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INTRODUCTION

Cleft lip (CL), cleft lip with or without cleft palate (CL/P) and isolated cleft
palate (CP), collectively termed oral clefts (OC), are the second most common
birth defects among newborn. These defects arise in about 1 in 700 liveborn
babies, with ethnic and geographic variation. Approximately 75% of CL/P and
50% of CP cases are isolated defects and no other deformities are found in those
children. Those OCs are therefore called nonsyndromic (Stainer and Moore,
2004).

Although OC is usually not a life-threatening condition, many functions
such as feeding, digestion, speech, middle-ear ventilation, and hearing, respi-
ration, facial and dental development can be disturbed because of the structures
involved. These problems can also cause emotional, psychosocial and edu-
cational difficulties. Affected children need multidisciplinary care from birth
until adulthood (Mossey et al., 2009). Orofacial clefts pose a burden to the
individual, the family, and society, with substantial expenditure, and rehabili-
tation is possible with good quality care. Care for children born with these de-
fects generally includes many disciplines — nursing, facial plastic surgery,
maxillofacial surgery, otolaryngology, speech therapy, audiology, counselling,
psychology, genetics, orthodontics, and dentistry. Fortunately, early and good
quality rehabilitation of children with OC usually gives satisfactory outcomes.

Identification of etiological factors for OC is the first step towards primary
prevention. Genetic factors contributing to CL/P formation have been identified
for some syndromic cases, but knowledge about genetic factors that contribute
to nonsyndromic CL/P is still unclear. The high rates of familial occurrences,
risk of recurrence, and elevated concordance rates in monozygotic twins pro-
vide evidence for a strong genetic component in nonsyndromic CL/P. However,
concordance in monozygotic twins ranges between 40% and 60%, which means
that the exact inheritance pattern of OC is more complex. It has been suggested
that the development of nonsyndromic OC occurs as a result of the interaction
between different genetic and environmental factors (Mitchell and Risch, 1992;
Carinci et al., 2000; Carinci et al., 2003; Carinci et al., 2007). The identification
of the genes responsible for diseases has been a major focus of human genetics
over the past 40 years. The introduction of modern molecular methods, experi-
mental animal knockout models and advances in the technique of gene mapping
have provided new candidate genes for orofacial clefting, both for syndromic
and nonsyndromic cases. However, the results of earlier candidate-gene-based
association studies, performed in different populations, have been conflicting,
with only a few candidate loci being implicated in OC phenotypes. This
inconsistency indicates the challenges in searching associations with a relatively
rare phenotype such as nonsyndromic clefting.

The primary purpose of the present study was to give an overview of OC in
Estonia. National statistics regarding orofacial clefts in Estonia was non-
existent at the start of this study. The only prevalence findings known to us
were those of Lovi-Kalnin (1996), conducted during 1970—1980. On the basis
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of the data from the study, the current rate of occurrence of clefts in Estonia
would be 1 case per 777 live births. The only way to estimate the number of
children affected by clefts is to use the pre-existing information from previous
visits to maxillofacial surgeons. Genotype-phenotype correlation research in
this area could yield important information on risk factors. Therefore, our
second main purpose was to investigate the possible contributions of recognized
candidate genes, on the basis of multiple reports on the association between
markers and haplotypes in various genes and orofacial clefts from a previously
uncharacterized ethnic background of three genetically close populations from
Estonia, Latvia and Lithuania.
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REVIEW OF LITERATURE

I. Embryonic development

The development of the head (Figure 1) involves the interaction of several cell
populations and the coordination of cell signalling pathways which, when
disrupted, can cause defects such as facial clefts. Development of the lip and
palate entails a complex series of events (Table 1). Disturbances at any stage
during palate development (e.g., defective palatal shelf growth, failed or
delayed elevation, and blocked fusion) can result in CP/L or CP only (Sperber,
2010).

o

b c

Medial nasal

processes
Frontonasal

prominence Lateral nasal

Max“law processes
processes Nasal pits

Oral cavity Alae

Mandibular

Processes

e f

Primary f’ﬂ ﬂ

palate Incisive /‘—\
foramen
Nasal Fused
septum p alate
i
Secondary
palatal

shelves

Figure 1. Development of the lip and palate

a.

The developing frontonasal prominence, paired maxillary processes and paired man-
dibular processes surround the primitive oral cavity by the 4™ week of embryonic
development.

By the 5" week, the nasal pits have formed, which leads to the formation of the
paired medial and lateral nasal processes.

The medial nasal processes have merged with the maxillary processes to form the
upper lip and primary palate by the end of the 6™ week. The lateral nasal processes
form the nasal alae. Similarly, the mandibular processes fuse to form the lower jaw.
During the 6™ week of embryogenesis, the secondary palate develops as bilateral
outgrowths from the maxillary processes, which grow vertically down the side of the
tongue.

Subsequently, the palatal shelves elevate to a horizontal position above the tongue,
contact one another and commence fusion.

Fusion of the palatal shelves ultimately divides the oronasal space into separate oral
and nasal cavities (Dixon et al., 2011).
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Table 1. Chronology of key embryonic events (from Sperber, 2010, with permission)

Carnegie
Stage

Postconception
Age

Craniofacial Features

14 days

Primitive streak appears; oropharyngeal membrane
forms

17 days

Neural plate forms

20 days

Cranial neural folds elevate; otic placode appears

21 days

Neural crest migration commences; fusion of neural
folds; otic pits forms

11

24 days

Frontonasal prominence swells; first arch forms; wide
stomodeum; optic vesicles form; anterior neuropore
closes; olfactory placode appears

12

26 days

Second arch forms; maxillary prominence appear; lens
placodes commence; posterior neuropore closes; adeno-
hypophysial pouch appears

13

28 days

Third arch forms; dental lamina appears; fourth arch
forms; oropharyngeal membrane ruptures

14

32 days

Otic and lens vesicles present; lateral nasal prominence
appear

15

33 days

Medial nasal prominence appear; nasal pits form-
widely separated, face laterally

16

37 days

Nasal pits face ventrally; upper lip forms on lateral as-
pect of stomodeum; lower lip fuses in midline; retinal
pigment forms; nasolacrimal groove appears, demar-
cating nose; neurohypophysial evagination

17

41 days

Contact between medial nasal and maxillary pro-
minence, separating nasal pit from stomodeum; upper
lip continuity first established; vomeronasal organ
appears

18

44 days

Primary palate anlagen project posteriorly into stomo-
deum; distinct tip of nose develops; eyelid fold form;
retinal pigment; nasal pits move medially; nasal alae
and septum present; mylohyoid, geniohyoid and genio-
glossus muscle form

19

4748 days

Nasal fin disintegrates; (failure of disintegration pre-
disposes to cleft lip); the rima oris of the mouth di-
minishes in width; mandibular ossification commences

20

50-51 days

The lidless eyes migrate medially; nasal pits approach
each other; ear hillocks fuse

22

54 days

The eyelids thicken and encroach upon the eyes; the
auricle forms and projects; the nostrils are in definite
position

23

56-57 days

Eyes are still wide apart but eyelid closure commences;
nose tip elevates; face assumes a human fetal appea-
rance; head elevates off the thorax; mouth opens; pala-
tal shelves elevate; maxillary ossification commences

Fetus

60 days

Palatal shelves fuse; deciduous tooth buds form;
embryo now termed a fetus

15




l.1. Lip development

During the third week of gestation, neural crest cells proliferate and migrate
into the frontonasal and visceral arch region to form the five facial primordia.
By the post-coital fourth week (p.c.4wk), five primordia (consisting of the
frontonasal prominence, the paired maxillary prominences, and the paired
mandibular prominences) surround the primitive oral cavity. The frontonasal
prominence forms the forehead and the nose. The maxillary prominences are
bilateral and form the lateral stomodeum (primitive mouth). The mandibular
prominences are also bilateral and are responsible for the caudal growth of the
stomodeum. The neural crest cells within these prominences differentiate into
skeletal and connective tissue of the face, bone, cartilage, fibrous connective
tissue, and all dental tissues except enamel (Sperber, 2010). During the fourth
week (p.c.4wk), the medial ends of the mandibular prominences merge to form
the mandible, lower lip, and lower cheek region. Toward the end of the fourth
week, nasal placodes form on the lower aspect of the frontonasal prominence.
The nasal or olfactory pits form and extend into the primitive mouth, and these
become the nostrils. Rapid growth continues in weeks five to six (p.c.5—-6wk).
In weeks six to seven (p.c.6—7wk), rapid proliferation of the maxillary pro-
minences results in the medial nasal prominences merging with each other and
the lateral nasal prominences to form the lateral nose and cheek regions. The
upper lip is formed during this period by the lateral movement of the maxillary
prominences and medially by the fused medial nasal prominences (Moore and
Persaud, 2008).

1.2. Palate development

Palate development begins during the post-coital fifth week (p.c.5wk), after
fusion of the upper lip, and is complete at the end of the twelfth week. Palatal
development follows up the initial development of the oral region with further
proliferation and migration of the maxillary prominences. Development of the
palate is divided into two regions: the primary and secondary palate. Develop-
ment of the primary palate starts with further development of the intermaxillary
segment of the maxilla. This tissue is derived from the maxillary prominences
merging with the medial nasal prominences. The intermaxillary segments of the
maxilla form the labial components that form the philtrum of the upper lip and
the bony palatal component. The primary palate extends posteriorly to the
incisive foramen, located immediately behind the alveolar ridge (Moore and
Persaud, 2008).

The secondary palate originates as an outgrowth of the maxillary promi-
nences (p.c.6wk). During the seventh week of development, the palatal shelves
rise to a horizontal position above the tongue, and come into contact and fuse to
form a midline epithelial seam, which subsequently degenerates to allow
mesenchymal continuity across the palate. The palatal mesenchyme then diffe-
rentiates into bony and muscular elements that correlate with the position of the

16



hard and soft palate respectively. With continued growth, the shelves appose at
the midline (p.c.10wk) and eventually fuse (p.c.13wk) (Murray and Schutte,
2004).

Numerous genes are expressed during palatal development (Figure 2).
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Figure 2. Gene expression during different stages of palatal development

The schematic drawing shows coronal view of normal palate shelf and key stages of
palatal development. Main genes that express and function at each palatal develop-
mental stages are summarized. Genes are separated according to the location of its
expression pattern (mesenchyme vs. epithelium) (Wenli Yu et al., 2009).
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Mice and chicks have played a central part in dissection of the molecular path-
ways underlying development of the lip and palate. In both species, develop-
ment of the lip and primary palate closely parallels that seen in human beings
(Jiang, 2006).

2. Classification of clefts

Various classification schemes for OC have been devised in the last 70 years,
but few have received widespread clinical acceptance. OC can be classified on
the basis of etiology and/or pathogenesis. There have been multiple classifi-
cations of OC based on anatomic and embryological considerations.

2.1. Fogh-Andersen classification (1942)

Fogh-Andersen divided OC as follows:

CL extending to the incisive foramen, including clefts of the alveolus

CL and CP (CLP), including unilateral and bilateral CLP

CP identified as being median and not extending beyond the incisive foramen.

2.2. Davis and Ritchie classification (Davis and Ritchie, 1922)

The Davis and Ritchie classification divides CL/P into two groups, which are
subdivided by the extent of the cleft (eg, 1/3, 1/2), as follows:

Group I — Clefts anterior to the alveolus (unilateral, median, or bilateral
cleft lip).
Group I —  Postalveolar clefts (cleft palate alone, soft palate alone, soft

palate and hard palate, or submucous cleft).

2.3. Veau classification (Figure 3)

Group I — Defects of the soft palate only.
Group Il -  Defects involving the hard palate and soft palate.
Group Il - Defects involving the soft palate to the alveolus, usually in-

volving the lip.
Group IV —  Complete bilateral clefts.
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Figure 3. Veau classification

A: Group 1. Defects of the soft palate only. B: Group II. Defects involving the hard
palate and soft palate. C: Group III. Defects involving the soft palate to the alveolus,
usually involving the lip. D: Group IV. Complete bilateral clefts (Tewfik et al., 2011).

2.4. Kernahan and Stark classification (Figure 4)

The Kernahan and Stark classification highlights the anatomic and embryonic
importance of the incisive foramen. This system provides a graphic
classification scheme using a Y-configuration, which can be divided into nine
areas, as follows:

Areas 1 and 4 — Lip

Areas 2 and 5 — Alveolus

Areas 3 and 6 — Palate between the alveolus and the incisive foramen

Areas 7 and 8 — Hard palate

Area 9 — Soft palate
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Figure 4. Kernahan and Stark classification

Areas 1 and 4 — Lip; Areas 2 and 5 — Alveolus; Areas 3 and 6 — Palate between the
alveolus and the incisive foramen; Areas 7 and 8 — Hard palate; Area 9 — Soft palate.
R =right; L = left (Kernahan, 1971).

2.5. International Confederation for Plastic and
Reconstructive Surgery classification:

The International Confederation for Plastic and Reconstructive Surgery (1967)
established a classification of OC based on the embryology of the developing
structures (Millard, 1976).
— Clefts of the primary palate

Lip

Alveolus
— Clefts of the primary and secondary palate

Lip

Alveolus

Hard palate (secondary palate)
— Clefts of the secondary palate

Hard palate

Soft palate
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Classifications of OC based on etiology or pathogenesis provide insufficient
information regarding the severity of the cleft and the types of direct medical
and surgical management required. It is necessary to combine the classifications
in order to optimally diagnose and treat cleft patients (Figure 5).

Upper lip
Hard palate

Soft palate

& %
A AR

Uvul

Figure 5. Types of clefts

a. unilateral cleft of the soft palate; b. unilateral cleft lip; c, d unilateral cleft lip and
palate; e. bilateral cleft of the soft palate; f. bilateral cleft lip; g,h. bilateral cleft lip and
palate. Clefts are indicated in purple (Dixon et al., 2011).

3. Prevalence
3.1. CL/P prevalence

According to the International Perinatal Database of Typical Orofacial Clefts
(IPDTOC, 2011) the overall prevalence of CL/P is 9.92 per 10,000 worldwide.
The prevalence of CL is 3.28 per 10,000 and that of cleft lip and palate (CLP)
6.64 per 10,000. According to the IPDTOC study (2011), in the evaluation of
geographical areas, the registries in Japan, Mexico, South America, Western
Europe and Canada have a higher prevalence of CL/P than the overall estimate,
while the registries in Eastern Europe, South-Mediterranean Europe and South
Africa reported a lower prevalence.

Asian and Native American populations have the highest reported birth
prevalence rates, which are often as high as 1 in 500. European-derived
populations have intermediate prevalence rates at approximately 1 in 1,000, and
African-derived populations have the lowest prevalence rates at approximately
1 in 2,500 (Dixon et al., 2011).
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3.2. CP prevalence

CP is a common congenital anomaly affecting about 1 in 2,000 livebirths
worldwide. Most CP cases occur as an isolated congenital malformation, but
they are often part of chromosomal aberrations and monogenic syndromes or
are associated with other congenital malformations (Shaw et al., 1995; Schutte
and Murray, 1999; Beaty et al., 2002).

The prevalence of CP varies significantly in Europe, not only between
registries but also within countries, with a European mean value of 6.2/10,000
(EUROCAT, 1995, 1997, 2002). The highest prevalence (14.2/10,000) of
isolated CP was confirmed in Finland (Finland National Institute for Health and
Welfare, 2011).

4. Cleft proportion

The proportion of different types of cleft is providing clues about the
underlining etiology. In most of the studies from Europe and the U.S. about
nonsyndromic OC, unilateral CLP is the most frequent, accounting for about
30-35% of cases. Isolated CL and CP each account for between 20-25% and
(BCLP) is about 10% (Wyszynski, 2002).

The left unilateral cleft is a most common finding and seems to be a common
feature in all ethnic groups (Tolarova, 1987). The left side is affected twice as
often as the right side (Dixon et al., 2011).

Fogh-Andersen (1942) reported a CL:CLP:CP ratio of 1:2:1, which is often
described as the normal ratio for different cleft types in Caucasians. Studies
from Japan and Africa (Natsume and Kawai, 1986; Ogle, 1993) reveal a much
lower prevalence of CP.

5. Gender ratio

The gender ratio among individuals with CL/P is distorted in the general
population, with males being affected two times more frequently than females.
The opposite situation, a significantly higher incidence of females compared to
males, is found for CP (EUROCAT, 200; Dixon et al., 2011). No generally
accepted explanation for the sex differences is reported. The discovery of the X-
linked CP and ankyloglossia gene TBX22 (Braybrook, 2001; Marcano et al.,
2004) may suggest a candidate gene that might be relevant for palate
morphogenesis and possibly play a role in the imbalanced sex prevalence of CP
cases (Margano et al., 2004).

6. Surveillance system

National statistics regarding OC in Estonia are non-existent. Currently, the only
way to estimate the number of children affected by clefts is to use the pre-
existing information from previous visits to maxillofacial surgeons. The data
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retrieved in this way can be significantly distorted, as patients have an
opportunity to carry out surgical procedures outside Estonia.

We used the Health Insurance Fund’s diagnosis code database to identify
primary cases of clefts. Unfortunately, doctors use codes in different ways and a
first-time patient’s code is reused on recurring patients over many years.

Due to a lack of official data on clefts in Estonia, national data is also absent
in different organizations’ overviews.

1. Specific exposures

Population-based studies have shown that non-genetic factors play an important
role in clefting.

7.1. Cigarette smoking

The proportion of clefts attributable to maternal smoking in populations with a
high prevalence of smoking in women of reproductive age was estimated at
22% (Little et al., 2004a). In many countries, tobacco use is rapidly increasing
in women of reproductive age because they are actively targeted by tobacco
marketing campaigns (Windsor, 2002). Several studies have demonstrated
conflicting results. Maternal smoking has been linked to CL/P in offspring
(Little et al., 2004b; van Rooij et al., 2001; Wyszynski, 2002a,b). A different
study has linked smoking during pregnancy to dose-related OC in newborns
(Wyszynski, 2002a,b). Another study found an association between maternal
smoking and CP, but not maternal smoking and CL/P (Meyer et al., 2004). In
addition, it is possible that there may be a strong interaction between certain
maternal and/or infant gene variants and smoking leading to OC in an infant
(Shaw et al.,1996; Fallin et al., 2003; Lammer et al., 2004a). A gene-
environment interaction has been found in the occurrence of OC in children
with the rare allele C2 of the transforming growth factor alpha (TGF-a) gene,
who were born to women who smoked during pregnancy (Shaw et al.,1996).

7.2. Medication and drugs

Epidemiological studies have linked certain drugs during pregnancy to a higher
risk of having a child with OC. Maternal intake of vasoactive drugs, such as
pseudoephedrine, aspirin, ibuprofen, amphetamine, cocaine, or ecstasy, have
been associated with a higher incidence rate for OC (Beaty et al., 1997; Lam-
mer et al., 2004b). Anticonvulsant medications such as phenobarbital, valproate,
trimethadione and dilantin have been documented as increasing the incidence of
CL/P (Harden, 2009; Holmes et al., 2004; Killen, 2003; Wyszynski and Beaty,
1996). However, there is some question as to whether this increase is due to the
medications or the underlying epilepsy (Wyszynski and Beaty, 1996). The
association between antiepileptic drugs and OC may be related to the fact that
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many antiepileptic drugs reduce plasma folate levels (Schwaninger et al., 1999).
Isotretinoin has been identified as a potential causative factor for OC (Benke,
1984; Lammer et al., 1985). Diazepam (Valium) and Bendectin have not been
found to increase the rate of OC (Mitchell et al., 1981; Rosenberg et al.,1983).
An association between maternal intake of sulfasalazine, naproxen, and
glucocorticoids during the first trimester and clefting in newborn has been
suggested (Kéllen, 2003). Aminopterin (an anticancer drug) has also been
linked to the development of OC (Warkany, 1978).

Corticosteroids are first-line drugs used to treat a variety of conditions in
women of childbearing age; in animal models the role of corticosteroids in
clefting is well documented.

Corticosteroids, either used topically or systemically, have shown a weak
association with an increased risk of orofacial clefting (Edwards et al., 2003;
Pradat et al., 2003).

7.3. Alcohol

The teratogenicity of alcohol has been demonstrated in animal models (Cudd,
2005). It has been established that alcohol is a teratogen in humans, most
clearly in the etiology of fetal alcohol syndrome. Several studies have shown
that maternal alcohol intake may increase the risk of OC (Lorente et al., 2000a;
Shaw et al., 1999a). However, this association was not repeated in another study
(Meyer et al., 2003). Almost all studies have used different definitions for
alcohol intake but, despite these differences, these studies consistently
demonstrated, with only a few exceptions, an association between high alcohol
intake and an increased risk of CL/P (Lorente et al., 2000a; Shaw et al., 1999a).
Heavy drinking during pregnancy is uncommon, and the small numbers of
exposed women in many studies have made it difficult to assess this asso-
ciation. A possible mechanism for alcohol-induced embryonic malformations is
ethanol inhibition of retinoic acid synthesis during embryogenesis (Kot-
Leibovich and Fainsod, 2009). When consumed at high levels, ethanol
competitively inhibits the production of retinoic acid which is necessary for
normal cranial neural crest development.

Studies have found that the infant ADHIC (alcohol dehydrogenase) geno-
type is associated with the risk of CL/P (Jugessur et al., 2009; Boyles el al.,
2010). Alcohol-metabolizing genes are expressed in placental tissue during the
first trimester of pregnancy (Edenberg et al., 2006), when the critical stages of
facial development occur.

7.4. Diet and vitamins

It has been suggested that nutrition plays a role in the manifestation of OC.
Maternal periconceptional use of folic acid has been found to reduce the risk of
neural tube defects. As a result, the question has been raised about whether
there is a similar protective effect for other birth defects, including OC.
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Maternal multivitamin use has been found to result in a significant reduction in
CP risk and a nonsignificant reduction in CL risk (Werler et al.,1999). Several
studies have shown decreased rates of CL/P cleft lip and palate with folic acid
use (Malek et al., 2003; Shaw et al., 1995; Shaw et al., 2002, Tolarova and
Harris, 1995), while other studies have failed to find such an effect (Hayes et
al., 1996). Some ambiguity in the studies may be explained by a study that
found OC risk can be reduced only by consuming high doses of folic acid at the
time of lip and palate formation (Czeizel et al., 1999). A reduction in the risk of
OC has been reported with the use of zinc and B vitamins (Munger et al., 2004,
Krapels et al., 2004), as well as vitamin A (Mitchell et al., 2003). In addition,
offspring of mothers with the MTHFR 677TT or MTHFR 1298CC genotype and
low periconceptional folate intake were found to have an increased risk of CL/P
(Jugessur et al., 2003b; van Rooij et al., 2003).

7.5. Solvents and pesticides

Maternal occupational exposure to glycol ethers, a chemical found in various
domestic and industrial products, has been found to increase the rate of CL
(Cordier et al., 1997). Exposure to organic solvents (xylene, toluene, acetone)
has also been reported to increase the rate of this defect (Wyszynski and
Beaty,1996). Maternal occupations involving hazardous chemicals such as
hairdressing, agriculture, and leather or shoe manufacturing, as well as exposure
to pesticides, lead, and aliphatic acids, have been reported to increase rates of
OC (Garcia and Fletcher, 1998; Lorente et al., 2000; Wyszynski and Beaty,
1996); however, other studies failed to find a link between pesticides and OC
risk (Shaw et al., 1999a; Wyszynski and Beaty, 1996). One study (Irgens et al.,
1998) failed to find any link between parental occupational exposure to lead and
OC risk. However, the number of cases in the study was small, and the lead
exposure was measured by census records. Maternal exposure to general
laboratory chemicals was not seen as significant, although exposure to organic
solvents, specifically benzene, was found to be a contributing factor in the
increase of neural crest malformations in offspring, including orofacial clefting
(Wennborg et al., 2005).

Living in proximity to hazardous waste facilities does not appear to increase
the risk for CL/P (Croen and Shaw, 1997), nor does parental occupational
exposure to 50 Hz magnetic fields (Blaasaas et al., 2002). Studies have been
unable to find conclusive evidence of an effect from exposure to water
chlorination and chlorination byproducts (Hwang and Jaakkola, 2003).

One study (Shaw et al., 1999b) found that periconceptional use of electric
bed-heating devices (electric blankets, bed warmers, and heated waterbeds) did
not appear to affect the risk of OC. Maternal fever was associated with
increased risk, but the intake of multivitamin supplements appeared to lower
this risk (Botto et al., 2002).
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8. Parental age

Several studies have reported an increased risk of OC with increased maternal
age (Shaw et al., 1991). However, larger studies have failed to identify ad-
vanced maternal age as a risk factor for OC (Abramowicz et al., 2003, Vallino-
Napoli et al., 2004, Gonzalez et al., 2008). Conversely, another study found a
greater risk for CL among younger mothers (Reethuis and Honein, 2004).

9. Genetic approaches

To date, genetic approaches to nonsyndromic CLP have included: linkage
analysis; association studies; identification of chromosomal anomalies or
microdeletions in cases; and direct sequencing of DNA samples from affected
individuals (Dixon et al., 2011).

These methods can be applied to candidate genes or genome-wide strategies
can be used. Each approach has its own advantages and disadvantages, some of
which will depend on the underlying genetic architecture of the disease, as well
as the realities of economics and technology.

9.1. Linkage studies

Findings of linkage studies have suggested various loci could have a causal role
in CL/P, including regions on chromosomes 1, 2, 4, 6, 14, 17, and 19 (MTHFR,
TGF-a, D4S175, F1341, TGF-3, D175250, and APOC?2), with putative loci
suggested at 2q32—q35 and 9q21—q33 (Marazita et al.,, 2004a). Inconsistent
results could be caused by the small size of the studies or genetic heterogeneity.

9.2. Association studies

Various genetic polymorphisms have been investigated in population-based
association studies. Some genes function as growth factors (eg, TGF-a, TGF-
[3), transcription factors (MSXI, IRF6, TBX22), or factors that play a part in
xenobiotic metabolism (CYPIAI, GSTMI, NAT2), nutrient metabolism
(MTHFR, RARA) or immune response (PVRLI, IRF6) (Mossey et al., 2009).
The most intensively investigated genes have been the TGF-o (Mitchell, 1997,
Zeiger et al., 2005; Vieira, 2006) and MTHFR (Chevrier et al., 2007; Vieira et
al., 2005a) genes.

Inconsistent data have demonstrated the challenges of researching gene-
disease associations and related interactions. However, /RF6 has shown con-
sistent evidence of association with CL/P across populations of different
ancestry (Zucchero et al., 2004; Park et al.,, 2007; Jugessur et al., 2008;
Rahimov et al., 2008).

26



9.3. Identification of chromosomal anomalies or microdeletions

Analysis of chromosomal anomalies in patients has proven to be a productive
route for the identification or confirmation of CL/P loci, with recent successes
for FGFR2 (Osoegawa et al., 2008) and SUMO! (Alkuraya et al., 2006; Shi et
al., 2009; Mostowska et al., 2010).

9.4. Targeted resequencing studies

Targeted resequencing studies of candidate genes have found specific variants
that might underlie associations with clefting, with the strongest current
evidence for mutations in MSXI (Jezewski et al., 2003; Vieira et al., 2005b),
FGFRI and FGF$ (Riley et al., 2007a; Riley et al., 2007b), and BMP4 (Suzuki
et al., 2009). Resequencing studies have also identified private missense
mutations as rare causes of nonsyndromic orofacial clefts, including TGF-f3
(Lidral et al.,1998); MSX1 (Jezewski et al., 2003; Vieira et al., 2005b); TBX22
(Margano et al., 2004); FOXEI, GLI2, JAG2, LHXS, MSX2, SKI, SPRY2, and
TBX10 (Vieira et al., 2005b); PTCH1 (Mansilla et al., 2006); PVR and PVRL?2
(Warrington et al., 2006); RYK (Watanabe et al., 2006); FGFs and FGFRs
(Riley et al., 2007a; Riley et al., 2007b).

The missense mutations reported in the candidate genes listed above do not
clearly segregate in families; suggested reasons for this include variable impact
on gene expression levels during embryonic development and incomplete
penetrance (Vieira, 2008).

9.5. Genome-wide association (GWA) studies

Findings from recent GWA studies have significantly improved our under-
standing of genes and pathways that contribute to the etiology of nonsyndromic
CL/P. The first GWA scan reported a new major susceptibility locus at
chromosome 8q24.21 (Bimmbaum et al., 2009), which was independently
confirmed in several samples (Grant et al., 2009; Nikopensius et al., 2009;
Beaty et al., 2010). No known genes have been reported within the region of
association on 8q24.21. According to the University of California, Santa Cruz
(UCSC) genome browser, the nearest flanking gene is CCDC26, which encodes
a retinoic acid-dependent modulator of myeloid differentiation. Because
exposure to retinoic acid is known to induce orofacial clefts, CCDC26 could be
considered as a potential candidate gene. Four additional susceptibility loci not
previously associated with CL/P that achieved genome-wide significance have
been subsequently identified at chromosomes 10q25.3 (VAXI), 17922 (noggin),
1p22.1 (MAFB) and 20q12 (4BCA4) (Nikopensius et al., 2010; Mangold et al.,
2010; Beaty et al., 2010).

The lack of consistency in evidence of association for possible candidate loci
across studies, where results have mostly been modest, justifies further
investigation into the relevance of previous findings, in new samples obtained
from a different ethnic background.
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10. Genes implicated in lip and palate development

Fogh-Andersen (1942) provided the first population-based evidence that OC
has a strong genetic component. Fraser (1970) separated cleft palate only (CPO)
and CL/P. There is evidence that families with patients affected by OC have a
different genetic background. Conventionally, it has been decided to classify
patients with CP only and the remaining patients as CL/P.

The high rates of familial occurrences, recurrence risks, and elevated concor-
dance rates in monozygotic twins provide evidence for a strong genetic com-
ponent in nonsyndromic CL/P. The disorder has a complex inheritance pattern
with no clear mode of inheritance and reduced penetrance, with a positive
family history for clefting in approximately one third of patients. A sibling risk
ratio of approximately 40 has been reported, and there is a 2-5% increased risk
for offspring of affected individuals. Concordance in monozygotic twins ranges
between 40% and 60%, but it is only 5% in dizygotic twins (Mitchell and Risch,
1992; Carinci et al., 2000; Carinci et al., 2003; Carinci et al., 2007).

The lack of total concordance in monozygotic twins suggests that genetic
factors alone do not fully account for the pathogenesis of the phenotype; this
discordance may be a result of either some degree of nonpenetrance, perhaps as
a consequence of random developmental events, or environmental influences in
utero. However, the highly increased monozygotic twin concordance does
strongly support a major genetic component to orofacial clefting (Stanier and
Moor, 2004; Mitchell and Risch, 1992).

The advent of gene targeting technology and basic conventional techniques
using animal models has led to the identification of genes associated with
known and unknown etiologic factors. Animal models, with clefts arising
spontaneously or as a result of mutagenesis experiments, provide another
exciting avenue for gene mapping. The mouse is an excellent model for
studying human clefting because the development of craniofacial structures in
these two species is remarkably similar. Whereas CP is a common phenotype in
the mouse, CL is rare (Juriloff, 2002). Conservation of genes and linkage
relationships between mice and humans is well documented, and the
chromosomal location of a gene in humans can often be predicted from its
genetic map position in mice. Development of the orofacial complex is very
similar between mouse and human embryos, and much of the understanding of
developmental mechanisms in humans has been inferred from mice (Diewert
and Wang, 1992). It has become evident that CL/P is heterogeneous, and
different chromosome regions such as 1q, 2p, 4q, 6p, 14q and 19q have been
claimed to contain a clefting locus (Marazita et al., 2004).

10.1. Syndromic forms

There are over 720 known syndromes featuring OC as cardinal symptoms, with
etiologies including single-gene defects, teratogens, chromosomal abnormalities
and those with uncertain etiology. Most orofacial clefts are believed to be
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nonsyndromic, with the rare syndromic cases resulting from factors such as
chromosomal abnormalities, characterized Mendelian single-gene syndromes
and teratogenic effects (Stanier and Moore, 2004). In approximately 35-50% of
CP and 7-15% of CL/P, other physical abnormalities are seen in the affected
individual (Gorlin and Cohen, 2001).

Table 2. Syndromic genes associated with cleft lip and palate

Syndrome Cleft Genes Reference
type
Apert syndrome CP FGFR2 Gritli-Linde, 2008; Kreiborg

and Cohen, 1992; Martelli et al.,
2008; Park et al.,1995; Wilkie et
al.,1995; Moloney et al.,1996.

Bamforth-Lazarus syndrome | CP FOXE1 Gritli-Linde, 2008; Castanet et
al., 2002; Clifton-Bligh et al.,
1998.

Branchio-oculo facial CL TFAP2A4 Gritli-Linde, 2008; Milunsky et

syndrome al., 2008.

Ectrodactyly-ectodermal CL/P; P63 Gritli-Linde, 2008; Celli et

dysplasia-cleft syndrome CP al., 1999; McGrath et al., 2001.

Fetal alcohol syndrome CL/P ADHIB Abel, 2006; Green et al., 2007;

Seki et al., 2005; Wattendorf
and Muenke, 2005.

Hereditary lymphoedema- | CP Foxc Fang et al.,2000.
distichiasis syndrome
Kallmann syndrome Cp FGFRI1 Gritli-Linde, 2008; Dode et al.,

2007; Dode et al., 2003.

Margarita Island ectodermal | CL/P PVRLI Gritli-Linde, 2008; Suzuki et al.,

dysplasia 2000.
Pierre-Robin sequence CP SOX9 Dixon et al., 2011.
Smith-Lemli-Opitz CP DHCR Gritli-Linde, 2008; Muenke,
syndrome 2002; Wassif et al., 1998.
Stickler syndrome CP ColllAl, |Dixon etal.,2011; Wilkin et
Colll42, |al.,1998.
Col241
Treacher Collins syndrome |CP TCOFI Dixon et al., 2006; Valdez et al.,
2004.
van der Woude syndrome CP; IRF 6 Gritli-Linde, 2008; Kondo et al.,
CL/P 2002.
X-linked mental retardation |CL/P; PHFS8 Dixon et al., 2011; Gritli-Linde,
with CL/P CP POBP] 2008.
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Syndrome Cleft Genes Reference
type
Crouzon syndrome CP FGFR2 Dixon et al., 2011; Wilkie et al.,
1995.
Unnamed syndrome: CL PTCH Gritli-Linde, 2008; Muenke,
Holoprosencephaly 7, a 2002; Ribeiro et al., 2006.
spectrum of forebrain and
midline anomalies
Unnamed syndrome: CP, CP SATB2 Gritli-Linde, 2008; Leoyklang et
craniofacial anomalies, al., 2007.
osteoporosis, and cognitive
defects
Unnamed syndrome: CL/P SHH Gritli-Linde, 2008; Muenke,
Holoprosencephaly, a 2002.
spectrum of anomalies
ranging from severe
(cyclopia) to subtle midline
asymmetries
Unnamed syndrome: CP TBX1 Moreno et al., 2009; Gritli-
Anomalies with most Linde, 2008; Yagi et al, 2003;
features of DiGeorge/ Cuneo, 2001.
velocardiofacial syndromes:
thymus and parathyroid
gland hypoplasia, vertebra,
facial and cardiac outflow
anomalies.
Unnamed syndrome: X- CP TBX22 Gritli-Linde, 2008; Dixon et al.,
linked CP and ankyloglossia 2011.
Loeys-Dietz syndrome CP TGF-p Gritli-Linde, 2008; Loeys et al.,
2005.

10.2. Nonsyndromic genes

Approximately 75% of CL/P and 50% of CP cases are isolated, nonsyndromic
OCs (Tolarova and Cervenka, 1998; Stoll et al., 2000).

Most studies of nonsyndromic clefts to date have focused on CL/P rather
than isolated CP. This has been biased perhaps by the larger numbers of cases,
easier ascertainment and less confusion from confounding syndromes.

Mutation screens of more than 20 CL/P candidate genes find that 2—6% of
the total number of individuals with nonsyndromic CL/P have mutations in
genes such as MSXI, FOXEI, GLI2, JAG2, LHXS, SATB2, RYKI and others
(Jezewski et al., 2003; Vieira et al., 2005b; Watanabe et al., 2006). The large
majority of individuals with CL/P (94-98%) do not have mutations in any of a
wide range of plausible candidate genes.

The role of genetic factors in determining CP is documented by recurrence
risk (Fraser, 1970) and monozygotic twin concordance (Nordstrom et al., 1996),
but thus far there is no evidence of any single gene acting as a major factor in
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the etiology of malformation. In isolated CP, a major genetic component with a
relatively small number of interacting causative loci has been suggested and the
final phenotype is the result of gene products that interact in many ways with
one another and the environment.

Table 3. Candidate genes for oral clefts (Dixon et al., 2011)

Gene | Location | Evidence | References

Confirmed

IRF6

1932

GWA,LD,L,M

Zucchero et al., 2004; Blanton et al.,
2005; Ghassibe et al., 2005; Scapoli
et al., 2005; Srichomthong et al.,
2005; Rahimov et al., 2008,;

Marazita et al., 2009; Birnbaum et al.,
2009.

8924 locus

GWA, LD

Birnbaum et al., 2009; Grant et al.,
2009; Beaty et al., 2010.

VAXI

10925

GWA, LD

Beaty et al., 2010; Mangold et al.,
2010.

Likely

ABCA4 (locus
only)

GWA

Beaty et al., 2010.

MSX1

4pl6

LD, M

Van der Boogaard et al., 2000;
Maestri et al., 1997; Mitchell et al.,
2001; Romitti et al., 1999; Jezewski,
2003; Lidral et al., 1998; Vieira et al.,
2003; Suzuki et al., 2004.

FOXEI

922

L, LD,M

Vieira et al., 2005b; Venza et al.,
2006; Moreno et al., 2009a.

FGFR2

10926

M

Riley et al., 2007; Riley and Murray,
2007; Osoegawa, 2008.

BMP4

14922923

M

Lin et al., 2008; Suzuki et al., 2009;
Jianyan et al., 2010.

17922 locus

GWA

Beaty et al., 2010; Mangold et al.,
2010.

MAFB

20q12

GWA

Beaty et al., 2010.

MYH9

20q13

LD

Birnbaum et al., 2009; Martinelli et
al., 2007; Chiquet et al., 2009;
Jiaetal., 2010.
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Gene | Location | Evidence | References

Intensively studied

MTHFR 1p36.3 LD Martinelli et al., 2001; Blanton et al.,
2000; Botto and Yang, 2000;
Jugessur et al., 2003b; Jagomégi et
al., 2010.

TGF-a 2pl3 LD Marazita and Mooney, 2004;
Mitchell, 1997; Hwang et al.,1995;
Maestri et al.,1997; Miettinen et al.,
1989; Suzuki et al., 2004; Carter et

al., 2010.

SUMO1 2q33 M Alkuraya et al., 2006; Shi et al.,
2009; Mostowska et al., 2010; Carter
etal., 2010.

PDGFC 4q32 LD, M Ding et al., 2004; Choi et al., 2009;
Jugessur et al., 2009.

FGF8 10q24 M Riley and Murray, 2007; Riley et al.,
2007.

PVRLI 11923 M, LD Avila et al., 2006; S6zen et al., 2001;
S6zen et al., 2009.

TGF-53 14q24 LD,M Miettinen et al.,1999; Maestri et

al.,1997; Hwang, 1992; Lidral et
al.,1998; Suzuki et al., 2004; Beaty et
al., 2002; Suazo et al., 2010.

CRISPLD? 16924 LD Chiquet et al., 2007; Letra et al., 2010

GSTTI 22qll LD Shi et al., 2007

GWA = genome-wide association; LD = linkage disequilibrium; L = linkage;
M = mutation detection

10.2.1. Chromosome |

10.2.1.1. IRF6 - interferon regulatory factor 6; 1q32.3—q41

IRF6 belongs to a family of nine transcription factors which regulate the
expression of interferon-alpha and interferon-beta after viral infection. Zucchero
et al. (2004) found evidence for overtransmission of several single nucleotide
polymorphisms (SNPs) in /RF6 in nonsyndromic CLP, several of which were
confirmed by others (Blanton et al., 2005; Scapoli et al., 2005; Diercks et al.,
2009; Jia et al., 2009).

Mutations in the /RF6 gene are known to be associated with van der Woude
syndrome and popliteal pterygium syndrome. Variation at the /RF6 locus is
responsible for 12% of the genetic contribution to CL/P at the population level
and triples the recurrence risk for a child with a cleft in some families
(Houdayer et al., 2001; Zucchero et al., 2004; Scapoli et al., 2005).

Although the role of IRF6 during embryonic development has been
identified, its function and regulation still remain poorly understood. /RF6
belongs to the IRF family of transcription factors. This gene encodes interferon
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regulatory factor 6, which is a key element in oral and maxillofacial develop-
ment. /RF6 is highly expressed in the leading edge ectoderm of the palatal
shelves before and during formation of the primary palate (Knight et al., 2006;
Washbourne and Cox, 2006). It has been shown that /RF6-null mice have
abnormal skin, limb, and craniofacial development (Kondo et al., 2002).

A positive association between /RF6 variants and OC has been confirmed in
multiple populations and independently replicated (Vieira et al., 2007a). Meta-
analysis of 13 genome scans confirmed that /RF6 is one of the main candidate
genes that has common polymorphic variants, which can increase the risk of
CL/P (Marazita et al., 2004).

Further functional analyses to identify downstream target genes and
interacting proteins is important to the understanding of the role of /RF6 in
palatal development, especially given (1) the overlap of IRF6 gene expression
at the medial edge of the palatal shelves immediately before and during fusion
with that of transforming growth factor beta 3 (TGF-£3) in mice, and (2) the
proposed role of the SMIR domain of /RF6 in mediating interactions between
IRFs and Smads, a family of transcription factors known to transduce 7GF-f
signals (Fitzpatrick et al., 1990; Brivanlou & Darnell, 2002).

It has been shown that integration of /RF6 and the Notch ligand Jagged2
function is essential for the control of palatal adhesion and fusion competence
via a combined role in the control of oral periderm formation and differentiation
(Richardson et al., 2009).

Van der Woude syndrome (VWS).

VWS represents the most common single-gene cause of cleft lip and cleft
palate, accounting for about 2% of all individuals with CL/P (Cohen and
Bankier, 1991; Murray et al., 1997) or roughly one in 35,000 to one in 100,000
in the European and Asian populations (Cervenka et al., 1967; Rintala and
Ranta, 1981; Burdick, 1986).

Patients with VWS have clefts of the lip and palate, missing teeth in
approximately 25% of cases, and pits in the lower lip in approximately 85% of
cases. Both cleft types, CL/P and CP only, occur in individuals with VWS in
the same proportions as in the general population, about two to one respectively
(Burdick et al., 1987). Oberoi and Vargervik (2005) suggest that individuals
with VWS are more likely to have hypoplasia of the mandible and maxilla than
isolated cases with the same cleft phenotype.

Sequence analysis of the IRF6 coding region (exons 1 through 9) detects
mutations in approximately 70% of individuals with VWS. Mutations in exons
3, 4, and 7-9 account for 80% of known VWS-causing mutations (Shutte and
Murray, 1999).

Popliteal pterygium syndrome (PPS).

Prevalence is approximately one in 300,000. The PPS phenotype includes CL/P
in approximately 91-97% of individuals; fistulae of the lower lip in 45% of
cases (Froster-Iskenius, 1990); webbing of the skin extending from the ischial
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tuberosities to the heels, bifid scrotum and cryptorchidism in males, hypoplasia
of the labia majora in females, syndactyly of fingers and/or toes, and anomalies
of the skin around the nails (Rintala and Lahti, 1970).

Most missense mutations that cause PPS are located in /RF6 exon 4. It
appears likely that certain mutations (R84H, R84C) are more apt to cause PPS
than VWS. A cluster of missense mutations in the DNA-binding domain are
more commonly seen in families with PPS. However, families may include
individuals with features of only VWS, and other members with the additional
features of PPS.

10.2.1.2. MTHFR - methylenetetrahydrofolate reductase; 1p36.3

MTHFR is an important enzyme in folate metabolism. The MTHFR gene en-
codes an enzyme called methylenetetrahydrofolate reductase. This enzyme
plays a role in processing amino acids, the building blocks of proteins.
Methylenetetrahydrofolate reductase is important for a chemical reaction
involving forms of the vitamin folate (also called folic acid or vitamin B9).
Specifically, this enzyme converts 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate. This reaction is required for the multistep process that
converts the amino acid homocysteine to another amino acid, methionine. The
body uses methionine to make proteins and other important compounds.

In 1998, Shaw reported an association between CL/P and genetic variation at
the MTHFR locus. Since that initial report, there have been a number of studies
reporting the association between CL/P and MTHFR variant (Mills et al., 1999;
Martinelli et al., 2001). The gene encoding the MTHFR enzyme is known to
have at least two functional polymorphisms: 677 C>T (rs1801133, c.665C>T, p.
Ala222Val) and 1298 A>C (rs1801131, ¢.1286A>C, p. Glu429Ala). The
homozygous MTHFR 677TT genotype results in a thermolabile enzyme with
reduced activity (Molloy et al., 1997). A second polymorphism in the MTHFR
gene, an A-to-C substitution at nucleotide 1298, also results in decreased
MTHFR activity but is not associated with higher homocysteine or lower
plasma folate levels (Van der Put, 1998). Animal studies suggest that a
decreased conversion of homocysteine to methionine could be a crucial step in
causing neural tube defects. It has been shown that rat embryos in culture
require methionine for neural tube closure (Mills et al., 1996). Several case-
control studies have attempted to implicate this polymorphism in clefting
etiology but results have not been encouraging. Associations have only been
found in small studies (Shaw et al., 1998; Gaspar et al., 1999).
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10.2.2. Chromosome 2

10.2.2.1. TGF-a - Transforming growth factor alpha; 2p|3

Transforming growth factors (TGFs) are biologically active polypeptides that
reversibly confer the transformed phenotype on cultured cells.

The TGF-a receptor is identical to the epidermal growth factor (EGF)
receptor. TGF-a shows about 40% sequence homology with EGF and competes
with EGF for binding to the EGF receptor, stimulating its phosphorylation and
producing a mitogenic response.

The biological activities of 7TGF-a resemble those of EGF since both factors
bind to the same receptor. Some biological activities of TGF-o are, however,
stronger than those of EGF. TGF-a is thought to be the fetal form of EGF. The
physiological role of TGF-a is probably the control of epidermal development
during development and differentiation of the cells (Ardinger et al., 1989).
TGF-o also affects bone formation and remodelling by inhibition of the
synthesis of collagen and release of calcium. These effects are more pronounced
than those of EGF. TGF-a also promotes the generation of osteoblast-like cells
in long-term bone marrow cultures.

The first study showing association of TGF-a with CL/P was by Ardinger in
1989, and many additional studies have replicated this finding (Marazita and
Mooney, 2004; Mitchell, 1997; Hwang et al., 1995; Maestri et al.,1997;
Miettinen et al., 1989; Suzuki et al., 2004; Carter et al., 2010). However, other
studies have not been able to replicate this finding by either linkage or
association (Jugessur et al., 2003a; Passos-Bueno, 2004). A study combining 13
linkage scan studies (Marazita et al., 2004), revealed positive results, cor-
roborating the hypothesis that 7GF-o is a modifier rather than being necessary
or sufficient to cause clefting.

Chromosomal abnormalities involving only duplication of chromosome 2q
are rare. Duplication within the long arm of chromosome 2 may cause CPO and
Pierre Robin sequence (Ounap et a., 2005).

10.2.3. Chromosome 4
10.2.3.1. MSXI — msh homeobox; 4p16.3—p16.1

MSX genes are homeobox-containing genes homologous to the Drosophila msh
gene (Hill et al., 1989). MSX proteins function as transcriptional repressors in
cellular differentiation (Catron et al., 1996) and interact with other protein
factors to modulate differentiation and proliferation (Zhang et al., 1997).
Embryonic expression patterns of MSX genes are consistent with the role of
Msx proteins in epithelial-mesenchymal tissue interactions during craniofacial
development (Hill et al., 1989). The role of Msx proteins in active morpho-
genesis is suggested by the lack of Msx/ expression in cells undergoing
terminal differentiation (Woloshin et al., 1995) and by restricted cellular
expression of Msx/ transcript during periods of rapid cellular proliferation
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(Simon et al., 1995). Point mutations in MSXI appear to contribute to
approximately 2% of all CL/P cases (Jezewski et al., 2003). Msx/-deficient
mice develop craniofacial abnormalities of the nasal, frontal, and parietal bones,
as well as CP. The occurrence of CP in Msx/ knockout mice aided the
identification of a MSX/ mutation cosegregating with tooth agenesis, CL/P and
CP (van den Boogaard et al., 2000). It has been proposed that CP in MsxI
knockout mice is due to insufficient palatal mesenchyme (Ferguson, 1994).
Also, rare human mutations have been observed in MSX/ that are associated
with tooth agenesis (Vastardis et al., 1996), with and without CL/P (van den
Boogaard et al., 2000). Association and linkage studies further support a role
for MSXI in different populations.

10.2.4. Chromosome 6

10.2.4.1. EDNI - endothelin-1; 6p24.1

The protein encoded by this gene is proteolytically processed to release a
secreted peptide termed endothelin-1. This peptide is a potent vasoconstrictor
and is produced by vascular endothelial cells. EDNI also can affect the central
nervous system.

Endothelin receptors are widely expressed in all tissues, which is consistent
with their physiological role as vasoactive peptides. They are also localized to
non-vascular structures including epithelial cells, glia and neurons. The
principle physiological role of endothelin receptors is the maintenance of
vascular tone.

Knockout mice of EDNI, which is homologous to EDNI mapping to the
chromosomal region 6p23 in humans, shows craniofacial abnormalities
including cleft palate (Kurihara et al., 1994). Pezzetti et al. (2000) examined the
endothelin gene and three other genes in the endothelin pathway (ECE],
EDNRA, EDNRB) as possible candidates for orofacial cleft. Linkage results
indicated that none of these genes is involved in the pathogenesis of OC. Most
of the studies have excluded the possibility that the EDNI pathway plays a
major role in the etiology of nonsyndromic CL/P in humans (Scapoli et al.,
2002), but several studies have shown some evidence of CL/P locus on the
6p23-25 regions. Linkage has been found with EDN/ and AP2 genes, and
balanced translocations and deletions in this region associated with a cleft
phenotype have been reported (Moreno et al., 2004).

10.2.5. Chromosome 9
10.2.5.1. FOXEI - forkhead box El (thyroid transcription factor 2); 922

Mutations in FOXE! are associated with congenital hypothyroidism, thyroid
agenesis and CP in humans (Bamford-Lazarus syndrome, MIM 241850) and
mice (De Felice et al., 1998; Dathan et al., 2002). The forkhead gene family
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(FOX), originally identified in Drosophila, encodes transcription factors with a
conserved 100-amino acid DNA-binding motif called the ‘forkhead domain’
and regulates diverse developmental processes in eukaryotes. Rare missense
mutations in FOXEI have been associated with isolated clefting (Vieira et al.,
2005b; Venza et al., 2006).

The study by Marazita et al. (2009) showed the strongest associations with
families in which one or more affected family members had CL/P, and little or
no evidence of association in families with CL alone or CP alone. In a cohort of
CL/P families from Colombia, the United States, and the Philippines, Moreno et
al. (2009a) tested 397 SNPs spanning 9q22-q33 for association. Significant SNP
and haplotype association signals narrowed the interval to a 200-kb region
containing FOXE1, C9orf156, and HEMGN. Association results were replicated
in CL/P families of European descent; when all populations were combined, the
two most associated SNPs, rs3758249 (P = 5.01E") and rs4460498 (P =
6.51E "), were located inside a 70-kb linkage disequilibrium block containing
FOXE]. Isolated cleft palate was also associated, indicating that FOXEI may
play a role in two phenotypes thought to be genetically distinct.

The involvement of FOXE! during primary palatogenesis is supported by
the previously uncharacterized epithelial expression in the medial nasal and
maxillary processes that will undergo fusion (Marazita et al., 2009).

10.2.6. Chromosome |4
10.2.6.1. TGF-B3 - transforming growth factor, beta 3; 14q24

Transforming growth factor betas (7GF-f) mediate many cell-cell interactions
that occur during embryonic development. TGF-f exists in at least five
isoforms, known as TGF-f1, TGF-p2, TGF-f3, TGF-p4, TGF-f5, that are not
related to TGF-alpha. Their amino acid sequences display homologies on the
order of 70-80%. A Tgf-$3 knockout mouse with defective palatogenesis was
present by Kaartinen (1995). Proetzel et al. (1995) produced Tgf-f-null mice in
which exon 6 of the TGF-f3 gene was replaced by the neomycin-resistance
gene. Whereas heterozygotes had no apparent phenotypic change, homozygotes
had an incompletely penetrant failure of the palatal shelves to fuse, leading to
CP. The defect appeared to result from impaired adhesion of the apposing
medial edge epithelial of the palatal shelves and subsequent elimination of the
midline epithelial seam. Subsequent human studies have yielded both positive
and negative results (Marazita and Mooney, 2004).

10.2.6.2. JAG2 - Protein jagged-2 precursor; 14q32

The Notch family of receptors are important signalling molecules regulating
cell fate during development. Jagged 1 and Jagged 2 proteins play a role in
craniofacial and limb development. Targeted deletion of the JAG2 exons
encoding the DSL domain results in craniofacial defects and perinatal lethality
in mice (Jiang et al., 1998). Jag2 is expressed throughout the oral epithelium
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and is required for Notchl activation during oral periderm differentiation. The
mutant homozygotes exhibited CP and fusion of the tongue with the palatal
shelves. Jag2 mutant mice have CP mainly due to failure of the palatal shelves
to elevate and fuse.

Richardson et al. (2009) showed that Irf6 /Jag2 doubly heterozygous mice
displayed fully penetrant intraoral epithelial adhesions, resulting in CP. There
was no evidence of direct interaction between Irf6 and Jag?2, suggesting that the
mechanism underlying the genetic interaction between Irf6 and Jag2 is the
consequence of their combined effects on periderm formation, maintenance, and
function.

10.2.7. Chromosome 17
10.2.7.1. RARA - retinoic acid receptor, alpha; 17q21

The RARA gene was first reported by Bale et al. (1988). Mattei et al. (1991)
mapped the RARA genes in humans, mice, and rats, thereby extending the
homologies among human chromosome 17, mouse chromosome 11, and rat
chromosome 10. Juriloff and Mah (1995) studied A/WySn-strain mice with a
high birth prevalence of CL/P, an animal model with a similarly complex
genetic basis. They mapped a major CL/P-causing gene, clf1, to chromosome
11 to a region having linkage homology with humans.

Retinoic acid has a well-established role during development, and members
of the retinoic acid receptor family mediate its activity. Transgenic and
knockout mice studies have shown that these genes are important for facial
development (Lohnes et al., 1994). Various human studies have reported both
positive and negative results near the RARA gene. Chenevix-Trench et al.
(1992) first reported a significant difference in the frequency of alleles at the
RARA locus between nonsyndromic CL/P patients and unrelated controls.
Vintiner et al. (1993) investigated a group of British CL/P samples and found
no association or linkage between RARA and the traits. Shaw et al. (1993)
performed linkage analyses on 14 Indian families in West Bengal, India. They
also reported no linkage between nonsyndromic OC and RARA.

10.2.8. Chromosome 19

10.2.8.1. PVRL2 - Poliovirus receptor-related 2 (herpes virus entry mediator B);
19q13.2

PVRL?2 is a transmembrane glycoprotein that belongs to the poliovirus receptor
family. Mutations in a related protein, PVRLI, are known to cause the
autosomal recessive Margarita Island clefting syndrome (Suzuki et al., 2000).
This gene encodes a single-pass type I membrane glycoprotein with two Ig-
like C2-type domains and an Ig-like V-type domain. This protein is one of the
plasma membrane components of adherent junctions. It also serves as an entry
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for certain mutant strains of herpes simplex virus and pseudorabies virus, and it
is involved in cell-to-cell spreading of these viruses. Variations in this gene
have been associated with differences in the severity of multiple sclerosis.
Alternate transcriptional splice variants, encoding different isoforms, have been
characterized (Suzuki et al., 2000).

10.2.8.2. BCL3 - B-cell CLL/lymphoma 3; 19q13.1-ql13.2

BCL3 is a protooncogen that is involved in cell proliferation, differentiation and
apoptosis. Previous evidence has implicated the role of the BCL3 gene in the
etiology of nonsyndromic clefting. Several studies have observed an association
between BCL3 alleles and OC, and the association has been suggested to be due
to either an allele of low penetrance or BCL3 acting as a modifier locus (Maestri
et al., 1997; Gaspar et al., 2002).

10.2.9. Chromosome X
10.2.9.1. TBX22 - T-box 22 T-box transcription factor; Xq2l.1

This gene is a member of a phylogenetically conserved family of genes that
share a common DNA-binding domain, the T-box. T-box genes encode
transcription factors involved in the regulation of developmental processes.
Braybrook et al. (2001) identified six different mutations, including missense,
splice site, and nonsense, in the TBX22 gene in families segregating X-linked
disorder cleft palate with ankyloglossia (CPX), and it is believed to play a major
role in human palatogenesis.

Marcano et al. (2004) analysed the TBX22 gene in a large sample of patients
with CP with no preselection for inheritance or ankyloglossia. They found
TBX22 coding mutations in 5 of 200 patients in North American and Brazilian
cohorts, with an additional four putative splice site mutations. They also
identified mutations in previously unreported CPX families and presented a
combined genotype/phenotype analysis of previously reported familial cases.
Males frequently exhibited CP and ankyloglossia together (78%), as did a
smaller percentage of carrier females. Mutations within families could result in
either CP only, ankyloglossia only, or both, indicating that these defects are
distinct parts of the phenotypic spectrum.

Andreou et al. (2007) suggested that small ubiquitin-related modifier
(SUMO) modification may represent a common pathway that regulates normal
craniofacial development and is involved in the pathogenesis of orofacial
clefting. He found that TBX2?2 is a target for SUMO]I and that this modification
is required for TBX22 repressor activity. SUMOI haploinsufficiency leads to
OC (Alkuraya, 2006). Although the site of SUMO attachment at lysine-63 is
upstream of the T-box domain, loss of SUMO! modification is consistently
found in all pathogenic X-linked CP missense mutations. This implies a general
mechanism linking the loss of SUMO conjugation to the loss of TBX22
function.
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AIMS OF THE STUDY

. To evaluate the occurrence rate of OC, on the basis of records of patients
treated in the Department of Oral and Maxillofacial Surgery of the Tartu
University Hospital, during the period of 1910-2000.

. To determine the rate of occurrence between different cleft types on the
basis of gender and location.

. To record the epidemiological factors which may influence the development
of OC, and to evaluate their occurrence regularities.

. To investigate the possible contribution of recognized candidate genes in the
development of nonsyndromic OC in an Estonian population and in the
Baltic region (Estonia, Latvia, Lithuania).
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MATERIALS AND METHODS
|. Study population

For the purpose of the study I (Ref. I), data was collected from the preserved
database in the Department of Oral and Maxillofacial Surgery at the Stoma-
tology Clinic of Tartu University Hospital. The preserved patient records were
available for the years 1910 to 2000. During this period of time, a total of 585
health files of patients with OC had been preserved. In 583 cases, the patient’s
gender was known (this information was missing in two files).

Table 4. Overview of the cohorts and genetic markers used in the present study

Ref. Sample Cleft sample Controls Sample Candidate | Geno-
number size origin genes typed
SNPs
I 583! CLP 245 - Estonia - -
F=251 |CP227
M=332 |CL 111
I [358 153! 205% Estonia CLP 18 176
F=79; M=74 CP 40
CL/P 100
CP 53
m  [710 104123 606> Estonia, 40 591
F=60 Estonia 205 Latvia,
M=44 Latvia 182 Lithuania
Lithuania 219
F=338
M=268
IV [906 300723 606™>° Estonia, 40 587
CL 66 Estonia 205* Latvia,
CL/P 234 Latvia 182° Lithuania
Estonia 100" Lithuania 219°
Latvia 108> F=338
Lithuania 92° | M=268

Patients were recruited from surgical clinics in Estonia (North Estonia Medical
Centre, Tallinn, and Tartu University Hospital).

Patients were collected at the Riga Cleft Lip and Palate Centre, Institute of Stoma-
tology, Riga Stradins University.

Patients were collected at the Center for Medical Genetics, Vilnius University Hos-
pital Santariskiy Klinikos in collaboration with the largest orthodontic clinics in
Lithuania.

Unaffected unrelated individuals without a family history of clefting, collected as
randomly selected population-based controls from a Biobank of the Estonian
Genome Center, University of Tartu.

Controls selected from the Latvian Biomedical Research and Study Center within
the framework of the national project “Genome Database of Latvian Population”.
Control sample of Lithuania consists of unrelated individuals who were recruited
from six different ethnolinguistic groups (i.e., East Aukstaiciai, West Aukstaiciai,
South Aukstai¢iai, West Zemaiciai, South Zemaiciai and North Zemaiéiai) with an
equal male-to-female ratio.
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All probands from the Lithuanian and Latvian sample from candidate gene
studies (Ref. III and IV) were identified by an experienced clinical geneticist for
congenital anomalies or major developmental delays. In the Estonian sample
(Ref. I, II, III and IV) diagnostic information from clinical geneticists was
available in patient medical records. Patients with confirmed monogenic
syndrome or chromosomal aberrations, associated malformations and mental
retardation were excluded from the study.

Ethical approval for the study was obtained from the Ethics Review Com-
mittee on Human Research of the University of Tartu, the central Medical
Ethics Committee of Latvia, and the Lithuanian Bioethics Committee. All indi-
viduals signed an informed consent form for participation in the study. In the
case of patients who were underl8 years of age, consent was obtained from
their parent.

2. Methods
2.1. Genes and SNP selection

We selected candidate genes on the basis of previously published findings from
association and linkage studies of Caucasian origin on nonsyndromic OC, gene
expression patterns during craniofacial development, gene-knockout data from
animal studies, genes that underlie Mendelian syndromic forms of clefting, and
studies of chromosomal rearrangements associated with cleft phenotypes in
humans. Selected SNPs were selected to capture all the SNPs with minor allele
frequencies >0.05 and *>0.8 in the regions of interest based on the HapMap
Phase II data, using HapMap CEU as a reference population. Multiple SNPs
were selected for each gene, including 10-20 kb of both upstream and down-
stream genomic sequences. A list of selected genes in different studies and the
number of genotyped SNPs per gene are shown in Table 5.

Table 5. Candidate genes and loci included in the study

Gene Chromosome Study II Study 111 Study IV
Genotyped Genotyped Genotyped

SNPs SNPs SNPs

MTHFR 1p36.3 11 9 8
LHXS 1p31.1 9 9 9
COLI11A1 1p21 - 42 42
SKI 1q22-q24 20 19 19
IRF6 1932.3-g41 11 10 10
TGF-o 2p13 - 36 35
FNI 2q34 - 27 27
MSX1 4pl6.3-ple6.1 15 15 15
FGF2 4q26-q27 18 18
FGFI 5931 - 31 31
MSX2 5934-935 6 6 6
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Gene Chromosome Study II Study 111 Study IV
Genotyped Genotyped Genotyped
SNPs SNPs SNPs
EDNI 6p24.1 15 15 15
COL1142 6p21.3 - 19 19
FGFRI 8pll1.2-pll.1 - 11 11
FOXE] 9922 4 4 4
TBX10 11q13.2 10 10 10
MMP3 11q22.3 5 5
MMPI3 11q22.3 - 19 19
PVRLI 11923.3 18 17 17
COL241 12q13.11 - 32 32
SPRY2 13q31.1 3 - -
BMP4 14q22-q23 - 4 4
TGF-p3 14q24 8 8 8
JAG?2 14q32 11 11 11
MMP25 16p13.3 - 6 6
MMP?2 16q13-q21 - 20 20
CDHI 16¢22.1 - 13 13
RARA 17921 5 4 4
WNT3 17q21 - 16 16
WNT9B 17q21 - 11 11
TIMP?2 17q25 - 25 25
‘OFCI1’ 18q21° — 25 25
BCL3 19q13.1-q13.2 4 3 2
PVRL2 19q13.2 13 12 12
CLPTMI | 19q13.2-q13.3 8 7 7
BMP2 20p12 - 25 25
MMP9 20q11.2-q13.1 - 6 5
TIMP3 22q12.3 - 36 36
TBX22 Xg21.1 5 5 5

*includes SMAD2 and SMAD4 genes
® includes APOC2 gene

A sample of peripheral venous blood was taken from all participants, for DNA
extraction. Genomic DNA was extracted from EDTA-preserved blood accor-
ding to standard high-salt extraction (Estonian sample) or phenol-chloroform
methods (Latvian and Lithuanian samples). SNP genotyping was performed
using an arrayed primer extension-based genotyping method (APEX-2). This
method allows multiplex DNA amplification and detection of SNPs, and muta-
tions on microarrays via four-colour single-base primer extension (Krjutskov et

al., 2008).

2.2. Genotyping
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3. Statistical analysis

Descriptive statistics were performed using the Statistical Package for the So-
cial Sciences (SPSS) version 14.0 software package. All markers were assessed
for Hardy—Weinberg equilibrium in controls and affected individuals using a
Pearson’s chi-square test with one degree of freedom. The alleles at each
marker were tested for association, twice: first, only individuals with CL/P were
compared with controls; and, second, only individuals with CP were compared
with controls. Allelic odds ratios (ORs) and 95% confidence intervals (CIs)
were estimated using the standard chi-square test, assuming a multiplicative
model. The level of statistical significance was set at o = 0.05 for nominal
association without correction for multiple comparisons because of the
exploratory character of this study. Haplotype-phenotype association tests were
performed using the standard chi-square test. Statistical analyses were con-
ducted using PLINK 1.06 software (Purcell et al., 2007).
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RESULTS

|I. Overview of Estonian OC patients
l.1. Study group outline

During the period 1910-2000, a total of 585 health files of patients with OCs
had been preserved. In 583 cases, the patient’s gender was known (this
information was missing in two files); there were 333 boys (57.1%) and 250
girls (42.9%) (Figure 6).

Figure 6. Gender of the patients

Forty two percent of clefts were CLP, 19% were CL and 39% were CP (Figure
7). One of the findings of the study, was that there was a high occurrence rate of
CP: CL (19%), CLP (42%), CP (39%) — a ratio of 1:2:2.

Figure 7. Occurrence of different cleft types

45



The most common cleft type was incomplete cleft palate (30% of patients with
clefts), the least frequent was bilateral cleft lip (3.8%). The most common cleft
type for boys was left-side CLP (13.8%) and the most common for girls was CP
(17.8%). The least frequently occurring cleft was bilateral CL: boys (2.6%) and
girls (1.2%) (Figure 8). The left side of the face was affected 2.2 times more
frequently than the right side.
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Figure 8. The most common cleft types according to gender and facial involvement.

1.2. Epidemiological factors

Four hundred and eighty-eight patients with clefts also had their birthweight
marked on their patient records. Of these, 2.6% were born prematurely. The
average birthweight of children with clefts was 3416 grams (boys 3447 g, girls
3376 g), and 6.8% had a birthweight of less than 2500 g. Half of the children
had developmental anomalies.

In terms of age, 28.4% of mothers and 37.7% of fathers were older than 30
years; both parents were older than 30 years in 21.9% of cases; 2.6% of mothers
were older than 40 years; and 53% of subjects were between the ages of 20 and
30.
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Epidemiological factors which affected the mother in the first trimester of

pregnancy (Figure 9) included:
* Physical factors — 5.8% had physical traumas, 12.9% did heavy physical
labour and 45% underwent medical abortions before the pregnancy.

* Chemical factors — 6.7% had toxicosis during the first trimester, 5.2% had
hormonal dysbalance, 5.2% had exposure to chemicals.

* Biological factors — 9.8% had a common cold, 4% had gynaecological
disorders.

* Psychological factors — 36 % reported stress or fright.

Physical factors
Chemical factors
Medications
Biological factors
Psychological factors

Inheritance

One of the parents <30 years

0% 10% 20% 30% 40% 50% 60% 70%

Figure 9. Epidemiological factors which affected the mother in the first trimester of
pregnancy

2. Genes contributing to the risk
of nonsyndromic CL/P in Estonia

We genotyped 176 tag SNPs in 18 candidate genes in 100 CL/P patients and
205 unrelated controls from the Estonian population. The overall call rate was
99.62%. There was no significant deviation from the Hardy-Weinberg
equilibrium for any of the genotyped SNPs.

Table 6 presents all markers with allelic association test P-values of <0.05 in
the CL/P case-control sample. Twenty-six polymorphisms in 10 genes, and 9
out of 26 SNPs, displayed nominal evidence of association with the CL/P
phenotype.
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The most significant association with CL/P was found for SNP rs6446693,
which is located ~6 kb upstream of the muscle segment homeobox 1 (MSXT)
gene, and this association remained statistically significant after correcting for
multiple testing. The T allele was associated with significantly higher risk
(OR = 1.934; 95% CI = 1.366-2.738; P = 1.82 x 10™*). The SNP 151907998,
located ~5 kb upstream of MSXI, was significantly associated with CL/P under
the assumption of the dominant model of inheritance (P = 8.53 x 10™).

Other markers with interesting P-values in the CL/P dataset included the
MTHFR, SKI, MSX1, and PVRL?2 loci (Table 6). Among markers in or near the
MTHFR and SKI genes, a variant allele had a protective effect, whereas the
variant alleles of the MSX/ and PVRL2 markers were associated with an in-
creased risk.

There was no evidence of a sex-specific component in the association be-
tween CL/P and the nine markers with the best P-values. The genotype dis-
tributions in male and female cases were similar for these SNPs (Armitage’s
trend test P > 0.05).

Haplotype analysis

Haplotype analysis was performed only with the CL/P dataset (cases plus
controls, N = 305). Case-control analysis was performed as single haplotype
comparisons for haplotypes constructed from SNPs within linkage disequilib-
rium (LD) blocks identified in the MSXI, MTHFR, IRF6, BCL3, TGF-53,
PVRL2, EDNI, JAG2, and TBX10 genes.

Table 7. Haplotype-phenotype association analysis of the MTHFR gene

SNP1 | SNP2 | SNP3 | SNP4 | SNP5 Frequency
Haplo- o Cases Controls P

type = o R & a

<t — [ (= \O

O — < O [

o~ (=] N <t on

< © o) ® ~

% % % A %

— — — — —
H1 C T A T G 0.639 0.531 0.0114
H1 * T A T G 0.660 0.541 0.0053
H1 * N A T G 0.660 0.544 0.0063
H2 T G G C * 0.215 0.324 0.0053
H1 C T A * * 0.659 0.536 0.0038
H2 T G G * * 0.214 0.326 0.0044
H1 * T A T * 0.660 0.541 0.0053
H2 * G G C * 0.235 0.342 0.0069
Hl * * * T G 0.680 0.567 0.0072
H1 C T * * * 0.730 0.629 0.0133
H2 T G * * * 0.215 0.331 0.0030
H1 * N A T * 0.660 0.544 0.0063
H2 * * G C * 0.300 0.424 0.0030
Hl * T A * * 0.680 0.546 0.0016
H2 * G G * * 0.250 0.352 0.0106
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SNP1 | SNP2 SNP3 SNP4 | SNP5 Frequency
Haplo- o Cases Controls P

type e - & 5 @

<t — [ (= \O

\O — <t O (e

o~ [} (= <t o

< 0 N 0 ~

» = a A a

— —~ - — -~
H1 C * A * * 0.658 0.537 0.0045
H2 T * G * * 0.213 0.327 0.0036
H1 C * * T * 0.659 0.554 0.0136
H2 T * * C * 0.214 0.330 0.0029
H1 * T * T * 0.664 0.553 0.0089
H2 * G * C * 0.234 0.346 0.0048

Table 7 presents the results from haplotype-based association analysis within an
LD block at the MTHFR locus for all possible 2- to 5-SNP haplotypes with a
frequency of > 5% among CL/P patients and with a P-value of < 0.01. The best
results, with P < 0.01, for common (frequency > 5%) 2- to 4-SNP haplotypes in
other candidate loci are presented in Table 8.

Table 8. Most significant results from haplotype-phenotype association analysis of
studied genes

Frequency
Haplotype | SNP SNP SNP SNP Cases | Controls | P
BCL3
rs17728272 | rs4803750 | rs8100239 | rs8103315
H3 C A T A 0.188 | 0.109 0.0071
H3 C * T A 0.188 | 0.109 0.0071
MSX1
rs6446693 | rs1907998
H1 C A 0.444 | 0590 | 7X10°*
H2 T G 0.431 | 0.308 0.0026
EDNI
rs4714384 | rs9471438
HI1 T T 0.496 | 0.598 0.0179
H2 C C 0.388 | 0.278 0.0062
JAG2
rs2056860 | rs1022431
H3 T A 0.125 | 0.061 0.0069
PVRL2
rs519113 | 152075642
H2 G G 0.178 | 0.270 0.0125
H3 C A 0.228 | 0.138 0.0054
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The most significant associations with CL/P in the MTHFR gene were found for
common core (H1) haplotypes such as SNP 1-2-3 CTA (P = 0.0038), SNP 2-3
TA (P =0.0016), and SNP 1-3 CA (P = 0.0045), which were all associated with
a higher risk of CL/P. The second most frequent (H2) haplotypes, such as SNP
1-2-3 TGG (P = 0.0044), SNP 1-2 TG (P = 0.0030), SNP 3-4 GC (P = 0.0030),
SNP 1-3 TG (P = 0.0036), and SNP 1-4 TC (P = 0.0029), were associated with
a lower risk of CL/P. The strongest signals of haplotype-phenotype association
in other candidate loci were found for MSX7 H2 TG (P = 0.0026), PVRL2 H3
CA (P =0.0054), BCL3 H3 CATA (P = 0.0071), EDNI H2 CC (P = 0.0062),
and J4G2 H3 TA (P = 0.0069) haplotypes, which were associated with a higher
risk of CL/P, whereas the MSXI H1 CA haplotype (with the lowest P-value of
7 x 107", was associated with a lower risk of CL/P. The P-values obtained from
haplotype-based association analysis performed with markers in MTHFR,
BCL3, EDNI, and JAG2 were lower than analyses using individual SNPs.

3. Genes contributing to the risk
of nonsyndromic CP in Estonia

We genotyped 630 tag SNPs in 40 candidate genes related to orofacial clefting
in 53 patients with nonsyndromic CP and 205 unrelated controls from the
Estonian population. Table 9 presents all markers with allelic association test P-
values of < 0.05 in the CP case-control sample.

In the case-control analysis of the CP phenotype, 37 polymorphisms in 19
genes displayed nominal evidence of association in our study sample.

The most significant association with CP in the Estonian sample was found
for SNP rs11624283 (P = 0.0016) in the JAG2 gene, SNPs rs615098 (P =
0.0018) and 1629946 (P = 0.0027) in the MMP3 gene, and rs328149 in the
LOXHD] gene within ‘OFC11’ linkage region on Chr 18 (P = 0.0026). More
SNPs of possible interest, rs1106514 in the MSX! and rs33992 in the FGFI
gene, were identified.
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4. Genes contributing to the risk
of nonsyndromic CL/P in Baltic countries

Five hundred and eighty-seven tag SNPs in 40 candidate loci related to
orofacial clefting were genotyped in 300 CL/P patients and 606 unrelated
healthy controls from Estonian, Latvian, and Lithuanian populations. The
average genotype call rate for these SNPs was 99.1%. Genotype distributions
among the study groups were in a Hardy-Weinberg equilibrium. The genomic
control inflation factor (Agc) was 1.008 for the entire dataset.

All markers with allelic association test P-values below 0.05 (before
correction for multiple testing) in the CL/P case-control sample are presented in
Table 10. Thirty-three polymorphisms in 16 genes reached the nominal signi-
ficance level. The strongest association with CL/P was found for SNP rs34010,
which is located in intron 2 of the fibroblast growth factor 1 (FGFI) gene,
where the T allele was associated with a decreased risk (OR = 0.689; 95% CI =
0.559-0.849; P = 4.56 x 10™*). The WNT9B 1s4968282 minor allele G and the
FOXEI 157860144 minor allele A were both associated with decreased risk of
CL/P (OR = 0.688; 95% CI = 0.548-0.865; P = 0.0013; and OR = 0.723, 95%
CI = 0.589-0.889, P = 0.0021; respectively). Association with rs34010 did
withstand correction for multiple testing after dividing by the number of
independent SNPs, taken to be equal to the number of haploblocks (N = 82)
within candidate genes (P, = 0.037) assuming that SNPs in one haploblock are
not independent. The SNPs rs1907998 and rs6446693, both located 5° of MSX1,
were associated with CL/P under the assumption of the dominant model of
inheritance (P =3.97 x 10 and 5.84 x 107, respectively). Ten markers reached
the 1% significance level, revealing FOXEI, TIMP2, PVRL2, and MMPI13
genes as additional loci of interest (Table 10).

Stratification of our case-control sample according to sex showed no
evidence for a sex-specific component in the association between CL/P and the
10 markers with the strongest association signals (P < 0.01). The genotype
distributions in male and female cases were similar for these SNPs (P > 0.05).
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Haplotype analysis

LD and haplotype analysis were performed with the whole dataset (CL/P
patients and controls, N = 906). Eighty-two haplotype blocks were described in
selected regions. Case-control analysis was performed for haplotypes
constructed from SNPs within LD blocks, and the sliding-window approach
was applied. Two haplotypes in FGFI reached P<0.001, and several haplotypes
in seven genes — FOXE1, FGF1, PVRL2, WNT9B, LHXS8, MMP9, and TIMP2 —
showed 0.001<P<0.01.

Table 11. Case-control association analysis of haplotypes in FGFI, FOXE!I and TIMP2
genes

Haplo- Frequency
type SNP 1 SNP 2 SNP 3 SNP 4 Cases | Controls P
FGF1
1rs34002 15250092 1s34010 15250103
H2 T G T A 0.288 0.349 |0.00921
H1 T G T * 0.308 0.391 5.42x107
H4 T G G * 0.173 0.121 0.00274
H2 * G T A 0.288 0.349 ]0.00914
H2 * G T * 0.309 0.393 |5.01x10*
H2 * * T A 0.287 0.349  10.00794
FOXE1
rs10984009 | 1s973473 | rs874004 | rs7860144
H1 G G G G 0.515 0.442  10.00402
H2 G T C A 0.263 0.332  10.00303
H1 G G G * 0.510 0.437 ]0.00318
H2 G T C * 0.261 0.330  10.00286
H1 * G G G 0.508 0.438  0.00495
H2 * T C A 0.263 0.328  10.00468
H1 G G * * 0.688 0.605 {0.00101
H2 G T * * 0.259 0.330 |0.00311
H1 * G G * 0.509 0.438 |0.00421
H2 * T C * 0.263 0.329  10.00414
H1 * * G G 0.508 0.437 10.00472
H2 * * C A 0.323 0.402  10.00120
TIMP2
rs4789936 | 1s7211674 | 1s7502916 | rs6501266
H1 C A A T 0.407 0.478 10.00518
H1 C A A * 0.402 0.480 ]0.00168
H1 * A A T 0.409 0.474 10.00886
H1 * * A T 0.425 0.496 ]0.00436
H2 * * C C 0.481 0.415 ]0.00892

*Likelihood ratio test for SNP1-3 sliding-window block haplotype effect: = 16.47
(3 df); P=0.0009

® Likelihood ratio test for SNP1-3 sliding-window block haplotype effect: x*= 14.55
(3 df); P=0.0022

¢ Likelihood ratio test for SNP1-3 sliding-window block haplotype effect: y*= 13.69
(5 df); P=0.018
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Table 11 presents the results from haplotype-based association analysis within
LD blocks identified at the FGFI, FOXEI, and TIMP2 loci for sliding windows
of 2- to 4-SNP haplotypes with a frequency of >5% in CL/P patients and with

P<0.01.

Table 12. Case-control association analysis of haplotypes in four candidate genes

Frequency
Haplotype SNP 1 SNP 2 SNP 3 Cases | Controls P
WNT9B
rs17603901 | rs4968282 | rs1105127
H1 C A * 0.776 0.705 0.00134"
H2 * G G 0.223 0.294 0.00155
MMP9
rs13038175 | rs6094237 | rs17576
H2 G A A 0.451 0.387 0.00969
PVRL?2
rs519113 | 152075642 *
H3 G G * 0.188 0.251 0.00260
LHXS
rs17565565 | rs6593568 *
HI C A * 0.077 0.046 0.00610

“Likelihood ratio test for SNP1-2 sliding-window block haplotype effect: x* = 11.55
(2 df); P=0.0031

Table 12 shows the results from haplotype-phenotype association analysis for
common haplotypes with P < 0.01 in the WNT9B, PVRL2, LHXS, and MMP9
genes.

The most significant associations with CL/P were found for the second most
frequent haplotype rs250092/rs34010 GT and the most frequent haplotype
1s34002/rs250092/rs34010 TGT in the FGFI gene (P =5.01 x 10™*and 5.42 x
107, respectively). Additionally, several common core haplotypes (H1) in
FOXE] were associated with a higher risk of CL/P, whereas the most frequent
haplotypes in TIMP2 were associated with a lower risk of CL/P. The lowest P-
values were revealed for common core haplotypes GG in FOXE!I (P = 0.00101)
and CAA in TIMP2 (P = 0.00168), and for the second most frequent (H2)
haplotype CA in FOXE1 (P =0.00120).

The strongest signals of association in other candidate genes were found for
WNT9B CA (P =0.00134) and LHXS CA (P = 0.00610) haplotypes, which were
associated with an increased risk of CL/P. The WNT9B GG (P = 0.00155) and
PVRL2 GG (P = 0.00260) haplotypes were associated with a decreased risk of
CL/P.
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5. Genes contributing to the risk
of nonsyndromic CP in Baltic countries

We genotyped 591 tag SNPs in 40 candidate genes related to orofacial clefting
in 104 patients with nonsyndromic CP and 606 unrelated controls from
Estonian, Latvian and Lithuanian populations. The average genotype call rate
for these SNPs was 99.25%. Genotype distributions among study groups were
consistent with Hardy-Weinberg equilibrium.

Table 13 presents all markers having allelic association test P-values below
0.05 (before correction for multiple testing) in the CP case-control sample.
Thirty-five polymorphisms in 17 genes displayed nominal evidence of asso-
ciation with the CP phenotype in our study sample, and 10 out of 35 SNPs had
P-values less than 0.01.

The most significant association with CP was found for SNP rs17389541,
which is located ~8 kb upstream of the interferon regulatory factor 6 (IRF6)
gene, where the T allele was associated with higher risk (OR = 1.726; 95% CI =
1.263-2.358; P = 5.45 x 10™). This SNP was significantly associated with CP
under the assumption of the recessive model of inheritance (P = 9.87 x 10°°),
and association remained significant after correcting for multiple testing.

The A allele of the SNP rs1793949, located in an intron 44 of the collagen
type 2 alpha 1 (COL2AI) gene, was associated with higher risk of CP (OR =
1.596; 95% CI = 1.235-2.229; P = 7.26 x 10™*). Other markers of interest
included the FGF2, MSXI, FGFRI, WNT3, and TIMP3 loci (Table 13). In the
case of the MSXI, FGFRI, WNT3, and TIMP3 markers, a variant allele was
associated with a risk effect, whereas the variant allele of the FGF2 SNP had a
protective effect.

There was no evidence of a sex-specific component in the association
between CL/P and the nine markers with the best P-values. The genotype
distributions in male and female cases were similar for these SNPs (Armitage’s
trend test P > 0.05).
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Haplotype analysis

LD and haplotype analysis were performed with the whole dataset (CP cases
and controls, N = 710). Case-control analysis was performed for haplotypes
constructed from SNPs within LD blocks identified in the IRF6, COL2AI,
COLI11A2, MSXI, CLPTMI, BMP2, WNT3, MMP2, FGFI, FGF2, FGFRI,
EDNI, JAG2, PVRL2, SKI, TIMP2, and TIMP3 genes. The sliding-window
approach was applied.

Table 14 presents the results from haplotype-based association analysis
within LD blocks identified at the COLI1A42 and COL2A1 loci for multiple 2-
to 5-SNP haplotypes with a frequency of >5% in nonsyndromic CP patients and
with P < 0.01. The results from haplotype-phenotype association analysis for
common haplotypes with P < 0.01 in the CLPTM1, BMP2, WNT3, MMP?2,
FGFRI, and MSX1 genes are presented in Table 15.

The most significant association with nonsyndromic CP was found for the
second most frequent haplotype rs17389541/rs9430018 GT in the /RF6 gene
(with frequencies of 0.353 in nonsyndromic CP cases and 0.233 in controls,
respectively; P = 223 x 107*). Additionally, multiple haplotypes in the
COL1142 and COL2AI genes were associated with a higher risk of non-
syndromic CP. The lowest P-values in individual LD blocks were revealed for
common core haplotypes CAA in COL2A41 block 2 (P =5.76 x 10*) and GC in
COLI1A42 block 2 (P = 9.85 x 107", and for the second most frequent (H2)
haplotype GC in COL2A1 block 3 (P = 3.68 x 10™*). The most frequent (H1)
haplotypes in COL2A1 block 3, such as GG (P = 0.0047) and GGA (P =
0.0058), and haplotype CG in COL2A1 block 2 (P = 0.0062) were associated
with a lower risk of nonsyndromic CP.

The strongest signals of haplotype-phenotype association in other candidate
loci were found for WNT3 H2 TGA (P = 0.0035) and CLPTM1 H2 TTC (P =
0.0045) haplotypes, which were associated with a higher risk of CP, whereas
the FGFR1 H3 CGG haplotype (P = 0.0040) was associated with a lower risk of
CP. The P-values obtained from haplotype-based association analyses per-
formed with IRF6, COL1142, COL2A1, CLPTM1, WNT3, BMP2, and MMP?2
markers were lower than analyses using individual SNPs.
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Table 15. Haplotype-phenotype association analysis in six candidate genes

Haplotype SNP 1 SNP 2 SNP 3 Casi rsecll“égzrols P
CLPTMI
155127 1510413089 | 153760629
H2 T T C 0301 | 0212 |0.0045
WNT3
15199497 15199496 | rs11658976
H2 T G A 0443 | 0339 |0.0035
1511653738 | rs3933652 | rs3933653
H2 C C C 0407 | 0314 |0.0087
BMP2
157270163 | rs1005464 | 1235770
H4 G G C 0.084 | 0.152 |0.0094
MMP2
15837533 1837535 | rs12924764
H2 A A A 0318 | 0232 |0.0072
TIMP3
H2 T A G 0413 | 0317 |0.0065
H2 T A * 0412 | 0317 |0.0077
FGFRI
157012413 | rs6996321 | rs7829058
H3 C G G 0.156 | 0249 |0.0040
HI c * G 0517 | 0.616 |0.0073
H3 C * C 0.157 | 0.095 |0.0072
MSX1
11106514 | rs12501827 | rs12498543
HI G C * 0.563 | 0.656 |0.0092
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DISCUSSION
I. Surveillance system

In Estonia, patients with clefts are treated at the Tartu University Hospital and
in the North Estonian Medical Centre. There is no exclusive database for
Estonian patients with clefts and therefore it is not possible to include all of the
cleft cases in the study. Registration and classification of congenital anomalies
in general, and common OCs in particular, is of paramount importance in
providing a solid basis for epidemiologic, clinical, and/or fundamental research.

2. Prevalence

For Estonia, we can use only the prevalence findings by Lovi-Kalnin (1996),
conducted between 1970 and 1980. On the basis of the Lovi-Kalnin study
(1996), the rate of occurrence of clefts in Estonia would be 1 case per 777 live
births. Therefore, the only way to estimate the number of children affected by
clefts is to use the pre-existing information from previous visits to maxillofacial
surgeons. Today the occurrence rate of OC is under observation and we cannot
report the prevalence of OC in Estonia.

Different ethnic groups have different occurrence rates of different cleft ty-
pes. Geographical trends for CL/P and other congenital anomalies have been re-
ported in many different studies (EUROCAT http:// www.eurocat.ulster.ac.uk/
pubdata/Publications.html and IBCDMS http://www.icbd.org/). The ethnic
differences in facial shape are well recognized (Farkas et al., 2005). It has been
suggested that liability to cleft might be related to facial shape (Pashayan and
Fraser, 1971; Fraser, 1976) on the basis that parents of children with CL/P have
greater bizygomatic width, underdeveloped maxilla and a thinner upper lip than
the general population. Unfortunately, good studies comparing cephalometric
measures among the European populations are lacking. Facial shape seems to
reflect climate (Harvati and Weaver, 2006). Weninger (1979) found, in two
quite different geographical regions (Mozambique and Hierro, Canaries), that
the maximum head breadth was larger in localities at a higher altitude or/and
with a colder climate, than in localities with milder climates.

The differences in cleft prevalence may be related to sun exposure, and
studies based on latitude (Grant, 2008; Holick, 2008; Grant and Mohr, 2009)
can explain the role of solar UVB and dictary factors in the etiology of
malformations (Calzolari et al., 2007). The study by Engstrom (1982) shows
that craniofacial morphology in the rat is influenced by low calcium and low
vitamin D. Calzolari et al. (2007) found a positive correlation between isolated
CL/P prevalence and latitude, from south to north in Europe.
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3. Cleft proportion

In the present study, CL formed 19% of all clefts, CLP formed 42%, and CP
39%. Fogh-Andersen (1942) was the first to emphasize the proportions of
occurrence of different cleft types in the Caucasian race: CL: CLP: CP — 1:2:1.
The prevalence of CP varies significantly in Europe, not only between registries
but also within countries (Calzolari et al., 2007). A recent study from The
Netherlands by Luijsterburg and Vermeij-Keers (2011) reported the following
cleft proportions: CL (28%): CLP (39%): CP (33%). One of the findings of the
present study was a high occurrence rate of CP: CL (19%): CLP (42%): CP
(39%) — 1:2:2, which is similar to the studies conducted in Finland and Sweden
(Rintala, 1986; Hagberg et al., 1998). The reasons for this finding need further
research. Different ethnic groups have different occurrence proportions of
different cleft types, and the proportion of isolated CP in general is significantly
smaller than the total number of clefts (Natsume and Kawai, 1986).

Across all unilateral CLP and CL, the left side of the face is involved in 2/3
of cases (Wyszynski et al., 1996; Fraser, 1970). According to the present study,
the left side of the face was affected 2.2 times more frequently than the right
side. No definite explanation for the difference in left- and right-side occur-
rences is given in the literature. Johnston and Brown (1980) have suggested that
blood vessels supplying the right side of the fetal head leave the aortic arch
closer to the heart and may be better perfused by blood than those on the left
side.

4. Gender ratio

Among Caucasians, men have CLP twice as frequently as women, while CP is
more common among women than men (Wyszynski et al., 1996; Calzolari et
al., 2007). It also became evident in the present study that significantly more
boys were born with CLP (the ratio with girls is 2:1), and girls had CP 1.5 times
more frequently than boys. Boys also have more severe diagnoses — there are
more CLP patients than CL patients and there are also more bilateral than unila-
teral cases (Fraser, 1970). According to this study, boys have CLP 2.2 times
more frequently than CL, but there are fewer bilateral cases than left-side cases.
There is no definite scientific explanation for the differences in clefts, between
sexes. One reason given is that the development of clefts occurs at different
stages of development in male and female fetuses in the critical stage (Burdi
and Silvery, 1969), but there is no justification for this claim.

5. Birthweight

Several studies have shown that the birthweight of children with clefts is similar
to the birthweight of children without clefts (Conway, 1966), which was also
confirmed by the present study. But the majority of studies demonstrated that
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children with CLP presented smaller body dimensions when compared with
controls (Marques, 2009; Luijsterburg and Vermeij-Keers, 2011).

6. Parents’ age

During the last 20 years, maternal and paternal ages have increased. Some
malformations are clearly associated with older maternal age, but the effect of
paternal older age is less certain. Increased maternal age is a risk factor for both
chromosomal (Hook, 1981) and non-chromosomal abnormalities (Hollier et al.,
2000).

In the case of Estonian children with clefts, the mother’s age exceeded 30
years in 25% of cases and the father’s age exceeded 30 years in 33% of cases.
Both parents were older than 30 years in 20% of cases. Half of the mothers
were between the age of 20 and 30, and 2.6% were older than 40 years.

An association between advanced maternal age and the occurrence of any
type of OC has been found in several studies (Saxen, 1974; Womersly and
Stone, 1987; Shaw et al., 1991), but not in all studies (Khoury et al., 1983; Baird
et al., 1994; Vieira et al., 2002; Gonzalez et al., 2008). In this study, no maternal
age effect could be observed. Only a few population-based studies were
conducted according to the recommendations of the International Consortium
for Oral Clefts Genetics (Mitchell et al., 2002), distinguishing between CL/P
and CP only, and excluding cases with associated anomalies. A study by Bille
et al. (2005), using the population-based Danish Facial Cleft Database, found
that the influence of maternal and paternal ages on the risk of CL/P increases
with the advancing age of the other parent, and that the influence vanishes if the
other parent is young. In contrast, the risk of having a child with CP is
influenced only by the father’s age, not the mother’s age (Bille et al., 2005).
Ascertaining whether greater parental age is associated with OC is not only of
interest for clarifying the etiology of OC, but is also important from a biological
and public-health point of view.

1. Specific exposures

In the present data, over a third of mothers of children with clefts (36%) expe-
rienced psychological stress during pregnancy. The main stressors described
were problems in the family. However, stress is an important factor in the
occurrence of clefts (Fraser, 1970). One fifth of mothers did hard physical work
during pregnancy (field work, stock raising) or experienced physical trauma
(struck by an animal, domestic violence). Forty five percent of mothers had
previously undergone at least one medical abortion and 23% had undergone
more than one. One third of mothers (34%) had an exposure to some chemical
factor: one fifth (22%) had been exposed to teratogenic toxic substances
(fertilizers, various chemicals, medications), 15% had hormonal disorders

68



during pregnancy (toxicosis during the first trimester or diseases such as
diabetes or thyreotoxicosis).

There is little information regarding the temporal sequence between expo-
sure and the outcome of the environmental risk factors, and a dose-response
relationship cannot be demonstrated. Not enough information is available to
draw any conclusions about the role of these exposures and the risk of oral cleft
formation. Many risk factors and mechanisms have been described in the
literature for OC (Wyszynski and Beaty, 1996).

8. Candidate gene studies

Candidate gene-based association studies have emerged as a useful tool in the
investigation of the genetic component of multifactorial diseases, such as CL/P,
as a way to focus on certain regions of interest in the human genome.

Some authors have argued that population-based case-control designs in
which candidate genes are used are more suitable than a case-parent design in
assessing the effects of risk factors — a crucial step in disease prevention and
health promotion (Khoury, 1999). However, family-based studies may still be
useful if population stratification is present. The case-parent trio design avoids
concerns about spurious results due to population stratification within the
sample, primarily because the observed case is always compared with ethnically
matched ‘pseudocontrols’ (parents) (Beaty et al., 2002).

Results from genome scans suggest that several regions may contain genes
predisposing to the development of nonsyndromic clefts. On the basis of
multiple reports on the association between markers and haplotypes in various
genes and OC, we analyzed the role of 18 candidate genes in the Estonian
sample for a possible association with CL/P, and 26 SNPs in 9 genes showed
nominal P-values less than 0.05. The most significant associations with CL/P
were found for SNPs in MSX1, MTHFR, and PVRL?2, including several common
haplotypes in the MTHFR and MSXI genes. The association with SNP
rs6446693 in the MSXI gene region remained statistically significant after
correcting for multiple testing.

In the Estonian CP sample, we conducted a study to investigate the role of
40 candidate genes in predisposition to nonsyndromic CP. Six hundred and
thirty tag SNPs were genotyped in a sample of 53 CP patients and 205 controls.
The strongest associations with nonsyndromic CP were found for JAG2,
MMP3, FGFI, MSXI and in the LOXHDI gene within the ‘OFC11’ linkage
region on chromosome 18.

Considering the small sample size of our patient group, we must emphasize
that our study carries the risk of false-positive findings as a result of the large
number of comparisons performed. Conversely, we cannot exclude the possi-
bility that a modest effect of polymorphisms or haplotypes in disease predis-
position may become apparent in a larger sample.
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In a follow-up study including neighbouring populations, we genotyped 587
tag SNPs in 40 candidate gene regions, to determine their role in the etiology of
CL/P. We genotyped 591 tag SNPs in 40 candidate genes related to orofacial
clefting in 104 patients with nonsyndromic CP and 606 unrelated controls in a
new clefting sample representing three populations from the Baltic region —
Estonians, Latvians and Lithuanians. As they share the same geographic origin,
the genetic relatedness of Estonians, Latvians and Lithuanians has been recently
confirmed using the principal component analysis, according to the pairwise
inflation factor A and pairwise Fst values between samples (Nelis et al., 2009).
We found no evidence of systematic bias due to population stratification as
indicated by the genomic control inflation factor (Agc~1) and the quantile-
quantile plots which confirmed the high degree of homogeneity between all
three population samples, allowing us to summarize the data of three Baltic
countries to increase the study power.

Results from this association analysis suggest that several regions may
contain genes predisposing to the development of CL/P. Among the 40
candidate genes analyzed for an association with CL/P, 33 SNPs in 16 genes
reached the 5% significance level. The most significant associations were found
for SNPs in the FGFI, FOXEI and WNTYB genes. The strongest evidence of
association was found for SNP rs34010 in the FGFI gene.

Among the 40 candidate genes analyzed for a possible association with
nonsyndromic CP, 35 SNPs in 17 genes showed nominal P-values less than
0.05. The strongest evidence of association was found for SNPs rs17389541 in
the IRF6 gene and 1s1793949 in COL2AI. These associations were not
significant after Bonferroni correction, but remained significant after correction
by the number of genes evaluated.

8.1. MTHFR

Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme
involved in folate metabolism. Many studies have been undertaken to verify the
association between two functional polymorphisms in the MTHFR gene —
677 C>T (rs1801133, c.665C>T, p. Ala222Val) and 1298 A>C (rs1801131,
c.1286A>C, p. Glu429Ala) — and increased risk of CL/P malformation.
However, these studies have provided inconsistent results due to differences in
the studied populations as a result of their diverse genetic backgrounds and
exposure to varying environmental factors. It has been proposed that low
periconceptional folate intake increases the risk of CL/P in offspring, and this
risk is even more pronounced in mothers with MTHFR 677TT or 1298CC
genotypes (van Rooij et al., 2003).

In our study, the MTHFR SNPs rs1994798, rs1476413, and rs1801131 (1298
A>C; ¢.1286A>C, p. Glu429Ala ), together with multiple risk and protective
haplotypes within the same LD block, showed evidence of association with
CL/P in the Estonian study sample. It has been suggested that rs1801131 is not
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directly connected to the risk of developing CL/P, but this may be due to near
complete LD between 1298 A>C (rs1801131, c.1286A>C, p. Glu429Ala) and
677 C>T (rs1801133, c.665C>T, p. Ala222Val) or disequilibrium with another
mutation responsible for the malformation (Pezzetti et al., 2004). Confirmation
of an association or linkage between 1298 A>C (rs1801131, c.1286A>C, p.
Glu429Ala) and CL/P risk, either separately or in combination with 677 C>T
(rs1801133, c.665C>T, p. Ala222Val), has not been found (Beaty et al., 2002;
van Rooij et al.,, 2003). An association between 1298 A>C (rs1801131,
c.1286A>C, p. Glu429Ala) and CP cases or mothers was not found in a
previous study (Jugessur et al., 2003b). Likewise, the 1298 A>C (rs1801131,
c.1286A>C, p. Glu429Ala) variant was not found to be a risk factor for CL/P or
CP (Mills et al.,, 2008). In conclusion, it appears likely that 1298 A>C
(rs1801131, c.1286A>C, p. Glud429Ala) and the two other described poly-
morphisms are not independent risk factors for CL/P, but our data does not
exclude a possible involvement of the folate pathway in the development of
CL/P.

8.2. MSXI

MSX1 has been a plausible candidate gene for clefting. The complete se-
quencing of the MSXI] gene demonstrated that point mutations in this gene
appear to contribute to approximately 2% of all CL/P cases (Jezewski et al.,
2003). Association studies of CL/P (Lidral et al, 1998; Beaty et al., 2002;
Vieira et al., 2003; Fallin et al., 2003) and CP (Lidral et al., 1998) have
supported a role for MSX! in nonsyndromic clefting in different populations. In
the Estonian sample from our study, the most significant association with CL/P
among all screened candidate genes was found for SNP rs6446693 in the MSX1
region. The same SNP was associated with CL/P in the Baltic sample. In the
Estonian and Baltic CP samples, SNP rs1106514 in the MSXI/ gene was
associated with nonsyndromic CP. Case-control studies have reported both
positive (Lidral et al., 1998; van den Boogaard et al., 2000; Blanco et al., 2001)
as well as negative results. Research data have supported interaction between
environmental factors and MSXI. The risk of CL/P and CP, related to maternal
cigarette smoking and alcohol consumption during pregnancy, increases due to
the interaction of such exposure and specific allelic variants at the MSX/ gene
(Romitti et al., 1999). Taken together with several other SNPs and haplotypes
demonstrating an association with CL/P and CP, it can be concluded that we
have successfully replicated previous findings, showing an association between
MSX]I variants and CL/P and CP.

8.3. OFC3 (locus 19q13)

Multiple lines of evidence support the role of one or more genes in the OFC3
region (Chromosome19q13) in clefting. PVRL2, located on 19q13, has recently
been added to the list of candidate genes hypothesized to play a role in the
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etiology of CL/P (Lidral and Murray, 2004). Recent data suggest that both rare
and common variants in PVRLI, closely related to PVRL2, make a minor
contribution to nonsyndromic CL/P in multiple populations (Avila et al., 2006;
Scapoli et al., 2006). An association study involving five populations did not
find an association between CL/P and mutations in the PVRL2 gene. However,
a significant association with an allelic variant in PVR, a gene homologous to
PVRL2, was found (Warrington et al., 2006). In the same study, 16 PVRL2
variants — 5 common and 11 rare — were identified in cleft patients. We found
an association between SNPs rs 519113 and rs2075642 in PVRL2 and CL/P.

BCL3, a proto-oncogene that encodes a transcription factor involved in cell
cycle regulation, has been suggested as a candidate gene for CL/P (Gaspar et
al., 2002; Park et al., 2009). The BCL3 gene has been associated with OC in
some association studies (Gaspar et al., 2002; Park et al., 2009), but not others
(Fujita et al., 2004; Suazo et al., 2005). A possible reason for these conflicting
results is that the susceptibility loci may have different contributions in different
populations.

We described associations between CL/P and BCL3 markers and haplotypes
in the Estonian sample, including SNP rs8100239, for which excess maternal
transmission has been previously reported in CL/P cases, probably reflecting an
imprinting effect or a maternal genotype effect (Park et al., 2009).

A study of a multiplex family in which CL/P segregated with a balanced
translocation between 2q11.2 and 19q13.3 suggested that the cleft lip and palate
transmembrane 1 (CLPTM]I) gene, localized to this breakpoint, might play a
role in clefting (Yoshiura et al., 1998). Our independent sample showed evi-
dence of association, suggesting the involvement of CLPTM1 in nonsyndromic
CP etiology. In addition, further evidence that the 19q13 region contributes to
isolated clefting in heterogeneous populations of European descent has been
found (Warrington et al., 2006).

Our work provides further evidence that a 19q13 locus contributes to
nonsyndromic clefting in heterogeneous populations of European descent. A
previous meta-analysis of 13 genome scans, combining datasets from multiple
populations in a linkage analysis to detect candidate loci for CL/P, suggested a
role for 19q13 in clefting, supporting our current findings (Marazita et al,
2004).

8.4. EDNI

Our study is the first to demonstrate an association between endothelin 1
(EDNI) gene variants and haplotypes and CL/P. EDNI maps to the chromo-
somal region of the OFC1 locus (chromosome 6p24-p23) and has been
suggested as a candidate gene for CL/P on the basis of the results of linkage
studies conducted in populations of different ancestries (Moreno et al., 2004).

Mostly borderline significant association signals combined with evidence
presented from epistasis analysis suggest that gene-gene interaction(s) could be
a possible mechanism for how EDNI exerts its effect as a locus contributing to
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CL/P. Four SNPs from the Estonian CL/P sample (rs6912834, rs4714384,
rs6906760, 1s9471438), and rs16872612 from the Baltic sample, showed
associations with CL/P.

There is no information how EDNI may influence the development of OC.
As EDNI is involved in neural crest development this may be the pathway that
plays some role; or gene-gene interaction(s) could be a possible mechanism for
how EDNI exerts its effect as a locus contributing to CL/P.

8.5. JAG2

The JAG2 gene encodes a ligand for the Notch family of transmembrane
receptors, which are involved in an essential signalling mechanism required for
normal palate development (Casey et al, 2006). In recent family-based
association studies, evidence for J4G2 involvement in CL/P was obtained from
haplotype analyses using global tests and single haplotype association tests
(Vieira et al., 2005; Scapoli et al., 2008). Interestingly, the most significant data
in both studies were obtained with haplotypes that include the nonsynonymous
polymorphism, rs1057744. Recently, it has been demonstrated that /RF6 and
Jagged2 function in convergent molecular pathways during oral epithelial
differentiation and that this integrated signalling is essential for the control of
palatal adhesion and fusion competence (Richardson et al., 2009).

In our study, we found evidence of an allelic association between rs1022431
and CL/P, where allele A was associated with a higher risk of CL/P. This was
supported by analysis of haplotypes including this polymorphism. Among all
candidate genes screened in this study, the most significant association
observed within the Estonian CP sample (P = 0.0016) was for rs11624283 in
the JAG2 gene, and the most significant association observed in the Baltic CP
sample (P = 0.0318) was for rs10134946. These results indicate that JAG2
variants may be involved in the etiology of OC in different populations.

8.6. IRF6

IRF6 is one of the CL/P candidate genes with the most accordant results across
studies (Vieira, 2008). The most common syndromic form of orofacial clefts is
Van der Woude syndrome (VWS), an autosomal dominant disorder charac-
terized by the presence of CL/P or CP and/or lower-lip pits. VWS is caused by
mutations in the /RF6 gene, which belongs to a family of transcription factors
that share a highly conserved winged-helix DNA-binding domain and a less
conserved protein interaction domain (Kondo et al., 2002). IRF6 is expressed in
the medial edge epithelia of the palatal shelves immediately prior to and during
fusion (Knight et al., 2006). Interestingly, VWS is an example of an orofacial
syndrome in which cases of CP and CL/P can occur in the same pedigree,
suggesting that /RF'6 is probably involved in the fusion process that occurs in
both primary and secondary palatogenesis. However, /[RF6 mutations are rare in
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families with nonsyndromic orofacial clefts (Jehee et al., 2009). Recently, it has
been demonstrated that /RF6 is essential for oral epithelial differentiation and
that /RF6 plays a key role in the control of palatal adhesion and fusion
competence (Richardson et al., 2009). In the present study, from the Baltic CP
sample, the /RF6 SNP rs17389541 showed evidence of association, supported
by analysis of haplotypes including this polymorphism, which is a novel
implication of /RF'6 in nonsyndromic CP susceptibility. HapMap data from the
CEU reference sample indicate that rs17389541 is not in strong LD with the
common polymorphism /RF6 rs642961 (r* = 0.057) that was significantly
associated with nonsyndromic CL/P and particularly with CL in Europeans, but
not with CP (Rahimov et al., 2008). It is likely that association between
common variants in the /RF6 locus and the risk of nonsyndromic CP can be
identified in other European populations and that the /RF6 locus represents an
important genetic modifier for this multifactorial malformation.

In our Baltic CL/P sample, we could not demonstrate convincing evidence of
an association between CL/P and variants in /RF6.

8.7. FGF and FGFR

Several members of the FGF and FGFR families are expressed during cranio-
facial development and can, rarely, harbour mutations that result in human
clefting syndromes. In a study of Kallmann syndrome patients, cleft palate and
dental agenesis were exclusively found associated with FGFRI loss-of-function
mutations (Albuisson et al., 2005). Animal models also support the involvement
of FGFs and FGFRs in the pathogenesis of oral clefting; for example, FGFRI
hypomorphic mice have CP (Trokovic et al., 2003). The FGF signalling
pathway is known to play an important role in craniofacial development, and
perturbation of the FGF signal is critical to palatogenesis (Nie et al., 2006). A
systematic analysis of genes encoding different FGF proteins and their receptors
has highlighted the importance for FGF signalling in nonsyndromic CL/P, and it
was suggested that impaired FGF signalling may contribute to 3—5% of CL/P
(Riley et al., 2007). In addition, it has been suggested that FGF pathway is
involved in interactions with environmental risk factors for CL/P (Pauws and
Stanier, 2007). Recently, FGF12 haplotypes were shown to be significantly
associated with CL/P in two Scandinavian samples (Jugessur et al., 2009). In
the present study, the FGFI SNP rs34010 showed evidence of association in the
Baltic sample and FGFI SNP 1s33992 in the Estonian nonsyndromic CP
sample, which is a novel implication of FGFI in CL/P susceptibility. Our
results give additional evidence that disruptions in the FGF signalling pathway
contribute to the pathogenesis of CL/P, also suggesting that association between
common variants in the FGF1 locus and the risk of CL/P can be found in other
European populations.

We found associations between nonsyndromic CP and SNPs rs7829058 in
FGFRI in the Baltic sample and rs308434 in the FGF2 gene in the Baltic and
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Estonian samples. SNP rs08441 was associated with nonsyndromic CP in the
Estonian sample. Association with FGFRI was supported by haplotype
analysis.

Recently, borderline significant association between SNPs in several FGF/
FGFR genes (including FGFRI) and nonsyndromic CL/P was demonstrated,
and it was suggested that impaired FGF signalling may contribute to non-
syndromic CL/P (Riley et al., 2007). FGFRI encodes a transmembrane
receptor, tyrosine kinase, that transduces signals from secreted FGFs, and
insufficient FGFRI-mediated signalling during embryonic development may
have an impact on palatogenesis in humans and/or mice. It can be concluded
that disruptions in the FGF signalling pathway might contribute to non-
syndromic clefting phenotypes.

8.8. FOXEI

The forkhead box El1 gene (FOXEI) is a member of a transcription factor
family that contains a DNA-binding forkhead domain and regulates diverse
developmental processes in eukaryotes. Foxel is expressed in the secondary
palate epithelium in humans at embryonic week 11, and the specific expression
pattern of Foxel at the point of fusion between the medial nasal and maxillary
processes strongly suggests FOXE! as an important player in primary palato-
genesis (Trueba et al., 2005; Moreno et al., 2009). Twelve coding variants —
missense or silent — in FOXEI have been described as rare causes of non-
syndromic CL/P (Vieira et al., 2005). Recent studies have implicated SNPs
and/or haplotypes clustering in or near FOXE1 as highly significant risk factors
of CL/P, and the described association signals indicated the presence of causal
mutations in nearby non-coding regions that regulate FOXE! expression
(Jugessur et al., 2009; Marazita et al., 2009; Moreno et al., 2009). The three
associated SNPs from the current study’s Baltic CL/P sample — rs7860144,
rs874004 and rs973473 — are located within a 70 kb haplotype block including
SNPs 153758249 and rs4460498, which were the most significantly associated
with CL/P in multiple populations (Moreno et al., 2009). Our results support a
substantial role for FOXE! in the development of CL/P and it’s likely that the
FOXE] locus represents an important genetic modifier for this multifactorial
malformation.

8.9. Whnt signalling pathway genes

Wnt signalling pathway genes are involved in craniofacial development and
upper lip fusion and are therefore plausible candidates for an etiological role in
nonsyndromic clefting. Wnt expression is observed in the upper lip and primary
and secondary palates and Wnt signalling mediates regional specification in the
vertebrate face (Brugmann et al., 2007). In our Baltic CL/P sample, the WNT9B
SNP 154968282 showed evidence of association with CL/P. WNT9B lies ~32 kb

75



telomeric from the start codon of WNT3, which is required at the earliest stages
of human limb formation and for craniofacial morphogenesis. Furthermore,
both Wnt9b and Wnt3 are mapped in the clfI locus in clefting-susceptible mice
(Juriloff et al., 2005). The gene alterations outside the WNT9B coding sequence
are expected to cause reduced WNT9B gene or protein function in CL/P cases,
and WNT9B has been suggested as a strong candidate gene for CL/P (Juriloff et
al., 2006). The SNP rs197915 downstream of WNTYB showed association with
CL/P in the European American sample subgroup having a positive family
history, whereas the strongest association signals in the entire dataset were
reported for SNPs in WNT3A4, WNT5A, and WNTI11 (Chiquet et al., 2008). In
contrast, association with rs197915 was not replicated in the Brazilian CL/P
sample of Caucasian ancestry, whereas significant association with WNT3
rs142167 was found (Menezes et al., 2010). In our study, the WNT3 SNP
rs11653738 in the Baltic nonsyndromic CP sample and SNP rs916888 in the
Estonian nonsyndromic CP sample, showed evidence of association with
nonsyndromic CP. WNT3, a human homolog of the Drosophila wingless gene,
encodes a member of the WNT family known to play key roles in embryonic
development, and WNT3 is required at the earliest stages of human limb
formation and for craniofacial development. In a recent study, the strongest
association signals were found between SNPs and haplotypes in WNT3A4 and
nonsyndromic CL/P, as well as evidence of gene-gene interaction between
WNT3 and WNT3A4 (Chiquet et al., 2008). These findings were extended in a
Norwegian sample of nonsyndromic CP case-parent trios where a haplotype
effect was reported for the WNT3A gene (Jugessur et al., 2009).

Our data support an involvement of the WNT signalling pathway in
orofacial development, also suggesting that the 17q21 locus, containing WNT9B
and WNT3 genes, contributes to CL/P in populations of European descent.

8.10. TIMPs and MMPs

Matrix metalloproteinases (MMPs) have been shown to be expressed in the
developing secondary palate, associated with the extracellular matrix (ECM)
breakdown required for palatal fusion (Brown et al., 2002). MMPs are
counteracted by the tissue inhibitors of metalloproteinases (TIMPs), which
inhibit MMP activity and thereby reduce excessive proteolytic ECM degra-
dation (Verstappen and Von den Hoff, 2006). During embryonic craniofacial
development, MMP and TIMP expression is temporally and spatially regulated
to control tissue remodelling, and disruption of their balance can lead to
occurrence of malformations, such as CL/P (Blavier et al., 2001). In our Baltic
sample, associations with CL/P and CP were found for several SNPs and
haplotypes in TIMP2, supporting initial findings in a Norwegian sample of
CL/P case-parent trios where a haplotype effect was reported for the TIMP2
gene (Jugessur et al., 2009). Our study provides evidence of the implication of
MMP3 in the occurrence of nonsyndromic CP in the Estonian population.
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Further independent studies in other populations with a substantially larger
number of individuals should be conducted to verify and extend these results.
The inactivation of MMPs by TIMP?2 leads to a failure of palatal fusion in mice
(Blavier et al., 2001). Therefore, strict regulation of MMP activity is necessary
for a complete fusion of the palatal shelves, and an imbalance in favour of
TIMP2 may increase the risk of CP (Verstappen and Von den Hoff, 2006). The
link between CL/P risk and variants in MMP and TIMP genes seems to also
rely on alterations in ECM homeostasis and functions.

8.11. COL2AI and COLI1A2

Mutations in genes coding for cartilage collagens II and XI (COL2A41,
COLI11A1 and COLI11A2) cause syndromes that are often associated with
Pierre-Robin sequence, cleft palate or micrognathia, but it seems possible that
sequence variations in collagen II and XI genes may cause or predispose to
nonsyndromic conditions in some instances (Melkoniemi et al., 2003). A
variety of mutations in the COL2A1 gene have been identified in families with
Stickler syndrome type 1 with systemic features involving Pierre-Robin
sequence, severe myopia and/or vitreoretinal phenotype, and osteoarthritis in
later life. This study presents the first report describing associations between
nonsyndromic CP and several common SNPs, with the strongest association
signals found for the intronic SNP rs1793949. In addition, our data showed an
association between nonsyndromic CP and certain haplotypes in COLI11A42,
supporting recent findings describing the haplotype effect found for the
COLI11A42 gene in a Norwegian sample of nonsyndromic CP case-parent trios
(Jugessur et al., 2009). Moreover, one of the chromosomal regions for clefting
in mice encompasses the H2 locus, which is homologous to the human HLA
locus on 6p21, and includes susceptibility for both corticosteroid-induced and
vitamin A-enhanced CP (Murray, 1995). However, we cannot exclude the
possibility that observed associations for COLI1A42 could be explained by a
limited number of unidentified Stickler syndrome type 3 patients in the study
group. As these patients do not present ophthalmic abnormalities and the main
conclusive features could be Robin sequence, cleft palate and osteoarthritis, this
diagnosis could be frequently missed.

8.12. TBX22

Mutations in the T-box transcription factor gene 7BX22 are found in familial
and sporadic patients with X-linked cleft palate and ankyloglossia (CPX),
which is inherited as a semidominant X-linked disorder. The phenotypic va-
riability in CPX ranges from a mild submucous cleft palate to a severe, comp-
lete cleft of the secondary palate. In addition to familial CPX cases, mutations
in 7TBX22 have been identified in approximately 5-8% of all patients with
nonsyndromic CP, and TBX22 has been proposed to contribute significantly to
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the prevalence of nonsyndromic CP across different populations (Margano et
al., 2004; Suphapeetiporn et al., 2007). In a recent study, a functional haplotype
variant in the TBX22 promoter was significantly associated with CP and
ankyloglossia (CPA), but association was not significant between cleft palate
only (CPO) patients and controls (Pauws et al., 2009). Likewise, our results do
not support an involvement of common 7BX22 variants in nonsyndromic CP
predisposition. This result is not unexpected, given the heterogeneous nature of
nonsyndromic CP and its various confounding factors.

Numerous candidate gene studies have failed to identify either major gene
involvement or mutations exerting a major influence on the risk of developing
nonsyndromic OC. The failure to pinpoint the molecular events that lead to
clefting in humans most likely arises from insufficient knowledge of gene net-
works and the regulation of gene expression during palatal development. More-
over, it is becoming clear that oral clefts are caused by complex interactions
between genetic and environmental variables, which may have different impacts
in distinct populations.

As reported previously, Estonians share a relatively common genetic back-
ground with the HapMap CEU reference population and several other European
populations (Mueller et al., 2005; Montpetit et al., 2006). The genetic related-
ness of Estonians, Latvians and Lithuanians, sharing the same geographic
origin, has been recently confirmed (Nelis et al., 2009).

Recent GWA studies have reported several new susceptibility loci (2q21,
8q24.21, 10925.3, 13g31, 15913 and 17q22 ) for CL/P in populations of Euro-
pean descent (Birnbaum et al., 2009; Mangold et al., 2010). None of the 40
genes that we selected, before the era of GWA studies, for their potential
contribution in clefting lies within the abovementioned chromosomal regions,
therefore possible new candidate genes were not included in our selection and
associated SNPs in given loci were not genotyped in the overall Baltic sample.
However, in a recent independent study, the most significant SNP rs987525 at
the 8q24.21 locus was replicated in Estonian and Lithuanian CL/P samples and
association with 10g25.3 locus (rs7078160) was replicated in an Estonian
sample only (Nikopensius et al., 2009; Nikopensius et al., 2010). The SNPs in
four other loci from GWA studies were not replicated in our study.

We acknowledge that a study design based on LD between markers and
unobserved etiological variant(s) will have limited power to detect multiple rare
variants (e.g. copy number variants) that could also be functionally relevant,
and further studies are warranted to confirm reported associations. When in-
vestigating the association of single genes with the risk of a complex trait likely
to be governed by a considerable number of genes, ORs are almost always low
to moderate. This reflects that a specific phenotype results of a combination of
different genes, contributing only a small effect, and environmental factors, so
taking in consideration the epistasis and gene-environment interactions is
appropriate to explain the remaining genetic risk to be identified for the non-
syndromic forms of OCs.
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CLINICAL IMPORTANCE AND PRIMARY
PREVENTION OF OROFACIAL CLEFTS

Orofacial cleft etiology is heterogeneous. Individuals with OC may experience
problems with feeding, speaking, hearing and social integration, which can be
corrected to varying degrees by surgery, dental treatment, speech therapy and
psychosocial intervention. Identification of risk factors for OC is the first step
towards primary prevention. Large, collaborative studies are needed to elucidate
environmental and genetic risk factors for orofacial clefts and interactions
between them. The recent identification of genes that are likely to influence the
risk of nonsyndromic OC, has an impact on genetic counselling in the future
and clinical management.

The genetic mechanisms underlying lip and palate development may be due
to the disruption of important signalling pathways at various levels that are
required for the formation of specific anatomical structures. The challenge is
now to perform full-scale genome sequencing in order to identify genetic
variants which are more likely to increase the susceptibility to OC. However,
estimations of the total genetic contributions to the disease indicate that
additional genetic factors involved in OC need to be identified, and both the
functional effects of associated variants and the molecular mechanisms behind
different pathways must still be ascertained. Further research using large,
multicentre, collaborative studies is necessary to identify both genetic and
environmental risk factors related to nonsyndromic clefts.
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CONCLUSIONS

A combination of epidemiological and clinical approaches may enhance our
understanding of the cause and pathogenesis of congenital malformations and
may be useful for public health, treatment, and preventive strategies.

1.

The main conclusions of our work are as follows:

The present study is the first to present an overview of patients with clefts
treated in the Department of Oral and Maxillofacial Surgery of the Tartu
University Hospital over the course of 90 years (1910-2000). During this
period, 583 patients were recorded (251 females and 332 males; a sex ratio
of 1:1.32 respectively).

Of the 583 patients with OC, 19% had CL, 39% had CP and 42% had CLP. We
found a high occurrence rate of CP among all clefts (CL: CLP: CP — 1:2:2). The
most common OC in boys was left-side CLP; in girls it was CP. The left side of
the face was damaged 2.2 times more frequently than the right side.

. Over a third of mothers of children with OC had experienced psychological

stress during pregnancy, 45% of mothers had previously undergone at least
one medical abortion, and 20% of mothers had been exposed to teratogenic
toxic substances. The average birthweight of the children with OC was
similar to the birthweight of children without clefts. An association between
maternal age and the occurrence of OC could not be observed.

. The results of this study suggest that several genes known to be involved in

craniofacial morphogenesis and/or palatogenesis, may contribute to the

incidence of OC.

4.1. Our data provide additional confirmation for the role of MSXI and
MTHFR in the etiology of nonsyndromic CL/P in the Estonian sample.
4.2 We found new supportive evidence that the orofacial clefting locus,
OFC3 on Chr 19ql3, is probably involved in nonsyndromic CL/P
across different populations.

4.3. This study provides, for the first time, evidence of the implication of
IRF6, COL2A1, COL11A2 and WNT3 in the occurrence of nonsynd-
romic CP in north-eastern European populations (Estonians, Latvians,
Lithuanians).

4.4. We could not demonstrate convincing evidence of an association
between CL/P and /RF6, the candidate gene most consistently repli-
cated. This result could be explained by the various confounding factors
and heterogeneity among the populations.

4.5. The present study is the first to demonstrate an association between
CL/P and common SNPs and haplotypes in FGFI, and provides new
evidence that variation in the 7IMP2 and WNT9B genes contributes to
nonsyndromic CL/P.

4.6. We have successfully replicated previous findings implicating FOXE1
as a susceptibility locus for CL/P across different populations.

4.7 The results of this study underline the importance of the FGF and
Whnt signalling pathway genes in the etiology of both CL/P and CP.
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SUMMARY IN ESTONIAN

Mittesiindroomse huule- ja
suulael6he geneetilise etioloogia uuring.

Huule- ja/voi suulaelohe on iiks sagedasemaid kaasasiindinud véirarenguid,
esinemissagedusega 1/700 elussiinni kohta, sdltuvalt geograafilistest ja etnilis-
test variatsioonidest. Huule- ja suulalelohede Kkliinilisi klassifikatsioone on
erinevaid kuid {ldiselt jaotatakse I16hed kaheks suureks haigusfenotiiiibiks:
huule ja/voi suulalelohe (CL/P) ja suulaeldohe (CP). Suuldhede tekkes méngivad
olulist rolli keskonna- ja geneetilised tegurid ning elustiiliga seotud riski-
faktorid. Siindroomsete suuldhedega seostatud geenide uuringud on néidanud
nende olulisust ka mittesiindroomsete suuldhede etioloogias. Geneetiliste tegu-
rite olulisus mittesiindroomse suuldhe tekkes on kinnitust leidnud perekondade
ja kaksikute uuringutes. Kandidaatgeenide uurimisel pohinevad assotsiatsiooni-
uuringute ja aheldusanaliiiside tulemused erinevates populatsioonides on va-
rieeruvad ja vdhene kokkulangevus on pohjustatud geneetilisest heterogeen-
susest ja vdikesest uuringute voimsusest.

SuulShega siindinud lapsed vajavad ravi erinevate spetsialistide poolt ja seda
erinevates vanuseperioodided siinnist kuni tdiskasvanuks saamiseni ning tihti ka
kauem. Suuldhe diagnoos ei ole eluohtlik, kuid neil lastel on kahjustatud paljud
olulised funktsioonid nagu: imemine, kone, keskkorva ventilatsioon, kuulmine,
hingamine ning héirunud on ka néo- ja Idualuude siisteemi areng ning kasv.
Need probleemid omakorda vdivad pdhjustada emotsionaalset stressi, psithho-
loogilisi probleeme ning voivad mojutada lapse hakkama saamist koolis.
Rehabilitatsioon on voimalik hea meeskonnatdoga erinevate spetsialistide vahel
ning heas koostd0s lapse perekonnaga. Pikka aega kestev ravi on tihiskonnale
ka kulukas.

Kuna mittesiindroomsete suulGhede etioloogia on multifaktoriaalne, siis
véga tihti on raske leida tekkepohjust, ometi ennetustod ja inimeste teadlikuse
tostmine voib vdhendada Iohega siindinud laste arvu. SuulGhede riskifaktorite
teadvustamine ja kaardistamine on esimene samm ennetustods. Genotiiiibi ja
fenotiilibi uuringud vodivad tuua uusi teadmisi ldhiajal, aga selleks on vaja suuri
mitmete keskuste koostdds toimuvaid uuringuid, mis leiaksid seoseid nii
keskonnategurite kui ka geneetiliste riskifaktorite vahel.

Eestis puudub riiklik statistika suuldhedega laste siindivuse osas. Huule-
ja/vdi suulaeldhede esmased 1dikused tehakse kahes Eesti suurimas haiglas: SA
Tartu Ulikooli Kliinikumis ja Pdhja-Eesti Regionaalhaiglas. Juhul kui suuldhe-
ga lapse vanemad otsustavad poorduda mujale (vélisriiki), siis ei ole vdimalik
juhtu dokumenteerida.

Kéesoleva doktoritdo eesmargiks oli:

e Ulevaate saamine SA Tartu Uliooli Kliinikumis ravitud suuldhedest aja-
vahemikul 1910-2000 haiguslugudele tuginedes.
e Erinevate Iohetiilipide esinemise suhte mddramine soost ldhtuvalt.
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e Huule- ja suulaelohede teket pohjustavate epidemioloogiliste tegurite ja
nende esinemise seaduspdrasuste leidmine.

e Ananliiiisida kraniofatsiaalses morfogeneesis ja/vOi patogeneesis osalevate
kandidaatgeenide voimalikku seost mittestindroomse CL/P ja CP Eesti ja
Kirde-Euroopa (Eesti, Lati, Leedu) uuringurithmas.

Valitud geenidega teostati iihenukleotiidse poliimorfismi (SNP) case-control

assotsiatsioonanaliiiisid nii Eesti uuringuriihmas kui ka Eesti, Liti ja Leedu

ithendatud Kirde-Euroopa uuringuriihmas eraldi CL/P ja CP fenotiiiibiga
patsientidel.

Uurimistdo olulisemad tulemused vaib kokku votta jargmiselt:

e Ule pika aja on antud uurimustdd esimene, mille kiigus piiiidsime saada
iilevaate 90 aasta jooksul (1910-2000) Tartu Ulikooli Stomatoloogia kliini-
kus ravil olnud suul6hedega patsientidest. Siilinud oli 583 dispanseerset
kaarti (251 naist ja 332 meest).

e Viiesaja kaheksakiimmne kolmest patsiendist 19% esines CL, 39% CP ja
42% CLP. Leidsime suure isoleeritud suulaeldhede esinemissageduse (CL :
CLP : CP—1:2:2), mis on sarnane Soomes ja Rootsis tehtud uuringutega
ja mille pohjused vajavad edaspidist uurimist. Poistel esines sagedamini CLP
ja tiidrukutel CP. Vasak nédopool oli kahjustatud 2.2 korda sagedamini kui
parem pool.

e Ule 1/3 emadest kurtsid psiihholoogilist stressi raseduse ajal, 45% emadest
olid teinud vdhemalt ithe meditsiinilise abordi, 1/5 emadest olid kokku
puutunud treatogeensete vai toksiliste ainetega. Suuldhedega laste siinnikaal
ei erinenud tervete laste keskmisest stinnikaalust.

e Uurimustod tulemused niitavad et paljud kraniofatsiaalse morfogeneesi
ja/voi palatogeneesiga seostatud geenid, osalevad suuldhede kujunemisel.

o MSXI ja MTHFR geenide jérjestuse variandid on seotud mittesiindroom-
se CL/P geneetilise eelsoodumusega Eesti populatsioonis.

o Leidsime tdendeid, et OFC3 lookus, kromosoomil 19q13 on toendoliselt
seotud mittesiindroomse CL/Pga.

o IRF6, COL2A41, COL11A2 and WNT3 geenide jérjestuse variandid on
seotud mittesiindroomse CP geneetilise eelsoodumusega Kirde-Euroopa
pupulatsioonis (Eesti, Lati, Leedu).

o Antud uuringus ei leidnud kinnitust kirjanduses erinevates populat-
sioonides kodige rohkem mainitud ja CL/Pga kandidaatgeenina seostatud
IRF6 geenide jarjestuse variantide seos CL/Pga Eesti populatsioonis.
Antud leidu voib seletada geneetilise heterogeensusega.

o Antud uuring on esimene, kus me nditasime, et FGFI geeni jérjestuse
variandid on seotud mittesiindroomse CL/P geneetilise eelsoodumusega;
ning leidsime kinnitust et 7IMP2 ja WNT9B geenide jérjestuse variandid
on seotud CL/P geneetilise eelsoodumusega Kirde-Eesti populatsioonis.
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o Antud uuringu kiigus leidsime kinnitust, et teiste populatsioonide uurin-
gutest leitud FOXE geenide jérjestuse variandid on seotud CL/P genee-
tilse eelsoodumusega Kirde-Euroopa pupulatsioonis (Eesti, Liti, Leedu).

o FGF ja Wnt signaalrajad ning nendes osalevad geenid omavad olulist
rolli nii CL/P kui ka CP etioloogias.

Mittesiindroomse suulShe etioloogia kétkeb endas palju erinevaid tegureid ning
nende tegurite ja tegurite omavahelise koostoime uurimisega tegeletakse maa-
ilmas. Uuringute teostamise teeb raskeks huulelohede multifaktoriaalne taust ja
ka erinevate populatsioonide heterogeensus. Uuringud on ndidanud erinevate
kandidaatgeenide olulisust erinevates populatsioonides. Vajalik on erinevate
regioonide detailne geneetiline kaardistamine haigusseoseliste variantide
funktsionaalsete effektide kindlakstegemiseks rahvusvahelises koost60s erine-
vate uurimisrithmadega ja biopankaadega.
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