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Abstrakt 

Pealkiri: „Peamised surmapõhjused ja nende geograafiline aspekt Eestis ” 

Suurem osa Eesti suremuse uuringutest on näidanud ainult staatilisi kaarte ega pole andnud dünaamilist 

vaadet elanikkonna suremusest ajalis-ruumilisest vaatest lähtuvalt. Suremuse hindamine dünaamilises 

ajaperspektiivis võiks aidata rahvatervise valdkonnas paremini otsuseid langetada. Antud uurimustöö 

põhieesmärk oli uurida aastatel 2005–2019 kolme peamise surmapõhjuse (vereringeelundite haigused, 

pahaloomulised kasvajad ning õnnetusjuhtumid, mürgistused ja traumad) ajalis-ruumilist mustrit 

Eestis. Suremuse geograafiliste mustrite uurimiseks rakendati ruumilise autokorrelatsiooni globaalset 

ja kohalikku analüüsi ning Kulldorffi skanneeringu statistikat. Statistiliselt olulist ruumilist 

heterogeensust täheldati surmade puhul, mis saabusid õnnetusjuhtumite, mürgistuste ja traumade 

tagajärjel, kuid mitte vereringeelundite haiguste ega pahaloomuliste kasvajate tõttu saabunud surmade 

puhul. Lisaks leiti kõigi haiguste puhul statistiliselt olulised nn kuum- ja külmpunkid. 

Uurimisperioodil tuvastati vähemalt kaks ruumilist suremuse kogumit erinevate surmapõhjuste ja 

kindlate ajaliste rühmade vahel. Selle uuringu tulemused võivad olla aluseks suremuse edasistele 

uuringutele Eestis. 

Märksõnad: ruumianalüüs, ajalis-ruumiline analüüs, haiguste kogumid, suremus 

CERCSi kood: B680 – Rahvatervishoid, epidemioloogia; S230 – Sotsiaalne geograafia 

Abstract 

Title: „Cause specific death rates and their geographic aspect in Estonia” 

Most of the mortality research in Estonia has only shown static maps and has not provided a dynamic 

view of the population’s mortality status from a spatiotemporal point of view. The evaluation of 

mortality in a dynamic time perspective could improve decision making in public health. The main 

aim of the study was to investigate spatiotemporal pattern of three major causes of death (circulatory 

diseases, malignant neoplasms, and injury and poisoning) in Estonia from 2005 to 2019. Global and 

local spatial autocorrelation analyses, and Kulldorff’s scan statistic were applied to explore the 

geographical patterns of mortality. Overall, a statistically significant spatial heterogeneity was 

observed in the mortality due to injury and poisoning, but not due to circulatory diseases nor malignant 

neoplasms. Moreover, statistically significant clusters of hot spots and/or cold spots were identified 

for all diseases. There were at least two spatial clusters of mortality identified in different diseases and 

specific time clustering during the study period. The findings of this study can serve as a basis for 

further studies of mortality in Estonia. 

Keywords: spatial analysis, spatiotemporal analysis, disease clusters, mortality. 

CERCS code: B680 – Public health, epidemiology; S230 – Social geography 
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1. Introduction 

Mortality statistics are a relevant source of information about population health － they allow to 

analyse current demographic conditions, suggest trends and patterns of disease risk in specific 

communities over time, as well as determine the prospects of potential changes in mortality conditions 

of the future. Geographic representation of mortality data is a valuable public health tool for 

formulating hypotheses about the aetiology of diseases, finding possible risk factors for disease, and 

identifying specific locations where changes in health policy need to be made (Gundersen, 2000).  

Spatial epidemiology is an analysis of geographic variations in disease with respect to demographic, 

environmental, behavioural, socio-economic, genetic, and infectious risk factors (Graham et al., 2004). 

Geographic Information Systems (GIS) is an important asset in the field of spatial epidemiology. GIS 

has been widely used to analyse the spatiotemporal characteristics of both communicable diseases (K. 

Rahu et al., 2019) and non-communicable diseases (NCDs) (Almendra and Santana, 2020; Torres-

Roman et al., 2019).  

Advances in GIS and modern statistical methodology together with the availability of high-resolution, 

geographically referenced health databases enable to address of both tasks, i.e., inference on the 

geographical distribution of the disease and its prediction at new locations. For instance, global 

autocorrelation is used to identify the clusters of disease and local autocorrelation is used to examine 

regional patterns and ascertain the exact clustering location (Torres-Roman et al., 2019). The 

spatiotemporal scan is used to detect diseases in time and space, verify the random distribution of the 

disease in time and space, and ascertain the number of cases in a region (Almendra and Santana, 2020). 

The spatiotemporal investigation is one of the current frontiers in the evolution of GIS, which could 

identify key nodes in the spread of infection, defined by time spent at unique locations, can help us 

understand past infectious events and predict future developments (Bhunia and Shit, 2019; Lawson et 

al., 2016). 

Numerous researchers have studied the epidemiology of different diseases in Estonia, however, several 

of the recent studies of cause-specific mortality have generally focused on only a single cause and/or 

selected causes of death, such as cancers (Ojamaa, 2019; Ojamaa et al., 2019; Pärn et al., 2019), 

cardiovascular diseases (Schneider et al., 2020), and neurodegenerative disorder like Parkinson’s 

disease (Kadastik-Eerme et al., 2019). In addition to that, the studies are presenting only a static 

snapshot of disease distribution or analysing socio-demographic (Kaja Rahu et al., 2019), ethnicity 

(Reile and Leinsalu, 2017), education level, and place of residences differences (Lai and Leinsalu, 

2015) – a comprehensive studies analysing the spatial and temporal distributions of mortality in 
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Estonia is limited. Therefore, the study aims to use a combination of GIS and statistical analysis to 

describe the temporal and spatial trends of mortality caused by various diseases in Estonia.  

To achieve the aim of the research, the following research questions are stated about mortality in 

Estonia:  

1. Where is the disease mortality significantly clustered? 

2. How is mortality distributed spatially? What specific areas are with a high risk of disease 

mortality? 

3. What is the spatiotemporal pattern in disease mortality in Estonia?  

 

 

 

 

 

 

 

 

 



  7  

 

2. Literature Review 

2.1 Spatial epidemiology 

Disease is closely linked to the ideas of spatial and spatiotemporal proximity; thus, epidemiological 

analyses have to take both space and time into account. Spatial epidemiology is an analysis of 

geographic variations in a disease that incorporates the spatial perspective into the design and analysis 

of the distribution, determinants, and outcomes of all aspects of health (English, 1992; Kirby et al., 

2017).  

The beginning of spatial epidemiology dates back to the early 1800s when John Snow investigated the 

cholera epidemic in London by plotting the location of cholera cases using maps. In his study, Snow 

was able to see the spatial pattern of cholera cases in relation to potential risk factors, in this instance 

the locations of water pumps. He furthermore made solid use of statistics to demonstrate the 

connections between the quality of the source of water and cholera incidence and illustrate the spread 

of the disease and disease clusters around the Board Street water pump in London (Walter, 2001). 

Centuries pass, technologies advance, and a growing number of tools are now available to address 

spatial questions. For instance, GIS can generate meaningful results by integrating data from many 

sources and displaying and analysing the information together.  

Nowadays, statistical data analysis is the most consistent and recognised set of tools to evaluate spatial 

datasets. Statistical analysis with spatial or spatiotemporal datasets is called the science of spatial 

statistics or geostatistics. Hart first proposed the term geostatistics in 1954 to use in the mining industry 

(Hart, 1954). Coming to public health, nowadays, spatial statistics are commonly used to construct 

maps of spatial variation in disease, since it provides imperative information on how a disease is 

extended; which are the regions affected by the disease and forecast the next regions which have the 

higher prospect to be affected in order to control it (Elliot et al., 2000).  

Application of spatial statistics and GIS has been widely used in the spatial epidemiological study to 

analyse the spatial or spatiotemporal characteristics of communicable and non-communicable diseases 

(Auchincloss et al., 2012; Singh et al., 2016).  

There are a number of historical studies in communicable diseases. For instance, Tiwari et al. (2006) 

had analysed the spatial pattern of tuberculosis occurrence in 13 microscopic centres in Almora district, 

India. They discovered hotspots of tuberculosis in Almora district by performing spatial scan statistics 

created by Martin Kulldorff. The study concluded that the study has demonstrated the use of the health 

data, spatial scan statistic and GIS can provide necessary feedback about the statistically significant 
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hotspots of tuberculosis occurrence in the region to plan a more effective public health strategy. 

Gething et al. (2012) conducted a study to map the global endemicity of malaria. The study used data 

collected from 1985 to 2010 and applied a spatiotemporal Bayesian model-based geostatistical 

approach to estimate malaria endemicity. They identified regional differences of malaria endemicity 

and transmission, hotspots of the endemicity in South East Asia and small pockets of Amazonia, 

whereas the low endemic was found in Africa. A more recent study by Rau et al. (2020) applied 

Kulldorf’s retrospective spatial scan statistic to cluster tick-Borne diseases in north-central Wisconsin 

from 2000–2016. They found that increasing non-Lyme tick-borne diseases prevalence in north-central 

Wisconsin varies in geographic space and time. The study concluded that public health practitioners 

could use their findings to increase public awareness and improve case detection. 

In the area of non-communicable diseases, Erdogan (2009) performed a spatial analysis of traffic 

accident statistics and road mortality among the provinces of Turkey. In his case study, he employed 

four spatial autocorrelation techniques: two global spatial autocorrelation techniques, Moran’s I and 

Geary’s C, and two Local Indicator of the Spatial Association (LISA) techniques, local Moran’s I and 

local Getis-Ord statistics. A similar analysis was performed by Vaz et al. (2020), where they applied 

local and global spatial autocorrelation to assess for self-harm by male, female in 140 Toronto 

neighbourhoods in the greater Toronto area, Canada. In a study about diseases of the circulatory system, 

Rheenen et al. (2015) integrate health care administrative datasets with GIS to identify the location of 

regional disparities in the spatial distribution of stroke occurrence and outcomes in Alberta, Canada. 

They found significant hotspots for ischemic stroke, transient ischemic attack, and in-hospital 

mortality, but no evidence of spatial association of stroke risk factor and ischemic stroke, transient 

ischemic attack, or in-hospital mortality were identified.  

Moreover, GIS tools can also be used to display unmeasured characteristics like exposome and 

investigate relationships between disease clusters and underlying community characteristics such as 

socio-economic and environmental factors. For instance, Alene et al. (2017) employed global Moran’s 

I statistic, Anselin Local Moran’s I statistic, and the Getis-Ord statistic to tuberculosis mortality data 

of 20 districts in north-western Ethiopia to identify spatial autocorrelation of the disease over the study 

area and at the local scale. They found that paediatric tuberculosis was spatiotemporally clustered in 

north-western Ethiopia was associated with several socio-climatic factors, including urbanisation, 

internal migration, educational status, rainfall, and temperature. Another study by Scott et al. (2017) 

conducted a study about geospatial clustering of inflammatory breast cancer among US females. This 

study identified significant spatial clustering of county-based inflammatory breast cancer rates among 
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US females and their underlying social and economic environmental factors by performing global and 

local spatial autocorrelation analyses and statistical analysis. 

Recent advancements in GIS and data availability create opportunities for researchers to improve on 

the traditional reporting of disease at a national or regional scale by studying variations in disease 

occurrence and its distribution at a local scale and allows to predict new locations of disease. 

Prospective space-time scan statistic developed by Martin Kulldorff can detect statistically significant 

active clusters of diseases for the present time period and detect emerging hotspots of disease (Chen 

et al., 2016; Jones et al., 2006; Kulldorff et al., 2005). In 2005, Kulldorff et al. propose a prospective 

space-time permutation scan statistic for the early detection of disease outbreaks with data about 

population-at-risk. They used data about daily analyses of hospital emergency department visits in 

New York City to evaluates the proposed method. The study utilised the possibility of using a new 

method for early disease detection surveillance systems, since the space-time permutation scan statistic 

has minimal assumptions about the time, geographical location, or size of the outbreak and adjusts for 

natural purely spatial and purely temporal variation. Jones et al. (2006) applied a prospective space-

time scan statistic to Chicago’s 2002 shigellosis surveillance data to evaluate active clusters of disease 

and detects twelve significant live clusters that all of the community clusters were located in the west-

central part of the city with a temporal span of 28 days. More recently, Chen et al. (2016) designed an 

online analytical tool for local public health workers to prospectively detect ongoing dengue fever 

hotspots on a weekly basis at the village level by using a total of 57,516 confirmed cases of dengue 

fever in 2014 and 2015 that collected from the Taiwan Centres for Disease Control. They iteratively 

applied discrete Poisson model space–time scan statistics to detect the currently active cluster of 

dengue fever, dengue-epidemic area in each village of Tainan and Kaohsiung.  

 

2.1.1 Statistical methods for spatial epidemiology  

In spatial epidemiology, GIS and spatial statistical analysis provide unique tools to answer two 

fundamental questions; “Where and when diseases tend to occur?” and “Where does such pattern 

exist?”.  

The main spatial epidemiological inquiries are disease mapping, geographical correlation studies and 

cluster detection. 

Disease mapping 

Disease maps have been used since 1800s, a famous example, John Snow mapped the 1814 London 

cholera epidemic (Snow et al., 1936). Disease mapping provides information on disease occurrence 
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across a geographic space by displaying a visual summary of geographical risk and providing estimates 

of risk by area. Moreover, disease mapping helps to generate hypothesis before the formal examination 

via spatial modelling and risk assessment.  

The most common approaches to visualise disease data is to use choropleth maps. A choropleth is a 

conventional method of summarising spatial data based on statistical, administrative, or enumeration 

units and can epitomise categorical and numerical data (Pfeiffer et al., 2008b). A choropleth map shows 

information by colouring each enumeration unit with colour, shade, dot, or hatch, providing an 

indication of the magnitude of the variable of interest.  

From the classic study of cholera to recent analyses on emerging diseases, mapping disease pattern has 

been the fundamental session of spatial epidemiological analysis.  

Geographical correlation studies 

Geographical correlation study is to investigate geographic disparities across a population in exposure 

to environmental, socio-economic, and geographic variables in relation to health outcomes measured 

on a geographic scale – deal with the association between disease risk and the exposures (Elliott and 

Wartenberg, 2004). Such investigations help to study the aetiology of disease and may support 

supplementary research. 

In recent years, there has been increasing interest in the field of exposure assessment; thus, new 

methods have been developed, including analytical, measurement, modelling, and statistical methods. 

The use of GIS together with remote sensing, personal sensors, and omics technologies is being 

explored to improve exposure assessment. GIS and geostatistical methods can be used to analyse the 

exposome of the disease. When spatial variation of a continuous attribute is often too irregular 

Geostatistical modelling by simple, smooth mathematical function can be applied. Kriging can be used 

to model the general trend of the deterministic data, the smaller local variations, and the uncorrelated 

noise. 

Spatial clustering 

Investigation of disease clusters and disease incidence/mortality near a point source is commonly 

known as clustering/cluster detection. Cluster methods are the most common tool for assessing spatial 

patterns; to determine whether the disease clusters are statistically significant and worthy of further 

investigation, or whether it is likely to be occurred by chance or is simply a reflection of the distribution 

of the population at risk. Cluster methods that evaluate whether diseases are close in space are also 

close in time, and vice versa is called space-time clustering.  
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There are two different methods for analysing clusters; Global and Local (Besag and Newell, 1991). 

The term clustering applies to global methods of cluster analysis, whereas cluster detection refers to 

local methods of cluster analysis. Global clustering methods are used to measure the correlation among 

neighbouring observations, whether the pattern expressed is clustered, dispersed or random. Local 

cluster detection methods define the locations and the characteristics of clusters, such as their location, 

size, and intensity.  

One approach to define clusters in data is using autocorrelation statistics. Spatial autocorrelation 

statistics measure the degree of spatial similarity observed among neighbouring values of an attribute 

over a study area. This follows Tobler’s first law of geography, which states that: “Everything is related 

to everything else, but near things are more related than distant things” (Tobler, 1970).  

Moran’s I statistic is one of the most used ways of measuring spatial autocorrelation. Moran’s I is an 

inferential statistics, similar to Pearson’s correlation coefficient, and measures spatial autocorrelation 

based on feature locations and feature values (Moran, 1950).  

There are many examples of the use of Moran’s I in the literature. Morris and Munasinghe (1994) use 

Moran’s I to investigate the geographic distribution of hospital admissions for pneumonia, acute 

respiratory infections, asthma, and chronic obstructive pulmonary disease from the United States 

between 1984 and 1989 using medical admissions records. The analysis demonstrates significant 

clustering of hospital admission rates for all four respiratory diseases among the elderly, particularly 

in the southeast and the northern states. Moran’s I is also used by Odoi et al. (2003) to assess 

autocorrelation of incidence rates of human giardiasis in Ontario, Canada, and Khamis and EL-Refae 

(2012) used to investigate spatial autocorrelation of cases of chronic diseases in Iraq in 2007. Nyari et 

al. (2013) use Moran’s I to analyse clustering of childhood acute leukaemia in Hungary between 1981 

and 2000.  

Moreover, Anselin Local Moran’s I and Getis-Ord Gi* spatial statistic are used to assess the spatial 

clustering for high risk (hotspots) and low risk (coldspots) as well as outliers. The local Moran test 

measures local spatial autocorrelation and clustering within the small areas that together comprise a 

study area by decomposing Moran’s I statistic into contributions for each area within a study area 

(Anselin, 1995). Getis-Ord Gi* spatial statistics identifies clusters by observing at each feature within 

the framework of neighbouring features. A hotspot may be exhibited if the value for a feature is high 

and the values for adjacent features are also high.  

There are many examples of using Anselin Local Moran’s I and Getis-Ord Gi* statistic to identify 

hotspots of disease, Tsai et al. (2009) uses these analyses to determine the location of hotspots as well 
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as spatial patterns of 20 leading causes of death in Taiwan in 2006 and found that the prevalence of 

tuberculosis in Taiwan is closely related to the location of aboriginal townships. Prasannakumar et al. 

(2011) The patterns of localisation and distribution of road traffic hotspots in India was assessed using 

Moran’s I method of spatial autocorrelation, Getis-Ord Gi* statistics, demonstrating that the traffic 

accidents are clustered in nature. Marotta et al. (2019) examined spatial patterns of overdose deaths in 

New York State between 2013 and 2015. The analysis suggests that the rates of opioid overdose deaths 

are clustered in New York.  

Scan statistics is another approach commonly used to identify clusters in data. Scan statistics or 

window approach is first proposed by Joseph Naus in the 1960s to applied in epidemiology, public 

health and astronomy (Naus, 1964). For instance, Paneth et al. (1984) used data from Monmouth 

Medical Center in New Jersey, the United States, in October and November 1977 and applied scan 

statistic to investigated a temporal cluster of left-sided congenital heart disease.  

Martin Kulldorff employed a likelihood ratio test within a window placed over the study area to find 

the most likely cluster (Kulldorff and Nagarwalla, 1995) and extended the idea of scan statistics to 

multidimensional setting and varying window sizes in 1997 to apply in epidemiological analyses 

(Kulldorff, 1997). In Kulldorff’s scan statistics, a series of circular window of varying size is 

constructed for each specified location, and the size of each window is set to increase continuously 

from zero until some fixed percentage of the total population is included. Each window absorbs the 

nearest neighbouring locations that fall inside it, and the maximum ratio is found after windows of 

different sizes have scanned the study area.  

Kulldorff’s spatial scan statistics has been widely used to analyse cluster of various disease, for 

instance, Kulldorff et al. (1997) detected clusters of high breast cancer mortality in Northeast of New 

York, the United States, by utilising scan statistics to demographic data and age-specific breast cancer 

mortality rates for 11 north-eastern states, the District of Columbia for 1988–1992. Green et al. (2003) 

used scan statistics to identified geographic variability of diabetes mellitus prevalence in the City of 

Winnipeg, Manitoba in Canada in 1998, demonstrating significant clustering and small-area variations 

in the prevalence of diabetes mellitus in the City of Winnipeg. Brooker et al. (2004) investigated the 

spatial distribution of clinical malaria during an epidemic and investigate putative risk factors, using 

household surveys, household geographical location from geographical positioning system and 

landcover types determined using high spatial resolution satellite sensor data. They identified 

significant spatial clusters of malaria cases using the spatial scan statistic, and the risk of malaria was 

higher in children with underweight, lived at lower altitudes, and low availability of drugs.  
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Clearly, within the epidemiological study, analysis has to take both spatial and temporal component. 

Kulldorff has also developed a method to detect clusters in space and time by extending the idea of a 

two-dimensional circular window to a three-dimensional cylinder passing through time (Kulldorff et 

al., 1998). 

Hjalmars et al. (1999) use the space-time scan statistic to investigate clustering of childhood malignant 

brain tumours in Sweden between 1973-1992 and analyse all primary paediatric brain tumours derived 

diagnosed and reported in all relevant Swedish hospitals and physicians, neoplastic diseases registered 

in the Swedish Cancer Registry. They found an increase in rates of these cancers during the period 

1973 to 1992, but no clustering in space or time were identified. Space-time scan statistic is also used 

by Ge et al. (2016) to investigate space-time clustering of tuberculosis cases in China, demonstrating 

an increase in rates of these cluster of tuberculosis from early spring 2010 to the end of 2011. Other 

recent examples of the space-time scan statistic include explorations of clustering in vector-borne 

disease causes severe psychological in North-east of Iran (Mollalo et al., 2015), offences and police 

recorded data over Stockholm, Sweden (Uittenbogaard and Ceccato, 2012), bovine spongiform 

encephalopathy in cattle in Hokkaido, Japan (Kadohira et al., 2008).  

2.1.2 Use of spatial analysis in the epidemiological study  

Researchers have implemented various methods to determine how the disease spreads and how the 

spatial pattern of the disease is changing. As one of the three broad categories of spatial 

epidemiological enquiry, spatial cluster methods are the most common tool for assessing non-random 

spatial patterns of disease.  

The most commonly applied method for aggregated data to test for spatial autocorrelation is Moran’s 

I (Moran 1950); the LISA and Getis Ord statistics were widely applied to identify clusters or hotspots 

for aggregated data (Auchincloss et al., 2012; Kulldorff et al., 2006; Singh et al., 2016). Recent 

research by Baptista and Queiroz (2019) uses global and local spatial autocorrelation methods to 

identify recent cardiovascular disease mortality patterns in Brazil. The result successfully 

demonstrated the dynamics of the health transition in Brazil in a recent period of time and its impacts 

on public health policies.  

In a cancer study, Al-Ahmadi and Al-Zahrani (2013) analysed population-based records of cancers 

diagnosed between 1998 and 2004 to investigating non-random incidence patterns of common cancers 

in Saudi Arabia by employing the global Moran’s I and Anselin’s local Moran’s I statistics. The result 

shows that the male lung cancer and female breast cancer exhibited positive spatial autocorrelation 

and small significant clusters of lung cancer, prostate cancer, and Hodgkin’s disease among males in 
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the Eastern region and significant clusters of thyroid cancers in females in the Eastern and Riyadh 

regions. Shah et al. (2014) performed analyses on colorectal cancer incidence in Malaysia diagnosed 

in 1995 to 2011. From a total of 146 cases, hotspot analysis using Getis-Ord Gi* showed that hotspots 

were fell on the northeast side of Kuala Lumpur, but there was no significant global spatial 

autocorrelation in the study area. 

Osayomi and Areola (2015) investigated spatial clustering patterns and hotspots of road traffic 

accidents, injuries and deaths in Nigeria. With the aid of Global Moran’s I and Local Getis-Ord 

Gi*statistic, they found significant positive spatial autocorrelation and an accident belt in the 

southwestern region of Nigeria from 2002 to 2007. A more recent analysis was conducted by 

Santaularia et al. (2021). They employed Moran’s I statistic and Anselin’s LISA to assess the spatial 

distribution of different forms of criminal punishment with violent injuries in children in Minnesota, 

in the United States from 2010 to 2014, using hospital discharge data and court administrative data. 

The analyses demonstrated that child abuse injury, incarceration and probation are significantly 

geographically concentrated in similar regions, whereas violent injuries and monetary sanctions are 

more dispersed throughout Minnesota. Manap et al. (2021) utilised Moran’s I spatial autocorrelation 

and the Getis–Ord Gi* statistic to predict clustering hotspots for heavy vehicle accidents in Malaysia 

from June 2016 to the end of May 2019. From 7276 heavy vehicles accident cases, a total of 22 heavy 

vehicle risk segments were identified as hotspots at significance levels from 0.10 to 0.01 with a 1355 

m buffer radius.  

In the epidemiological analysis, clusters of the disease may change not just in space but also in time. 

Space-time clustering is one of the common methods applies in broader epidemiological studies; a 

study conducted by Martins-Melo et al. (2016) can be an excellent example of the use of spatial and 

spatiotemporal clustering of disease. They studied the spatial and spatiotemporal cluster analysis to 

investigates nationwide trends and spatial distribution of neglected tropical disease-related mortality 

in Brazil from 2000 to 2011. The main spatial techniques carried out in this study were using global 

spatial autocorrelation to investigate the presence of disease cluster; LISA to identify significant spatial 

hotspots, coldspots, and outliers of the disease; and Kulldorff’s space-time scan statistics to identify 

spatiotemporal clusters of the disease. The results demonstrated a significant spatial and 

spatiotemporal high-risk cluster for neglected tropical disease-related mortality in all regions. They 

also identified a significant association between socio-economical characteristics of the regions and 

the increase of mortality. 

Despite the high mortality due to diseases of the circulatory system, few historical studies have been 

conducted. Wang et al. (2014) used spatial statistics, and spatial analysis was used to determine the 



  15  

 

spatiotemporal distribution and identify patterns of change at the district level. Space-time scan 

statistics were used to identify spatiotemporal clusters of ischemic heart disease hospital admissions 

at the district level in Shenzhen, China, from 2003 to 2012. The results revealed that the incidence 

rates of ischemic heart disease increased for all districts in Shenzhen, and the highest and the lowest 

district predicted to have the highest incidence rates among all of the districts from 2013 to 2015. In a 

more recent study, space-time clustering has been successfully implemented in the 278 municipalities 

of Continental Portugal, where it showed how rural characteristics of municipality affects trends of 

cardiovascular mortality (Almendra and Santana, 2020).  

Martin Kulldorff first introduced space-time scan statistics in 1997 (Kulldorff et al., 1998). The study 

applied space-time scan statistics to 1175 brain cancer cases in Los Alamos, New Mexico, between 

1973 and 1991. They demonstrated the possibility of using space-time scan statistics for the public 

health official’s toolbox as a screening tool for evaluating cluster alarms. After about two decades, 

researchers from Ecuador uses global Moran’ I and space-time scan statistics to identify trends and 

spatial patterns of oral cancer mortality in Ecuador between 2001 and 2016 (Núñez-González et al., 

2018a). They found that oral cancer mortality in Ecuador increased over the 16-year study period, 

predominantly in the young groups.  

Núñez-González et al. (2018b) also uses spatial autocorrelation and scan statistics in suicide analysis. 

They analysed the spatiotemporal clusters and the spatial distribution of suicide in Ecuador, from 2011 

to 2016 using all death certificates of suicide among adolescents in the 10 - 19 age groups both sex 

from the National Institute of Statistics and Census database in Ecuador. Suicide rates in adolescents 

increased over the study period; space-time scan statistics identified two significant spatial clusters for 

a high-risk of suicide where the primary most likely cluster included 83 cantons in Amazon and 

Southern Highlands regions of the country. Spatial autocorrelation through global Moran’s I and LISA 

test showed a positive spatial autocorrelation, and a high-risk cluster was found in 14 cantons located 

in 6 provinces, whereas a low-rates cluster included 18 cantons located in 6 provinces. Linton et al. 

(2014) assessed the spatial and temporal clusters of drug activity in Baltimore, Maryland, from 2000 

to 2010. A discrete Poisson model-based space-time scan statistic was used to identify statistically 

significant clusters of narcotic calls for service across space and time at the neighbourhood level. They 

found a spike of the narcotic drug after 2003 in Baltimore; significant spatial and spatiotemporal 

clusters in Southeast, Northeast, Northwest, and West Baltimore from 2001 to 2010 and decrease 

trends in East Baltimore from 2001 to 2003. The study proves the effectiveness of using space-time 

scan statistics to identify persistent clusters of drug activities and generates hypotheses on the 

association between targeted local policies and drug activity. Moreover, Song et al. (2018) used 
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Poisson model Kulldorff’s space-time scan statistics to identify spatiotemporal clusters of a traffic 

accident in the United Kingdom in 2016. They were demonstrating two statistically significant clusters 

in the study area. In the study, they concluded that Kulldorff’s space-time scan statistics is a suitable 

method for identifying traffic accident space-time clusters - it has the ability to pinpointing the exact 

location, size and period of statistically significant clusters from a vast dataset without manually 

designing meaningful temporal windows. 

 

2.2 Major causes of death in Estonia  

The major cause of death in Estonia are circulatory diseases, neoplasms and injuries, which constituted 

about 80% of overall mortality in the country in 2019 (National Institute for Health Development, 

2020a). Details of clustering of causes using the International Classification of Diseases and Related 

Health Problems (ICD) tenth version by the World Health Organization (WHO) were described in 

Table 1. 

 

Table 1. Three major causes of death in Estonia and their sub-categories 

ICD-10 Code Disease  

C00-C97 Malignant neoplasms 

C00-C75 Malignant neoplasms, stated or presumed to be primary, of specified sites, except 

of lymphoid, haematopoietic, and related tissue 

C76-C80 Malignant neoplasms of ill-defined, secondary, and unspecified sites 

C81-C96 Malignant neoplasms, stated or presumed to be primary, of lymphoid, 

haematopoietic, and related tissue 

C-97 Malignant neoplasms of independent (primary) multiple sites 

I00-I99 Diseases of the circulatory system 

I00-I02 Acute rheumatic fever 

I05-I09 Chronic rheumatic heart diseases 

I10-I15 Hypertensive diseases 

I20-I25 Ischaemic heart diseases 

I26-I28 Pulmonary heart disease and diseases of pulmonary circulation 

I30-I52 Other forms of heart disease 

I60-I69 Cerebrovascular diseases 

I70-I79 Diseases of arteries, arterioles, and capillaries 

I80-I89 Diseases of veins, lymphatic vessels, and lymph nodes, not elsewhere classified 
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I95-I99 Other and unspecified disorders of the circulatory system 

V01-Y89 Injury and poisoning 

V01-X59 Accidents 

X60-X84 Intentional self-harm 

X85-Y09 Assault 

Y10-Y34 Event of undetermined intent 

Y35-Y36 Legal intervention and operations of war 

Y40-Y84 Complications of medical and surgical care 

Y85-Y89 Sequelae of external causes of morbidity and mortality 

Y90-Y98 Supplementary factors related to causes of morbidity and mortality classified 

elsewhere 

 

2.2.1 Diseases of the circulatory systems 

Circulatory diseases, also often used as cardiovascular diseases (CVDs), are among the main types of 

NCDs, consisting of disorders or illnesses related to the circulatory system, such as the heart and blood 

vessels. The main causes of circulatory diseases death in the world are ischaemic heart disease, stroke 

and chronic obstructive pulmonary disease, responsible for approximately 16%, 11%, and 6% of total 

deaths in 2011 (World Health Organization, 2020).  

In Estonia, although the mortality due to circulatory diseases has decreased, it still remains the main 

cause of death in Estonia with the share of CVDs from total mortality in 2019 being 50 % (National 

Institute for Health Development, 2020b) 

2.2.2 Malignant neoplasm 

A neoplasm, also often called a tumour, is an abnormal mass of tissue growth resulting from the 

excessive and uncontrolled proliferation of cells. When the tumours are abnormal and grow 

uncontrollably, invade and destroy nearby tissues, spread to other tissues within the body or 

metastasise. They are concluded as a malignant neoplasm, are collectively known as cancers. 

Malignant neoplasms is the second leading cause of death worldwide. According to GLOBACAN, in 

2020, around 19.3 million cancer cases were newly diagnosed and 9.9 million deaths globally, 4.3 

million new cancer cases and 1.9 million death in Europe. The cancer burden and mortality have 

steadily increased and estimated to rise by 62.5% and reach 16 million in 2040 (International Agency 

for Research on Cancer, 2020).  
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In Estonia, the share of cancer from total mortality in 2019 was 24 %, accounting for around 7.8 

thousand new cancer cases diagnosed and 4009 deaths and expected to reach nearly 5 thousand death 

in 2040 (International Agency for Research on Cancer, 2020; National Institute for Health 

Development, 2020a).  

2.2.3 Injury and poisoning  

Injury is an act of violence against others or oneself, road traffic crashes, burns, drowning, falls, and 

poisonings. Injuries are among the most prominent public health concerns globally, and three leading 

causes of injury are road traffic injuries, suicide, and falls. According to WHO, deaths caused by 

injuries are predicted to rise; road traffic injuries are predicted to become the 7th leading cause of 

death; falls rising to become the 17th leading cause of death; and suicide remaining in the top 20 by 

2030 (World Health Organization, 2014).  

In Estonia, although the mortality of injuries has decreased, injuries are still the third major causes of 

death, accounting for 849 Estonian inhabitants died in 2017 (National Institute for Health Development, 

2020b; Panov, 2018). The main causes of injury deaths are alcohol and narcotic intoxication and 

suicide; intoxication was common in men, whereas most deaths in women were suicide-related cases 

(Panov, 2018). 
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3. Data and Methodology 

3.1 Study area 

Estonia is situated in north-eastern Europe, bordering the Gulf of Finland and the Baltic Sea, between 

Latvia and Russia, with an area of 45,227 km2. Estonia is administratively divided into 15 counties 

(first-level administrative division) and as of December 2020 had a population of 1,328,976 people 

(As of December 2020). The study was conducted based on the county level (Figure 1).  

 

Figure 1. Study area map 

3.2 Data 

Mortality data of three major causes of death in Estonia was acquired from the Health Statistics and 

Health Research Database administrated by National Institute for Health Development (accessed 11 

November 2020). These data are publicly available free of charge at the website of the Health Statistics 

and Health Research Database.  

The Health Statistics and Health Research Database provides mortality data that have standardised 

using ‘European standard population’, which is published in 2013 (European Commission. Eurostat., 

2013). This standard population is given in annexe 1. The data were stratified by the main cause of 

death and covered 15 years, 2005 to 2019 and included all deaths in Estonia. Causes of death are coded 

according to the ICD tenth revision by WHO. Mortality due to Malignant neoplasms (C00-C97), 
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Diseases of the circulatory system (I00-I99), Injury and poisoning (V01-Y89) were included in the 

study.  

Spatial data, county boundary map, was acquired from Estonia Land Board, and population dataset of 

2005–2019 for each county was obtained from Statistic Estonia.  

The analyses were based exclusively on publicly available secondary data for which there was no 

possibility of identifying individuals.  

3.3 Methodology 

A simplified flowchart of this study can be found in Figure 2. The input datasets underwent pre-

processing, then followed by spatial analysis. In order to examine spatiotemporal trends, three different 

analyses were conducted: a general mortality trend analysis, a spatial cluster analysis, and a spatial-

temporal cluster analysis (Table 2).  

 

 

Figure 2. Overview of the workflow 
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Table 2. Overview of analytical tools 

Research objective Type of analysis Software 

Where is the disease mortality 

significantly clustered? 

Global spatial autocorrelation 

 

ArcGIS 

How is mortality distributed spatially? 

What specific areas are with a high risk 

of disease mortality? 

Local spatial autocorrelation 

(Cluster and Outlier analysis) 

Hotspot analysis (Getis-Ord Gi* 

test) 

ArcGIS 

What is the spatiotemporal pattern in 

disease mortality in Estonia? 

Space-time model and Spatial 

Variation in Temporal Trends 

Model 

ArcGIS, SaTScan 

 

 

3.3.2 Mortality trends analysis  

The mortality data were aggregated over a period of three years in order to reduce the year by year 

fluctuations due to small mortality numbers in small counties for statistical processing. Obtained 

mortality dataset was manipulated before joining spatial data and mortality data, then joined spatial 

data and mortality data for further analysis.  

Standardised mortality rates were divided into five-classes and displayed accordingly by different 

shades of colours. The mortality maps of 3-yearly intervals were mapped using ArcMap v10.6.1. to 

describe and compare the geographic pattern of disease mortality in Estonia over the study period.  

3.3.3 Global Index of Spatial autocorrelation – Grobal Moran’s I  

Global indexes of spatial autocorrelation were used to assess the similarity, or spatial dependence, 

across counties with respect to mortality rates. In other words, are counties with similar mortality rates 

located close together or are mortality rates randomly distributed across Estonia? 

The most applied method to test for global spatial autocorrelation is Moran’s I (Pfeiffer et al., 2008a; 

Singh et al., 2016); it quantifies the similarity of an outcome variable among areas that are defined as 

spatially related (Moran, 1950).  

𝐼 =  
𝑁

Σ𝑖Σ𝑗  𝑤𝑖𝑗
 ×  

Σ𝑖Σ𝑗  𝑤𝑖𝑗(𝑦𝑖 − 𝑦̅)(𝑦𝑗 − 𝑦̅)

Σ𝑖 (𝑦𝑖 − 𝑦̅)2
  

where:  

N = units 
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𝑦𝑗 = attribute value for each unit i 

𝑤𝑖𝑗 = wight for unit i and j 

The expected value for Moran’s I is  

𝐸 (𝐼) =  
−𝑤𝑖

𝑛 − 1
 

with 𝑤𝑖 as the sum of the row elements.  

Like classical correlation, Moran’s I lies between +1 and -1, where zero indicates the null hypothesis 

of no clustering － the spatial allocation of the observations is random. When the Moran’s I is 

positive, it means clustering of areas of similar attribute values, whereas a negative coefficient 

indicates that neighbouring areas tend to have dissimilar attribute values.  

In order to decide the significant difference between any given pattern and a random pattern of the 

result, z-statistic is delivered from the mean and variance of I index, then compared with p-value or 

the critical value found in the normal table. High values of the Moran’s I and corresponding z-scores 

greater than 1.96 indicate that there is statistically significant clustering across Estonia (p < 0.05), 

whereas low Moran’s I and z-scores less than −1.96 indicate that there is statistically significant 

regularity.  

In this study, the global Moran’s I tool in ArcGIS was used which returns the z-score and p-value.  

3.3.3. Local indicators of spatial association (LISA) – Getis-Ord Gi* and Anselin Local Moran’s 

I 

Since Global tests of autocorrelation such as Moran’s I do not indicate where clusters of high or low 

mortality rates might occur; thus, two LISAs to examine clusters of counties with high or low mortality 

of the disease; the Getis-Ord Gi* statistic and Anselin’s LISA.  

Getis-Ord Gi* statistics given (Getis and Ord, 1992) 

𝐺𝑖
∗ =  

∑ 𝑤𝑖,𝑗𝑥𝑗 −𝑛
𝑗=1 𝑋̅ ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖,𝑗
2𝑛

𝑗=1 − (∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 )

2
]

𝑛 − 1

 

where 𝑥𝑗 is the attribute value for feature j, 𝑤𝑖,𝑗 is the spatial weight feature i and j, n is equal to the 

total number of features and: 

𝑋̅ =  
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
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𝑆 =  √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
−  (𝑋̅)2 

The Getis-Ord Gi* statistic generates a z-score and corresponding p-value for each county. For 

statistically significant positive z scores (p < 0.05), the larger the z score (where z-scores greater than 

1.96) is, the more intense the clustering of high values (a significant “hotspot”) and z-scores lower 

than −1.96 indicate a significant “coldspot” or the more intense the clustering of low values (p < 0.05). 

Additionally, Anselin’s LISA was used to detects local spatial autocorrelation or “hotspot” and spatial 

outliers, by decomposing Moran’s I statistic into contributions for each area within a study region 

(Anselin, 1995). These indicators detect clusters of either similar or dissimilar disease frequency values 

around a given observation. 

𝐼(𝑖) =  𝑧𝑖 Σ 𝑤𝑖𝑗𝑧𝑗  

where:  

𝑧𝑖 = Standardised scores of attribute values for unit i 

𝑧𝑗 = Standardised scores of attribute values for unit j 

𝑤𝑖𝑗= weight matrix 𝑤𝑖𝑗 

When the I(i) is positive, it means that a grouping of similar values (higher or lower than average) and 

a negative value indicates a combination of dissimilar values (e.g. low value surrounded by high 

values). Based on these local Moran’s Index and associated p-values, each county can then be 

classified by cluster/outlier type (COType). Counties fall into one of 5 groups (ESRI, 2019): 

• Not part of a cluster; 

• Hotspot: High mortality rates and surrounded by a cluster of high mortality rates (HH = “high-

high”); 

• Coldspot: Low mortality rates and surrounded by a cluster of low mortality rates (LL = “low-

low”); 

• Spatial outlier: High mortality rates surrounded primarily by low mortality rates (HL = “high-

low”); 

• Spatial outlier: Low mortality rates is surrounded primarily by high mortality rates (LH = “low-

high”). 

In this study, Hotspot analysis (Getis-Ord Gi*) and Cluster and Outlier Analysis (Anselin Local 

Moran’s I) tool in ArcMap v10.6.1. was used for each year and significant clusters were then visualised.  
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3.3.4. Space-time scan statistic 

In epidemiology, space-time clustering is used because geographical clusters of disease change over 

time in each of the census districts. Space-time scan statistic detects diseases in time and space, verify 

the random distribution of the disease in time and space, and ascertain the number of cases in a region 

(Singh et al., 2016). The method was developed by Kulldorff in 1997, based on a scan statistic, 

extending a two-dimensional circular window to a three-dimensional cylinder passing through time 

(Kulldorff, 1997). The cylinder base is geographic, and the radius of the window varies from zero to a 

user-specified upper limit. The height of the cylinder corresponds to time within the study period.  

When the scan statistic is used to evaluate the spatial variation in temporal trends, the scanning window 

is purely spatial in nature and the temporal trend is calculated both inside and outside the scanning 

window, for each possible geographical position with each possible window size (Kulldorff, 1997). 

The null hypothesis is that the geographical trends in different windows are the same, while the 

alternative is that the trends are different. Based on these hypotheses, the mean relative risk (RR) and 

Log-Likelihood Ratio (LLR), based on the number of observed cases versus the number of expected 

cases both inside and outside the window, were calculated. A lower LLR value indicates that the 

difference in trends is occurred by chance. The window with the largest likelihood statistic is 

considered as the most likely cluster which the trend inside the window is least likely to be the same 

as the trends outside the window, while others are considered as secondary clusters.  

The likelihood function for a specific window is proportional to (Kulldorff, 1997): 

(
𝑐

𝐸[𝑐]
)

𝑐

(
𝐶 − 𝑐

𝐶 − 𝐸[𝑐]
)

𝐶−𝑐

𝐼() 

 

Where: 

C = Total number of cases,  

C = Observed number of cases within the window and  

E[c] = Expected number of cases within the window under the null hypothesis  

 

In this study, first, retrospective Kulldorff’s space-time scan statistics with the discrete Poisson model 

was used to identify high or low-risk spatiotemporal clusters during a specific time frame. Next, the 
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spatial variation with temporal trends using a discrete Poisson model was applied to determine if there 

was a significant change over the study period.  

For all disease conditions, areas were scanned simultaneously for statistically significant high and low 

rates. For all disease condition, the circular scanning window was set to default, a maximum size of 

50% of the population and a size considered sufficiently large to ensure that small and large clusters 

could be included. The size of the temporal window was also set to the default (50 %). Additionally, 

a one-calendar time period of aggregation over the fifteen-year time frame of the study was used to 

assess any long-term patterns in the clustering of disease. A p-value was generated using 999 Monte 

Carlo simulations.  

Space-time cluster analyses were conducted using SaTScan™ software, which was developed under 

the joint auspices of (i) Martin Kulldorff, (ii) the National Cancer Institute, and (iii) Farzad Mostashari 

of the New York City Department of Health and Mental Hygiene. Statistically significant space-time 

clusters of mortality rates with p < 0.05 were mapped using ArcMap v10.6.1. 
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4. Results 

This chapter presents the results by following the methodological sequence outlined in the previous 

chapter for each disease.  

4.1 Trends of Mortality 

In general, trends of mortality for diseases of the circulatory system and injury and poisoning were 

declined. For malignant neoplasm, some counties showed an increasing trend. The mortality for death 

causes varied to a big extent (Table 3).  

Table 3. Summary statistics of standardised mortality rate (per 100,000 inhabitants) for three major 

causes of death in Estonia 

  

  

2005–

2007 

2008–

2010 

2011–

2013 

2014–

2016 

2017–

2019 

Diseases of the 

circulatory system 

Min 826.88 761.23 678.38 602.54 526.99 

Max 1143.93 1077.39 903.31 830.06 768.49 

Mean 973.03 ± 

93.55 

900.08 ± 

88.04 

764.83 ± 

66.65 

700.64 ± 

58.02 

635.16 ± 

67.47 

Malignant neoplasm Min 272.37 247.74 283.17 279.18 270.45 

Max 326.73 357.74 322.19 363.63 396.24 

Mean 297.66 ± 

15.88 

292.70 ± 

24.20 

300.54 ± 

12.47 

308.78 ± 

23.22 

306.04 ± 

29.84 
 

Injury and poisoning Min 104.57 74.44 66.18 52.34 52.19 

Max 163.12 132.62 118.05 102.01 89.26 

Mean 129.37 ± 

18.97 

98.69 ± 

18.98 

91.50 ± 

16.14 

73.36 ± 

14.54 

68.47 ± 

10.96 

  

Figures 3–5 show disease maps of standardised mortality rates per 100,000 inhabitants of three disease 

for each county in Estonia. Each county is coloured according to the category into which its 

corresponding attribute value falls; the county with dark red colour has the higher mortality rates, 

whereas county with light red colour has the lower mortality rates.  

For death caused by diseases of the circulatory system, the highest mortality (1143.93 per 100,000 

population at risk) was reported in Põlva county in 2005–2007, while the lowest occurred in Harju 

county (526.29 per 100,000 population at risk) in 2017–2019.  
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Figure 3. Standardised mortality rates of diseases caused by diseases of the circulatory system for 3-

yearly intervals from 2005–2019 

 

For malignant neoplasm, both the highest and the lowest occurred mortality were observed in 2017–

2019, in Hiiu county (396.24 per 100,000 population at risk) and Harju county (270.45 per 100,000 

population at risk), respectively.  

 

 

Figure 4. Standardised mortality rates of malignant neoplasm for 3-yearly intervals from 2005–2019 
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For injury and poisoning, the highest mortality (163.12 per 100,000 population at risk) was reported 

in Ida-Viru county in 2005–2007, while the lowest occurred in Harju county (52.19 per 100,000 

population at risk) in 2017–2019. 

 

Figure 5. Standardised mortality rates of injury and poisoning for 3-yearly intervals from 2005–2019 

 

4.2 Results for spatial Clustering  

Results of the Global Moran’s Index and local indicator of the spatial association are reported here.  

4.2.1. Clustering of Mortality rates – Moran’s I 

Moran Indexes of diseases of the circulatory system and malignant neoplasms were statistically not 

significant at a level of 0.05, meaning the null hypothesis of the observed pattern of values being 

randomly distributed could be accepted. In other words, across Estonia, the distribution of disease was 

found to be randomly clustered.  

On the other hand, for injury and poisoning, the Global Moran’s I and the corresponding z-score for 

the years 2008–2010 suggest that there was significant spatial autocorrelation of county-level mortality 

rates (Moran’s Index =0. 33, z-score =2.94, p <0.05). The Moran’s Indexes of all 15 counties in these 

years were positives, indicating that, across Estonia, counties with similar mortality rates tend to locate 

near each other.  
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4.2.2 Local autocorrelation – Getis-Ord Gi* and Anselin Local Moran’s I 

The result of global autocorrelation does not tell if the clustering of high value or low value were 

attributes to the Moran’s index. Here, local autocorrelation localises specific clusters and determine 

the magnitude of spatial autocorrelation at a local level.  

Significant clusters of counties with high (hotspots) and low (coldspots) mortality of three major 

causes of death in Estonia, as assessed by the Getis-Ord Gi* tool for the years 2005–2007 and 2017–

2019, can be seen in Figure 6, 8, and 10. Anselin Local Moran’s I confirmed some of the significant 

hot and coldspots identified by the Getis Ord G * tool. Additionally, several counties were categorised 

as spatial outliers (Figure 7,9,11).  

Disease of Circulatory system 

There was no hot and coldspot with a significance above 95% CI. However, a significant coldspot with 

90% CI was found in Lääne county in 2017–2019 and Anselin Local Moran’s I confirmed its 

significance (LL cluster). Tartu identified as LH outliers in 2005–2007 and 2011–2019, this indicates 

that the death caused by diseases of the circulatory system in Tartu was low, but the surrounding county 

has a high mortality.  

 

Figure 6. Hotspot analysis (Getis–Ord Gi*) of mortality caused by diseases of the circulatory system 

in Estonia during 2005–2019 
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Figure 7. Cluster and Outlier analysis map (Anseline Local Moran’s I) of mortality caused by 

diseases of the circulatory system in Estonia during 2005–2019 

 

Malignant neoplasm 

Significant coldspots (95% confidence and LL cluster) were seen in Võru county in 2005–2007 and in 

Tartu county in the year 2008–2010 and 2011–2013 and the significance of the clusters were also 

confirmed by Anselin Local Moran’s I test. There was no significant hotspot observed in this disease.  

 

Figure 8. Hotspot analysis (Getis–Ord Gi*) of mortality by malignant neoplasm in Estonia during 

2005–2019 
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Figure 9. Cluster and Outlier analysis map (Anseline Local Moran’s I) of mortality by malignant 

neoplasm in Estonia during 2005–2019 

 

Injury and poisoning 

Five counties in the West part of Estonia (Lääne county, Pärnu county, Hiiu county, Saare County, 

Rapla county) were part of coldspot, however, a significant coldspot (95%) was only seen in Lääne 

county in the year 2008–2010, 2017–2019. Additionally, an extreme significant hotspot (99% 

confidence and HH cluster) was appeared in Ida-Viru county in 2008-2010 and a significant hotspot 

(95% confidence and HH cluster) was found in Põlva county in the year 2011–2013. These two 

significant hotspots were also observed in Anselin Local Moran’s I test. Interestingly, Pärnu identified 

as a coldspot (LL cluster) in 2008–2010 but changed to HL outliers in 2014–2016, suggesting that, in 

2014–2016, either morality in Pärnu increased or mortality of neighbouring countries decreased.  
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Figure 10. Hotspot analysis (Getis–Ord Gi*) of mortality caused by injury and poisoning in Estonia 

during 2005–2019 

 

Figure 11. Cluster and Outlier analysis map (Anseline Local Moran’s I) of mortality caused by injury 

and poisoning in Estonia during 2005–2019 
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4.3 Results for space-time clustering 

4.3.1 Space-time clustering 

Disease of Circulatory system 

As shown in Table 7, the most likely cluster was located in Harju county from 2011–2017 (RR=0.08, 

LLR=9424.204), which there is a lower cluster of death caused by diseases of the circulatory system 

occurred in the county. Secondary clusters were identified in Valga, Rapla, Järva, Lääne-viru, Jõgeva, 

Tartu, Pärnu, Viljandi, Põlva, Võru (RR=6.35, LLR=9091.02, p<0.001) in 2007 and Saare, Hiiu, Lääne 

(RR=6.3, LLR=7682.083, p<0.001), from 2007–2013.  

 

Table 4. Spatiotemporal clusters of deaths caused by diseases of the circulatory system in Estonia 

during 2005–2019 

 County Time Frame Observed Expected  RR LLR p-value 

Most 

likely 

cluster 

Harju 2011 - 2017 1280 12393.28 0.08 9424.20 <0.001 

Secondary 

cluster 

 

Valga, Rapla, 

Järva, Lääne-

viru, Jõgeva, 

Tartu, Pärnu, 

Viljandi, 

Põlva, Võru 

2007 9647 1759.8 6.35 9091.02 <0.001 

Saare, Hiiu, 

Lääne 

2007-2013 8114 1455.11 6.3 7682.08 <0.001 

 

Malignant neoplasms 

The space-time scan statistic identified three statistically significant clusters of mortality due to 

Malignant neoplasm that occurred during 2005–2019 (Table 8). The most likely lower cluster occurred 

in Harju county during 2011–2017 (RR =0.09, LLR=3376.72, p <0.001), which suggests that lower 

mortality occurred during these years as compared to other years. The second cluster occurred in 

counties in west Estonia (Saare, Hiiu, Lääne, Rapla counties) during 2013–2019 (RR = 3.40, p <0.001) 

and in southern Estonia in the year 2019 (RR =6.63, LLR=2678.04, p <0.001), suggesting that higher 

mortality occurred during this year as compared to other years. 
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Table 5. Spatiotemporal clusters of deaths caused by malignant neoplasm in Estonia during 2005-2019 

 County Time Frame Observed Expected RR LLR p-value 

Most 

likely 

cluster 

Harju 2011-2017 564 4691.54 0.09 3376.72 <0.001 

Secondary 

cluster 

 

Saare, Hiiu, 

Lääne, Rapla 

2013-2019 3857 806.24 5.56 3211.29 <0.001 

Valga, Järva, 

Lääne-viru, 

Ida-Viru, 

Jõgeva, Tartu, 

Viljandi, 

Põlva, Võru 

2019 2689 451.48 6.63 2678.04 <0.001 

 

Injury and poisoning  

As shown in Table 9, the most likely cluster was located in Valga, Rapla, Järva, Lääne-viru, Jõgeva, 

Tartu, Pärnu, Viljandi, Põlva, Võru counties in 2007 (RR=7.69, LLR=1422.54, p<0.001), which there 

is a higher cluster of death caused by injury and poisoning occurred in these counties. Secondary 

cluster was identified in Harju (RR=0.08, LLR=1119.26, p<0.001), from 2011–2017.  

 

Table 6. Spatiotemporal clusters of deaths caused by injury and poisoning in Estonia during 2005-

2019 

 County  Time Frame Observed Expected RR LLR p-value 

Most 

likely 

cluster 

Valga, Rapla, 

Järva, Lääne-

viru, Jõgeva, 

Tartu, Pärnu, 

Viljandi, 

Põlva, Võru 

2007 1306 203.38 7.69 1422.54 <0.001 

Secondary 

cluster 

Harju 2011 - 2017 136 1432.28 0.08 1119.25 <0.001 

 

 

4.3.2 Spatial variation in temporal trends 

Figure 12 shows the result of spatial variation in temporal trend analysis. Detailed information of the 

clusters can be found in Annex 3.  
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Disease of Circulatory system 

A total of four clusters (one most likely cluster and three secondary clusters) were identified throughout 

the study period. All significant clusters were an increasing pattern in both inside and outside the 

window. Figure 12 shows the first two significant clusters; the most likely cluster of lower change rate 

was located in Ida-Viru county (LLR=155.52, p<0.001 from 2005–2019. Secondary clusters were 

found in Hiiu and Saare (LLR=57.58, p<0.001).  

Malignant neoplasm 

Figure 12 showed the spatial variation over time of mortality caused by Malignant neoplasms in 

Estonia. A total of two significant clusters (most likely cluster of the lower rate and secondary cluster 

of higher rates) were identified. All significant clusters were in an increasing pattern in both inside and 

outside the window.  

The most likely cluster was found in Ida-Viru (LLR=42.03, RR=0.55, p<0.001), a slower increase in 

mortality was detected in this county, the 15% annual increase rate among which was significantly 

slower than the observed in other counties (7.68% annually). Secondary higher rate clusters were 

detected in Valga, Järva, Pärnu, Jõgeva, Tartu, Viljandi, Põlva, Võru (LLR=18.09, RR=2.16, p<0.001).  

Injury and poisoning 

As shown in Figure 12, a total of two significant clusters (1 most likely cluster of the higher rate and 

one secondary cluster of lower rates) were identified. All significant clusters were in an increasing 

pattern both inside and outside the window. The most likely cluster of higher change rate was located 

in Ida-Viru county (LLR=16.10, p<0.00). The mean annual change in rate for this county reached 

5.43%, which was almost four times that in other counties (1.35%). Lower rate cluster was found in 

Harju, Lääne, Rapla, Järva, Jõgeva (LLR=7.61, p<0.006).  
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Figure 12. Spatiotemporal clusters of death caused by A) diseases of the circulatory system; B)  

malignant neoplasms; and C) injury and poisoning 
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5. Discussion  

5.1 Spatiotemporal patterns in mortality rate  

This study describes the geographic and temporal distribution of three major causes of death in Estonia 

over the period of 2005 to 2019. The methods adopted in this study combine spatial clustering and 

space-time clustering, allowing the identification of counties characterised by higher and/or lower 

disease mortality and of counties with temporal trends different from the rest of the country. As the 

major cause of mortality in Estonia (Statistika andmebaas, 2020), mortality due to diseases of the 

circulatory systems, malignant neoplasms, and injuries have been conducted frequently, however, 

existing studies relevant to the diseases were mostly either conducted on a regional level and/or have 

ignored the spatial patterns. To the best of author’s knowledge, this is the first study assessing the 

presence of clusters of three major cause of death in Estonia using geospatial analysis at the county 

level in Estonia. 

Moran’s Index of mortality caused by diseases of the circulatory system and malignant neoplasms 

were not statistically significant, suggesting that the general pattern of the mortality is randomly 

distributed across Estonia. However, several significant local clusters were captured by LISA and 

Hotspot analysis. On the other hand, results of the global and local Moran’s I confirmed that mortality 

rates of injury and poisoning exhibit spatial dependence, and several hotspots and coldspots were 

identified across Estonia. Furthermore, positive spatial autocorrelations were identified in the patterns 

of mortality due to injury and poisoning in 2008–2010, indicating that the mortality rates were not 

spatially homogeneous and were also different in the study area.  

Most of the occurred clusters of Hotspot analysis and LISA were also detected as part of scan statistic’s 

most likely or secondary likely clusters, which highlights the reliability of the resulted maps. This 

study found at least two space-time clusters during the study period in different counties of the country. 

The space-time clustering might provide information about potential underlying risk factors the shifted 

through time.  

The spatiotemporal pattern of mortality of three major causes of death in Estonia, diseases of the 

circulatory system, malignant neoplasms and injury and poisoning, has been changing between 2005 

and 2019, where a general increasing trend was identified with an annual average increase of 3.82%, 

8.30%, and 2.07%, respectively, with significant temporal and spatial variation among the counties. 

The difference in the spatial and temporal pattern of mortality might be due to the geographic 

disparities or inequality in socio-economic status (Lai and Leinsalu, 2015).  
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For diseases of the circulatory system mortality, there were no significant clusters captured by both 

Getis-Ord Gi* test and LISA. However, significant increase and decrease trends were captured during 

the study period.  

Previous studies have discussed that ethnic status affects mortality of the disease, where the Russians 

have a higher mortality rate in cardiovascular diseases (Kaldmäe et al., 2017; Leinsalu et al., 2004) 

and mortality was declined among Russian ethnicity and the lower educated county on Ida-Viru county 

(Lai and Leinsalu, 2015).  

Spatial clusters of mortality due to diseases of the circulatory system have been identified in different 

countries (Almendra and Santana, 2020; Baptista and Queiroz, 2019; Rajabi et al., 2018) but none of 

these studies has been conducted in Estonia where the mortality rates are higher. In Portugal, Almendra 

and Santana found space-time clustering of CVD mortality between 1991 and 2017 (Almendra and 

Santana, 2020); they found that clusters with rural characteristics tend to present higher CVD mortality 

risk. In Brazil, Baptista and Queiroz assessed clustering during 1996 and 2015 and found spatial 

clustering in small census areas suggesting changes in the CVD mortality might be affected by socio-

economic conditions, access to health care and social norms (Baptista and Queiroz, 2019). In Sweden, 

Rajabi et al. studied clustering of cardiovascular disease during 2000 and 2010 and found evidence of 

spatial clustering that tended to be hotspots for long periods, where the hotspots were found in 

municipalities with low population density and high age (Rajabi et al., 2018).  

Similar results are also found in the present study, where the higher trends were identified in two 

isolated counties in western Estonia, Hiiu and Saare county. These areas are characterised by the lower 

population density, the lowest proportion of young people, and a low average monthly gross salary. 

On the other hand, a decreasing trend has identified in Ida-Viru county, where one of the major cities 

in Estonia is located there. The observed mortality trends seem to be affected by rural characteristics 

and the ethnic composition of the clusters. Noticeably, the decreasing trend of Ida-Viru county, which 

is caused by either mortality in the county is increasing less than in other counties or it has a rate that 

is decreasing more than outside the cluster.  

For malignant neoplasms, the coldspots were found in different parts of Estonia in different years, with 

more consistency in the eastern part of the country with high population density. Tartu County is a 

densely populated area and approximately 11% of the total population of Estonia lives there. The 

coldspot also represents areas with a different population structure: a younger, probably healthier, and 

more mobile population. The spatiotemporal analysis identified that the Ida-Viru has a low trend - it 

has a rate that is increasing less than other counties. Interestingly, two counties in south-eastern Estonia, 

Tartu and Võru county, were identified as the coldspots in 2008–2013 and 2005–2007, respectively. 
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However, spatiotemporal analysis shows that these counties are a member of the cluster that has a high 

trend, in other words, the mortality rate in Tartu and Võru had either increasing more than outside the 

cluster or decreasing less than outside the cluster.  

Several studies have analysed socio-economic and racial/ethnic disparities in cancer death hotspots 

(Baburin et al., 2016; Bermudi et al., 2020; Gross, 2007; O’Connor et al., 2018; Singh and Jemal, 

2017). Singh and Jemal conducted a census-based study of all-cancers mortality in the United States 

from 1950 to 2014; they found that the lower education and income groups had higher mortality rates 

of all cancers (Singh and Jemal, 2017). O’Connor et al. conducted a cross-sectional study of 3135 in 

the US counties and found that cancer mortality is higher in low-income counties in the United 

States (O’Connor et al., 2018). For site-specific cancer, lung cancer mortality was significantly 

associated with lower high school graduation rates (Gross, 2007); breast cancer mortality is high 

among elderly women (Baburin et al., 2016); cervical cancer mortality remained with the highest rates 

in lower socio-economic status (Bermudi et al., 2020). 

Nevertheless, in contrast to the previous studies, the present study did not find any significant cluster 

of high-risk mortality. Lack of clustering of malignant neoplasms should be interpreted with care. In 

most divergence of results in epidemiology, lack of consistency leads to low credibility for associations 

between potential etiologic factors and diseases (Syriopoulou et al., 2021; Vandenbroucke et al., 2016). 

Additionally, it should be noted that the causes of death considered here are lump up of several 

specific-cancer types and some type of cancer has clear aetiology, such as potential environmental 

factors, that leads to uneven distribution across the country. Further disaggregation to investigate the 

contribution of each cancer type across space and time is necessary.  

For injury and poisoning, hotspots were found in northeast counties. These areas are characterised by 

relatively high population density and low life expectancy. On the other hand, the coldspot was found 

in the northwest county with low population density, high age, and low average monthly gross salary. 

Most of the occurred clusters of Hotspot analysis and LISA were also detected as part of scan statistic’s 

most likely or secondary likely clusters, which highlights the reliability of the resulted maps. The most 

significant spatiotemporal cluster for high rate was detected in Ida-Viru county, whereas Lääne county 

identified as a lower rate with lower relative risk. The probable reasons why these particular locations 

are typical hotspots for injury and poisoning might be; first, these areas consist mostly industrial 

enterprises and work is more intensive, which are the higher incidence of occupational accidents and 

fatal accidents (Ministry of Social Affairs, 2018). Furthermore, although the mortality of 

manufacturing areas is now in decline, mortality rates for transport accidents, suicide, homicide and 
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alcohol-related causes remained higher among area with a high proportion of Russian and the lower 

educated residents (Lai and Leinsalu, 2015).  

Noticeably, Harju county identified has a low rate in spatiotemporal analysis for all three major causes 

of death in Estonia, during 2011–2017. Recent studies suggesting that this increase less than other 

counties in Estonia is attributed to higher education level, higher life expectancy and high gross wages 

and employment rate (Lai and Leinsalu, 2015). 

 

5.2 Limitation of the study 

Even though some analyses produced a statistically significant result, there were several limitations in 

the study.  

Different spatial analysis was applied to investigate the spatial pattern of the major cause of death in 

Estonia. Unlike spatial scan statistic, spatial autocorrelation analysis can detect any cluster shape but 

it works properly when the input features class is more than 30 features (ESRI, 2019). Since the 

analyses were carried at the county level, there are only 15 features for the input feature class for spatial 

analyses by ArcGIS. Thus, further work on a smaller scale, i.e., municipality level could be done. 

However, in several municipalities the subsequent limitation is very small number of death cases and 

high variation between years. 

It is also worth mentioning that SatScan has limitations on detecting very large cluster and tends to 

include neighbouring areas that do not have the risks due to its fixed scan window (Coleman et al., 

2009). The results from the method are sensitive to the maximum cluster size parameter; too large of 

a maximum-size can hide smaller core clusters, and too small of a maximum-size can miss significant, 

regional-level clusters (Chen et al., 2008). This study used the default maximum-size setting of 50% 

to generates sensitivities (Kulldorff, 1997) by preventing granular clusters with lower rates. However, 

there is no defined method to select a proper scanning window and timeframe. Therefore, a 

sophisticated method should be applied to find the proper window size and shape in future studies of 

spatial scan statistic.  

Since this study examines three different causes of death, the cluster detection analyses does not take 

into account all possible confounders. There might be a possibility that the identified clusters are 

affected by endogenous or exogenous factors such as socio-economic status, low-income housing 

affordability, and location of treatment and support centres among others, depending on the cause of 

death. The spatial dependencies of mortality rates with socio-economic or environmental conditions 
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could be examined in the important area using other study designs to assess association or causation, 

for future studies.  
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6. Conclusion  

This study utilised GIS and statistical analysis to capture geographic patterns of the mortality of the 

three major cause of death in Estonia. Four approaches were used; Global Moran's I was used to 

explore the structure of patterns; Getis-Ord Gi* analysis and Anselin's Local Moran's I were used to 

find local disease clusters and Kulldorff's scan statistics were applied to investigate the spatial and 

spatiotemporal patterns of mortality.  

This study has shown that there is a significant positive spatial autocorrelation for injury and poisoning 

in 2008-2010; an extreme significant hotspot was appeared in Ida-Viru county and a significant 

coldspot was seen in Lääne county. Only local spatial clustering was identified for mortality due to 

diseases of the circulatory system and malignant neoplasms; a significant coldspot was located in 

Lääne county in 2017–2019 and in Tartu in the year 2008–2010 and 2011–2013, respectively.  

In Kulldorff's scan statistic of mortality, research questions as the finding of the spatial and 

spatiotemporal patterns of mortality were answered. The result of Kulldorff's space-time cluster 

analysis in this study indicates that a lower cluster for the major cause of death in Estonia was identified 

in Harju county from 2011–2017. Spatial variation in temporal trends analysis determined a slower 

increase in mortality caused by diseases of the circulatory system and malignant neoplasms was 

detected in Ida-Viru county in 2005-2019, while a higher change rate was found in Ida-Viru county 

where the mean annual change in rate for this county reaches 5.43%.  

Recommendations  

The data used in this study is at the county levels. For spatial clustering analysis using ArcGIS, ESRI 

recommends to use more than 30 input features for a more reliable result (ESRI, 2019). As found in 

previous studies, this study has found significant spatial clusters of disease even the input features is 

less than 30. Further significance will be investigated if the analyses are conducted on a smaller scale, 

i.e., municipalities level.  

This study uses a default setting of the maximum cluster size at 50% of the population, but it is 

important to remember that there is no defined method to select a proper scanning window and 

timeframe for Kulldorf's scan statistics. Further research is needed to determine the appropriate 

window size and shape for analysis in Estonia.  

Lastly, the findings of this study can serve as a basis for further studies of mortality in Estonia. For 

instance, the spatial dependencies of mortality rates with underlying socio-economic or environmental 

conditions could be examined to assess association or causation. Especially for mortality due to 
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malignant neoplasm, spatiotemporal analysis using specific cancer type disaggregated data could be 

conducted to investigate the contribution of each cancer type across space and time. Moreover, the 

results could be used to improve the unequal spatial accessibility of health services in areas that are 

more rural and isolated since rurality may contribute to the spatial disparity of mortality in Estonia.  
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Kokkuvõte 

Lõputöö pealkiri: „Peamised surmapõhjused ja nende geograafiline aspekt Eestis ” 

Autor: Mika Kuno 

Kokkuvõte 

Suremusstatistika on asjakohane teabeallikas elanikkonna tervise kohta. See võimaldab analüüsida 

praeguseid demograafilisi tingimusi, ennustada aja jooksul surmapõhjuste riski trende ja mustreid 

kindlates kogukondades ning määrata kindlaks suremapõhjuste võimalikke muutuseid tulevikus. GIS 

on oluline vahend haiguste geograafiliste variatsioonide uurimiseks. GIS-i ja ruumistatistika 

rakendamine võimaldab analüüsida haiguste ja neile järgneda võiva suremuse ajalis-ruumilisi omadusi. 

Suurem osa Eesti suremusuuringutest näitab ainult staatilisi kaarte ega anna dünaamilist ülevaadet 

elanikkonna suremusest ajalis-ruumilisest vaatest lähtuvalt. Pealegi on kõige hiljutisemad 

suremapõhjuste uuringud keskendunud üldjuhul ainult ühele surma põhjusele ning on analüüsitud 

põhinedes erinevustele sotsiaaldemograafias, rahvuses, haridustasemes ja elukohas. Seetõttu 

kombineeriti antud uuringus GIS-i ja statistilist analüüsi, et uurida aastatel 2005–2019 kolme peamise 

surmapõhjuse ajalis-ruumilisi mustreid Eestis. Pahaloomuliste kasvajate, vereringesüsteemi haiguste 

ning vigastuste ja mürgituste poolt põhjustatud suremuse andmed aastate 2005–2019 Eesti kohta saadi 

Statistikaameti hallatavast Eesti Riikliku Tervise Arengu Instituudi surmapõhjuste registrist. Haiguste 

suremuse ajalis-ruumiliste mustrite uurimiseks rakendati leviala analüüsi, ruumilise autokorrelatsiooni 

analüüse ja Kulldorffi skanneeringu statistikat.  

Leiud näitasid statistiliselt olulist ruumilist heterogeensust õnnetusjuhtumite, mürgistuste ja traumade 

põhjustatud suremuses kogu Eestis, kuid vereringeelundite haiguste ega pahaloomuliste kasvajate 

puhul seda ei leitud. Ruumilise klasteranalüüsi tulemused näitasid Ida-Viru maakonnas 

õnnetusjuhtumite, mürgistuste ja traumade suremuse märkimisväärset leviala aastatel 2008–2010, 

samas kui Lääne maakonnas oli see ebaoluline. Vereringesüsteemi haiguste ja pahaloomuliste 

kasvajate põhjustatud suremuse levialas ei olnud spetsiifilist mustrit; samas nende vähene levik leiti 

Lääne maakonnas aastatel 2017–2019 ja Tartu maakonnas aastatel 2008–2013. 

Aegruumilise klasteranalüüsi põhjal tuvastati uurimisperioodil vähemalt kaks ruumilist suremuse 

kogumit erinevate haiguste ja spetsiifiliste ajaliste rühmade vahel. Üks neist tuvastati Harju maakonnas 

aastatel 2011–2017, mis viitas sellele, et selles maakonnas vähenes suremus teiste maakondadega 

võrreldes rohkem. 
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Selles uuringus kirjeldatakse GIS-i ja ruumistatistikat kasutades kolme peamise surmapõhjuse 

geograafilist ja ajalist jaotust Eestis ajavahemikul 2005–2019. Autorile teadaolevalt on see esimene 

uuring Eestis, milles hinnatakse kolme peamise surmapõhjuse kogumite olemasolu, kasutades 

ruumianalüüsi maakondlikul tasandil. Selle uuringu tulemused võivad olla aluseks suremuse edasistele 

uuringutele Eestis. 
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Annexes 

Annex1: Age distribution of European Standard Population, 2013 

 

Total 100 000 

0 1000 

1–4 4000 

5–9 5500 

10–14 5500 

15–19 5500 

20–24 6000 

25–29 6000 

30–34 6500 

35–39 7000 

40–44 7000 

45–49 7000 

50–54 7000 

55–59 6500 

60–64 6000 

65–69 5500 

70–74 5000 

75–79 4000 

80–84 2500 

85–89 1500 

90–94 800 

95–99 175 

100+ 25 
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Annex 2 Global Moran’s I  

Table A. Spatial autocorrelation patterns of deaths caused by diseases of the circulatory system in 

Estonia during 2005-2019 

Year Moran Index Expected Index Variance z-score p-value 

2007 -0.19 -0.07 0.02  -0.88 0.378678  

2010 -0.23 -0.07 0.02  -1.20 0.229428  

2013 -0.26 -0.07 0.02  -1.42 0.154411  

2016 -0.26 -0.07 0.02  -1.43 0.152501  

2019 -0.24 -0.07 0.02  -1.08 0.277195  

 

Table B. Spatial autocorrelation patterns of deaths caused by injury and poisoning in Estonia during 

2005-2019 

Year Moran Index Expected Index Variance z-score p-value 

2007 0.12  -0.07 0.019  1.36  0.173784  

2010 0.33  -0.07 0.019  2.94  0.003281* 

2013 -0.07 -0.07 0.019  0.01  0.989370  

2016 -0.05 -0.07 0.018  0.17  0.863322  

2019 0.07  -0.07 0.019  1.06  0.289581  

*Statistically significant spatial autocorrelation 

 

Table C. Spatial autocorrelation patterns of deaths caused by Malignant neoplasm in Estonia during 

2005-2019 

Year Moran Index Expected Index Variance z-score p-value 

2007 -0.19 -0.07 0.019  -0.88 0.378678  

2010 -0.23 -0.07 0.019  -1.20 0.229428  

2013 -0.26 -0.07 0.018  -1.42 0.154411  

2016 -0.26 -0.07 0.017  -1.43 0.152501  

2019 -0.22 -0.07 0.018  -1.09 0.277195  
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Annex 3 

Table A. Spatial variation in temporal trends of deaths caused by diseases of the circulatory system in 

Estonia during 2005-2019 

Cluster 

Type 

County Observed Expected R.R. Inside 

time 

trend 

Outside 

time 

trend 

LLR p-value 

Lower* Ida-Viru 4506 6495.65 0.67 10.72 3.2 155.52 0.001 

Higher Hiiu, Saare 8225 1945.06 4.75 1.08 4.05 57.58 0.001 

Lower Tartu, Põlva 7858 8269.74 0.94 1.9 4.14 28.88 0.001 

Lower Harju, Rapla, 

Järva 

11180 28057.95 0.26 3.25 4.2 8.73 0.002 

Note: Most likely clusters are noted with * 

 

Table B. Spatial variation in temporal trends of deaths caused by injury and poisoning in Estonia during 

2005-2019 

Cluster 

Type 

County Observed Expected R.R. Inside 

time 

trend 

Outside 

time 

trend 

LLR p-value 

Higher* Ida-Viru, Lääne-

viru 

1580 1253.3 1.34 5.43 1.35 16.10 0.001 

Lower Harju, Lääne, 

Rapla, Järva, 

Jõgeva 

1731 3374.39 0.35 0.29 2.89 7.61 0.006 

Note: Most likely clusters are noted with *  

 

Table C. Spatial variation in temporal trends of deaths caused by Malignant neoplasm in Estonia during 

2005-2019 

Cluster 

Type 

County Observed Expected R.R. Inside 

time 

trend 

Outside 

time 

trend 

LLR p-value 

Lower* Ida-Viru 1423 2458.96 0.55 15 7.68 42.02 0.001 

Higher Valga, Järva, 

Pärnu, Jõgeva, 

Tartu, Viljandi, 

Põlva, Võru 

12010 7783.48 2.16 7.12 9.15 18.09 0.001 

Note: Most likely clusters are noted with * 
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