UNIVERSITY OF TARTU
Institute of Computer Science
Software Engineering Curriculum

Ali Belakehal

Test Automation Case Study
Master’s Thesis (30 ECTYS)

Supervisor(s): Dietmar Alfred Paul Kurt Pfahl
Rainer Tikk

Tartu 2017

Test Automation Case Study
Abstract:

Over the last two years, the testing process of one of the software development teams at
LHV bank went through several development stages. However, there hasn't been any me-
thodical approach towards validating that evolution. The aim of this thesis is to conduct an
investigation of three key periods, and measure the cost and effectiveness of the testing
process during each period. A multilevel analysis is then performed in order to identify
problematic, as well as improvement patterns, and the factors associated with them. The
analysis is concluded with setting the goal of shifting the testing process to a more automated
model. Subsequently, the remainder of the thesis undertakes the task of combining a multi-
plicity of techniques that try to make such model achievable, by automating certain aspects
of the test automation process itself. These techniques are articulated as a proposed solution,
which is then implemented and validated in the context of this thesis.

Keywords:

Test automation, acceptance testing, regression testing, Fitnesse, parsing expression gram-
mar, code generation.

CERCS: P170

Testimise automatiseerimise juhtumiuuring
Liihikokkuvote:

Viimase kahe aasta jooksul on LHV panga iihe arendustiimi testimisprotsess ldbinud mitu
parendustsiiklit. Samas pole seda arengut metoodiliselt valideeritud. Selle t66 eesmérk on
analiiiisida kolme votmetdhtsusega perioodi ning modta nende testimisprotsessi maksumust
ja efektiivsust. Seejdrel viiakse ldbi mitmetasandiline analiiiis, et tuvastada problemaatilised
ja kasulikud mustrid ning nendega seotud tegurid. Analiiiisi tulemusel seatakse eesmérgiks
muuta testimisprotsess automatiseeritumaks. Sellest tulenevalt tegeleb iilejadnud 15putdo
erinevate meetodite kombineerimisega, et muuta selline ldhenemine lébi testide automa-
tiseerimise protsessi teatud osade endi automatiseerimise saavutatavaks. Nendest tehnikat-
est moodustatakse pakutav lahendus, mis seejirel implementeeritakse ja selle 15putdo
kontekstis valideeritakse.

Votmesonad:

Testimise automatiseerimine, vastuvotutestimine, regressioontestimine, Fitnesse, avaldi-
setuvastuse grammatika, koodi genereerimine.

CERCS: P170

Table of Contents

1

2
3

4

8
9

INEFOAUCTION L.ttt b e bbb 5
1.1 AIMOF e TRESIS .o nreas 5
1< 1= Tox (=Yoo 0] <o A USSR 5

BT 1EF TP PP R PPPR PP 7

BACKGIOUNG ..ottt e te et e e s reenaeaneenne s 8
K T0 O 11T ST PR 8

IMIBENOM <.t e s 10
4.1 Data Gathering Methodologycccueiiiiiiiiiieiiriee e 10

(=] AT o PSPPSR 10

METNOUOIOFY ...ttt bbbt 11

REITADITITY ...ttt e et e esre e e enes 14

BaASEIING ... reenes 15
5.1 The TeSHING PrOCESS......ecitiiiiitieitieieete st ettt sttt sreeaesnnesreas 16
5.2 IMBASUIBIMENTS ...ttt ettt ettt ettt et e e s e e e e beeeee e 17
5.3 Problem FOrMUIALION.........ccccuiiiiiieieiee s 19

Benefits of AULOMALEd TESTINGooveiviriiiiiiiiei s 19

Problems With AULOMALEA TESESoveiveiiiiiieieie e 20

SUMMIBIY .ottt b et b et b bt et enb e e b e ennenne s 21

IMProveMENt ProPOSALc.ccviivieiicie et sbe e sae e ene s 22
6.1 SOIULION OULIIN......cueeiiieeee et nrees 22

Replacing Manual TESLINGcccoveiieiieie e 22

INtroducing TSt GENETALIONc.ooviiiiiiiriiiiieiee e 24
B.2 ANAIYSIS ot re e r et 24

TBSE TYPES ..ottt 25

GIAIMIMAL ...ttt ettt b et e et e e se e e sb e e e ab e ekt e e ab e e nbneabeeabeeannee e 31
LG TR T o] 111 o] PSSO SSRRRRI 34

FIXTUIE GENEIALION ...ttt ettt 35

TeSt Data GENEIAION.c.veiieeeiieeie ettt et e et e e e steeraesreeaeeneenreas 41
6.4 VaAlIAALION ..o 46

(O70] 0] 111 [o S PRSPPSO 50
% R TU 1 110 -1 Y2 P SUPRUPRRTRN 50
A 2 €T | OSSPSR 50

RETEIBNCES ...ttt b e sr e e enes 51

N o] 017 0L SO PSPRSPPSSRRR 52

9.1 Task NameS MaPPINGcoiiiiiiieieieieie et 52

9.2 FUll Parsing GramIMarcccueiieiieiiesieeieseesee e eeeseeste e ssae e esresneessnesseaneesrens 54
ASSUMPLIONS ... bbb bbbttt b bbbt e e 54
The Parsing GramMMarcccvoiviiieieee e et e e ste et e sreesreanaesreeaeaneesres 54

9.3 IPM File Content EXampPle........oooiiiiiiiiie e 58

9.4 Generated File EXAMPIEccoveiieiiiieiece st 60

TR T N (o= USSR 62

1 Introduction

1.1 Aim of the Thesis

The lack of detailed analysis of the testing process in the project under study led to the rise
of many unchecked assumptions, and doubts about how effective test automation is, and
what could be done to improve the process. The thesis is set out to tackle two main matters
and their underlying components specified as follows:

e Firstly, to provide precise measurements of the factors related to testing, and their
respective effects. From there conclusions can be made on what the exact problems
are, and what the improvements should be. Thus, the first part of thesis will eliminate
the speculative approach, and provide well based conclusions. The sub goals are
outlined as follows:

o Measure the effectiveness and cost of current testing process.
o Pinpoint the problems with the current testing process.

e Subsequently, the thesis will then attempt to reinforce whichever behaviours that led
to improvements, and try to solve the issues that are found to be harmful towards the
progress of the testing process. A solution which incorporates these two aspects will
be explained, implemented, and finally validated to the best extent possible. The sub
goals are outlined as follows:

o Measure the effectiveness of test automation.
o Propose and implement a solution to the previously identified problems.
o Validate the elements of the solution.

In addition to eliminating the speculative approach towards developing the testing process,
and offering a solution to increase the effectiveness of said process, achieving those goals
will also make a case for testing process changes that could be adopted by other teams inside
the company.

1.2 Selected Project

The selected project for this case study is the Acquiring system at AS LHV Pank?, which
handles the card payments and the cash withdrawals that are done using LHV terminals,
ATMs, and Ecommerce portals.
This system is chosen for the following reasons:
- It’s the system with the most evolved testing process, the other systems’ testing
approaches are quite primitive.
- I am well acquainted with this system’s implementation, and the Business Model.
- | can put the collected data into context because of the history of my involvement
in the development and testing of this system.
- I'have all access to test any improvements that might result or be part of the thesis.

The acquiring system (ACQ) has been under development since August 2014. It consists
of several modules that provide the following services:
- Means for merchants to receive payments by debit and credit cards, through
physical terminals or virtual Ecommerce terminals.
- Providing detailed reports about those payments for merchants.

- Communication with Mastercard, Visa, and local banks in order to process those
payments.

L https://www.lhv.ee/en/business-client

https://www.lhv.ee/en/business-client

- Communication with Mastercard, Visa, and local banks in order to process ATM
transactions.

- Merchants’ management and accounting functionalities for the Back Office.
- Providing custom acquiring services for private clients with special requests, or
unconventional business models.

The project is one of the six main projects in LHV that have dedicated teams operating them.

2 Terms

This section has some definitions of terms that are used during the thesis, to ensure that they
mean what is expressed here and nothing else, because the reader might have a different
understanding of them.

Developer is a team member who is a Software Developer.

Tester is a team member who is a Quality Assurance Specialist, or a developer with
knowledge about testing.

Requirements (specifications) are a description of what is expected of a process, or a user
interface to achieve, given a set of conditions. Ideally, it’s a list of independent rules, and
restrictions about the input and the output of a process.

Task is an implementation of new requirements into the system, or of a modification of a
set of requirements, performed by the person assuming the developer role, within the context
of a specific task.

Epic is a set of tasks which collectively build-up to the same end goal. It can be thought of
as a sub-project.

Test case is a set of steps that are the result of an analysis of the requirements in question,
in the context of a specific task, which is performed by the person assuming the tester role.
Those steps are to ensure that the implementation of the requirements meets said require-
ments. A test case is said to have passed if the implementation meets the requirements, oth-
erwise it is said to have failed.

Requirements’ coverage is the extent to which a list of requirements is verified by a set of
test cases. It’s expressed as the ratio of the verified requirements — those covered by test
cases — over the total number of requirements, it can also be expressed as a percentage.

Manual testing is going through the test cases’ steps individually, which requires direct
interaction with the system by the tester.

Automated test is a scripted version of the test cases that can be executed, or scheduled to
execute, after which the test can be deemed as passed or failed, without the need for a manual
interaction with the system.

Regression test? an automated tests with the purpose of ensuring that new system changes
are not conflicting existing system behaviours.

Acceptance test? is an automated test which is created based on the requirements before a
task is released into live environment, in order to test a task, and become a regression test
after the release of the task.

Live bug is an anomaly detected in the live environment, which can be considered as a
breach of the requirements, or a deviation from them.

Hotfix are process blocking live bugs.

Cost is the number of man hours logged by a team member under an analysis, development,
or a testing activity.

2 https://en.wikipedia.org/wiki/Regression_testing
3 https://www.agilealliance.org/glossary/acceptance/

https://en.wikipedia.org/wiki/Regression_testing
https://www.agilealliance.org/glossary/acceptance/

3 Background

This section will give an overview of Fitnesse, from the perspective of how it is used in our
project.

3.1 Fitnesse*

Fitnesse software development tool aimed mainly at automating acceptance tests®. Fitnesse
tests are text based, written in a form that can be thought of as a more technical form of the
requirements. The text document is called a wiki page, and is a series of instructions. Those
instructions are implemented by — in the case of Java — classes and methods called fixtures.
Wiki

A series of tables of several types, their text form is delimitated by the character ‘|”, example:
| import |

| ee.lhv.acq.fitnesse.fixture |

| ee.lhv.acq.fitnesse.fixture.query |

| ee.lhv.acq.fitnesse.fixture.decision |

For readability purposes, wiki pages are edited in a browser, where a local server formats
them and provides facilities to run and debug them. Figure 0 shows how the previous text
format of the table is displayed in the browser:

import

ee.lhv.acqg.fitnesse.fixture
ee.lhv.acq.fithesse.fixture.query
ee.lhv.acqg.fitnesse.fixture.decision

Figure 0. Formatted wiki table.

For readability purposes, Fitnesse wiki examples will be shown in the HTML format in this
thesis document.

Wiki table types
Excluding the import table, we use three types of tables:

1. Script tables®: a flexible construct where every row can be implemented by a fixture
method, in the class which corresponds to the header of the table.

2. Decision tables’: takes several rows of arguments and performs an action on those
arguments and displays the result in the column with a name ending in *?’

3. Query tables®: executes a query, which is implemented in the fixture class corre-
sponding to its title, and displays its results in its body.

4 http://www.fitnesse.org/FrontPage

5 http://www.fitnesse.org/FitNesse.UserGuide.AcceptanceTests

6 http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.Script-
Table

7 http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.Deci-
sionTable

8 http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.Que-

ryTable

http://www.fitnesse.org/FrontPage
http://www.fitnesse.org/FitNesse.UserGuide.AcceptanceTests
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.ScriptTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.ScriptTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.DecisionTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.DecisionTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.QueryTable
http://www.fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.SliM.QueryTable

The description of the tables is left vague on purpose at this point, as the usage of the tables
will become clearer with examples in Section 6.

Fixtures

These are the implementations of the instructions found in the wiki tables. For example the
script table:

| script | Journal Job Fixture |
| prepare graph for types | CALC_CLAIM_ISSUER_MASTERCARD_FEE |

Means that there’s a Java class named JournalJobFixture, which contains a method named
prepareGraphForTypes(), and which takes one argument of type “string”; prepareGraphFor-
Types(String type).

Again, this will become clearer when the grammar is discussed at length in Section 6.

4 Method
The case under study is the testing process of the acquiring project described earlier.

In order to reach the goals mentioned in the introduction section, | will gather data as will
be described in Sections 4.1. The measurements are then aggregated into a result that can
be analysed, and from there problems will be highlighted as part of establishing the baseline.

Using the conclusions from the previous step, an experiment will be conducted in order to
validate those conclusions as well as the newly proposed testing model. Measurements will
be taken the same way as done for the baseline, and then compared against it.

4.1 Data Gathering Methodology

The data gathered in the context of this thesis is from three distinct periods, each represents
a period of time characterized mainly by the state of the automated tests.

The data is focused on two dimensions along which conclusions can be drawn in the baseline
and improvement sections, the first is effectiveness, which is has everything that relates to
requirements coverage, and resulting live bugs. The second covers timeliness, and testing
cost.

Periods

Every period is defined by a stretch of time during which an epic, or two related epics were
developed, tested, and covered by automated tests. The three periods are consecutive and
are the most recent time sections where test automation was starting to be used. All three
periods lasted around four months — not necessarily consecutive months-, and are roughly
of the same size and complexity. The first two periods will be used as a baseline for the
current testing process, and the third period will be used as a model for the improved pro-
cess.

Period 1 (P1)

Lasted from mid-December 2015 until mid-April 2016, this period represents an early stage
of the automated testing endeavour. This period is characterized by:

- A significant deficiency in requirements’ coverage.
- The most live bugs and hotfixes.

Period 2 (P2)

Lasted from the end of April 2016 until end of August 2016, excluding most of July because
of overlapping vacation times of team members. This period is characterized by:

A chaotic testing process, and frequent retesting.

An average level of requirements’ coverage.

- Animproved test automation level compared to the previous period.
Less bugs and hotfixes.

Period 3 (P3)

Lasted from the end of October 2016 until the end of March 2017, with fewer team members
than in the other two periods. This period can be considered as the ideal for our testing
process, and is characterized by:

- Mature testing and test automation processes, in comparison to the other periods.
- An optimal level of testing with automated tests as opposed to manual testing.

10

- A very good requirements’ coverage percentage.
- An acceptable testing cost, given the benefits.
- Less bugs and hotfixes.

This period is distinct from the preceding ones, in the sense that due to some special cir-
cumstances within the team, | as a developer had to take a testing role, and that was the
perfect opportunity for me to conduct an experiment in the context of this thesis, which
answer the following questions:

- Q1: Can testing in our project be replaced by automated testing, in most cases at
least?

- Q2: Can the tests be structured in a way that makes it possible to generate them?

- Q3: What would be the outcome of the desired level of test automation?

- QA4: Is the desired level of test automation reasonable considering the testers’ tech-
nical skill level, if not, then would the time saved by test generation compensate it?

Note: This period is the most recent, but the developed functionality is heavily used, and by
now all the scenarios which are described by the requirements have played out in the live
environment, and it’s safe to claim that the live bugs and hotfixes count will remain as it is
henceforth.

Methodology

Task Relevance
From each period, the core tasks from the involved epics are chosen and measured for:

- Development cost

- Testing cost

- Time spent on automated tests
- Requirements’ coverage

Where a core task is characterized by:

- Being essential to the achievement of its epic’s goal, as opposed to accessory or
auxiliary. An example of such distinction would be the difference between a calcu-
lation engine and a user interface enhancement.

- Eligible to test automation, in the sense that the task is not a one time job, for exam-
ple an SQL script that performs data manipulation in a very specific context that
doesn’t reproduce (or does so rarely), rather, automated tests for this task would
serve as acceptance, or at least as regression tests for the future.

Development Cost

Includes Analysis, requirements’ adjustment, and code development and fixes. Excludes the
time taken to write automated tests.

Testing Cost

Includes both manual testing, and the time spent writing automated tests. The time spent
writing automated tests is not exact, but reliably approximate.

The inaccuracy is inevitable because the tests are written by different team members, at
different times, within different tasks, for example the positive case test is usually written
by the task developer, and logged under development time, then the task tester would add
negative cases tests, and that time would be logged under testing time. Then due to time

11

constraints the task is released to the live environment with a less then optimal requirements’
coverage by the automated tests, and the coverage is rectified within a new task.

The confidence that the approximated measured time is reliable comes from following the
git commits related to the automated tests written for a specific task, and finding consistent
patterns:

- Considering the test complexity and length, the time taken to write it by a specific
team member is consistent with the skill level of that team member, and with the
time taken to write other tests of similar length and complexity.

- Considering the skill levels within the team, the time taken to write a certain type of
automated test is consistent with the time taken for a similar skill level team member
to do a test of the same type. Where the type is dependent on the process that’s being
tested, examples are: parsing, importing files, calculation engines, crosschecks, etc.

- Considering the tool used to write an automated test, the time spent on a test for a
specific team member is consistent with times from other tests using that tool, across
tasks.

After the separate time measurements are validated along the previously mentioned patterns
or factors, they are aggregated by task, then that task is assigned a test automation time
measurement, and the development time is adjusted for those tasks where it included time
for writing automated tests.

Initial Test Automation Cost

Refers to the percentage of the testing cost that was spent on test automation just before the
development done in an epic was released into the live environment.

Final Test Automation Cost

Refers to the percentage of the testing cost that was measured just after the last automated
test related to a specific period was added. In other words, it’s the initial test automation
cost plus the cost of all the added automated tests after the epic in question was released into
the live environment. These late automated tests are added either because of live bugs dis-
covered after the release, or they couldn’t be fit into the original release cycle due to time
constraints.

Requirements’ Coverage Calculation

The coverage is a percentage that represents the ratio of those requirements that have auto-
mated tests supporting them, over the total number of requirements for a specific task.

The requirements are not always well articulated, therefore making it hard to calculate the
coverage methodically. An initial idea was to weigh the requirements by importance, but
after testing and consideration, the weights seemed arbitrary and susceptible to bias, as what
| consider important might not be what the product owner considers important. Alterna-
tively, to ensure that the requirements are covered fairly, they are reformatted into a logically
separate list of rules, where more complex or nuanced requirements would have clear and
distinct sub-rules, and thus the disambiguation of the requirements spares a needless, and
potentially corrupt weighting system.

An example of a well formatted, and logically distinct list of rules, which could be used for
coverage calculation:

1. Job runs on the second period open of the month before fee calculation jobs

12

2. The job checks that the currency rate of the last day of the month is available (for
previous month), if not, an error message will be shown
3. Revenue month range is between the second day of the previous month and the first
day of the current month
Reset all active or future tier based pricing contracts to no active tiers
Find the first terminal installation date for every merchant
Calculation:
1. Set previous month revenue if the first terminal installation for a merchant is
in the month before that (current month - 2 or earlier)
2. Merchant revenue is calculated as the sum of all revenue claim entries with
direction credit minus all revenue claim entries with direction debit
3. In case the revenue is null then the estimated monthly revenue will be used,
if both are null than the zero tier will be chosen
7. Set the active tier with the closest tier minimum amount value to the revenue, which
is smaller than the revenue
8. The job expects at least one merchant has a revenue claim entry in the past month,
otherwise an error message will be shown
9. The job expects the currency exchange rate to be available for every revenue claim
entry date in the past month, even EUR

o oA

The next step is to go through the contents of the set of automated tests that cover a certain
process, and determine which requirements are covered, and from there the requirement
coverage percentage results.

To continue with the same example, the following are the tests which are supposed to cover
the process which the previously mentioned requirements describe, along with the rules they
cover:

Table 1: Requirements’ coverage calculation example

Test name Requirements covered
Calc Previous Month Revenue Multiple Currencies Success 3;4;5;6.1;6.2; 7,
Calc Previous Month Revenue No Currency Rate 2;9

Calc Previous Month Revenue Total Negative Revenue Success | 6.3

Coverage 9/11

Percentage 81%

Initial Requirements’ Coverage

The requirements’ coverage calculated at the time of putting the epic to the live environ-
ment, before any live bugs are discovered.

Final Requirements’ Coverage

The coverage calculated after the last time an automated test was added, which is usually
after most live bugs have been solved.

13

Live Bugs and Hotfixes

Linking live bugs to specific period requires analysing the effect of a bug and determining
the exact causes, the process can be summarized as follows:

1. Query from Jira® all the live bugs which were created after day zero; day zero being
the date when the first task from P1 was released into the live environment.

2. Go through the queried list and eliminate all those bugs which were caused by tech-
nical issues, such as a misconfiguration, or performance issues, such as unoptimized
or missing database indexes.

3. Classify the live bugs into one of the three periods which define the context of this
study, and dispose of those which are linked to other periods.

4. For every period’s live bug list, eliminate those which can be traced to a fault of an
external dependency, such as faulty files, and those which can be traced to business
errors, such as the lack of requirements. What should remain at this point are only
the live bugs which can be directly traced to development errors, and were not dis-
covered due to a lack of requirements’ coverage, whether from an incomplete man-
ual testing round, or an insufficient number of automated tests.

The final step is to summarize the number of live bugs for each period.

Hotfixes are the live bugs which blocked a time-critical part of the system, required imme-
diate attention, and had negative consequences that in some cases are limited only to the
loss of development time, and in others affect the business and the product owner.

Reliability

For the sake of precision, all the measurements were taken from three iterations of the meth-
ods described above. Those results which proved consistent across iterations were kept, and
on rare instances, when an inconsistency appears, a recalculation was performed.

For verification purposes, Appendix 9.1 contains the mapping of the task codes used when
presenting the measurements to the real task codes in our task management system.

9 https://www.atlassian.com/software/jira

14

https://www.atlassian.com/software/jira

5 Baseline

This chapter will first describe the current testing process in order to lay down the context.
Subsequently, the cost and efficiency measurements described in the previous chapter will
be presented. Finally, the problems with this version of the process will be discussed in
preparation for the solution chapter.

15

5.1 The Testing Process

No S

< Existing tests need update?
-

Update tests

Run tests

Send back to development

e . Send to Product owner for User Yes
< Tests pass? > Acceptance Test (explain and
No = " Yes guide user through the changes)
X -

Start the testing process of a task

Update the
implementation
according to the
updated
requirements

:::-<—|_‘/‘/Cha nges are covered I:;\
Yes \\ acceptance test? / No

Send back to testing

Perform Fixes |€——— / \

No ',,/‘Chanﬂes done meel\“\\
~_requirements (all test cases -~

Send back to developmem\-\‘ A

Send back to development

e

Set task status as ready to be

released
,-fﬁzwchanues covered I;y\

—

Yes “n\nacceplam:etesls?“//’No 1

Select test cases to be added to
acceptance tests

1

={ Start scripting a test case J

Yes "’/Iesl case requires Use?“‘w
interface manipulation?

~ - /
<

K

—All selected test cases are

now covered by acceptance
tests

Proceed to next task

Figure 1. The testing process.

16

Development
activity

Testing activity

The diagram in Figure 1, describes this testing process, which has been the main methodol-
ogy of testing for about two years.

Whenever a task is ready to be tested, a tester analyses the task in question, and decides
whether it’s covered by automated tests that need to be updated, or it should be manually
tested. In the latter case test cases are made based on the requirements, then the task is
manually verified based on those test cases. The task is sent back to development whenever
requirements are not met, or anomalies are detected, and after the fixes the task is manually
verified again, until all test cases pass.

Then a second round of user testing is done by the product owner to determine that the
requirements were understood correctly, and are adequate. In case they are not, they will be
adjusted, then tester analysis of the new or modified requirements and verification is done
again.

Finally, the test cases are prioritized by the tester, and as many of them are made into auto-
mated tests as time allows, before the task is deployed to the live environment.

5.2 Measurements

The following two tables show the task list of a specific period, along with the measured
attributes (development cost, testing cost, test automation cost, and requirements’ coverage).
The rows highlighted in blue are for the tasks which increased the requirements’ coverage
after the release, i.e. these tasks are excluded from the initial requirements’ coverage and
test automation cost calculations.

Task Development Testing cost (h) Automated Tests’ | Requirements’
cost (h) cost(h) Coverage

P1T1 40,50 34,50 3,90 15%
P1T2 14,75 14,47 4,73 70%
P1T3 48,82 37,50 4,25 15%
P1T4 40,32 45,83 13,72 66%
P1T5 13,32 7,07 3,43 70%
P1T6 5,00 18,55 3,33 50%
P1T7 3,33 3,75 1,12 40%
P1T8 7,13 6,12 1,37 10%
P1T9 0,25 5,12 0 0%
P1T10 0,33 4 0 0%
P1T11 6,33 3,38 0 0%
P1T12 5,00 2,80 0 0%

17

P1T13 | 0,00 10 10 100%
P1T14 0,00 26,63 26,63 100%
P1T15 | 0,00 36,22 36,22 100%
P1T16 6,75 5,58 2,25 75%
P1T17 19,85 16,70 3,80 40%
P1T18 15,10 37,52 1,02 10%
P1T19 19,50 53,12 6,48 33%
P1T20 |6,35 19,60 2,10 50%
P1T21 18,38 31,77 6,12 33%
P1T22 0,00 16 16 100%
P1T23 | 0,00 56 56 100%
Table 2: Period 1 measurements.
Task Development Testing cost (h) Automated Tests’ | Requirements’
cost (h) cost(h) Coverage
P2T1 32,22 131,27 17,35 15%
P2T2 92,53 84,99 56,86 65%
P2T3 32,18 43,66 17,33 67%
P2T4 24,38 50,13 13,13 50%
P2T5 2,60 28,73 1,40 100%
P2T6 59,37 55,47 31,97 81%
P2T7 16,25 8,75 8,75 80%
P2T8 0,65 12,68 0,35 0%
P2T9 16,90 15,60 9,10 70%
P2T10 | 64,32 145,63 34,63 100%
P2T11 24,70 26,30 13,30 70%
P2T12 1,63 4,21 0,88 20%

18

P2T13 7,64 35,61 4,11 66%
P2T14 12,68 6,83 6,83 80%
P2T15 25,35 25,15 4,60 46%
P2T16 0,00 13 13 100%
P2T17 0,00 30 30 100%
P2T18 0,00 35 35 100%
P2T19 0,00 24 24 100%

Table 3: Period 2 measurements.

Table 4 presents the final step of the aggregation as a summary of the two previous tables,
along with the effectiveness measurements (number of live bugs, and the number hotfixes).

Period P1 P2
Development cost (h) 271,02 413,37
Testing cost (h) 460,22 777,50
Initial requirements’ coverage 32% 58%
Initial test automation cost 13% 28%
Final requirements’ coverage 48% 70%
Final test automation cost 46% 41%
Number of Live bugs 26 16
Number of hotfixes 18 10

Table 4: Baseline data gathering results

5.3 Problem Formulation

This section will discuss measurement results, highlighting the aspects that are relevant to
this thesis.

Benefits of Automated Testing

Prevent Bugs

It’s needless to remind the importance of regression testing, the benefits have been well
established by now [1], and having those regression tests ready to be executed saves lots of

19

testing time, and eliminates the possibilities of human errors occurring, where if those auto-
mated tests were not present, a tester would have to go through and test all related parts of
the system related to the changes done in the task being tested, relying on memory, and this
model is time consuming, and error prone, which make it unsustainable and unreliable.

From the results presented in the previous chapter, it’s clear that as the requirements’ cov-
erage increases, the number of live bugs and hotfixes decreases. Taking difference in cov-
erage between P1 and P2, and comparing the number of live bugs and hotfixes presents
enough evidence to claim that preventing bugs is correlational with the requirements’ cov-
erage.

Prevents Retesting Manually

In P2 changing the design of the solution was a prominent problem, that’s the reason for the
incoherent development cost in comparison with P1 and P2. The testing cost also suffered
as a consequence. On three occasions the retesting of the whole epic had to be done because
the implementation had to be changed. The key point here is that even though the imple-
mentation went through several changes, the outcome of that implementation was the same.
In other words, if automated tests where prepared for the first iteration of testing, there
would have been no need to retest manually, instead, the prepared test would require slight
modifications and execution only. Additionally, the developers would have a more technical
and interactive form of the requirements to develop against.

Considering the time taken to finalize the test coverage in P2, if those tests were prepared
in the earliest iteration as acceptance tests, the Testing cost would have been two thirds of
what is resulted to be. So, a saved cost of 259.17 hours would have been the benefit of
preventing manual retesting by an early test automation decision.

Problems with Automated Tests

Cost

Writing automated tests is a time consuming task for testers to perform, due to it being
demanding in technical skill. For the same reason it’s also frustrating, and out of the comfort
zone of a tester, and that makes it a demoralizing process, compared to the manual testing
that they are adept at.

From analysing the data that led to time spent on test automation for P1, P2, testers take
from three to five times the length of time that a developer would take to write a test of the
same length and complexity roughly.

Non-covered Requirements

Nearly all tasks which have been covered by automated tests, the underlying requirements
are not fully covered, and for all those that were created during P1, P2, or prior, the coverage
is less than desirable, or in other words, it does not even contain the essential requirements,
and that poses the following issues:

- The non-covered requirements are forgotten, and with passing time, the team
memory of which requirements are covered and which are not becomes blurry, and
unreliable.

20

- Leaving uncovered requirements is error prone. Every time regression tests are con-
sidered passed, there’s an implicit assumption that the new changes are safely inte-
grated with existing parts of the system, where in reality they are well integrated
with only the parts of the system which are covered by automated tests, since auto-
mated tests are the only mean used for regression testing.

- The value of the automated tests is not well revealed to the product owner and the
business side, when bugs still appear, even though time was taken to make auto-
mated tests, time which from their perspective could have been spent on developing
and testing new functionality.

Summary

The problems with the current testing process can be stated as follows:

e Probl: Low requirements’ coverage by automated tests causes several sub-prob-
lems.

e Prob2: Retesting manually of tasks after logical, architectural changes in the code.

e Prob3: Writing cost automated tests is a costly process for testers to do.

21

6

This chapter will explore a pro
section.

6.1 Solution Outline

Improvement proposal

posed solution to the problems discussed in the previous

Start the testing process of a task

Tester analyses the Update the
task im ple:jr!e nttali‘(;ln
according to the
| updated 7
| requirements |
No
Existing tests need update? ~«—— - Changes are covered by mhmate t‘_ﬁt C:;;frl::‘l::l
Yes acceptance test? No on ml‘::g“m“
Yes | *
Send back to testing No Task requires user Yes
; interface interaction?
Update tests No Test the user
All cases covered by interface
—_— Fitnesse?
‘ Perform Fixes Write the wiki page, using
Yes
Implement the new
Y instructions (in the
» appropriate fixture)
Run tests
Prepare the test files and
sql scripts
Send back to development No
Yes Tests pass? %
Tests pass? pa
No
Yes
Send to Product owner for User
send back to development e Send back to deveiopment
guide user through the changes)
L Adjust requirements according
‘ Perform fixes ‘ B
/
No
Task accepted?
J Yes
Development Set task status as ready to be
activity released
—_—
Testing activity E
. N
Proceed to next task
C __.-/
Time consuming
testing activity
- 7

Figure 2. Improved testing process.

Figure 2 shows the testing process described earlier, with one omission that will be justified
in the next section, and two main modifications:

Replacing Manual Testing

The first modification is moving the test automation where the manual testing used to be, in
order to directly attack the first two problems (Probl, and Prob2):

22

- Retesting won’t be an issue, as the automated tests are proactively created, and de-
velopment fixes can be done against those prepared tests.

- Requirement coverage will be forced to be no less than ideal, since the task can’t be
marked as ready to be released until all requirements are verified, and in this new
model, verification of the requirements means that they will be covered by auto-
mated tests.

There has been an attempt to adopt this model in the past, but it failed due to the lack of
experience partly, but mainly due to the time consuming aspect of writing those tasks that
caused the tasks requested by the business to be late, and releases were postponed. However,
as the result from P3 will show, if testing time remains around double the time required for
development, that is; testing cost = 2 * development cost (+ development cost/10), then this
model is possible.

The Experiment

During P3 (details in Section 4.1) the testing was done according to the improved process
presented in Figure 2, and the results of the measurements are as follows:

Task Development cost (h) | Testing cost | Automated Requirements’
(h) Tests’ cost(h) | Coverage

P3T1 0,25 11,83 10,65 100%
P3T2 31,69 79,65 48,36 94%
P3T3 18,75 45,02 36,23 100%
P3T4 19,88 104,38 58,65 83%
P3T5 7,69 12,56 10 100%
P3T6 15,56 20,02 14,83 100%
P3T7 6,75 8,25 4,50 70%
P3T8 6,56 16,52 14,33 100%
P3T9 8 1 1 66%
P3T10 7,13 10,04 7,67 100%
P3T11 11 9,67 7,25 80%
P3T12 |2,88 1,96 0,75 100%
P3T13 5,88 9,96 4 100%
P3T14 | 16,38 14,46 4,50 80%
P3T15 18,75 22 7,56 80%
P3T16 1 2 2 100%

23

P3T17 64,83 121,58 85,70 95%

Table 5: Period 3 measurements.
And to contrast the result of the improved process to the baseline:

Period P1 P2 P3
Development cost (h) 271,02 413,37 242,96
Testing cost (h) 460,22 777,50 490,90
Initial requirements’ coverage 32% 58% 91%
Initial test automation cost 13,34% 28,37% 64,78%
Final requirements’ coverage 48% 70% 91%
Final test automation cost 46,31% 41,55% 64,78%
Number of Live bugs 26 16 7
Number of hotfixes 18 10 1

Table 6: Baseline and improved process data gathering results.

Table 6 serves as a validation for the first modification, and as a confirmation for the corre-
lation between requirements’ coverage and effectiveness. The significantly low number of
hotfixes and live bugs compared to P1 and P2 shows that the increased requirements’ cov-
erage is at effect, all within the acceptable testing cost range (testing cost = 2 * development
cost (+ development cost/10)).

Introducing Test Generation

The second modification, which the success of the proposed solution relies on, is to propose
a structure for writing automated tests that would render generating them automatically pos-
sible, and then to implement a tool that helps writing the tests. Figure 2 represents this mod-
ification with a lighter colour for the last two activities of automating a test case, which
means that they would take less time than they used to. This second part of the solution
attacks the remaining third problem Prob3.

It’s important to note that the solution relies on the combination of the two modifications.
As the first modification was validated, the rest of this chapter will be dedicated to the anal-
ysis and description of the second modification.

6.2 Analysis

The previously mentioned omission from Figure 2 is related to user interface automated test.
The focus will be on the Fitnesse tests solely for the following reasons:

- Only 20% of the requirements are about the user interface.

24

Only 30% of the code base is traced to functionality for the user interface.

94% of the automated tests are written in Fitnesse, and the user interface tests pro-
vide little to no value due to the nature of our system.

The user interface is a simplistic and minimalistic one, and testing it is better done
manually because automating it would require too much work then the benefits are
worth.

Now that it’s established that the goal is to make Fitnesse tests more structured and possible
to be generated, we can proceed by taking a close look at the existing tests and look for some
patterns.

Test Types

Excluding the user interface, there are five logical areas which constitute our system, and
thus five types of Fitnesse tests:

1.

File import tests: these are not interesting in the context of the problems at hand,
because they are generic test pages, and require no or very little scripting. Adding a
test for a process of such type, is as simple as

a. Adding a valid test file into the specified directory.

b. Then adding the process name to a list of processes to be ran.

c. Finally adding a check for the status of the process after running.
The three steps are highlighted in Figure 3, assuming that the process being added is
named IMPORT_FILE_ATM_SETTLEMENT _VISA.

25

e1eq 1531 eq|joy E

BS0Z'EQ'TT | ®3ep Jof sa|l} ||e &)8|3p

aInyx14 qor [ewnop 1uds

e1ep 159) Yoeq|joy

QI 0ror | NoTLdY)S3a

3002

pIpouaglewnof$

pi pouad |ewnofl Aq sious 189 :Aen

Bsed 358) aafisod e s| 3] se Aue aq Jupnoys

sabessau Joud ¥RYD

03131dW0D YSIN LNGWTTLES WLY 314 140duI 3poa adfy pue pIpouadjewnols p! pouizd Aq smess qof [ewnol 326 EEENEI|E
131dW0D W LNAWTILIIS WLY T L404HI apoa adAy pue pIpouadewnols p1 pouad Aq snyess qof |ewnof 126 Foay
SNIANId WSIA Wdl 314~ LH0dWI ap0) adAy pue pIpouad|ewnals pi pouad Ag smels qof |ewnel 18B ey
T3131dW0D 310303 1H0d3Y WLV Wdl 14 L40dIWT apoa adhy pue pIpouag|ewnols p1 pouad Aq smyess qof |ewnef 126 Foayp
3131dW0D 140434 WLV Wdl T L¥0dWI 3pod adAy pue pIpovad|ewnofs p! pouad Aq snyes qef jewnof 186 Py
T3131dW0D INAWTLIIS WLY Wdl 31 140dIT apoa adAy pue pIpoliadjewnof$ p! poyad Aq smess qof jewnof 136 ERETT)
SNIANId DWWl 3T LH0dKI apod adAy pue pIpouBd|ewnals pi pouad Aq smes qof jewnol 186 Py
03131dW0D AW Wdl T4 L40dWT ap03 adAy pue pIpouad|ewnols pi pouad Ag smes qof jewnol 186 Fayd
Q31T1dW0D 1406y dW Wdl T L40dII 3pod adAy pue pIpouad|ewnofs p! povad Aq snyess qof [ewnof 336 Payp
8507'€0°ZT a3ep yym sqol [ewnol uni | =pipouad|ewnols
oaE 1apjoy
8502°E0°7T alep Joj 3|141591 558025 aLleU M assalll wayy sail e Ul
G WSIA LNAWI1LIES WLV 1 LHOdWI W INIWITLL3S WY 3104 LH0dKI YSIA Wl 3TH LY0dII Q31033 LH0d3Y LY Wl I LH0dMWI sadhy

"L40dTY WLY Wdl ITHLYOAWI “LNIWITLIIS WLY Wl ITH LHOWI "WSIA WAl FTI LYOdWI DW Wdl ITH LYOdWT ‘L0dTY dIW Wl ITH LYW ‘dW Wdl 314 LYOdIWT

Joj ydeib ziedzud

2Inyx14 o [ewnop

1duos

B

BsS8UIY=58]I4104/8p)

850Z°€0°ZT=2

snjes qof [eusnol 231 pue sajqeLiea szijeniuf

Aiznbraunyxiy-assauyy bae ay e

anyx1yassauyy boeay|as

yodw|

sdo)s 159

Figure 3. Import file Fitnesse test example.

2. File extract tests: these are tests for processes which parse imported files and store

the parsed information into the database. In addition to the steps described in the

previous type, this type of tests has an additional part, which is a query table that
26

checks the parsing resulting from parsing to set of predefined values

Figure 4 highlights this table

Purpose

« To test the positive case of Extract ATM Settlements Visa job.
« All fields are mandatory, exceptions are:
o If Entry_type="v01' (number of transactions) then field "Ccy" (record currency) is empty
o If Entry_type="V01' (number of transactions) then field "DB_CR" (credit/debit indicator) is empty

Test steps

import

ee.lhv.acq fitnesse.fixture

ee.lhv.acq.fitnesse.fixture. query

Initialize variables and check journal job status

seript Joumnal Job Fixture

prepare graph for types EXTRACT_FILE_ATM_SETTLEMENT_VISA

init all files from folder fitnesse with name SuccessTestFile | for date | 12.03.2058
$journalPeriodld= run journal jobs with date 12.03.2058

check get journal job status by period id | $journalPeriodId | and type code | EXTRACT_FILE_ATM_SETTLEMENT_VISA | COMPLETED
sfdAtmSettlementVisalojold= | get journal job id by period id $journalPeriodId | and type code | EXTRACT_FILE_ATM_SETTLEMENT_VISA

delete all files for date 12.03.2058

Check atm visa records

Query: Get File By Name And Jounal Job Id | ATM_SETTLEMENT | $fdAtmSettlementVisalojold

CLEA_ROW_NO DEBIT_CREDIT AMOUNT | REP_DATE TYPE | JOJO_ID

1 C 1899.72 2015-03-06 00:00:00.0 | VISA | $fdAtmSettlementVisalojold
2 D 108338.66 | 2015-03-06 00:00:00.0 | VISA | sfdAtmSettlementVisalojold
3 null 0.00 2015-03-06 00:00:00.0 | VISA | $fdAtmSettlementVisalojold
4 C 338.61 2015-03-06 00:00:00.0 | VISA | $fdAtmSettlementVisalojold

Check error messages

« Shouldn't be any as it is a positive test case

Query: Get errors by journal period id | $journalPeriodId
CODE DESCRIPTION

Figure 4. Extract file Fitnesse test example.

3. Calculation tests: this is most useful and critical type of tests, and it’s for the pro-
cesses that take the parsed data coming from external systems, or an aggregation of
existing data from our system, perform complex calculations, and store the result
into the database, and in some cases send it to external systems.

At first glance many of these tests seem long, complicated, and confusing, but they
follow the same pattern, which will be described in the next section, for now it can
be thought of roughly as an arrangement of: data preparation, running a process, and
checking the result.

The confusion springs up from the inconsistent ways the tests are written, from a
structural perspective, for example data checking is done sometimes with query ta-
bles, and on other times using script tables. The other way in which the tests are not
consistent is the naming of the instructions (Fixtures), for example for checking a
result, sometimes ‘query’ + sentence is used, sometimes ‘get’, other times ‘check’,
or none of those.

Figure 5 is a section of the data preparation part of a calculation test, the highlighted
are different steps for data preparation.

27

Initialize variables and check the parent job status

script Journal Job Fixture

prepare graph for types | MERCHANT_TERMINALS_CHECK \

init file fitnesse/calcmerchantfees/calemerchantinterchangefee/successMultipleMerchants with type ‘ IPM_NETS_MP ‘ for date ‘ 12.03.2058
init file fitnesse/calcmerchantfees/calcmerchantinterchangefee/successMultipleMerchantsRep | with type ‘ IPM_NETS_MP_REPORT ‘ for date ‘ 12.03.2058
sjournalPeriodid= run journal jobs with date 12.03.2058

check get journal job status by period id SjournalPeriodId ‘ and type code ‘ MERCHANT_TERMINALS_CHECK ‘ COMPLETED
delete all files for date | 12.03.2058

Susacld= get usac id by member id code 15808

Display merchant ID's

Merchant id from branch id
usmeld? branchld
Susmeldl= | 8280091
Susmeld2= | 8280133

Display extracted first presentment data

S:;g\a:iget ipm first presentment daily by journal Sournalperiodid

| IPEP_ID) TRANSACTION_DTIME | TRIMMED_CARD_ACCEPTOR_ID_CODE | REFERENCE_NO | PROCESSING_CODE | CARD_TYPE | AMTREC_NET CURREC | CHARGE_FEE | PROCESSING_FE
sipfpldi= 87654321 001 2730 0 801IMC D0000000000001010 | 978 null null

Sipfpld2= 87654321 001 2730 0 801MC £0000000000001010 | 978 null null

$ipfpld3= 87654321 001 2730 0 801IMC C0000000000002020 | 978 null null

sipfpldd= 87654321 001 2731 0 GBIMT €0000000000003030 | 978 null null

Sipfplds= 12345678 001 2732 0 801MC D0000000000010101 | 978 null null

Sipfplde= 12345678 001 2732 0 801IMC C0000000000010101 | 978 null null

Sipfpld7= 12345678 001 2732 0 801MC €0000000000020202 | 978 null null

$ipfplds= 12345678 001 2733 0 6BOMT C0000000000030303 | 978 null null

Display IC fee claims data

IC fee claims data for merchant 1

Query: Get merchant revenue and fee claims by jope id and usme id and type | SjournalPeriodld $usmeldl | ACQ_MERCHANT_IC_FEE_LOCAL

D AMTREC_NET CURRENCY | CARD_TYPE | CLAIM_NAME FEE_PERCENT | FEE_FIXED_AMOUNT
Sipfpld1 D0000000000001010 | EUR 801MC ACQ MERCHANT_IC_FEE_LOCAL | 0.300000

Sipfpld2 C0000000000001010 | EUR 801IMC

Sipfpld3 €0000000000002020 | EUR 801MC

$ipfpld4 C0000000000003030 | EUR 68IMT ACQ MERCHANT_IC_FEE_LOCAL 0.012700

IC fee claims data for merchant 2

Query: Get merchant revenue and fee claims by jope id and usme id and type

$journalPeriodld

Susmeld2

ACQ_MERCHANT_IC_FEE_LOCAL

D

AMTREC_NET

CURRENCY

CARD_TYPE ‘ CLAIM_NAME

Hedards

[FEE_PERCENT | FEE_FIXED_AMOUNT
T

Figure 5. Calculation Fitnesse, data preparation example.

Figure 6 is a section of the data check part of the same test, in this case the check is
easily understandable, as the table used is consistently the query table.

28

Check claim entries for merchant 1

Query: Get claim entries by journal period id and job type code for merchant | $journalPeriodld | CALC_CLAIM_MERCHANT LOCAL IC_FEE | $usmeldl

DEBIT_CREDIT AMOUNT CUR_CODE USIS_ID | USME_ID | USAC_ID
D 0.03 EUR null Susmeld1 | Susacld
C 0.10 EUR null Susmeld1 | susacld

Check account entries for merchant 1

Query: Get acc entries by journal period id and job type code for merchant | $journalPeriodld | CALC_CLAIM_MERCHANT_LOCAL IC_FEE | $usmeldl

ACCOUNT_NO_D ACCOUNT_NO_C | AMOUNT CURRENCY_CODE | USIS_ID | USME_ID | USAC_ID
3038 1792 0.03 EUR null $usmeld1 | $usacld
1792 3038 0.10 EUR null $usmeld1 | Susacld

Check claim entries for merchant 2

Query: Get claim entries by journal period id and job type code for merchant | $journalPeriodld | CALC_CLAIM_MERCHANT_LOCAL_IC_FEE | susmeld2

DEBIT_CREDIT AMOUNT CUR_CODE USIS_ID | USME_ID | USAC_ID
D 0.30 EUR null susmeld2 | susacld
{5 0.92 EUR null $usmeld2 | $usacld

Check account entries for merchant 2

Query: Get acc entries by journal period id and job type code for merchant | $journalPeriodld | CALC_CLATM_MERCHANT_LOCAL_IC_FEE | $usmeld2

ACCOUNT_NO_D ACCOUNT_NO_C | AMOUNT CURRENCY_CODE | USIS_ID | USME_ID | USAC_ID
3038 1792 0.30 EUR null $usmeld2 | $usacld
1792 3038 0.92 EUR null $usmeld2 | susacld

Check first presentment data

« IC_FEE column should be updated

Query: Get ipm first presentment daily by journal period id | &ournalPeriodid

IPFP_ID TRANSACTION_DTIME | TRIMMED_CARD_ACCEPTOR_ID_CQDE | REFERENCE_NO | CARD_TYPE | CHARGE_FEE | PROCESSING FEE | IC_FEE | AM
Sipfpldl null null -0,030300 | nul
Sipfpld2 null null 0.030300 | nul
Sipfpld3 null null 0.060600 | nul
Sipfpld4 null null 0,012700 | nul
SipfpIds null null -0.303030 | nul
Sipfplds null null 0.303030 | nul
Sipfpld7 null null 0606060 | nul
Sipfplds null null 0.012700 | nul

Check error messages

« Shouldn't be any as it is a positive test case

\ Query: Get errors by journal period id | SjournalPeriodld \
[cope | DEScrIPTION |

Figure 6. Calculation Fitnesse, result checking example.

4. Crosscheck tests: these are tests specific to processes that check the result of the
calculation job, these are also the processes that are heavily tested and covered by
automated tests, because they ensure that the calculations were done correctly, or
indicate that they are not, so they can be fixed in time, before any legal liabilities
arise.

There are no new techniques used in writing this type of tests, roughly the same
pattern is respected; data preparation, running the checking process, and checking
that the checking process behaves as expected.

5. General tests: these are tests that can’t be classified under the previous four types,
and are testing other logical areas of the system, and are similar to the previously
described test types in structure and components. Examples, for tests which classify
under this type are: transactions’ execution, customer contracts’ manipulation, send-
ing emails, etc.

Figure 7 is an example of an invoice email sending process test.

29

Purpose

+ To test the positive case for sending merchant terminal fee invoices.

Test steps

Import required fixtures

import

ee.lhv.acq fitnesse fixture

ee.lhv.acq.fitnesse fixture.query

ee.lhv.acq fitnesse fixture.decision

Initialize variables and check journal job status

ate=02.03.2058

script Journal Job Fixture

prepare graph for types | JOURNAL_PERIOD_OPEN

SjournalPeriodld= run journal jobs with date 02.03.2058

check get journal job status by period id | $journalPeriodId | and type code | JOURNAL_PERIOD_CPEN | COMPLETED

Merchant id from branch id

usmeld? branchld
SusmeldLegal= | 8230091
script Terminal Fee Fixture

add missing invoice email address to merchants

ali.belakehal@lhv.ee

script Journal Job Fixture

prepare graph for types SEND_MERCHANT_TERMINAL_FEE_INVOICES

run journal job by period id | $journalPeriodld and type code | CALC_CLAIM_MERCHANT_TERMINAL_FEE

run journal job by period id | $journalPeriodld and type code | ACC_TRANSACTION_GENERATE_MERCHANT_TERMINAL_FEE

run journal job by period id | $journalPeriodld and type code | SEND_MERCHANT_TERMINAL_FEE_INVOICES
check get journal job status by peried id | $journalPeriedld | and type code | ACC_TRANSACTION_GENERATE_MERCHANT_TERMINAL_FEE | COMPLETE
check get journal job status by peried id | $journalPeriedld | and type code | SEND_MERCHANT_TERMINAL_FEE_INVOICES COMPLETE
$jobld= get journal job id by period id $journalPeriodld | and type code | SEND_MERCHANT_TERMINAL_FEE_INVOICES

Check terminal fee invoice deliveries
Query: Get terminal fee invoice deliveries by journal period id for merchant | journalPeriodld susmeldLegal
USME_ID PERIOD_START_DTIME | PERIOD_END _DTIME | STATUS | STATUS_DTIME | EMAIL
SusmeldLegal 2058-02-01 00:00:00.0 | 2058-02-28 00:00:00.0 | SENT ali.belakehal @lhv

Check error messages

* Mo error messages since this is a positive test case

Query: Get errors by journal period id

$journalPeriodld

CODE

DESCRIPTION

Figure 7. Invoice sending process Fitnesse example.

To summarize the findings up to this point, from a syntax point of view:

All tests are an arrangement of three types of sections, not organized in any particular order

IS some test types, but seem to have a specific order of appearance in other types:

Data preparation, which is through prepared files, or database manipulation instruc-

tions.

Running processes, which are an already existing set of instructions used across the

tests.

Data verification, which are a set of instructions for checking the database state.
Most of the time they are Query tables, but sometimes they can be under Script ta-

bles.

30

From what has been presented so far, it seems like introducing some rules to the vague
pattern that revealed itself, could lead to a more formal expression of these tests, which in
turn could make their automatic generation attainable.

Putting this information aside for a moment, it’s time to introduce a useful concept that will
help parse those tests and enforce structure.

Grammar

Roughly expressing, a grammar is a formal notation, detailed enough to describe how a
language is built, or how the alphabets of a language should be combined to construct syn-
tactically sound instances of that language [2].

Without getting into the discussion of whether Fitnesse is a formal language®®, and of what
type!l. Let there be the explicit assumption that it is a formal language with a context-sen-
sitive grammar'2, and that’1l prove to be a correct enough assumption for the implementa-
tion purposes to take advantage of the grammar’s properties.

Fitnesse Alphabet (Tokens)
These are the elementary symbols which Fitnesse is built with:

Separator: the character |’

Import keyword: the lower case literal ‘import’

Script keyword: the lower case literal ‘script’

Check keyword: the lower case literal ‘check’

Query keyword: the capitalised literal ‘Query’

Comment keyword: the lower case literal ‘comment’

Word sequence: a whitespace separated sequence of lowercase literals; used for wiki

instructions

8. Capitalized words’ sequence: a whitespace separated sequence of capitalized liter-
als; used for Fixture names

9. Capitalised word sequence: a capitalized word followed by a word sequence; used
for Query instructions

10. Camel case literal: a lower camel case string

11. Capitalized camel case literal: an upper camel case string

12. Database entity name: an all upper case snake case literal

13. Variable name: the character ’$’ concatenated with a lower camel case or snake case
string.

14. Fixture class path: a *.” Separated sequence of lower case literals

NookrwnpE

Figure 8 highlights examples of occurrences of some tokens in the list.

10 hitps://en.wikipedia.org/wiki/Formal language
11 hitps://en.wikipedia.org/wiki/Chomsky hierarchy
12 hitps://en.wikipedia.org/wiki/Context-sensitive_grammar

31

https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Context-sensitive_grammar

Test steps

Import required fixtures

import | 2

ee.lhv.acq.fitnesse.fixture
|ee.Ihv‘acq.ﬂtnesse.ﬂxture‘query | 14
ee.lhv.acq.fitnesse.fixture.decision

Initialize variables and check journal job status

[script |3 [lournal Job Fixture| 8

prepare graph for types | JOURNAL_PERIOD_OPEN
SjournalPeriodIdF 13 run jeurnal jobs with date 02.03.2058
check] 4 get journal job status by period id | $journalPeriodId | and type code | JOURNAL_PERIOD_OPEN | COMPLETED

Merchant id from branch id
usmeld? branchId
susmeldlegal= | 8280091

script Terminal Fee Fixture
add missing invoice email address to merchants | ali.belakehal@lhv.ee

script Journal Job Fixture

prepare graph for types 7 | SEND_MERCHANT_TERMINAL_FEE_INVOICES

[run journal job by peried id | $journalPeriodld and type code | CALC_CLAIM_MERCHANT_TERMINAL_FEE

run journal job by period id | $journalPeriodId and type code | ACC_TRANSACTION_GENERATE_MERCHANT_TERMIMAL_FEE

run journal job by period id | $journalPeriodId and type code | SEND_MERCHANT_TERMINAL FEE_INVOICES

check get journal job status by period id | $journalPeriodId | and type code | ACC_TRANSACTION_GENERATE_MERCHAMNT_TERMINAL_FEE
check get journal job status by peried id | $journalPeriodId | and type code | SEND_MERCHANT_TERMINAL_FEE_INVOICES

$jobId= get journal job id by period id $journalPeriodId | and type code | SEND_MERCHANT_TERMINAL_FEE_INVOICES

Check terminal fee invoice deliveries

9
[Query} [Get terminal fee invoice deliveries by journal period id for merchant || $journalPeriodld 12 | SusmeldLegal
USME_ID [PERICD_START_DTIME | PERIOD_END_DTIME | STATUS | STATUS_DTIME | EMAII
susmeldLegal 2058-02-01 00:00:00.0 | 2058-02-28 00:00:00.0 | SENT ali.bel

Figure 8. Highlighted Fitness alphabets.

Formalising Fitnesse instructions

Now that the core Fitnesse constituents are known, it’s time to identify where structure can
be introduced. Two areas where this formalisation can be injected:

1. Organization: which is the order in which the wiki tables appear, or the three test
parts (data preparation, process execution, and result verification), but that would be
limiting if done too strictly, because many tests rely on these order being loosely
controlled, for example, crosscheck processes’ tests prepare data for multiple pro-
cesses, and execute them in a specific order.

2. Instruction wording: this is where instructions can be improved from English sen-
tences that follow no specific pattern, to English sentenced that respect given rules
for writing instructions. This would make them possible to parse, and later on gen-
erate to Java code.

As a sample of the instruction wording enhancement, let’s look at an example from the
English language, and see how it translates to the Fitnesse context. A very simplistic repre-
sentation of writing sentences in English [2] is:

- A sentence is a noun followed by a verb, or a sentence followed by a conjunction
followed by a sentence.

- A conjunction can be an ‘and’, an ‘or’, or a ‘but’.

- A noun can be a ‘bird’, or a ‘fish’.

- Averb can be ‘fly’, or ‘swim’.

32

Formally, this is expressed as follows:

- Sentence:

o Noun Verb

o Sentence Conjunction Sentence
Conjunction:

o ‘and’
o ‘or’
o ‘but’
- Noun:
o ‘bird’
o ‘fish’
- Verb:
o ‘fly’
o ‘swim’

To build a sentence within this framework, is to have it conform to the defined rules, so
Figure 9 shows how the sentence ‘birds fly and fish swim” maps to those rules.

Sentence
T

Sentence Conjunction Sentence

| 1 1
I I I I
Moun Werb MNoun Werb
birds fly and fish SWim

Figure 9. Sentence mapping to rules.

Following the same logic, a query instruction grammar can be stated as follows:

- Aquery instruction is a query keyword ‘Query’ followed by a colon °:” followed by
‘Get’ followed by a table name, followed by the conjunction ‘by’, and followed by
a list of parameter names.

- A table name is a word sequence, which doesn’t contain the word ‘by’ (in the formal
notation this restriction is implied from the parent rule).

- Alist of parameter names, is a parameter name, or a parameter name followed by
the conjunction ‘and’, followed by a list of parameter names.

- A parameter name is a word sequence, which doesn’t contain the word ‘and’ (in the
formal notation this restriction is implied from the parent rule).

In a formal notation, this becomes:

- Query instruction:
o ‘Query: Get’ + table name + ‘by’ + parameter names list
- Table name:

33

o Word sequence
- Parameter names list:

o Parameter name

o Parameter name + ‘and’ + parameter names list
- Parameter name:

o Word sequence

Figure 10 shows the mapping of the query instruction ‘Query: Get merchant payment by
transaction date and card type’.

Query instruction

table name Conjunction parameter names list
A A T
parameter name Conjunction parameter names list
A A
Query: Get merchant payment by transaction date and card type

Figure 10. Query instruction mapping to rules.

This implies that a parser can be implemented along these rules. Subsequently, a logic that
uses the parser’s result will have all the required information to generate the code for this
query instruction: which table to query, and which lookup conditions to apply.

A parsing expression grammar® can be formulated for the remaining types of instructions,
and table. It’s important to note that the full power of this technique comes from its extend-
ibility, whenever a new pattern in writing Fitnesse tests is detected, it can be formalized as
demonstrated, then implemented into the parser, and from there Java and SQL code can be
generated based on that pattern.

The grammar that is used in the tool implementation, which is the realization of the proposed
solution, will be presented in the next section.

6.3 Solution

In section 2 (Analysis) we reached the conclusion that tests are comprised of three logical
parts: data preparation, processes’ execution, and result verification. An additional conclu-
sion was that the process execution part is generic and is reusable from existing fixtures, so
it can be removed from the context of this attempt of a solution.

The attention now move to those data related parts, and now they should be expressed in
further detail, so that a concrete solution can be reached. The first of which (data prepara-
tion) will be solved along two dimensions; Fixture generation, and test data generation, and

13 https://en.wikipedia.org/wiki/Parsing_expression_grammar

34

https://en.wikipedia.org/wiki/Parsing_expression_grammar

the second of which was mostly solved in the previous section, and will be entirely solved
in the next.

Fixture Generation

The full parsing grammar is present in Appendix 0 to serve as a reference, and this section
will focus on the two most relevant issues.

1. The first issue is data preparation, which we can address by reintroducing the deci-
sion table from Section 3.1, and proposing it as an alternative to the use of test files
as the main source of test data for reasons which will be uncovered in the Test Data
Generation section. As referred to in the full grammar:

Batch insert fixture table

- Separator + Fixture class path + Capitalized camel case entity name + Separator +

newline
¢ 5 . . .
- Separator + columns to be matched + ‘get” + Capitalized camel case entity name +
1"
- values table
ee.lhv.acq.fitnesse.fixture.MerchantPaymentInsertFixture
processingCode | cardAcceptorldCode | amtrecDb amtrecCr countDebits | countCredits | merchantId | cardTypeld | referenceNo | currec | getMerchantPaymentId?
000000 87654321 001 D0000000000001010 | CO000000000003030 | 1 2 8280091 401IMA 2711 978 SmpRowl=
000000 87654321 001 D0000000000010101 | CO000000000030303 | 1 2 8280091 680MB 2712 978 SmpRow2=
000000 87654321 001 D0000000000101010 | CO000000000303030 | 1 2 8280091 ADDAX 2713 978 SmpRow3=
000000 87654321 001 D0000000001010101 | CO000000003030303 | 1 2 8280091 767AX 2714 978 $mpRowd=

Figure 11. Batch insert table.

After subjecting the table from Figure 11 to the batch insert fixture table grammar, the re-
sulting information will be:

1. The fixture class name, and to path for where to generate it, if it doesn’t exist, from
the first line, in this example it is ‘ee.lhv.acq.fitnesse.fixture.MerchantPaymen-
tInsertFixture’.

2. The database table for which the insert fixture is to be created, from the last column
of the last line, in this example it is ‘MerchantPayment’.

The remaining lines in the table are the values to be inserted, and are used when the test is
executed, that is, they are not used in generating the fixture, and can be discarded.

Now that the parsing part is over, the generation logic uses those information following the
algorithm:

1. Convert the table name to an upper camel case.
2. Get all tables which are related to the table at hand by a non-null foreign key recur-
sively.
3. For each related table, which doesn’t have an existing fixture generated:
1. Get the table metadata (columns’ name, data type, size if applicable, and
whether the column is mandatory foreign key).
2. Generate the corresponding Java fields, with their getters and setters.
3. Generate the SQL insert statement, and the insert method
4. Amalgamate the generated code into a syntactically sound insert fixture
class.
5. Save the class name, path, and the corresponding database table into the ex-
isting fixtures table for future usage.

35

To eliminate any ambiguities, let’s go through the algorithm following the example started
in Figure 11. Assuming the following database structure:

Table 7: Demonstration database structure

Table

Columns Foreign keys | Related
Tables

MERCHANT_PAYMENT | [PAYMENT_ID] INT NOT NULL IDENTITY MERCHANT_ID MERCHANT

[PROCESSING_CODE] VARCAHR(16) NOT NULL
[CARD_ACCEPTOR_ID_CODE] VARCAHR(13) NOT NULL
[AMTREC_DB] VARCAHR(16) NOT NULL

[AMTREC_CR] VARCAHR(16) NOT NULL
[COUNT_DEBITS] INT

[MERCHANT_ID] VARCAHR(15) NOT NULL
[CARD_TYPE_ID] VARCAHR(5) NOT NULL
[REFERENCE_NO] INT NULL

[CURREC] NUMERIC(3) NOT NULL

MERCHANT [MERCHANT_ID] VARCAHR(15) NOT NULL USER_ID USER

TIVE_ID TIVE
[EMAIL] VARCAHR(50) NULL -

[PHONE] VARCAHR(50) NULL
[USER_ID] INT NOT NULL
[REPRESENTATIVE_ID] NULL

USER

[USER_ID] INT NOT NULL IDENTITY

[NAME] VARCAHR(50) NOT NULL
[REGISTRATION_CODE] VARCAHR(50) NOT NULL
[TYPE] VARCAHR(50) NOT NULL

Given that, the steps would be:

1.

2.

The table name obtained from the parser as ‘MerchantPayment’ is converted to
MERCHANT_PAYMENT
The table MERCHANT _PAYMENT refers to the table MERCHANT, which in turn
refers to the tables USER and REPRESENTATIVE, but as the relation to REPRE-
SENTATIVE is not mandatory, then only USER is kept, and USER table doesn’t
refer to any other tables, so the final list of tables for which fixtures are to be created
is {MERCHANT_PAYMENT, MERCHANT, USER}
The reason for creating fixtures for the related tables as well will be explained and
become clear when the generation is done.
For the purpose of demonstration, let’s assume that the table MERCHANT already
has a generated insert fixture class named ‘MerchantInsertFixture’, so the following
steps will apply for MERCHANT_PAYMENT, and USER.
a. First iteration :
1. The table meta data which will be used to create the fields and their
helper methods:

36

[NAME] VARCAHR(50) NOT NULL REPRESENTA- REPRESENTI-

Column name Data type Size Related
Table
VARCAHR 16
PROCESSING_CODE
VARCAHR 13
CARD_ACCEPTOR_ID_CODE
VARCAHR 16
AMTREC_DB
VARCAHR 16
AMTREC_CR
INT
COUNT_DEBITS
VARCAHR 15 MERCHANT
MERCHANT_ID
VARCAHR 5
CARD_TYPE_ID
INT
REFERENCE_NO
NUMERIC 3
CURREC

2. For this step, all fields should be generated into code, but for the
purpose of demonstration, only 3 will be presented:

Field Corresponding Java code

PRO- @5etter private static 5String processingCode;

CESSING_CODE public String getProcessingCode () |
if(processingCode = null) {

processingCode = getRandomString();

}

return procezzingCode;

COUNT DEBITS private static Integer countDebits;
- pukbklic Integer getCountDebit () |
if({countDebits — mmll) {
countDebits = getRandomInteger () ;
}
return countDebits;

¥

public woid setCountDebit (String walue) {
countDebit = Integer.parselnt(values);

¥

MERCHANT_ID @Setter private static String merchantId;
private static MerchantInsertFixture merchantIdInserter =
new MerchantInsertFixture():
public S5tring getMerchantId () {
if(merchantId = null} {
merchantId = merchantIdInserter.getMerchantId()
}

return merchantId;

Further explanation about the getters’ role will be at the end of the
demonstration.
3. Figure 12 shows the resulting SQL insert query for this table.
4. Figure 13 shows the whole generated insert fixture class, some of the
fields and their helper methods were omitted for conciseness.
5. The table name and the generated Fixture data will be saved in a
table that is meant to track the existing fixtures.
b. Second iteration:
The table USER will go through the same steps described in the first itera-
tion.

37

ruklic Long getMerchantPaymentId() {

scriptHelper.runScript (String query = String.format ("IN

s, %=, %3, 3d, %=, %=, %4,

getProcessEngCodet}, EetCaEdAcceptorIdCodgt}, getAmtrecDb (), getAmtrecCr(), getCountDebits(),
getMerchantId(), getCardTvpeld(), getReferenceNo(), getCurrec())):

return scriptHelper.getLong("SELECT @EIDENTITY");

import
import
import
import
import

public

Figure 12. The resulting insert query method.

lombok.Setter;
ee,lhv.acqg.unit.ScriptHelper;
ee,lhv,acq.fitnesse.spring.BeanlUtil;
org.springframework. jdbc.core.JdbcTemplate;
org.apache.commons. lang. StringUtils;

class MerchatPaymentInsertFixture extends BaseInsertFixture {

@Setter private static String processingCode;
public String getProcessingCode () {

}

pri

if({processingCode = null) {
processingCode = getRandomString()

}

return processingCode;

vate static Integer countDebits;

puklic Integer getCountDebit () {

}

if(countDebits =— nmll) {
countDebits = getRandomInteger():;
1

return countDebits;

public void setCountDebit (String value) {

}

countDebit = Integer.parselnt(value);

@5etter private static String merchantId;
private atatic MerchantInsertFixture merchantIdInserter =

new MerchantInsertFixture():

public String getMerchantId () {

if{merchantId = null) {
merchantId = merchantIdInserter.getMerchantId():

}

return merchantId;

/ The remaining fields

pukblic Long getMerchantPaymentId() {

scriptHelper.runScript {(5tring query = String.format ("I

{ [FROCESSING CODE CLE C CODE o EC D

getPIocessEngCodet}, EetCa;dncceptorIdCOdgt}, getAmtrecDb (), getimtrecCr(), getCountDebits(),
getMerchantId(), getCardTypeld(), getReferenceNo(), getCurrec())):

return scriptHelper.getLong ("SELECT E@IDENTITY");

Figure 13. The full resulting insert fixture class.

(¥, %=, %2, %= d, %=, %3, %d

agym
33)",

Before continuing, some explanations are required to clarify remaining ambiguities. The
way Fitnesse executes the general purpose table, which is the batch insert table in the context
of this solution, is by executing the insert method for every line in the values section. The
fields are initialized from the strings provided under the field’s column in the wiki table,

38

that’s the reason why setters are required. For strings the default setter would do, but for
other types we have to define a setter that parses the string provided in the wiki, into a value
of the corresponding field’s type.

In the case where:

1. A column in the wiki doesn’t have the value to initialize the corresponding field
2. The column is missing all together form the wiki page

The corresponding Java field will be null, and when the insert statement is executed, it will
be rejected due to the NOT NULL constraints. An example illustrating these cases is shown
in Figure 14,

ee.lhv.acq.fitnesse fixture.MerchantPaymentInsertFixture
processingCode | cardAcceptorldCode | amtrecDb

amtrecCr countDebits | merchantld | cardTypeld | referenceMo | getMerchantPaymentId?

000000

87654321 001

D0000000000001010

C0000000000003030

1

8280091

401IMA

2711

$mpRowl=

000000

87654321 001

D0000000000010101

C0000000000030303

8280091

689MB

$mpRow2=

000000

87654321 001

D0000000000101010

C0000000000303030

1

8280091

ADDAX

2713

$mpRow3=

000000

87654321 001

D0000000001010101

C0000000003030303

1

8280001

T67AX

2714

EmpRowd=

Figure 14. Missing currec column, and some values.

The getters then fill these null values in case of normal fields with random values, and in
case of foreign key fields they are filled by making the corresponding related table’s insert
fixture class return a valid foreign key value to refer to. The called insert fixture class will
do the same in case its underlying table refers to other tables also. This recursive process is
guaranteed to work because of step 2 of the algorithm, which ensures that any missing insert
fixture classes for related tables are generated.

The fields are static to ensure that this process of recursive foreign key handling is done
once only (the first time around), and not for every line that is missing a column.

This automatic filling and foreign key handling feature is important to cut down the time
that is wasted on maintaining a valid state of the database, and the foreign keys relations.
This way testers can focus on inserting valid data that is for the process being tested, and
that only.

The second issue is result verification, for which the parsing grammar has already been
explored. The final parsing grammar for the query table becomes:

Query fixture table

- query fixture table header + newline
- separator + columns to be matched

Query fixture table header

- separator + "Query: " + Query fixture class name + ‘s’ + separator + separated argu-
ments
- separator + "Query: " + Query fixture class name + separator + separated arguments

Query fixture class name
- Get + database table name + connected parameter names
Connected parameter names

- connector + lowercase entity name
- connected parameter names + connector + lowercase entity name

Connector

39

- "by" + white spaces

- "and" + white spaces
- "with" + white spaces
- "for" + white spaces

- "from" + white spaces

Display merchant payment data

Query: Get merchant payments by card type id and merchant id | 401MA

8280091

PAYMENT_ID

REFERENCE_NUMBER

PROCESSING_CODE

CARD_TYPE_ID

AMTREC_DB

AMTREC_CR

CURREC

MER

2711

0

401MA

D0000000000001010

C0000000000003030

978

828

2712

401MA

D0000000000010101

C0D000000000030303

978

828

2713

401MA

D0000000000101010

CO000000000303030

978

828(

2714

0
0
0

401MA

D0000000001010101

C0000000003030303

978

828(

Figure 15. Query table example.

Again, the first line is the only useful section from the table for the parsing and code gener-

ation purposes, the rest of the table is when the tests is ran.

After applying the improved grammar on the first line the same way we did in Formalising

Fitnesse instructions, the information extracted are:

- The main queried table name; in the Figure 15 example, it would be ‘merchant pay-

ment’
- The name of the fixture query class that is to be generated
- The query constraints; in this example ‘card type id’ and ‘merchant id’

Adding that the generation algorithm is:

1. Convert the table name to the upper snake case format.

2. Convert the parameter names to upper snake case format.

3. Use them to generate the query.

4. Convert the fixture class name to an uppercase camel case format.
5. Generate the remaining of the class code

Figure 16 highlights these steps.

package ee.lhv.acqg.fitnesse.fixture.guery’

4
public c;ass|GetMercnantPaymentsEyCardTypeIdAndMercnantId|extends SglQueryFixture {

3 private final static String S5QL = "SELEC

+ "WHERE [CARD TYPE_ID = ? AND ME

[MERCHANT PAYMENT]| 1

super (SQL, cardTypeld, MerchantId):
}

public GetMerchantPaymentsByCardIypeldAndMerchantId{Integer cardIypeld, String MerchantId) {

Figure 16. Generated query fixture class.

For now this simple version is enough as a proof of concept, but it’s important to note that
this can be extended to generate more complex queries, including multiple joins and com-

plex conditions.

A projection of how it could be extended (which is also what’s currently being imple-

mented):
Query fixture class name

40

- Get + database table names + ‘by’ + connected parameter names
Database table names

- lowercase entity name
- database table names + ‘and’ + lowercase entity name

Connected parameter names

- lowercase entity name
- connected parameter names + connector + lowercase entity name

Test Data Generation

The other part of data preparation is getting the test data right, adequately to the test case at
hand. Up until P3 this was done by preparing test files. For Import and extract tests’ types
files are necessary, but for those tests there aren’t complicated test cases to prepare for, and
this simple type of files is prepared by our partners. In order to create complicated scenarios
for calculation tests’ cases, those simple test files are then modified, Appendix 9.3 shows
an example of a test file.

The advantage of files is that our system has checking processes which make sure that the
files prepared for testing have valid data. However, the disadvantages are many, and out-
weigh the advantages by a large margin:

e They are machine readable, as shown in Appendix 9.3.

e They have checks encoded in them, so changing or adding values to them would
render them invalid and thus unusable. In order to do so successfully, a tester has to
have a working memory on the structure of the file, or refer to the file sender docu-
mentation in order to know what else to add, and where else to modify the files to
maintain their integrity.

e They contain more data than necessary for a test case, and preparing that extra data
is necessary because before reaching the calculation process to be tested, the files go
through extraction and check processes which have to succeed, so that the calcula-
tion test can have valid data to work with.

e It’s not good practice to put test data out of the test wiki page (into separate files), it
makes the test less readable.

These factors makes working with files a laborious and extremely time consuming task. For
this reason, in P3 | set out to prove that setting up the database state, that is, by only inserting
and manipulating data that’s relevant to the process being tested, can be as effective as the
usage of files, given that the tester is careful to maintain a valid database state (valid to the
process being tested). That goal was accomplished on both fronts (cost, and effectiveness),
in comparison between P1 and P3, as demonstrated in Sections 5.2 and 6.1.

After introducing the batch insert feature, this data preparation alternative ought to be much
simpler because of the feature of filling in complementary required data with random values
when not provided, with the assumption that it’s not provided because it’s not needed.

The next section will be one extra facility, which combined with what has been discussed
so far, aims to:

2. Make the data preparation an even faster process.
3. Eliminate the assumption of the ‘tester being careful in maintaining a valid database
state’.

41

4. Eliminate the assumption of the ‘data not being provided because it’s not needed’ to
the most possible extent.

Scrambled Data

The idea here is to create a database that is a big enough sample (a year worth of data), from
the live environment database, with the sensitive data censored. Given that the database is
fairly normalized (normalized to a practical extent), the sample should remain meaningful,
as the sensitive data is used for reporting and user interface purposes, and not needed for

calculations.

This procedure of creating a scrambled data test database is a one time job using a simple
script. Unfortunately, the script would reveal the internal database structure, so it’s not made
public in the context of this thesis. Nevertheless, an example should illustrate the gist of this

script.

Assuming that the database structure is as follows:

Table 8: Demonstration database structure

Table

Columns

Foreign
keys

Related
Tables

MERCHANT_PAYMENT

[PAYMENT_ID] INT NOT NULL IDENTITY
[PROCESSING_CODE] VARCAHR(16) NOT NULL

[CARD_ACCEPTOR_ID_CODE] VARCAHR(13) NOT NULL
[CARD_ACCEPTOR_LOCATION] VARCAHR(50) NOT NULL

[AMTREC_DB] VARCAHR(16) NOT NULL
[AMTREC_CR] VARCAHR(16) NOT NULL
[COUNT _DEBITS] INT

[MERCHANT_ID] VARCAHR(15) NOT NULL
[CARD_TYPE_ID] VARCAHR(5) NOT NULL
[REFERENCE_NO] INT NULL

[CURREC] NUMERIC(3) NOT NULL
[MESSAGE] VARCHAR (255) NOT NULL
[MESSAGE_HASH] VARCHAR (255) NOT NULL

MERCHANT_ID

MERCHANT

MERCHANT

[MERCHANT _ID] VARCAHR(15) NOT NULL
[NAME] VARCAHR(50) NOT NULL

[EMAIL] VARCAHR(50) NULL

[PHONE] VARCAHR(50) NULL

[USER_ID] INT NOT NULL
[REPRESENTATIVE_ID] NULL

USER_ID

REPRESENTA-
TIVE_ID

USER

REPRESENTI-
TIVE

USER

[USER_ID] INT NOT NULL IDENTITY
[NAME] VARCAHR(50) NOT NULL

[REGISTRATION_CODE] VARCAHR(50) NOT NULL

[TYPE] VARCAHR(50) NOT NULL

The algorithm to get the test database would be:

1. Copy a year worth of data from the backup live database into a newly created data-

base.

42

2. Disable all foreign key constraints temporarily.
3. Identify the sensitive columns. In this example:

Table Column Reason
MERCHANT_PAYMENT CARD_ACCEPTOR_ID_CODE The real payment terminal id
CARD_ACCEPTOR_LOCATION | The real address location of that payment
terminal. It consists of two parts, the first is
another merchant specific code, similar to
merchant_id, and the second part is a 3 digit
number indicating the number of the termi-
nal, the two parts are separated by a space,
example: 87654321 001.
MERCHANT_ID The merchant identification code from a pri-
vate register
MESSAGE The original file row(s) from which this da-
tabase row was extracted. The original mes-
sage row has all the payment information.
MESSAGE_HASH The hash of that message
MERCHANT NAME The real merchant name
EMAIL The real merchant email
PHONE The real merchant phone
USER NAME The user name with which the merchant is
registered
REGISTRATION_CODE Private registration code

4. Censor those sensitive columns

Table Update
MER- CARD_ACCEPTOR_LOCATION, MESSAGE, and MESSAGE_HASH can be censored by generic val-
CHANT_PA ues, because they are not used in any calculations, but CARD_ACCEPTOR_ID_CODE, and MER-
YMENT CHANT_ID should be carefully reformatted, as they are used in calculations, and as join conditions in
queries.
MERCHANT_ID: we can use the USER_ID as it’s a database identity and isn’t in any private register.
CARD_ACCEPTOR_ID_CODE: we can replace the first secret code by the USER_ID.
UPDATE MP SET MP.MERCHANT ID = convert(varchar(.:), M.USER_ID),
MP.CARD ACCEPTCR ID_ COLE = concat:convert:varchar:), M.USER _ID}, ' ', RIGHT(MP.CARD ACCEPTCR ID CODE, 3)),
ME. C.?LRD ACCEPTOR LOCATICN = TERMINAL LOCATION',
MP.MESSAGE = 'M
MP.MESSAGE HASH SLGE HASH
FROM [ACQ] . [MERCHANT PAYMENT] MP
JOIN [ACQ].[MERCHANT] M ON M.MERCHANT ID = MP.MERCHANT ID
MERCHANT | MERCHANT_ID should be replaced by USER_ID, all remaining column values can be replaced by ge-

neric values.

UFDATE [ACQ] . [MERCHANT] SET MERCHANT ID = USER_ID,

NAME = concat ('MERCHAENT ', c'.onvert.tvarc'.hart), M.USER_ID)),
EMATL = concat ('EM? ', convert(varchar(.Z), M.USER ID}),
PHCONE = concat('FHCNE ', convert(varchar()}, M.USER_ID))

43

USER All columns with sensitive data can be replaced by generic values

5. Enable all foreign key constraints.

With the scrambled database containing valid test data, the previous concerns - about the
validity of the database state to a process, and the reliability on randomly generated values
to fill the missing data- can be discarded, because the data source for the preparation con-
tains valid data, and the filler values now can be taken from the test database, instead of
being randomly generated.

Admittedly this last claim is not currently backed by implementation, but thanks the flexi-
bility of our established grammar. It’s not farfetched that it will be implemented by the time
this thesis is being assessed.

To justify this claim, let’s explore a simple grammar modification that would make it pos-
sible to not only generate fixtures (Java code), but wiki tables as well.

Batch insert fixture table

- Separator + Fixture class path + Capitalized camel case entity name + Separator +
newline
- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +
I?I
- values table
Removing the last sub-rule and giving the rule another name:
Batch insert wiki table and fixture

- Separator + Fixture class path + Capitalized camel case entity name + Separator +
newline

- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +
I?I

Means that along with the fixture class, the values for the table should be generated when
not given. Figure 17 shows and example of a table without values as an input for the parsing
and generation.

ee.lhv.acq.fitnesse.fixture.MerchantPaymentInsertFixture
processingCode | cardAcceptorldCode ‘ amtrecDb | amtrecCr ‘ countDebits ‘ merchantId | cardTypeld | referenceMo | currec | getMerchantPaymentId?

Figure 17. Valueless-table example.

After the fixture class is generated the same way as described before, the column list parsed
could be generated into a query that is shown in Figure 18, and then the query is executed
and it results in a random sample from the scrambled data database. The result is then con-
catenated with the original table to result in a valid an executable batch insert table, shown
in Figure 19.

SELECT TOP CONCAT (. [PROCESSING CODE], . [CARD_ACCEPTOR_ID CODE], . [AMTREC_DE],
., [BMTREC CR], , [COUNT_DEBITSI, , [MERCHANT ID], , [CARD TYPE_ID],
. [REFERENCE_NO1, , [CURREC],)

FROM scrambled db. [ACQ]. [MERCHRNT PAYMENT] ORDER BY newid()

Figure 18. Table values generation query.

44

ee.lhv.acg.fitnesse.fixture.MerchantPaymentInsertFixture

processingCode | cardAcceptorldCode

amtrecDb

amtrecCr

countDebits

merchantId

cardTypeld

referencelo

currec

getMerchantPaymentId?

0 8446119 001

D0000000000000000

C0000000000000520 | O

3446119

68aMD

785

o978

smerchantPaymentldi=

8456745 002

D0000000000000000

C0000000000042000

8456745

TETMA

371

o978

smerchantPaymentld2=

8425487 200

D0000000000000000

C0000000000047808

3425487

7ETMC

2241

o978

smerchantPaymentldi=

8411834 013

D0000000000000000

C0000000000002440

8411834

401VC

92600

o978

smerchantPaymentId4=

84349853 010

D0000000000000000

C0000000000000500

8434053

401VD

356

o978

smerchantPaymentldS=

8458602 231

D0000000000000000

C0000000000008300

3458602

MO2ZMC

65

o978

smerchantPaymentIdé=

8436506 058

D0000000000000000

C0000000000000300

8436506

401VD

103

978

smerchantPaymentid7=

8443480 011

D0000000000000000

C0000000000004340

3449480

767TMC

681

978

smerchantPaymentids=

8447982 013

D0000000000000000

C0000000000002100

3447982

401MC

1684

978

smerchantPaymentidg=

8446593 020

D0000000000000000

C0000000000024005

2446593

401MD

511

978

smerchantPaymentldi0=

8115540 001

D0000000000000000

C0000000000000583

8115540

VO2VE

384

978

smerchantPaymentldii=

8422546 120

D0000000000000000

C0000000000030115

2422546

TETMA

112200

978

smerchantPaymentldiz=

8412510 001

D0000000000000000

C0000000000001000

2412510

767MD

31

978

smerchantPaymentldi3=

8351982 013

D0000000000000000

C0000000000003482

8351982

635MD

927

978

smerchantPaymentldig=

olo|o|lo|o|o|o|o|o|e|o|o|o|e

8422202 031

D0000000000000000

C0000000000002420

olo|o|lo|lo|o|o|o|o|e|o|o|e|ae

2422202

401VE

831

978

smerchantPaymentldis=

Figure 19. The generated wiki table.

Files

Before wrapping up, some comments should be made about an attempt to generate files,
which was successful to a limited extent only.

Before suggesting the adoption of the database setup model, sometime was spent trying to
reverse engineer the files and find formulas to generate them from a set of parameters. The
solution was to prepare a template of the most minimalistic version of a file, where it has
only one row of data, with parts to be replaced by the given parameters. Then a file specific
logic was implemented to make it extendible to contain multiple rows, depending on the
input. To explain further, let’s go through an example. The test file template:

1644800001000001000002000000000000006970400105025102xxxxxx00000015808012
280122001P00000001

1544A01001000041C0000200000800000000proces160102170753501cardacceptor
3720148004cuex037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017amtrecdebitamount0391017amtreccredia-
mount039201500D000000000000039301500C0000000000000394017C00000000000011
280395017D00000000000000000396017C00000000000000000400010countdebit040101
Ocountcredi0402010counttotal1014007mer-
chid10160036891017005cardt1018004refn1019006000000cuxcurmsgcount06015808

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D0000000000000000039101 7amtrecamoun-
tamoun039201800D000000000000000039301800C0000000000000000394017C0000000
0000144530395016D0000000000000000396017C00000000000144530400010000000000
00401010countcount0402010counttotal1017005cardtcuxcurmsgcount06015808

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017amtrecamoun-
tamoun0391017C0000000000000000039201800D000000000000000039301800C000000
0000000000394017C00000000000144530395016D0000000000000000396017C0000000
0000144530400010countcount040101000000000000402010countto-
tal1017005cardtcuxcurmsgcount06015808

45

1644800001000001000002000000000000006950700105025102xxxxxx00000015808012
280301016000000000000000003060080000001600000016

The input applied to this template is a table where each row represents the parameters re-
quired to generate the minimum number of rows, which we can call a set of logically related
rows. Figure 20 shows an example of input to the facility that uses the aforementioned tem-
plate.

ee.lhv.acq.fitnesse.fixture.PreparePaymentFilesFixture

processingCode | cardAcceptorldCode | amtrecDb amtrecCr countDebits | countCredits | merchantId | cardTypeld | referenceNo | currec | getMpRowld?
000000 87654321 001 D0000000000001010 | COO00000000003030 | 1 2 8280091 401MA 2711 978 SmpRowl<-[1]
000000 87654321 001 D0000000000010101 | COO00000000030303 | 1 2 8280091 689MB 2712 978 $mpRow2<-[2]
000000 87654321 001 D0000000000101010 | CO000000000303030 | 1 2 8280091 ADDAX 2713 978 SmpRow3<-[3]
000000 87654321 001 D0000000001010101 | CO000000003030303 | 1 2 8280091 TETAX 2714 978 $mpRowd<-[4]

Figure 20. Input for file generation.

The generated file is too long to include here, so it’s put to Appendix 9.4 Generated File
Example.

The problems with this approach and why it was discontinued are:

1. There are tens of file types, each with its own specific logic, and it’s time consuming
to keep implementing extendible file generation facilities, for an increasing number
of file types.

2. Some files have to be generated together, because they have complementary file
specific logics, and that raises the complexity and cost to an even more unacceptable
level.

3. The whole process is counterproductive compared to the batch insert solution: the
files are reverse engineered to be generated from a set of parameters, and then ex-
tracted so that those parameters are inserted to the database in a way that doesn’t
compromise its validity.

Implementation note

All implementation discussed in this proposed solution chapter is available under [3]. The
tool is a Java desktop application that relies on SQL Server, it is designed with minimal user
interface interaction in mind so that the logic can be moved to a private library once well
tested, approved, and refactored to a cleaner codebase.

6.4 Validation

Since there hasn’t been enough time for testers to get acquainted with the proposed test
writing rules, and the parsing and generation tool, there hasn’t been enough feedback and
data to make conclusions from based on testers’ experience. Alternatively this section will
go through the steps of the second modification. Measure the time that will take me as a
developer to write a test in this manner, then compare the result to the time taken to write
old tests of similar type, complexity, done by myself, or by another developer in the past.

Both of the following tests perform the following:

1. Prepare data for the process to run

a. Check that the data was prepared correctly (in case of file based test)
2. Execute the process
3. Verify the result

Figure 21 shows the test in the old file based model, with these sections highlighted.

46

E556/CICIS5

LICCESS

Journal Job Fixture
prepare graph for types CALC_CLAIM_ISSUER_MASTERCARD_FEE
init file fitnesse/calcissuermastercardfee/success | with type ‘IPM_NEI’S_MC ‘for date |12.03.2058 1
sjournalPeriodld= run journal jobs with date 12.03.2058
set journal job status COMPLETED by period id SjournalPeriodld ‘ and type code | IMPORT_FILE_IPM_MNETS_MC
run jeurnal job by period id | $journalPeriodId and type code | EXTRACT _FILE IPM_NETS_MC
check [get joumaljob staws by perfodid | SjournalPeriodid | and type code | CALC_CLAIM_ISSUER_MASTERCARD_FEE | COMPLETED | 2
delete all files for date 12.03.2058
SusisId= get usis id by issuer id code ‘ MO0 1
||$usac1d= get usac id by member id code \ 15808
Check data used in calculations
Query: Get reconciliations by journal period id | $journalPeriodld
CLEA_ROW_NO SETTLEMENT_INDICATOR | MEMBER_RECONCILIATION_INDICATOR | CURREC | FEEAMTREC_NET | TX_DEST_INST_ID_CODE | IPRE_ID
9 M UNDEFINED 978 D000000000000957 | 15808 sipreldi=
10 M MOOMA 978 D000000000001043 | 15808 ipreld2=
11 M MOOMA 978 C000000000000033 | 15808 Sipreld3=
12 M MOOMA 340 D000000000055055 | 15808 ipreld4=
13 M MOOMA 340 C000000000000055 | 15808 iprelds=
14 M MOOMB 978 D000000000000101 | 15808 Siprelde=
15 M MOOMB 978 C000000000000111 | 15808 ipreld7=
16 M MOOMC 340 D000000000000202 | 15808 iprelds=
17 M MOOMC 840 C000000000000202 | 15808 Sipreld9=
13 M MOIMD 978 D000000000000303 | 15808 ipreldi0=
19 M MOIMR 978 C000000000000404 | 15808 ipreldil=
20 M MO2MT 840 D000000000000305 | 15808 sipreldi2=
Query: Get issuer mastercard fee view by journal period id | $journalPeriodId
feeamtrec_net currency | comma_placement | usac_id | usis_id | ipre_id
D000000000000957 EUR 2 susacld | susisid | siprefdl la
D000000000001043 EUR 2 Susacld | SusisId | Sipreld2
C000000000000033 EUR 2 Susacld | SusisId | $ipreld3
D000000000055055 usp 2 susacld | susisId | $ipreld4
C000000000000055 usD 2 Susacld | SusisId | Siprelds
D0000D0000000101 EUR 2 Susacld | susisId | Siprelds
C000000000000111 EUR 2 susacld | susisId | $ipreld7?
D000000000000202 usD 2 $usacld | SusisId | Siprelds
C000000000000202 usD 2 Susacld | SusisId | $ipreld9
D000000000000303 EUR 2 susacld | susisId | Sipreld10
€000000000000404 EUR 2 $usacld | $usisId | $ipreld1l
D000000000000505 uso 2 susacld | susisid | sipreld12
Check created claim entries
Query: Get daim entries by journal period id and job type cede | $journalPeriodld | CALC_CLAIM_ISSUER_MASTERCARD_FEE
DEBIT_CREDIT AMOUNT CUR_CODE | USIS_ID | USME_ID | USAC_ID | IPRE_ID 3
D 18.56 EUR susisid | null Susacld | Sipreld1
D 555.05 usp susisId | null susacld | Sipreld4

Figure 21. File based test.

Figure 22 shows the new test written in the model of the proposed solution.

47

Prepare the job context

script Journal Period Fixture

SjournalPeriodId= get journal period for date 2058.04.30

$mcExtractlojold= | prepare graph for period $journalPeriodId | and job type | EXTRACT_FILE_IPM_MNETS_MC
svisaExtractlojold= | prepare graph for period gjournalPeriodId | and job type | EXTRACT_FILE_IPM_NETS_VISA
smclsisId= get usis id by issuer id code MO0

SvisalsisId= get usis id by issuer id code Voo

Susacld= get usac id by member id code | 15808

Prepare the job data

ee.lhv.acq.fitnesse.fixture.IpmChargebackFixture

amtrecCb | currencyExpenent | functionCode | currec | txDestInstIdCode | jojoId getIpmChargebackId?
9521 84020782 452 978 15808 smcExtractlojold | sipmChargebackidi=
45912 08629732 452 o738 15803 smcExtractlojold | $ipmChargebackld2z= 1
0425 84020782 452 978 15808 smcExtractlojold | $ipmChargebacklId3=
39917 84029732 452 o738 15803 smcExtractlojold | $ipmChargebackld4=
34091 84029732 450 978 15808 smcExtractlojold | sipmChargebackIds=
45912 08629732 451 o738 15803 smcExtractlojold | $ipmChargebacklds=
32500 2402 450 240 15803 smcExtractlojold | $ipmChargebackld7=
19912 84029732 255 o738 15803 $visaExtractiojold | $ipmChargebacklda=
02782 84029732 255 o738 15803 $visaExtractiojold | $ipmChargebackldo=
49997 24028402 451 240 15803 $visaExtractlojold | $ipmChargebackldio=
13566 o732 450 o738 15803 $visaExtractlojold | $ipmChargebackldil=
21173 08529782 452 085 15808 SvisaExtractlojold | sipmChargebacklIdi2=
00457 84029732 450 o738 15803 $visaExtractlojold | $ipmChargebackldi3=
20800 82628402 452 340 15808 SvisaExtractlojold | sipmChargebackIdig=
10000 24028402 451 240 15803 $visaExtractlojold | $ipmChargebackldis=

Execute chargeback job

script Journal Period Fixture 2
$execlojold= | run job by pericd | $journalPericdId | and type | CALC_CLAIM_ISSUER_CHARGEBACK

Check created claim entries

Query: Get claim entries by jojo id | $execlojold

DEBIT_CREDIT AMOUNT | CUR_CODE | USIS_ID USME_ID | USAC_ID | IPCH_ID

D 04.25 EUR smclsisId | null $usacld | sipmChargebackId3

D 459,12 EUR smcUsisId | null susacld | sipmChargebackIde

D 325.00 uUsD smclsisId | null $usacld | sipmChargebackId? 3
D 4599.97 usD SvisalUsisId | null susacld | sipmChargebackIdio

D 135.66 EUR $visalsisId | null $usacld | sipmChargebackIdil

D 004.57 EUR SvisalsisId | null $usacld | sipmChargebackIdi3

D 100.00 uUsD $visalsisId | null $usacld | sipmChargebackIdis

Figure 22. Proposed solution model.

The comparison between these two tests is ideal, because if the first test would be rewritten
in the second test’s model, or vice versa, they would look almost identical.

Structure-wise, the second test is much more organized and reflects how the real process
operates, whereas the first one is less structured and requires extra checks to make sure that
the data was inserted correctly, which is testing the data preparation processes in addition
to the main process being tested, and that’s not a good testing practice.

Timewise, the first test logged five and a half hours. Half an hour was spent on reading the
process requirements, or test cases, and thinking of the test values to be used, three hours on
preparing the test file, and two hours writing the fixture classes and methods, and debugging
or fixing syntax error and such. Those four test writing stages measurements are estimated
for the old test, as there’s no traceable record of what was done, but the cost of writing the
whole test is precise with respect to the method described in Section 4.1.

In contrast, the second test took me about one hour to finish, half an hour was to read the
requirements and think of how the test case should look like. Then ten minutes or so was

48

spent on generating and verifying the insert and query fixtures, then ten minutes getting the
test data from the prepared database and placing it in the test page, finally few minutes on
fixing my own syntax errors here and there.

After conducting two more experiments of such nature it seems that the benefits theorized
in the proposed solution are taking effect. The new model for writing tests proved to be at
least three times more cost efficient as the old model. Admittedly, some of that difference
is attributed to experience gained from analysing, and writing many tests, but most of it
comes from the methodical elimination or remodelling of activities that are archaic and less
efficient.

Table 9 shows the three comparisons.

Old test1 | Newtestl | Old test 2 | New test2 | Old test 3 | New test 3

Cost(h) |55 1 43 11.66 13.72 3.5

Table 9: Test generation validation

49

7 Conclusion

7.1 Summary

The thesis started by a detailed analysis of the testing process data, during which two key
periods were measured for a variety of factors, and considered as a baseline for future com-
parisons. After the data analysis the problems were asserted to be an inefficient testing pro-
cess that caused time to be wasted in manual testing and retesting, and also caused the re-
quirements’ coverage by the regression tests to be deficient. The comparison between the
measurements of the two periods determined that the two factors of cost and effectiveness
are highly correlated with the testing process structure.

Improving those two factors meant improving the testing process’s structure, by moving the
test automation as the main testing process, rather than an activity that can be done whenever
time is present. A third period was then designed within the framework of this thesis in order
to validate this structure improvement by comparing the result to the other two periods.
Additionally, this period also validated afore made assertions, and helped quantify the ef-
fectiveness of test automation within our project.

The second part of the solution was to introduce automation into the main aspects of the test
automation process. The solution then was the combination of these two ideas, of which the
first was practically applicable only if the second one was accomplished.

At this point the whole focus of the solution became reliant on somehow automating certain
aspects of writing Fitnesse tests. The concept of the Parsing Expression Grammar was found
to be an elegant way to add some formal rules into writing Fitnesse instructions so that they
can be parsed and generated automatically. The parsing grammar also proved to be flexible
and showed promise of how this solution can be extendible for future possibilities of gener-
ating both Java code and wiki tables with the addition or adjustment of the grammar rules.

For the time being the two main usages for the implemented grammar and generation logic
are the data preparation, and data verification parts of the tests. This was then combined
with the idea of getting a sample of data from the live environment database and censoring
the sensitive data, so that all aspects of data preparation for the tests would be handled, with
very few unchecked assumptions.

The proposed solution of the new test automation model was applied and compared against
tests written in the old model of laboriously preparing test files, and the result was positive
in favour of the new model.

7.2 Goals

With this, the five goals stated at the beginning of this thesis can be considered achieved.
As of now, the upcoming work, is to incrementally use this model throughout future devel-
opment, and slowly get rid of the old model. Once there’s a big enough sample of data to
make decisions based on, this model, and implemented tool will be presented to other teams
within the company.

The ultimate goal is to integrate the logic developed in the test parsing and generation tool
into Fitnesse directly — as it’s open source — and keep adding features and new patterns there
when appropriate.

50

8 References

[1] W. E. Wong, J. R. Horgan, S. London ja H. Agrawal, ,,A study of effective regression
testing in practice,” %1 Proceedings The Eighth International Symposium on
Software Reliability Engineering, Albuquerque, 1997.

[2] B. Stroustrup, Programming Principles and Practice Using C++, Addison-Wesley
Professional, 2008.

[3] A. Belakehal, ,,Fixture-gen,” LHV, 05 04 2017. [Vorgumaterjal]. Available:
https://bitbucket.org/alihk47/fixture-gen.

o1

9 Appendix
9.1 Task Names Mapping

Thesis Task Code Real Task Code
P3T1 ACQ-1283
P3T2 ACQ-1289
P3T3 ACQ-1305
P3T4 ACQ-1308
P3T5 ACQ-1311
P3T6 ACQ-1315
P3T7 ACQ-1324
P3T8 ACQ-1325
P3T9 ACQ-1320
P3T10 ACQ-1326
P3T11 ACQ-1334
P3T12 ACQ-1341
P3T13 ACQ-1362
P3T14 ACQ-1364
P3T15 ACQ-1416
P3T16 ACQ-1412
P3T17 ACQ-1230
P2T1 ACQ-1132
P2T2 ACQ-645
P2T3 ACQ-1083
P2T4 ACQ-1084
P2T5 ACQ-1085
P2T6 ACQ-1086

52

P2T7 ACQ-1092
P2T8 ACQ-1093
P2T9 ACQ-1142
P2T10 ACQ-377
P2T11 ACQ-1112
P2T12 ACQ-1105
P2T13 ACQ-1106
P2T14 ACQ-1109
P2T15 ACQ-1070
P2T16 ACQ-1173.2
P2T17 ACQ-1237
P2T18 ACQ-1173
P2T19 ACQ-1237.2
P1T1 ACQ-750
P1T2 ACQ-766
P1T3 ACQ-764
P1T4 ACQ-742
P1T5 ACQ-1004
P1T6 ACQ-1013
P1T7 ACQ-1016
P1T8 ACQ-1024
P1T9 ACQ-1062
P1T10 ACQ-1061
P1T11 ACQ-1042
P1T12 ACQ-1036
P1T13 ACQ-1019

53

P1T14 ACQ-1009
P1T15 ACQ-1043
P1T16 ACQ-112
P1T17 ACQ-913
P1T18 ACQ-914
P1T19 ACQ-915
P1T20 ACQ-911
P1T21 ACQ-907
P1T22 ACQ-979.1
P1T23 ACQ-979.2

The .1 and .2 notation means that during that Fitnesse update task, two different sets of
requirements related to multiple tasks where addressed, and the attributes for those tasks
where measured separately.

9.2 Full Parsing Grammar
Assumptions

- '+'means concatenation

- Whitespaces are explicitly specified (not considered characters)

- Digits are considered characters

- A newline will be explicitly specified, and is not considered a whitespace

- For Import fixture table, Batch insert fixture table, Script fixture table, and Query
fixture table, the sub-rules are in successive conjunction of each other (first sub-rule,
and then the second sub-rule and so on), unlike the remaining of the rules, which
are in disjunction (first sub-rule or second rule, and so on).

The parsing grammar
Requirements

- title 'Requirements’
- Description

Purpose

- title 'Purpose’
- Description

Description

- newline

- line of test

- confluence link

- Description + newline + Description

54

Fixture table

- import fixture table

- batch insert fixture table (general)
- script fixture table

- comment fixture table

- query fixture table

Import fixture table

- import fixture table header + newline
- import fixture table body

Batch insert fixture table

- Separator + Fixture class path + Capitalized camel case entity name + Separator +
newline

- Separator + columns to be matched + ‘get’ + Capitalized camel case entity name +
l?l

- values table
Script fixture table

- script fixture table header + newline
- script fixture table body

Comment fixture table
- separator + "comment" + separator + line of text + separator + newline
Query fixture table

- query fixture table header + newline
- separator + columns to be matched
- query fixture table body

Import fixture table header
- separator + "import" + separator
Script fixture table header
- separator + "script” + separator + fixture class name + separator
Query fixture table header
- separator + "Query: " + Query fixture class name + separator + separated arguments

Separator
ll|ll
white spaces +

"|" + white spaces
white spaces + "|" + white spaces

Fixture class name
- capitalized entity name
Query fixture class name

- Get + database table name + connected parameter names

55

Database Table name
- lowercase entity name
Connected parameter names

- connector + lowercase entity name
- connected parameter names + connector + lowercase entity name

Connector

- "by" + white spaces

- "and" + white spaces
- "with" + white spaces
- "for" + white spaces

- "from" + white spaces

Separated arguments

- variable + separator
- separated arguments + variable + separator

Import fixture table body

- separator + full class name + separator + newline
- import fixture table body + separator + full class name + separator + newline

Script fixture table body

- lowercase entity name
- lowercase entity name + script arguments

Script arguments

- connector + entity name + separator + variable + separator
- connector + entity name + separator + constant + separator
- script arguments + connector + entity name + separator + variable + separator
- script arguments + connector + entity name + separator + constant + separator

Columns to be matched

- database column name + separator
- columns to be matched + database column name + separator

Query fixture table body
- values table
Values table

- separator + values to match + newline
- query fixture table body + separator + values to match + newline

Values to match

- variable + separator

- constant + separator

- whitespace + separator

- values to match + variable + separator

- values to match + constant + separator

- values to match + whitespace + separator

56

Capitalized entity name

- capitalized word + whitespace
- capitalized entity name + lowercase word + whitespace

Lowercase entity name

- lowercase word + whitespace
- lowercase entity name + lowercase word + whitespace

Camel case entity name

- Lowercase word
- Camel case entity name + Capitalized word

Capitalized camel case entity name

- Capitalized word
- Capitalized camel case entity name + Capitalized word

Lowercase word

- Lowercase character sequence
Capitalized word

- uppercase character + lowercase character sequence
Lowercase character sequence

- lowercase character
- lowercase character sequence + lowercase character

Uppercase character sequence

- uppercase character
- uppercase character sequence + uppercase character

Fixture Class path

- lowercase word + "'
- lowercase word + "." + Fixture Class path

Variable
- $ + variable name
Variable name

- lowercase word
- variable name + Capitalized word

Constant

- lowercase character sequence
- uppercase character sequence
- constant + lowercase character sequence
- constant + uppercase character sequence

White spaces

-\
- white spaces + '

57

- white spaces + '\t'

9.3 IPM File Content Example

164480000100000100000200000000000000697040010502510204045800000015808012
280122001P00000001
1544A00001000041C000020000080000000000000050187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000000001010391017C00000000000
01010039201500D000000000000039301500C0000000000000394017C00000000000000
000395017D00000000000000000396017C0O0000000000000000400010000000000004010
100000000002040201000000000021014007828009110160036891017005401MA101800
4271010190060000009789780000000206015808
1544A00001000041C000020000080000000000000050187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000000002020391017C0O0000000000
01515039201500D000000000000039301500C0000000000000394017C00000000000000
000395017D00000000000000000396017C00000000000000000400010000000000004010
100000000002040201000000000021014007828009110160036891017005401MB101800
4271110190060000009789780000000306015808
1544A00001000041C000020000080000000000000050187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000000003030391017C00000000000
02020039201500D000000000000039301500C0000000000000394017C00000000000000
000395017D00000000000000000396017C0O0000000000000000400010000000000004010
100000000002040201000000000021014007828009110160036891017005767VC1018004
271210190060000009789780000000406015808
1544A00001000041C000020000080000000000000050187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000000004040391017C0O0000000000
02525039201500D000000000000039301500C0000000000000394017C00000000000000
000395017D00000000000000000396017C00000000000000000400010000000000004010
100000000002040201000000000021014007828009110160036891017005767VE1018004
271310190060000009789780000000506015808
1544A00001000041C000020000080000000000000050187654321 002
37201480049782037200712402000380017D00000000000003390381017C000000000000
09940384017C00000000000006550390017D00000000000009090391017C00000000000
05050039201500D000000000000039301500C0000000000000394017C00000000000000
000395017D00000000000000000396017C0O0000000000006550400010000000000104010
100000000002040201000000000031014007828009110160036891017005767AX101800
4271810190060000009789780000000606015808
1544A00001000041C000020000080000000000000050187654321 002
37201480049782037200712402000380017D00000000000003390381017C000000000000
09940384017C00000000000006550390017D00000000000013130391017C0O0000000000
07070039201500D000000000000039301500C0000000000000394017C00000000000000
000395017D00000000000000000396017C00000000000006550400010000000000104010
100000000002040201000000000031014007828009110160036891017005793MT101800
4271910190060000009789780000000706015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000000000381017C00000000000144530384017C000

58

00000000144530390017D00000000000000000391017C0000000000001010039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
00040201000000000001017005401MA9789780000000806015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000011050381017C00000000000000000384017D000
00000000011050390017D00000000000001010391017C0O000000000000000039201800D
000000000000000039301800C0000000000000000394017D00000000000011050395016
D0000000000000000396017D00000000000011050400010000000000004010100000000
000040201000000000001017005401MA9789780000000906015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000000000381017C00000000000144530384017C000
00000000144530390017D00000000000000000391017C0000000000001515039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
00040201000000000001017005401MB9789780000001006015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000011050381017C00000000000000000384017D000
00000000011050390017D00000000000002020391017C0O000000000000000039201800D
000000000000000039301800C0000000000000000394017D00000000000011050395016
D0000000000000000396017D00000000000011050400010000000000004010100000000
000040201000000000001017005401MB9789780000001106015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000000000381017C00000000000144530384017C000
00000000144530390017D00000000000000000391017C0000000000002020039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
00040201000000000001017005767VC9789780000001206015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000011050381017C00000000000000000384017D000
00000000011050390017D00000000000003030391017C0O000000000000000039201800D
000000000000000039301800C0000000000000000394017D00000000000011050395016
D0000000000000000396017D00000000000011050400010000000000004010100000000
000040201000000000001017005767VC9789780000001306015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000000000381017C00000000000144530384017C000
00000000144530390017D00000000000000000391017C0000000000002525039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
00040201000000000001017005767VE9789780000001406015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000011050381017C00000000000000000384017D000
00000000011050390017D00000000000004040391017C0000000000000000039201800D

59

000000000000000039301800C0000000000000000394017D00000000000011050395016
D0000000000000000396017D00000000000011050400010000000000004010100000000
000040201000000000001017005767VE9789780000001506015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000000000381017C00000000000144530384017C000
00000000144530390017D00000000000000000391017C0000000000005050039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
00040201000000000001017005767AX9789780000001606015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000011050381017C00000000000000000384017D000
00000000011050390017D00000000000009090391017C0O000000000000000039201800D
000000000000000039301800C0000000000000000394017D00000000000011050395016
D0000000000000000396017D00000000000011050400010000000000004010100000000
000040201000000000001017005767AX9789780000001706015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000000000381017C00000000000144530384017C000
00000000144530390017D00000000000000000391017C0000000000007070039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
00040201000000000001017005793MT9789780000001806015808
1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000011050381017C00000000000000000384017D000
00000000011050390017D00000000000013130391017C0O000000000000000039201800D
000000000000000039301800C0000000000000000394017D00000000000011050395016
D0000000000000000396017D00000000000011050400010000000000004010100000000
000040201000000000001017005793MT9789780000001906015808
164480000100000100000200000000000000695070010502510204045800000015808012
280301016000000000000000003060080000002000000020

9.4 Generated File Example

164480000100000100000200000000000000697040010502510222052900000015808012
280122001P00000001

1544A01001000041C000020000080000000000000016010217075350187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000000010100391017C00000000000
03030039201500D000000000000039301500C0000000000000394017C00000000000011
280395017D00000000000000000396017C00000000000000000400010000000000104010
100000000002040201000000000031014007828009110160036891017005401MA101800
427111019006000000978978000000020601580880c528fd-d3d0-49e0-8ede-
49de4bc693ce

1544A01001000041C000020000080000000000000016010217075350187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000000101010391017C0O0000000000
30303039201500D000000000000039301500C0000000000000394017C00000000000011

60

280395017D00000000000000000396017C00000000000000000400010000000000104010
100000000002040201000000000031014007828009110160036891017005689MB101800
42712101900600000097897800000003060158081bbe8fbb-d129-4ba8-89d2-
930719ddbdad

1544A01001000041C000020000080000000000000016010217075350187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000001010100391017C0O0000000003
03030039201500D000000000000039301500C0000000000000394017C00000000000011
280395017D00000000000000000396017C00000000000000000400010000000000104010
100000000002040201000000000031014007828009110160036891017005A00AX101800
427131019006000000978978000000040601580867f472b9-0dea-48a5-8e53-
9fb24f1ad47e

1544A01001000041C000020000080000000000000016010217075350187654321 001
37201480049782037200712402000380017D00000000000010000381017C000000000000
22500384017C00000000000012500390017D00000000010101010391017C00000000030
30303039201500D000000000000039301500C0000000000000394017C00000000000011
280395017D00000000000000000396017C00000000000000000400010000000000104010
100000000002040201000000000031014007828009110160036891017005767AX101800
4271410190060000009789780000000506015808328794e0-ea02-4ed0-adch-
bdd4ce460fd3

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000000000000391017C0O000000000003030039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
02040201000000000021017005401MA9789780000000606015808d45h8e7c-43ac-4087-
818h-856€262736h8

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000000000000391017C0O000000000030303039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
02040201000000000021017005689MB97897800000007060158089¢c1b4864-8ac5-42be-
8fc9-704d4fee3528

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000000000000391017C0000000003030303039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
02040201000000000021017005767AX97897800000008060158082ac509a7-9a83-4151-
b9ae-e4e6696d7a5f

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS037800100380017D00000000000010000381017C00000000000022500384017C000

61

00000000000000390017D00000000000000000391017C0000000000303030039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000000040101000000000
02040201000000000021017005A00AX9789780000000906015808806b5¢c84-d5dc-418f-
b82e-90a648b5eaac

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000000010100391017C0000000000000000039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000001040101000000000
00040201000000000011017005401MA9789780000001006015808ab5af182-47d3-4571-
926d-5df3bc088283

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000000101010391017C0000000000000000039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000001040101000000000
00040201000000000011017005689MB9789780000001106015808d828bc82-80c6-41c2-
a6e6-90f265e3a5¢c0

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000010101010391017C0000000000000000039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000001040101000000000
00040201000000000011017005767AX9789780000001206015808e6ca86a9-2c33-4112-
bbc8-653ddfébabde

1644800001810001C0000200000800000000685686106491083404014800497820165001
B030002510214063000000015808012280302001A037200712402000374002000375003
POS0378001R0380017D00000000000010000381017C00000000000022500384017C000
00000000000000390017D00000000001010100391017C0000000000000000039201800D
000000000000000039301800C0000000000000000394017C00000000000144530395016
D0000000000000000396017C000000000001445304000100000000001040101000000000
00040201000000000011017005A00AX9789780000001306015808dhe878b8-2f9b-49c8-
9f17-69af715b23a3

164480000100000100000200000000000000695070010502510222052900000015808012
280301016000000000000000003060080000001600000016

9.5 License

Non-exclusive licence to reproduce thesis and make thesis public

I, Ali Belakehal,
1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

62

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the

copyright,
of my thesis Test Automation Case Study, supervised by Dietmar Alfred Paul Kurt Pfahl
2. | am aware of the fact that the author retains these rights.

3. | certify that granting the non-exclusive licence does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu, 13.05.2017

63

