
UNIVERSITY OF TARTU

Faculty of Science and Technology

Institute of Technology

Siim Sundla

SEMI-AUTOMATIC DEFLECTION MEASUREMENT USING

DIGITAL IMAGE CORRELATION

Master's thesis (30 EAP)

Supervisors:

Assoc. Prof. Gholamreza Anbarjafari

Dr. Andres Punning

Tartu 2015

Abstract

In this thesis, an easy-to-use approach using cubic spline interpolation is proposed for

providing initial estimations for digital image correlation (DIC) grid point locations and

rotations on objects with major deflection. One of the main problems in using DIC for

deflection measurements is that direct correlation fails since image sample rotations can differ

considerably across two images. The proposed method uses manually chosen reference points

to create a spline that describes deflection. Curve geometries are then taken into account when

calculating initial guesses for DIC grid points. The validity and accuracy is demonstrated

through a series of tests.

2

Table of contents

Abstract...2

Table of contents...3

Introduction...5

1. Digital image correlation...6

 1.1 History and usage..6

 1.2 Mathematical definition..7

 1.3 Speed and accuracy...9

 1.4 Sub-pixel tracking...10

 1.4.1 Newton-Rhapson method..10

 1.4.2 Gradient-based..11

 1.4.3 Iterative and spatial-gradient algorithm..12

 1.4.4 Curved surface fitting..12

 1.4.5 Sub-pixel method comparison..14

 1.5 Interpolation methods...14

 1.6 Speckle patterns..14

 1.7 Limitations..15

2. Problem definition...17

 2.1 Requirements..17

 2.2 Approach...17

 2.2.1 Rotation tracking...17

 2.2.2 Grid transformation for initial guesses..19

 2.2.3 Calculating correlated grid location..21

 2.2.3 Sub-pixel accuracy..23

 2.2.3.1 Optimization scheme...23

 2.2.3.2 Compensating base grid fractional coordinates..23

 2.2.3.3 Compensating path rotation errors..24

3. Experimental Results..26

 3.1 Implementation...26

 3.1.1 Improved DIC...26

 3.1.2 Installation...26

 3.1.3 Functions...26

3

 3.1.4 Usage and output...27

 3.2 Accuracy and testing...30

 3.2.1 Validation procedure...30

 3.2.2 Manual testing...31

 3.2.3 Mathematical testing...32

 3.2.4 Sub-pixel accuracy..34

 3.2.4.1 Peak interpolation...34

 3.2.4.2 Rotation adjustment..34

Summary...36

Poolautomaatne painde mõõtmine kasutades digital image correlation meetodit....................37

Acknowledgements...38

References...39

Appendix...42

Lihtlitsents...67

4

Introduction

Digital image correlation (DIC) is commonly used for deformation measurements, however it

is not directly suitable for deflection measurements. This is due to the fact that DIC does not

handle larger image rotations well. There exists several methods for compensating this

shortcoming, nevertheless it can be difficult to implement them in practice.

The aim of this thesis is to propose an easy-to-use method for providing initial guesses for

locations and rotations of DIC grid points on deflected objects. DIC calculations can then in

turn serve as basis for research related to specimen deflection.

The paper is divided into three sections. The first chapter gives a historical and mathematical

background to DIC and its related algorithms, including their use and limitations. The second

chapter specifies the problem to be solved and gives a theoretical overview of the proposed

solution. In the final chapter, an implementation is described and evaluated through a series of

tests.

5

1. Digital image correlation

1.1 History and usage

Digital image correlation (DIC) is a widely used image processing algorithm for full-field

displacement measurements. The same technique has also been referred to as digital speckle

correlation method (DSCM), texture correlation, computer-aided speckle interferometry

(CASI) and electronic speckle photography (ESP) [1].

DIC searches for similarities between pixel intensities in two images. Essentially, this

involves calculating correlation criteria between the template image and each coordinate in

the target image. The simplicity and low cost makes DIC a desirable option for many

applications, since it does not require any special equipment other than a camera. Besides

conventional cameras, DIC can be used with an optical microscope, laser scanning confocal

microscope (LSCM), scanning electron microscope (SEM), atomic force microscope (ATM)

and scanning tunneling microscope (STM) to perform micro and nanoscale deformation

measurements [1].

Some of the first works in the field of image correlation can be attributed to Gilbert

Hobrough. In 1950s Hobrough compared analogue representations of photographs in order to

register features from various views. An instrument he designed in 1961 [2] is considered one

of the first attempts to extract positional information using a form of DIC. It is believed that

Peters and Ranson first proposed the use of computer based DIC-like method to conduct

deformation measurements in 1982. However, the original concept involved digitally

recording a full-field pattern by using ultrasonic waves. Based on this approach Sutton in

1983 developed numerical algorithms, performed experiments using optically recorded

images and showed the feasibility of this approach now known as two-dimensional (2D) DIC

[3].

Besides being used in fracture mechanics researchers have used DIC to understand material

deformation behaviours on metals, plastics, wood, ceramics, tensile loading of paper and to

study damage in composites and concrete. In 1984 Peters demonstrated that the approach can

also be used in fluid systems. Material characterization studies have used DIC measurements

in films, polymers, metals, heterogeneous materials, wood, bio-materials including skin,

shape memory alloys, composites, asphalt, ceramics, glass wool, mineral wool, rock, glass,

6

foams, clay, sands, soils, concrete, paint, electronic components, joints, etc. [3, 4]. Various

mechanical properties can be calculated using DIC including: Young's modulus, Poisson's

ratio, stress intensity factor, residual stress, thermal expansion coefficient, etc. [1].

DIC has also found use for bridge deflection measurements and for special effects in cinema

[5]. Most notably in 1994 movie Forrest Gump where various moving elements were replaced

and an actor was added to historical video sequences. The basis for these effects required

tracking manually the selected features across frames which was done using DIC [6].

1.2 Mathematical definition

DIC works by evaluating similarities between pixel intensities on an image and a template as

shown on Figure 1.1 (a) and (b) respectively. Two different approaches are commonly used

for achieving this: cross-correlation and least squares matching (LSM)[7].

For cross-correlation a template is shifted over an image and correlation coefficient is

calculated for each coordinate that describes how well the overlapping areas match. Figure 1.2

shows a correlation coefficient values calculated for an image and a template seen in Figure

1.1. The peak is at a location where the template originates from. Correlation coefficient

shows the certainty of the match.

7

Figure 1.1: Image (a) and template (b) [8].
 (a) (b)

One of the most used correlation criteria is the normalized cross correlation (NCC) which is

defined by:

c (u , v)=
∑
x, y

[f (x , y)− ¯f u ,v][t (x−u , y−v)− t̄]

√∑
x , y

[f (x , y)− ¯f u, v]
2∑

x , y

[t (x−u , y−v)− t̄]2
(1.1)

where

• t is the template;

• t̄ is the mean of the template;

• f is the target image;

• ¯f u , v is the mean of target image in the region under the template;

Other correlation criteria being used are the cross-correlation (CC) and the zero-normalized

cross-correlation (ZNCC). CC in sensitive to both offsets and linear scaling of pixel

intensities. NCC can compensate for linear scaling. ZNCC, although more complex, is

insensitive to both, making it the most robust choice [1].

8

Figure 1.2: Correlation coefficient across image [8].

The LSM approach tries to minimize the squared differences between the pixels on the

template and an image. The simplest LSM criteria is sum of squared differences (SSD) which

can be written for a template with size 2Mx2M as:

C= ∑
i=−M

M

∑
j=−M

M

[f (x i , y i)−t(x 'i , y ' i)]
2 (1)

Analogously to the cross-correlation criteria, the normalized (NSSD) and zero-normalized

(ZNSSD) criteria exist which have the same advantages over SSD as their cross-correlation

counterparts [1].

High accuracy of 1/100th of a pixel have been achieved on high quality images using this

method. However NCC has been shown to be more accurate when lower quality images are

involved. To be able to fully utilize LSM a high quality equipment is required, also colour

cameras are not recommended since various post- and preprocessing algorithms can alter the

results [7]. An example of LSM is given in section 1.4.2, that describes the gradient-based

method for sub-pixel optimization.

Various techniques have been developed to improve the integer displacement search including

frequency domain correlation using FFT, a nested searching scheme and sum-table approach

[9].

1.3 Speed and accuracy

Accuracy and precision of DIC algorithms can depend on several factors:

• speckle pattern

• subset size

• correlation criterion

• shape function

• sub-pixel interpolation scheme

• sub-pixel registration algorithm

Iterative cross-correlation algorithm based on Newton-Rhapson (NR) method with zero-mean

normalized cross-correlation (ZNCC) criterion and bicubic interpolation is considered a

standard approach for sub-pixel accurate DIC [9].

9

Many computer simulations have shown that the DIC algorithm can easily yield accuracy

better than 0.001 pixels at a speed faster than 5000 points per second. However, the entire

DIC analysis is relatively slow, especially when advanced schemes such as reliability-guided

correlation scanning strategy [10].

It has been shown that DIC processing speed can be improved by using Fourier domain

correlation. This method is also known as digital speckle displacement measurement

(DSDM). However DSDM cannot handle large rotations and deformations well. The accuracy

of DIC in spectral domain has shown to be as good as in spatial domain only in some limited

cases, due to lack of sub-pixel accuracy [10, 11].

1.4 Sub-pixel tracking

1.4.1 Newton-Rhapson method

Generally, either Newton-Rhapson or Levenberg–Marquardt iterative algorithm is used to

match subsets to correlation criterion. These methods require an interpolation process to

converge to a sub-pixel accurate solution. Since interpolation is performed many times during

the subset matching process, it is evident that great amount of computation time is spent on

sub-pixel intensity interpolations [12]. The other downside of these methods is that relatively

good initial guess is required for the six unknowns of the shape function shown in equation

1.2 in order for these algorithms to converge at the correct solution [13].

Given for each pair of coordinates (xi, yi) in an original image a match can be found in

deformed image at (x'i, y'i). Such mapping can be described with:

x i
'
=xi+u+

∂ u
∂ x

Δ x i+
∂u
∂ y

Δ y i y i
'
= y i+v+

∂ v
∂ x

Δ x i+
∂ v
∂ y

Δ y i (1.2)

where u is the horizontal and v the vertical displacement of the reference subset, and Δ x i is

horizontal and Δ y i vertical distance from the centre of the subset to (xi, yi).

NR method is commonly used to calculate a root of a polynomial if the analytical solution

cannot be calculated directly. Since the correlation coefficient can be found for each

coordinate and 1-correlation coefficient is 0 where the match occurs, finding a peak in

correlation matrix can be solved as a problem of finding a root of a polynomial.

10

Unknown parameters that need to be found are:

P=[u ∂u
∂ x

∂ u
∂ y

v
∂ v
∂ x

∂v
∂ y]

T

(1.3)

Finding a peak is reduced to a minimization problem with the correlation function C:

∂C
∂ Pi

=0 i=1...6 (1.4)

Iterative form of NR algorithm is:

P(0)

Δ P(k)=−{ ∂
2 C

∂ P i∂P j
}
−1

{∂C
∂ Pi} (i, j=1...6, k=0,1,2,...)

P(k +1)
=P(k)

+Δ P(k)

(1.5)

In other words, starting with and initial guess P(0) a derivative is calculated and its root is used

to improve the guess for a root of P; this is repeated until sufficient accuracy is achieved.

Initial guess is an integer value, but for subsequent iterations interpolation of this value and its

adjacent values is required [14].

Various researchers have worked to improve the execution speed of DIC using the NR

method, these can be often divided into following general categories [15]:

• Hessian matrix simplification. A simplified expression for the matrix of second

derivatives has been proposed and shown to reduce computational load significantly.

Other works include an algorithm where re-evaluation and inversion of Hessian matrix

can be avoided entirely.

• Initial guess improvements. Since the number of steps required to reach convergence

depends on the accuracy of the initial guess.

• Faster sub-pixel interpolation.

1.4.2 Gradient-based

Gradient based methods rely on an assumption that image pixel intensities remain unchanged

for small subsets and displacements and that mapping between original and deformed subset

can be described with a simple translational motion written as follows [14]:

f (xi , y i)=g (x 'i , y ' i)=g (x i+u+Δu , yi+v+Δ v) , (1.6)

11

where u and v are horizontal and vertical integer pixel displacements and Δu and Δv are

respective sub-pixel displacements. After the integer displacement has been calculated sum of

squared differences C need to be minimized in order to find the sub-pixel accurate solution:

C(Δu ,Δ v)=∑∑ [f (x i , y i)−g(x i+u+Δu , y i+v+Δv)]
2 (1.7)

Taylor expansion of formula 1.6 is:

g(x i+u+Δu , y i+v+Δ v)=g(x i+u , y i+v)+Δu gx (xi+u , y i+v)+Δ v gy (x i+u , y i+v) (1.8)

After deduction solution to the minimization problem becomes:

[Δu
Δ v]=[∑∑(gx)

2 ∑∑ (gx gy)

∑∑(gx g y) ∑∑ (g y)
2]

−1

⋅[∑∑ (f −g)gx

∑∑ (f −g)g y
] (1.9)

1.4.3 Iterative and spatial-gradient algorithm

Iterative and spatial gradient also relies on an assumption that image gray-levels do not

change with the deformation. An optimization function that has to be minimized is:

Fi=f (x i , yi)−g(x 'i , y ' i)=0 i=1,2,...n (1.10)

Similarly to NR method relations 1.2 and 1.3 are used to solve:

P(0)

Δ P(k)
=[∇ F (Pk

)
T
∇ F (Pk

)]
−1

∇ F (Pk
)

T
∇ F (Pk

) k=0,1,2,..

P(k +1)
=P(k)

+Δ P(k)

(1.11)

This approach is computationally less expensive than basic NR algorithm since only first

order grey derivatives need to be calculated, as opposed to second order used in NR [14].

1.4.4 Curved surface fitting

When the maximum value of the correlation coefficient and its location in the matrix is

known, its surrounding values can be used to interpolate a second order polynomial surface,

as shown in Figures 1.3 (a) and 1.3 (b).

12

Second order polynomial is defined by:

Z (x , y)=a+bx+cy+dxy+ex2
+ fy2 (1.12)

Let x , y=[−1,1] .

For a given coordinate where matrix has maximum value cx,y solve for adjacent values:

cx−1, y−1=Z (−1,−1)=a−b− y+d+e+f (1.13)

cx , y−1=Z (0,−1)=a−c+ f (1.14)

cx+1, y−1=Z (1,−1)=a+b− y−d+e+ f (1.15)

cx−1, y=Z (−1,0)=a−b+e (1.16)

cx , y=Z (0,0)=a (1.17)

cx+ 1, y=Z(1,0)=a+b+e (1.18)

cx−1, y +1=Z (−1,1)=a−b+c−d+e+ f (1.19)

cx , y+1=Z(0,1)=a+c+ f (1.20)

cx+1, y+1=Z (1,1)=a+b+c+d+e+ f (1.21)

Since all correlation matrix values are already known, the system of equations can be solved

to find coefficients a, b, c, d, e and f.

In case cx,y is at the first or last column or row, cx,y can be used as a peak, otherwise the

extremum of the polynomial has to be calculated.

Extremum exists where:

Z ' (x , y)

dx
=b+dy+2 xe=0

Z ' (x , y)

dy
=c+dx+2 fy=0 (1.22)

13

Figure 1.3: Adjacent correlation values to maximum (a) and their interpolation (b).
(a) (b)

Location offset from the maximum value in matrix can then be calculated using:

x=
2bf −dc

d2
−4 ef

y=
bd−2ec

4ef −d2 (1.23)

1.4.5 Sub-pixel method comparison

It has been shown that although easy to implement accuracy of curved surface fitting and

gradient-based algorithms is lower than the accuracy of NR and spatial-gradient algorithms

when complex transformations occur. Precision and stability of last two algorithms is the

same, but since spatial-gradient algorithm is less complex to calculate it is recommended for

applications where speed and accuracy are required [14].

1.5 Interpolation methods

The original DIC code implemented by Sutton et al. initially included the bilinear

interpolation to provide sub-pixel accuracy. Due to the lack of C1 continuity (first derivatives

are not continuous) especially when used on rough topographic profiles, this scheme was later

replaced by third-order polynomial interpolation (bicubic spline interpolation). Higher

computational cost of bicubic spline interpolation is compensated by faster convergence rate

due to improved accuracy [16].

It has been shown that using the B-spline algorithms can further improve the accuracy.

Particularly quartic O-MOMS (optimal maximal order minimal support) and quintic B-spline

algorithms that with respect to RMSE (root mean square error) can yield hundreds of times

better results than the bicubic algorithm. Computational speeds of these algorithms have been

shown to be roughly equivalent. However, to be able to benefit from more accurate

interpolation algorithms high-pixel-depth, high-quality imaging system is required [12].

1.6 Speckle patterns

DIC relies on the speckle pattern on the surface of the specimen. For effective results these

patterns are required to be random, isotropic and high contrast. Camera resolution relative to

speckle size is also important. With too fine pattern aliasing will occur which means that

14

surface texture won't be represented accurately. This is related to Nyquist sampling criterion

which states that the sampling rate of a signal has to be at least twice the highest frequency

component of the signal in order to represent it. In general, the size of the speckles should be

at least 3-4 pixels, in order to avoid aliasing [17].

Natural surface textures are rarely sufficient nor optimal for DIC. Several techniques exist for

applying a speckle pattern on surfaces. These include [17]:

• spray paint – The base is sprayed with white paint and then again with black paint to

create speckles.

• toner – For small objects (smaller than 12mm). Surface is painted white and toner

blown on it.

• lithography or vapor deposition – For very small specimens.

• stencils – Very large specimens, can be made from thin vinyl with laser or water

cutting techniques and then used to roll or spray a pattern.

• printing - For medium to large panels. Used for specimens from 25mm to 4m in size.

• ink – Placed with a marker. Effect to the surface is minimal which allows to measure

very high strains.

• grid – Although it is not optimal for DIC the grid can be used when initial guesses and

subset sizes are selected so that exactly one grid intersection is contained in each

subset.

• projecting – With a projector. Only useful for shape measurements.

1.7 Limitations

As described in the previous section contrasting surface texture or a speckle pattern has to

exists for DIC to be reliable. If this requirement is not met, the DIC cannot be used. It is also

required that CCD sensor and object surface should be parallel and out-of-plane motion of the

specimen during loading should be small enough. Currently strain measurement accuracy of

DIC is lower than that of interferometric techniques and it is not recommended for accurate

non-homogeneous small deformation measurements [1].

It has been experimentally shown that correlation is reliable until the difference of sub-image

15

rotations reaches 8°. With larger rotation angles, no obvious peaks can be found from the

correlation profile which results in the detection of wrong displacements [18]. Another

limitation regarding the use of Lavenberg-Marquardt or Newton-Rhapson sub-pixel

optimization is that a good initial guess is required for these algorithms to converge at a

correct solution.

When large deformations and rotations are present, a different approach is required in order to

provide reliable initial guesses. These include using a lot of intermediate images, making

easily detectable special markers or using special knowledge about the experiment. Wang et

al. have developed a scheme combining scale invariant feature-transform (SIFT) and

improved random sample consensus (iRANSAC) algorithms to provide fast and automatic

initial guesses for the DIC method. The SIFT algorithm has been widely used in computer

vision to detect and describe features in images [19, 20, 21]. SIFT works by finding image

features that remain the invariant despite image rotation, translation or scaling. For each such

point descriptors are calculated that help to identify same feature across different images.

Feature pairs are found by matching the descriptors on both images and choosing the ones that

have minimal Euclidean distance between their locations [22]. iRANSAC algorithm is then

used to eliminate wrong feature pairs matches [13].

The downside of such approach is its relative complexity which may make it undesirable for a

lot of use cases [23]. Therefore, alternative approaches should be considered when

simplifying assumptions can be made based on the application. One possible way to find

correlations between highly deflected objects is to extend the search space to a whole image

and for each point try different rotations until the best correlation coefficient has been found.

This can be very computationally expensive. A possible optimization is to take into account

that two adjacent points should end up close to each other with similar rotation. Not only this

would considerably increase the complexity of the algorithm, but may also lead to a high

number of false positives when image features are not too distinct across the image.

16

2. Problem definition

2.1 Requirements

Deflection causes parts of material to shift and/or change their orientation as shown in Figure

2.1. It is required to be able to find correlations between areas that are rotated on the deflected

image when compared to the original. Since DIC finds matches only when image features in

samples overlap, an additional method has to be developed to rotate samples prior correlation.

The developed technique can be adopted to different use cases due to the fact that it is

independent from properties such as background features and object size.

2.2 Approach

2.2.1 Rotation tracking

Since it is difficult to implement fully automatic feature detection algorithms like SIFT a

semi-automatic method is proposed in this thesis. This works well with few images, but is not

suitable for large scale applications that require processing of hundreds or thousands of

images.

For efficiency and accuracy, it is necessary to be able to predict the final locations and

rotations of correlated image points. This requires knowledge about general deformation that

occurred in the image. The proposed method for tracking location and rotation is to use user-

defined curves as general guides. Figure 2.2 illustrates such curves, which are used for

17

Figure 2.1: Bending geometry.

describing material deflection. In Figure 2.2 (a) curve has been created through two reference

points whereas in Figure 2.2 (b) three points have been used. A common curve fitting

algorithm such as cubic spline interpolation can be used to construct the aforementioned

curves.

A cubic spline with n+1 points (y0, y1, …, yn) contains a total of n third degree polynomials,

defined by:

Y i(t)=ai+bi t+ci t
2
+d i t

3 , (2.1)

where t∈[0,1] and i=0,…,n-1.

Therefore for each i it holds that:

Y i(0)= y i=ai (2.2)

Y i(1)= y i+1=a i+bi+c i+d i (2.3)

And for derivatives:

Y i
'
(0)=Di=bi (2.4)

Y i
'
(1)=Di+1=bi+2ci+3 d i (2.5)

For smooth transitions between splines, derivatives have to match at the start and end of

consecutive polynomials:

Y i−1
'

(1)=Y i
'
(0) (2.6)

Y i−1
' '

(1)=Y i
' '
(0) (2.7)

18

Figure 2.2: Describing general deflection using polynomial functions. Original state (a) and
deformed state (b).

 (a) (b)

For all points it also applies that:

Y i(0)= y i (2.8)

Y i−1(1)= y i (2.9)

To complete the equations the following two additional criteria must be added:

Y o
' '
(0)=0 (2.10)

Y n−1
' '

(1)=0 (2.11)

System of equations (2.2-2.11) need to be solved to find variables ai, bi , ci, di for each

segment. Knowing the sequence of polynomials and their start and end points enable

calculation of deflection curve across the image width.

2.2.2 Grid transformation for initial guesses

Creating a rectangular grid with given height, width and step size is a trivial operation. Such a

simple grid can then be transformed into more complex one using the predefined paths. Figure

2.3 shows the grid transformation of different curves: linear path (a), a simple curve (b) and a

complex curve (c). When the first and the last point on the path are set to roughly the same

place on the object, general changes in length and placement can also be approximated.

The proposed algorithm assumes the origin of coordinates is in the top left corner. The

following example uses two curved paths P1 and P2 as shown in Figure 2.4 and 2.5, the same

can be applied to the case where either or both of them are linear (straight lines). For this

complex example, the curve concavity and length have changed.

19

Figure 2.3: Grid transformation using path. Linear (a), simple curve (b) and complex curve
(c).

(a) (b) (c)

Given a set of grid points g∈G let P1(x) be a function that defines base path and P1'(x) its

derivative. Choose two points pstart and pend on base path that describe region of interest (where

the grid will be created). Let P2(x) be a function that defines second deflected path and P2'(x)

its derivative. Let p'start and p'end be corresponding points on second path.

Euclidean distance from g to P1(x) for any x is defined by:

E(g , x)=√(gx−x)
2
+(gy−P1(x))

2 (2.12)

For each grid point g find closest point pg with distance d on path P1:

d=min (E(g , x)) for x=1..image width, (2.13)

assuming that the match is found at pg=(x ,P(x)) .

20

Figure 2.5: Transformation, deflected path.

Figure 2.4: Transformation, base path.

Curve length between two points on path P1 is defined by integral:

C1(p1, p2)=∫p1x

p2x

√1+(P1 '(x))
2 dx (2.14)

Similarly on second path:

C2(p1, p2)=∫p1x

p2x

√1+(P2 ' (x))2dx (2.15)

Let p' g=(p ' gx , P(p' gx)) be corresponding point to pg on second path that is located at the

same distance ratio between the start and endpoint of the path (red curves in Figure 2.4 and

Figure 2.5). Therefore distance C2(p'start, p'g) without knowing p'g is:

l=C2(p ' start , p ' g)=
C1(pstart , pg)

C1(pstart , pend)
C2(p ' start , p 'end) (2.16)

p'g can then be found by solving:

l=∫p ' startx

p ' gx

√1+(P2 '(x))
2 dx (2.17)

Given D p=P2 '(p ' gx) is a derivative of P2 at p'g, therefore:

α=tan−1
(D p) dx=sin (α)⋅d dy=cos (α)⋅d (2.18)

Final g' can be calculated:

g' x=p ' x−dx g' y=p ' y+dy (2.19)

2.2.3 Calculating correlated grid location

From the transformation step there is the following data available:

• Grid point locations gi∈G on the base image.

• Estimations for grid point locations gi ' ∈G and rotations ri ' ∈R on the deflected

image.

We choose an odd number for square template width wt around each grid point on the base

image that will be used to search correlations from the deflected image. Similarly we choose

an odd number ws for square template width around each grid point on the deformed sub-

image. Also we require that w t≤ws . Using odd numbers for widths puts the centre of the

region into the centre of a pixel, this can later be used to simplify finding the offset.

Template from the first image is used to search correlations with a larger sample on the

second image. This common approach works as long as image data from template and

21

deformed sub-image do not differ too much. In case of major deflection straight forward

cross-correlation results in poor coefficients across the sample since image features do not

overlap in larger regions any more.

Assuming that gi' in Figure 2.6 (b) is the approximate location of the final point pi that was

found using mathematical transformation described in the previous section, it can be expected

that original image data from the template on Figure 2.6 (a) will be rotated near gi' with a

rotation of ri'.

Image area width that has to be cropped from the base image prior rotation has to be able to fit

template rotated at 45° where former image diagonal becomes its width. Then the sample size

can be calculated as:

w r=√w t
2
+wt

2 (2.20)

After performing the rotation the template can be cropped back to its intended size w t×wt .

Normalized 2D cross-correlation between template and deflected sub-image produces a

square matrix C with dimensions (w t+w s−1)×(w t+w s−1) when the template and sub-

image are correlated so that the centre of the template “moves” over each pixel on the sub-

image. This ensures that the final location will stay inside the search region that is defined by

ws.

A correlation coefficient peak cp exists in this matrix if correlation criteria have been chosen

so that better correlations yield values closer to 1. The easiest way to find the peak is to take

the maximum element from the matrix. However, other possibilities exist that improve

accuracy as described in chapter 1.4.

22

Figure 2.6: Correlation template (a) and deflected sub-image (b).
 (a) (b)

The geometrical centre cc of the correlation matrix C is at row and column:

wt+w s−1

2
+

1
2
=

wt+ws
2

(2.21)

Displacement from the centre of the matrix would therefore be:

d=(wt+ws
2

−c px ,
wt+ws

2
−c py) (2.22)

The centre of matrix cc refers to the same location as gi' on the deflected image. Final grid

point location pi can then be calculated using:

pi=(g i ' x−d ix , gi ' y−d iy) (2.23)

2.2.3 Sub-pixel accuracy

2.2.3.1 Optimization scheme

Since the relative accuracy of DIC is not the focus of this thesis curved surface fitting

algorithm described in section 1.4.4 is used to achieve sub-pixel accuracy due to its simplicity.

2.2.3.2 Compensating base grid fractional coordinates

If the base grid has been constructed using fractional coordinates an additional error is

introduced to the results. Image correlation works on an area of pixels as a whole and has no

information about the original coordinates.

Each grid point g is considered to be in the centre of a pixel c by the correlation as can be seen

in Figure 2.7 (a). A match is found on the second image at a coordinate c' shown on Figure 2.7

(b). However since the original location g may have not been in the centre of the pixel the

final result has to be corrected so that grid point on the second image would end up at g'.

23

Figure 2.7: Base (a) and rotated grid pixels (b).
 (a) (b)

Fractional offset on the base grid can be described with a vector c⃗g . Since rotation r is

already known from the transformation step, the vector c⃗ ' g ' can be constructed using

rotation matrix:

c⃗ ' g '=c⃗g∗[cos(r) −sin(r)
sin(r) cos (r)] (2.24)

Final location can then be calculated:

g'=c ' +⃗c ' g ' (2.25)

This method relies on the accuracy of finding the rotation r. Since the rotation is calculated

using the path defined by the user it can contain errors. The following section describes

improving the rotation.

2.2.3.3 Compensating path rotation errors

Assuming that the correct rotation provides the highest correlation coefficient it is possible to

improve sub-pixel accuracy by maximizing correlation coefficient. Let r be the rotation that is

calculated in the grid transformation step. It can be considered to be relatively close to the

correct rotation. Figure 2.8 describes finding the best rotation by calculating correlation

coefficient between same image samples but by changing the rotation by a constant increment

of c. This iterative approach ensures that if there are no local maximums the absolute peak

will be found, otherwise the local maximum is found. The accuracy can be further improved

using interpolation.

If the peak is at rotation r+ci, second degree polynomial can be used to approximate the

actual extremum. Let C(r) be correlation coefficient function with base sample rotation r.

Second degree polynomial in two-dimensional space is defined by:

y=a+bx+cx2 (2.26)

Given that:

C(r+c (i−1))= y (−1)=a−b+c (2.27)

C(r+ci)= y (0)=a (2.28)

C(r+c (i+1))= y (1)=a+b+c (2.29)

24

Coefficients a, b, c can be found by solving this system of equations. Differential of y is

y '=b+2 xc . Extremum exists where y'=0. Offset x can then be calculated using:

x=−
b

2 c
(2.30)

The final adjusted rotation is therefore r+ci+x.

25

Figure 2.8: Rotation adjustment algorithm.

left>centre
&

left>right

Iteration step i=0

YES

right>centre

left=centre
centre=right

right=CORR(r+(i+1)c)

right=centre
centre=left

left=CORR(r+(i-1)c)

Peak found at rotation r+ci

 left=CORR(r-c)
centre=CORR(r)
right=CORR(r+c)

i--

i++YES

NO

NO

3. Experimental Results

3.1 Implementation

3.1.1 Improved DIC

Implementation of the proposed approach is based on Matlab Improved DIC library [24]. The

following files are used:

• findpeak.m – for finding a peak in matrix using interpolation;

• cpcorr_mod.m – a modified version of Matlab cpcorr.m that enables to tune control-

point locations using cross-correlation. This file has been further modified to support

rotating the image samples.

See Appendix for comments and source code.

3.1.2 Installation

Rotated DIC library has no other dependencies than standard packages included with Matlab

installation. Implementation has been developed and tested on Matlab R2012a.

In order to use the library all the files included have to be added to Matlab execution path.

File→Set Path and Add Folder.

3.1.3 Functions

The library contains two executable files rotated_dic.m and rotated_dic_correlate.m which

can be called using the corresponding function names.

rotated_dic(grid_step, search_window, subset, tune_rotation)

Main executable, calculating correlation between two images.

• grid_step (integer) - distance in pixels between grid points

• subset (integer) - width of the template from the base image used to search

correlations with a sub-image from input image, defaults to grid step size in pixels

• search_window (integer) - how many times the sub-image width from input image

26

exceeds subset (template) width

• tune_rotation (1/0) - optional, if 1 algorithm will try to find a rotation that gives

highest correlation

rotated_dic_correlate(search_window, subset, display, tune_rotation)

For rerunning correlation with different input parameters after rotated_dic.m has run once.

• subset (integer) - optional

• display (1/0) - optional, 1-show images, 0-don't, defaults to 1

• tune_rotation (1/0) – optional, defaults to 0

3.1.4 Usage and output

Sample execution using grid_step 20 pixels and search_window 2: rotated_dic(20, 2).

1. User is asked to open a base image using a file dialogue.

2. Clicking on the image sets start and endpoints for the base path. In Figure 2.9 a

dialogue appears asking for confirmation weather more points should be added. For

this example two points for base path is sufficient. More points can be added until the

path matches the desired curve.

3. After path has been set, an another dialogue appears as can be seen in Figure 2.10 and

asks for the number of grid rows to be generated, this can be further adjusted until

desired result is achieved. Generated grid will be between first and last point on path

and follows its geometry. For this example 9 rows are used.

4. User is asked to open the input image.

5. Input path can be defined in the same way as the base path. If the final path is

confirmed the program continues with the correlation.

6. Results are displayed, this includes: transformation on Figure 2.11, correlation on

Figure 2.12 and visualized changes in relative grid point placements as can be seen on

Figure 2.13.

27

28

Figure 2.11: Results, transformed grid.

Figure 2.10: Usage, defining a grid.

Figure 2.9: Usage, defining a path.

As it can be seen from Figures 2.12 and 2.13, majority of original grid points find their match.

Correlation coefficients lower than 0.5 are discarded by the library. This is often due to larger

changes in the image so that correlation cannot find similar areas any more, the area was too

featureless to be distinguishable or the area around transformed grid point (the initial guess)

did not contain the correct point. In the latter case it can be tried again with a new path and

grid or correlation part can be rerun with the same grid and path data using

rotated_dic_correlate.m function. This enables to change the correlated area size and look for

matches from a larger area.

29

Figure 2.12: Results, correlated grid.

Figure 2.13: Results, stress grid.

 Correlation and transformation results are written into Matlab data files:

• result-transform.mat

◦ base_grid (2xN) - points to be correlated on base image

◦ input_grid (2xN) - points to be correlated on input image

◦ base_path (2ximage width) - path that describes object deflection on base image

◦ input_path (2ximage width) - path that describes object deflection on input image

◦ base_rotations (1xN) - rotations in radians for each base grid point

◦ rotations (1xN) - rotations in radians for each input grid point

◦ base_filename - absolute path to base image file

◦ input_filename - absolute path to input image file

◦ points_in_row - how many points in a grid row

◦ grid_step

◦ base_p - x, y coordinate pairs used to create base_path as defined by user

◦ input_p - x, y coordinate pairs used to create input_path as defined by user

• result-correlation.mat

◦ result (2xN) - adjusted grid points after correlation, x and y coordinates for N grid

points

◦ corr_coeff - average correlation coefficient (0-1)

3.2 Accuracy and testing

3.2.1 Validation procedure

All tests were performed on an Intel Core i7 Q720 (1.6 GHz) laptop PC with 4GB of RAM

installed. Accuracy has been evaluated using mean square error (MSE) based on Euclidean

distances between expected and found grid point locations. MSE is commonly used for

assessing DIC accuracy [12, 25]. Average correlation coefficient has also been calculated to

show the quality of the correlation results. Numerical tests were carried out by applying rigid-

30

body rotation to specimen images [26]. All test images show artificial muscles with

contrasting surface texture taken using Hitachi TM3000 tabletop SEM.

3.2.2 Manual testing

Due to the difficulty of generating images that display mathematically predictable deflection,

paths with varying curvature have to be tested partially manually on real images. For one such

case, 16 distinct points were selected on an image shown in Figure 2.14, and their location

was determined on the deflected image by choosing integer coordinates by an eye. It is

expected that such method will introduce measurement error of approximately 1 pixel.

Square of the Euclidean distance from the desired location was calculated for both

transformation and correlation (square error). Summary is shown in Table 2.1 and detailed

results in Table 2.2.

Table 2.1: General results for manual testing.

Average correlation coefficient 0.908

Transform mean square error (pixels) 10.838

Correlation mean square error (pixels) 0.267

Correlation between transformation and correlation error is -0.0914, this indicates that a

bigger errors in setting the initial guess for the grid point do not result in worse accuracy when

finding the final location using correlation. However, errors shown here are small and it is

31

Figure 2.14: Manual testing setup, original image (a) and deflected image (b).
 (a) (b)

clear that larger errors lead to correlation not being found at all due to the point moving out of

the search window.

Table 2.2: Detailed results for manual testing.

Correlation coefficient Transform square error Correlation square error

1 0.9114 2.236 0.146

2 0.9312 26.790 0.180

3 0.9583 17.071 0.020

4 0.9460 11.646 0.278

5 0.8254 23.471 0.159

6 0.9200 9.797 0.296

7 0.9329 14.418 0.021

8 0.8619 15.159 0.255

9 0.7284 12.065 0.271

10 0.8524 3.576 0.202

11 0.9232 12.487 0.415

12 0.8563 10.050 0.546

13 0.9635 0.498 0.129

14 0.9669 9.164 0.961

15 0.9775 1.264 0.262

16 0.9787 3.719 0.126

3.2.3 Mathematical testing

More accurate testing can be done on an image with a rectangular grid that will be rotated by

an angle as can be seen on Figure 2.15. In this setup, all grid points on the deflected image

can be precisely calculated. Paths were still set manually as they would by the user of the

library. Errors were calculated by measuring the Euclidean distance between pre-calculated

and correlated location. Test parameters are shown in Table 2.3.

32

Table 2.3: Test parameters.

Grid step size 20 pixels

Subset size 20 pixels

Search window 3

Rotation adjustment off

Correlation peak interpolation on

Three distinct test cases were observed shown in Tables 2.4, 2.5 and 2.6. Since in real-life

applications only the final DIC accuracy is important, transformation accuracy is no longer

observed.

Table 2.4: Test case 1, original base image and 33° rotated input image.

Grid points (nr) 696

Mean correlation coefficient 0.974

Mean square error (pixels) 0.004

Table 2.5: Test case 2, 20° rotated base image and -45° rotated input image.

Grid points (nr) 855

Mean correlation coefficient 0.964

Mean square error (pixels) 0.006

33

Figure 2.15: Linear path testing setup.

Table 2.6: Test case 3, base image equals input image.

Grid points (nr) 696

Mean correlation coefficient 0.974

Mean square error (pixels) 0.001

It can be seen that even if images are the same the correlation still introduces errors, this due

to interpolation and disappears when interpolation is removed. Highest possible accuracy

using this implementation with respect to mean square error is therefore 0.001 while with

actual rotations 0.004 which proves that curve based transformation can provide initial

guesses for an accurate DIC.

3.2.4 Sub-pixel accuracy

3.2.4.1 Peak interpolation

Same test cases were used as described in section 3.2.3. For each case, mean square error

(MSE) was calculated shown in Table 2.7.

Table 2.7: Interpolation effect on accuracy.

Test case nr. MSE (peak interpolation) MSE (no peak interpolation)

1 0.004 0.180

2 0.006 0.175

3 0.001 0.000

When correlating the same image (test case nr 3) peak interpolation creates a small error, but

for actual use cases when images need to be rotated and image data changes, it can improve

sub-pixel accuracy.

3.2.4.2 Rotation adjustment

For the following results, previously defined test cases 1, 2, 3 were run and mean square error

(MSE) and mean correlation coefficients (MCC) were calculated.

34

Table 2.8: Rotation adjustment effect on accuracy and execution speed.

No rotation adjustment With rotation adjustment

Test case nr. MSE MCC Time MSE MCC Time

1 0.004 0.974 5s 0.004 0.974 20.6s

2 0.006 0.964 6.1s 0.005 0.964 25.4s

3 0.001 0.974 2.5s 0.001 0.975 18.5s

It can be seen from the results in Table 2.8 that the effect of rotation adjustment is negligible

for these cases, but execution time is considerably increased. Correlation coefficient has

improved marginally, but this does not have a positive effect on the accuracy. This can be due

to the fact that paths are well defined and rotations accurate enough. However when a rotation

error of 5.72° (0.1 radians) is manually added, the results can differ considerably as can be

seen from Table 2.9.

Table 2.9: Rotation adjustment effect on accuracy and speed when additional error

introduced.

No rotation adjustment With rotation adjustment

Test case nr. MSE MCC Time MSE MCC Time

1 0.086 0.867 5.1s 0.003 0.974 49.5s

2 0.123 0.860 5.8s 0.006 0.964 58.8s

3 0.095 0.857 4.7s 0.001 0.975 46.6s

Adjusting rotation improves both correlation coefficient and mean square error. Interestingly,

accuracy for the first test case has improved over the result with unaltered rotation. Since peak

interpolation is used, accuracy may vary based on input data, which adds randomness to the

results. Execution times have further increased.

It is clear that when path is not well defined, rotation adjustment can improve accuracy.

However this increases the execution time. Mean correlation coefficient can be used as an

indication when the adjustment should be applied. Lower correlation coefficients may

indicate that it is necessary to tune rotation. When the result with adjustments gives higher

mean correlation coefficient it can be assumed that accuracy was improved as well.

35

Summary

The aim of this thesis was to develop an easy-to-use method for providing initial guesses for

DIC grid point locations and rotations on objects where major deflection occurs. Study of

literature revealed that special approach is required to be able to perform DIC on subsets that

are rotated, although such methods exist they are difficult to implement. A method was

proposed that employs manual input for creating a curve across image width that describes the

specimen deformation. Deflection curve could then be used to provide initial guesses and

rotations prior DIC.

The approach was implemented using MATLAB and several tests were made to evaluate the

algorithm. The results showed that curve based grid transformation can provide sufficient

estimation to be able to carry out DIC measurements and converge to sub-pixel accurate

solution. The magnitude of displacement error caused by transformation was shown to be

irrelevant when search windows are big enough for the correct location to be included.

However rotational errors were proven to be significant for sub-pixel accuracy, additional

method was proposed and shown to work for compensating errors in rotation estimations.

In conclusion the results have shown that the described method can be used for providing

initial guesses for grid point locations on deflected objects. Therefore DIC can be used with

this approach to carry out deflection measurements.

36

Poolautomaatne painde mõõtmine kasutades digital image

correlation meetodit

Siim Sundla

Kokkuvõte

Käesoleva magistritöö eesmärgiks oli arendada välja lihtsalt kasutatav meetod esialgsete

digital image correlation (DIC) meetodi koordinaatpunktide asukohtade ning rotatsiooni

määramiseks suure paindega objektidel. Kirjanduse uuringust selgus, et vajalik on erinev

lähenemine võrreldes tavapärase DIC kasutamisega. Kuigi sellelaadsed algoritmid on olemas

on nad reaalsuses raskesti kasutatavad. Magistritöös pakutud meetod rakendab kasutaja

poolset sisendit, et koostada kõverjoon objekti painde kirjeldamiseks, mida on võimalik

kasutada DIC koordinaatpunktide asukoha ning rotatsiooni hindamiseks.

Kirjeldatud algoritm realiseeriti kasutades MATLAB programmerimiskeelt. Selleks, et

tõestada lähenemise korrektsust viidi läbi mitmed testid. Tulemused näitasid, et kõverjoontel

põhinev koordinaadipunktide muundamine annab piisava täpsusega sisendi, et läbi viia alam-

piksli täpsusega DIC mõõtmine. Ühtlasi näidati, et asukoha määramise viga on ebaoluline kui

DIC otsinguaken on piisavalt suur, et sisaldada õiget punkti. Teisalt rotatsiooni hinnangu vead

mõjutasid otseselt tulemuse kvaliteeti. Vea kompenseerimiseks esitati meetod, mille toimimist

näidati ka testide tulemustes.

Kokkuvõtvalt võib tulemustest järeldada, et esitatud meetodit saab kasutada DIC punktide

asukohtade ning rotatsioonide määramiseks paindega objektidel, mis võimaldab omakorda

läbi viia mõõtmisi painde määramiseks.

37

Acknowledgements

I would like to thank my supervisors Gholamreza Anbarjafari and Andres Punning for advice

and guidance on writing this thesis. Additional thanks goes to Andres Punning for providing

SEM images of artificial muscles that were used for evaluating the developed approach.

38

References

[1] B. Pan, K. Qian, H. Xie and A. Asundi, “Two-dimensional digital image correlation

for in-plane displacement and strain measurement: a review”, Measurement Science

and Technology, 2009, 20, DOI:10.1088/0957-0233/20/6/062001.

[2] Hobrough, G. L. (1971). U.S. Patent No. 3,595,995. Washington, DC: U.S. Patent and

Trademark Office.

[3] M. A. Sutton, J. Orteu and H. W. Schreier, “Image Correlation for Shape, Motion and

Deformation Measurements”, Springer Science+Business Media, New York, 2009.

[4] J. D. Krehbiel and T. A. Berfield, “Applying Digital Image Correlation to Biological

Materials”,

http://sottosgroup.beckman.illinois.edu/papers/undergrads/REU_Krehbiel.pdf.

08.05.2015, 12:00(UTC).

[5] S. Yoneyama and H. Ueda, “Bridge Deflection Measurement Using Digital Image

Correlation with Camera Movement Correction”, Materials Transactions, 2012, 53(2),

285- 290, DOI:10.2320/matertrans.I-M2011843.

[6] J. P. Lewis, “Fast Normalized Cross-Correlation”, Industrial Light & Magic,

http://scribblethink.org/Work/nvisionInterface/nip.html, 08.05.2015, 12:00(UTC).

[7] R. Roncella, E. Romeo, L. Barazzetti, M. Gianinetto and M. Scaioni, “Comparative

Analysis of Digital Image Correlation Techniques for In-plane Displacement

Measurements”, 5th International Congress on Image and Signal Processing, 2012,

721-726, DOI:10.1109/CISP.2012.6469731.

[8] Mathworks. MATLAB Normalized 2-D cross-correlation function description.

http://se.mathworks.com/help/images/ref/normxcorr2.html 14.05.2015, 17:00(UTC).

[9] B. Pan and K. Li, “A fast digital image correlation method for deformation

measurement”, Optics and Lasers in Engineering, 2011, 49, 841–847,

DOI:10.1016/j.optlaseng.2011.02.023.

[10] Z. Wang, H. Kieu, H. Nguyen and M. Le, “Digital image correlation in experimental

mechanics and image registration in computer vision: Similarities, differences and

complements”, Optics and Lasers in Engineering, 2015, 65, 18–27,

39

http://se.mathworks.com/help/images/ref/normxcorr2.html
http://scribblethink.org/Work/nvisionInterface/nip.html
http://sottosgroup.beckman.illinois.edu/papers/undergrads/REU_Krehbiel.pdf

DOI:10.1016/j.optlaseng.2014.04.002.

[11] S. Yaofeng, T. Y. Meng, J. H. L. Pang and S. Fei, “Digital Image Correlation and its

Applications in Electronics Packaging”, Electronic Packaging Technology

Conference. Proceedings of 7th, 2005, DOI:10.1109/EPTC.2005.1614380.

[12] L. Luu, Z. Wang, M. Vo, T. Hoang and J. Ma, “Accuracy enhancement of digital

image correlation with B-spline interpolation”, Optics Letters, 2011, 36(16), 3070-

3072, DOI:10.1364/OL.36.003070.

[13] Z. Wang, M. Vo, H. Kieu and T. Pan, “Automated Fast Initial Guess in Digital Image

Correlation”, Strain, 2014, 50, 28–36, DOI:10.1111/str.12063.

[14] L. Xiong, X. Liu, G. Liu, J. Liu, X. Yang and Q. Tan, “Evaluation of Sub-pixel

Displacement Measurement Algorithms in Digital Image Correlation”, International

Conference on Mechatronic Science, Electric Engineering and Computer, 2011, 1066-

1069, DOI:10.1109/MEC.2011.6025650.

[15] Z. Wang, S. Wang and Z. Wang, “An analysis on computational load of DIC based on

Newton–Raphson scheme”, Optics and Lasers in Engineering, 2014, 52, 61–65,

DOI:10.1016/j.optlaseng.2013.07.019.

[16] G. Vendroux and W. G. Knauss, “Submicron Deformation Field Measurements II:

Improved Digital Image Correlation”, Experimental Mechanics, 1998, 38(2), 86-92,

DOI:10.1007/BF02321649.

[17] “Speckle Pattern Fundamentals”, CSI Application Note AN-525,

https://melab.wikischolars.columbia.edu/file/view/AN525+-

+Speckle+Pattern+Fundamentals.pdf, 08.05.2015, 12:00(UTC).

[18] P. Hung and A. S. Voloshin, “In-plane Strain Measurement by Digital Image

Correlation”, J. of the Braz. Soc. of Mech. Sci. & Eng. 2003, 25(3), 215-221,

DOI:10.1590/S1678-58782003000300001.

[19] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade and B. L. Lu. “Person-specific SIFT

features for face recognition”, Acoustics, Speech and Signal Processing, ICASSP

2007. IEEE International Conference, 2007, 2, II-593-II-596,

DOI:10.1109/ICASSP.2007.366305.

40

https://melab.wikischolars.columbia.edu/file/view/AN525+-+Speckle+Pattern+Fundamentals.pdf
https://melab.wikischolars.columbia.edu/file/view/AN525+-+Speckle+Pattern+Fundamentals.pdf

[20] T. Sun, S. Ding and Z. Ren. “Novel image recognition based on subspace and SIFT”,

Journal of Software, 2013, 8(5), 1109-1116, DOI:10.4304/jsw.8.5.1109-1116.

[21] K. H. Ali and T. Wang, “Recognition of Human Action and Identification Based on

SIFT and Watermark”. Intelligent Computing Methodologies, 2014, 8589, 298-309.

DOI:10.1007/978-3-319-09339-0_31.

[22] D. G. Lowe, “Object recognition from local scale-invariant features”, Computer

vision, 1999. The proceedings of the seventh IEEE international conference on, 2,

1150-1157, DOI:10.1109/ICCV.1999.790410.

[23] A. Punning, V. Vunder, I. Must, U. Johanson, G. Anbarjafari and A. Aabloo, “In situ

scanning electron microscopy study of strains of ionic electroactive polymer

actuators.”, Journal of Intelligent Material Systems and Structures, 2015

DOI:10.1177/1045389X15581520.

[24] Mathworks. MATLAB Improved Digital Image Correlation library documentation.

http://www.mathworks.com/matlabcentral/fileexchange/43073-improved-digital-

image-correlation--dic- 15.05.2015, 17:00(UTC).

[25] C. Cofaru, W. Philips and W. Van Paepegem, “Evaluation of digital image correlation

techniques using realistic ground truth speckle images”, Measurement Science and

Technology, 2010, 21, DOI:10.1088/0957-0233/21/5/055102.

[26] A. M. R. Sousa, J. Xavier, M. Vaz, J. J. L. Morais and V. M. J. Filipe, “Measurement

of displacement fields with sub-pixel accuracy by combining cross-correlation and

optical flow”. 8º Congresso Nacional de Mecânica Experimental, 2010.

41

http://www.mathworks.com/matlabcentral/fileexchange/43073-improved-digital-image-correlation--dic-
http://www.mathworks.com/matlabcentral/fileexchange/43073-improved-digital-image-correlation--dic-

Appendix

The following section contains primary source files for the rotated DIC MATLAB library.

Full source with test code and data is provided on the CD included with the thesis.

README.md

Rotated DIC Matlab library

====================================
Searches for correlations between two images taking into account changes in general geometry that are
represented by two curves that are defined by the user. Makes it possible to find same images points
from images that are deflected.
Files

Source
* rotated_dic.m - executable code
* rotated_dic_correlate.m - executable code, only correlation part
* transform_grid.m - grid trasform based on paths for initial guesses
* draw_colored_strain_grid.m - strain visualization
* cpcorr_mod.m - from Matlab "Improved Digital Image Correlation" library, modified to rotate
correlated samples
* findpeak.m - from Matlab "Improved Digital Image Correlation" library
* iterate_path.m - finds current path length and differencial for each point on path
* get_path_length.m - gets path length between given points
* construct_base_grid.m - creates grid based on given path

Test
* test/test_errors.m - function for calculating transform and correlation errors base on predefined data
* test/test_transform.m - transform errors test
* test/test_cor_linear_errors.m - correlation errors test
* test/test_cor_linear_errors2.m - correlation errors test, both images rotated
* test/test_cor_same_errors.m - correlation errors test with same image
* test/calc_and_plot_errors.m - test helper function
* test/calc_expected_grid.m - test helper function
* test/calc_square_errors.m - test helper function

* test/test-setup.mat - path and grid data for tests
* test/test-setup-transform.mat - path and grid data for tests
* test/test-setup-cor-linear.mat - data for correlation errors test
* test/test-setup-cor-linear2.mat - data for correlation errors test 2

* test/test-base.tif
* test/test-input.tif
* test/test-linear-base.tif
* test/test-linear-33deg.tif
* test/test-linear-2-20deg.tif
* test/test-linear-2-45deg.tif

42

Execution

General terms and parameters
- **grid_step** (int) - distance in pixels between grid points
- **subset** (int) - width of the template from the base image used to search correlations with a sub-
image from input image, defaults to grid step size in pixels
- **search_window** (int) - how many times the sub-image width from input image exceeds subset
(template) width
- **tune_rotation** - optional, if 1 algorithm will try to find a rotation that gives highest correlation.
Improves subpixel accuracy when rotations calculated from path have errors, but slows down
execution speed considerably

rotated_dic(grid_step, search_window, subset, tune_rotation)
Main executable, calculating correlation between two images

* subset - optional
* tune_rotation - optional, defaults to 0

1. open base image
2. click on base image to create curve that matches general material deformation
3. enter how many grid rows should be generated (grid starts from first path point and end with last)
4. open input image
5. click on input image to create curve that matches general material deformation

NB! First and last path points on base and input images must be roughly at the same spot on material
so that general length strain and shift could be calculated for the initial guesses

Output:

 result-transform.mat

* base_grid (2xN)- points to be correlated on base image
* input_grid (2xN)- points to be correlated on input image
* base_path (2ximage width)- path that describes object deflection on base image
* input_path (2ximage width)- path that describes object deflection on input image
* base_rotations (1xN) - rotations in radians for each base grid point
* rotations (1xN) - rotations in radians for each input grid point
* base_filename - absolute path to base image file
* input_filename - absolute path to input image file
* points_in_row - how many points in a grid row
* grid_step - (see input parameters)
* base_p - x,y coordinate pairs used to create base_path as chosen by user
* input_p - x,y coordinate pairs used to create input_path as defined by user

result-correlation.mat

* result (2xN)- adjusted grid points after correlation
* corr_coeff - average correlation coefficient (0-1)

After rotated_dic result has been saved correlation part can be repeated with rotated_dic_correlate

rotated_dic_correlate(search_window, subset, display, tune_rotation)
For rerunning correlation with different input parameters after rotated_dic has run once

* subset - optional

43

* display - optional, 1-show images, 0-dont, defaults to 1
* tune_rotation - optional, defaults to 0

Final correlation step will save results as: 'result-correlation.mat'

Testing

* display - optional, 1-show images, 0-dont, defaults to 1

test_errors(display)
Calculates and displays mean square errors for grid transform and correlation based on preset images
and data in the test folder

test_transform
Transforms rectangular grid to bent one and back to rectangular, checks errors

test_cor_linear_errors(display)
Calculates differences between correlation results and mathematically expected final gridpoint
locations. Plots errors and correlation coefficients. Input image is under 33deg rotation

test_cor_linear_errors2(display)
Calculates differences between correlation results and mathematically expected final gridpoint
locations. Plots errors and correlation coefficients. Base image is under 20deg and input under -45deg
rotation. Rotation tuning is applied

test_cor_same_errors(display)
Calculates differences between correlation results base gridpoint locations. Uses same image as base
and input. Plots errors and correlation coefficients.

Limitations

- only grayscale images
- images must be same size
- only horizontal paths supported (x coordinates monotonically increasing)
- all gridpoints must be below path

44

construct_base_grid.m

% CONSTRUCT_BASE_GRID - creates grid based on given path

%
% Parameters:
% base_path (2ximage width)- path that describes object deflection
% on base image
% base_p - x,y coordinate pairs used to create base_path as chosen by user
% grid_step (int) - distance in pixels between grid points
% rows - how many rows should grid have
%
% Returns:
% base_grid (2xN)- points to be correlated on base image
% base_rotations (1xN) - rotations in radians for each base grid point
% points_in_row - how many gridpoint in one row
function [base_grid, base_rotations, points_in_row] = construct_base_grid(base_path,
base_p, grid_step, rows)
 % find first and last point on path and distance between them
 [~,idx] = min(base_p(1,:));
 first_point = base_p(:, idx);
 [~,idx] = max(base_p(1,:));
 last_point = base_p(:, idx);
 p_dist = calc_dist_on_path(base_path, first_point, last_point);

 % construct rectangular grid between first and last point
 points_in_row = ceil(p_dist/grid_step);
 reference_grid = create_reference_grid(first_point, grid_step, rows, points_in_row);

 % construct straight horizontal path
 image_width = size(base_path,2);
 reference_path = [1:image_width; repmat(first_point(2), 1, image_width)];

 % transform reference grid using path on base image
 [base_grid, base_rotations] = transform_grid(reference_grid, reference_path,
base_path, base_p, [], []);

% CALC_DIST_ON_PATH - gets distance on path between two points
%
% Parameters:
% path (2ximage width)- path that describes object deflection
% first_point - x,y coordinates for first point
% second_point - x,y coordinates for second point
%
% Returns:
% distance - distance in pixels
function distance = calc_dist_on_path(path, first_point, second_point)
 [~, path_length] = iterate_path(path);
 distance = get_path_length(path_length, [first_point, second_point]);

% CREATE_REFERENCE_GRID - creates basic rectangular grid
%
% Parameters:
% start_point - x,y coordinates where to generate grid from going right
% and down
% grid_step - distance in pixels between grid points
% rows - how many rows should grid have

45

% columns - how many columns should grid have
%
% Returns:
% grid (2xN)- arrays of coordinates
function grid = create_reference_grid(start_point, grid_step, rows, columns)
 grid_start_x = start_point(1);
 grid_start_y = start_point(2) + grid_step;
 grid_end_x = grid_start_x + (grid_step) * columns-1;
 grid_end_y = grid_start_y + (grid_step) * rows-1;

 % create x coordinates for one row
 grid_x = grid_start_x:grid_step:grid_end_x;
 len_x = size(grid_x, 2);

 % create y coordinates for one column
 grid_y = grid_start_y:grid_step:grid_end_y;
 len_y = size(grid_y, 2);

 % repeat rows and columns
 grid_x = repmat(grid_x, 1, len_y);
 grid_y = repmat(grid_y', 1, len_x)';
 grid_y = grid_y(:)';

 grid = [grid_x; grid_y];

46

draw_colored_strain_grid.m

% DRAW_COLORED_STRAIN_GRID - show changes between distances of adjacent grid

% points using color map
%
% Parameters:
% base_grid (2xN)- original coordinates for grid points
% grid (2xN)- new coordinates for grid points
% points_in_row - how many grid points are in a row
function draw_colored_strain_grid(base_grid, grid, points_in_row)
 connections = collect_grid_connections(grid, points_in_row, base_grid);

 % flip y axis and fix aspect ratio for figure
 figure('Name', 'Stress grid');
 set(gca, 'Ydir', 'reverse');
 daspect([1,1,1]);
 hold on;

 % draw colored stress-grid
 max_change = max(abs([connections.change]));
 c=colorbar;
 ylabel(c,'Change in length (%)') ;

 colorbar_range_percent = ceil(max_change * 100);
 caxis([-colorbar_range_percent colorbar_range_percent]);
 map = colormap;
 % number of distict color values on colorbar halfed
 halfMapTicks = (size(map, 1)-1)/2;
 for idx=1:size(connections, 2)
 % find color value for each grid connection
 col = round(halfMapTicks + (connections(idx).change/max_change *
halfMapTicks)) + 1;
 color = map(col,:);
 plot([connections(idx).start_p(1) connections(idx).end_p(1)],
[connections(idx).start_p(2) connections(idx).end_p(2)], 'Color', color, 'LineWidth', 3);
 end

 % draw grid points
 plot(grid(1,:),grid(2,:),'s','markerfacecolor',[0 0
0],'markeredgecolor','none','markersize',3);

% COLLECT_GRID_CONNECTIONS - find adjacent grid point pairs
%
% Parameters:
% base_grid (2xN)- original coordinates for grid points
% grid (2xN)- new coordinates for grid points
% points_in_row - how many grid points are in a row
%
% Returns:
% connections - array of structs of grid point coordinates and lenght
% changes (see create_grid_connection)
function connections = collect_grid_connections(grid, points_in_row, base_grid)
 points_in_col = size(grid,2)/points_in_row;
 % shape grids into 2D matrices of rows and columns
 grid_mat = reshape([grid(1,:) grid(2,:)],[points_in_row,points_in_col,2]);
 base_grid_mat = reshape([base_grid(1,:) base_grid(2,:)],

47

[points_in_row,points_in_col,2]);

 connections = struct('start_p',{},'end_p',{},'change', {});

 for idx=1:points_in_row
 for idy=1:points_in_col
 if idx > 1
 % horizontal
 con = create_grid_connection(grid_mat(idx-1,idy,:), grid_mat(idx,idy,:),...
 base_grid_mat(idx-1,idy,:), base_grid_mat(idx,idy,:));
 if isstruct(con)
 connections(end+1) = con;
 end
 end
 if idy > 1
 % vertical
 con = create_grid_connection(grid_mat(idx,idy-1,:), grid_mat(idx,idy,:),...
 base_grid_mat(idx,idy-1,:), base_grid_mat(idx,idy,:));
 if isstruct(con)
 connections(end+1) = con;
 end
 end
 end
 end

% CREATE_GRID_CONNECTION - find adjacent grid point pairs
%
% Parameters:
% start_p (x,y)- first point on new grid
% end_p (x,y)- second point on new grid
% orig_start_p (x,y)- first point on original grid
% orig_end_p (x,y) - second point on original grid
%
% Returns:
% connection - struct if points were valid coordinates, otherwise false
% start_p - (see parameters)
% end_p - (see parameters)
% change - how much distance changed (-0.1 means -10%)
function connection = create_grid_connection(start_p, end_p, orig_start_p,
orig_end_p)
 dist = pdist([start_p(1) start_p(2); end_p(1) end_p(2)],'euclidean');
 original_dist = pdist([orig_start_p(1) orig_start_p(2); orig_end_p(1)
orig_end_p(2)],'euclidean');
 if isnan(dist) || isnan(original_dist)
 connection = false;
 else
 change = 1 - original_dist/dist;
 connection = struct('start_p', start_p, 'end_p', end_p, 'change', change);
 end

48

get_path_length.m

% GET_PATH - gets distance on path between first and last path point

%
% Parameters:
% path_len (1ximage width)- current path length at any x
% points - x,y coordinate pairs on path
%
% Returns:
% length - path length in pixels
function length = get_path_length(path_len, points)
 start_x = round(min(points(1,:)));
 end_x = round(max(points(1,:)));
 length = abs(path_len(end_x) – path_len(start_x));

iterate_path.m

% ITERATE_PATH - finds path length and differencial for each x coordinate

%
% Parameters:
% input_path (2ximage width)- path that describes object deflection
% on input image
%
% Returns:
% path_diff (1ximage width)- current path length for each x coordinate
% path_len (1ximage width)- current path differencial for each x
% coordinate
function [path_diff, path_length] = iterate_path(input_path)
 m=length(input_path(1,:));
 path_diff = zeros(1, m);
 path_length = zeros(1, m);

 xx=input_path(1,:);
 yy=input_path(2,:);

 length_total = 0;

 for i=1:1:m-1
 dx = xx(i+1) - xx(i);
 dy = yy(i+1) - yy(i);
 length_total = length_total + sqrt(dx^2+dy^2);
 path_diff(i) = dy;
 path_length(i+1) = length_total;
 end

49

rotated_dic.m

% ROTATED_DIC - Digital image correlation for deflection measurement UI

%
% Description:
% Interactive utility for searching correlations between two images.
% Uses two paths defined by user to transform rectangular reference
% grid to match object deflection. Individual grid point location and
% rotation is used to rotate image samples before correlation so that
% same areas that have different orientation on images could be
% correlated using conventional DIC.
%
% Correlation can be rerun using rotated_dic_correlation function.
%
% Parameters:
% grid_step (int) - distance in pixels between grid points (if base path
% is nonlinear actual grid_step for a pair of grid points will
% depend on path geometry)
% search_window (int) - how many times the correlated sample width from
% base image exceeds subset width
% subset - optional, width of the sample from input image used to search correlations
% with a sample from base image, defaults to grid step size in pixels
% tune_rotation - optional, if 1 algorithm will try to find a rotation
% that gives highest correlation. Improves subpixel accuracy when
% rotations calculated from path have errors, but slows down
% execution speed considerably. defaults to 0
%
% Output:
% result-transform.mat
% - base_grid (2xN)- points to be correlated on base image
% - input_grid (2xN)- points to be correlated on input image
% - base_path (2ximage width)- path that describes object deflection
% on base image
% - input_path (2ximage width)- path that describes object deflection
% on input image
% - base_rotations (1xN) - rotations in radians for each base grid
% point
% - rotations (1xN) - rotations in radians for each input grid
% point
% - base_filename - absolute path to base image file
% - input_filename - absolute path to input image file
% - points_in_row - how many points in a grid row
% - grid_step - (see input parameters)
% - base_p - x,y coordinate pairs used to create base_path as chosen by user
% - input_p - x,y coordinate pairs used to create input_path as defined by user
function rotated_dic(grid_step, search_window, subset, tune_rotation)

 % turn off image too big to fit screen warning
 warning('off', 'Images:initSize:adjustingMag');

 % default subset size is the grid_step
 if not(exist('subset', 'var'))
 subset = grid_step;
 end

 % by default do not try to find better rotations

50

 if not(exist('tune_rotation', 'var'))
 tune_rotation = 0;
 end

 % USER: get base image
 [im_base, base_filename] = load_image();
 figure('Name', 'Base image');
 imshow(im_base,'InitialMagnification',100,'displayrange',[]);

 image_width = size(im_base,2);

 % USER: create path profile for base image
 [base_path, base_p] = create_curve(image_width);
 plot(base_path(1,:), base_path(2,:));

 % create grid for base image under defined path
 while true
 rows_answer = inputdlg('How many grid rows?');
 rows = str2double(rows_answer(1));

 [base_grid,base_rotations,points_in_row]=construct_base_grid(base_path,
base_p, grid_step, rows);
 hold on;
 grid_plot = plot(base_grid(1,:),base_grid(2,:),'s','markerfacecolor',...
 [255 255 0]/255,'markeredgecolor','none','markersize',3);

 choice = questdlg('Adjust rows?','', 'Yes', 'No', 'No');
 if strcmp(choice,'No') || isempty(choice)
 break;
 end
 delete(grid_plot);
 end

 % USER: get input image
 [im_input, input_filename] = load_image();
 figure('Name', 'Input image');
 imshow(im_input,'InitialMagnification',100,'displayrange',[]);

 % USER: create path profile for input image
 [input_path, input_p] = create_curve(size(im_input,2));

 % calculate grid for input image based on two paths
 [input_grid, rotations] = transform_grid(base_grid, base_path, input_path, base_p,
input_p, base_rotations);
 hold on;
 plot(input_grid(1,:),input_grid(2,:),'s','markerfacecolor',...
 [255 255 0]/255,'markeredgecolor','none','markersize',3);

 % save results before correlation
 save('result-transform.mat', 'base_grid', 'input_grid', 'base_path', 'input_path',
'base_rotations',...
 'base_filename', 'input_filename', 'points_in_row', 'grid_step', 'rotations', 'base_p',
'input_p');

 % call actual correlation (data loaded from result-transform.mat)
 display_images=1;
 rotated_dic_correlate(search_window, subset, display_images, tune_rotation);

51

% LOAD_IMAGE - loads an image from disk
%
% Returns:
% im_grid - image data
% filename
function [im_grid, filename] = load_image()
 [file_name,path_name] = uigetfile(...
 {'*.bmp;*.tif;*.jpg;*.tiff;*.TIF;*.BMP;*.JPG;*.TIFF;*.png',...
 'Image files (*.bmp,*.tif,*.jpg,*.tiff,*.png)';'*.*', 'All Files (*.*)'}, ...
 'Open base image');
 filename = strcat(path_name, file_name);
 im_grid = imread(filename);

% CREATE_CURVE - Create curve through coordinates user clicks on
%
% Parameters:
% width - curve will be calculated for x values 1 to width
%
% Returns:
% curve
% points - x and y coordinate pairs user clicked on
function [curve, points] = create_curve(width)
 % allocate memory for two points
 x = zeros(1, 2);
 y = zeros(1, 2);

 % USER: click for path start point
 [x(1), y(1)] = ginput(1);
 hold on;
 plot(x(1),y(1),'s','markerfacecolor',[255 177
100]/255,'markeredgecolor','none','markersize',3);

 idx = 2;
 while(1)
 % USER: add points one-by-one
 [x(idx), y(idx)] = ginput(1);
 hold on
 plot(x(idx),y(idx),'s','markerfacecolor',[255 177
100]/255,'markeredgecolor','none','markersize',3);

 xx = 1:width;
 % fit points on a curve
 yy = csapi(x, y, xx);
 curve = [xx; yy];

 curve_plot = plot(xx,yy);

 choice = questdlg('Add more points to path?','', 'Yes', 'No', 'No');
 if strcmp(choice,'No') || isempty(choice)
 break;
 end

 delete(curve_plot);
 idx=idx+1;
 end
 points = [x; y];

52

rotated_dic_correlate.m

% ROTATED_DIC_CORRELATE - Digital image correlation for deflection measurement

%
% Description:
% For rerunning correlation with different input parameters after
% rotated_dic has run once
%
% Parameters:
% search_window (int) - how many times the correlated sample width from
% base image exceeds subset width
% subset - optional, width of the sample from input image used to search correlations
% with a sample from base image, defaults to grid step size in pixels
% display - optional, 1-show images and strain plot, 0-dont, defaults to 1
% tune_rotation - optional, if 1 algorithm will try to find a rotation
% that gives highest correlation. Improves subpixel accuracy when
% rotations calculated from path have errors, but slows down
% execution speed considerably. defaults to 0
%
% Input:
% result-transform.mat (see rotated_dic.m)
%
% Output:
% result-correlation.mat
% - result (2xN)- adjusted grid points after correlation
% - corr_coeff - average correlation coefficient (0-1)
function rotated_dic_correlate(search_window, subset, display, tune_rotation)

 if exist('result-transform.mat', 'file') == 0
 error('Please run rotated_dic first to generate input');
 end

 % by default show images
 if not(exist('display', 'var'))
 display = 1;
 end

 % by default do not try to find better rotations
 if not(exist('tune_rotation', 'var'))
 tune_rotation = 0;
 end

 % load saved data
 data = load('result-transform.mat');

 if not(exist('subset', 'var'))
 subset = data.grid_step;
 end

 im_base = imread(data.base_filename);
 im_input = imread(data.input_filename);

 if display
 % display base and input images when none was found open
 plot_image('Base image', im_base, data.base_grid, data.base_path);
 plot_image('Input image', im_input, data.input_grid, data.input_path);

53

 end

 % tune grid location with correlation
 search_zone(1:size(data.input_grid,2)) = search_window;
 correlation_threshold = 0.5;
 tic;
 [xyinput, corr_coeff] = cpcorr_mod(data.input_grid', data.base_grid', im_input,...
 im_base, subset, search_zone', correlation_threshold, data.rotations,
tune_rotation);
 fprintf('Correlation done in %f seconds.\n', toc);
 result = xyinput';

 if display
 % plot correlated grid
 figure('Name', 'Correlatation result');
 imshow(im_input,'InitialMagnification',100,'displayrange',[]);
 hold on;
 plot(result(1,:),result(2,:),'s','markerfacecolor',[0 255
255]/255,'markeredgecolor','none','markersize',3);
 end

 fprintf('Average correlation coefficient %f\n', mean(corr_coeff));

 % save final results
 save('result-correlation.mat', 'result', 'corr_coeff');

 % plot strain grid
 if display && isfield(data,'points_in_row') && isfield(data,'grid_step')
 draw_colored_strain_grid(data.base_grid, result, data.points_in_row);
 end

% PLOT_IMAGE - displays an image with grid and path if figure with same name is not open
%
% Parameters:
% name - figure name
% img - image data
% grid (2xN)- point to correlate
% path (2ximage width)- path that describes object deflection
function plot_image(name, img, grid, path)
 if isempty(findobj('type','figure','name',name))
 figure('Name', name);
 imshow(img,'InitialMagnification',100,'displayrange',[]);
 hold on;
 plot(grid(1,:), grid(2,:),'s','markerfacecolor',[255 255
0]/255,'markeredgecolor','none','markersize',3);
 plot(path(1,:), path(2,:));
 end

54

transform_grid.m

% TRANSFORM_GRID - creates new grid from base_grid and given paths

%
% Description:
% Finds new location for each base_grid point by applying geometrical
% transformation that takes account general changes in grid displacement,
% path length and individual path point tangent changes that given gridpoint
% relates to. In general paths define a curve above grid that show where
% the grid should start and end (base_p, input_p) and how the it should
% be 'bent' to match object deflection.
% This function is used to provide initial guesses and rotations for
% the correlation algorithm.
%
% Parameters:
% base_grid (2xN)- points to be correlated on base image
% base_path (2ximage width)- path that describes object deflection
% on base image
% input_path (2ximage width)- path that describes object deflection
% on input image
% base_p - x,y coordinate pairs used to create base_path as chosen by user
% input_p - x,y coordinate pairs used to create input_path as defined by user
% base_rotations (1xN) - rotations in radians for each base grid
% point
%
% Returns:
% grid (2xN)- base_grid transformed according given paths
% rotations (1xN) - rotations in radians for each grid point (how much
% samples have to be rotated before correlation)
function [grid, rotations] = transform_grid(base_grid, base_path, input_path,...
 base_p, input_p, base_rotations)

 % preallocate memory
 len = size(base_grid, 2);
 grid_x = zeros(1, len);
 grid_y = zeros(1, len);
 rotations = zeros(1, len);

 % find path differential and current length at any given x
 [in_path_diff, in_path_length] = iterate_path(input_path);
 [~, base_path_length] = iterate_path(base_path);

 if size(input_p)>0
 % find general strain factor (how many times path lengths differ)
 len_strain = find_length_strain(base_path_length, in_path_length, base_p,
input_p);
 % correct grid startpoint when object was shifted
 shift = find_shift(base_path_length, in_path_length, base_p, input_p);
 else
 len_strain = 1;
 shift = 0;
 end

 % No rotation, base_grid is rectangular
 if size(base_rotations)==0
 base_rotations=zeros(1, len);

55

 end

 for idx=1:len
 % find closest point on base path for this gridpoint
 [dist_to_base_path,base_path_point_idx] = find_closest_on_path(base_path,...
 base_grid(1,idx), base_grid(2,idx));

 % how far down the path this path point occurs on both images
 len_on_base = base_path_length(base_path_point_idx) ;
 len_on_input = len_on_base*len_strain - shift;

 % find corresponding coordinate on input path
 [~, x_coord_input_path] = min(abs(len_on_input - in_path_length));
 y_coord_input_path = input_path(2, x_coord_input_path);

 % input path tangent at given coord
 diff = in_path_diff(x_coord_input_path);
 % input path rotation at given coord
 theta = atan2(diff, 1);
 % save rotation needed to be applied before correlation
 rotations(idx) = theta - base_rotations(idx);

 % final location of transformed grid point
 dy = cos(theta) * dist_to_base_path;
 dx = sin(theta) * dist_to_base_path;
 grid_y(idx) = y_coord_input_path + dy;
 grid_x(idx) = x_coord_input_path - dx;
 end

 grid = [grid_x; grid_y];

% FIND_CLOSEST_ON_PATH - finds closest point on path for given coordinates
%
% Parameters:
% path (2ximage width) - path that describes object deflection
% point_x - x coordinate of point
% point_y - y coordinate of point
%
% Returns:
% distance - distance to the closest point on path
% idx - closest path point index in path array
function [distance, idx] = find_closest_on_path(path, point_x, point_y)
 points = [repmat(point_x, 1, size(path, 2));repmat(point_y, 1, size(path, 2))];
 euclidean_dist = sqrt(sum((path - points).^2));
 [distance, idx] = min(euclidean_dist);

% FIND_LENGTH_STRAIN - find how many times path lengths differ
%
% Parameters:
% base_path_len (1ximage width)- current path legths for each path
% coordinate on base path
% input_path_len (1ximage width)- current path legths for each path
% coordinate on input path
% base_p - x,y coordinate pairs used to create base_path as chosen by user
% input_p - x,y coordinate pairs used to create input_path as defined by user
%

56

% Returns:
% strain - ratio between input and base path length
function strain = find_length_strain(base_path_len, input_path_len, base_p, input_p)
 base_len = get_path_length(base_path_len, base_p);
 input_len = get_path_length(input_path_len, input_p);
 strain = input_len/base_len;

% FIND_SHIFT - find difference on path length where grid starts on both paths
%
% Parameters:
% base_path_len (1ximage width)- current path legths for each path
% coordinate on base path
% input_path_len (1ximage width)- current path legths for each path
% coordinate on input path
% base_p - x,y coordinate pairs used to create base_path as chosen by user
% input_p - x,y coordinate pairs used to create input_path as defined by user
%
% Returns:
% shift - length on path between base and input grid start
function shift = find_shift(base_path_len, input_path_len, base_p, input_p)
 % find current path length where base grid starts
 [~,idx] = min(base_p(1,:));
 first_base_point = base_p(:, idx);
 base_start_len = base_path_len(round(first_base_point(1,1)));

 % find current path length where input grid starts
 [~,idx] = min(input_p(1,:));
 first_input_point = input_p(:, idx);
 input_start_len = input_path_len(round(first_input_point(1,1)));

 shift = base_start_len - input_start_len;

57

findpeak.m

function [xpeak, ypeak, max_f] = findpeak(f,subpixel)

%FINDPEAK Find extremum of matrix.
% [XPEAK,YPEAK,MAX_F] = FINDPEAK(F,SUBPIXEL) finds the extremum of F,
% MAX_F, and its location (XPEAK, YPEAK). F is a matrix. MAX_F is the maximum
% absolute value of F, or an estimate of the extremum if a subpixel
% extremum is requested.
%
% SUBPIXEL is a boolean that controls if FINDPEAK attempts to estimate the
% extremum location to subpixel precision. If SUBPIXEL is false, FINDPEAK
% returns the coordinates of the maximum absolute value of F and MAX_F is
% max(abs(F(:))). If SUBPIXEL is true, FINDPEAK fits a 2nd order
% polynomial to the 9 points surrounding the maximum absolute value of
% F. In this case, MAX_F is the absolute value of the polynomial evaluated
% at its extremum.
%
% Note: Even if SUBPIXEL is true, there are some cases that result
% in FINDPEAK returning the coordinates of the maximum absolute value
% of F:
% * When the maximum absolute value of F is on the edge of matrix F.
% * When the coordinates of the estimated polynomial extremum would fall
% outside the coordinates of the points used to constrain the estimate.

% Copyright 1993-2004 The MathWorks, Inc.
% $Revision $ $Date: 2004/10/20 17:54:47 $

% get absolute peak pixel
[max_f, imax] = max(abs(f(:)));
[ypeak, xpeak] = ind2sub(size(f),imax(1));

if ~subpixel || ...
 xpeak==1 || xpeak==size(f,2) || ypeak==1 || ypeak==size(f,1) % on edge
 return % return absolute peak

else
 % fit a 2nd order polynomial to 9 points
 % using 9 pixels centered on irow,jcol
 u = f(ypeak-1:ypeak+1, xpeak-1:xpeak+1);
 u = u(:);
 x = [-1 -1 -1 0 0 0 1 1 1]';
 y = [-1 0 1 -1 0 1 -1 0 1]';

 % u(x,y) = A(1) + A(2)*x + A(3)*y + A(4)*x*y + A(5)*x^2 + A(6)*y^2
 X = [ones(9,1), x, y, x.*y, x.^2, y.^2];

 % u = X*A
 A = X\u;

 % get absolute maximum, where du/dx = du/dy = 0
 x_offset = (-A(3)*A(4)+2*A(6)*A(2)) / (A(4)^2-4*A(5)*A(6));
 y_offset = -1 / (A(4)^2-4*A(5)*A(6))*(A(4)*A(2)-2*A(5)*A(3));

 if abs(x_offset)>1 || abs(y_offset)>1
 % adjusted peak falls outside set of 9 points fit,
 return % return absolute peak

58

 end

 % return only one-thousandth of a pixel precision
 x_offset = round(1000*x_offset)/1000;
 y_offset = round(1000*y_offset)/1000;

 xpeak = xpeak + x_offset;
 ypeak = ypeak + y_offset;

 % Calculate extremum of fitted function
 max_f = [1 x_offset y_offset x_offset*y_offset x_offset^2 y_offset^2] * A;
 max_f = abs(max_f);

end

59

cpcorr_mod.m

function [xyinput,corr_coeff] = cpcorr_mod(varargin)

%CPCORR Tune control point locations using cross-correlation.
% INPUT_POINTS = CPCORR(INPUT_POINTS_IN,BASE_POINTS_IN,INPUT,BASE) uses
% normalized cross-correlation to adjust each pair of control points
% specified in INPUT_POINTS_IN and BASE_POINTS_IN.
%
% INPUT_POINTS_IN must be an M-by-2 double matrix containing the
% coordinates of control points in the input image. BASE_POINTS_IN is
% an M-by-2 double matrix containing the coordinates of control points
% in the base image.
%
% CPCORR returns the adjusted control points in INPUT_POINTS, a double
% matrix the same size as INPUT_POINTS_IN. If CPCORR cannot correlate a
% pairs of control points, INPUT_POINTS will contain the same coordinates
% as INPUT_POINTS_IN for that pair.
%
% CPCORR will only move the position of a control point by up to 4
% pixels. Adjusted coordinates are accurate up to one tenth of a
% pixel. CPCORR is designed to get subpixel accuracy from the image
% content and coarse control point selection.
% NOTE: EJ modification: CPCORR_MOD will adjust the control point by
% more than 4 pixels, depending on the subset size!!
%
% Note that the INPUT and BASE images must have the same scale for
% CPCORR to be effective.
%
% CPCORR cannot adjust a point if any of the following occur:
% - points are too near the edge of either image
% - regions of images around points contain Inf or NaN
% - region around a point in input image has zero standard deviation
% - regions of images around points are poorly correlated
%
% Class Support
% -------------
% The images can be numeric and must contain finite values. The input
% control point pairs are double.
%
% Example
% --------
% This example uses CPCORR to fine-tune control points selected in an
% image. Note the difference in the values of the INPUT_POINTS matrix
% and the INPUT_POINTS_ADJ matrix.
%
% input = imread('onion.png');
% base = imread('peppers.png');
% input_points = [127 93; 74 59];
% base_points = [323 195; 269 161];
% input_points_adj = cpcorr(input_points,base_points,...
% input(:,:,1),base(:,:,1))
%
% See also CP2TFORM, CPSELECT, NORMXCORR2, IMTRANSFORM.

% Copyright 1993-2011 The MathWorks, Inc.

60

% $Revision: 1.16.4.10 $ $Date: 2011/08/09 17:49:27 $

% Input-output specs
% ------------------
% INPUT_POINTS_IN: M-by-2 double matrix
% INPUT_POINTS_IN(:)>=0.5
% INPUT_POINTS_IN(:,1)<=size(INPUT,2)+0.5
% INPUT_POINTS_IN(:,2)<=size(INPUT,1)+0.5
%
% BASE_POINTS_IN: M-by-2 double matrix
% BASE_POINTS_IN(:)>=0.5
% BASE_POINTS_IN(:,1)<=size(BASE,2)+0.5
% BASE_POINTS_IN(:,2)<=size(BASE,1)+0.5
%
% INPUT: 2-D, real, full matrix
% logical, uint8, uint16, or double
% must be finite (no NaNs, no Infs inside regions being correlated)
%
% BASE: 2-D, real, full matrix
% logical, uint8, uint16, or double
% must be finite (no NaNs, no Infs inside regions being correlated)

[xyinput_in,xybase_in,input,base,subset,search_zone,thresh,rotations,tune_rotation] =
ParseInputs(varargin{:});

CORRSIZE = subset/2;
ncp = size(xyinput_in,1);

% sample under 45deg rotation - SS
INPUT_CORRSIZE = ceil(sqrt(CORRSIZE^2 + CORRSIZE^2));

% get all rectangle coordinates
% Reveresed input and base templates - SS
rects_input = calc_rects(xyinput_in,search_zone*CORRSIZE,input);
rects_base = calc_rects(xybase_in,ones(ncp,1)*INPUT_CORRSIZE,base);

% for croping rotated sample back to original width - SS
crop_coord = INPUT_CORRSIZE-CORRSIZE+1;
crop_rect = [crop_coord, crop_coord, subset, subset];

xyinput = xyinput_in; % initialize adjusted control points matrix
corr_coeff = zeros(size(xyinput,1),1);

for icp = 1:ncp

 %Check to see if the current point is a NaN pt
 if isnan(xybase_in(icp,1)) || isnan(xyinput_in(icp,1))
 xyinput(icp,:) = NaN;
 continue
 end

 if isequal(rects_input(icp,3:4),[0 0]) || ...
 isequal(rects_base(icp,3:4),[0 0])
 % near edge, unable to adjust

61

 xyinput(icp,:) = NaN;
 continue
 end

 %EJ: New check: Moved this check from the ParseInputs function
 if xyinput_in(icp,1)<0.5 || xyinput_in(icp,2)<0.5 || ...
 xyinput_in(icp,1)>size(input,2)+0.5 || xyinput_in(icp,2)>size(input,1)+0.5
 %Control point is outside of the image
 xyinput(icp,:) = NaN;
 continue
 end

 if xybase_in(icp,1)<0.5 || xybase_in(icp,2)<0.5 || ...
 xybase_in(icp,1)>size(input,2)+0.5 || xybase_in(icp,2)>size(input,1)+0.5
 %Control point is outside of the image
 xyinput(icp,:) = NaN;
 continue
 end

 sub_input = imcrop(input,rects_input(icp,:));

 % try to find a rotation with highest correlation
 if tune_rotation
 rotation_adjustment_rad =
adjust_rotation(rotations(icp),base,rects_base(icp,:),crop_rect,sub_input);
 rotations(icp) = rotations(icp) + rotation_adjustment_rad;
 end

 % correlate
 [amplitude,xpeak,ypeak,norm_cross_corr] =
calc_corr(rotations(icp),base,rects_base(icp,:),crop_rect,sub_input);

 if amplitude==0
 % NaN or Inf, unable to adjust
 xyinput(icp,:) = NaN;
 continue
 end

 %save the correlation coefficient:
 corr_coeff(icp) = amplitude; %EJ modification 140610

 % eliminate any poor correlations
 THRESHOLD = thresh; %EJ modification 140610

 if (amplitude < THRESHOLD)
 % low correlation, unable to adjust
 xyinput(icp,:) = NaN;
 continue
 end

 % offset found by cross correlation
 zero_disp = ceil(size(norm_cross_corr)/2); %location in the normcrosscorr that corresponds
to zero displacement
 corr_offset = [xpeak,ypeak] - zero_disp;

 % eliminate any big changes in control points

62

 max_disp = search_zone(icp)*CORRSIZE - CORRSIZE - 1; %EJ: use when undeformed
subset size is different from 2X deformed subset size
 ind = find(abs(corr_offset) > max_disp, 1);
 if ~isempty(ind)
 % peak of norxcorr2 not well constrained, unable to adjust
 xyinput(icp,:) = NaN;
 corr_coeff(icp) = -1;
 continue
 end

 % Compensate base grid fractional locations
 correction_rad = -rotations(icp);
 rotation_matrix = [cos(correction_rad) -sin(correction_rad); sin(correction_rad)
cos(correction_rad)];
 base_fractional_offset = round(xybase_in(icp,:)) - xybase_in(icp,:);
 base_fractional_offset = base_fractional_offset*rotation_matrix;

 % adjust control point
 xyinput(icp,:) = round(xyinput(icp,:)) + corr_offset - base_fractional_offset;

end

%-------------------------------
%
function rect = calc_rects(xy,halfwidth,img)

% Calculate rectangles so imcrop will return image with xy coordinate inside center pixel

default_width = 2*halfwidth;
default_height = default_width;

% xy specifies center of rectangle, need upper left
% upperleft = round(xy) - halfwidth; %Original line of code
upperleft = round(xy) - [halfwidth,halfwidth]; %EJ modification

% need to modify for pixels near edge of images
upper = upperleft(:,2);
left = upperleft(:,1);
lower = upper + default_height;
right = left + default_width;
% width = default_width * ones(size(upper)); %Original line of code
% height = default_height * ones(size(upper)); %Original line of code
width = default_width; %EJ modification
height = default_height; %EJ modification

% check edges for coordinates outside image
[upper,height] = adjust_lo_edge(upper,1,height);
[~,height] = adjust_hi_edge(lower,size(img,1),height);
[left,width] = adjust_lo_edge(left,1,width);
[~,width] = adjust_hi_edge(right,size(img,2),width);

% set width and height to zero when less than default size
iw = find(width<default_width);
ih = find(height<default_height);
idx = unique([iw; ih]);

63

width(idx) = 0;
height(idx) = 0;

rect = [left upper width height];

%-------------------------------
%
function [coordinates, breadth] = adjust_lo_edge(coordinates,edge,breadth)

indx = find(coordinates<edge);
if ~isempty(indx)
 breadth(indx) = breadth(indx) - abs(coordinates(indx)-edge);
 coordinates(indx) = edge;
end

%-------------------------------
%
function [coordinates, breadth] = adjust_hi_edge(coordinates,edge,breadth)

indx = find(coordinates>edge);
if ~isempty(indx)
 breadth(indx) = breadth(indx) - abs(coordinates(indx)-edge);
 coordinates(indx) = edge;
end

%-------------------------------
%
function
[xyinput_in,xybase_in,input,base,subset,search_zone,thresh,rotations,tune_rotation] =
ParseInputs(varargin)

% narginchk(4,5);

xyinput_in = varargin{1};
xybase_in = varargin{2};
if size(xyinput_in,2) ~= 2 || size(xybase_in,2) ~= 2
 error(message('images:cpcorr:cpMatrixMustBeMby2'))
end

if size(xyinput_in,1) ~= size(xybase_in,1)
 error(message('images:cpcorr:needSameNumOfControlPoints'))
end

input = varargin{3};
base = varargin{4};
if ndims(input) ~= 2 || ndims(base) ~= 2
 error(message('images:cpcorr:intensityImagesReq'))
end

input = double(input);
base = double(base);

%EJ New Check:
%Eliminate the check on the base and input points; instead, move this check to
%within the loop over the control points. If a base or input point is out of the
%image, make that point not correlate. (Note that originally, I only moved
%the check on the input points into the loop; this works if you are using

64

%image 1 as the reference image, and so the xybase_in are the grid points.
%But if you use the preceding image as the reference image, then the
%xybase_in points are the valid_points from the previous correlation, and
%so they have the possibility to be out of the image

subset = varargin{5};
search_zone = varargin{6};
thresh = varargin{7};

% SS - rotation data
rotations = varargin{8};
tune_rotation = varargin{9};

function [rotation_adjustment_rad] =
adjust_rotation(rotation,base,rect,crop_rect,sub_input)

 % rotation increment step in radians
 increment_rad = deg2rad(1);

 % calculate correlation coefficients for adjacent rotations around
 % expected one
 left=calc_corr(rotation - increment_rad,base,rect,crop_rect,sub_input);
 centre=calc_corr(rotation,base,rect,crop_rect,sub_input);
 right=calc_corr(rotation + increment_rad,base,rect,crop_rect,sub_input);

 % unable to correlate
 if left==0 || centre==0 || right==0
 rotation_adjustment_rad=0;
 return;
 end

 % how many rotation increments should rotation be changed
 offset = 0;
 idx = 2;

 if left>right
 % left value has higher correlation, assume peak is on left
 % rotate left by increments until peak found
 while left>centre
 right = centre;
 centre = left;
 left = calc_corr(rotation - idx*increment_rad,base,rect,crop_rect,sub_input);
 idx = idx + 1;
 offset = offset - 1;
 end
 else
 % right value has higher correlation, assume peak is on right
 % rotate right by increments until peak found
 while right>centre
 left = centre;
 centre = right;
 right = calc_corr(rotation + idx*increment_rad,base,rect,crop_rect,sub_input);
 idx = idx + 1;
 offset = offset + 1;
 end
 end

65

 % interpolate 3 consecutive values using second order polynomial
 x=-1:1;
 x=x';
 % y=a+bx+cx^2
 Y=[ones(3,1),x,x.^2];
 % coefficients [a,b,c]
 A=Y\[left,centre,right]';

 % find extremum
 extremum = - A(2)/(2*A(3));
 % off the 3 value bounds
 if abs(extremum)>1
 rotation_adjustment_rad=offset*increment_rad;
 else
 rotation_adjustment_rad=(offset + extremum)*increment_rad;
 end

function [amplitude,xpeak,ypeak,norm_cross_corr] =
calc_corr(rotation,base,rect,crop_rect,sub_input)
 amplitude = 0;

 % Rotate sample - SS
 sub_base = imcrop(base,rect);
 sub_base = imrotate(sub_base, -rad2deg(rotation), 'bilinear', 'crop');
 sub_base = imcrop(sub_base,crop_rect);

 % make sure finite
 if any(~isfinite(sub_input(:))) || any(~isfinite(sub_base(:)))
 % NaN or Inf, unable to adjust
 return;
 end

 % check that template rectangle sub_base has nonzero std
 if std(sub_base(:))==0
 % zero standard deviation of template image, unable to adjust
 return;
 end

 norm_cross_corr = normxcorr2(sub_base,sub_input);

 % get subpixel resolution from cross correlation
 subpixel = true;
 [xpeak, ypeak, amplitude] = findpeak(norm_cross_corr,subpixel);

66

Lihtlitsents

Mina Siim Sundla,

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) enda loodud teose

“SEMI-AUTOMATIC DEFLECTION MEASUREMENT USING DIGITAL

IMAGE CORRELATION”

mille juhendajateks on Gholamreza Anbarjafari ja Andres Punning

(a) reprodutseerimiseks säilitamise ja üldsusele kättesaadavaks tegemise

eesmärgil, sealhulgas digitaalarhiivi DSpace-is lisamise eesmärgil kuni autori

õiguse kehtivuse tähtaja lõppemiseni;

(b) üldsusele kättesaadavaks tegemiseks Tartu Ülikooli veebikeskkonna kaudu,

sealhulgas digitaalarhiivi DSpace’i kaudu kuni autori õiguse kehtivuse tähtaja

lõppemiseni.

2. olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile;

3. kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega

isikuandmete kaitse seadusest tulenevaid õigusi.

Tartus, 09.05.2015

67

	SEMI-AUTOMATIC DEFLECTION MEASUREMENT USING DIGITAL IMAGE CORRELATION
	Abstract
	Table of contents
	Introduction
	1. Digital image correlation
	1.1 History and usage
	1.2 Mathematical definition
	1.3 Speed and accuracy
	1.4 Sub-pixel tracking
	1.4.1 Newton-Rhapson method
	1.4.2 Gradient-based
	1.4.3 Iterative and spatial-gradient algorithm
	1.4.4 Curved surface fitting
	1.4.5 Sub-pixel method comparison

	1.5 Interpolation methods
	1.6 Speckle patterns
	1.7 Limitations

	2. Problem definition
	2.1 Requirements
	2.2 Approach
	2.2.1 Rotation tracking
	2.2.2 Grid transformation for initial guesses
	2.2.3 Calculating correlated grid location
	2.2.3 Sub-pixel accuracy
	2.2.3.1 Optimization scheme
	2.2.3.2 Compensating base grid fractional coordinates
	2.2.3.3 Compensating path rotation errors

	3. Experimental Results
	3.1 Implementation
	3.1.1 Improved DIC
	3.1.2 Installation
	3.1.3 Functions
	3.1.4 Usage and output

	3.2 Accuracy and testing
	3.2.1 Validation procedure
	3.2.2 Manual testing
	3.2.3 Mathematical testing
	3.2.4 Sub-pixel accuracy
	3.2.4.1 Peak interpolation
	3.2.4.2 Rotation adjustment

	Summary
	Poolautomaatne painde mõõtmine kasutades digital image correlation meetodit
	Acknowledgements
	References
	Appendix
	Lihtlitsents

