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1. INTRODUCTION 

Plants need various resources in sufficient quantities for their growth, successful 
reproduction and survival. The levels of available resources are not equal for 
different canopy layers in a multilayer plant community, especially on the 
occasion of light (Valladares 2003; Niinemets 2007). Shading and light 
interception in the community generate a vertical gradient, where the uppermost 
layer (usually tree layer) receives the highest amount of photons, but the ground 
layer (generally moss layer) receives the lowest irradiance. 

One of the possible explanations for species coexistence proceeds from the 
different ability of plant species to acquire and use different resources. Light 
and nitrogen availability are two of the factors limiting plant growth in natural 
communities most frequently (Tilman 1988). Consequently, it is vital that light 
and nitrogen resources are efficiently utilized by plants. Reich (2012) found that 
stand-scale productivity of forests is a function of LAI (capacity to harvest 
light) and canopy nitrogen concentration reflecting potential to fix carbon bio-
chemically. Nitrogen acquisition is an expensive process in terms of carbon 
costs for plants and accordingly the quantity of nitrogen that is allocated to leaves 
is limited (Anten et al. 2000). Water availability is crucial for plant functioning 
and survival as well (Kozlowski and Pallardy 2002; Chaves et al. 2003; Duan et 
al. 2005), but I do not examine this issue in more detail in my studies. 

Understanding of the relationships between biomass allocation, light inter-
ception and competition is essential to describe the contribution of individual 
plant species to vegetation structure (Anten and Hirose 1998). Hirose and 
Werger (1994, 1995) invented an analysis of light flux partitioning between 
species in the canopy. They evaluated photon absorption per unit of biomass 
(ΦM) and photon absorption per unit of leaf nitrogen (ΦN) in dominant (over-
story) and subordinate (understory) species in the same soil conditions. 
Although tall species intercepted 75% of incident light, ΦM of dominants was 
not higher compared to subordinates. They concluded that the efficiency of 
aboveground biomass to acquire light is a compromise between large leaf area 
ratio (LAR) + remaining in shade, and increased stem length that enables plants 
to position leaves into better-illuminated area + lower LAR and consequently 
reduced efficiency (Hirose and Werger 1995). Kamiyama et al. (2010) suggest 
that ΦM, i.e. light acquisition efficiency, is a valuable indicator of species 
strategy for photon absorption. Parameter ΦN reflects the potential carbon fixa-
tion rate per unit of leaf nitrogen. Hirose and Werger (1994) found that ΦN does 
not differ between dominants and subordinates in the community.  

Plant C economy is co-determined by the rate of photosynthesis and respira-
tion and LAR (Poorter et al. 2012). A high stand-level LAR means a large 
photosynthesizing surface that ensures great light absorption and consequently 
higher CO2 fixation capacity. On the other hand, if stand density is high, plants 
have to form longer stems (i.e., to enlarge allocation into supporting structures) 
to project the foliage into better-illuminated environment. Thus, one can dis-
tinguish between two allocational or structural strategies: to invest either more 
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to leaves or to stems in order to overtop neighbours and achieve greater light 
interception. LAR may be divided into two components: specific leaf area 
(SLA) and leaf mass fraction (LMF). SLA is a quantity depending on leaf mor-
phology, but LMF shows biomass allocation to leaves relative to other plant 
organs. Consequently, it is essential to examine which component of LAR 
varies more, because LAR indicates surface of leaf area per unit of plant bio-
mass. Poorter et al. (2009, 2012) concluded that inherent differences in SLA are 
much larger than those in LMF. 

Plants should have high nitrogen uptake rate or high nitrogen-use efficiency 
(NUE) or both (Chiba and Hirose 1993) to support high growth rates in a 
nitrogen-limited environment. There exist various definitions of nitrogen-use 
efficiency, depending on time scale and organisation level, e.g. as a rate of 
photosynthesis per unit of leaf nitrogen content (Hirose 1984; Field and 
Mooney 1986). On a longer time scale, it is calculated as a biomass increment 
per unit of nitrogen taken up (Vitousek 1982; Rundel 1982). At present, Hirose 
(2012) distinguishes leaf-, plant- and stand-level NUE. He suggests that 
examining NUE at lower levels helps to understand N economy in different 
species and in communities growing along nutrient availability gradients. Using 
an inverse of tissue N concentration as a rough estimate of NUE has been used 
in several papers (Chapin 1980; Shaver and Melillo 1984; Schimel et al. 1991). 
On the other hand, it is important to distinguish between the two components of 
NUE for more precise study: 1) instantaneous nitrogen productivity and 
2) mean residence time of N in the plant (Berendse and Aerts 1987).      

Light partitioning analysis has enabled researchers to demonstrate an inverse 
relationship between plant stand nitrogen- and light-use efficiencies (Hirose and 
Bazzaz 1998). Hirose and Bazzaz (1998) defined light-use efficiency as the 
ratio of net photosynthesis to absorbed photosynthetically active radiation (i.e. 
LUE = P/Φ), and nitrogen-use efficiency as the ratio of net photosynthesis to 
leaf nitrogen content (NUE = P/N). Consequently, the light absorption per unit 
of nitrogen equals the ratio of NUE to LUE (ΦN = NUE/LUE). If aboveground 
nitrogen-use efficiency, aNUE, is defined as the ratio of aboveground biomass 
per foliar nitrogen content (i.e. aNUE = M/NL = ΦN/ΦM), and if aNUE is 
assumed to be proportional to total NUE, then ΦM should be proportional to 
1/LUE. Consequently, as LUE is expected to increase along a productivity gra-
dient, ΦM should decline. In general, plants have to compromise between 
effective light-use, nitrogen-use and biomass allocation to better accomplish one 
of these resource uses.  

Werger et al. (2002) observed species replacement and light resource use 
after cessation of grazing on grasslands. Their data showed that plants react 
differently to changes in competition caused by increased stand productivity, 
and that species replacement can be explained by differences in inherent 
constraints on the shoot architecture in various species. Accordingly, the above-
mentioned authors examined plant responses in similar conditions or succes-
sional series. However, there is still little information on species replacement 

3
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and their light- and nitrogen-use characteristics on a spatial scale. Natural 
productivity gradient in a plant community offers a wide range of combinations 
of various abiotic conditions and inter- and intraspecific competition differing in 
intensity. Moreover, productivity gradient enables examination of plasticity, 
responses of plant species in their natural environment. 
  

In the present PhD thesis the following hypotheses were proposed: 
1)  Inasmuch as light and nitrogen are two essential resources for plant 

functioning and growth, they are accordingly important determinants of 
aboveground biomass of vegetation layers. Therefore, the development of a 
two-resource model can broaden our understanding of the mechanisms de-
temining productivity of plant communities. 

2)  Light acquisition efficiency (light absorption per unit of biomass) decreases 
with rising community productivity. 

3)  Aboveground nitrogen-use efficiency diminishes with increasing site pro-
ductivity. 

4)  A decrease in leaf area ratio is a universal response to increasing above-
ground biomass in herbaceous communities. 

5)  Species have distinct properties to cope with various environmental condi-
tions. Subordinate species have morphological/functional traits which enable 
them to grow under the shade of dominants. 

 

In order to test the hypotheses the following aims were set up: 
1)  To analyse light interception, nitrogen and leaf mass distribution in different 

layers of several plant communities: from open temperate grassland to 
wooded meadow and deciduous forest stand. Furthermore, we developed a 
model to describe vertical distribution of foliage mass in a community as a 
function of available nitrogen and light. (I) 

2)  To apply the approach of Hirose and Werger (1995) of light partitioning in 
an herbaceous canopy along natural productivity gradients and to compare 
response patterns of light-use indices at a community level and in more 
abundant species. (III, IV) 

3)  To assess nitrogen-use efficiency (NUE) at the community level and in 
different growth-forms and species along productivity gradients of 
grasslands (I–IV). 

4)  To reveal whether a decrease in leaf area ratio (LAR) is the universal re-
sponse to increasing aboveground biomass in herbaceous communities; more 
specifically, what is responsible of the change in LAR, specific leaf area 
(SLA) or leaf mass fraction (LMF)? 

5)  To compare light capturing ability and NUE in different herbaceous commu-
nities with respect to their structural properties; moreover, to clarify which 
properties give an advantage to dominants and which enable subordinates to 
cope and survive under dominant species (III–IV).  

6)  To examine whether there is a trade-off between LAR and foliar nitrogen 
content per leaf area, NA (III–IV). 
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2. MATERIALS AND METHODS 

2.1. Site characteristics 
Most study areas are located at Laelatu (58˚35΄ N, 23˚34΄ E) (Fig. 1) in western 
Estonia, on the eastern coast of the Baltic Sea (papers I–II and IV). The mean 
temperature in July is 17°C, and in January –5°C. The mean annual precipi-
tation is ~500 mm. The soil is mainly a Rendzic Leptosol with a pH around 7. 
The parent material is limestone shingle mixed with various coastal sediments. 
The overstory, where present, is species-rich, consisting of Quercus robur L., 
Betula pendula Roth, Fraxinus excelsior L., Populus tremula L., Pinus 
sylvestris L., Juniperus communis L., Corylus avellana L., Cornus sanguinea 
L., Viburnum opulus L. among others. The herb layer consists mainly of 
perennial forbs and grasses, and is extremely species-rich. Up to 63 vascular 
plant species per 1 m2 have been counted in some parts of the study area (Kull 
and Zobel 1991).  
 

 
 
Figure 1. Map and location of the study areas at Laelatu and Aru. 
 
 
In study I, three vegetation layers (tree, herbaceous and moss layers) were 
examined along a productivity gradient from open meadow through wooded 
meadow to closed broad-leaved forest. In paper II, only the herb layer was 
investigated in 21 sample plots.  

Study IV was performed in an almost open meadow, in which two herb layer 
transects along productivity gradients were selected for examination. The first 
community (W) is dominated solely by one grass species Molinia caerulea (L.) 
Moench. The wet and more productive part of the site is represented by Tetra-
gonolobo-Molinietum association (Krall et al. 1980); the dryer and less pro-
ductive is covered by Primulo-Seslerietum vegetation. Three species: forb Fili-
pendula ulmaria (L.) Maxim. and grasses Elymus repens (L.) Gould and 
Brachypodium pinnatum (L.) P. Beauv. dominate the second community (D). 
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The moist and productive part of the site belongs to a Molinio-Cnidietum com-
munity, the dry and less productive to Seslerio-Filipenduletum. The soil water 
status in W site ranged from very moist (the groundwater table was close to the 
soil surface, approximately at 20 cm depth) to moderately moist. In D site, there 
was a gradient from moderately moist to dry soil (Table 1 in III). Its soil texture 
was sandier compared to the soil in W, where the texture was more clayey. 
Lower litter quality and too wet soil conditions refer to a slower nitrogen cycle 
in site W. Although there was higher soil nitrogen concentration compared to 
that of D site, both plant leaves and litter layer had lower nitrogen concen-
trations than those in D site (Tables 1 and 2 in III). Soil varies from Salic Gley-
sol to Rendzic Gleysol (classified by WRB) in W site and from Gleysol to 
Rendzic Leptosols on coastal deposits in D site. Eight sample plots were dis-
tributed along a productivity gradient of herbaceous stand in W site and 10 
sample plots were distributed in D study area.  

The study area of paper III was situated at Aru (58˚16΄ N, 26˚20΄ E) (Fig. 
1) near Tartu in southern Estonia. Ten 1  1 m plots were distributed in an old 
grassland along the slope of a small hillock that created a gradient in soil fer-
tility conditions.  
 
 

2.2. Soil sampling (III, IV) 
One composite sample of soil from the A horizon was taken for analysis from 
each sample plot. Additionally, a small pit was excavated to measure the thick-
ness of the A horizon and to take samples for bulk density analysis. The soil 
moisture content was determined by the difference in weight between the fresh 
and dried samples (III).  

In the fourth paper, the soil samples were collected to determine soil 
moisture and nitrogen contents. Nitrogen concentration of soil samples in both 
studies (III–IV) was measured by the Kjeldahl method with a Kjeltec Auto 1030 
analyser (Tecator, Sweden). 
 
 

2.3. Light measurements  
Herb (I–IV) and moss (I) layers were examined and harvested from 0.5  0.5 m 
plots. In paper III, light measurements were performed in 1  1 m plots. 

In studies I–II, all field measurements were carried out in July 1991. Three 
canopy layers under investigation were: tree+shrub, herb and moss layers. Light 
interception by the tree+shrub layer was estimated by the hemispherical photo-
graphic technique (Anderson 1964; improved by Bréda et al. 2002). Light inten-
sity in the herb layer was measured with a 30 cm long specially designed line-
sensor pyranometer. The mean interception was calculated from five measure-
ments of irradiance above and below the herb layer. Light interception by the 
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moss layer was calculated on the assumption that all light penetrating the upper 
layers was intercepted by the mosses. In paper II, the herb layer was divided 
into two strata. Vertical division of the layer was made according to the height 
of half light interception.  

In paper III, the field studies were carried out in July 1999. The herbaceous 
community was vertically divided into 3–5 layers each 15–25 cm thick (de-
pending on stand height). The division was performed to show the vertical dis-
tribution of different species: dominants and subordinates. The actual profile of 
photosynthetic photon flux density was measured with an LI-185B quantum 
meter equipped with an LI-191SB line quantum sensor (Li-Cor, Nebraska, 
USA).  

In paper IV, the field investigations were made in July 1996. Light inter-
ception in the herbaceous community was measured with a 30-cm line-sensor 
pyranometer. The herbaceous stand was divided into 3 or 4 layers depending on 
stand height. The interception was calculated from the average of five measure-
ments above and below each herb layer. Light absorption partitioning between 
species was calculated in studies III and IV; the formulae are given in the re-
spective papers.  

In studies III–IV, asymmetry of light competition (B) was calculated from 
the equation by Anten and Hirose (1998): 
 

BMc )( jj   

 
where j is the total absorbed light, Mj is the total aboveground dry mass of 
species j, and c is a constant. The value of B was calculated for each plot from 
simple linear regression of log-transformed values of j and Mj. 
 
 

2.4. Biomass and foliage measurements 
In study I, the leaf canopy was divided into three layers at every sample point: 
trees and shrubs, herbaceous plants, and mosses. Foliar dry mass of the 
tree+shrub layer was calculated indirectly using light interception data and leaf 
samples. Leaf area index was transformed into canopy leaf mass per area using 
the values of average leaf dry mass per area (LMA). Moss layer was harvested 
from the plots and all green parts of the mosses were considered as foliage.  

In papers I–IV, all the aboveground parts of the herbaceous community were 
harvested from each sample plot. Herbaceous plants were sorted into two 
compartments: leaves and stems + generative organs. In paper II, the herb layer 
was collected from sample plot by two canopy layers. Vertical separation of the 
layers was made according to the height of the half light interception. Species 
were identified for both layers separately and herbs of both layers were sorted 
into two growth-forms  forbs and graminoids. In study III, the canopy was 

4
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harvested from the sample plots by 3 to 5 vertical layers depending on canopy 
height. The fresh mass of each fraction was measured immediately after sorting.  

In paper IV, the aboveground parts of the plants were harvested from the 
plots by 3 or 4 layers depending on canopy height. Species composition was 
identified. Foliar samples of more abundant species from each harvested canopy 
layer were taken for leaf area determination. Images of the air-dried leaves were 
digitised and projected leaf areas calculated with an in-house computer program 
PINDALA (A. Kalamees). The leaves were then dried at 80C to constant weight 
and specific leaf area (SLA) was calculated. Thereafter, dry mass data of leaves 
from each sampled canopy layer were used to calculate the total leaf area of 
separate species in each canopy layer.  

In studies I–IV, all the sorted plant material was dried at 80C to constant 
weight and dry mass was determined.  
 
 

2.5. Determination of nitrogen and  
chlorophyll concentrations 

Nitrogen concentration was measured by the Kjeldahl method with a Kjeltec 
Auto 1030 analyser (Tecator, Sweden) as follows: 

Paper I – in the leaves of trees and herbs and in the living parts of the 
mosses; 

Paper II – in the leaves of forbs and graminoids for two strata separately;  
Papers III–IV – in the leaves of separate layers of plant species. 
In study III, chlorophyll concentration in plant leaves was determined in 

80% aqueous acetone with a PS2000 spectrometer (Ocean Optics, USA) 
following the method by Porra et al. (1989).  

Chlorophyll (for paper III) and nitrogen concentrations were analysed in all 
species that had sufficient amount of foliage material within a sampled canopy 
layer.  
 
 

2.6. Statistical analysis 
In paper I–II, data were analysed with the statistical analysis package 
STATGRAPHICS (STSC Inc. 1987). In the first study the effect of layer was ana-
lysed by one-way ANOVA and intercepted light was taken as a covariate. In 
study II, two-way ANOVA was used to evaluate productivity (two levels: 
<175 g m–2 of foliage, 11 sample plots; ≥175 g m–2 of foliage, 10 sample plots), 
life-form (forb or graminoid) and productivity×life-form interaction effects on 
the vertical distribution of foliage and foliar nitrogen. The least-square linear 
regression technique was used to fit the relationships.  

In studies III–IV, statistical analysis was performed using STATISTICA soft-
ware (StatSoft Inc. USA). For the calculations in paper III, no data transfor-
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mation was necessary. Pearson’s correlation coefficients were calculated for the 
analysis of soil and vegetation parameters, General Linear Models (GLM) pro-
cedure was used for the regression analysis in paper III. 

In paper IV, GLM procedure was used for the regression analysis. Loga-
rithmic or quadratic transformations of data were performed if a deviance from 
normal distribution occurred. Pearson’s correlation coefficients were calculated 
between soil characteristics and vegetation parameters. Characteristics of the 
species occurring at both areas were compared by t-test for independent groups. 
Multiple regression analysis was performed to estimate the relationship between 
aboveground biomass and soil factors: soil moisture and nitrogen concentration. 
Nonlinear relationships were found with the help of SIGMAPLOT software for 
Windows (SPSS Inc. 2001).  

In all papers adjusted R2 (denoted as R2) was used to describe the strength of 
the relationships. 
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3. RESULTS 

3.1. Two-resource model (I) 
The vertical structure of a multilayer plant community ranging from open 
meadow to broad-leaved forest at Laelatu site was described using a two-
resource model. We developed a simple model with a minimum number of pa-
rameters in order to describe foliage dry mass distribution among different 
layers in a community as a function of available soil nitrogen and light (Fig. 1 
in I and model description in I). Multiple regression analysis showed that bio-
mass of the layer is determined by relative irradiance above the layer and by the 
amount of nitrogen in the N cycle. Consequently, general model predictions 
were consistent with empirical data. 

Total foliage dry mass increased with increasing amounts of total foliar 
nitrogen (Fig. 2 in I). Also, the contribution of the moss layer to total canopy 
dry mass was higher at low nitrogen availability, whereas the proportion of 
nitrogen in the tree canopy was larger at higher total canopy nitrogen amounts. 
The amount of nitrogen increased more rapidly than light interception with 
increasing site productivity due to denser tree canopy layers (Fig. 3 in I). At low 
light interception values, the herbaceous layer tended to have more nitrogen per 
unit ground area than the other layers (Table 2 in I).  

The ratio of dry mass to nitrogen varied most in the moss layer, whereas it 
remained almost constant in the tree canopy layer and changed little in the herb 
layer (Fig. 5 in I). 
 
 

3.2. What may give an advantage to graminoids  
as compared to forbs with increasing  

site productivity? (II) 
Graminoids became dominant in highly productive and well-illuminated habi-
tats of the wooded meadow at Laelatu site. The dominance of graminoids 
appeared both in terms of leaf mass proportion and species number (Fig. 5 and 6 
in II). Total species number decreased with increasing productivity in the herba-
ceous layer, because of the decrease in forb species number.  

Foliage dry mass of graminoids steadily increased with rising herbaceous 
layer productivity, whereas foliage mass of forbs had a maximum at inter-
mediate values of the total herbaceous foliar mass (Fig. 6. in II). The different 
behaviour of two growth-forms in a productivity gradient was statistically sig-
nificant (Table 1 in II). Graminoid species did not have statistically (P>0.05) 
higher canopy compared to forb species (Table 2 in II). 

Nitrogen concentration in graminoid foliage was ~20% lower than in forbs 
(Table 2 in II). Average aboveground nitrogen-use efficiency (aNUE) of forbs 
was 74.5 g g–1 N and in graminoids 85.4 g g–1 N (t-test for dependent samples, 
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P=0.045). Figure 2 shows the tendency for the difference in aNUE between the 
two growth-form groups to increase with rising incident light. The respective 
relationship with aNUE was statistically stronger than with foliage dry mass to 
leaf nitrogen ratio (dML/N; Fig. 7 in II).  
 

 
Figure 2. Relationship between relative incident light (measured as a proportion of full 
light) and aboveground nitrogen-use efficiency (aNUE) in forbs (n.s.) and graminoids 
(R2 =0.274, P=0.022).  
 
 

3.3. Description of productivity gradients (III, IV) 
Previous studies have revealed the necessity to increase the number of vertical 
layers (≥3) in the herb community to study light- and nitrogen-use indices and 
biomass allocation patterns more thoroughly. Three grasslands located at Aru 
and Laelatu sites were chosen to examine the behaviour of light and nitrogen 
resource-use indices in more detail along transects representing a productivity 
gradient. One high-LAR and two low-LAR communities were investigated in 
papers III and IV.  

In study III, slope of the landscape (approximate angle 5) resulted in a clear 
gradient in soil conditions, the most apparent of which is the decreasing thick-
ness of the humus horizon from the bottom to the top of the hillock (Table 1 in 
III). This profile caused a gradient in aboveground biomass ranging from 150 to 
490 g m–2 (Table 1 in III). Six species, Achillea millefolium L., Cirsium arvense 
(L.) Scop., Taraxacum officinale Webb, Dactylis glomerata L., Festuca praten-
sis Huds. and Phleum pratense L., produced most of the biomass (65–95%) in 
all plots and were present along the entire gradient (Fig. 1 in III). Grasses 
(mainly D. glomerata and P. pratense) formed less than 50% of the stand bio-
mass at the less productive part of the gradient and increased to more than 80% 
in the more productive areas of the gradient (Fig. 1 in III). Forbs (A. mille-

5 
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folium, C. arvense and T. officinale) exhibited maximum biomass in the middle 
of the gradient and it declined in more productive part due to competition with 
grasses. 

In paper IV, the first community (wet, W) was characterized by a smaller 
productivity gradient, in which the aboveground biomass ranged from 341 to 
503 g m–2. It was dominated by one species, Molinia caerulea. The other com-
munity (dry, D) exhibited a biomass gradient from 248 to 682 g m–2 and it had 
several dominant species: Filipendula ulmaria, Elymus repens, Brachypodium 
pinnatum, which replaced each other along the gradient. Biomass gradients 
were driven both by soil moisture and nitrogen shifts along the transects.  
 
 

3.4. Aboveground biomass allocation patterns and 
asymmetry of competition 

Community-level leaf area ratio (LAR) decreased at Aru (Fig. 3a), while it 
increased in Laelatu W stand and had a tendency to decrease in Laelatu D site 
(Fig. 3a). In analysing the components of LAR, the herb layer at Aru showed 
remarkable change both in specific leaf area (SLA) and leaf mass fraction 
(LMF). SLA increased and LMF decreased along the productivity gradient 
(Figs. 3b and 3c). The increase in SLA of the W herb stand in Laelatu was 
responsible for the change in community-level LAR (Fig. 3b). By contrast, 
decrease in biomass allocation to leaves (LMF) in D community caused the 
diminishing trend of LAR (Fig. 3c).   

The relative gain in light absorption of a species from increasing biomass 
depended clearly on site productivity and total leaf area index (LAI), because 
the asymmetry of competition (parameter B) increased with increasing stand 
total LAI (Fig. 2 in III). This implies that asymmetry of competition increased 
with increasing stand biomass, inasmuch as species benefit from the relative 
increase in domination disproportionally with light capturing ability. 

In study IV, light competition was more asymmetric (parameter B had 
greater values) in the monodominant community characterised by higher LAI 
and LAR in site W compared to site D with lower LAI and LAR (Table 2 in 
IV).  
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Figure 3. Relationship between aboveground dry mass and community-level (a) leaf 
area ratio (LAR) in Laelatu W site (R =0.407, 2 P=0.053) and Aru site (R =0.272, 2

P=0.070); (b) specific leaf area (SLA) in Laelatu W site (R2= 0.503, P=0.030) and Aru 
site (R2=0.344, P=0.095); (c) leaf mass fraction (LMF) in Laelatu W site (R2=0.714,  
P =0.019), Laelatu D site (R2=0.501, P=0.037) and Aru site (R2=0.758, P=0.003). 
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3.5. Nitrogen-use efficiency (NUE) 
Aboveground nitrogen-use efficiency (aNUE) showed a clear increase with the 
rise in productivity (Figs. 4a and 4c in III) in Aru site. aNUE diminished in the 
monodominant and high-LAR community. It increased in central part of the 
gradient in D site, where low-LAR graminoids dominate (Fig. 4a). aNUE 
decreased with increasing productivity in the monodominant community  
 

 

Figure 4. Relationships between aboveground dry mass and community-level (a) 
aboveground nitrogen-use efficiency (aNUE) in Laelatu W site (R2=0.802, P =0.008), in 
Laelatu D site across all sample plots (n.s.), in Laelatu D site plots 4–9 (R2=0.864, 
P=0.023). Dominant in plots 1–3 is Filipendula ulmaria (L.) Maxim., in plots 4–6 
Elymus repens (L.) Gould, in plots 7–9 Brachypodium pinnatum (L.) P.Beauv., in plot 
10 Helictotrichon pratense (L.) Pilg.. In Aru site R2=0.561, P=0.008. (b) leaf nitrogen 
content per unit leaf area (NA) in Laelatu D site (R2=0.767, P = 0.003). 
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(Fig. 4a). aNUE had no clear trend in D community across all plots. This can be 
explained by the shift in species composition, more exactly by replacement of 
the dominant species. F. ulmaria dominated in plots Nos. 1–3, where its aNUE 
was low because of higher foliar nitrogen concentration and despite tall stems. 
E. repens and B. pinnatum dominated in the range of plots from 4 to 9. 
Accordingly, aNUE increased in larger part of the gradient, if plots were 
regarded separately (Fig. 4a). 

 

 
Figure 5. Relationship between community-level leaf area ratio (LAR) and leaf 
nitrogen content per unit leaf area (NA) across W and D sites at Laelatu (R2=0.698, 
P<0.001); n.s. in Aru site. 

 
 

NA did not show any relationship with site productivity in the monodominant 
community W (Fig. 4b), while it increased in D site with the rise of above-
ground biomass. NA values were lower in W stand compared to those of D 
(Table 2 in IV). 
 
 

3.6. Light-use indices and partitioning of light 
In Aru site, canopy-level light absorption per unit of aboveground mass (ΦM) 
decreased remarkably with rising stand biomass (Fig. 4 in III). This effect was 
related at least partially to the increasing cost of supporting tissue, as the LAR 
of the community diminished. Although light absorption per unit of leaf nitro-
gen (ΦN) in Aru decreased with increasing stand biomass in the less productive 
section of the gradient, the overall relationship revealed no clear trend (Fig. 4 in 
III). The behaviour of ΦN at the stand level resulted mainly from the replace-
ment of species with varying species-specific values of ΦN. 

6
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In D site, ΦM had an optimum and started to decrease beyond it showing that 
light-use efficiency (LUE) increased at higher productivity (Fig. 4a in IV). The 
corresponding relationship was not observed in W community. The curve of 
community ΦN had an optimum and diminished beyond the optimum with 
increasing aboveground herbal biomass in D site (Fig. 4b in IV). With respect to 
the herbal stand of W site, the decline of ΦN with rise of herb layer biomass was 
not significant.  
 
 

3.7. Trade-off between leaf area ratio (LAR) and 
nitrogen content per leaf area (NA) 

We established a trade-off between community-level NA and LAR (Fig. 5) in 
meadow communities at Laelatu. Values of NA and ΦN were larger in the dry (D), 
multi-dominant and low-LAR community; we observed a combination of large 
LAR and low NA in the wet site (W), and low LAR and large NA in the dry site (D).  
 
 

3.8. Dominants versus subordinates 
The species showed contrasting morphological responses to changes in soil 
fertility. The LAR of all grass species decreased with increasing productivity, 
although the only significant trend was for P. pratense. By contrast, LAR 
increased in two forb species, A. millefolium and T. officinale (Fig. 8 in III). 
Both species, which increased their LAR in response to intensified competition, 
showed the most plastic response in leaf Chl/N ratio to changes in incident light 
(Fig. 9 in III). Furthermore, both species had relatively high leaf nitrogen levels 
and the highest Chl/N ratios in the lower canopy layer, indicating their success 
in forming robust photosynthetic apparatus under low light conditions and their 
probable small investments of nitrogen to non-photosynthetic tissues. 

Some species (A. millefolium, T. officinale and F. pratensis) exhibited no 
change in light capture per unit of foliar nitrogen with increasing soil fertility, 
whereas ΦN decreased for other species (C. arvense, D. glomerata) (Fig. 5 in 
III). Therefore, the increase in stand-level ΦN in the more productive part of the 
gradient was caused mainly by the increased domination of D. glomerata and 
P. pratense with their relatively high average values of ΦN. The same 
explanation is valid for stand-level variation in aNUE, because aNUE was 
almost invariant to soil fertility with one exception: aNUE in A. millefolium 
decreased with site fertility (Fig. 6 in III).  

Similarly, light capture per unit of aboveground dry mass declined along the 
gradient for two species. However, there was a tendency for the other species to 
decline as well (Fig. 7 III). However, because the average ΦM of two grasses, P. 
pratense and F. pratensis, was smaller than for the other species, a change in 
relative abundance with increased productivity amplified the decreasing trend of 
ΦM at the stand level (Fig. 4 in III).  
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4. DISCUSSION 

4.1. Two-resource model (I) 
The two-resource model can be applied to describe the vertical structure of a 
multilayer plant community consisting of tree, herb and moss layers (I). One 
resource can be light and the other nitrogen, because this is the most essential 
mineral element for plant growth. The biomass of the layers was determined by 
the relative irradiance reaching the layer and by the amount of nitrogen in the N 
cycle. We assumed that nitrogen content in foliage reflects the total available 
nitrogen pool in the soil. We found that a dense tree canopy existed only in 
combination with high total nitrogen. This finding is in agreement with the idea 
that trees appear in succession only when a sufficient amount of nitrogen has 
been trapped in the ecosystem nitrogen cycle (Tilman 1990).  

Total foliage mass of the canopy did not increase proportionally with rising 
amounts of total foliar nitrogen, which means that nitrogen concentrations in 
thick and productive canopies are higher (Van Keulen et al. 1989). This obser-
vation implies that nitrogen-use efficiency declines with increasing productivity 
in the community. In study I, the foliage dry mass : nitrogen ratio was utilised 
as an estimate of NUE. Lower vegetation layers demonstrated higher nitrogen-
use efficiency or/and better ability to acquire soil nitrogen. The growth of the 
herbaceous layer in communities along the productivity gradient was co-limited 
by light and nitrogen; more precisely, it was a compromise between availability 
of light and nitrogen resources. 

To broaden our understanding of the existence of a multilayer structure in 
plant communities, we analysed our data to answer two questions: (1) what 
limits the thickness of one layer in a multilayer community, and (2) which traits 
enable foliage to exist and grow in the shade of the upper layers? 

The answer to the first question probably lies in the non-linearity of the rela-
tionship between the amount of nitrogen versus intercepted light (Fig. 3 in I). 
Although photosynthetic production is considered almost proportional to inter-
cepted light (Russell et al. 1989), the discrepancies between actual and theoreti-
cal canopy photosynthetic profiles are still poorly understood (Anten 2005). 
Limits will arise with enlarging amounts of foliage, as the benefit from 
increased production does not cover the costs of nitrogen needed to construct 
this foliage as light interception saturates at high leaf area. Light and nitrogen 
profiles described by Hirose et al. (1988) within two Lysimachia vulgaris L. 
canopies with different densities (Fig. 6 in I) are consistent with our results (Fig. 
3 in I). This comparison shows that the relationship between nitrogen versus 
intercepted light, based on data from different communities, is similar in shape 
to the relationship within a deep canopy. 

Herbaceous plants are able to allocate more nitrogen per unit of intercepted 
light into their leaves than trees. This probably allows them to build up more 
powerful light capturing apparatus compared to trees. By contrast, mosses tend 
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to have low nitrogen concentrations in photosynthesising tissues, but higher 
NUE than in other vegetation layers, as far as can be concluded from our data 
(Fig. 5 in I). In addition, as mosses are evergreen plants, their photosynthetic 
apparatus functions for several years. Eckstein (1999) found that nutrient strat-
egy of moss Hylocomium splendens, which dominates in boreal and subarctic 
forests, is similar to evergreen vascular plants.  

Our results also showed that the relative mass of the moss layer was con-
siderable only in low-productive communities with thin overstory canopies and 
with low amounts of total foliar nitrogen (Fig. 2 in I). Regression analysis 
showed that growth of mosses was primarily limited by light, so that even high 
nitrogen availability did not compensate light limitation under deep canopy 
layers.  
 
 

4.2. What may give an advantage  
to graminoids as compared to forbs  
with increasing site productivity? (II) 

Variability of tree layer coverage creates spatial heterogeneity in light con-
ditions within a plant canopy  a primary factor forming the productivity gra-
dient for the herb layer in a multilayer plant community. Variable nutrient 
availability is the second principal factor, assuming that plant nitrogen content 
and soil fertility are positively related. Graminoids dominated in high-produc-
tive and well-lit habitats both in terms of foliar mass and species number. Three 
hypotheses were tested to explain better competitive ability of graminoids: (1) they 
are able to grow higher foliage; (2) they are able to distribute foliar nitrogen ver-
tically in a more efficient way; (3) they are characterized by higher nitrogen-use 
efficiency. 

Vertical distribution of foliage or leaf nitrogen did not differ significantly 
between the growth-forms along the productivity gradient, and hypotheses (1) and 
(2) could not be proved. Dominance of graminoids in herbaceous canopy in the 
high-productive part of the gradient was not caused by the ability to grow higher 
foliage. Height distribution of forb foliage did not differ between the upper and 
lower layers along the productivity gradient. This does not mean that dominant 
species do not have higher foliage, but rather means that forb growth-form is 
replaced by graminoid growth-form simultaneously in both canopy layers. Hirose 
and Werger (1995) showed that foliage of dominant species formed the upper 
layer in the canopy and intercepted most of the incident light, thus suppressing the 
other species. However, our results show that this explanation does not hold when 
comparing different growth-forms. However, in studies III and IV we used the 
same approach that was developed by Hirose and Werger (1995), and revealed that 
high NUE is a very important characteristic of dominant species, but the morpho-
logical plasticity, as regards LAR and its components (SLA and LMF) in par-
ticular, is important as well. Vertical distribution of foliar nitrogen follows a com-
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mon pattern, where relatively more nitrogen is invested into upper well-illumi-
nated leaves. Plants tend to distribute nitrogen among their leaves in a manner that 
maximizes whole-plant photosynthesis (Hirose and Werger 1987; Werger and 
Hirose 1991). In case of the optimal nitrogen distribution, nitrogen concentration 
in leaves follows the light gradient within a plant canopy (Hirose et al. 1988). In 
our study, the difference between the growth-forms was not statistically sig-
nificant, therefore a differential strategy in vertical distribution of foliar nitrogen 
cannot be responsible for dominance of graminoids in high-productivity sites. 

Hypothesis (3) holds partly as the nitrogen concentration in graminoid foliage 
was on average 20% lower than in forbs. The reciprocal of nitrogen concentration 
in plant tissue can be used to assess differences in NUE in conditions of equal 
nitrogen retention time in plants. Nitrogen retention time did not differ between 
graminoids and forbs in our case, because almost all species identified were peren-
nial in both growth-form groups. McJannet et al. (1995) found that plants with 
larger above-ground biomass had lower tissue nitrogen levels than smaller plants 
in the same community and explained it by the high growth rate of bigger plants. 
Probably low nitrogen content of leaf tissues is associated with high NUE.  

Although the influence of growth-form × productivity interaction on leaf nitro-
gen concentration was not significant, there was a tendency for the differences in 
leaf mass to nitrogen ratio (Fig. 7 in II) and aNUE (Fig. 2) between the two 
growth-forms to increase with increasing incident light. Therefore, we hypothesize 
that graminoid species dominate in high-productive and well-illuminated plots due 
to their higher nitrogen-use efficiency compared to forb species. 

The present studies carried out at the growth-form level resulted in rather 
rough findings, because dominants and subordinates may belong to both 
growth-forms. Therefore, more detailed, species-level studies on aNUE are 
needed in the future.  
 
 

4.3. Aboveground biomass allocation patterns  
and asymmetry of competition 

Leaf area ratio (LAR) decreased along two grassland productivity gradients, 
however, it increased unexpectedly in one site with a rise in community pro-
ductivity. In high-LAR community, adjustment of leaf morphology via an 
increase in specific leaf area (SLA) is responsible for LAR increase with rising 
productivity. In low-LAR stands, two patterns were observed: the LAR dy-
namics is driven primarily by adjustment of biomass allocation (LMF) or both 
SLA and LMF are responsible for diminishing LAR with rising productivity. 
Consequently, a decrease in LAR is not a universal response to increasing 
aboveground biomass in herbaceous communities. 

The directionality of light enables dominant species to monopolize this 
resource more than soil nutrients and consequently, competitive asymmetry 
usually increases in high-nutrient soil (Grime 1979; Schippers et al. 1999). 

7
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Competitive asymmetry also depends on growth form and usually asymmetry 
declines under nutrient-poor conditions (Schippers and Kropff 2001). On the 
basis of two studies (III and IV), we conclude that light competition is more 
asymmetric in monodominated or mono-species community (with higher LAI 
and LAR) compared to multispecies communities. More asymmetric light com-
petition is probably caused by similar shoot architecture and leaf arrangement in 
large and small individuals of the same dominant species. These results are 
consistent with those by Anten and Hirose (1998): analysis of data from mono-
specific Xanthium canadense stands revealed that light competition is strongly 
asymmetrical, because tall individuals absorbed more light per unit of above-
ground mass than small individuals.  

Anten and Hirose (1999) showed that competition in a multispecies stand 
was not asymmetric because species have different strategies for biomass parti-
tioning. With increasing intensity of light competition, many plants invest more 
in height growth, which leads to reduced LAR (Hirose and Werger 1995; 
Lemaire and Millard 1999). If competition for light is asymmetric (Schippers et 
al. 1999; Anten and Hirose 2001; Freckleton and Watkinson 2001), relative 
gains of light absorption with increasing relative mass of a species in the com-
munity should be greater in plots with high biomass. If we look at multispecies 
grasslands in more detail, our data (III) show that relative bene ts from 
enlarged biomass to capture a higher proportion of incident light clearly rise 
with increasing site productivity (Fig. 2 in III). Consequently, it is clear evi-
dence of increased asymmetry in interspecific competition (Freckleton and 
Watkinson 2001). Our data suggest that competition for light between species 
tends to be size-symmetric in stands with LAI < 2.5 and becomes asymmetric 
above that limit (Fig. 2 in III). 

 
   

4.4. Nitrogen-use efficiency (NUE) 
Berendse and Aerts (1987) found that NUE consists of two components: 
1) instantaneous nitrogen productivity and 2) mean residence time of N in the 
plant. Our studied herbaceous stands belong to steady-state system according to 
Hirose (2011), i.e. they are perennial communities (not annual). Besides, no 
woody plants were found in the study areas. Thus, we assumed that mean resi-
dence time of N is similar for all plant species. The material was collected at the 
peak time of vegetation production, consequently we assumed that aNUE 
should reflect nitrogen productivity.  

Study III suggests that species-speci c aNUE does depend neither on site 
productivity nor competitive pressure, even when the biomass allocation pattern 
(measured as LAR) changes. Our unexpected nding that NUE did not decrease 
with increasing nitrogen availability either at the species or community level 
(III) may also be attributed to intensifying competition. If selection favours high 
nutrient productivity (production per unit nutrient), then the actual trend in NUE 
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along a productivity gradient should depend on the relative importance and 
strength of competition. Interactions between species are complex and pair-wise 
experiments have shown that competitive ability of a species may not change 
linearly with nutrient availability (Li and Watkinson 2000). A detailed analysis 
of the components of NUE in a study with 14 plant species growing in two 
contrasting habitat types showed that nutrient-use efficiency was unaffected by 
habitat (Eckstein and Karlsson 1997). Van Kuijk and Anten (2009) revealed that 
whole-canopy NUE was not similar among species belonging to the same func-
tional group. 

Study IV revealed that aNUE decreased with increasing productivity in the 
high-LAR, wet monodominated community. This decreace is attributable 
mainly to the grass M. caerulea, which had relatively low aNUE. In the low-
LAR, co-dominated stand, there was no relationship across all sample plots, 
although aNUE increased across 6 plots dominated by graminoid species. This 
increase was determined by replacement of dominant species. Grass E. repens 
contributed the most to the community-level rise, exhibiting the highest aNUE. 
In conclusion, it is difficult to predict the behaviour of NUE. 
 
 

4.5. Light-use indices and partitioning of light 
Hirose and Werger (1995) proposed plant biomass-based calculation of light 
interception, which has led to an understanding of resource capture partitioning 
among individuals or species in a stand. We emphasize that in conditions of a 
productivity gradient and changing LAI, light absorption per unit of above-
ground mass ( M) is not predicted solely by morphological traits and spatial 
arrangement of leaves, but is strongly in uenced by light-use ef ciency of the 
plant. It is obvious that when light energy is ef ciently converted into biomass, 

M may decline even when the available light resource does not change. This 
fact should be taken into account when interpreting light partitioning data. We 
found M to decrease with productivity, as reported by Anten and Hirose (1998, 
1999). Therefore, low M should not be interpreted as a plant’s inability to 
increase light harvesting ef ciency, but rather as evidence for increased LUE. 
Such an increase in LUE is typical when LAI of the community increases 
(Sinclair and Shiraiwa 1993; Kull and Tulva 2002; Gordillo et al. 2003). The 
reason underlying such a change in LUE results from the fundamental structure 
of the photosynthetic apparatus, accordingly increased amounts of photo-
synthesizing tissue per unit of intercepted light, which ultimately leads to an 
increase in LUE (Kull 2002).  

The results of Paper IV show that light acquisition efficiency ( M) had an 
optimum at a certain site productivity and beyond that M decreased in the low-
LAR D site (Fig. 4a in IV), showing that LUE increased with rising produc-
tivity. However, we did not reveal a corresponding relationship in the high-LAR 
W community. We hypothesize that a relationship with an optimum exists 
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between ΦM and site productivity independent of herbal community type. A 
decline in ΦM is an indicator of increased competition for light; because an 
increase in soil nitrogen availability usually leads to larger LAI and a decline in 
available light per leaf area or biomass.  

Hirose and Werger (1994) proposed to use ΦN as a measure of NUE. 
Although, ΦN in study III showed a high level of conformity with other NUE 
estimates, one should not use ΦN as an estimate of NUE (ΦN = NUE/LUE). 
Consequently, ΦN can be used as a surrogate measure for NUE only in circum-
stances when LUE is constant. This assumption is certainly not true for plant 
stands along a productivity gradient in which LAI changes. We revealed a posi-
tive relationship between aNUE and ΦN in study III, although it varied as LUE 
changed. However, within species, patterns in ΦN along productivity gradients 
(Fig. 5 in III) differed substantially from that of aNUE (Fig. 6 in III). This 
uncoupling is caused by the systematic trend of LUE along the gradient. The 
curve of ΦN in low-LAR D community had an optimum and started to diminish 
beyond that with enlarging aboveground herbal biomass. On the other hand, the 
relationship was not statistically significant in the monodominant high-LAR 
meadow community.  
 
 

4.6. Trade-off in light- and nitrogen-use  
Plant growth in the herbaceous layer in communities situated along a pro-
ductivity gradient is determined by the relative irradiance above the layer and 
by nitrogen in the N cycle, as revealed from the two-resource model (I). More 
precisely, it is a compromise between responses to light versus nitrogen 
availability. 

Hirose and Bazzaz (1998) demonstrated a negative relationship between 
stand-level nitrogen- and light-use efficiencies and concluded that a plant 
canopy cannot enlarge its NUE and LUE simultaneously. In study IV a trade-off 
between foliar nitrogen content (NA) and LAR was established: the monodomi-
nant community was characterized by large LAR and low NA, while the co-
dominated community opposed with low LAR and high NA. We suppose that 
this is evidence of a compromise between allocating resources to form larger 
foliage for greater light acquisition versus utilizing nitrogen resources more 
efficiently. 
 
 

4.7. Dominants versus subordinates 
The difference in the ability of plant species to acquire and use different 
resources might be a possible explanation of coexistence (Schulze and Chapin 
1987). Every species exhibits unique response patterns to the changes in envi-
ronment conditions and competition, and combination of traits that assure 
survival.  
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Although subordinates are characterized by smaller biomass in communities, 
they have certain effects on the regenerating of different dominants (Grime 
1998). Subsequently, functional diversity between dominant species and proba-
bly among subordinates may contribute to an immediate impact on the proper-
ties of communities (Grime 1998). For a better understanding of the functioning 
of herbaceous communities and, more precisely, of the role of subordinates, it is 
essential to examine the mechanisms that assure survival of subordinates. Why 
do some species become dominant when productivity increases, whereas others 
become subordinates? Our results show that the features most likely leading to 
domination in high-productive sites are intrinsically low LAR and high stature, 
which allow plant species to overtop others with the cost of a reduction in LAR. 
Besides, these species have relatively high NUE. One striking difference 
between dominant and subordinate species observed in this study is their plas-
ticity in LAR. In contrast to dominant species, the subordinates responded to 
strong competition with LAR enlargement. There are apparently two contrasting 
adaptive strategies to cope with increased competition: (1) to overtop others 
with cost of decreasing LAR; or (2) to increase light harvesting ability primarily 
by increasing LAR.  

In addition to the changes in the biomass allocation patterns and exposure of 
foliage to incident irradiance, changes in foliage light harvesting can occur 
through modification of leaf pigment contents. Because of the high nitrogen 
cost of chlorophyll and chlorophyll-binding proteins, within-canopy modifi-
cations in light-interception efficiency depend on variations in nitrogen invest-
ments in light harvesting (Niinemets 2007). The fact that the subordinates are 
better adaptated to low-light conditions in shade of dominants is also demon-
strated by their higher plasticity of adjusting photosynthetic apparatus, as evi-
denced by changes in Chl/N ratio. Stoichiometry of leaf photosynthetic appa-
ratus changes in a way that at low irradiance there is relatively more chloro-
phyll-containing, but nitrogen-poor light harvesting apparatus at low irradiance, 
and less nitrogen-rich biochemical apparatus for electron transport and carbon 
fixation than at high irradiance (Evans 1989; Eichelmann et al. 2005; Hikosaka 
2005). In addition, species differ largely in their ability to adjust their photo-
synthetic apparatus for particular PPFD conditions (Turnbull et al. 1993; 
Murchie and Horton 1997; Kursar and Coley 1999). Our study shows that sub-
ordinate species deprived of a strategy to grow tall in response to intensified 
competition for light are more plastic in adjustment of their photosynthetic 
apparatus to shade. Therefore, the ratio of leaf chlorophyll to nitrogen content is 
more responsive in subordinate species compared to dominant species. 
 

8 



30 

5. CONCLUSIONS 

1) A two-resource model is a suitable tool to describe the vertical structure of a 
multilayer plant community. The biomass of the vegetation layer is deter-
mined by the relative irradiance above the layer and the amount of nitrogen 
in the cycle. The overstory receives light resource in large quantities com-
pared to lower vegetation layers, while the lower layers have higher nitro-
gen-use efficiency and/or a better capability to acquire nitrogen. The two-
resource model well explains the co-limitation of growth of the herbaceous 
layer by light and nitrogen availability. The growth of the moss layer is lim-
ited primarily by light availability. 

2) Graminoid species dominate in high-productive and well-illuminated sites in 
grassland communities probably due to their higher nitrogen-use efficiency 
when compared to forb species. 

3) A decrease in leaf area ratio (LAR) is not a universal response to increasing 
aboveground biomass in herbaceous communities. While LAR decreased in 
two grassland communities with increasing site productivity, it unexpectedly 
increased in one site with a rise of productivity. In a high-LAR community, 
adjustment of leaf morphology via change in specific leaf area (SLA) is re-
sponsible for an increase in LAR with rising productivity. In low-LAR 
stands, rather a modulation of both leaf mass fraction (LMF) and SLA is re-
sponsible for diminishing LAR with rising productivity.  

4) Competition for light is more asymmetric in a monodominated or mono-
species herbaceous community (with higher LAI and LAR) compared to two 
multispecies communities. More asymmetric light competition is probably 
caused by similar shoot architecture and leaf arrangement in large and small 
individuals of the same dominant species.  

5) In a low-LAR community, light acquisition efficiency (light absorption per 
unit of aboveground biomass, ΦM) declined at the community level and also 
in most species. Whereas on the basis of two other grasslands (one low-LAR 
and one high-LAR), the hypothesis may be established that an optimum of 
ΦM exists along a productivity gradient independent of herbaceous commu-
nity type. Accordingly, a question concerning the ΦM versus aboveground 
dry mass relationship remains: does a certain optimum exist in other (herba-
ceous) community types as well?  

6) There is no universal pattern of aNUE for different plant communities with 
increasing site productivity. Variation in aNUE with respect to environ-
mental conditions remains uncertain. Therefore, it is essential to examine 
this issue further in different dominant and subordinate species in various 
communities.  
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7) A trade-off between leaf nitrogen content per unit leaf area (NA) and LAR 
was established in two herbaceous communities: the wet monodominant 
community was characterized by large LAR and low NA, while the dry co-
dominated community opposed with low LAR and high NA. There exist two 
contrasting types of plastic responses: first type of plants responds to rise in 
soil fertility and light competition with increasing LAR; in the second type 
of plants LAR reduces. Plants have to compromise between effective light-
use, nitrogen-use and biomass allocation to better accomplish one of these 
resource uses. 

8)  Different life strategies exist among plant species within particular growth-
form, while a set of characteristics depends also on the species position in 
the community: is it dominant or subordinate? There are clear differences in 
acclimation patterns between species that become dominant and that remain 
as subordinates. More precisely, plasticity in aboveground growth patterns 
and nitrogen allocation differs among species in response to increased soil 
fertility and competition, thus leading to substantially different strategies for 
survival. Subordinate species deprived of the ability to grow tall in response 
to intensified light competition are more plastic in the adjustment of their 
photosynthetic apparatus to shade conditions, and the ratio of leaf 
chlorophyll to nitrogen content is more responsive in subordinates than in 
dominant species. 

 
 
Tasks for the further studies: 
1)  Patterns of NUE (aNUE) with respect to environmental conditions remained 

uncertain. Therefore, it is essential to examine this issue in different species 
inhabiting various communities in more detail. 

2)  A question concerning the ΦM versus aboveground dry mass relationship: 
does a certain optimum exist in other community types as well?  
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SUMMARY IN ESTONIAN 

Valguse ja lämmastiku kasutamine ning biomassi allokatsioon 
produktsiooni gradientidel mitmerindelistes taimekooslustes 

Taimede ellujäämiseks, kasvuks ja edukaks paljunemiseks on vajalik kesk-
konnaressursside piisav kättesaadavus. Kõige sagedamini limiteerivad taimede 
kasvu valgus ja mulla lämmastik. Lämmastiku omastamine mullast on taime 
jaoks väga energiakulukas protsess. Sellest lähtuvalt on oluline, et taim kasutaks 
nimetatud ressursse võimalikult efektiivselt. Millised on koosluse- ja taime-
sisesed allokatsioonimustrid (nt biomassi ja lämmastiku puhul), et paremini 
kohaneda antud kasvukoha tingimustega? Sellele vastamiseks uuriti antud töös 
muutusi valguse ja lämmastiku kasutamises taimeliikide ning koosluste tasandil 
piki produktsiooni gradiente looduslikes taimekooslustes. Produktiivsusgradient 
võimaldab uurida taimi iseloomustavate tunnuste varieerumist ning nende plas-
tilisust keskkonnafaktorite ja konkurentsi intensiivsuse gradatsioonis.  
 
Doktoritööle püstitatud eesmärgid ja saadud põhitulemused (vastavalt artiklite 
järjestusele dissertatsioonis) olid järgmised. 
1.  Analüüsida valguse neeldumist ning lämmastiku ja lehemassi jaotumist 

mitmerindelise taimekoosluse erinevate rinnete vahel (I). Vaatluse all olid 
erineva avatusega taimekooslused: niidu-, puisniidu- ja heitlehine metsa-
kooslus. Proovialad, mida oli kokku 21, paiknesid Lääne-Eestis Laelatu 
puisniidul piki produktsiooni gradienti. Prooviruutudel mõõdeti taimkatte 
rinnetes neelduv valgus, arvutati puurinde lehestiku kuivmass, määrati rohu- 
ja samblarinde biomassid. Lämmastiku sisaldus määrati puu- ja rohttaimede 
lehtedes ning sambla elavates osades. Püstitatud eesmärgi lahendamiseks 
konstrueeriti mudel, mis kirjeldab lehestiku massi vertikaalset jaotumist 
koosluses sõltuvalt kättesaadava lämmastiku ja valguse hulgast.  

Uurimuse tulemusena selgus, et ülemise rindeni jõuab suurema intensiiv-
susega valgusvoog, võrreldes alumiste rinnetega. Alumisi rindeid iseloomus-
tab efektiivsem lämmastiku kasutamine ja/või parem võime omastada mul-
last lämmastikku. Kaheressursilise mudeli rakendamisest järeldub, et rohu-
rinde kasvu piki produktsiooni gradienti limiteerivad nii kättesaadav valgus 
kui ka lämmastik. Samblarinde kasvu limiteerib rindele peale langev valgus-
kiirguse voog. 

 
2.  Selgitada, mis annab graminoididele niidukoosluses domineerimiseks eelise, 

võrreldes rohundite kasvuvormiga (II). Täpsustavalt uuriti, kas graminoidide 
domineerimine on põhjustatud a) erinevustest lehestiku vertikaalses jaotu-
mises, b) erinevast lämmastiku vertikaalsest jaotumisest lehestikus, c) erine-
vustest lämmastiku kasutamise efektiivsuses. 21 prooviruutu paiknesid Lae-
latu puisniidul piki produktsiooni gradienti. Ruutudel mõõdeti rohurindele 
pealelangev suhteline valguse intensiivsus ning rindes neeldunud valgus. 
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Rohurinde maapealne osa eemaldati 50  50 cm suurustelt ruutudelt kahe 
kihina. Kihid eraldati teineteisest kõrguselt, kus oli neeldunud pool kogu 
rohurindele langevast valguskiirgusest. Rohttaimed sorteeriti kihiti rohun-
diteks ja graminoidideks ning need fraktsioonid omakorda lehtedeks ja 
muudeks organiteks. Rohundite ja graminoidide lehtede lämmastikusisaldus 
määrati mõlemas kihis eraldi.  

Tulemuseks saadi, et graminoidid hakkasid domineerima kõrge produk-
tiivsusega ja intensiivse valguskiirgusega kasvukohtadel nii lehtede suhtelise 
massi kui ka liikide arvu poolest. Lämmastiku kontsentratsioon grami-
noidide lehtedes oli 20% madalam kui rohundite lehtedes. Püstitati hüpotees, 
et graminoididel on rohunditega võrreldes kõrgem lämmastiku kasutamise 
efektiivsus ning tõenäoliselt seetõttu saavad nad domineerida kõrge produk-
tiivsuse ja valgusintensiivsusega kasvukohtadel. 

 
Eelnevad tööd näitasid vertikaalsete kihtide arvu suurendamise vajalikkust nii-
dukooslustes, et uurida suurema täpsusega valguse ja lämmastiku kasutamise 
näitajate käitumist ning biomassi allokatsiooni muutumist sõltuvalt kasvukoha 
viljakusest. Seetõttu püstitati III ja IV artiklis järgmised eesmärgid. 
3.  Rakendada Hirose ja Wergeri (1995) poolt väljatöötatud meetodit valguse 

jaotumise uurimiseks rohustute produktiivsusgradientidel ning võrrelda val-
guse kasutamise muutumist keskkonnatingimuste varieerumisel koosluse ja 
ohtramalt esinevate liikide tasandil. 

4.  Hinnata lämmastiku kasutamise efektiivsust (NUE) kasvukoha produktiiv-
susgradiendil koosluse ja liikide tasandil.  

5.  Selgitada, kas lehepinna suhte (LAR) vähenemine on universaalne reakt-
sioon maapealse biomassi suurenemisele niidukooslustes, ning täpsustada, 
milline LAR-i komponentidest  kas lehe eripind (SLA) või lehestiku suhte-
line mass (LMF)  põhjustab LAR-i muutumist sõltuvalt kasvukoha vilja-
kusest.  

6.  Võrrelda valguse neelamise võimet ja NUE-d niidukooslustes, millel on 
erinev biomassi allokatsioonimuster, ning selgitada, millised omadused 
annavad eelise dominantidele ja mis võimaldavad alusliikidel dominantide 
varjus ellu jääda.  

7.  Analüüsida, kas esineb lõivsuhe LAR-i ja pindalaühiku kohta väljendatud 
lehe lämmastikusisalduse (NA) vahel.  

Vastuste leidmiseks koguti materjal ühest rohumaakooslusest Tartumaal 
Elva lähedal Arul (III) ning kahest niidukooslusest Läänemaal Laelatul (IV). 
Arul märgiti 10 prooviruutu (suurusega 0,5 × 0,5 m) rohumaale, mis oli 
kujunenud ligikaudu viie aasta eest söötijäetud põllumaale. Valgusintensiiv-
sust mõõdeti kvantsensoriga rohustu kohalt ja kõrguskihtide piirilt koosluse 
seest. Mõõtmiste põhjal arvutati erinevates kihtides neeldunud valguse hulk. 
Ruudult eraldati kihtide kaupa taimede maapealsed osad, 3–5 kihti vastavalt 
rohustu kõrgusele. Määrati iga kihi liigiline koosseis ja iga liik sorteeriti 
kahte fraktsiooni: lehed ja muud organid. Lämmastikuanalüüsid määrati 
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kihtide kaupa rohkem esinevate liikide lehtedest ja mullaproovidest, millest 
leiti ka mulla kuivainesisaldus. 

Laelatul (IV) paiknesid prooviruudud (0,5 × 0,5 m) kahel transektil piki 
produktsiooni gradienti: liigniiske mullaga koosluses 8 ja parasniiske mul-
laga rohumaal 10. Valguse intensiivsust mõõdeti lintpüranomeetriga rohustu 
kohalt ja kõrguskihtide piirilt koosluse seest. Järgnev metoodikaosa on ana-
loogne III artiklis rakendatuga. 

Uuriti järgmiste parameetrite käitumist produktsiooni gradiendil: lehe-
pinna indeks (LAI), lehepinna suhe (LAR), lehe eripind (SLA), lehestiku 
suhteline mass (LMF), valguse omastamise efektiivsus e valguse neeldumine 
taimede maapealse massiühiku kohta (ΦM), valguse neeldumine lehe läm-
mastikuühiku kohta (ΦN), maapealne lämmastiku kasutamise efektiivsus 
(aNUE), lehe lämmastikusisaldus lehe pindalaühiku kohta (NA) ja konku-
rentsi asümmeetria parameeter (B).  

 
III ja IV uurimusest tehti järgmised olulisemad järeldused. 

LAR-i vähenemine ei ole universaalne reaktsioon produktiivsuse suurene-
misele rohumaakooslustes. Kahel uuritaval gradiendil LAR vähenes, aga vastu 
ootusi ühel gradiendil suurenes koos kasvukoha produktiivsuse tõusuga. Suure 
LAR-iga koosluses toimus LAR-i tõus SLA suurenemise tulemusel, st lehe 
morfoloogiliste tunnuste muutumise tagajärjel. Väikese LAR-iga kooslused 
reageerisid keskkonnatingimuste paranemisele mõlema LAR-i komponendi 
muutumisega: LMF-i vähenemise ja SLA suurenemisega. 

Valguskonkurentsi asümmeetria (parameeter B) on suurem ühe domineeriva 
liigiga ja suurema lehepinna indeksiga (LAI) koosluses, võrreldes kahe uuritud 
mitme dominandiga rohustuga. Asümmeetrilisem valguskonkurents on tõenäo-
liselt tingitud sama dominantliigi juveniilide ja fertiilsete isendite sarnasest 
võsude arhitektuurist ja lehtede asetusest.  

Valguse omastamise efektiivsus (ΦM) vähenes ühe madala LAR-iga rohustus 
nii koosluse tasandil kui ka mõnedel liikidel. Kahe ülejäänud koosluse (üks 
madala, teine suure LAR-iga) põhjal saab püstitada hüpoteesi, et valguse omas-
tamise efektiivsuse muutumist produktsiooni gradiendil iseloomustab opti-
mumiga kõver. Järgnevates uurimustes oleks vajalik välja selgitada, kas ana-
loogiline optimumiga kõver kehtib ka teiste taimekoosluste puhul. 

Valguse neeldumine lehe lämmastikuühiku kohta (ΦN) väljendab lämmas-
tiku ja valguse kasutamise efektiivsuste suhet (NUE/LUE). Ühes madala  
LAR-iga koosluses ei esinenud seost ΦN ja produktiivsuse vahel, kuna mõlemad 
efektiivsused (nii LUE kui ka NUE) suurenesid. Antud koosluse mõnedel liiki-
del esines ΦN vähenemistendents, sest nende NUE produktsiooni gradiendil ei 
muutunud. Teise, madala LAR-iga rohustu puhul täheldati optimumiga seost; 
suure LAR-iga koosluses seos puudus. 

Koosluse tasandil kasvas aNUE rohustu produktsiooni suurenedes ühel 
uuritud transektidest (madala LAR-iga koosluses). Samas tuleb rõhutada, et 
aNUE suurenemise põhjustas liikide vaheldumine produktsiooni gradiendil. 
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Teise, madala LAR-iga koosluse puhul ei leitud seost aNUE ja maapealse bio-
massi vahel terve gradiendi ulatuses, kuigi kuuel prooviruudul kümnest, kus 
domineerisid kõrrelised, täheldati rohustu biomassi suurenemisel aNUE tõusu. 
Madala LAR-iga monodominantses hariliku sinihelmika (Molinia caerulea (L.) 
Moench) koosluses tõusis aNUE produktsiooni suurenemisel. Veel on ebaselge 
aNUE reaktsioon keskkonnatingimuste muutumisele, eriti liikide tasandil, ning 
see vajab edasist uurimist erinevates kooslustes, arvestades sealjuures liigi 
staatust koosluses (dominant või alusliik). 

Kahes uuritud koosluses (üks madala, teine kõrge LAR-iga rohustu) leiti 
lõivsuhe LAR-i ja NA vahel. Monodominantset kooslust liigniiskel mullal ise-
loomustasid suur LAR ja madal NA, aga mitme dominandiga kuival mullal esi-
nevas niidukoosluses oli väike LAR ja kõrge NA. Seega esineb teatav kompro-
miss valgusressursi ja lämmastikuressursi paremaks kasutamiseks tehtavate 
kulutuste vahel. 

Liikide omavahelisel võrdlemisel selgus, et dominandid ja alusliigid rea-
geerivad kasvutingimuste muutustele täiesti erinevalt. Täpsemalt, liikide maa-
pealse biomassi ja lämmastikusisalduse jaotumise plastilisuse varieeruvus teki-
tab erinevad valguse ja lämmastiku kasutusmustrid ning sellest tulenevalt kuju-
nevad erinevad ellujäämisstrateegiad.  
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