show
that (an) converges to an element of M we consider two cases.
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1. First assume that there exists m ∈ N such that (an) is in ∪mn=0Sn. Then
there exists ε > 0 such that for every u 6= v ∈ ∪mn=0Sn we have d(u, v) > ε.
Therefore, (an) is eventually constant.

2. Assume that for everym ∈ N, there exist k > m and n ∈ N such that an ∈ Sk.
Choose a subsequence (ank

) such that ank
∈ Smk

, where m1 < m2 < m3 · · · .
The distance between any two different elements ank

= (bnk
, cnk

) 6= anl
=

(bnl
, cnl

) is defined as

min{bnk
+ bnl

, 2− bnk
− bnl

}+ |cnk
− cnl

|.

Since (ank
) is a Cauchy sequence, either ank

→ (0, 0) or ank
→ (1, 0).

According to Lemma 2.16, F(M) has the Schur property, sinceM is countable and
complete. By Theorem 2.15, F(M) also has the Radon–Nikodým property.

We will now show that mxy is a Daugavet-point; recall that x = (0, 0) and y =
(1, 0).

By Theorem 2.6, it suffices to show that ‖mxy−ν‖ = 2 for every ν ∈ dent(BF(M)).
According to Lemma 2.2 ν is a denting point in BF(M) only if ν = muv for some
u 6= v ∈M .

Fix muv ∈ dent(BF(M)). Let u = (u1, u2) and v = (v1, v2). Then according to
Theorem 2.3, for every ε > 0 there exists δ > 0 such that

Line(u, v, δ) ⊆ B(u, ε) ∪B(v, ε).

If there exists p ∈ [u, v] \ {u, v}, then p ∈ Line(u, v, δ) for every δ > 0 and there
exists ε > 0 such that min

{
d(u, p), d(v, p)

}
> ε. This implies that Line(u, v, δ) 6⊆

B(u, ε)∪B(v, ε) for every δ > 0, which is a contradiction. Therefore [u, v] = {u, v}.
We will now show that u, v /∈ {x, y}. Assume that u ∈ {x, y} (case v ∈ {x, y} is
analogous). Then u2 = 0. If v2 6= 0, then

z := (u1, v2/2) ∈ [u, v] \ {u, v},

because d(u, z) = v2/2 and d(v, z) = min{u1 + v1, 2 − u1 − v1} + v2/2. This is
in contradiction with [u, v] = {u, v} and therefore v2 = 0, i.e., v ∈ {x, y}. Since
the conditions for u and v are symmetrical then let us assume u = x and v = y.
However, mxy is not a denting point because

z :=
(1

2
,

1

2n+1

)
∈ Line

(
x, y,

1

2n

)
and min{d(u, z), (v, z)} > 1/2 for every n ∈ N, since d(x, z) = d(y, z) = 1/2+1/2n.

Now we know that [u, v] = {u, v} and u, v /∈ {x, y}. Let us show that ‖mxy−muv‖ =
2.
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If u2 = v2, then |u1 − v1| = u2, because otherwise either

(u1 + u2, u2) ∈ [u, v] \ {u, v}

or
(u1 − u2, u2) ∈ [u, v] \ {u, v}.

Hence

d(x, u) + d(y, v) = u1 + u2 + 1− v1 + v2 ≥ 1 + |u1 − v1| = d(x, y) + d(u, v)

and according to Lemma 1.13 we get ‖mxy −muv‖ = 2.

If u2 6= v2, then either u1 = v1 = 0 or u1 = v1 = 1, because otherwise one of the
four points (0, u2), (1, u2), (0, v2), (1, v2) is in [u, v] \ {u, v}. Hence

d(x, u)+d(y, v) = u1+u2+1−v1+v2 = 1+u2+v2 ≥ 1+|u2−v2| = d(x, y)+d(u, v)

and according to Lemma 1.13 we get ‖mxy −muv‖ = 2.

Now we have shown that for every ν ∈ dent(BF(M)) we have ‖mxy − ν‖ = 2 and
therefore mxy is a Daugavet-point.

Furthermore, we see that condition (ii) from Corollary 2.11 does not hold for mxy

since [x, y] = {x, y} and ‖mxy −mxy‖ = 0.
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3 Delta-points in Lipschitz-free Banach spaces

In this chapter, we will examine ∆-points in Lipschitz-free spaces. We will present
some results and examples from [11] and add some new related results.

This chapter is mostly dedicated to examining convex combinations of molecules.
For simplicity, when writing µ =

∑n
i=1 λimxiyi ∈ conv

(
Mol(M)

)
∩ SF(M), we

assume by default that λi > 0 for every i ∈ {1, . . . , n} and
∑n

i=1 λi = 1.

3.1 Characterization of Delta-point in Lipschitz-free Ba-
nach spaces

In the article [11], the question of when a molecule is a ∆-point was studied.
They provided one equivalence condition for molecule to be a ∆-point as well one
sufficient condition. An example of a ∆-point that was not a Daugavet-point was
also presented, thus proving ∆- and Daugavet-points are not the same in Lipschitz-
free spaces.

Definition 3.1 (see [11, Definition 4.1]). Let x 6= y ∈ M . We say that points
x and y are connectable if for every ε > 0 there exists 1-Lipschitz mapping
α : [0, d(x, y) + ε] → M with α(0) = y and α(d(x, y) + ε) = x, and say that α
connects x and y.

Proposition 3.2 (see [11, Proposition 4.2]). Let M be a metric space and let
x 6= y ∈M be connectable. Then mxy is a ∆-point.

This result is a good tool for proving that a certain point is a ∆-point. In [11]
it was also used to show that ∆-points and Daugavet-points are not the same in
Lipschitz-free spaces.

Example 3.3 (see [11, Example 4.3]). Let 0 < r < 1 and define M := [0, 1] ×
{0} ∪ {(0, r), (1, r)} ⊆ (R2, ‖.‖2) and consider x := (1, 0) and y := (0, 0). Note
that mxy is a ∆-point because there exists a 1-Lipschitz mapping α : [0, 1] → M
connecting x and y, namely α(t) := (t, 0) for every t ∈ [0, 1]. However, mxy is not
a Daugavet-point. For u := (1, r) and v := (1, r) we get [u, v] = {u, v}, however

d(x, u) + d(y, v) = 2r < 2 = d(x, y) + d(u, v),

so by Theorem 2.5, mxy is not a Daugavet-point.

Theorem 3.4 (see [11, Theorem 4.6]). Let x 6= y ∈M . Then mxy is a ∆-point if
and only if for every ε > 0 and slice S with mxy ∈ S there exists u 6= v ∈ M such
that muv ∈ S and d(u, v) < ε.
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We will not present the original proof in this thesis. Instead we will prove that a
generalization of Theorem 3.4 holds true for arbitrary µ ∈ conv

(
Mol(M)

)
∩SF(M),

not just for mxy ∈ conv
(

Mol(M)
)
∩SF(M). To do so we will find a function similar

to fxy that was used in the proof of Theorem 3.4.

Lemma 3.5 (see [9, Lemma 3.6]). Let x 6= y ∈M and let

fxy(p) =
d(x, y)

2
· d(y, p)− d(x, p)

d(x, p) + d(y, p)
.

We have

(1) ‖fxy‖ = 1;

(2) If muv ∈ S(fxy, α) for some u 6= v ∈M , then

(1− α) max{d(x, v) + d(y, v), d(x, u) + d(y, u)} < d(x, y).

Note that the main benefit of fxy is condition (2), which tells us that if a molecule
muv is in the slice defined by fxy, then both u and v are close to the segment
[x, y]. Our aim is to find for µ =

∑n
i=1 λimxiyi ∈ conv

(
Mol(M)

)
∩SF(M) a norm-1

function fµ such that if a molecule muv is in the slice defined by fµ then it is close
to segment [xi, yi] for some i ∈ {1, . . . , n}. Note that if for some m ∈ {1, . . . , n}
and k1, . . . , km+1 ∈ {1, . . . , n} with k1 = km+1 we have

m∑
i=1

d(xki , yki+1
) =

m∑
i=1

d(xki , yki)

then there exists a presentation of µ as convex combination of molecules, where
all the molecules mk1k2 , . . . ,mkmkm+1 are included. With that in mind we will
construct the function.

Lemma 3.6. Let µ =
∑n

i=1 λimxiyi ∈ conv
(

Mol(M)
)
∩ SF(M). There exists fµ ∈

SLip0(M) and δ > 0 such that the following holds:

(1) fµ(µ) = 1;

(2) For every u 6= v ∈ M and α ∈ (0, δ) with muv ∈ S(fµ, α) there exists m ∈
{1, . . . , n} and k1, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise distinct
and k1 = km+1, such that

m∑
i=1

d(xki , yki+1
) =

m∑
i=1

d(xki , yki)

and

(1− α) max{d(xk1 , v) + d(yk2 , v), d(xk1 , u) + d(yk2 , u)} < d(xk1 , yk2).
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Proof. According to Lemma 1.17 there exists g ∈ SLip0(M) such that g(µ) = 1 and
for k1 6= k2 ∈ {1, . . . , n} we have

g(xk1)− g(yk2) = d(xk1 , yk2)

if and only if either k1 = k2 or there exists m ∈ {1, . . . , n} and k3, . . . , km+1 ∈
{1, . . . , n} with k1, . . . , km pairwise distinct and km+1 = k1 such that

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj ).

Let δ > 0 be such that if g(xi) − g(yj) < d(xi, yj) for some i, j ∈ {1, . . . , n}, then
g(xi)− g(yj) < (1− δ)d(xi, yj). Set

hi(p) = max
{ d(xi, yj)d(xi, p)

d(xi, p) + d(yj , p)
: j ∈ {1, . . . , n}, g(xi)− g(yj) = d(xi, yj)

}
for every i ∈ {1, . . . , n}. Note that g(xi)− g(yi) = d(xi, yi) for every i ∈ {1, . . . , n}
by Lemma 1.16, therefore the set we use in definition of hi is not empty. Further-
more,

d(xi, yj)

2
− fxiyj (p) =

d(xi, yj)

2

d(xi, p) + d(yj , p)−
(
d(yj , p)− d(xi, p)

)
d(xi, p) + d(yj , p)

=
d(xi, yj)d(xi, p)

d(xi, p) + d(yj , p)
, (3.1)

then from Lemmas 1.12 and 3.5 we get ‖hi‖ ≤ 1. Set

fµ(p) = max
i∈{1,...,n}

{
g(xi)−max

{
hi(p), (1− δ)d(xi, p)

}}
.

Note that that from Lemma 1.12 we get ‖fµ‖ ≤ 1. We will show that fµ and δ
satisfy the conditions of the lemma.

For every i ∈ {1, . . . , n} we have

fµ(xi) ≥ g(xi)−max
{
hi(xi), (1− δ)d(xi, xi)

}
= g(xi).

Next we show that fµ(yi) ≤ g(yi) for every i ∈ {1, . . . , n}. For fixed i ∈ {1, . . . , n}
let j ∈ {1, . . . , n} be such that

fµ(yi) = g(xj)−max
{
hj(yi), (1− δ)d(xj , yi)

}
.

If g(xj)− g(yi) = d(xj , yi), then

fµ(yi) = g(xj)−max
{
hj(yi), (1− δ)d(xj , yi)

}
= g(xj)− d(xj , yi) = g(yi).
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If g(xj) − g(yi) < d(xj , yi), then by the choice of δ we have g(xj) − g(yi) <
(1− δ)d(xj , yi) and therefore

fµ(yi) = g(xj)−max
{
hj(yi), (1− δ)d(xj , yi)

}
≤ g(yi) + g(xj)− g(yi)− (1− δ)d(xj , yi)

< g(yi).

This gives us fµ(xi)− fµ(yi) ≥ g(xi)− g(yi) for every i ∈ {1, . . . , n} and therefore
fµ(µ) ≥ g(µ) = 1. Note that ‖fµ‖ ≤ 1, hence fµ ∈ SLip0(M) and fµ(µ) = 1.

Now let us show that condition (2) holds. Fix u 6= v ∈M and α ∈ (0, δ) such that
muv ∈ (fµ, α).

Let k1 ∈ {1, . . . , n} be such that

fµ(u) = g(xk1)−max
{
hk1(u), (1− δ)d(xk1 , u)

}
.

Then

(1− α)d(u, v) < fµ(u)− fµ(v)

≤ g(xk1)−max
{
hk1(u), (1− δ)d(xk1 , u)

}
− g(xk1) + max

{
hk1(v), (1− δ)d(xk1 , v)

}
= max

{
hk1(v), (1− δ)d(xk1 , v)

}
−max

{
hk1(u), (1− δ)d(xk1 , u)

}
.

If max
{
hk1(v), (1− δ)d(xk1 , v)

}
= (1− δ)d(xk1 , v), then

(1− α)d(u, v) < max
{
hk1(v), (1− δ)d(xk1 , v)

}
−max

{
hk1(u), (1− δ)d(xk1 , u)

}
≤ (1− δ)

(
d(xk1 , v)− d(xk1 , u)

)
≤ (1− δ)d(u, v),

which contradicts with α ∈ (0, δ). Hence

max
{
hk1(v), (1− δ)d(xk1 , v)

}
= hk1(v).

There exists k2 ∈ {1, . . . , n} with g(xk1)− g(yk2) = d(xk1 , yk2) such that

hk1(v) =
d(xk1 , yk2)d(xk1 , v)

d(xk1 , v) + d(yk2 , v)
.

By 3.1 we get that

(1− α)d(u, v) < max
{
hk1(v), (1− δ)d(xk1 , v)

}
−max

{
hk1(u), (1− δ)d(xk1 , u)

}
≤ d(xk1 , yk2)d(xk1 , v)

d(xk1 , v) + d(yk2 , v)
− d(xk1 , yk2)d(xk1 , u)

d(xk1 , u) + d(yk2 , u)

= fxk1yk2 (u)− fxk1yk2 (v).

From Lemma 3.5 we get

d(xk1 , yk2) > (1− α) max
{
d(xk1 , u) + d(yk2 , u), d(xk1 , v) + d(yk2 , v)

}
.
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Note that g(xk1) − g(yk2) = d(xk1 , yk2), therefore either k1 = k2 or there exists
m ∈ {1, . . . , n} and k3, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise distinct
and km+1 = k1 such that

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj ).

Since in case k1 = k2 we can choose m = 1 and k1, k2 as suitable indexes, then we
conclude the proof.

Now we present our generalization of Theorem 3.4.

Theorem 3.7. Let µ ∈ conv
(

Mol(M)
)
∩SF(M). Then µ is a ∆-point if and only if

for every ε > 0 and a slice S with µ ∈ S there exist u 6= v ∈M such that muv ∈ S
and d(u, v) < ε.

Proof. (⇐) This is a direct consequence of Lemma 1.15.

(⇒) Assume that µ is a ∆-point. Let n ∈ N, λ1, . . . , λn > 0 with
∑n

i=1 λi = 1 and
x1 6= y1 . . . , xn 6= yn ∈M be such that µ =

∑n
i=1 λimxiyi .

According to Lemma 3.6 there exists fµ ∈ SLip0(M) and δ > 0 such that fµ(µ) = 1
and for every u 6= v ∈ M and δ′ ∈ (0, δ) with fµ(u) − fµ(v) > (1 − δ′)d(u, v)
there exist m ∈ {1, . . . , n} and k1, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise
distinct and k1 = km+1 such that

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj )

and

(1− δ′) max
{
d(xk1 , v) + d(yk2 , v), d(xk1 , u) + d(yk2 , u)

}
< d(xk1 , yk2).

Fix ε > 0 and a slice S = S(f, α) such that µ ∈ S. According to Lemma 1.7 we
can assume that α < δ and( 1

(1− α)2
− 1
)

max
i,j∈{1,...,n}

d(xi, yj) < ε.

Our aim is to show there exists u 6= v ∈M such that muv ∈ S and d(u, v) < ε. Set
g = f + fµ and

λ0 = min
i∈{1,...,n}

λi
d(xi, yi)

.

It is easy to see that g(µ) = fµ(µ) + f(µ) > 2− α. Then

µ ∈ S
( g

‖g‖
, 1− 2− α

‖g‖

)
.

33



Since µ is a ∆-point, by Lemma 1.6 there exist u 6= v ∈M such that

muv ∈ S
( g

‖g‖
, 1− 2− α

‖g‖

)
and

‖µ−muv‖ ≥ 2− λ0αmin
{
d(xi, yj) : i, j ∈ {1, . . . , n}, d(xi, yj) 6= 0

}
.

It is easy to see that fµ(u)−fµ(v) > (1−α)d(u, v) and f(u)−f(v) > (1−α)d(u, v),
which means muv ∈ S(f, α). Now we will show that d(u, v) < ε.

Since fµ(u)− fµ(v) > (1−α)d(u, v) and α ∈ (0, δ), there exist m ∈ {1, . . . , n} and
k1, . . . , km+1 ∈ {1, . . . , n} with k1, . . . , km pairwise distinct and k1 = km+1 such
that

m∑
j=1

d(xkj , ykj+1
) =

m∑
j=1

d(xkj , ykj ) (3.2)

and

(1− α) max
{
d(xk1 , v) + d(yk2 , v), d(xk1 , u) + d(yk2 , u)

}
< d(xk1 , yk2).

Clearly d(xk1 , yk2) > 0 and therefore

‖µ−muv‖ ≥ 2− λ0αmin
{
d(xi, yj) : i, j ∈ {1, . . . , n}, d(xi, yj) 6= 0

}
≥ 2− λ0αd(xk1 , yk2).

Now we will show ‖mxk1yk2
−muv‖ ≥ 2 − ε. Note that λi ≥ λ0d(xi, yi) for every

i ∈ {1, . . . , n}. Let

li =

{
λi − λ0d(xi, yi), if i ∈ {k1, . . . , km},
λi, if i ∈ {1, . . . , n} \ {k1, . . . , km}.

By 3.2 we have

µ =
n∑
i=1

λimxiyi =
n∑
i=1

limxiyi + λ0

m∑
i=1

d(xki , yki+1
)mxkiyki+1

.

We see that

2− αλ0d(xk1 , yk2) ≤
∥∥∥ n∑
i=1

λimxiyi −muv

∥∥∥
=
∥∥∥ n∑
i=1

limxiyi + λ0

m∑
i=1

d(xki , yki+1
)mxkiyki+1

−muv

∥∥∥
≤

n∑
i=1

li‖mxiyi‖+ λ0

m∑
i=2

d(xki , yki+1
)‖mxkiyki+1

‖

+
(
1− λ0d(xk1 , yk2)

)
‖muv‖+ λ0d(xk1 , yk2)‖mxk1yk2

−muv‖
= 2− 2λ0d(xk1 , yk2) + λ0d(xk1 , yk2)‖mxk1yk2

−muv‖.
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Therefore ‖mxk1yk2
−muv‖ ≥ 2− α. From Lemma 1.16 we get

‖mxk1yk2
+muv‖ ≥

fµ(xk1)− fµ(yk2)

d(xk1 , yk2)
+
fµ(u)− fµ(v)

d(u, v)
> 2− α.

By Lemma 1.13 we get that

min
{
d(xk1 , v) + d(yk2 , u), d(xk1 , u) + d(yk2 , v)

}
≥ d(xk1 , yk2) + d(u, v)− αmax

{
d(xk1 , yk2), d(u, v)

}
> (1− α)

(
d(xk1 , yk2) + d(u, v)

)
.

We also know that

(1− α) max
{
d(xk1 , v) + d(yk2 , v), d(xk1 , u) + d(yk2 , u)

}
< d(xk1 , yk2)

and therefore

d(u, v) <
d(xk1 , v) + d(yk2 , u) + d(xk1 , u) + d(yk2 , v)

2(1− α)
− d(xk1 , yk2)

<
2d(xk1 , yk2)

2(1− α)2
− d(xk1 , yk2)

≤
( 1

(1− α)2
− 1
)

max
i,j∈{1,...,n}

d(xi, yj) < ε.

Therefore we have found u 6= v ∈M such that muv ∈ S and d(u, v) < ε.

It was also shown in [11] that Theorem 3.4 implies the following corollary

Corollary 3.8 (see [11, Corollary 4.7]). Let x 6= y ∈M and let mxy be a ∆-point.
Then for every r ∈

(
0, d(x, y)

)
and ε > 0 we get that

B(x, r + ε) ∩B
(
y, d(x, y)− r + ε

)
6= ∅.

Moreover, if M is proper then S(x, r) ∩ S
(
y, d(x, y)− r

)
6= ∅.

Proof. The following proof is from [11], small modifications have been made to fit
the style of the thesis.

Fix r ∈
(
0, d(x, y)

)
and ε > 0. Let δ ∈ (0, ε/2) be such that r + δ < d(x, y) and

d(x, y)− r + δ < d(x, y). Let

f1(t) := max
{
r + δ − d(x, t), 0

}
f2(t) := min

{
− (d(x, y)− r)− δ + d(y, t), 0

}
and let f := f1 + f2. Then f1(y) = f2(x) = 0 and therefore

f(x)− f(y) = f1(x)− f2(y) = r + δ +
(
d(x, y)− r

)
+ δ = d(x, y) + 2δ > d(x, y).

35



Then mxy ∈ S
(
f/‖f‖, 1 − 1/‖f‖

)
and from Theorem 3.7 we get that there exist

u 6= v ∈M such that muv ∈ S
(
f/‖f‖, 1− 1/‖f‖

)
and d(u, v) < δ. Hence

f(u)− f(v) > ‖f‖
(

1− 1 +
1

‖f‖

)
d(u, v) = d(u, v).

Notice that according to Lemma 1.12 we have ‖f1‖ ≤ 1 and ‖f2‖ ≤ 1. Therefore
f1(u)− f1(v) > 0, which gives us u ∈ B(x, r + δ). Analogously, v ∈ B

(
y, d(x, y)−

r + δ
)
. Then

d(y, u) ≤ d(y, v) + d(u, v) < d(x, y)− r + δ + δ < d(x, y)− r + ε.

Thus
u ∈ B(x, r + ε) ∩B

(
y, d(x, y)− r + ε

)
,

i.e.,
B(x, r + ε) ∩B

(
y, d(x, y)− r + ε

)
6= ∅.

Now assume that M is proper. Fix r ∈
(
0, d(x, y)

)
. We can construct a sequence

un ∈ B
(
x, r +

1

n

)
∩B

(
y, d(x, y)− r +

1

n

)
.

Let (unk
) be a convergent subsequence of (un) and let unk

→ u. It is easy to see
that

u ∈ S(x, r) ∩ S
(
y, d(x, y)− r

)
,

i.e.,
S(x, r) ∩ S

(
y, d(x, y)− r

)
6= ∅.

A natural question to consider is whether the reverse of Corollary 3.8 holds. In [11]
it was shown that in general it does not (see [11, Example 4.10]), although for some
compact metric spaces the reverse of Corollary 3.8 is in fact true. Note that the
metric space M from example provided in [11] was non-compact, therefore leaving
open the question of whether the reverse of Corollary 3.8 holds for all compact
metric spaces. The following example concludes that the reverse does not hold for
all compact metric spaces.

Example 3.9. Let M = [0, 1] be a metric space with distance

d(a, b) = |a− b|min{1 + a, 1 + b, 2− a, 2− b}.

First, we will show that d is indeed a metric. Let a, b ∈M . Clearly d(a, b) ≥ 0 and
d(a, b) = d(b, a). If d(a, b) = 0, then we must have a = b.

Now we will show d(a, b) ≤ d(a, c)+d(b, c) for any c ∈M . Without loss of generality
we will assume that min{1 + a, 2− a} ≤ min{1 + b, 2− b}.
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If min{1 + a, 2− a} ≤ min{1 + c, 2− c}, then

d(a, b) = |a− b|min{1 + a, 1 + b, 2− a, 2− b}
≤ (|a− c|+ |b− c|) min{1 + a, 1 + b, 2− a, 2− b, 1 + c, 2− c}
≤ |a− c|min{1 + a, 1 + c, 2− a, 2− c}
+ |b− c|min{1 + b, 1 + c, 2− b, 2− c}
= d(a, c) + d(b, c).

If min{1 + a, 2− a} > min{1 + c, 2− c} = 1 + c, then a > c and b > c. Therefore

d(a, b) = |a− b|min{1 + a, 1 + b, 2− a, 2− b}
≤ |a− b|(1 + min{a, b})
= |a− b|(1 + c) + |a− b|(min{a, b} − c)
≤ |a− b|(1 + c) + 2(min{a, b} − c)(1 + c)

= (a− c+ b− c)(1 + c)

= |a− c|min{1 + a, 1 + c, 2− a, 2− c}
+ |b− c|min{1 + b, 1 + c, 2− b, 2− c}
= d(a, c) + d(b, c).

If min{1 + a, 2− a} > min{1 + c, 2− c} = 2− c, then a < c and b < c

d(a, b) = |a− b|min{1 + a, 1 + b, 2− a, 2− b}
≤ |a− b|(2−max{a, b})
= |a− b|(2− c) + |a− b|(c−max{a, b})
≤ |a− b|(2− c) + 2(c−max{a, b})(2− c)
= (c− a+ c− b)(2− c)
= |a− c|min{1 + a, 1 + c, 2− a, 2− c}
+ |b− c|min{1 + b, 1 + c, 2− b, 2− c}
= d(a, c) + d(b, c).

Note that M is compact since |a− b| ≤ d(a, b) ≤ 2|a− b| for all a, b ∈M .

Denote x = 0 and y = 1. Then

r ∈ S(x, r) ∩ S(y, 1− r)

for every r ∈ (0, 1). However, mxy is not a ∆-point. Let λ ∈ (0, 1/8) and let us
define two functions f, g : M → R by

f(p) = −p

and
g(p) = min

{
max

{
1− p, 1

2
− λ

}
,
1

2
+ λ

}
.
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Clearly ‖f‖ ≤ 1. Note that by Lemma 1.12 we also have ‖g‖ ≤ 1. Let

h = (1− λ)f + λg.

Then
h(x)− h(y) = 1− λ+ λ

(1

2
+ λ−

(1

2
− λ
))

= 1− λ+ 2λ2.

Therefore
mxy ∈ S

(
h/‖h‖, 1− (1− λ+ λ2)/‖h‖

)
.

Assume that d(u, v) < λ and muv ∈ S
(
h/‖h‖, 1− (1− λ+ λ2)/‖h‖

)
. Then

(1− λ+ λ2)d(u, v) < h(u)− h(v)

= (1− λ)
(
f(u)− f(v)

)
+ λ

(
g(u)− g(v)

)
≤ (1− λ)d(u, v) + λ

(
g(u)− g(v)

)
.

Therefore g(u) − g(v) > 0 and then from d(u, v) < λ we see that either u ∈
(1/2− λ, 1/2 + λ) or v ∈ (1/2− λ, 1/2 + λ). Furthermore,

(1− λ)d(u, v) < (1− λ)
(
f(u)− f(v)

)
+ λ

(
g(u)− g(v)

)
− λ2d(u, v)

< (1− λ)|u− v|+ λd(u, v),

giving us (1− 2λ)d(u, v) < (1− λ)|u− v|. Hence

min{u, v, 1− u, 1− v} =
d(u, v)

|u− v|
− 1 <

1− λ
1− 2λ

− 1 =
λ

1− 2λ
.

Now we see that either

u ∈
[
0, λ/(1− 2λ)

)
∩
(
1− λ/(1− 2λ), 1

]
or

v ∈
[
0, λ/(1− 2λ)

)
∩
(
1− λ/(1− 2λ), 1

]
.

Therefore

λ > d(u, v) ≥ |u− v| > 1

2
− λ− λ

1− 2λ
>

1

2
− 1

8
− 1

6
>

1

8
> λ,

which is absurd. Therefore, by Theorem 3.7, mxy is not a ∆-point.

From Theorem 3.7 we can easily derive the following result.

Corollary 3.10. Let µ =
∑n

i=1 λimxiyi ∈ conv
(

Mol(M)
)
∩ SF(M). If mxiyi is a

∆-point for every i ∈ {1, . . . , n}, then µ is a ∆-point.

Proof. Let mxiyi be a ∆-point for every i ∈ {1, ..., n}. Fix f ∈ SLip(M) and α, ε > 0
such that µ ∈ S(f, α). There exists i ∈ {1, . . . , n} such that mxiyi ∈ S(f, α). Since
mxiyi is a ∆-point, then according to Theorem 3.7 there exist u 6= v ∈M such that
muv ∈ S(f, α) and d(u, v) < ε. That means that µ is a ∆-point.
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It is natural to ask whether the converse of this corollary holds. The following
example shows that in general it does not.

Example 3.11. Let M =
{

(a, b) : a ∈ {0, 1}, b ∈ [0, 1]
}

be a metric space with
distance

d
(
(a1, b1), (a2, b2)

)
= max

{
|a1 − a2|, |b1 − b2|

}
.

Let x1 = (0, 0), y1 = (1, 0), x2 = (1, 1) and y2 = (0, 1).

x1 y1

y2 x2

• •

• •

Figure 4: Metric space M from Example 3.11

We have d(x1, y1) = d(x1, y2) = d(x2, y1) = d(x2, y2) = 1 and from Lemma 1.13
we derive that

‖mx1y1 +mx2y2‖ = ‖mx1y2 +mx2y1‖ = 2.

By Corollary 3.8, mx1y1 and mx2y2 are not ∆-points. However, from Proposition
3.2 we see that mx1y2 and mx2y1 are ∆-points. Therefore

mx1y1 +mx2y2

2
=
mx1y2 +mx2y1

2

is a ∆-point according to Corollary 3.10.
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