
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Ali Belakehal

Test Automation Case Study
Master’s Thesis (30 ECTS)

Supervisor(s): Dietmar Alfred Paul Kurt Pfahl

Rainer Tikk

Tartu 2017

2

Test Automation Case Study

Abstract:

Over the last two years, the testing process of one of the software development teams at

LHV bank went through several development stages. However, there hasn't been any me-

thodical approach towards validating that evolution. The aim of this thesis is to conduct an

investigation of three key periods, and measure the cost and effectiveness of the testing

process during each period. A multilevel analysis is then performed in order to identify

problematic, as well as improvement patterns, and the factors associated with them. The

analysis is concluded with setting the goal of shifting the testing process to a more automated

model. Subsequently, the remainder of the thesis undertakes the task of combining a multi-

plicity of techniques that try to make such model achievable, by automating certain aspects

of the test automation process itself. These techniques are articulated as a proposed solution,

which is then implemented and validated in the context of this thesis.

Keywords:

Test automation, acceptance testing, regression testing, Fitnesse, parsing expression gram-

mar, code generation.

CERCS: P170

Testimise automatiseerimise juhtumiuuring

Lühikokkuvõte:

Viimase kahe aasta jooksul on LHV panga ühe arendustiimi testimisprotsess läbinud mitu

parendustsüklit. Samas pole seda arengut metoodiliselt valideeritud. Selle töö eesmärk on

analüüsida kolme võtmetähtsusega perioodi ning mõõta nende testimisprotsessi maksumust

ja efektiivsust. Seejärel viiakse läbi mitmetasandiline analüüs, et tuvastada problemaatilised

ja kasulikud mustrid ning nendega seotud tegurid. Analüüsi tulemusel seatakse eesmärgiks

muuta testimisprotsess automatiseeritumaks. Sellest tulenevalt tegeleb ülejäänud lõputöö

erinevate meetodite kombineerimisega, et muuta selline lähenemine läbi testide automa-

tiseerimise protsessi teatud osade endi automatiseerimise saavutatavaks. Nendest tehnikat-

est moodustatakse pakutav lahendus, mis seejärel implementeeritakse ja selle lõputöö

kontekstis valideeritakse.

Võtmesõnad:

Testimise automatiseerimine, vastuvõtutestimine, regressioontestimine, Fitnesse, avaldi-

setuvastuse grammatika, koodi genereerimine.

CERCS: P170

3

Table of Contents

1 Introduction ... 5

1.1 Aim of the Thesis ... 5

1.2 Selected Project .. 5

2 Terms ... 7

3 Background ... 8

3.1 Fitnesse ... 8

4 Method .. 10

4.1 Data Gathering Methodology ... 10

Periods ... 10

Methodology ... 11

Reliability .. 14

5 Baseline ... 15

5.1 The Testing Process .. 16

5.2 Measurements ... 17

5.3 Problem Formulation .. 19

Benefits of Automated Testing ... 19

Problems with Automated Tests ... 20

Summary ... 21

6 Improvement proposal .. 22

6.1 Solution Outline .. 22

Replacing Manual Testing .. 22

Introducing Test Generation ... 24

6.2 Analysis .. 24

Test Types ... 25

Grammar ... 31

6.3 Solution ... 34

Fixture Generation .. 35

Test Data Generation ... 41

6.4 Validation ... 46

7 Conclusion ... 50

7.1 Summary ... 50

7.2 Goals ... 50

8 References ... 51

9 Appendix ... 52

4

9.1 Task Names Mapping ... 52

9.2 Full Parsing Grammar .. 54

Assumptions .. 54

The parsing grammar .. 54

9.3 IPM File Content Example ... 58

9.4 Generated File Example ... 60

9.5 License .. 62

5

1 Introduction

1.1 Aim of the Thesis

The lack of detailed analysis of the testing process in the project under study led to the rise

of many unchecked assumptions, and doubts about how effective test automation is, and

what could be done to improve the process. The thesis is set out to tackle two main matters

and their underlying components specified as follows:

 Firstly, to provide precise measurements of the factors related to testing, and their

respective effects. From there conclusions can be made on what the exact problems

are, and what the improvements should be. Thus, the first part of thesis will eliminate

the speculative approach, and provide well based conclusions. The sub goals are

outlined as follows:

o Measure the effectiveness and cost of current testing process.

o Pinpoint the problems with the current testing process.

 Subsequently, the thesis will then attempt to reinforce whichever behaviours that led

to improvements, and try to solve the issues that are found to be harmful towards the

progress of the testing process. A solution which incorporates these two aspects will

be explained, implemented, and finally validated to the best extent possible. The sub

goals are outlined as follows:

o Measure the effectiveness of test automation.

o Propose and implement a solution to the previously identified problems.

o Validate the elements of the solution.

In addition to eliminating the speculative approach towards developing the testing process,

and offering a solution to increase the effectiveness of said process, achieving those goals

will also make a case for testing process changes that could be adopted by other teams inside

the company.

1.2 Selected Project

The selected project for this case study is the Acquiring system at AS LHV Pank1, which

handles the card payments and the cash withdrawals that are done using LHV terminals,

ATMs, and Ecommerce portals.

This system is chosen for the following reasons:

- It’s the system with the most evolved testing process, the other systems’ testing

approaches are quite primitive.

- I am well acquainted with this system’s implementation, and the Business Model.

- I can put the collected data into context because of the history of my involvement

in the development and testing of this system.

- I have all access to test any improvements that might result or be part of the thesis.

The acquiring system (ACQ) has been under development since August 2014. It consists

of several modules that provide the following services:

- Means for merchants to receive payments by debit and credit cards, through

physical terminals or virtual Ecommerce terminals.

- Providing detailed reports about those payments for merchants.

- Communication with Mastercard, Visa, and local banks in order to process those

payments.

1 https://www.lhv.ee/en/business-client

https://www.lhv.ee/en/business-client

6

- Communication with Mastercard, Visa, and local banks in order to process ATM

transactions.

- Merchants’ management and accounting functionalities for the Back Office.

- Providing custom acquiring services for private clients with special requests, or

unconventional business models.

The project is one of the six main projects in LHV that have dedicated teams operating them.

7

2 Terms

This section has some definitions of terms that are used during the thesis, to ensure that they

mean what is expressed here and nothing else, because the reader might have a different

understanding of them.

Developer is a team member who is a Software Developer.

Tester is a team member who is a Quality Assurance Specialist, or a developer with

knowledge about testing.

Requirements (specifications) are a description of what is expected of a process, or a user

interface to achieve, given a set of conditions. Ideally, it’s a list of independent rules, and

restrictions about the input and the output of a process.

Task is an implementation of new requirements into the system, or of a modification of a

set of requirements, performed by the person assuming the developer role, within the context

of a specific task.

Epic is a set of tasks which collectively build-up to the same end goal. It can be thought of

as a sub-project.

Test case is a set of steps that are the result of an analysis of the requirements in question,

in the context of a specific task, which is performed by the person assuming the tester role.

Those steps are to ensure that the implementation of the requirements meets said require-

ments. A test case is said to have passed if the implementation meets the requirements, oth-

erwise it is said to have failed.

Requirements’ coverage is the extent to which a list of requirements is verified by a set of

test cases. It’s expressed as the ratio of the verified requirements – those covered by test

cases – over the total number of requirements, it can also be expressed as a percentage.

Manual testing is going through the test cases’ steps individually, which requires direct

interaction with the system by the tester.

Automated test is a scripted version of the test cases that can be executed, or scheduled to

execute, after which the test can be deemed as passed or failed, without the need for a manual

interaction with the system.

Regression test2 an automated tests with the purpose of ensuring that new system changes

are not conflicting existing system behaviours.

Acceptance test3 is an automated test which is created based on the requirements before a

task is released into live environment, in order to test a task, and become a regression test

after the release of the task.

Live bug is an anomaly detected in the live environment, which can be considered as a

breach of the requirements, or a deviation from them.

Hotfix are process blocking live bugs.

Cost is the number of man hours logged by a team member under an analysis, development,

or a testing activity.

2 https://en.wikipedia.org/wiki/Regression_testing
3 https://www.agilealliance.org/glossary/acceptance/

https://en.wikipedia.org/wiki/Regression_testing
https://www.agilealliance.org/glossary/acceptance/

8

3 Background

This section will give an overview of Fitnesse, from the perspective of how it is used in our

project.

3.1 Fitnesse4

Fitnesse software development tool aimed mainly at automating acceptance tests5. Fitnesse

tests are text based, written in a form that can be thought of as a more technical form of the

requirements. The text document is called a wiki page, and is a series of instructions. Those

instructions are implemented by – in the case of Java – classes and methods called fixtures.

Wiki

A series of tables of several types, their text form is delimitated by the character ‘|’, example:

| import |

| ee.lhv.acq.fitnesse.fixture |

| ee.lhv.acq.fitnesse.fixture.query |

| ee.lhv.acq.fitnesse.fixture.decision |

For readability purposes, wiki pages are edited in a browser, where a local server formats

them and provides facilities to run and debug them. Figure 0 shows how the previous text

format of the table is displayed in the browser:

For readability purposes, Fitnesse wiki examples will be shown in the HTML format in this

thesis document.

Wiki table types

Excluding the import table, we use three types of tables:

1. Script tables6: a flexible construct where every row can be implemented by a fixture

method, in the class which corresponds to the header of the table.

2. Decision tables7: takes several rows of arguments and performs an action on those

arguments and displays the result in the column with a name ending in ‘?’

3. Query tables8: executes a query, which is implemented in the fixture class corre-

sponding to its title, and displays its results in its body.

4 http://www.fitnesse.org/FrontPage
5 http://www.fitnesse.org/FitNesse.UserGuide.AcceptanceTests
6 http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.Script-

Table
7 http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.Deci-

sionTable
8 http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.Que-

ryTable

Figure 0. Formatted wiki table.

http://www.fitnesse.org/FrontPage
http://www.fitnesse.org/FitNesse.UserGuide.AcceptanceTests
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.ScriptTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.ScriptTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.DecisionTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.DecisionTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.QueryTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.QueryTable

9

The description of the tables is left vague on purpose at this point, as the usage of the tables

will become clearer with examples in Section 6.

Fixtures

These are the implementations of the instructions found in the wiki tables. For example the

script table:

| script | Journal Job Fixture |

| prepare graph for types | CALC_CLAIM_ISSUER_MASTERCARD_FEE |

Means that there’s a Java class named JournalJobFixture, which contains a method named

prepareGraphForTypes(), and which takes one argument of type “string”; prepareGraphFor-

Types(String type).

Again, this will become clearer when the grammar is discussed at length in Section 6.

10

4 Method

The case under study is the testing process of the acquiring project described earlier.

In order to reach the goals mentioned in the introduction section, I will gather data as will

be described in Sections 4.1. The measurements are then aggregated into a result that can

be analysed, and from there problems will be highlighted as part of establishing the baseline.

Using the conclusions from the previous step, an experiment will be conducted in order to

validate those conclusions as well as the newly proposed testing model. Measurements will

be taken the same way as done for the baseline, and then compared against it.

4.1 Data Gathering Methodology

The data gathered in the context of this thesis is from three distinct periods, each represents

a period of time characterized mainly by the state of the automated tests.

The data is focused on two dimensions along which conclusions can be drawn in the baseline

and improvement sections, the first is effectiveness, which is has everything that relates to

requirements coverage, and resulting live bugs. The second covers timeliness, and testing

cost.

Periods

Every period is defined by a stretch of time during which an epic, or two related epics were

developed, tested, and covered by automated tests. The three periods are consecutive and

are the most recent time sections where test automation was starting to be used. All three

periods lasted around four months – not necessarily consecutive months-, and are roughly

of the same size and complexity. The first two periods will be used as a baseline for the

current testing process, and the third period will be used as a model for the improved pro-

cess.

Period 1 (P1)

Lasted from mid-December 2015 until mid-April 2016, this period represents an early stage

of the automated testing endeavour. This period is characterized by:

- A significant deficiency in requirements’ coverage.

- The most live bugs and hotfixes.

Period 2 (P2)

Lasted from the end of April 2016 until end of August 2016, excluding most of July because

of overlapping vacation times of team members. This period is characterized by:

- A chaotic testing process, and frequent retesting.

- An average level of requirements’ coverage.

- An improved test automation level compared to the previous period.

- Less bugs and hotfixes.

Period 3 (P3)

Lasted from the end of October 2016 until the end of March 2017, with fewer team members

than in the other two periods. This period can be considered as the ideal for our testing

process, and is characterized by:

- Mature testing and test automation processes, in comparison to the other periods.

- An optimal level of testing with automated tests as opposed to manual testing.

11

- A very good requirements’ coverage percentage.

- An acceptable testing cost, given the benefits.

- Less bugs and hotfixes.

This period is distinct from the preceding ones, in the sense that due to some special cir-

cumstances within the team, I as a developer had to take a testing role, and that was the

perfect opportunity for me to conduct an experiment in the context of this thesis, which

answer the following questions:

- Q1: Can testing in our project be replaced by automated testing, in most cases at

least?

- Q2: Can the tests be structured in a way that makes it possible to generate them?

- Q3: What would be the outcome of the desired level of test automation?

- Q4: Is the desired level of test automation reasonable considering the testers’ tech-

nical skill level, if not, then would the time saved by test generation compensate it?

Note: This period is the most recent, but the developed functionality is heavily used, and by

now all the scenarios which are described by the requirements have played out in the live

environment, and it’s safe to claim that the live bugs and hotfixes count will remain as it is

henceforth.

Methodology

Task Relevance

From each period, the core tasks from the involved epics are chosen and measured for:

- Development cost

- Testing cost

- Time spent on automated tests

- Requirements’ coverage

Where a core task is characterized by:

- Being essential to the achievement of its epic’s goal, as opposed to accessory or

auxiliary. An example of such distinction would be the difference between a calcu-

lation engine and a user interface enhancement.

- Eligible to test automation, in the sense that the task is not a one time job, for exam-

ple an SQL script that performs data manipulation in a very specific context that

doesn’t reproduce (or does so rarely), rather, automated tests for this task would

serve as acceptance, or at least as regression tests for the future.

Development Cost

Includes Analysis, requirements’ adjustment, and code development and fixes. Excludes the

time taken to write automated tests.

Testing Cost

Includes both manual testing, and the time spent writing automated tests. The time spent

writing automated tests is not exact, but reliably approximate.

The inaccuracy is inevitable because the tests are written by different team members, at

different times, within different tasks, for example the positive case test is usually written

by the task developer, and logged under development time, then the task tester would add

negative cases tests, and that time would be logged under testing time. Then due to time

12

constraints the task is released to the live environment with a less then optimal requirements’

coverage by the automated tests, and the coverage is rectified within a new task.

The confidence that the approximated measured time is reliable comes from following the

git commits related to the automated tests written for a specific task, and finding consistent

patterns:

- Considering the test complexity and length, the time taken to write it by a specific

team member is consistent with the skill level of that team member, and with the

time taken to write other tests of similar length and complexity.

- Considering the skill levels within the team, the time taken to write a certain type of

automated test is consistent with the time taken for a similar skill level team member

to do a test of the same type. Where the type is dependent on the process that’s being

tested, examples are: parsing, importing files, calculation engines, crosschecks, etc.

- Considering the tool used to write an automated test, the time spent on a test for a

specific team member is consistent with times from other tests using that tool, across

tasks.

After the separate time measurements are validated along the previously mentioned patterns

or factors, they are aggregated by task, then that task is assigned a test automation time

measurement, and the development time is adjusted for those tasks where it included time

for writing automated tests.

Initial Test Automation Cost

Refers to the percentage of the testing cost that was spent on test automation just before the

development done in an epic was released into the live environment.

Final Test Automation Cost

Refers to the percentage of the testing cost that was measured just after the last automated

test related to a specific period was added. In other words, it’s the initial test automation

cost plus the cost of all the added automated tests after the epic in question was released into

the live environment. These late automated tests are added either because of live bugs dis-

covered after the release, or they couldn’t be fit into the original release cycle due to time

constraints.

Requirements’ Coverage Calculation

The coverage is a percentage that represents the ratio of those requirements that have auto-

mated tests supporting them, over the total number of requirements for a specific task.

The requirements are not always well articulated, therefore making it hard to calculate the

coverage methodically. An initial idea was to weigh the requirements by importance, but

after testing and consideration, the weights seemed arbitrary and susceptible to bias, as what

I consider important might not be what the product owner considers important. Alterna-

tively, to ensure that the requirements are covered fairly, they are reformatted into a logically

separate list of rules, where more complex or nuanced requirements would have clear and

distinct sub-rules, and thus the disambiguation of the requirements spares a needless, and

potentially corrupt weighting system.

An example of a well formatted, and logically distinct list of rules, which could be used for

coverage calculation:

1. Job runs on the second period open of the month before fee calculation jobs

13

2. The job checks that the currency rate of the last day of the month is available (for

previous month), if not, an error message will be shown

3. Revenue month range is between the second day of the previous month and the first

day of the current month

4. Reset all active or future tier based pricing contracts to no active tiers

5. Find the first terminal installation date for every merchant

6. Calculation:

1. Set previous month revenue if the first terminal installation for a merchant is

in the month before that (current month - 2 or earlier)

2. Merchant revenue is calculated as the sum of all revenue claim entries with

direction credit minus all revenue claim entries with direction debit

3. In case the revenue is null then the estimated monthly revenue will be used,

if both are null than the zero tier will be chosen

7. Set the active tier with the closest tier minimum amount value to the revenue, which

is smaller than the revenue

8. The job expects at least one merchant has a revenue claim entry in the past month,

otherwise an error message will be shown

9. The job expects the currency exchange rate to be available for every revenue claim

entry date in the past month, even EUR

The next step is to go through the contents of the set of automated tests that cover a certain

process, and determine which requirements are covered, and from there the requirement

coverage percentage results.

To continue with the same example, the following are the tests which are supposed to cover

the process which the previously mentioned requirements describe, along with the rules they

cover:

 Table 1: Requirements’ coverage calculation example

Test name Requirements covered

Calc Previous Month Revenue Multiple Currencies Success 3; 4; 5; 6.1; 6.2; 7;

Calc Previous Month Revenue No Currency Rate 2; 9

Calc Previous Month Revenue Total Negative Revenue Success 6.3

Coverage 9/11

Percentage 81%

Initial Requirements’ Coverage

The requirements’ coverage calculated at the time of putting the epic to the live environ-

ment, before any live bugs are discovered.

Final Requirements’ Coverage

The coverage calculated after the last time an automated test was added, which is usually

after most live bugs have been solved.

14

Live Bugs and Hotfixes

Linking live bugs to specific period requires analysing the effect of a bug and determining

the exact causes, the process can be summarized as follows:

1. Query from Jira9 all the live bugs which were created after day zero; day zero being

the date when the first task from P1 was released into the live environment.

2. Go through the queried list and eliminate all those bugs which were caused by tech-

nical issues, such as a misconfiguration, or performance issues, such as unoptimized

or missing database indexes.

3. Classify the live bugs into one of the three periods which define the context of this

study, and dispose of those which are linked to other periods.

4. For every period’s live bug list, eliminate those which can be traced to a fault of an

external dependency, such as faulty files, and those which can be traced to business

errors, such as the lack of requirements. What should remain at this point are only

the live bugs which can be directly traced to development errors, and were not dis-

covered due to a lack of requirements’ coverage, whether from an incomplete man-

ual testing round, or an insufficient number of automated tests.

The final step is to summarize the number of live bugs for each period.

Hotfixes are the live bugs which blocked a time-critical part of the system, required imme-

diate attention, and had negative consequences that in some cases are limited only to the

loss of development time, and in others affect the business and the product owner.

Reliability

For the sake of precision, all the measurements were taken from three iterations of the meth-

ods described above. Those results which proved consistent across iterations were kept, and

on rare instances, when an inconsistency appears, a recalculation was performed.

For verification purposes, Appendix 9.1 contains the mapping of the task codes used when

presenting the measurements to the real task codes in our task management system.

9 https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

15

5 Baseline

This chapter will first describe the current testing process in order to lay down the context.

Subsequently, the cost and efficiency measurements described in the previous chapter will

be presented. Finally, the problems with this version of the process will be discussed in

preparation for the solution chapter.

16

5.1 The Testing Process

Figure 1. The testing process.

17

The diagram in Figure 1, describes this testing process, which has been the main methodol-

ogy of testing for about two years.

Whenever a task is ready to be tested, a tester analyses the task in question, and decides

whether it’s covered by automated tests that need to be updated, or it should be manually

tested. In the latter case test cases are made based on the requirements, then the task is

manually verified based on those test cases. The task is sent back to development whenever

requirements are not met, or anomalies are detected, and after the fixes the task is manually

verified again, until all test cases pass.

Then a second round of user testing is done by the product owner to determine that the

requirements were understood correctly, and are adequate. In case they are not, they will be

adjusted, then tester analysis of the new or modified requirements and verification is done

again.

Finally, the test cases are prioritized by the tester, and as many of them are made into auto-

mated tests as time allows, before the task is deployed to the live environment.

5.2 Measurements

The following two tables show the task list of a specific period, along with the measured

attributes (development cost, testing cost, test automation cost, and requirements’ coverage).

The rows highlighted in blue are for the tasks which increased the requirements’ coverage

after the release, i.e. these tasks are excluded from the initial requirements’ coverage and

test automation cost calculations.

Task Development

cost (h)

Testing cost (h) Automated Tests’

cost(h)

Requirements’

Coverage

P1T1 40,50 34,50 3,90 15%

P1T2 14,75 14,47 4,73 70%

P1T3 48,82 37,50 4,25 15%

P1T4 40,32 45,83 13,72 66%

P1T5 13,32 7,07 3,43 70%

P1T6 5,00 18,55 3,33 50%

P1T7 3,33 3,75 1,12 40%

P1T8 7,13 6,12 1,37 10%

P1T9 0,25 5,12 0 0%

P1T10 0,33 4 0 0%

P1T11 6,33 3,38 0 0%

P1T12 5,00 2,80 0 0%

18

P1T13 0,00 10 10 100%

P1T14 0,00 26,63 26,63 100%

P1T15 0,00 36,22 36,22 100%

P1T16 6,75 5,58 2,25 75%

P1T17 19,85 16,70 3,80 40%

P1T18 15,10 37,52 1,02 10%

P1T19 19,50 53,12 6,48 33%

P1T20 6,35 19,60 2,10 50%

P1T21 18,38 31,77 6,12 33%

P1T22 0,00 16 16 100%

P1T23 0,00 56 56 100%

 Table 2: Period 1 measurements.

Task Development

cost (h)

Testing cost (h) Automated Tests’

cost(h)

Requirements’

Coverage

P2T1 32,22 131,27 17,35 15%

P2T2 92,53 84,99 56,86 65%

P2T3 32,18 43,66 17,33 67%

P2T4 24,38 50,13 13,13 50%

P2T5 2,60 28,73 1,40 100%

P2T6 59,37 55,47 31,97 81%

P2T7 16,25 8,75 8,75 80%

P2T8 0,65 12,68 0,35 0%

P2T9 16,90 15,60 9,10 70%

P2T10 64,32 145,63 34,63 100%

P2T11 24,70 26,30 13,30 70%

P2T12 1,63 4,21 0,88 20%

19

P2T13 7,64 35,61 4,11 66%

P2T14 12,68 6,83 6,83 80%

P2T15 25,35 25,15 4,60 46%

P2T16 0,00 13 13 100%

P2T17 0,00 30 30 100%

P2T18 0,00 35 35 100%

P2T19 0,00 24 24 100%

 Table 3: Period 2 measurements.

Table 4 presents the final step of the aggregation as a summary of the two previous tables,

along with the effectiveness measurements (number of live bugs, and the number hotfixes).

Period P1 P2

Development cost (h) 271,02 413,37

Testing cost (h) 460,22 777,50

Initial requirements’ coverage 32% 58%

Initial test automation cost 13% 28%

Final requirements’ coverage 48% 70%

Final test automation cost 46% 41%

Number of Live bugs 26 16

Number of hotfixes 18 10

 Table 4: Baseline data gathering results

5.3 Problem Formulation

This section will discuss measurement results, highlighting the aspects that are relevant to

this thesis.

Benefits of Automated Testing

Prevent Bugs

It’s needless to remind the importance of regression testing, the benefits have been well

established by now [1], and having those regression tests ready to be executed saves lots of

20

testing time, and eliminates the possibilities of human errors occurring, where if those auto-

mated tests were not present, a tester would have to go through and test all related parts of

the system related to the changes done in the task being tested, relying on memory, and this

model is time consuming, and error prone, which make it unsustainable and unreliable.

From the results presented in the previous chapter, it’s clear that as the requirements’ cov-

erage increases, the number of live bugs and hotfixes decreases. Taking difference in cov-

erage between P1 and P2, and comparing the number of live bugs and hotfixes presents

enough evidence to claim that preventing bugs is correlational with the requirements’ cov-

erage.

Prevents Retesting Manually

In P2 changing the design of the solution was a prominent problem, that’s the reason for the

incoherent development cost in comparison with P1 and P2. The testing cost also suffered

as a consequence. On three occasions the retesting of the whole epic had to be done because

the implementation had to be changed. The key point here is that even though the imple-

mentation went through several changes, the outcome of that implementation was the same.

In other words, if automated tests where prepared for the first iteration of testing, there

would have been no need to retest manually, instead, the prepared test would require slight

modifications and execution only. Additionally, the developers would have a more technical

and interactive form of the requirements to develop against.

Considering the time taken to finalize the test coverage in P2, if those tests were prepared

in the earliest iteration as acceptance tests, the Testing cost would have been two thirds of

what is resulted to be. So, a saved cost of 259.17 hours would have been the benefit of

preventing manual retesting by an early test automation decision.

Problems with Automated Tests

Cost

Writing automated tests is a time consuming task for testers to perform, due to it being

demanding in technical skill. For the same reason it’s also frustrating, and out of the comfort

zone of a tester, and that makes it a demoralizing process, compared to the manual testing

that they are adept at.

From analysing the data that led to time spent on test automation for P1, P2, testers take

from three to five times the length of time that a developer would take to write a test of the

same length and complexity roughly.

Non-covered Requirements

Nearly all tasks which have been covered by automated tests, the underlying requirements

are not fully covered, and for all those that were created during P1, P2, or prior, the coverage

is less than desirable, or in other words, it does not even contain the essential requirements,

and that poses the following issues:

- The non-covered requirements are forgotten, and with passing time, the team

memory of which requirements are covered and which are not becomes blurry, and

unreliable.

21

- Leaving uncovered requirements is error prone. Every time regression tests are con-

sidered passed, there’s an implicit assumption that the new changes are safely inte-

grated with existing parts of the system, where in reality they are well integrated

with only the parts of the system which are covered by automated tests, since auto-

mated tests are the only mean used for regression testing.

- The value of the automated tests is not well revealed to the product owner and the

business side, when bugs still appear, even though time was taken to make auto-

mated tests, time which from their perspective could have been spent on developing

and testing new functionality.

Summary

The problems with the current testing process can be stated as follows:

 Prob1: Low requirements’ coverage by automated tests causes several sub-prob-

lems.

 Prob2: Retesting manually of tasks after logical, architectural changes in the code.

 Prob3: Writing cost automated tests is a costly process for testers to do.

22

6 Improvement proposal

This chapter will explore a proposed solution to the problems discussed in the previous

section.

6.1 Solution Outline

Figure 2 shows the testing process described earlier, with one omission that will be justified

in the next section, and two main modifications:

Replacing Manual Testing

The first modification is moving the test automation where the manual testing used to be, in

order to directly attack the first two problems (Prob1, and Prob2):

Figure 2. Improved testing process.

23

- Retesting won’t be an issue, as the automated tests are proactively created, and de-

velopment fixes can be done against those prepared tests.

- Requirement coverage will be forced to be no less than ideal, since the task can’t be

marked as ready to be released until all requirements are verified, and in this new

model, verification of the requirements means that they will be covered by auto-

mated tests.

There has been an attempt to adopt this model in the past, but it failed due to the lack of

experience partly, but mainly due to the time consuming aspect of writing those tasks that

caused the tasks requested by the business to be late, and releases were postponed. However,

as the result from P3 will show, if testing time remains around double the time required for

development, that is; testing cost = 2 * development cost (± development cost/10), then this

model is possible.

The Experiment

During P3 (details in Section 4.1) the testing was done according to the improved process

presented in Figure 2, and the results of the measurements are as follows:

Task Development cost (h) Testing cost

(h)

Automated

Tests’ cost(h)

Requirements’

Coverage

P3T1 0,25 11,83 10,65 100%

P3T2 31,69 79,65 48,36 94%

P3T3 18,75 45,02 36,23 100%

P3T4 19,88 104,38 58,65 83%

P3T5 7,69 12,56 10 100%

P3T6 15,56 20,02 14,83 100%

P3T7 6,75 8,25 4,50 70%

P3T8 6,56 16,52 14,33 100%

P3T9 8 1 1 66%

P3T10 7,13 10,04 7,67 100%

P3T11 11 9,67 7,25 80%

P3T12 2,88 1,96 0,75 100%

P3T13 5,88 9,96 4 100%

P3T14 16,38 14,46 4,50 80%

P3T15 18,75 22 7,56 80%

P3T16 1 2 2 100%

24

P3T17 64,83 121,58 85,70 95%

 Table 5: Period 3 measurements.

And to contrast the result of the improved process to the baseline:

Period P1 P2 P3

Development cost (h) 271,02 413,37 242,96

Testing cost (h) 460,22 777,50 490,90

Initial requirements’ coverage 32% 58% 91%

Initial test automation cost 13,34% 28,37% 64,78%

Final requirements’ coverage 48% 70% 91%

Final test automation cost 46,31% 41,55% 64,78%

Number of Live bugs 26 16 7

Number of hotfixes 18 10 1

 Table 6: Baseline and improved process data gathering results.

Table 6 serves as a validation for the first modification, and as a confirmation for the corre-

lation between requirements’ coverage and effectiveness. The significantly low number of

hotfixes and live bugs compared to P1 and P2 shows that the increased requirements’ cov-

erage is at effect, all within the acceptable testing cost range (testing cost = 2 * development

cost (± development cost/10)).

Introducing Test Generation

The second modification, which the success of the proposed solution relies on, is to propose

a structure for writing automated tests that would render generating them automatically pos-

sible, and then to implement a tool that helps writing the tests. Figure 2 represents this mod-

ification with a lighter colour for the last two activities of automating a test case, which

means that they would take less time than they used to. This second part of the solution

attacks the remaining third problem Prob3.

It’s important to note that the solution relies on the combination of the two modifications.

As the first modification was validated, the rest of this chapter will be dedicated to the anal-

ysis and description of the second modification.

6.2 Analysis

The previously mentioned omission from Figure 2 is related to user interface automated test.

The focus will be on the Fitnesse tests solely for the following reasons:

- Only 20% of the requirements are about the user interface.

25

- Only 30% of the code base is traced to functionality for the user interface.

- 94% of the automated tests are written in Fitnesse, and the user interface tests pro-

vide little to no value due to the nature of our system.

- The user interface is a simplistic and minimalistic one, and testing it is better done

manually because automating it would require too much work then the benefits are

worth.

Now that it’s established that the goal is to make Fitnesse tests more structured and possible

to be generated, we can proceed by taking a close look at the existing tests and look for some

patterns.

Test Types

Excluding the user interface, there are five logical areas which constitute our system, and

thus five types of Fitnesse tests:

1. File import tests: these are not interesting in the context of the problems at hand,

because they are generic test pages, and require no or very little scripting. Adding a

test for a process of such type, is as simple as

a. Adding a valid test file into the specified directory.

b. Then adding the process name to a list of processes to be ran.

c. Finally adding a check for the status of the process after running.

The three steps are highlighted in Figure 3, assuming that the process being added is

named IMPORT_FILE_ATM_SETTLEMENT_VISA.

26

2. File extract tests: these are tests for processes which parse imported files and store

the parsed information into the database. In addition to the steps described in the

previous type, this type of tests has an additional part, which is a query table that

checks the parsing resulting from parsing to set of predefined values

Figure 4 highlights this table

Figure 3. Import file Fitnesse test example.

27

3. Calculation tests: this is most useful and critical type of tests, and it’s for the pro-

cesses that take the parsed data coming from external systems, or an aggregation of

existing data from our system, perform complex calculations, and store the result

into the database, and in some cases send it to external systems.

At first glance many of these tests seem long, complicated, and confusing, but they

follow the same pattern, which will be described in the next section, for now it can

be thought of roughly as an arrangement of: data preparation, running a process, and

checking the result.

The confusion springs up from the inconsistent ways the tests are written, from a

structural perspective, for example data checking is done sometimes with query ta-

bles, and on other times using script tables. The other way in which the tests are not

consistent is the naming of the instructions (Fixtures), for example for checking a

result, sometimes ‘query’ + sentence is used, sometimes ‘get’, other times ‘check’,

or none of those.

Figure 5 is a section of the data preparation part of a calculation test, the highlighted

are different steps for data preparation.

Figure 4. Extract file Fitnesse test example.

28

Figure 6 is a section of the data check part of the same test, in this case the check is

easily understandable, as the table used is consistently the query table.

Figure 5. Calculation Fitnesse, data preparation example.

29

4. Crosscheck tests: these are tests specific to processes that check the result of the

calculation job, these are also the processes that are heavily tested and covered by

automated tests, because they ensure that the calculations were done correctly, or

indicate that they are not, so they can be fixed in time, before any legal liabilities

arise.

There are no new techniques used in writing this type of tests, roughly the same

pattern is respected; data preparation, running the checking process, and checking

that the checking process behaves as expected.

5. General tests: these are tests that can’t be classified under the previous four types,

and are testing other logical areas of the system, and are similar to the previously

described test types in structure and components. Examples, for tests which classify

under this type are: transactions’ execution, customer contracts’ manipulation, send-

ing emails, etc.

Figure 7 is an example of an invoice email sending process test.

Figure 6. Calculation Fitnesse, result checking example.

30

To summarize the findings up to this point, from a syntax point of view:

All tests are an arrangement of three types of sections, not organized in any particular order

is some test types, but seem to have a specific order of appearance in other types:

- Data preparation, which is through prepared files, or database manipulation instruc-

tions.

- Running processes, which are an already existing set of instructions used across the

tests.

- Data verification, which are a set of instructions for checking the database state.

Most of the time they are Query tables, but sometimes they can be under Script ta-

bles.

Figure 7. Invoice sending process Fitnesse example.

31

From what has been presented so far, it seems like introducing some rules to the vague

pattern that revealed itself, could lead to a more formal expression of these tests, which in

turn could make their automatic generation attainable.

Putting this information aside for a moment, it’s time to introduce a useful concept that will

help parse those tests and enforce structure.

Grammar

Roughly expressing, a grammar is a formal notation, detailed enough to describe how a

language is built, or how the alphabets of a language should be combined to construct syn-

tactically sound instances of that language [2].

Without getting into the discussion of whether Fitnesse is a formal language10, and of what

type11. Let there be the explicit assumption that it is a formal language with a context-sen-

sitive grammar12, and that’ll prove to be a correct enough assumption for the implementa-

tion purposes to take advantage of the grammar’s properties.

Fitnesse Alphabet (Tokens)

These are the elementary symbols which Fitnesse is built with:

1. Separator: the character ‘|’

2. Import keyword: the lower case literal ‘import’

3. Script keyword: the lower case literal ‘script’

4. Check keyword: the lower case literal ‘check’

5. Query keyword: the capitalised literal ‘Query’

6. Comment keyword: the lower case literal ‘comment’

7. Word sequence: a whitespace separated sequence of lowercase literals; used for wiki

instructions

8. Capitalized words’ sequence: a whitespace separated sequence of capitalized liter-

als; used for Fixture names

9. Capitalised word sequence: a capitalized word followed by a word sequence; used

for Query instructions

10. Camel case literal: a lower camel case string

11. Capitalized camel case literal: an upper camel case string

12. Database entity name: an all upper case snake case literal

13. Variable name: the character ’$’ concatenated with a lower camel case or snake case

string.

14. Fixture class path: a ‘.’ Separated sequence of lower case literals

Figure 8 highlights examples of occurrences of some tokens in the list.

10 https://en.wikipedia.org/wiki/Formal_language
11 https://en.wikipedia.org/wiki/Chomsky_hierarchy
12 https://en.wikipedia.org/wiki/Context-sensitive_grammar

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Context-sensitive_grammar

32

Formalising Fitnesse instructions

Now that the core Fitnesse constituents are known, it’s time to identify where structure can

be introduced. Two areas where this formalisation can be injected:

1. Organization: which is the order in which the wiki tables appear, or the three test

parts (data preparation, process execution, and result verification), but that would be

limiting if done too strictly, because many tests rely on these order being loosely

controlled, for example, crosscheck processes’ tests prepare data for multiple pro-

cesses, and execute them in a specific order.

2. Instruction wording: this is where instructions can be improved from English sen-

tences that follow no specific pattern, to English sentenced that respect given rules

for writing instructions. This would make them possible to parse, and later on gen-

erate to Java code.

As a sample of the instruction wording enhancement, let’s look at an example from the

English language, and see how it translates to the Fitnesse context. A very simplistic repre-

sentation of writing sentences in English [2] is:

- A sentence is a noun followed by a verb, or a sentence followed by a conjunction

followed by a sentence.

- A conjunction can be an ‘and’, an ‘or’, or a ‘but’.

- A noun can be a ‘bird’, or a ‘fish’.

- A verb can be ‘fly’, or ‘swim’.

Figure 8. Highlighted Fitness alphabets.

33

Formally, this is expressed as follows:

- Sentence:

o Noun Verb

o Sentence Conjunction Sentence

- Conjunction:

o ‘and’

o ‘or’

o ‘but’

- Noun:

o ‘bird’

o ‘fish’

- Verb:

o ‘fly’

o ‘swim’

To build a sentence within this framework, is to have it conform to the defined rules, so

Figure 9 shows how the sentence ‘birds fly and fish swim’ maps to those rules.

Following the same logic, a query instruction grammar can be stated as follows:

- A query instruction is a query keyword ‘Query’ followed by a colon ‘:’ followed by

‘Get’ followed by a table name, followed by the conjunction ‘by’, and followed by

a list of parameter names.

- A table name is a word sequence, which doesn’t contain the word ‘by’ (in the formal

notation this restriction is implied from the parent rule).

- A list of parameter names, is a parameter name, or a parameter name followed by

the conjunction ‘and’, followed by a list of parameter names.

- A parameter name is a word sequence, which doesn’t contain the word ‘and’ (in the

formal notation this restriction is implied from the parent rule).

In a formal notation, this becomes:

- Query instruction:

o ‘Query: Get’ + table name + ‘by’ + parameter names list

- Table name:

Figure 9. Sentence mapping to rules.

34

o Word sequence

- Parameter names list:

o Parameter name

o Parameter name + ‘and’ + parameter names list

- Parameter name:

o Word sequence

Figure 10 shows the mapping of the query instruction ‘Query: Get merchant payment by

transaction date and card type’.

This implies that a parser can be implemented along these rules. Subsequently, a logic that

uses the parser’s result will have all the required information to generate the code for this

query instruction: which table to query, and which lookup conditions to apply.

A parsing expression grammar13 can be formulated for the remaining types of instructions,

and table. It’s important to note that the full power of this technique comes from its extend-

ibility, whenever a new pattern in writing Fitnesse tests is detected, it can be formalized as

demonstrated, then implemented into the parser, and from there Java and SQL code can be

generated based on that pattern.

The grammar that is used in the tool implementation, which is the realization of the proposed

solution, will be presented in the next section.

6.3 Solution

In section 2 (Analysis) we reached the conclusion that tests are comprised of three logical

parts: data preparation, processes’ execution, and result verification. An additional conclu-

sion was that the process execution part is generic and is reusable from existing fixtures, so

it can be removed from the context of this attempt of a solution.

The attention now move to those data related parts, and now they should be expressed in

further detail, so that a concrete solution can be reached. The first of which (data prepara-

tion) will be solved along two dimensions; Fixture generation, and test data generation, and

13 https://en.wikipedia.org/wiki/Parsing_expression_grammar

Figure 10. Query instruction mapping to rules.

https://en.wikipedia.org/wiki/Parsing_expression_grammar

35

the second of which was mostly solved in the previous section, and will be entirely solved

in the next.

Fixture Generation

The full parsing grammar is present in Appendix 0 to serve as a reference, and this section

will focus on the two most relevant issues.

1. The first issue is data preparation, which we can address by reintroducing the deci-

sion table from Section 3.1, and proposing it as an alternative to the use of test files

as the main source of test data for reasons which will be uncovered in the Test Data

Generation section. As referred to in the full grammar:

Batch insert fixture table

- Separator + Fixture class path + Capitalized camel case entity name + Separator +

newline

- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +

'?'

- values table

After subjecting the table from Figure 11 to the batch insert fixture table grammar, the re-

sulting information will be:

1. The fixture class name, and to path for where to generate it, if it doesn’t exist, from

the first line, in this example it is ‘ee.lhv.acq.fitnesse.fixture.MerchantPaymen-

tInsertFixture’.

2. The database table for which the insert fixture is to be created, from the last column

of the last line, in this example it is ‘MerchantPayment’.

The remaining lines in the table are the values to be inserted, and are used when the test is

executed, that is, they are not used in generating the fixture, and can be discarded.

Now that the parsing part is over, the generation logic uses those information following the

algorithm:

1. Convert the table name to an upper camel case.

2. Get all tables which are related to the table at hand by a non-null foreign key recur-

sively.

3. For each related table, which doesn’t have an existing fixture generated:

1. Get the table metadata (columns’ name, data type, size if applicable, and

whether the column is mandatory foreign key).

2. Generate the corresponding Java fields, with their getters and setters.

3. Generate the SQL insert statement, and the insert method

4. Amalgamate the generated code into a syntactically sound insert fixture

class.

5. Save the class name, path, and the corresponding database table into the ex-

isting fixtures table for future usage.

Figure 11. Batch insert table.

36

To eliminate any ambiguities, let’s go through the algorithm following the example started

in Figure 11. Assuming the following database structure:

 Table 7: Demonstration database structure

Table Columns Foreign keys Related

Tables

MERCHANT_PAYMENT [PAYMENT_ID] INT NOT NULL IDENTITY

[PROCESSING_CODE] VARCAHR(16) NOT NULL

[CARD_ACCEPTOR_ID_CODE] VARCAHR(13) NOT NULL

[AMTREC_DB] VARCAHR(16) NOT NULL

[AMTREC_CR] VARCAHR(16) NOT NULL

[COUNT_DEBITS] INT

[MERCHANT_ID] VARCAHR(15) NOT NULL

[CARD_TYPE_ID] VARCAHR(5) NOT NULL

[REFERENCE_NO] INT NULL

[CURREC] NUMERIC(3) NOT NULL

MERCHANT_ID MERCHANT

MERCHANT [MERCHANT_ID] VARCAHR(15) NOT NULL

[NAME] VARCAHR(50) NOT NULL

[EMAIL] VARCAHR(50) NULL

[PHONE] VARCAHR(50) NULL

[USER_ID] INT NOT NULL

[REPRESENTATIVE_ID] NULL

USER_ID

REPRESENTA-
TIVE_ID

USER

REPRESENTI-
TIVE

USER [USER_ID] INT NOT NULL IDENTITY

[NAME] VARCAHR(50) NOT NULL

[REGISTRATION_CODE] VARCAHR(50) NOT NULL

[TYPE] VARCAHR(50) NOT NULL

- -

Given that, the steps would be:

1. The table name obtained from the parser as ‘MerchantPayment’ is converted to

MERCHANT_PAYMENT

2. The table MERCHANT_PAYMENT refers to the table MERCHANT, which in turn

refers to the tables USER and REPRESENTATIVE, but as the relation to REPRE-

SENTATIVE is not mandatory, then only USER is kept, and USER table doesn’t

refer to any other tables, so the final list of tables for which fixtures are to be created

is {MERCHANT_PAYMENT, MERCHANT, USER}

The reason for creating fixtures for the related tables as well will be explained and

become clear when the generation is done.

3. For the purpose of demonstration, let’s assume that the table MERCHANT already

has a generated insert fixture class named ‘MerchantInsertFixture’, so the following

steps will apply for MERCHANT_PAYMENT, and USER.

a. First iteration :

1. The table meta data which will be used to create the fields and their

helper methods:

37

Column name Data type Size Related

Table

PROCESSING_CODE
VARCAHR 16

CARD_ACCEPTOR_ID_CODE
VARCAHR 13

AMTREC_DB
VARCAHR 16

AMTREC_CR
VARCAHR 16

COUNT_DEBITS
INT

MERCHANT_ID
VARCAHR 15 MERCHANT

CARD_TYPE_ID
VARCAHR 5

REFERENCE_NO
INT

CURREC
NUMERIC 3

2. For this step, all fields should be generated into code, but for the

purpose of demonstration, only 3 will be presented:

Field Corresponding Java code

PRO-

CESSING_CODE

COUNT_DEBITS

MERCHANT_ID

Further explanation about the getters’ role will be at the end of the

demonstration.

3. Figure 12 shows the resulting SQL insert query for this table.

4. Figure 13 shows the whole generated insert fixture class, some of the

fields and their helper methods were omitted for conciseness.

5. The table name and the generated Fixture data will be saved in a

table that is meant to track the existing fixtures.

b. Second iteration:

The table USER will go through the same steps described in the first itera-

tion.

38

Before continuing, some explanations are required to clarify remaining ambiguities. The

way Fitnesse executes the general purpose table, which is the batch insert table in the context

of this solution, is by executing the insert method for every line in the values section. The

fields are initialized from the strings provided under the field’s column in the wiki table,

Figure 12. The resulting insert query method.

Figure 13. The full resulting insert fixture class.

39

that’s the reason why setters are required. For strings the default setter would do, but for

other types we have to define a setter that parses the string provided in the wiki, into a value

of the corresponding field’s type.

In the case where:

1. A column in the wiki doesn’t have the value to initialize the corresponding field

2. The column is missing all together form the wiki page

The corresponding Java field will be null, and when the insert statement is executed, it will

be rejected due to the NOT NULL constraints. An example illustrating these cases is shown

in Figure 14.

The getters then fill these null values in case of normal fields with random values, and in

case of foreign key fields they are filled by making the corresponding related table’s insert

fixture class return a valid foreign key value to refer to. The called insert fixture class will

do the same in case its underlying table refers to other tables also. This recursive process is

guaranteed to work because of step 2 of the algorithm, which ensures that any missing insert

fixture classes for related tables are generated.

The fields are static to ensure that this process of recursive foreign key handling is done

once only (the first time around), and not for every line that is missing a column.

This automatic filling and foreign key handling feature is important to cut down the time

that is wasted on maintaining a valid state of the database, and the foreign keys relations.

This way testers can focus on inserting valid data that is for the process being tested, and

that only.

The second issue is result verification, for which the parsing grammar has already been

explored. The final parsing grammar for the query table becomes:

Query fixture table

- query fixture table header + newline

- separator + columns to be matched

Query fixture table header

- separator + "Query: " + Query fixture class name + ‘s’ + separator + separated argu-

ments

- separator + "Query: " + Query fixture class name + separator + separated arguments

Query fixture class name

- Get + database table name + connected parameter names

Connected parameter names

- connector + lowercase entity name

- connected parameter names + connector + lowercase entity name

Connector

Figure 14. Missing currec column, and some values.

40

- "by" + white spaces

- "and" + white spaces

- "with" + white spaces

- "for" + white spaces

- "from" + white spaces

Again, the first line is the only useful section from the table for the parsing and code gener-

ation purposes, the rest of the table is when the tests is ran.

After applying the improved grammar on the first line the same way we did in Formalising

Fitnesse instructions, the information extracted are:

- The main queried table name; in the Figure 15 example, it would be ‘merchant pay-

ment’

- The name of the fixture query class that is to be generated

- The query constraints; in this example ‘card type id’ and ‘merchant id’

Adding that the generation algorithm is:

1. Convert the table name to the upper snake case format.

2. Convert the parameter names to upper snake case format.

3. Use them to generate the query.

4. Convert the fixture class name to an uppercase camel case format.

5. Generate the remaining of the class code

Figure 16 highlights these steps.

For now this simple version is enough as a proof of concept, but it’s important to note that

this can be extended to generate more complex queries, including multiple joins and com-

plex conditions.

A projection of how it could be extended (which is also what’s currently being imple-

mented):

Query fixture class name

Figure 15. Query table example.

Figure 16. Generated query fixture class.

41

- Get + database table names + ‘by’ + connected parameter names

Database table names

- lowercase entity name

- database table names + ‘and’ + lowercase entity name

Connected parameter names

- lowercase entity name

- connected parameter names + connector + lowercase entity name

Test Data Generation

The other part of data preparation is getting the test data right, adequately to the test case at

hand. Up until P3 this was done by preparing test files. For Import and extract tests’ types

files are necessary, but for those tests there aren’t complicated test cases to prepare for, and

this simple type of files is prepared by our partners. In order to create complicated scenarios

for calculation tests’ cases, those simple test files are then modified, Appendix 9.3 shows

an example of a test file.

The advantage of files is that our system has checking processes which make sure that the

files prepared for testing have valid data. However, the disadvantages are many, and out-

weigh the advantages by a large margin:

 They are machine readable, as shown in Appendix 9.3.

 They have checks encoded in them, so changing or adding values to them would

render them invalid and thus unusable. In order to do so successfully, a tester has to

have a working memory on the structure of the file, or refer to the file sender docu-

mentation in order to know what else to add, and where else to modify the files to

maintain their integrity.

 They contain more data than necessary for a test case, and preparing that extra data

is necessary because before reaching the calculation process to be tested, the files go

through extraction and check processes which have to succeed, so that the calcula-

tion test can have valid data to work with.

 It’s not good practice to put test data out of the test wiki page (into separate files), it

makes the test less readable.

These factors makes working with files a laborious and extremely time consuming task. For

this reason, in P3 I set out to prove that setting up the database state, that is, by only inserting

and manipulating data that’s relevant to the process being tested, can be as effective as the

usage of files, given that the tester is careful to maintain a valid database state (valid to the

process being tested). That goal was accomplished on both fronts (cost, and effectiveness),

in comparison between P1 and P3, as demonstrated in Sections 5.2 and 6.1.

After introducing the batch insert feature, this data preparation alternative ought to be much

simpler because of the feature of filling in complementary required data with random values

when not provided, with the assumption that it’s not provided because it’s not needed.

The next section will be one extra facility, which combined with what has been discussed

so far, aims to:

2. Make the data preparation an even faster process.

3. Eliminate the assumption of the ‘tester being careful in maintaining a valid database

state’.

42

4. Eliminate the assumption of the ‘data not being provided because it’s not needed’ to

the most possible extent.

Scrambled Data

The idea here is to create a database that is a big enough sample (a year worth of data), from

the live environment database, with the sensitive data censored. Given that the database is

fairly normalized (normalized to a practical extent), the sample should remain meaningful,

as the sensitive data is used for reporting and user interface purposes, and not needed for

calculations.

This procedure of creating a scrambled data test database is a one time job using a simple

script. Unfortunately, the script would reveal the internal database structure, so it’s not made

public in the context of this thesis. Nevertheless, an example should illustrate the gist of this

script.

Assuming that the database structure is as follows:

 Table 8: Demonstration database structure

Table Columns Foreign

keys

Related

Tables

MERCHANT_PAYMENT [PAYMENT_ID] INT NOT NULL IDENTITY

[PROCESSING_CODE] VARCAHR(16) NOT NULL

[CARD_ACCEPTOR_ID_CODE] VARCAHR(13) NOT NULL

[CARD_ACCEPTOR_LOCATION] VARCAHR(50) NOT NULL

[AMTREC_DB] VARCAHR(16) NOT NULL

[AMTREC_CR] VARCAHR(16) NOT NULL

[COUNT_DEBITS] INT

[MERCHANT_ID] VARCAHR(15) NOT NULL

[CARD_TYPE_ID] VARCAHR(5) NOT NULL

[REFERENCE_NO] INT NULL

[CURREC] NUMERIC(3) NOT NULL

[MESSAGE] VARCHAR (255) NOT NULL

[MESSAGE_HASH] VARCHAR (255) NOT NULL

MERCHANT_ID MERCHANT

MERCHANT [MERCHANT_ID] VARCAHR(15) NOT NULL

[NAME] VARCAHR(50) NOT NULL

[EMAIL] VARCAHR(50) NULL

[PHONE] VARCAHR(50) NULL

[USER_ID] INT NOT NULL

[REPRESENTATIVE_ID] NULL

USER_ID

REPRESENTA-

TIVE_ID

USER

REPRESENTI-

TIVE

USER [USER_ID] INT NOT NULL IDENTITY

[NAME] VARCAHR(50) NOT NULL

[REGISTRATION_CODE] VARCAHR(50) NOT NULL

[TYPE] VARCAHR(50) NOT NULL

- -

The algorithm to get the test database would be:

1. Copy a year worth of data from the backup live database into a newly created data-

base.

43

2. Disable all foreign key constraints temporarily.

3. Identify the sensitive columns. In this example:

Table Column Reason

MERCHANT_PAYMENT CARD_ACCEPTOR_ID_CODE The real payment terminal id

CARD_ACCEPTOR_LOCATION The real address location of that payment

terminal. It consists of two parts, the first is

another merchant specific code, similar to

merchant_id, and the second part is a 3 digit

number indicating the number of the termi-

nal, the two parts are separated by a space,

example: 87654321 001.

MERCHANT_ID The merchant identification code from a pri-

vate register

MESSAGE The original file row(s) from which this da-

tabase row was extracted. The original mes-

sage row has all the payment information.

MESSAGE_HASH The hash of that message

MERCHANT NAME The real merchant name

EMAIL The real merchant email

PHONE The real merchant phone

USER NAME The user name with which the merchant is

registered

REGISTRATION_CODE Private registration code

4. Censor those sensitive columns

Table Update

MER-

CHANT_PA

YMENT

CARD_ACCEPTOR_LOCATION, MESSAGE, and MESSAGE_HASH can be censored by generic val-

ues, because they are not used in any calculations, but CARD_ACCEPTOR_ID_CODE, and MER-

CHANT_ID should be carefully reformatted, as they are used in calculations, and as join conditions in

queries.

MERCHANT_ID: we can use the USER_ID as it’s a database identity and isn’t in any private register.

CARD_ACCEPTOR_ID_CODE: we can replace the first secret code by the USER_ID.

MERCHANT MERCHANT_ID should be replaced by USER_ID, all remaining column values can be replaced by ge-

neric values.

44

USER All columns with sensitive data can be replaced by generic values

5. Enable all foreign key constraints.

With the scrambled database containing valid test data, the previous concerns - about the

validity of the database state to a process, and the reliability on randomly generated values

to fill the missing data- can be discarded, because the data source for the preparation con-

tains valid data, and the filler values now can be taken from the test database, instead of

being randomly generated.

Admittedly this last claim is not currently backed by implementation, but thanks the flexi-

bility of our established grammar. It’s not farfetched that it will be implemented by the time

this thesis is being assessed.

To justify this claim, let’s explore a simple grammar modification that would make it pos-

sible to not only generate fixtures (Java code), but wiki tables as well.

Batch insert fixture table

- Separator + Fixture class path + Capitalized camel case entity name + Separator +

newline

- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +

'?'

- values table

Removing the last sub-rule and giving the rule another name:

Batch insert wiki table and fixture

- Separator + Fixture class path + Capitalized camel case entity name + Separator +

newline

- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +

'?'

Means that along with the fixture class, the values for the table should be generated when

not given. Figure 17 shows and example of a table without values as an input for the parsing

and generation.

After the fixture class is generated the same way as described before, the column list parsed

could be generated into a query that is shown in Figure 18, and then the query is executed

and it results in a random sample from the scrambled data database. The result is then con-

catenated with the original table to result in a valid an executable batch insert table, shown

in Figure 19.

Figure 17. Valueless-table example.

Figure 18. Table values generation query.

45

Files

Before wrapping up, some comments should be made about an attempt to generate files,

which was successful to a limited extent only.

Before suggesting the adoption of the database setup model, sometime was spent trying to

reverse engineer the files and find formulas to generate them from a set of parameters. The

solution was to prepare a template of the most minimalistic version of a file, where it has

only one row of data, with parts to be replaced by the given parameters. Then a file specific

logic was implemented to make it extendible to contain multiple rows, depending on the

input. To explain further, let’s go through an example. The test file template:

1644800001000001000002000000000000006970400105025102xxxxxx00000015808012

280122001P00000001

1544A01001000041C0000200000800000000proces160102170753501cardacceptor

3720148004cuex037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017amtrecdebitamount0391017amtreccredia-

mount039201500D000000000000039301500C0000000000000394017C00000000000011

280395017D00000000000000000396017C00000000000000000400010countdebit040101

0countcredi0402010counttotal1014007mer-

chid10160036891017005cardt1018004refn1019006000000cuxcurmsgcount06015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000000000000391017amtrecamoun-

tamoun039201800D000000000000000039301800C0000000000000000394017C0000000

0000144530395016D0000000000000000396017C00000000000144530400010000000000

00401010countcount0402010counttotal1017005cardtcuxcurmsgcount06015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017amtrecamoun-

tamoun0391017C0000000000000000039201800D000000000000000039301800C000000

0000000000394017C00000000000144530395016D0000000000000000396017C0000000

0000144530400010countcount040101000000000000402010countto-

tal1017005cardtcuxcurmsgcount06015808

Figure 19. The generated wiki table.

46

1644800001000001000002000000000000006950700105025102xxxxxx00000015808012

280301016000000000000000003060080000001600000016

The input applied to this template is a table where each row represents the parameters re-

quired to generate the minimum number of rows, which we can call a set of logically related

rows. Figure 20 shows an example of input to the facility that uses the aforementioned tem-

plate.

The generated file is too long to include here, so it’s put to Appendix 9.4 Generated File

Example.

The problems with this approach and why it was discontinued are:

1. There are tens of file types, each with its own specific logic, and it’s time consuming

to keep implementing extendible file generation facilities, for an increasing number

of file types.

2. Some files have to be generated together, because they have complementary file

specific logics, and that raises the complexity and cost to an even more unacceptable

level.

3. The whole process is counterproductive compared to the batch insert solution: the

files are reverse engineered to be generated from a set of parameters, and then ex-

tracted so that those parameters are inserted to the database in a way that doesn’t

compromise its validity.

Implementation note

All implementation discussed in this proposed solution chapter is available under [3]. The

tool is a Java desktop application that relies on SQL Server, it is designed with minimal user

interface interaction in mind so that the logic can be moved to a private library once well

tested, approved, and refactored to a cleaner codebase.

6.4 Validation

Since there hasn’t been enough time for testers to get acquainted with the proposed test

writing rules, and the parsing and generation tool, there hasn’t been enough feedback and

data to make conclusions from based on testers’ experience. Alternatively this section will

go through the steps of the second modification. Measure the time that will take me as a

developer to write a test in this manner, then compare the result to the time taken to write

old tests of similar type, complexity, done by myself, or by another developer in the past.

Both of the following tests perform the following:

1. Prepare data for the process to run

a. Check that the data was prepared correctly (in case of file based test)

2. Execute the process

3. Verify the result

Figure 21 shows the test in the old file based model, with these sections highlighted.

Figure 20. Input for file generation.

47

Figure 22 shows the new test written in the model of the proposed solution.

Figure 21. File based test.

48

The comparison between these two tests is ideal, because if the first test would be rewritten

in the second test’s model, or vice versa, they would look almost identical.

Structure-wise, the second test is much more organized and reflects how the real process

operates, whereas the first one is less structured and requires extra checks to make sure that

the data was inserted correctly, which is testing the data preparation processes in addition

to the main process being tested, and that’s not a good testing practice.

Timewise, the first test logged five and a half hours. Half an hour was spent on reading the

process requirements, or test cases, and thinking of the test values to be used, three hours on

preparing the test file, and two hours writing the fixture classes and methods, and debugging

or fixing syntax error and such. Those four test writing stages measurements are estimated

for the old test, as there’s no traceable record of what was done, but the cost of writing the

whole test is precise with respect to the method described in Section 4.1.

In contrast, the second test took me about one hour to finish, half an hour was to read the

requirements and think of how the test case should look like. Then ten minutes or so was

Figure 22. Proposed solution model.

49

spent on generating and verifying the insert and query fixtures, then ten minutes getting the

test data from the prepared database and placing it in the test page, finally few minutes on

fixing my own syntax errors here and there.

After conducting two more experiments of such nature it seems that the benefits theorized

in the proposed solution are taking effect. The new model for writing tests proved to be at

least three times more cost efficient as the old model. Admittedly, some of that difference

is attributed to experience gained from analysing, and writing many tests, but most of it

comes from the methodical elimination or remodelling of activities that are archaic and less

efficient.

Table 9 shows the three comparisons.

 Old test 1 New test 1 Old test 2 New test 2 Old test 3 New test 3

Cost (h) 5.5 1 43 11.66 13.72 3.5

 Table 9: Test generation validation

50

7 Conclusion

7.1 Summary

The thesis started by a detailed analysis of the testing process data, during which two key

periods were measured for a variety of factors, and considered as a baseline for future com-

parisons. After the data analysis the problems were asserted to be an inefficient testing pro-

cess that caused time to be wasted in manual testing and retesting, and also caused the re-

quirements’ coverage by the regression tests to be deficient. The comparison between the

measurements of the two periods determined that the two factors of cost and effectiveness

are highly correlated with the testing process structure.

Improving those two factors meant improving the testing process’s structure, by moving the

test automation as the main testing process, rather than an activity that can be done whenever

time is present. A third period was then designed within the framework of this thesis in order

to validate this structure improvement by comparing the result to the other two periods.

Additionally, this period also validated afore made assertions, and helped quantify the ef-

fectiveness of test automation within our project.

The second part of the solution was to introduce automation into the main aspects of the test

automation process. The solution then was the combination of these two ideas, of which the

first was practically applicable only if the second one was accomplished.

At this point the whole focus of the solution became reliant on somehow automating certain

aspects of writing Fitnesse tests. The concept of the Parsing Expression Grammar was found

to be an elegant way to add some formal rules into writing Fitnesse instructions so that they

can be parsed and generated automatically. The parsing grammar also proved to be flexible

and showed promise of how this solution can be extendible for future possibilities of gener-

ating both Java code and wiki tables with the addition or adjustment of the grammar rules.

For the time being the two main usages for the implemented grammar and generation logic

are the data preparation, and data verification parts of the tests. This was then combined

with the idea of getting a sample of data from the live environment database and censoring

the sensitive data, so that all aspects of data preparation for the tests would be handled, with

very few unchecked assumptions.

The proposed solution of the new test automation model was applied and compared against

tests written in the old model of laboriously preparing test files, and the result was positive

in favour of the new model.

7.2 Goals

With this, the five goals stated at the beginning of this thesis can be considered achieved.

As of now, the upcoming work, is to incrementally use this model throughout future devel-

opment, and slowly get rid of the old model. Once there’s a big enough sample of data to

make decisions based on, this model, and implemented tool will be presented to other teams

within the company.

The ultimate goal is to integrate the logic developed in the test parsing and generation tool

into Fitnesse directly – as it’s open source – and keep adding features and new patterns there

when appropriate.

51

8 References

[1] W. E. Wong, J. R. Horgan, S. London ja H. Agrawal, „A study of effective regression

testing in practice,“ %1 Proceedings The Eighth International Symposium on

Software Reliability Engineering, Albuquerque, 1997.

[2] B. Stroustrup, Programming Principles and Practice Using C++, Addison-Wesley

Professional, 2008.

[3] A. Belakehal, „Fixture-gen,“ LHV, 05 04 2017. [Võrgumaterjal]. Available:

https://bitbucket.org/alihk47/fixture-gen.

52

9 Appendix

9.1 Task Names Mapping

Thesis Task Code Real Task Code

P3T1 ACQ-1283

P3T2 ACQ-1289

P3T3 ACQ-1305

P3T4 ACQ-1308

P3T5 ACQ-1311

P3T6 ACQ-1315

P3T7 ACQ-1324

P3T8 ACQ-1325

P3T9 ACQ-1320

P3T10 ACQ-1326

P3T11 ACQ-1334

P3T12 ACQ-1341

P3T13 ACQ-1362

P3T14 ACQ-1364

P3T15 ACQ-1416

P3T16 ACQ-1412

P3T17 ACQ-1230

P2T1 ACQ-1132

P2T2 ACQ-645

P2T3 ACQ-1083

P2T4 ACQ-1084

P2T5 ACQ-1085

P2T6 ACQ-1086

53

P2T7 ACQ-1092

P2T8 ACQ-1093

P2T9 ACQ-1142

P2T10 ACQ-377

P2T11 ACQ-1112

P2T12 ACQ-1105

P2T13 ACQ-1106

P2T14 ACQ-1109

P2T15 ACQ-1070

P2T16 ACQ-1173.2

P2T17 ACQ-1237

P2T18 ACQ-1173

P2T19 ACQ-1237.2

P1T1 ACQ-750

P1T2 ACQ-766

P1T3 ACQ-764

P1T4 ACQ-742

P1T5 ACQ-1004

P1T6 ACQ-1013

P1T7 ACQ-1016

P1T8 ACQ-1024

P1T9 ACQ-1062

P1T10 ACQ-1061

P1T11 ACQ-1042

P1T12 ACQ-1036

P1T13 ACQ-1019

54

P1T14 ACQ-1009

P1T15 ACQ-1043

P1T16 ACQ-112

P1T17 ACQ-913

P1T18 ACQ-914

P1T19 ACQ-915

P1T20 ACQ-911

P1T21 ACQ-907

P1T22 ACQ-979.1

P1T23 ACQ-979.2

The .1 and .2 notation means that during that Fitnesse update task, two different sets of

requirements related to multiple tasks where addressed, and the attributes for those tasks

where measured separately.

9.2 Full Parsing Grammar

Assumptions

- '+' means concatenation

- Whitespaces are explicitly specified (not considered characters)

- Digits are considered characters

- A newline will be explicitly specified, and is not considered a whitespace

- For Import fixture table, Batch insert fixture table, Script fixture table, and Query

fixture table, the sub-rules are in successive conjunction of each other (first sub-rule,

and then the second sub-rule and so on), unlike the remaining of the rules, which

are in disjunction (first sub-rule or second rule, and so on).

The parsing grammar

Requirements

- title 'Requirements'

- Description

Purpose

- title 'Purpose'

- Description

Description

- newline

- line of test

- confluence link

- Description + newline + Description

55

Fixture table

- import fixture table

- batch insert fixture table (general)

- script fixture table

- comment fixture table

- query fixture table

Import fixture table

- import fixture table header + newline

- import fixture table body

Batch insert fixture table

- Separator + Fixture class path + Capitalized camel case entity name + Separator +

newline

- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +

'?'

- values table

Script fixture table

- script fixture table header + newline

- script fixture table body

Comment fixture table

- separator + "comment" + separator + line of text + separator + newline

Query fixture table

- query fixture table header + newline

- separator + columns to be matched

- query fixture table body

Import fixture table header

- separator + "import" + separator

Script fixture table header

- separator + "script" + separator + fixture class name + separator

Query fixture table header

- separator + "Query: " + Query fixture class name + separator + separated arguments

Separator

- "|"

- white spaces + "|"

- "|" + white spaces

- white spaces + "|" + white spaces

Fixture class name

- capitalized entity name

Query fixture class name

- Get + database table name + connected parameter names

56

Database Table name

- lowercase entity name

Connected parameter names

- connector + lowercase entity name

- connected parameter names + connector + lowercase entity name

Connector

- "by" + white spaces

- "and" + white spaces

- "with" + white spaces

- "for" + white spaces

- "from" + white spaces

Separated arguments

- variable + separator

- separated arguments + variable + separator

Import fixture table body

- separator + full class name + separator + newline

- import fixture table body + separator + full class name + separator + newline

Script fixture table body

- lowercase entity name

- lowercase entity name + script arguments

Script arguments

- connector + entity name + separator + variable + separator

- connector + entity name + separator + constant + separator

- script arguments + connector + entity name + separator + variable + separator

- script arguments + connector + entity name + separator + constant + separator

Columns to be matched

- database column name + separator

- columns to be matched + database column name + separator

Query fixture table body

- values table

Values table

- separator + values to match + newline

- query fixture table body + separator + values to match + newline

Values to match

- variable + separator

- constant + separator

- whitespace + separator

- values to match + variable + separator

- values to match + constant + separator

- values to match + whitespace + separator

57

Capitalized entity name

- capitalized word + whitespace

- capitalized entity name + lowercase word + whitespace

Lowercase entity name

- lowercase word + whitespace

- lowercase entity name + lowercase word + whitespace

Camel case entity name

- Lowercase word

- Camel case entity name + Capitalized word

Capitalized camel case entity name

- Capitalized word

- Capitalized camel case entity name + Capitalized word

Lowercase word

- Lowercase character sequence

Capitalized word

- uppercase character + lowercase character sequence

Lowercase character sequence

- lowercase character

- lowercase character sequence + lowercase character

Uppercase character sequence

- uppercase character

- uppercase character sequence + uppercase character

Fixture Class path

- lowercase word + '.'

- lowercase word + '.' + Fixture Class path

Variable

- $ + variable name

Variable name

- lowercase word

- variable name + Capitalized word

Constant

- lowercase character sequence

- uppercase character sequence

- constant + lowercase character sequence

- constant + uppercase character sequence

White spaces

- ' '

- '\t'

- white spaces + ' '

58

- white spaces + '\t'

9.3 IPM File Content Example

164480000100000100000200000000000000697040010502510204045800000015808012

280122001P00000001

1544A00001000041C000020000080000000000000050187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000000001010391017C00000000000

01010039201500D000000000000039301500C0000000000000394017C00000000000000

000395017D00000000000000000396017C00000000000000000400010000000000004010

100000000002040201000000000021014007828009110160036891017005401MA101800

4271010190060000009789780000000206015808

1544A00001000041C000020000080000000000000050187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000000002020391017C00000000000

01515039201500D000000000000039301500C0000000000000394017C00000000000000

000395017D00000000000000000396017C00000000000000000400010000000000004010

100000000002040201000000000021014007828009110160036891017005401MB101800

4271110190060000009789780000000306015808

1544A00001000041C000020000080000000000000050187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000000003030391017C00000000000

02020039201500D000000000000039301500C0000000000000394017C00000000000000

000395017D00000000000000000396017C00000000000000000400010000000000004010

100000000002040201000000000021014007828009110160036891017005767VC1018004

271210190060000009789780000000406015808

1544A00001000041C000020000080000000000000050187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000000004040391017C00000000000

02525039201500D000000000000039301500C0000000000000394017C00000000000000

000395017D00000000000000000396017C00000000000000000400010000000000004010

100000000002040201000000000021014007828009110160036891017005767VE1018004

271310190060000009789780000000506015808

1544A00001000041C000020000080000000000000050187654321 002

37201480049782037200712402000380017D00000000000003390381017C000000000000

09940384017C00000000000006550390017D00000000000009090391017C00000000000

05050039201500D000000000000039301500C0000000000000394017C00000000000000

000395017D00000000000000000396017C00000000000006550400010000000000104010

100000000002040201000000000031014007828009110160036891017005767AX101800

4271810190060000009789780000000606015808

1544A00001000041C000020000080000000000000050187654321 002

37201480049782037200712402000380017D00000000000003390381017C000000000000

09940384017C00000000000006550390017D00000000000013130391017C00000000000

07070039201500D000000000000039301500C0000000000000394017C00000000000000

000395017D00000000000000000396017C00000000000006550400010000000000104010

100000000002040201000000000031014007828009110160036891017005793MT101800

4271910190060000009789780000000706015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000000000381017C00000000000144530384017C000

59

00000000144530390017D00000000000000000391017C0000000000001010039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

00040201000000000001017005401MA9789780000000806015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000011050381017C00000000000000000384017D000

00000000011050390017D00000000000001010391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017D00000000000011050395016

D0000000000000000396017D00000000000011050400010000000000004010100000000

000040201000000000001017005401MA9789780000000906015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000000000381017C00000000000144530384017C000

00000000144530390017D00000000000000000391017C0000000000001515039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

00040201000000000001017005401MB9789780000001006015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000011050381017C00000000000000000384017D000

00000000011050390017D00000000000002020391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017D00000000000011050395016

D0000000000000000396017D00000000000011050400010000000000004010100000000

000040201000000000001017005401MB9789780000001106015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000000000381017C00000000000144530384017C000

00000000144530390017D00000000000000000391017C0000000000002020039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

00040201000000000001017005767VC9789780000001206015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000011050381017C00000000000000000384017D000

00000000011050390017D00000000000003030391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017D00000000000011050395016

D0000000000000000396017D00000000000011050400010000000000004010100000000

000040201000000000001017005767VC9789780000001306015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000000000381017C00000000000144530384017C000

00000000144530390017D00000000000000000391017C0000000000002525039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

00040201000000000001017005767VE9789780000001406015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000011050381017C00000000000000000384017D000

00000000011050390017D00000000000004040391017C0000000000000000039201800D

60

000000000000000039301800C0000000000000000394017D00000000000011050395016

D0000000000000000396017D00000000000011050400010000000000004010100000000

000040201000000000001017005767VE9789780000001506015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000000000381017C00000000000144530384017C000

00000000144530390017D00000000000000000391017C0000000000005050039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

00040201000000000001017005767AX9789780000001606015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000011050381017C00000000000000000384017D000

00000000011050390017D00000000000009090391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017D00000000000011050395016

D0000000000000000396017D00000000000011050400010000000000004010100000000

000040201000000000001017005767AX9789780000001706015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000000000381017C00000000000144530384017C000

00000000144530390017D00000000000000000391017C0000000000007070039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

00040201000000000001017005793MT9789780000001806015808

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000011050381017C00000000000000000384017D000

00000000011050390017D00000000000013130391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017D00000000000011050395016

D0000000000000000396017D00000000000011050400010000000000004010100000000

000040201000000000001017005793MT9789780000001906015808

164480000100000100000200000000000000695070010502510204045800000015808012

280301016000000000000000003060080000002000000020

9.4 Generated File Example

164480000100000100000200000000000000697040010502510222052900000015808012

280122001P00000001

1544A01001000041C000020000080000000000000016010217075350187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000000010100391017C00000000000

03030039201500D000000000000039301500C0000000000000394017C00000000000011

280395017D00000000000000000396017C00000000000000000400010000000000104010

100000000002040201000000000031014007828009110160036891017005401MA101800

427111019006000000978978000000020601580880c528fd-d3d0-49e0-8ede-

49de4bc693ce

1544A01001000041C000020000080000000000000016010217075350187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000000101010391017C00000000000

30303039201500D000000000000039301500C0000000000000394017C00000000000011

61

280395017D00000000000000000396017C00000000000000000400010000000000104010

100000000002040201000000000031014007828009110160036891017005689MB101800

42712101900600000097897800000003060158081bbe8fbb-d129-4ba8-89d2-

930719ddbdad

1544A01001000041C000020000080000000000000016010217075350187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000001010100391017C00000000003

03030039201500D000000000000039301500C0000000000000394017C00000000000011

280395017D00000000000000000396017C00000000000000000400010000000000104010

100000000002040201000000000031014007828009110160036891017005A00AX101800

427131019006000000978978000000040601580867f472b9-0dea-48a5-8e53-

9fb24f1a447e

1544A01001000041C000020000080000000000000016010217075350187654321 001

37201480049782037200712402000380017D00000000000010000381017C000000000000

22500384017C00000000000012500390017D00000000010101010391017C00000000030

30303039201500D000000000000039301500C0000000000000394017C00000000000011

280395017D00000000000000000396017C00000000000000000400010000000000104010

100000000002040201000000000031014007828009110160036891017005767AX101800

4271410190060000009789780000000506015808328794e0-ea02-4ed0-adcb-

bdd4ce460fd3

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000000000000391017C0000000000003030039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

02040201000000000021017005401MA9789780000000606015808d45b8e7c-43ac-4087-

818b-856e262736b8

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000000000000391017C0000000000030303039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

02040201000000000021017005689MB97897800000007060158089c1b4864-8ac5-42be-

8fc9-704d4fee3528

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000000000000391017C0000000003030303039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

02040201000000000021017005767AX97897800000008060158082ac509a7-9a83-4151-

b9ae-e4e6696d7a5f

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001O0380017D00000000000010000381017C00000000000022500384017C000

62

00000000000000390017D00000000000000000391017C0000000000303030039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000000040101000000000

02040201000000000021017005A00AX9789780000000906015808806b5c84-d5dc-418f-

b82e-90a648b5eaac

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000000010100391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000001040101000000000

00040201000000000011017005401MA9789780000001006015808ab5af182-47d3-457f-

926d-5df3bc088283

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000000101010391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000001040101000000000

00040201000000000011017005689MB9789780000001106015808d828bc82-80c6-41c2-

a6e6-90f265e3a5c0

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000010101010391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000001040101000000000

00040201000000000011017005767AX9789780000001206015808e6ca86a9-2c33-4112-

bbc8-653ddf6ba6de

1644800001810001C0000200000800000000685686106491083404014800497820165001

B030002510214063000000015808012280302001A037200712402000374002000375003

POS0378001R0380017D00000000000010000381017C00000000000022500384017C000

00000000000000390017D00000000001010100391017C0000000000000000039201800D

000000000000000039301800C0000000000000000394017C00000000000144530395016

D0000000000000000396017C000000000001445304000100000000001040101000000000

00040201000000000011017005A00AX9789780000001306015808dbe878b8-2f9b-49c8-

9f17-69af715b23a3

164480000100000100000200000000000000695070010502510222052900000015808012

280301016000000000000000003060080000001600000016

9.5 License

Non-exclusive licence to reproduce thesis and make thesis public

I, Ali Belakehal,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

63

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis Test Automation Case Study, supervised by Dietmar Alfred Paul Kurt Pfahl

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 13.05.2017

