
UNIVERSITY OF TARTU

FACULTY OF SCIENCE AND TECHNOLOGY

Institute of Computer Science

Computer Science Curriculum

Robert Roosalu

Context embeddings for natural language

clustering

Master’s Thesis (30 ECTS)

Supervisor: Sven Laur

     

Tartu 2017

Context Embeddings for Natural Language Clustering

Abstract:

Semantic awareness of natural language is an important step towards general artificial intelligence.

A part of which could be embedding words and documents into vector space. We selected most of

the common methods for doing so and ran a vast selection of different clustering experiments on

word contexts extracted from the Estonian reference corpus. After a total of 20 thousand different

experiments, we found that the skip-gram word vector model combined with Spectral clustering

yields the best results. The word vectors could simply be averaged, or they could be used as input to

recurrent autoencoders. The latter achieved best results overall and hint towards future work of em-

ploying more complex sequence to sequence recurrent models. The newly found knowledge is im-

plemented into our custom built application, named PatternExaminer, which is used in the pipeline

of extracting factual data from medical records. This brings us closer to achievements such as ad-

vanced personal medicine and automated clinical trials.

Keywords:

Natural language processing, context based clustering, document embedding, recurrent autoen-

coders

CERCS: P170 Computer science, numerical analysis, systems, control

1

Konteksti teisendused loomuliku keele klasterdamiseks

Lühikokkuvõte:

Loomulikust keelest sisuline arusaam on oluline samm üldise tehisintellekti suunas. Osa sellest võib

olla sõnade ja dokumentide teisendusel vektorruumi. Võtsime kasutusele põhilised meetodid selles

vallas ja implementeerisime suure hulga erinevaid klasterdamise katseid eesti keele koondkorpusest

eraldatud sõnade kontekstidel. Peale 20 tuhande katse analüüsimist leidsime, et skip-gram

sõnavektorid koos spektraalklasterdusega annavad parimaid tulemusi. Seda nii sõnavektorite

keskmistamisel, kui kasutades neid sisendina rekurrentsetesse autoenkooderitesse. Viimased

saavutasid parimaid üldiseid tulemusi ning viitavad eelseisvale tööle keerulisemate analoogsete

närvivõrkude mudelitega. Uued teadmised on lisatud töö käigus valminud rakendusse, nimega

PatternExaminer, mis on kasutusel meditsiinilistest vabatekstidest faktide eraldamisel. Seega

käesolev töö viib meid lähemale näiteks automaatsetele kliinilistele uuringutele ning uuendustele

personaalmeditsiinis.

Võtmesõnad:

Loomuliku keele töötlus, kontekstipõhine klasterdamine, dokumentide teisendus vektorruumi,

rekurrentsed autoenkooderid

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

2

Table of Contents

1. Introduction..6

1.1 PatternExaminer...7

2. Methods and materials..9

2.1 Data..9

2.2 Document Embeddings..10

Term-frequency – inverese document frequency...10

Latent Semantic Indexing...11

Word Mover’s Distance...12

2.3 Neural networks...13

Autoencoders..13

Recurrent neural networks..13

2.4 Language models...15

2.5 Word embeddings...17

Word2vec...18

GloVe...19

2.6 Distance and similarity...20

2.7 Dimensionality Reduction...21

Principle Component Analysis...21

Multidimensional Scaling...21

2.8 Clustering algorithms..22

3

Agglomerative..22

Specral..23

HDBSCAN...23

3. Experiments..24

3.1 Experiment Pipeline...24

3.2 Experiment parameters...25

3.3 Evaluation..25

Random baseline..26

Custom metrics...29

4. Results and discussion..31

4.1 First batch experiments..31

Context size and symmetricity...34

Angular and euclidean distance..35

CBOW and skip-gram..36

Dimensionality reduction...36

4.2 Autoencoder experiments..37

Validation loss and final accuracy..39

5. Conclusion..41

6. Bibliography...42

7. Appendix I..44

8. Licence...45

4

1. Introduction

Estonian Geenivaramu has built a large corpora of patient epicrises. These include most of the

medical information about patients: diagnosis, treatment, analysis, conclusions, descriptions, etc. A

large portion of which are free form natural language. Our goal is to extract factual data from the

natural text. One chosen approach is via patterns, such as regular expressions, or context free

grammars. A human user defines the patterns, which are then used to extract matches from the raw

data. The outputs can range in hundreds of thousands, but the user would still like to evaluate the

quality of the chosen patterns. The process can be viewed on Figure 1.

Figure 1. Workflow for extracting factual data from natural medical texts.

To solve this task, we have built a tool, named PatternExaminer. The tool allows to find subgroups

within the extracted patterns via clustering and filtering. The user samples the clusters and

PatternExaminer gives an estimation on the evaluation of the whole cluster and thus the whole

input pattern set.

The thesis is set into following parts:

1. Description of the capabilities of PatternExaminer, after which we have arrived at the

problem of requiring highest quality context clustering capabilities.

2. A quick survey into our formulated dataset and required methods for studying this problem.

3. Description of the experiment setup. The result is 20000 various combinations of clusterings

4. Going through all the experiments to find which methods work best.

5. Conclusion.

5

1.1 PatternExaminer

Custom software for examining patterns within large corpora of text has been developed. The user

interface is seen on Figure 2. It features the following capabilities:

• Managing the data, preprocessing and clustering pipelines.

• Overview of experiment specifics. Real-time status reporting on errors and success.

• Clustering – various algorithms. Clusters can be recursively clustered.

• Caching distance matrices.

• Filtering results.

• Sampling results – random or homogenous.

• Evaluating the clusters via sampling and selecting OK/NOK on each line.

• Estimating Bernoulli trial probability from the manual evaluations

• Receiving an estimation on the contents of the large input, with little effort.

The software could be easily extended to suit different tasks. The primary aim is to work through

patterns extracted using regular expressions or context free grammars from raw texts in health data.

The Estonian Gene Fund epicrisis dataset contains millions of entries. A particular pattern may

yield up to multiple hundred thousand occurrences. To gain insight into the nature and correctness

of the resulting body of text, we have created PatternExaminer. For this purpose, PatternExaminer

clusters the contexts of the extracted medical facts. The clusters can be browsed through, filtered

and sampled. Sampling may be either random, or heterogenous. We implemented heterogeneous

sampling based on the distance matrix, so it would display maximum variation in the sample. The

first element is chosen at random. The next elements are chosen, so they would be the farthest from

all the previously chosen points.

The clusters can then be evaluated. Each element in the sample can be observed by a user and

labelled either positive – element is suitable and expected to represent the current pattern, or

negative – meaning an element the user did not expect to be found by the pattern. We can look at

the cluster evaluation as a Bernoulli process. That is, we have a sample of n evaluations, of which

m are evaluated suitable and we wish to estimate the unknown probability p of suitable elements

6

over the entire cluster, and it’s confidence intervals. Simple methods exist to solve this task, but

they are not suitable if sample sizes are small or the sample fraction is near 0 or 1. (Megill &

Pavicic, 2011) solve this task for the edge cases, which we have implemented into our software.

E(p)=
m+1
n+2

c lower=I 1
2
(1−c)

−1
(m+1 , n−m+1)

cupper=I 1
2
(1+c)

−1
(m+1 , n−m+1) ,

where E(p) is the expected probability, c is the confidence interval and c{lower ,upper } confidence

interval values. I−1 is the inverse incomplete beta function.

Figure 2. The user interface of PatternExaminer.

7

2. Methods and materials

In the coming section we will go through all the points relevant to our context clustering

experiments.

2.1 Data

Context of a word is n words to the left and right. In this project we consider contexts of sizes 2, 3,

4. Also we look at symmetric and non-symmetric contexts. That is, for example, a context window

of size 3, but one context side may have less than three words. The sentence datasets thus have 6

subsets, for combinations of contexts and symmetricity. Punctuation and conjunctions (sidesõnad)

were discarded.

The experiments for studying clustering were conducted on 8 different word pairs. Sentences

containing the words were grepped from the Estonian Reference Corpus. The corpus 12.6 million

sentences from journalistic, fictional, scientific and political texts.

• Road-tea (tee-tee) – they present the homonymous relationship in Estonian. That is the same

word meaning different things.

• Bucket-bucket (ämber-pang) – the synonymous relationship.

• Countries-capitals – Sentences which talk about ten European countries: Estonia, Germany,

France, England, Finland, Spain, Latvia, Sweden, Netherlands, Switzerland, and sentences

which contain their capitals.

• Going deeper with the semantic relationship of a country and it’s predominant cities, we

made a dataset from Estonia, Tallinn and Tartu.

• Apple-rock (õun-kivi) – This tuple could either be viewed as different small objects, or just

random different objects. Depending on how big rocks are usually discussed in the Estonian

Corpus and if word embeddings carry meaning about size.

• Apple-banana (õun-banaan) – different fruits.

• Apple-porridge (õun-puder) – different foods.

• Good-bad (hea-halb) – opposition.

Table 1 lists the count of sentences from each word extraction.

8

Table 1. Sentence counts for the extracted words.

Word Count Word Count Word Count Word Count

countries 1076440 Tartu 147778 õun 2789 sõidutee 993

Eesti 767495 hea 147707 banaan 1174 puder 847

cities 519700 halb 24608 ämber 1160 pirn 773

Tallinn 279172 kivi 8745 joogitee 993 pang 492

All the dataset tuples were clipped to equal size classes. For example, in ämber-pang, we clipped

ämber size to 492. Sentences more numerous than 5k were clipped due to computational time

constraints. Countries and cities lists contained 500 sentences of each element. The tee-tee dataset

was manually split after extracting “tee” from the corpus.

2.2 Document Embeddings

Term-frequency – inverese document frequency

Tf-idf is a common feature extraction method in text mining. The features are built over a corpus.

Each feature corresponds to the frequency of a word, or term found in the corpus (term frequency -

tf), multiplied by the inverse document frequency – idf. In practice, multiple versions of both tf and

idf exist, with slight variations in the definition. In the following, the implementation found in

sklearn will be described. Looking at an example:

corpus: {A cat on a mat, Cat is sat}

terms: {a, cat, sat, on, mat, is}

Term frequencies (tf vectors):

• 1st sentence: [2, 1, 1, 1, 0]

• 2nd sentence: [0, 1, 1, 0, 0, 1]

If we take just the achieved tf vectors, the method would be called Bag of Words. The inverse

document frequency is constant for each term in the corpus:

idf =log(
1+nd

1+df (d , t)
)+1,

where nd is count of documents and df (d , t) is the count of documents containing the term.

Reaching the final tf-idf formula:

tf −idf =tf∗idf

9

Latent Semantic Indexing

Tf-idf provides little reduction in the description length and reveals little in the way of inter- or

intradocument statistical structure (Blei et al., 2003). A step forward from tf-idf is Latent Semantic

Indexing (LSI), sometimes also called Latent Semantic Analysis (LSA). It takes the tf-idf matrix

and performs Singular Value Decomposition (SVD) on it. SVD takes as input a matrix M and

factorizes it into three matrices:

M=U ΣV T ,

where Σ is a diagonal matrix with the square roots of eigenvalues of MMT sorted in descending

order. Matrix U with the shape |T|×|T| where each column represents the eigenvector of MMT that

corresponds to each eigenvalue in Σ and V T , the transpose of a square matrix with dimensions

|D|×|D| with each column containing the eigenvalue of M T M corresponding to each eigenvalue in

Σ . For any matrix M there exists at least one factorization via SVD. (Chen, Martin, Daimon, &

Maudsley, 2013) The components are visible on Figure 3.

Figure 3. (A) is the originl term frequency matrix. (B) displays the SVD factorized matrices. (Chen

et al., 2013)

It might be beneficial to discard singular values which carry less meaning, for a simpler feature

matrix. This is called Truncated SVD. We can calculate the cosine distance on the newly acquired

features, or use the features themselves.

10

Word Mover’s Distance

Word Mover’s Distance (WMD) is a distance function to compare text documents. It can be based

on any word embedding, word2vec being most commonly used. Distance is measured as the

minimum amount the words in one document have to move in the embedded vector space to reach

the words of the other document. An example of this can be seen on Figure 4. This metric was

described in (Kusner, Sun, Kolkin, & Weinberger, 2015) and demonstrated to outperform the

common metrics such as tfidf, Latent Semantic Indexing, Latent Dirichlet Allocation, etc. in k-

Nearest-Neighbours classification benchmarks. The WMD can be cast as an instance of the Earth

Mover’s Distance (EMD). EMD measures the distance between two probability distributions. It is

also known as the Wasserstein metric. In layman’s terms it can be thought of as the cost of turning

one pile of dirt into another. EMD is a well studied problem and has many efficient solvers. An

example being (Pele & Werman, 2009), which uses the successive shortest path algorithm for

finding minimum cost flow on a graph. During the first iteration of our research we implemented

our own versions of the WMD, a greedy and a brute force solution. The WMD metric can be found

in the gensim library, which also handles word embeddings.

Figure 4. A visual example of the WMD using sentences about the ex-president of USA. (Kusner et

al., 2015)

Although delivering state-of-the-art performance in (Kusner et al., 2015), the metric is

O(n3 log (n)) in time, making it’s practical usage questionable for slightly larger datasets.

However, approximate solvers delivering O(n) time with small errors have been developed, for

example (Jang, Kim, Faloutsos, & Park, n.d.).

11

2.3 Neural networks

At the heart of modern artificial intelligence research, are artificial neural networks. Originating as a

concept from mid 20th century, computational capabilities and dataset sizes have allowed these

complex models to excel at most machine learning tasks.

Inspired from biological neural cells, neural networks consist of computational units called neurons.

Neurons run a weighted sum operation, followed by a nonlinear activation function. The outputs are

then fed to the next layer. Various activations are used, such as the sigmoid function, ReLU,

hyperbolic tangent, etc. The aim of trianing a neural network is to find a set of neuron parameters

(weights and biases), so that an (unseen) input would yield a correct output. For this, a loss function

is defined. After each training step, the gradient at which is applied to all the neuron parameters

using what’s called the back-propagation algorithm.

Autoencoders

Constraining a neural network’s output to match the amount of neurons in the input, we arrive at

autoencoders. The hidden layers can then be thought of as a compressed version of the input. Or in

our case, and embedding of the context. Figure 5 shows an simple, one layer deep autoencoder. It

also displays the fully connected property between regular feedforward neural networks, with each

neuron being connected to each neuron in the next layer. On the figure, x is input, w and b are the

trained parameters, f is the activation function, s the number of samples and p the embedding

dimension. (Tammeveski, Zafra, Parts, Matiisen, & Tampuu, 2016)

Recurrent neural networks

Recurrent neural networks (RNNs) are used for modeling sequenctial relations. Its input and/or

output are sequentioal. The nature of which may be temporal, or just sequential. Building from

regular feedforward neural networks, recurrent networks are augmented by connections, that are

connected along the timesteps. At time t, nodes with recurrent edges receive input from the current

data point x(t) and also from hidden node values h(t −1) in the network’s previous state. The output at

each time t is calculated given the hidden node values at time t. Input x(t −1) at time t −1 can

12

influence the output at time t and later by way of the recurrent connections (Lipton, Berkowitz, &

Elkan, 2015). The descibed process is seen on Figure 6.

Figure 5. Autoencoder with a single hidden layer. (Tammeveski, Zafra, Parts, Matiisen, & Tampuu,

2016)

Figure 6. Simple RNN.

13

The simple self-connected recurrent nodes are not too capable of carrying longer term temporal

data. RNNs typically employ more complex nodes in the recurrent layer, for example long short-

term memory cells (LSTM). LSTM cells introduce additional parameters, gates and nodes. A good

resource on them is for example (Lipton, Berkowitz, & Elkan, 2015) and the current thesis will not

dwell deeper into them. In the experimental part we used LSTM based autoencoders.

2.4 Language models

A language model is a statistical model, which assigns a probability to either a sequence of words

P(w1,w2,…,wn) or a word following a sequence of words P(wn|w1 ,w2 …wn−1) .

Such an assignment is useful for various tasks in natural language processing, for example aiding

text-to-speech and machine translation models. The quality of a language model can be assessed

either extrinsically or intrinsically (Jurafsky, 2017).

• Extrinsic evaluation: use the language model as part of the end task (speech recognizer, MT,

spelling correction, etc.) and assess the achieved final task accuracy. The downside is the

added complexity and time requirement.

• Intrinsic evaluation: in rapid model prototyping, a quick way to calculate the goodness of a

model is desired. The most common method for this is perplexity:

perplexity=e
− 1

N
∑
i=1

N

log p(w i)

Intuitively, perplexity asks, how well can we predict the next word? The best language model is one

that best predicts an unseen test set (Jurafsky, 2017).

A simple yet common language model is the n-gram model, with a general form as follows:

P(w1,…,wm)=∏
i=1

m

P(wi ,|w i−(n−1) ,…,w i−1)

The probabilities are gained by gathering all the n-grams in the training corpus and calculating the

frequencies. In practice, this yields zeroes for many possible n-grams, possibly nullifying many

evaluations by the model. To counter-effect this, various distribution smoothing schemes can be

utilized, so that even the never before seen n-grams would have some small frequency.

14

The most successful early experiment to implement a language model using a neural network was

by (Bengio, Ducharme, Vincent, & Janvin, 2003). The model consisted of an input embedding

layer, one hidden layer for nonlinearity and a softmax layer for the output probability, seen on

figure 7

Figure 7. Architecture of the first successful neural language model. (Bengio et al., 2003).

The authors achieved a 20-35% improvement in perplexity over the then state-of-the-art, smoothed

tri-gram models. The paper is also one of the first to introduce the concept of word embeddings.

Allowing for some years of development in computing power, another landmark model was

developed in (Tomáš Mikolov, Karafiat, Burget, Cernocky, & Khudanpur, 2010). The previously

described neural network language model (NNLM) has the limiting factor of only accounting for a

fixed, predetermined context of small size (5 to 10 words). Humans have the ability to account for

much larger context, but so do recurrent neural networks. Mikolov et al. thus use what is usually

called a simple recurrent neural network for language modelling. The network, seen on Figure 8,

has an input layer x, a hidden layer s and an output layer y. Input in time is the current word w and

the concatenation of hidden layer at the previous timestep s(t-1). Output is the predicted word. Input

and output were embedded as a 1-of-V vector, also called a one-hot vector. This is a vector with

zeroes everywhere, but one at the index of the specific word.

15

Figure 8. RNNLM as presented in (Tomáš Mikolov et al., 2010)

The authors benchmarked it for speech recognition tasks and the resulting improvement was 50%

reduction in perplexity, 18% reduction in word error rate for similar training sets, and 5% reduction

in error, if the then state-of-the art backoff n-gram model was trained on a much larger dataset.

The RNNLM presents itself as a basis for more complex developments in NLP, such as (Ahn, Choi,

Pärnamaa, & Bengio, 2016). The group embeds a knowledge graph consisting of triplets (subject,

predicate, object) and the description of the subject from wikipedia into a knowledge memory

matrix. This matrix is then queried by the RNN during training and inference.

2.5 Word embeddings

A word embedding, or in computational linguistics known as a distributional semantics model, is a

method to represent natural language words as points in a vector space. Most word embeddings

build on the idea that semantics of a a word arise simply from it’s context.

16

The most common example to demonstrate the semantic embedding capabilities of word

embeddings is

vector (” King”)−vector (” Man”)+vector (”Woman”)≈vector (“Queen ”) .

In the original word2vec paper, Mikolov et al also illustrate the model’s ability to automatically

organize with an example about countries and their capital cities (Figure 9).

Figure 9. Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries

and their capital cities. (Tomas Mikolov, Chen, Corrado, & Dean, 2013)

Word2vec

The most prominent word embedding architectures are the Continuous Bag-of-Words Model

(CBOW) and the Continuous Skip-gram Model (skip-gram, or SG) by (Tomas Mikolov, Corrado,

Chen, & Dean, 2013). More generally known as the word2vec models (Figure 10). The models are

inspired by (Bengio et al., 2003), but simplified by removing the nonlinear hidden layer and

utilizing a symmetric context, instead of a one sided. The CBOW model uses n words before and

after the target word w t to predict it. It seeks to maximize the following objective function:

J θ=
1
T
∑
t=1

T

log p(w t|w t − n,⋯,wt − 1 ,wt+1,⋯,wt+n) .

Where T is the number of words in the training set. Skip-gram takes the opposite approach, of

predicting the context from the word w t . The objective function to maximize thus becomes:

J θ=
1
T
∑
t=1

T

∑
−n≤ j≤n ,≠0

log p(wt+ j|wt) .

17

Figure 10. The word2vec model arhchitectures, as presented in (Tomas Mikolov, Corrado, et al.,

2013).

GloVe

The authors of Global Vectors (GloVe) (Pennington, Socher, & Manning, 2014) argue that a

weakness in word2vec models is that they look at word contexts separately, discarding any global

meaning. They propose a global word to word co-occurrence matrix X. Element X ij is the global

count of word j being found in the context of word i. They further hypothesize how meaning of

words is carried in the ratio of co-occurrences and aim to encode this with a weighted least squares

regression loss function, arriving at a loss function:

J=∑
i , j=1

V

f (X ij)(wi
T ~w j+b i+

~
b j−logX ij)

2 ,

where w are the word vectors and b are the bias terms. f is a weighting functions which helps

prevent overweighting rare and frequent co-occurrences. The original ratio of co-occurrences gets

cancelled out in the derivation of the function.

Although the authors of GloVe claim to beat word2vec models by up to 11% on various

benchmarks, several people, including the research duo Levy & Goldberg claim the benchmark

experiments were not carried out on equal terms and that word2vec is still the state-of-the-art.

18

2.6 Distance and similarity

A metric or distance funcion yields a smaller value for more similar elements. By definition the

following properties must hold to be a metric:

1. Non-negativity or separation axiom d (x , y)≥0

2. Identity of indiscernibles d (x , y)=0⇔x= y

3. Symmetry d (x , y)=d(y , x)

4. Triangle inequality d (x , z)≤d (x , y)+d (y , z)

A similarity function yields a larger value for more similar elements. In machine learning, kernel

functions are often used as a similarity measure. If x and y are feature vectors, some examples of

kernel functions:

• k linear (x , y)=xT y

• k poly(x , y)=(γ xT y+c0)
d

• k sigmoid(x , y)=tanh (γ xT y+c0)

• k RBF(x , y)=exp (−γ‖x− y‖
2
) ,

where ‖x− y‖
2

is the squared euclidean distance. It is possible to convert between a similarity and

distance function. Various formulas for this exist. The choice depends on the convertible function

value range and the specific usecase. With s being similarity, d the distance function and γ being a

tunable parameter, some examples include:

s=1−d (1)
s=−d

s=e(−γ d)

s=
1

1+d

When converting from a similarity to distance, some of the properties for a true distance metric

might break. For example, cosine distance is achieved from cosine similarity following eq (1), but

this new metric does not follow the triangle inequality. But it can still be a very useful metric. The

tf-idf based cosine distance is among the first methods to try in text mining. Cosine similarity and

distance become unintuitive, if the feature space isn’t all positive. This is often the case for word

embeddings. We can then look at the angular distance and similarity, which is the normalized angle

between the points.

19

angular distance=
cos−1

(cosine similarity)
π

This new distance function can again be turned into angular similarity using eq (1).

In our experiments we used euclidean and angular distance.

2.7 Dimensionality Reduction

The data under study is often very high dimensional. This makes simple observation impossible to

the human eye. To aid the aforementioned shortcoming, we can map the high dimensional data to a

lower dimensional space. The benefits to these methods are twofold. First, to help visualize high-

dimensional data. Second, patterns of interest may lie on some manifold within the data, which can

be concentrated onto less dimensions, to aid in learning.

Principle Component Analysis

Dimensionality reduction can be linear or non-linear. The most common linear methods include

principle component analysis (PCA) and linear discriminant analysis (LDA). PCA is an

unsupervised method, which seeks to map a new orthogonal basis to the data, so that each of the

newly formed components display successively highest possible variance. Components, or

dimensions with the lowest variance can be discarded, while maintaining the actual important

variability in the data. LDA is a supervised method, which tries to find the dimensions along which

variance between classes is highest. We can again discard the less informative dimensions. LDA

can also be used as a classifier on it’s on.

Multidimensional Scaling

Multidimensional Scaling (MDS) is a technique to transform a dissimilarity matrix to points in n-

dimensional space, where n is chosen by the user, and usually small. The method can be used for

dimensionality reduction if a dissimilarity matrix is calculated from the points in high-dimensional

space. Essentially, it is a mapping from a dissimilarity matrix, to points in the new space, with the

objective of keeping the new distances as close to the original distances, as possible. The difference

between the two distances is called stress:

20

σ
2
=∑

i=2

n

∑
j=1

i−1

w ij(δ ij−d ij)
2 ,

where δij is the dissimilarity, d ij is the euclidean distance in the new space, w ij is a user-defined

weight, i and j are indexes of datapoints (Groenen & Van De Velden, 2004). The previous

objecetive function is usually solved using the SMACOF algorithm.

2.8 Clustering algorithms

The following section gives an overview into the three used clustering algorithms. They we chosen

because of accepting a precomputed distance metric and their relatively different nature.

Agglomerative

Agglomerative clustering is a bottom-up hierarchical clustering. Bottom-up, as in all the points start

in their own cluster and clusters are being iteratively merged. The merging is done based on a

precomputed distance metric. The most common here being euclidean distance. For clusters of a

single element, the inter-cluster distance is simply the element’s distance. As the number of

elements in a cluster grows, multiple options (Figure 11) arise for calculating the distance (Sch,

2008).

• Single link – choose the distance between points in the clusters that are the closest.

• Complete link – choose the distance between points that are the farthest from each other.

• Average link – average distance between inter-cluster points.

• Ward’d link – Choose the cluster pairing that least increases total intra-cluster variance.

Figure 11. Different types of deciding similarity between clusters in agglomerative clustering. (Sch,

2008).

21

After forming the hierarchical relationship between datapoints, the final clusters can be achieved by

cutting the hierarchic ties at some depth. The user may tweak the amount of clusters in such a

manner.

Specral

Spectral clustering comes in multiple, slightly varied flavours. In the following it is described as

defined in (Ng, Jordan, & Weiss, 2001). The algorithm begins by building an affinity matrix A

between the datapoints. Let D be a diagonal matrix whose i-th diagonal element is the sum of A’s i-

th row and construct

L=D−1 /2 AD−1/2 .

Eigenvectors are calculated from L. The eigenvectors are stacked by columns, normalized and the

rows are clustered themselves, most commonly via k-means. This matrix contains as many rows as

there are datapoints, and the clustering of these rows corresponds to the clustering of the original

data.

The common suggestion is to use the Gaussian kernel, as it often best models local neighbourhoods.

However, most of out experiments were ran using angular similarity, owing to it’s usefulness in

comparing word and document embeddings.

HDBSCAN

Extending from the density-based clustering paradigm, aiming to solve limitiations set by the

DBSCAN algorithm, (Campello, Moulavi, & Sander, 2013) introduce Density-Based Clustering

Based on Hierarchical Density Estimates (HDBSCAN). They build a clustering hierarchy on top of

DBSCAN, implement a new cluster stability measure and help maximize the stability of the

clusters.

22

3. Experiments

The experiments in the current thesis follow a sort of breadth-first, grid search style. Previous work

in seminars and on PatternExaminer had shown, that clusterability of contexts is somewhat

obtainable. Thus the aim now was to go through as many as possible of the commonly used

methods, on multiple datasets. Most of the classical methods were evaluated. Initial steps with the

current state-of-the-art, recurrent autoencoders, were also taken.

3.1 Experiment Pipeline

Schematic representation of the pipeline followed by our experiments. The pipeline does not

contain all the various parameters that were tweaked. They will be discussed in the next section.

Figure 12. Experiment pipeline.

23

3.2 Experiment parameters

In addition to what can be seen on the experiment pipeline figure 1, let’s specify which parameters

were searched through:

• Contexts – window sizes 2, 3 and 4, symmetric and non-symmetric. Each dataset thus had 6

variations.

• word2vec models – we used the lemmatized, 100-dimensional models found from

(Tkachenko, 2016).

• Features – No specific parameters were tuned here. The implementation of WMD is the one

found in gensim (Řehůřek & Sojka, 2010)

• Dimensionality reduction – for all the algorithms: PCA, MDS, LSI, we tried various

dimensions: 2, 10, 20, 40

• Distances – Euclidean and angular distance were always normalized to range [0,1].

Converting to similarity was done by similarity=1−distance . RBF kernel was also tried,

as it is most commonly suggested for Spectral clustering. However, it led to problems with

Spectral clustering convergence. Possibly, the RBF parameter needs tweaking.

• Clustering – for algorithms which enable setting the cluster count manually, we used values

2, 10, 40. HDBSCAN does not accomodate this, but it has parameters min_samples and

min_size. 6 combinations of the latter two parameters were found, which achieved clusters

of various sizes in the range [2; 100].

• Reccurent autoencoders – 4 different acrhitectures were used. Using the notation [count of

layers in encoder; count of layers in decoder], they were as follows: [1,1], [1,2], [2,1], [2,2].

The layer sizes were also searched through, using combinations of values from {16, 32, 64,

128}.

3.3 Evaluation

Standard methods of evaluating clustering quality are not suitable for us. We are interested in

increasing the quality of PatternExaminer, which is a task with a slighlty lower bound, than strict

clustering. We therefore continue by defining our own evaluation metrics, most notably accuracy,

which will be examined throughout the results.

24

Random baseline

Since our clustering usage metrics might be slightly unintuitive, we will also generate them for a

random clustering. The simplest way is to assign random cluster elements uniformly P(x in cluster)

= 1/k, where k is amount of clusters. However, our experiment clustering algorithms do not form

uniform clusters. Thus, a random assignment would be unjustified.

A discrete distribution over all the experiments was formed. Figure 13 displays the cluster size

distributions of agglomerative clustering.

Figure 13. Agglomerative clustering experiments cluster size distributions.

We see how agglomerative clusters are extremely unevenly distributed. Overwhelming majority of

the experiments form a single, almost whole dataset containing cluster, and the most other clusters

containing just a few elements. We may conclude agglomerative is not well suited to our textual

data.

25

Observing the results of HDBSCAN on Figure 14, a similar pattern emerges.

Figure 14. HDBSCAN clustering experiments cluster size distributions.

Large cluster counts are again just chipping away few datapoints from the whole input. Smaller

cluster count is better than the small count for Agglomerative, with all fractions being somewhat

represented. However it is still too skewed towards small fractions.

26

Examining the cluster size distribution for Spectral clustering, we observe a totally different pattern.

Figure 15. Spectral clustering experiments cluster size distributions.

These plots are nearly perfect in the sense that they display the Spectral clustering’s ability to form

clusters of equal sizes. This is a desirable property in the context of PatternExaminer. Especially, if

the clustering are of good quality, as this helps the final evaluation be of most even quality. The

plots also flaunt an interesting symmetry prevailing from spectral theory.

Having arrived at the corresponding cluster distributions, we can start sampling from them to arrive

at a random clustering. Following is the pseuducode for the corresponding process.

for algoritm in algoritms:

 for n in cluster_counts [2,10,40]:

 cluster_sizes ~ cluster_sizes_distribution

 random_labels = labels proportional to from cluster_sizes

 true_labels = half and half split between OK/NOK

 perform_clustering_evaluation

27

The result of the previously described sampling is shown on Figure 16.

Figure 16. Random clustering accuracy evaluated by our usage simulation metric.

Each algorithm and cluster count tuple were evaluated 100 times. The random clustering does not

portray too much variance. With the exception of hdbscan and spectral in the lower cluster count

range, all the results are around 0.15 – 0.23 range.

Custom metrics

To evaluate the quality of our clusterings, a custom set of metrics was defined, in line with the

usage of PatternExaminer.

Let us recall the usage of PatternExaminer. The aim of which is to assign a binary label, OK or

NOK to the whole input set. The input is broken into clusters, and we wish to assign OK/NOK to

each cluster. For this we iterate over all clusters and on each

1. Sample N elements from a cluster

2. Label them manually:

1. OK > threshold * N whole cluster is OK→

2. OK < (1-threshold) * N whole cluster is NOK→

3. Values in between the two previous are assigned mixed cluster

28

Which leads us to an assigned label for each element in the original input set. As the experiments in

the current thesis were conducted on a test set, for which we know the true labels, we arrive at a

slightly modified confusion matrix.

 Table 2. Custom confusion matrix to evaluate the efficiency of the chosen clustering methods.

True \ Predicted OK Mixed NOK

OK True Positive (TP) True Mixed (TM) False Negative (FN)

NOK False Positive (FP) False Mixed (FM) True Negative (TN)

From the confusion matrix we can derive the metrics, which are slightly modified versions of the

classic accuracy, precision, recall. Although precision carries the exactly same form, it is originating

from the custom confusion matrix, and will be discussed about as a novel metric. The metrics

describe clustering efficiency, if evaluated through PatternExaminer.

accuracy=
TP+TN

total count

recall=
TP

TP+TM +FN

precision=
TP

TP+FP

mixed fraction=
TM+FM
total count

Accounting for the randomness in step 1 of the above described algorithm, we run this evaluation

process multiple times.

Although calculating all the metrics, we resort to reporting only the accuracy. The other metrics

may be used upon fine tuning and further inspection of the next models.

It is also important to note, that when a human expert uses PatternExaminer the cycle is completed

just once. We sample it multiple times, to get a more general overview of the performance.

29

4. Results and discussion

The experiments were organized into two batches. The second batch contains the autoencoder

experiments, while the first is the remaining full experiment pipeline, discussed in section 4.

The following section goes through the experiment results and the emerging discussion.

4.1 First batch experiments

We begin by assessing the quality of a single combination of preprocessing methods and clustering

algorithm using the method described in section 3.2. We plot it against the number of clusters

formed. A result is displayed on figure 1. The specific example is of tee-tee, with symmetric

window of size 4, Spectral clustering, with the mean of cbow word embeddings.

Figure 17. The plot corresponding to a specific preprocessing and clustering method. Accuracy is

our custom clustering accuracy.

The count of clusters is important, because it translates into the amount of work required to be done

using PatternExaminer. We may define a desired accuracy and budget for the whole process. When

30

they are achieved from our clustering metrics, the actual usage of PatternExaminer may commence.

Our experiments are clipped at 40 clusters, for it is the ceiling of viability of the manual evaluation.

we continue to plot the results of all the experiments, faceted by the clustering algorithms. This

leads us to the most global look on all the experiments. The lines are plotted with high opacity, to be

able to see some patterns. Also, the random clustering comparison points are also added. This

reveals, how the bulk of both Agglomerative and HDBSCAN are as good as random clustering.

Spectral, however is considerably above random clustering.

Figure 18. All the first batch experiments. Line point correspond to a specific clustering

experiment. The orange bars contain upper and lower deciles of random clustering baseline.

It is evident, that plotting the experiments using lines is not too informative, due to the high amount

of experiments and multitude of changing parameters. Let us explore the experiment using

categorical violin plots.

31

On the Figure 18, each experiment is a point on the line. Switching to violin plots, each point

becomes part of a distribution, for which the corresponding kernel density estimations are

displayed, together with the quartile ranges. The middle, heavy dashed line is the median, dotted

lines above and below are the 0.25 and 0.75 quartiles. For comparison, the upper decile of random

clustering is added, visible as a red line. Figure 19.

32

Figure 19. Global overview of alll the experiments excluding autoencoders. Red line is the random

clustering baseline for each clustering algorithm.

The large and multifaceted plot proves to be rather informative. Some dominant observations:

• Agglomerative and HDBSCAN are not good for discovering clusters in textual embeddings.

Both algorithms are either on par with random or just slightly above it, for most datasets.

• Spectral however seems well suites, as it finds above-random clusterings in all datasets.

• Tf-idf does not lend itself to clustering small contexts. This understandable, as on such small

contexts the dataset is extremely sparse.

• Mean-vector tends to outperform WMD. This is probably again owed to the small size of

our input datapoints. Intuitievly, the less vectors for calculating mean, the more of semantic

meaning in each of the vectors gets carried on to the result. Inversely for WMD, we may

hypothesize that it needs more words to compare to see over-all patterns in a dataset.

• Tee-tee is an incredibly separable dataset, achieving notable separation even for when all the

other datasets are comparable to random cclustering. Indeed, this word pair is semantically

the farthest from the eight in our dataset.

The initial comprehensive plot does not answer all questions. Lets fixate the best overall

performance: Spectral clustering with 40 clusters and observe some deeper relations.

Context size and symmetricity

Aggregating our remaining experiments by the window size and symmetricity we find,

unsurprisingly, that symmetricity seems to have a little effect towards symmetric being better.

However, surprisingly, window size doesn’t seem to matter. This could be due to our models

simplicity being unable to grasp longer temporal relations. Seen on Figure 20.

Profiling window size against choice of model, features, metric, dimensionality reduction methods

and all the datasets we see that all parameters except for datasets have no visible effect on accuracy.

For the datasets, some display no difference, some an increase and some a decrease. Please refer to

appendix A for the figures. In conclusion, for tf-idf, mean-vector and WMD, a context larger than 2

has no effect on clustering success.

33

Figure 20. Spectral, 40 clusters. Relationship of the context properties and final accuracy.

Angular and euclidean distance

Figure 21. Spectral, 40 clusters. Difference between our two different distance metrics.

Although not by a huge margin, angular is better, as siin on Figure 21. The lower end is higher and

the mean and quartiles are as well. This is coherent with the recommendations in literature, to use

angular metrics when assigning affinities to textual data.

34

CBOW and skip-gram

Figure 22. Spectral, 40 clusters. Comparison of word2vec models.

From Figure 22 it is evident, that the skip-gram model is better. Skip-gram aims at predicting the

context, thus it is more suitable for context based feature engineering.

Dimensionality reduction

Figure 23. Spectral, 40 clusters. Dimensionality reduction comparison.

As seen on Figure 23, dimensionality reduction is of no help.

35

4.2 Autoencoder experiments

Figure 24. Grand overview of the autoencoder experiments.

On Figure 24 we see that the performance across different architectures is quite consistent, but

architecture number 2 seems to yield ever so slightly better performance, than the others. As a

reminder, architecture 2 contains two LSTM layers in the encoder and one LSTM layer in the

decoder. Five different encoder layers size configurations were evaluated: [[32, 32], [64, 64], [128 ,

128], [64, 32], [128, 64]].

The three chosen datasets all show nicely above random results. The important thing here is, how

do they compare to the first batch experiments. Lets observe from Figure 25.

36

Figure 25. Autoencoder and first batch experiments comparison.

37

Noteworthy points from Figure 25:

• Autoencoders are somewhat suitable even for the underperformers of first batch

experiments: Agglomerative and HDBSCAN.

• Spectral is still the winner. However, with Spectral, mean-vector delivers results comparable

to autoencoders. This speaks in favor of mean-vector, because it is a much simpler method,

when compared to recurrent autoencoders. Then again, on the flipside, the RNNs have much

room for improvement in the architecture department, and a bigger accuracy is expected.

Validation loss and final accuracy

When training neural networks, we may observe the relation between training and validation error.

This yields great insight into the training quality of the network. Weather it is fitting or overfitting,

etc. On one side, the evaluation loss should indicate the goodness of the final model. In Figure 26

we have plotted all the validation losses of our approximately 3000 autoencoder trianing

experiments. A very peculiar pattern emerges. The skip-gram models follow much lower loss

values, but they yield better results. Following from this train of thought, we see if validation loss

and final output accuracy are correlated. Indeed, they are not. This is somewhat bad news in the

unsupervised context of using PatternExaminer. Presuming they would be correlated, we could

automatically find the best models over some grid search. However, knowing they are not

correlated, we may form a test set on the actual data, for which the system developed in this thesis

will be used. Ofcourse, the possibility of correlation can not be excluded for more complex models,

such that will be explored in future work.

38

Figure 26. Upper left: all training evaluation losses of our autoencoders. Upper right: lack of

correlation between validation loss and final accuracy. Bottom: skip-gram is better than cbow once

again.

39

5. Conclusion

The aim of this thesis has been to study and experiment with various document embedding

methods, with the goal of using them as part of a textual pattern examining tool, called

PatternExaminer. The first use case for PatternExaminer will be in developing better fact extraction

systems on the Estonian Geenivaramu dataset. This is an important task, because once solved on a

sufficient level, is a great leap towards automated clinical trials, personal medicine, etc.

After creating the PatternExaminer, a comprehensive batch of experiments was conducted. In total,

around 20 000 various experiments. Grid search was employed over all the main parameters of

input data, preprocessing methods and clustering algorithms.

We found, that spectral clustering is best for clustering textual data, in comparison with

Agglomerative and HDBSCAN. A good context window is symmetric, but the size doesn’t matter.

Skip-gram word embeddings, averaged to the mean vectors and using angular distance yields the

most separable embedding space. Dimensionality reduction did not prove useful in the experiments.

A second batch of experiments was conducted using recurrent autoencoders. A rather simplistic

architecture was used. Nonetheless the results were either much better or on-par with the first

batch’s best performer, described in the last paragraph. Despite good performance by the neural

networks, we did not achieve an unsupervised method to select the best method. To overcome this,

we will monitor if more advanced models don’t have this downside and also create a testing dataset

on the corpus on which we are developing the final pattern extracting system.

We also demonstrated how different datasets display extremely different separability. The best

separability comes from the most semantically different words – tee-tee. However as the semantics

get closer, for example hea-halb, they become increasingly difficult to separate. This leads us to the

need for more complex recurrent architectures, which will be experimented with in future work.

The current thesis is a step towards tackling problems facing an aging society, but also towards a

semantically aware general artificial intelligence.

40

6. Bibliography

Ahn, S., Choi, H., Pärnamaa, T., & Bengio, Y. (2016). A Neural Knowledge Language Model.
Arxiv, 1–12. Retrieved from https://arxiv.org/pdf/1608.00318.pdf

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language
Model. The Journal of Machine Learning Research, 3, 1137–1155.
https://doi.org/10.1162/153244303322533223

Blei, D. M., Edu, B. B., Ng, A. Y., Edu, A. S., Jordan, M. I., & Edu, J. B. (2003). Latent Dirichlet
Allocation. Journal of Machine Learning Research, 3, 993–1022. Retrieved from
http://www.cs.columbia.edu/~blei/papers/BleiNgJordan2003.pdf

Campello, R. J. G. B., Moulavi, D., & Sander, J. (2013). Density-Based Clustering Based on
Hierarchical Density Estimates. Advances in Knowledge Discovery and Data Mining, 160–
172. https://doi.org/10.1007/978-3-642-37456-2_14

Chen, H., Martin, B., Daimon, C. M., & Maudsley, S. (2013). Effective use of latent semantic
indexing and computational linguistics in biological and biomedical applications. Frontiers in
Physiology, 4, 8. https://doi.org/10.3389/fphys.2013.00008

Groenen, P. J. F., & Van De Velden, M. (2004). Multidimensional Scaling. Retrieved from
https://core.ac.uk/download/pdf/6515354.pdf

Jang, M.-H., Kim, S.-W., Faloutsos, C., & Park, S. (n.d.). A Linear-Time Approximation of the
Earth Mover’s Distance. Retrieved from https://arxiv.org/pdf/1106.1521v1.pdf

Jurafsky, D. (2017). Stanford course CS124, Language Modeling. Retrieved May 8, 2017, from
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf

Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (2015). From Word Embeddings To
Document Distances. International Conference on Machine Learning, 37. Retrieved from
http://proceedings.mlr.press/v37/kusnerb15.pdf

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent Neural Networks
for Sequence Learning. Retrieved from https://arxiv.org/pdf/1506.00019.pdf

Megill, N. D., & Pavicic, M. (2011). Estimating Bernoulli trial probability from a small sample, (1),
1–4. Retrieved from https://arxiv.org/pdf/1105.1486.pdf

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and
Phrases and their Compositionality. Nips, 1–9. https://doi.org/10.1162/jmlr.2003.3.4-5.951

Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. Proceedings of the International Conference on Learning
Representations (ICLR 2013), 1–12. https://doi.org/10.1162/153244303322533223

41

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., & Khudanpur, S. (2010). Recurrent Neural
Network based Language Model. Interspeech, (September), 1045–1048. Retrieved from
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS10072
2.pdf

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On Spectral Clustering: Analysis and an algorithm.
Advances in Neural Information Processing Systems, 849–856. https://doi.org/10.1.1.19.8100

Pele, O., & Werman, M. (2009). Fast and robust earth mover’s distances. Proceedings of the IEEE
International Conference on Computer Vision, (Iccv), 460–467.
https://doi.org/10.1109/ICCV.2009.5459199

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, 1532–1543. https://doi.org/10.3115/v1/D14-1162

Řehůřek, R., & Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp. 45–
50). Valletta, Malta: ELRA.

Sch, H. (2008). Introduction to Information Retrieval. Retrieved from
http://www.math.unipd.it/~aiolli/corsi/0910/IR/irbookprint.pdf

Tammeveski, L., Zafra, R. V., Parts, L., Matiisen, T., & Tampuu, A. (2016). Learning DNA
mutational signatures using neural networks.

Tkachenko, A. (2016). Estonian word2vec models. Retrieved from

https://github.com/estnltk/word2vec-models/blob/master/README.md

42

7. Appendix I

Figure 27. Spectral clustering, n_clusters=40

Profiling the window size against all other parameters. On the first four plots we see the window

size does not matter, but on the dataset plot we see how a larger window size can either boost or

hurt the performance.

43

8. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Robert Roosalu,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including for ad-

dition to the DSpace digital archives until expiry of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu, including via

the DSpace digital archives until expiry of the term of validity of the copyright,

Context embedding for natural language clustering,

supervised by Sven Laur,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights or

rights arising from the Personal Data Protection Act.

Tartu, 18.05.2017

44

	1. Introduction
	1.1 PatternExaminer

	2. Methods and materials
	2.1 Data
	2.2 Document Embeddings
	Term-frequency – inverese document frequency
	Latent Semantic Indexing
	Word Mover’s Distance

	2.3 Neural networks
	Autoencoders
	Recurrent neural networks

	2.4 Language models
	2.5 Word embeddings
	Word2vec
	GloVe

	2.6 Distance and similarity
	2.7 Dimensionality Reduction
	Principle Component Analysis
	Multidimensional Scaling

	2.8 Clustering algorithms
	Agglomerative
	Specral
	HDBSCAN

	3. Experiments
	3.1 Experiment Pipeline
	3.2 Experiment parameters
	3.3 Evaluation
	Random baseline
	Custom metrics

	4. Results and discussion
	4.1 First batch experiments
	Context size and symmetricity
	Angular and euclidean distance
	CBOW and skip-gram
	Dimensionality reduction

	4.2 Autoencoder experiments
	Validation loss and final accuracy

	5. Conclusion
	6. Bibliography
	7. Appendix I
	8. Licence

