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Adding Nim programming language support to IntelliJ IDEA

Abstract:
Nim is a programming language that takes inspiration from such languages as C, Python
and Lisp. It is mainly a low-level systems programming language, albeit its flexible syn-
tax and built-in support for garbage collection have facilitated its use in web application
development among other areas. IntelliJ IDEA is a popular integrated development en-
vironment (IDE) created by JetBrains and used to develop in languages such as Java,
PHP, Python, C++, Ruby and others. The aim of this thesis is to create a plugin for In-
telliJ IDEA that would allow writing applications in Nim. The main focus is on providing
symbol navigation and code completion.
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Nim keele toe lisamine IntelliJ IDEA arenduskeskkonnale

Lühikokkuvõte:
Nim on programmeerimiskeel, mis on inspireeritud selliste keelte poolt nagu C, Python
ja Lisp. Tegu on eelkõige madala taseme süsteemide programmeerimiskeelega, kuid selle
paindlik süntaks ja automaatse mäluhalduse tugi võimaldavad ka näiteks veebirakenduste
kirjutamist. IntelliJ IDEA on firma JetBrains poolt loodud arenduskeskkond (IDE), mis
võimaldab arendada rakendusi erinevates keeltes (nt. Java, PHP, Python, C++, Ruby
jt). Selle töö eesmärgiks on luua IntelliJ arenduskeskkonnale laiendus, mis võimaldaks
Nim keeles rakenduste kirjutamist. Põhiline eesmärk on realiseerida sümbolite järgi nav-
igeerimine ja automaatne sümbolite sisestamine.

Võtmesõnad: Nim, Nim IDE, IntelliJ IDEA, IntelliJ laiendus

CERCS: P170
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Introduction

Nim [1] is a statically typed, imperative programming language that aims to achieve high
runtime efficiency while being expressive and elegant in its syntax. Nim’s history can
be traced back to as far as 2008, which is when Andreas Rumpf – the author of Nim –
made the first commit to the Nim compiler repository [2]. The language might not have
gathered much mainstream popularity, but it has seen a significant amount of work and
comes with a comprehensive standard library.

IntelliJ IDEA [3] is an integrated development environment (IDE) made by the Czech
company JetBrains. Even though it is primarily a Java IDE, JetBrains has reused the
platform that it is built on to create IDEs for other languages. There are separate prod-
ucts for PHP (PhpStorm), Python (PyCharm), Ruby (RubyMine), HTML/JavaScript
(WebStorm), Objective-C (AppCode) and C++ (CLion). The platform itself, however, is
extensible and the main IDE – IntelliJ IDEA – can support nearly any language through
the use of custom language plugins.

As far as availability of IDEs for Nim goes, there is an advanced text editor called Aporia
[4] that is developed by one of the people behind the Nim compiler. There are also plu-
gins for several popular text editors (Vim, Emacs, Sublime Text, TextMate and others),
however, many of them provide only basic syntax highlighting. Aporia, as well as some
of the text editor plugins, use a tool called nimsuggest [5] to achieve symbol navigation
and code completion. Nimsuggest is a command-line utility that can be invoked with
the path to the source files and the desired operation (find definition, find usages etc) as
arguments. The tool will then analyze the given files, and output an answer. Even though
nimsuggest is developed alongside the Nim compiler (they share a large amount of source
code) and can provide a decent amount of information, it still cannot be used for all the
features that an IDE is expected to have. For instance, syntax highlighting in IntelliJ can
be implemented in such a way that it takes into account which identifiers refer to types,
and gives them a different appearance. For nimsuggest based editors, that would mean
executing the command line utility for every word inside a file, which is hardly an elegant
solution.

The aim of this thesis is to create a plugin for IntelliJ IDEA that would facilitate writing
Nim applications. The goal is for the plugin to provide an experience similar to that of
writing Java applications in the same IDE. The first chapter describes the Nim program-
ming language, giving a brief overview of its syntax. In the second chapter we describe
the implementation details of the plugin. We conclude by outlining some further work
that remains to be done. The appendix at the end of the thesis contains instructions on
how to obtain the source code of the plugin.
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1 The Nim programming language

According to Nim’s creator, Andreas Rumpf, the language was mostly inspired by C,
Python and Lisp. More precisely, the goal was for the language to be “as fast as C, as
expressive as Python and as extensible as Lisp” [6]. Nim is an imperative language and
is statically typed. It is important to distinguish between the language itself, and things
that are related to it, but do not necessarily define it (most notably a compiler and a
standard library). In this thesis we only consider the official (and most likely the only)
Nim compiler, as well as the official standard library that comes with it. The official
Nim compiler translates Nim source to C code (or, optionally, to C++) and then uses an
existing C compiler to produce binaries.

Nim is a rich language with a lot of features. Here we will glance over some of the
concepts that the reader should get familiar with before reading the rest of this thesis.
Some things are not going to be covered, mostly due to the fact that they are not relevant
from the viewpoint of static analysis (like the fact that Nim supports automatic memory
management using a garbage collector), and so we recommend checking the Nim language
manual [7] for more details.

A Nim file consists of a series of statements. Scoping is based on indentation (like in
Python). There is no need for a main function, executable statements can appear at the
top level. Nim also has local variable type inference, meaning that declaring types of local
variables is optional.
1 # This is a comment.

2
3 var name = "John"

4
5 proc greet(name: string) =

6 echo("Hello, ", name, "!")

7
8 greet(name)

The above program will output “Hello, John!” to the standard output.

Let us take a closer look at the various kinds of statements.

1.1 Variables and constants

One of the simplest declaration statements in Nim are the constant and variable decla-
rations. There are a total of three of those: one for declaring constants, one for declaring
immutable variables and one for declaring normal (mutable) variables.
1 const
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2 PI = 3.14159265

3 E = 2.7

4
5 let

6 alpha = "foo"

7
8 var

9 bravo, charlie: int

10 delta: string = "bar"

A single const, let or var section can declare multiple constants / variables. The first
section (const) declares constants PI and E. Constants are evaluated at compile time,
meaning they must be initialized with constant expressions. The second statement (let)
declares a single immutable variable alpha. Immutable variables cannot be reassigned
after they have been defined. Also note that the variable does not declare its type; the
compiler can infer it automatically (in this case it’s string). The third section (var)
declares mutable variables bravo, charlie and delta. Two of them don’t have an explicit
initializer, meaning that they will be initialized to the default value (0 for integers). When
declaring only a single constant or variable, one can keep the whole thing on a single line:

const PI = 3.14

Let us note here that Nim is very capable of evaluating arbitrary expressions at compile
time, e.g. the following is a valid constant declaration:
1 proc repeat(c: char, n: int): string =

2 var s = ""

3 for i in 1..n:

4 s.add(c)

5 return s

6
7 const foo = repeat(’A’, 3)

8
9 echo(foo)

The compiler will successfully evaluate the value of foo (which is “AAA”) and embed it
directly into the C source that it outputs.

1.2 Procedures

Functions in Nim are called procedures. The following is an example of a procedure
definition.
1 proc count(st: string, ch: char): int =

2 for c in st:

3 if c == ch:

4 result += 1
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Note the use of the implicit result variable. Every procedure that returns something
(i.e. one that has a return type other than void) has an implicit variable called result,
which represents the value that will be returned from the procedure. There is no need to
explicitly return it. The initial value of the result variable will be the default value of
its type. In the example above, result has the type int, which has a default value of 0.
It is also possible to use explicit return statements.

There is also a certain amount of flexibility in the way one writes the signature of a
procedure. In the following example the parameters that have the same type have been
combined, and the return type has been omitted (meaning that it is void).

proc foo(a, b, c: int; d: string) = discard

The discard statement is similar to the pass statement in Python – it does nothing.
Parameters can also have default values, in which case one can omit the type of the
parameter:
1 proc foo(a: int, b = "bar") =

2 discard

3 foo(1, "bah")

4 foo(1)

Procedures can be overloaded. This means that it is possible to define multiple proce-
dures with the same name, but different parameter types. When calling an overloaded
procedure, the given arguments will be considered in order to pick the right overload.
Details on how overloads are picked will be discussed in section 2.6. The following is an
example where the foo procedure has been overloaded.
1 proc foo(s: string) = discard

2 proc foo(i: int) = discard

3 foo("bar")

4 foo(42)

Procedures can be invoked using the so called method call syntax. This is illustrated by
the following example.
1 proc count(st: string, ch: char): int =

2 for c in st:

3 if c == ch:

4 result += 1

5
6 let word = "banana"

7 let n = word.count(’a’)

Instead of passing the first argument as one would normally, the argument is placed to the
left of the method call, with a dot in between. This syntax looks similar to how methods
are invoked on objects in other programming languages.
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Another way to call procedures is using the so called command invocation syntax. This
allows one to leave out the parenthesis around the arguments, so instead of writing
echo("foo") one can write echo "foo". However, this syntax has a limitation. If the call
is a statement, multiple arguments can be passed to it, if the call is an expression used
in another statement, then only one argument may be passed. The following example
illustrates this.
1 echo "one", "two" # ok

2 let n = count "banana", ’a’ # not ok

3 let m = "banana".count ’a’ # ok

The second line is not syntactically valid, as the invocation of count is part of another
statement (a let statement), and so only one argument may be passed to it.

1.3 Operators

Nim supports defining custom operators, which can be invoked in prefix and infix form.
Operators are defined in exactly the same way as procedures, the name just has to be
enclosed between accents, as shown in the following example.
1 proc ‘*‘(st: string, n: int): string =

2 result = ""

3 for i in 1..n:

4 result.add(st)

5
6 echo "na" * 8, " batman" # outputs "nananananananana batman"

1.4 Type definitions

Nim comes with a variety of built-in types. There are integer types (of various sizes),
a boolean type, a character type, floating point types, a string type, heterogeneous and
homogeneous structured types, references, pointers, function types, enumerations and
more. It is also possible to define new types; the following is an example of a few type
definitions.
1 type

2 TCustomer = object # objects are heterogeneous structures

3 name: string

4 time_joined: uint64

5 balance: int

6 active: bool

7
8 PCustomer = ref TCustomer # a TCustomer reference

9
10 Utf8String = string # an alias
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11
12 ColorComponent = enum # an enumeration

13 ccRed, ccGreen, ccBlue

1.5 Generics

Nim also supports generics (type parameters). In particular, one can have type parameters
for procedures and type definitions. Following example demonstrates a procedure max,
that will return the larger of the two arguments that are passed to it.
1 proc max[T](a, b: T): T =

2 if a < b:

3 return b

4 return a

5 echo max(3, 42)

6 echo max(’a’, ’x’)

The above procedure can be called with any type for which the less than operator is
defined. Type definitions can use type parameters as follows:
1 type

2 Node[T] = object

3 left, right: ref Node[T]

4 data: T

5
6 let node = Node[string](data: "foo")

7 echo node.data

This defines a Node type, that takes a type parameter for the type of the data that it
contains.

1.6 Templates

Nim has a concept of templates, which are a form of macros that operate on the AST of
the program. The following is an example of a template.
1 template ‘!=‘ (a, b: untyped): untyped =

2 not (a == b)

3
4 assert(5 != 6) # the compiler rewrites this to: assert(not (5 == 6))

The parameters of a template can have special types untyped, typed and typedesc. An
untyped parameter can be passed any expression, even one that contains unbound symbols
(i.e. symbols that are not defined). Following example showcases the usage of untyped
template parameters.
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1 template declareInt(x: untyped) =

2 var x: int

3
4 declareInt(foo)

5 foo = 3

The invocation of the declareInt template will be substituted by a variable declaration,
and foo will be the name of the variable. In contrast, typed parameters cannot be passed
arguments that contain unresolved symbols. Finally a typedesc parameter must be passed
an expression that evaluates to a type, like in the following example.
1 template declareVar(x: untyped, t: typedesc) =

2 var x: t

3
4 declareVar(foo, string)

5 foo = "bar"

1.7 Modules and visibility

Every Nim file constitutes a module, and all symbols declared in that file belong to that
module. The name of the file is the name of the module. By default, all symbols declared
in a module are only accessible from within that module. In order to export symbols,
they must be declared with an asterisk, as shown in the following example.
1 type

2 ExportedType* = object

3 exportedField*: string

4
5 var exportedVar*: int

6
7 const exportedConst* = 42

8
9 proc exportedProc*() = discard

In order to use symbols from another module, one has to import it.
1 import foo

2
3 exportedProc() # this procedure is defined in the ’foo’ module

Special options can be passed to the Nim compiler to specify the directories where modules
are searched for.
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2 IntelliJ IDEA plugin

We will now describe the implementation of the plugin. Getting started with a custom
language IntelliJ plugin is straightforward thanks to their documentation [8]. It provides
enough information on how to implement some of the basic features. However, on several
occasions, when trying to achieve something that wasn’t covered in the quick start guide,
we have had to read the code of the Java language implementation or sometimes just
debug IntelliJ code to see how it executes and how to manipulate the flow in a way that
would give us the desired result.

2.1 Lexer

The very first components that need to be implemented for any type of static language
analysis are a lexer and a parser. Our plugin uses a library called JFlex [9] to generate the
lexer from a declarative specification. The task of the lexer is to take a string of source
code, and output a stream of tokens, that will then be used by the parser. Our lexer is
described in a file called Nim.flex. Here is a small excerpt of a lexer definition:
1 WHITE_SPACE_CHAR = [\ \n\r\t\f]

2 LINE_COMMENT = "#" [^\r\n]*
3 INT_LITERAL = [0-9]+

4 FLOAT_LITERAL = [0-9]+ "." [0-9]+

5
6 <YYINITIAL> {

7 {WHITE_SPACE_CHAR}+ { return WHITE_SPACE; }

8 {LINE_COMMENT} { return LINE_COMMENT; }

9 {FLOAT_LITERAL} { return FLOAT_LITERAL; }

10 {INT_LITERAL} { return INT_LITERAL; }

11 ";" { return T_SEMICOLON; }

12 ":" { return T_COLON; }

13 "," { return T_COMMA; }

14 "if" { return T_IF; }

15 "import" { return T_IMPORT; }

16 }

The first four lines define a few regular expressions to use later. The block that follows
consists of a number of rules, each rule specifies a regular expression which, when matched,
will make the lexer return a token of the specified kind. For example, a single semicolon
character is converted into a token of type T_SEMICOLON, whereas consecutive digits like
123 will be converted into a single token of type INT_LITERAL. The <YYINITIAL> part at
the start of the block means that the rules inside the block will only be matched if the
current state of the lexer is YYINITIAL (this is the default state for a lexer). The state can
be changed by the rules, meaning that it is possible to have a stateful lexer.
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It is important to note, that our lexer is not as strict as the lexer that’s used by the Nim
compiler. For instance, the following is the regular expression that we use to match string
literals:

STRING_LITERAL = \" (\\. | [^\\\"\r\n])* \"?

Not only does it make the ending quote optional, but also accepts arbitrary escape se-
quences within a string, something that the compiler would treat as a syntax error. For
example, the string literal “foo \d bar” is successfully recognized as such by our lexer,
but rejected by the compiler with an error message saying “invalid character constant”.
This leniency is intended, as it allows us to still parse a file and collect information about
its structure, even when there are trivial syntax errors in the code.

The lexer specification is processed by JFlex as part of the build process and a class
called NimLexer is generated. Using this class it is then possible to turn a string into
a stream of tokens. Without even writing a parser, we can already utilize the lexer to
implement basic syntax highlighting. All that’s required is creating a class that extends
SyntaxHighlighterBase and overriding two methods – one that returns an instance of a
lexer, and one that maps a token type to a set of text attributes that describe the color
and font style for rendering tokens of that type. Our syntax highlighter is realized by
the class NimSyntaxHighlighter. Figure 1 depicts a Nim file open in IntelliJ with syntax
highlighting in effect.

Figure 1: A Nim file with syntax highlighting in effect.

2.2 Parser

2.2.1 BNF grammar

Like the lexer, the parser is also generated from a declarative specification. More precisely,
it is generated from a BNF grammar. The task of the parser is to take a token stream
and build an abstract syntax tree (AST). We use a library called Grammar-Kit [10] to
generate the parser. Grammar-Kit is developed specifically for writing custom language
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plugins for IntelliJ, and so the parser that it generates integrates very well into the IntelliJ
architecture.

The BNF grammar is defined in the file Nim.bnf. It has been ported from the actual
parser code that’s used by the Nim compiler [11]. A large part of Nim’s syntax can
be represented with BNF rules, but there are also some things that need to be parsed
manually. For this purpose, Grammar-Kit allows one to define so called external rules,
which are basically production rules that are implemented in normal Java code. We use
external rules to be able to specify a grammar that takes into account the indentation of
tokens. We also use external rules for a couple other things, like parsing binary operator
expressions.

In order to be able to take indentation into account, the parser keeps track of the current
indentation level. At certain points the indentation level of a specific token is matched
against the current level in order to decide whether that token can be matched or not.
At certain other points the current level is changed according to the level of a specific
token. The indentation level of a token is the number of spaces between it and the
preceding newline character. A token that follows some other token, without any newlines
in between, does not have a valid indentation level. A token at the very beginning of a
line (at column 0) has an indentation level of 0 (which is a valid indentation level). It is
important to understand that the indentation level is a property of a token, i.e. there are
no separate tokens for representing an increase and a decrease in indentation. Also, we
currently compute the indentation level of every token in the parser (by analyzing the
whitespace between tokens), but it could in fact be done in the lexer, so that each token
would already have it as a precomputed property.

Here is an example of BNF grammar that declares two rules used for parsing constant
definitions:

ConstSect ::= T_CONST (&INDNONE ConstDef

| <<indented ConstDef (&INDEQ ConstDef)*>>)

ConstDef ::= Identifier OPERATOR? Pragma? (T_COLON &OPTIND TypeDesc)?

T_EQ &OPTIND expr

The tokens T_CONST, OPERATOR, T_COLON and T_EQ correspond to those produced by the
lexer and represent the word “const”, an operator, a colon and an equals sign respectively.
Identifier is a rule that matches a valid identifier, Pragma matches a pragma, TypeDesc
matches a type (which can in fact be any expression) and expr matches an expression.
The rule INDNONE is an external rule that matches iff the next token doesn’t have a valid
indentation level, this means that the next token has to be on the same line as the
previous token. The ampersand (&) in front of INDNONE means that the rule is matched
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without advancing the position in the token stream, but since INDNONE doesn’t consume
tokens anyway, then the ampersand is not really necessary (it is kept merely for semantic
accuracy – to signify that INDNONE will only check some preconditions and not consume
anything). The <<indented ...>> rule is also an external rule, here is its definition in
Java code:
1 public static boolean indented(PsiBuilder builder, int level, Parser parser) {

2 ParserState state = getParserState(builder);

3 int tokIndent = state.getTokenIndent();

4 if (tokIndent > state.currentIndent) {

5 int prevIndent = state.currentIndent;

6 state.currentIndent = tokIndent;

7 boolean result = parser.parse(builder, level + 1);

8 state.currentIndent = prevIndent;

9 return result;

10 }

11 return false;

12 }

As one can see, the rule first makes sure that the next token has an indentation level
greater than the current one (if that’s not the case then the rule doesn’t match), af-
ter which it changes the current level to the new one and invokes the parser that was
passed to the rule (in the case of our example, the passed parser is one that matches
ConstDef (&INDEQ ConstDef)*). In the end, the indentation level is reset to its previous
value.

The INDEQ rule matches if the indentation level of the next token is equal to the current
indentation level. This means that ConstDefs will be consumed as long as they have the
right indentation level. For example, in the following code, only two constant definitions
are matched:
1 const

2 PI = 3.14

3 E = 2.7

4 FOO = "bar"

The fourth line is not part of the const section (it is a separate assignment expression).

Finally, the OPTIND rule matches iff the next token either doesn’t have a valid indentation
level or if its indentation level is greater than the current level. In other words, the token
can have optional indentation.

It is also important to understand, that the indentation level only matters in select places.
The following code is still valid, even though the indentation may seem to be out of place:
1 const

2 PI
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3 = 3.14

4 E = 2.7

This is because there are no restrictions on the indentation level of the equals sign (the
T_EQ token in the grammar).

2.2.2 AST and PSI tree

Feeding the BNF grammar to Grammar-Kit will generate the parser class, in our case
NimParser. The class can process a stream of tokens and produce an abstract syntax tree.
The AST, however, is a generic structure and is not tied to Nim at all. In order to have
a better API for static analysis, we need to build a specialized tree structure on top of
the AST. IntelliJ refers to the specialized tree as a PSI tree, which stands for program
structure interface tree. Building the PSI tree involves creating interfaces and classes for
relevant PSI tree nodes and providing the logic that instantiates the right class for a given
AST node. The BNF grammar that we feed to Grammar-Kit in fact already describes
the PSI structure that we want. Grammar-Kit can generate all the PSI interfaces and
classes by itself. For instance, the ConstDef rule mentioned in the previous BNF grammar
example would cause the following Java classes to be generated:
1 public interface ConstDef extends PsiElement {

2 Expression getExpression();

3 Identifier getIdentifier();

4 Pragma getPragma();

5 TypeDesc getTypeDesc();

6 }

1 public class ConstDefImpl extends ASTWrapperPsiElement implements ConstDef {

2 public ConstDefImpl(ASTNode node) {

3 super(node);

4 }

5 @Override

6 public Expression getExpression() {

7 return findChildByClass(Expression.class);

8 }

9 @Override

10 public Identifier getIdentifier() {

11 return findNotNullChildByClass(Identifier.class);

12 }

13 @Override

14 public Pragma getPragma() {

15 return findChildByClass(Pragma.class);

16 }

17 @Override

18 public TypeDesc getTypeDesc() {

19 return findChildByClass(TypeDesc.class);
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20 }

21 }

A generated factory method will also contain the following lines for each rule:
1 public static PsiElement createElement(ASTNode node) {

2 IElementType type = node.getElementType();

3 ...

4 else if (type == CONST_DEF) {

5 return new ConstDefImpl(node);

6 }

7 ...

8 }

One can see that Grammar-Kit does a decent job of generating a lot of code for us.
However, we would like to have additional methods on those PSI interfaces and classes,
for instance we want the ConstDef interface to have a method that would return the type
of the constant (int, string, user defined type etc). Even though Grammar-Kit does have
a way of adding auxiliary methods to PSI interfaces, those ways are cumbersome, as they
entail polluting the BNF grammar with verbose meta information, and all the logic will
need to be put into static methods of some utility classes, that will then be called by the
generated PSI classes. We would much rather add methods directly to the PSI classes.
This calls for us having to write all the PSI interfaces and classes ourselves, which is in
fact what we ultimately decided to do. This simply gives us more flexibility and control
over the structure of those classes. Grammar-Kit still generates the parser for us (which
builds the AST), we only write the PSI class factory method and the PSI interfaces and
classes.

The following piece of Nim code will produce a PSI tree as shown in figure 2.
1 proc foo(x: int) =

2 echo x

3 foo(32)

The root of the tree is a PsiFile node, it corresponds to a single file. It has two child
nodes – ProcDef, which corresponds to the definition of the foo procedure, and ExprStmt,
which corresponds to the statement that invokes foo. Each of these nodes in turn consists
of various other nodes. Leaf nodes (those of type PsiElement in the figure) correspond to
tokens produced by the lexer.

2.3 Reference resolution

The next step in implementing our plugin is adding support for resolving references to
different symbols in the code. This is one of the major functionalities of the plugin and
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Figure 2: Example of a PSI tree.
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nearly every other feature depends on proper reference resolution. For instance, in the
following code snippet, we want IntelliJ to know that the foo call on line 2 refers to the
foo procedure defined on line 1.
1 proc foo(): string = return "bar"

2 echo foo()

Similarly we want IntelliJ to know that in the following example it is the second overload
that gets called on line 4:
1 proc foo(i: int) = echo "got an int"

2 proc foo(s: string) = echo "got a string"

3 let x = "magic"

4 foo(x)

PSI elements that can possibly form a reference to a symbol need to implement the
getReference() method of the PsiElement interface and return a PsiReference. In our
case, we have an element type called Identifier, which almost always needs to be re-
solved to something. Identifier overrides the mentioned method. An implementation of
PsiReference needs to implement its resolve() method, whose task it is to find the def-
inition of the symbol that is being referenced. Resolution mostly involves walking up the
PSI tree in search of suitable symbols as well as querying some global indices for symbols
that are defined in other files. We have several implementations of PsiReference. There is
a ProcReference, which only resolves to procedures (and not local variables, parameters,
types etc). There is a TypeReference, which resolves strictly to type definitions. There
is also a MemberReference, which resolves to object fields as well as procedures that can
be called as methods in the given context. And finally there is an IdentifierReference,
which resolves to just about anything. Identifier will inspect its surrounding context
and return an instance of one of these reference implementations.

Let’s have a look at the following example.
1 var foo: string

2 add(foo, "bar")

3 echo foo.find(’a’)

There are several Identifier elements here. The word string on line 1 is an Identifier

and invoking getReference() on it will return a TypeReference, that is because it can
tell that it needs to resolve to a type (if there was a variable called string it would not
interfere with the type string). The word add on line 2 is also an Identifier and it gives
a ProcReference, because, once again, it sees that its being used as part of a function
call. The word foo on line 2 is an Identifier that gives an IdentifierReference, because
in that context, all sorts of symbols are allowed. And lastly, the word find on line 3 is
an Identifier that gives a MemberReference, because it can tell, that it is being used to
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refer to a member of foo.

When an IdentifierReference is asked to resolve itself, it will walk up the PSI tree
starting at the Identifier that created it. It will inspect each PSI element along the way
and ask the element to process the declarations that it contains, if any. Here is part of
the code of the resolve method that showcases the tree traversal.
1 Identifier identifier = getElement(); // This is the element that we start from

2 SymbolResolver resolver = SymbolResolver.forName(identifier.getText());

3 PsiElement prevParent = identifier;

4 PsiElement scope = identifier;

5 while (scope != null) {

6 if (!scope.processDeclarations(resolver, prevParent, identifier))

7 break;

8
9 prevParent = scope;

10 scope = scope.getContext(); // getContext() returns the parent PsiElement

11 }

12 return resolver.getResolvedTarget();

On the second line we create a SymbolResolver, which will perform the actual checks
against elements that are passed to it and determine whether an element is the one we
are looking for (e.g. a variable declaration with a name that matches our Identifier).
Inside the while loop we call the processDeclarations method on each element in the
chain of parents. We pass along the symbol resolver, the previous parent (which, by
necessity, is a child of the current element) and, additionally, the initial Identifier that
we started from. Inside the processDeclarationsmethod, the element then has the choice
of passing itself or any of its children to the symbol resolver.

Here is how the processDeclarations method is implemented in the ConstDef element,
which represents a constant definition (e.g. const PI = 3.14).
1 public boolean processDeclarations(PsiScopeProcessor processor,

2 PsiElement lastParent, PsiElement place) {

3 if (lastParent != null)

4 return true;

5 return processor.execute(this);

6 }

The initial if condition is necessary so that if the resolution begins from within the con-
stant definition itself (e.g. from within the initializer expression) then the constant would
not be considered as a candidate for matching any possible symbols. The convention,
that is currently used, is that lastParent is null, if the node is being descended (par-
ent of ConstDef calls processDeclarations on it), and not null, if the node is being
ascended (child of ConstDef is being resolved). If lastParent is null, ConstDef passes
itself to the processor, which is actually the symbol resolver. The execute method of our
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SymbolResolver class determines the type of the element that is passed to it, and, if that
element happens to be a symbol declaration, checks whether the name matches the one
we are trying to resolve. If it does, the element will be remembered, and can be retrieved
using the getResolvedTarget method. The return value of the method indicates whether
the search should continue (true) or it should stop because the symbol has been found
(false).

Another example of the processDeclarations method is the following, which is taken
from an element called Block. Block is a collection of statements, it is used for the bodies
of if-statements, loops, procedures etc.
1 public boolean processDeclarations(PsiScopeProcessor processor,

2 PsiElement lastParent, PsiElement place) {

3 for (Statement statement : getStatements()) {

4 if (statement == lastParent)

5 return true;

6 if (!statement.processDeclarations(processor, null, place))

7 return false;

8 }

9 return true;

10 }

We iterate over all the statements inside the block, and ask each one to process its
declarations. In case we are ascending the PSI tree, then we only want to process the
statements that precede the one where the resolution started from, so we exit the loop
when we reach the statement that was the previous parent.

Resolving the argument of the echo call in the following code will cause the PSI tree to
be traversed as shown in figure 3. The blue arrows indicate the path that is realized by
the loop in the resolve method, the orange arrows indicate the path that is realized by
the recursive processDeclarations calls.
1 proc foo() =

2 const PI = 3.14

3 echo(PI)

As mentioned earlier, reference resolution is a core functionality of a language plugin, and
enables a lot of features. For instance it is now possible to search for usages of a symbol
and perform rename refactoring. Figure 4 shows finding of usages in action.

2.4 PSI stubs and stub indices

IntelliJ has a concept of so called PSI stubs and stub indices. The IDE scans every file
in the project and in the standard library once, and for each file builds a PSI stub tree.
A stub tree mirrors a normal PSI tree, but contains far fewer elements. It usually only
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Figure 3: Traversing the PSI tree.

Figure 4: Finding the usages of a symbol.
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contains elements that represent global symbol definitions. For example, there is no need
to store the bodies of procedures in it, for there is nothing inside a procedure that could
be referenced from outside.

The real value of the stubs lies in the ability to index them based on a certain key. For
instance, we have a stub index called TypeIndex, and every TypeDef stub element that
occurs in the top-level file scope will add itself to that index. The name of the type will be
used as the key. Similarly, we have a RoutineIndex, that contains all procedures indexed
by their name.

A PSI element can, at any moment, be backed by either a stub, or an AST node. In a
stub tree, every PSI element is backed by a PSI stub. In a full PSI tree, every element
is backed by an AST node. Naturally, a stub-backed PSI element does not contain all
the information that might be necessary for different PSI operations (e.g. getting the
types of the parameters of a procedure). However, the API is designed in such a way that
whenever a PSI element tries to access the AST and it is not backed by an AST node,
the file that the element belongs to will be loaded and parsed, and the AST node will be
injected into the PSI element. This happens seamlessly, without us having to write any
code for it.

During reference resolution, if a symbol is not found in the file where the resolution starts
from, some of the indices are queried instead. For instance, TypeReference will query the
TypeIndex for a type definition with the name that it’s trying to resolve. The index will
return a list of TypeDef elements (if it has any for the given key) that are backed by stubs.
We can then operate on the elements directly if we wish to process them further, keeping
in mind that certain operations will end up loading the originating file as described above.
Here is the whole resolve method of the TypeReference class, demonstrating the use of
TypeIndex.
1 public PsiElement resolve() {

2 PsiElement entrance = getElement();

3 String name = entrance.getText();

4 SymbolResolver resolver = SymbolResolver.forName(name)

5 .withFilter(el -> el instanceof TypeDef || el instanceof GenericParam);

6 PsiElement prevParent = entrance;

7 PsiElement scope = entrance;

8 while (scope != null) {

9 if (!scope.processDeclarations(resolver, prevParent, entrance))

10 return resolver.getResolvedTarget();

11 prevParent = scope;

12 scope = scope.getContext();

13 }

14
15 GlobalSearchScope searchScope = ImportProcessor.buildImportScope(entrance);
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16 List<TypeDef> typeDefs = TypeIndex.getInstance().get(name, searchScope);

17 for (PsiElement typeDef : typeDefs)

18 if (!typeDef.processDeclarations(resolver, null, entrance))

19 break;

20 return resolver.getResolvedTarget();

21 }

The first part of the method is almost the same as the previous example of the resolve

method of IdentifierReference. After the tree traversal is done and the symbol still
hasn’t been resolved, we query the TypeIndex for type definitions with the name that we
are trying to find. Note that we also use a search scope, which is constructed based on the
imports that are present in the current file. This makes sure we do not consider symbols
that are not actually in scope.

The small size of the stub trees allows the IDE to keep many of them in memory for fast
access. In fact, all the stub trees of all the files in a project and in the SDK are kept
in memory while a project is open. This provides us with the ability to quickly resolve
global symbols without having to load and parse any files. Additionally, stub trees are
serialized and stored in the file system, so the project doesn’t need to be rescanned every
time it is opened.

2.5 Type deduction

Often, when resolving symbols, we need to know the type of a certain expression. For
instance, when a MemberReference wants to resolve a field of an object, it needs to know
the type of the object whose field is being accessed. In the following example, in order to
resolve name on line 4, we need to first determine the type of joe.
1 type Person = object

2 name: string

3 var joe: Person

4 echo joe.name

In this case it is still fairly easy, as we just need to first resolve the symbol joe to its
definition, and then resolve the symbol Person that is used as the type of the variable.
However, it can be far more complex, as illustrated in the following example.
1 type

2 A = object

3 property: string

4 B = object

5 property: int

6 proc getObject(prop: string): A = A(property: prop)

7 proc getObject(prop: int): B = B(property: prop)

8 const arg = "Joe"
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9 echo getObject(arg).property

In order to resolve the identifier property on line 9, we need to know the type of the
expression getObject(arg). There are two procedures called getObject, in order to know
which one is being invoked, we need to know the type of the argument that is passed to
it. The argument is arg, which we need to resolve in order to find its type, in this case
it is a constant that is initialized with a string literal, so its type is string. Now we can
pick the right procedure and examine its return type, in this case we call the procedure
that’s defined on line 6, which returns A. We can now resolve A and examine its fields to
find property.

We have a class called Type that represents a concrete type in Nim. In most cases it will
contain a reference to the type definition PSI element (TypeDef), but it can also represent
generic type parameters. Every PSI element that represents an expression has a getType

method that returns a Type. It is up for various expressions classes to implement the
method. For instance, IdentifierExpr (an expression that consists of a single identifier)
will simply resolve the identifier and, if it’s something that can have a type (a variable,
a parameter, a constant etc), will return that type. CallExpr (an expression that repre-
sents a procedure call) will resolve the procedure and return its return type. The type
deduction logic has not been implemented for all possible expressions yet, for example,
binary operator expressions do not currently resolve their type.

Nim happens to be such a flexible language, that even types can be represented by arbi-
trary expressions. This primarily occurs when templates and macros are used. Consider
the following code snippet.
1 template ‘*‘(t: typedesc, n: int): typedesc =

2 array[0..n-1, t]

3
4 var foo: int * 3

The variable foo has the type int * 3, which is an invocation of the template defined
above it. The template invocation will be substituted with the type array[0..2, int].

This example illustrates the need for us to be able to evaluate any expression as a type.
Therefore, every expression also has an asType method, which should return the type
that is represented by the expression (not the type of the expression). The easiest case
is once again the IdentifierExpr element, as it just needs to resolve the identifier and
if it points to a type definition, return the type for that definition. At this moment, this
capability has only been implemented for a handful of expression types (e.g. the type of
foo will not be deduced in the code snippet above).
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2.6 Procedure overload resolution

Compared to other types of symbols, procedures require more work when resolving ref-
erences to them. This is caused by the fact that procedures can be overloaded, meaning
that there can be several procedures with the same name, that differ in the types of
their parameters. Therefore, we always need to take into account the types of the argu-
ments that are passed to a procedure invocation. Nim documentation describes a specific
algorithm of how argument and parameter types are matched.

When an argument is compared to the formal type of a parameter, it either doesn’t match
or it matches according to one of six possible categories.

1. Exact match – the formal parameter type and the type of the argument are exactly
the same.

2. Literal match – the argument is an integer literal and the parameter is of integer
type such that the argument belongs to its range, or the argument is a floating
point literal and the parameter is of floating point type such that the argument is
in its range.

3. Generic match – the parameter has a generic type and the type of the argument
satisfies the constraints of the generic type (if any).

4. Subrange or subtype match – the type of the argument is range[T] and the type
of the parameter is exactly T, or the type of the argument is a subtype of the
parameter type.

5. Integral conversion match – the parameter as well as the argument are of some
integer or floating point type, and the argument is convertible to the parameter
type.

6. Conversion match – the argument is convertible to the parameter type, possibly via
a user-defined converter.

If at least one argument does not match at all, then that overload is not considered (i.e.
each argument needs to match according to one of the six categories). The overload that
has the highest number of exact matches is the one that is going to be chosen. If two
or more overloads have the same number of exact matches, then the number of literal
matches in considered, and so on. If all categories are tied, then the call is ambiguous;
this is a compile time error. We have currently only implemented exact, subtype and
generic matching (without the constraint checks) and so overload resolution might not
always be correct. The implementation of overload resolution can be found in the class
RoutineResolver.

25



2.7 Code completion

IntelliJ supports two ways of implementing code completion – reference completion, which
is simpler and good enough for most cases, and contributor-based completion, which is
supposed to provide more fine-grained control over how and when does code completion
get invoked. We only make use of reference completion. All that’s needed for it, is to
implement the getVariants method of the PsiReference interface in our reference classes.
Whenever code completion needs to be invoked (either at the request of the user, or
automatically by the IDE), IntelliJ will insert a dummy identifier at the current position
of the cursor, and check whether the identifier returns some sort of a reference (in our
case, either IdentifierReference, ProcReference, TypeReference or MemberReference).
If it does, the getVariants method will be invoked on it. The method should return a
list of symbols that will be shown in the code completion pop-up. The operation of the
getVariants method is similar to that of the resolve method, except that, instead of
searching for a symbol with a specific name, we must collect all symbols that are in scope
and are valid candidates in the current context. The following is an example of how the
method is implemented in our TypeReference class.
1 public Object[] getVariants() {

2 SymbolCollector collector = SymbolCollector.withFilter(

3 el -> el instanceof TypeDef || el instanceof GenericParam);

4 PsiElement entrance = getElement();

5 PsiElement prevParent = entrance;

6 PsiElement scope = entrance;

7 while (scope != null) {

8 scope.processDeclarations(collector, prevParent, entrance);

9 prevParent = scope;

10 scope = scope.getContext();

11 }

12
13 Project project = entrance.getProject();

14 TypeIndex typeIndex = TypeIndex.getInstance();

15 GlobalSearchScope searchScope = ImportProcessor.buildImportScope(getElement());

16 List<TypeDef> extra = typeIndex.getAllKeys(project).stream()

17 .flatMap(key -> typeIndex.get(key, project, searchScope).stream())

18 .collect(Collectors.toList());

19 for (TypeDef typeDef : extra)

20 typeDef.processDeclarations(collector, null, entrance);

21
22 return collector.getLookupElements().toArray();

23 }

The first half of the method walks up the PSI tree, similar to the resolve method,
except it never breaks out of the loop until the root of the tree has been reached. The
SymbolCollector class collects all the symbols that are passed to it (and that match
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the given filter) and can later return all the elements as a list of LookupElements. A
LookupElement contains information about what text and icon to display in the pop-up,
what font style should be used etc. The second half of the method queries our type stub
index for all available type definitions that should be in scope according to the list of
imported modules.

It is worth pointing out that getting the list of all possible completion candidates can
involve a lot of work. For instance, when MemberReference is asked to produce a list of
procedures that could be called on an object using the method invocation syntax, it first
has to ask the RoutineIndex for all procedures that are currently in scope, and then needs
to match the receiver expression (the thing that the method is being called on) against the
first parameter of every single procedure. Keep in mind, that the index will return a list
of PSI elements that are backed by stubs, and they do not have enough information to be
able to properly resolve the types of parameters, meaning that for every procedure we will
actually load and parse the file were that procedure is defined, in order to be able to get
full type information. The reason, why routine stub elements do not store the parameter
type in the stub tree, is largely due to the fact that a type in Nim can be represented
by any arbitrary expression, and therefore every expression element would have to be
able to operate off a stub and also be able to serialize and deserialize itself. This is in
contrast to some other programming languages, where types can only be expressed by a
small number of possible forms; for instance, in Java, the formal type of every method
parameter will be represented by either a primitive type name, a class name (possibly
with generic parameters), a name referring to a generic type parameter or an array, all
of which could be stored in a simple structure (even just a string) and put into the stub
tree. Also, it is not possible to resolve the type when building the stub tree, as no stub
indexes are available at that time.
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Figure 5: An IdentifierReference is being completed.

Figure 6: A MemberReference is being completed.
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3 Conclusion

In this thesis we created a plugin for IntelliJ IDEA that facilitates writing Nim programs.
The plugin provides symbol navigation and code completion as its primary features.
Additionally, one can search for usages of a symbol and perform rename refactoring.

At this stage, there are still areas where the plugin could be improved. Type deduction
is currently somewhat limited, for instance there is no special support for generics, and
not all expressions can currently be evaluated as types. Procedure overload resolution is
also lacking, as certain match categories haven’t been implemented. The Nim compiler
contains inside it a small virtual machine, that allows it to evaluate constant expressions
at compile time. This is also needed in order to deduce the types of compile time constants.
Our plugin currently lacks that functionality.

In addition to improving the core language support functionality, other auxiliary features
could be added. For instance, automatic addition of import statements when a symbol,
that’s declared in a non-imported module, is used. Integration with the Nim build system
could also be of use, as it would allow to compile and run programs directly from the IDE.
Nim also has a convention for writing documentation comments. The standard library
contains a lot of documentation in the code. IntelliJ fully supports the concept of showing
symbol documentation in the editor, and so implementing support for that would also be
of great value. Lastly, IntelliJ has a nice way of showing errors and warnings inline inside
the editor. Utilizing that to point out invalid code would be another worthwhile addition.
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Appendix

Source code

The source code for the plugin is available on BitBucket at the following URL: https:
//bitbucket.org/dmitri_gb/idea-nim/. Build instructions are included in the repository.
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