
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

73

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS

73

DMITRI LEPP

Solving simplification problems

in the domain of exponents, monomials and

polynomials in interactive learning

environment T-algebra

Faculty of Mathematics and Computer Science, University of Tartu, Estonia

Dissertation is accepted for the commencement of the degree of Doctor of

Philosophy (PhD) on June 29, 2011, by the Council of the Institute of Computer

Science, University of Tartu.

Supervisor:

Associate Professor Rein Prank (Cand. Sc.)

University of Tartu

Tartu, Estonia

Opponents:

Professor Nicolas Balacheff (PhD)

Research Director, Laboratoire d‟Informatique de Grenoble

MeTAH research team

Grenoble, France

Associate Professor Jaak Henno (Cand. Sc.)

Tallinn University of Technology

Tallinn, Estonia

Commencement will take place on August 25, 2011 at 16:00 in Liivi 2–403.

ISSN 1024–4212

ISBN 978–9949–19–787–3 (trükis)

ISBN 978–9949–19–788–0 (PDF)

Autoriõigus: Dmitri Lepp, 2011

Tartu Ülikooli Kirjastus

www.tyk.ee

Tellimus nr. 476

5

CONTENTS

LIST OF ORIGINAL PUBLICATIONS ... 9

1 INTRODUCTION ... 11
1.1 Motivation ... 11
1.2 Related works .. 12

1.2.1 Testing environments .. 13
1.2.2 Tutorials .. 13
1.2.3 Computer algebra systems and applications 14
1.2.4 Interactive problem solving environments 15

1.2.4.1 Rule-based environments .. 16
1.2.4.2 Input-based environments ... 18
1.2.4.3 Combined rule-input based environments 20

1.2.5 Task-oriented tutorial systems .. 21
1.2.6 Conclusion ... 21

1.3 Problem statement ... 22
1.4 Contribution of the thesis .. 22
1.5 Structure of the thesis .. 24

2 INTERACTIVE LEARNING ENVIRONMENT T-ALGEBRA 26
2.1 T-algebra – a classic task-oriented system .. 27
2.2 Brief introduction to problem solving environment T-algebra 28
2.3 Brief description of problem composing ... 30

2.3.1 Random expression generation ... 31
2.4 Expressions in T-algebra ... 33
2.5 General Action-Object-Input dialogue scheme in T-algebra 34

2.5.1 Action-Object and Object-Action in general and possibility

in T-algebra ... 35
2.5.2 Stages of the Action-Object-Input scheme 36

2.5.2.1 Selection of operation ... 36
2.5.2.2 Selection of objects .. 36
2.5.2.3 Input of the result ... 37

2.5.3 Three input modes ... 37
2.5.3.1 First input mode: free input .. 38
2.5.3.2 Second input mode: structured input 39
2.5.3.3 Third input mode: partial input 40

2.6 Extended Action-Object-Input dialogue scheme 41
2.6.1 Skipping some stages of the initial dialogue 42
2.6.2 Input of the rule-specific additional information 43
2.6.3 Input of intermediate result ... 44
2.6.4 Adding terms to the result ... 45
2.6.5 Extended dialogue scheme .. 46

2.7 Expression editor features to support Action-Object-Input solution

step scheme .. 47

6

2.7.1 Different representations of expressions 47
2.7.1.1 Inner string representation .. 48
2.7.1.2 Inner tree structure .. 48

2.7.2 Expression parser .. 50
2.7.3 Expression editor ... 50

2.7.3.1 Expression correctness in editor 51
2.7.3.2 Classic operations in the editor 51

2.7.4 Advanced features of the editor... 53
2.7.4.1 Selection of arguments (multiple select) 53
2.7.4.2 Constrained input ... 54

2.8 Applications of domain expert module ... 55
2.8.1 Checking equivalence of two expressions............................... 56
2.8.2 Checking the initial expression of a problem 57
2.8.3 Calculation of result .. 58
2.8.4 Automatic solution generation .. 59
2.8.5 Advice on request .. 60
2.8.6 Student error diagnosis .. 62

2.8.6.1 Error diagnosis after selecting a transformation rule .. 63
2.8.6.2 Error diagnosis after selecting the operands 63
2.8.6.3 Error diagnosis after entering a resulting expression . 64
2.8.6.4 Other errors in solution ... 66

2.9 Error categorization and student statistics ... 67
2.9.1 Error categories and attributes ... 67
2.9.2 Help usage categories and attributes 69
2.9.3 User interface for reviewing .. 70

3 PROBLEMS, RULES AND ALGORITHMS IN THE DOMAIN OF

EXPONENTS, MONOMIALS AND POLYNOMIALS IN SCHOOL

TEXTBOOKS AND IN T-ALGEBRA .. 74
3.1 Problems, definitions, rules and algorithms in schoolbooks 74

3.1.1 Exponents .. 74
3.1.2 Monomials ... 78
3.1.3 Polynomials ... 79

3.2 Designed rules in T-algebra ... 83
3.2.1 Common checks for three stages of step 84
3.2.2 Transformation rule implementation principles 86
3.2.3 Usage of transformation rules in T-algebra 88
3.2.4 Scheme for presentation of transformation rules 88
3.2.5 Rule Combine like terms ... 90
3.2.6 Rule Multiply/Divide monomials .. 94
3.2.7 Rule Raise monomial to a power .. 97
3.2.8 Rule Clear parentheses .. 100
3.2.9 Rule Multiply/Divide polynomial by monomial 102
3.2.10 Rule Multiply polynomials ... 107
3.2.11 Rule (a±b)²  ... 110

7

3.2.12 Rule (a±b)³  ... 112
3.2.13 Rule (a+b)(a-b)  .. 114
3.2.14 Rule (a±b)(a²±ab+b²)  ... 117
3.2.15 Rule Multiply/Divide terms with the same base 119
3.2.16 Rule Raise product/quotient/power to a power 121
3.2.17 Rule Raise number to a power .. 124
3.2.18 Rule Factor out common factor .. 125

3.3 Designed problem types in T-algebra .. 128
3.3.1 Problem type implementation principles 130
3.3.2 Usage of problem types ... 132
3.3.3 Automatic solving – general algorithm 132
3.3.4 Sets of rules for the problem types .. 135
3.3.5 Typical constraints for initial and resulting expression in

simplification problems ... 138
3.3.6 Scheme for presentation of problem types 139
3.3.7 Problem types for the field of exponents and monomials 140

3.3.7.1 Problem type Multiplication of powers 140
3.3.7.2 Problem type Division of powers 141
3.3.7.3 Problem type Raising a product to a power 142
3.3.7.4 Problem type Raising a quotient to a power 143
3.3.7.5 Problem type Raising a power to a power 144
3.3.7.6 Problem type Multiplication of monomials 144
3.3.7.7 Problem type Division of monomials 145
3.3.7.8 Problem type Raising monomials to a power 145
3.3.7.9 Problem type Calculation of value of expression

with integer exponents when values of variables are

given ... 146
3.3.8 Problem types for the field of polynomials 148
3.3.8.1 Problem type Combine like terms 148
3.3.8.2 Problem type Addition and subtraction of

polynomials .. 149
3.3.8.3 Problem type Multiplication of polynomial by

monomial .. 149
3.3.8.4 Problem type Division of polynomial by monomial .. 150
3.3.8.5 Problem type Multiplication of polynomials 151
3.3.8.6 Problem type Multiplication of polynomials with the

help of formulas .. 152
3.3.8.7 Problem type Calculation of value of polynomial

when values of variables are given 153
3.3.8.8 Problem type Factoring out common factor 155

4 CONDUCTED EXPERIMENTS .. 157
4.1 Study of student mistakes on paper ... 157

4.1.1 Design decisions for transformation rules and typical error

diagnosing in T-algebra ... 161

8

4.1.2 Conclusions ... 162
4.2 Experiment for validation of user interface 163

4.2.1 Distribution of student mistakes between three stages of

solution step .. 164
4.2.2 Conclusions ... 166

4.3 Trial with T-algebra while explaining new material 167
4.4 Study of student mistakes in T-algebra ... 168

4.4.1 Conclusions ... 175

CONCLUSIONS .. 176

REFERENCES ... 180

SUMMARY IN ESTONIAN ... 185

ACKNOWLEDGEMENTS ... 189

APPENDIX A .. 190
Tests for 7th and 8th grades .. 190

APPENDIX B... 192
Problem file for trial with 11th grade students in T-algebra 192

APPENDIX C... 194
Categorization of errors in T-algebra .. 194

APPENDIX D .. 195
Backus-Naur Form full description of expressions 195

CURRICULUM VITAE ... 197

9

LIST OF ORIGINAL PUBLICATIONS

1. Lepp, D. (2003). Program for exercises on operations with polynomials.

In Proceedings of 6th International Conference on Technology in

Mathematics Teaching, pp. 365–369, Volos, Greece

2. Issakova, M. and Lepp, D. (2004). Rule dialogue in problem solving

environment T-algebra. In Proceedings TIME–2004: Montreal Inter-

national Symposium on Technology and its Integration into Mathe-

matics Education, 16 p., Montreal, Canada.

3. Lepp, D. (2005). Extended Solution Step Dialogue in Problem Solving

Environment T-algebra. In Proceedings of the 7th International

Conference on Technology in Mathematics Teaching (ICTMT7),

volume 1, pp. 267–274, Bristol, UK.

4. Lepp, D., Issakova, M. and Vaiksaar, V. (2005). Expression Editor

Features That Simplify Student Work On Manipulating Expressions. In

Proceedings of the 7th International Conference on Technology in

Mathematics Teaching (ICTMT7), volume 1, pp. 259–266, Bristol, UK.

5. Issakova, M., Lepp, D. and Prank, R. (2005). Input Design in

Interactive Learning Environment T-algebra. In Proceedings ICALT–

2005: The 5th IEEE International Conference on Advanced Learning

Technologies, pp. 489–491, Kaohsiung, Taiwan.

6. Lepp, D. (2006). Error Diagnosis in Problem Solving Environment

Using Action-Object-Input Scheme. In ITS 2006 Proceedings, LNCS

4053, pp. 769–771, Springer-Verlag.

7. Lepp, D. (2006). Using Action-Object-Input Scheme for Error Diag-

nosis in Problem Solving Environment. In Proceedings of the Student

Track ITS 2006, pp. 18–27, Jhongli, Taiwan.

8. Lepp, D. (2006). Design of polynomial transformation rules in problem

solving environment T-algebra. In Proceedings DES–TIME–2006:

Dresden International Symposium on Technology and its Integration

into Mathematics Education 2006, 15p., Dresden, Germany.

9. Lepp, D. (2006). Error Diagnosis and Categorization in Problem

Solving Environment Using Action-Object-Input Scheme. In Pro-

ceedings of The 11th Asian Technology Conference in Mathematics

(ATCM 2006), pp. 215–224, Hong Kong, China.

10. Prank, R., Issakova, M., Lepp, D., Vaiksaar, V. and Tõnisson, E.

(2006). Problem solving environment T-algebra. In Proceedings of 7th

International Conference Teaching Mathematics: Retrospective and

Perspectives, pp. 190–197, Tartu, Estonia.

11. Prank, R., Issakova, M., Lepp, D. and Vaiksaar, V. (2006). Designing

Next-Generation Training and Testing Environment for Expression

Manipulation. In International Conference on Computational Science

(ICCS 2006), Part I, LNCS 3991, pp. 928–931, Springer-Verlag.

12. Issakova, M., Lepp, D. and Prank, R. (2006). T-algebra: Adding Input

Stage To Rule-Based Interface For Expression Manipulation. Inter-

10

national Journal for Technology in Mathematics Education, 13(2): 89–

96.

13. Lepp, D. (2007). Study of Student Mistakes in Solving Simplification

Problems on Paper and Possibility of these Mistakes in the T-algebra

Environment. In Proceedings of the 8th International Conference on

Technology in Mathematics Teaching (ICTMT8), 6p., Hradec Králové,

Czech Republic.

14. Prank, R., Issakova, M., Lepp, D., Tõnisson, E. and Vaiksaar, V.

(2007). Integrating rule-based and input-based approaches for better

error diagnosis in expression manipulation tasks. In Symbolic Compu-

tation and Education, pp. 174–191, World Scientific Publishing Co.

15. Prank, R., Issakova, M., Lepp, D., Tõnisson, E. and Vaiksaar, V.

(2008). T-algebra – Intelligent Environment for Expression Mani-

pulation Exercises. In Topic Study Group 22: 11th International

Congress on Mathematical Education, pp. 1–7, Monterrey, Mexico.

16. Prank, R., Lepp, D. (2010). Tools for acquiring data about student work

in interactive learning environment T-algebra. In ITS 2010 Proceedings,

LNCS 6095, pp. 396–398.

11

I INTRODUCTION

This thesis is based on the work that has been done for the T-algebra project in

2004–2008. The outcome of the project is a new interactive learning

environment for step-by-step solving of expression manipulation problems in

four different fields, particularly for solving simplification problems in the field

of exponents, monomials and polynomials. Different general decisions and

common parts of the system were designed during project seminars by the

whole project team with help from math teachers involved in the project. Some

other, field specific decisions were suggested by the responsible author. The

thesis contains a general description of different aspects of the T-algebra

environment based on articles published by the author and other team members.

The main contribution of the thesis is design, implementation, testing and

evaluating of the environment with a novel step dialogue for proper learning

and diagnosis of knowledge gaps in solving simplification problems in the field

of exponents, monomials and polynomials.

1.1 Motivation

Expression manipulation is one of the central skills needed for solving tasks in

practically all fields of mathematics. However, learning outcomes in this area

are often not satisfying. One of the reasons for poor performance is repetition of

incorrect solution attempts without getting feedback. In the paper-and-pencil

training process, students make many mistakes but teachers are not able to

discover and correct them in time. Thus, mistakes are repeated many times and

can become habitual. The need to analyse information quickly implies that the

training could be improved by using computerised training environments.

At school, the basic types of expression manipulation tasks are usually

taught together with some solution algorithms. When a student solves such

tasks, he should at each solution step:

1. choose a transformation rule corresponding to a certain operation in the

algorithm (or some simplification or calculation rule known earlier),

2. select the operands (certain parts of expressions or equations) for this

rule,

3. replace them with the result of the operation.

For proper learning of expression manipulation as well as for assessment and

diagnosis of knowledge gaps, an environment should be available where all the

necessary decisions and calculations at each solution step would be made by the

student and the program would be able to understand the mistakes.

Existing software does not address the whole complex spectrum of potential

problems. For example, some systems do not allow students to make all

decisions during the steps, and also do not allow making certain typical errors.

Some other environments do not provide error diagnosis to support the student.

12

In the next section we will see some examples of existing software that we have

studied prior to starting our own project. We have formulated the features (see

section 1.3) that the environment should have to be useful for students.

In 2004 we started a project for creating a new learning environment called

T-algebra for four areas of school mathematics: calculation of the values of

numerical expressions; operations with fractions; solving of linear equations,

inequalities and systems of linear equation; operations with polynomials. Prior

to that, in my Master‟s thesis (Lepp, 2003a, Lepp, 2003b), I tried to create a

prototype of the system with a similar solution step dialogue, which was reused

and improved for the T-algebra project. Our main goal is to design a solution

dialogue that allows the program to understand the decisions made by students

at all three stages of the step.

1.2 Related works

Prior to making any decisions we studied similar environments and other

computerized ways to teach mathematics. Before writing this thesis we checked

again if some new systems were created, but we have not found any new

interesting system worth mentioning. We also studied results of other researches

who have tried to evaluate interactive learning systems, for example, research of

the TELMA project (Trgalova et al., 2009). In this section we present some

results of our study. During the study we paid attention to the following

features:

 correspondence of the environment to school curriculum;

 cognitively faithful solution generation possibility with explanation of

steps;

 student activity in the environment and system activity;

 possibility for student to make decisions about solution path;

 possibility to make errors and system ability to diagnose them and react

accordingly;

 what skills are learned while working with computer.

Alessi and Trollip (Alessi et al., 2001) presented a list of categories for math

education software:

 drills,

 tutorials,

 games,

 simulations,

 hypermedia,

 tools and open-ended learning environments.

Handal (Handal et al., 2003) tried to estimate how relevant are those categories

nowadays and provided some software examples for each category. He

13

concluded that categories of computer use in schools described by Alessi and

Trollip are still a helpful framework for classifying web-based mathematics

learning activities. In our study we concentrated on a slightly different grouping

of software that we think is more suitable for the complex field of algebraic

transformations:

 testing environments;

 tutorials and spreadsheets;

 computer algebra systems (CAS) and calculators;

 interactive problem solving environments.

1.2.1 Testing environments

Considering their method, testing environments are very close to drilling

programs, as they present a certain set of questions and problems to be solved

by students. In most cases, students can enter only the final answer to the

problem. In case of complex problems, students have to do calculations on

paper and enter the answer. The computer reaction is usually limited to

correct/incorrect, but some testing environments provide a possibility to have a

different reaction to certain student answers. General-purpose testing

environments do not have any domain expert module, so there is no separate

error diagnosis module or some solution generator built in. However, students

can still learn by getting immediate response to their answers. One example of

an online testing environment is the testing module of the Blackboard Learning

System (Blackboard Learning System by Blackboard Inc). In this system, for

example, the author of questions for the test can define the reactions of the

system to some typical incorrect answers.

1.2.2 Tutorials

Nowadays it is possible to find quite many web-based or standalone tutorials for

school mathematics and algebra on the Internet. Tutorials present information

and also guide students through their learning processes. A tutorial usually

contains an information part and some practical exercises similar to testing

environments, where students usually only enter the final result. In comparison

to testing environments, tutorials usually give feedback on the procedure to get

the correct answer. According to Alessi and Trollip (Alessi et al., 1991),

tutorials are effective for "presenting factual information, for learning rules and

principles, or for learning problem-solving strategies”, but not for learning to

perform separate solution steps and make expression transformations.

MathAid (MathAid by MathAid) is an example of a typical tutorial system.

It has a lot of structured material: for each topic, one explanation page and

several practical problems where students have to enter the final result. It is

possible to ask for help and then the system will generate a stepwise solution.

14

However, as expressions have a fixed structure, the solution is quite rigid, with

only constants changing for different problems. MathCentre (MathCentre by

Mathematics Education Centre) is another example of a tutorial system with

different learning resources grouped by topics. Mathematics V10 (Mathematics

V10 by EptSoft) is a further example of an interactive tutorial system. Under

each topic, students can change certain parameters or generate random

expressions to illustrate and explain the material. It has also a calculator with a

good expression editor. However, it does not have a built-in testing component,

so student learning in the system is quite passive. Tutorials usually include a

domain expert module of some kind but in most cases it cannot be used for

proper diagnosis of student errors.

A slightly different approach is used in applications, which are specifically

designed for automatic generation of solutions, for example, Equation Wizard

(Equation Wizard by ElasticLogic). In such a system, students can enter an

expression (polynomial expression or linear equation) and ask the system to

simplify or solve an equation. The system produces a step-by-step solution,

making one simplification on each line and presenting a description of each

step. The steps and transformation rules used are quite similar to those taught at

school, so we can say that the solution generator in this system is cognitively

faithful. In this system, students can enter only the initial expression, they

cannot make any mistakes and, therefore, no error diagnosis is available.

Student learning in the system is quite passive, although they can learn the

solution algorithm and how to create individual solution steps, as those aspects

are explained.

1.2.3 Computer algebra systems and applications

Another category that we have studied is computer algebra systems (CAS) and

also algebra calculators. Many different CAS are used directly for educational

needs, for example, Derive (Kutzler, 1996) or WIRIS (Xambo et al., 2002) and

also algebra calculators like TI-92 (Kutzler, 2000). The use of CAS, such as

Maple (Stephens et al., 1999), has some positive effects on student results, but

the teaching methods using computer algebra systems are different from

traditional teaching. It is not possible to use CAS for practicing problem solving

(neither algorithms nor applications of single simplification rules), as those are

not designed for such work. It is possible to get the final answer to a problem

very easily but, until recently, systems did not generate or show the solution

path. The commands or transformation rules implemented in CAS are usually

too powerful for school education, making many simplifications in one step and

sometimes producing results that are beyond the school curriculum (this can be

configurable in some cases). Students cannot control the solution process by

making decisions on the result, nor make any mistakes.

Although CAS themselves are not best suited for algebraic problem solving

under student control, they can be used for this purpose in other systems.

15

Serving as a domain expert module of such systems, the core of a CAS can be

used for application of some simplification rules, checking student results,

providing feedback, etc. Error diagnosis and feedback to students is usually

limited to indications whether an answer is correct or incorrect, except for some

instances when certain typical misconceptions are checked separately. One

example of such integration of CAS into a task oriented tutorial system is

described by Postel (Postel, 1999). In the described system, students are able to

solve equations or simplify algebraic expressions step-by-step under the control

of the system. The Environment and Tutor modules of the system are custom-

made while the Expert module uses MuPAD. The Expert module is used not

only for checking students‟ decisions – like whether a given mathematical

operation is correct and leads towards the solution or whether the result of a

solution step is mathematically correct and compatible with the corresponding

operation – but also for computing the result of a solution step and suggesting

an appropriate mathematical operation as the next solution step. Its design is

similar to rule-based problem solving environments considered below, but we

mention it here as an example of CAS integration. Some other examples of

interactive CAS and possibility to generate step-by-step solutions are presented

by Maleševic (Maleševic, 2009), for example, when using the “Student”

package in the Maple integration, the problem solution generated by the system

is more detailed and contains more smaller steps. CAS are used in other systems

for computer aided assessment (evaluate student answers and provide

feedback), for example, STACK (Sangwin, 2007) uses computer algebra system

Maxima, AiM (Klai et al., 2000) and Wallis (Mavrikis et al., 2003) use Maple.

In these systems students have to enter only an answer to a question, an

algebraic expression, and the system makes checks using CAS. Although it

might be possible to build very complicated response processing trees

(Sangwin, 2007), the system still reacts according to certain predefined

responses. The system is not able to generate a solution or diagnose the exact

position of a mistake in an answer. Help provided by the system is restricted to

the same response processing tree that has to be defined for each problem,

which can be time consuming. The student learns from immediate feedback but

still has to do calculations on paper without any explicit checking.

1.2.4 Interactive problem solving environments

The final group of applications we have studied includes interactive problem

solving environments, which belong to open-ended learning environments

according to the categorisation of Alessi and Trollip (Alessi et al., 2001). In

these environments problems are solved step-by-step under the control of the

environment and according to a certain schema for making solution steps. We

have identified the following schemas of problem solving in these environ-

ments:

16

 only rule/command based environments, where students select commands

and subexpressions and the environment applies the rule automatically;

 only input based environments, where each step is freely entered by the

student;

 combined rule-input based environments, where student makes

transformations using some rules supported by inputting some parts of

the result.

1.2.4.1 Rule-based environments

In Rule-based environments, when a student makes a solution step, he usually

selects a transformation rule and, in some cases, a part of the expression to

apply the selected rule to. The transformation itself is made automatically by the

computer. Generally, in such environments, students can learn and practice the

solution algorithm, but the learning of performing algorithm steps (details of

operations) is passive, because the computer performs more work than the user.

However, the student has some freedom in choosing a solution path and has a

possibility to make some transformations before others.

The possibility for students to make mistakes is limited in rule-based

environments – the only possibilities are selection of incorrect operands and, in

some cases, selection of inapplicable rules. In some systems it is sufficient to

select the whole expression for application of the rule and the system

automatically identifies suitable operands. In other systems, after selecting a

subexpression, the system provides a list of possible operations on the selected

expression.

Although, for applying some rules, students need to input some additional

information (for example, coefficient to multiply both sides of equation, etc.),

these systems are not categorised in the group of combined rule-input systems,

because the result is usually calculated automatically using this entered

additional information.

Some examples of rule-based environments worth mentioning are:

 EXPRESSIONS (Thompson and Thompson, 1987);

 ALGEBRALAND (Brown, 1985);

 Mathpert (Beeson, 1990);

 MathXpert (Beeson, 2002);

 Aplusix (Nicaud et al., 1999);

 L‟Algebrista (Cerulli and Mariotti, 2002);

 AlgeBrain (Alpert et al., 1999);

 Education Program for Gifted Youth (EPGY) (Ravaglia et al., 1998);

 Cognitive Tutor Algebra 1 (Cognitive Tutor by Carnegie Learning Inc.);

 Ms. Lindquist (Heffernan and Koedinger, 2000).

The largest and most popular of them, for example, Cognitive Tutor,

MathXpert, Ms. Lindquist, Aplusix, are also evaluated in the TELMA project

17

research (Trgalova et al., 2009). A brief description of the listed systems and

their features is given below.

EXPRESSIONS is one of the oldest, classic rule-based environments. It has

two different representations of expressions: the usual (sentential) form and an

operator-based tree. In order to perform a step, students should select a rule

(button) and then a subexpression (by clicking on a node in a tree). The program

changes the expression and the tree accordingly. In their study, Thompson

detected typical errors that students made in the system: trying to apply an

inappropriate rule to current expression and trying to apply a correct operation

to wrong subexpression (in a tree).

The first version of the Aplusix environment enabled to practice factorizing

polynomials by choosing an action, selecting an expression and, in some cases,

entering additional information. The current version of Aplusix utilizes an

input-only interface with possibility to select some simplification commands.

Mathpert and its evolution to MathXpert both follow the principle that

students should not have a possibility to make mistakes. When solving

problems students should select a subexpression, the system then displays the

list of suitable rules and, after one of them is selected, the system applies it

automatically. Therefore, students can err neither in selecting the rule nor in

applying it. If the student is stuck and unable to proceed, MathXpert can offer

different kinds of help, for example, generate the next step automatically.

The L‟Algebrista system also follows the “no mistakes” principle and does

not allow selecting mathematically incorrect subexpressions, for example, if a

student wants to select a+3 in the expression 2*a+3, the system will

automatically extend the selection to the whole expression.

There are other rule-based systems worth mentioning. In the AlgeBrain web-

based intelligent tutoring system for solving equations, students should select

operands (a term can be selected by clicking on its primary operator) and an

operation. Like the systems mentioned above, the system does not allow

selecting syntactically incorrect parts. The system proposes hints and animated

feedback. A similar scheme is used in the Education Program for Gifted Youth

(EPGY). In this system, in order to make solution steps, students usually have

to enter some additional information. EPGY uses the kernel of Maple as an

expert module. Cognitive Tutor Algebra 1 includes simplification exercises on

polynomials and exponents (chapters 9 and 10) where students have to choose

an operation for making a solution step. For some operations, the system asks to

enter some additional information or select parts of expression to apply the rule

to.

Ms. Lindquist is an algebra word problems tutoring software. The algebra

model concerns symbolization, i.e., the task of writing an algebraic expression

given a real-world problem context, which is considered as a major determinant

of problem difficulty. Although students enter expressions similarly to input-

only environments, the dialogue guides them to the solution step by step,

making certain steps / operations at each step.

18

1.2.4.2 Input-based environments

In Input-based environments, when a student makes a solution step, he usually

enters the result of transformation on a new line. This is more similar to paper-

and-pencil solutions where students simply write transformed expressions line

by line. In such systems the expression is usually copied to a new line and

modified. Different techniques can be used for modification, for example, in

Aplusix users can move parts of expressions with the mouse (for example,

move terms to other side of equation, etc.). In other systems, simple keyboard

input is used for entering result.

When solving problems students have the possibility to make many

transformations on the same line. Input-based interface also enables students to

make all the mistakes that are possible on paper. An exact error diagnosis is

quite complicated for the system – similarly to paper solutions, there is no

information on the student‟s intentions (what transformation rule and to what

objects is the student trying to apply). Most input-based environments diagnose

equivalence of two expressions, which is quite trivial in most cases of school

algebra. The domain expert module of input-based environments usually does

not provide a precise diagnosis of errors made.

When working in input-based environments, students practice both making

separate steps and making decisions about the solution path. The solution

algorithm strategy is usually not supported by the system – there are no rules for

the system to give any hints. Furthermore, input-based environments usually do

not generate any step-by-step solutions for students.

Some examples of input-based environments worth mentioning are:

 BUGGY/DEBUGGY (Brown and Burton, 1978; Burton, 1982);

 Algebra tutor (Anderson et al., 1990);

 Aplusix (Nicaud et al., 2004);

 Math-Teacher (Math-Teacher by MATH-KAL);

 Treefrog (Strickland and Al-Jumeily, 1999).

The first prototypes of input-based systems that tried to model student

behaviour were created as early as in the seventies of the last century. BUGGY

was the first diagnostic system based on “the Buggy model”, where student‟s

errors are diagnosed as a typical “bug” – a discrete modification to the correct

skills. The system tried to identify a bug that could explain the student‟s

answers. DEBUGGY, a development of BUGGY, is a much more sophisticated

diagnostic system, that takes into account both the fact that more than one bug

can cause the student's errors and the fact that sometimes there is no hypothesis

explaining the student's behaviour completely, so that the system has to find a

model that best explains it. Both systems allowed students to solve in-place

subtraction problems.

Algebra tutor, an early version of Cognitive tutor Algebra 1, also required

only entering of the result and the program tried to figure out, what step was

performed, and to give appropriate feedback. However, authors of cognitive

19

algebra tutors found that, “The problem was that the students‟ error might well

have occurred at some intermediate step that the students were no longer fixated

upon. It was very difficult to communicate to the student what the problem

was.” (Anderson et al., 1990, p. 42).

Another problem that arises is the possibility for the theory of a domain to be

completely specified (as it is possible, for example, to list a complete set of

rules for arithmetic or high school algebra) – it is difficult, if not impossible, to

enumerate all the misconceptions and other errors that may possibly be

encountered in students‟ work, even when one only considers the errors that

students generally tend to make. That is to say, it is generally impossible to

have a complete bug library. And even if it were possible to have, at the start, a

bug library that contained at least the most common errors of a group of

students, the results of (Payne et al., 1990) suggest that different groups or

populations of students (e.g., students from different schools) may need

different bug libraries.

Aplusix is an ILE for teaching and learning secondary school arithmetic and

algebra. It lets students solve exercises and provides two fundamental

feedbacks: it verifies the correctness of calculations and of the end of exercises.

The current version of Aplusix diagnoses only non-equivalence of a new

expression to the previous one. The authors of Aplusix are developing the

program further. They are building a library of correct and incorrect rules,

which can describe how one expression was transformed by the student to the

next expression, and adding student modelling using conceptions (the models

will be provided only for teachers, not students) (Nicaud et al., 2006; Nicaud et

al., 2005). They are also planning to provide good feedback for the student from

the calculated conceptions. When solving problems in Aplusix, the program

copies the content of the previous line (expression, equation or system of

equations) to the next line and the student should edit it to get the result of the

step by typing or using drag and drop technique. The system is giving the

student feedback about correctness of the step.

Math-Teacher is another example of a system with an input-only interface. It

covers problems from different fields of mathematics, starting from arithmetical

problems like calculation of value of numerical expression. It also contains

problems from algebra like simplifying polynomial expressions, linear and

quadratic equation solving, etc. However, it also contains material and typical

problems from calculus and geometry. The expressions in Math-Teacher should

be entered in a linear, Maple-like form. In most cases, there is a possibility to

enter the final solution to a problem, although the system advises the user to

reach the solution step-by-step. The program provides three basic types of

feedback: correct, incorrect or syntax error. Some help (like hint on the last

answer line) or information about the lesson is provided. Finally, Treefrog is yet

another example of an input-based system. Similarly to Math-Teacher, students

enter the next line of expression and receive feedback whether it is correct or

not. Students can solve problems step-by-step or enter the final result at once. In

case of incorrect input, it provides a hint about which operation should be

20

performed first, based on the priority of operations and, in case of equations, a

solution algorithm.

1.2.4.3 Combined rule-input based environments

The third group of systems uses direct input while also enabling selection of

transformation rules and objects (combined rule-input). The intermediate

version of Cognitive Tutor: Algebra (Anderson et al., 1995) was a system where

the student could decompose a result of calculation into substeps recursively

until primitive steps were reached. At each substep, the student had to choose

the operation that should be performed on the expression, enter the arguments to

proceed to this operation, and enter the result. The tutor embedded boxes on top

of boxes to indicate the levels of embedded goals. However, after evaluation the

authors found that the tutor did not give positive results and “… the major

reason for the lack of effect was that there was a large difference between the

tutor interface and the interface used in class (i.e., paper and pencil). It was just

not obvious how to map the boxed representation of algorithmic decompo-

sitions to the linear line-by-line transformations…” (Anderson et al., 1995, p.

183).

In my Master‟s thesis (Lepp, 2003b, Lepp, 2003a) I also tried to implement a

system with a combined step making mode (input result of application of

transformation rules) as a prototype for T-algebra. The interface was quite

similar to paper and pencil working mode but the input stage of transformation

rules required entering different parts of expressions and the rule argument

selection was too dependent on the chosen rule.

The supervisor of the author‟s research had experience with step-by-step

problem solving environments from early nineties. A package for exercises in

Mathematical Logic was developed in 1988–91 at the University of Tartu

(Prank, 1991). One of the programs was an interactive environment for stepwise

solution of formula manipulation exercises in Propositional Logic (expression

of formulas through {&, ¬}, {, ¬} or {, ¬} and finding normal forms). The

first version of this program had an input-only interface. At every step the

student had to type a new formula on the next line (with some copy-paste

possibilities). The program checked the syntax, equivalence to the previous line

and whether the target form of the expression was reached. Prank saw that the

greatest problems were posed by errors caused by misunderstanding the order of

operations. The system was generally unable to diagnose them without explicit

information about the object of conversion. In the second version (Prank and

Viira, 1991) the step dialog was built using an Object-Action scheme. The

student had to mark a subformula and then convert it to the result of the step.

The strings before and after the marked subformula were copied automatically.

For the second substep, the program had two working modes: input and

selection of a conversion rule from the menu. As a result, the program was able

to verify separately the selection of operand and the performed conversion. This

addition of a marking phase gave a level of feedback that was sufficient for that

21

group of users (second-year students) and it was decided that there is no further

need to make it more precise.

1.2.5 Task-oriented tutorial systems

Holland (Holland, 1994) gives another overview of some intelligent tutoring

systems from mid 90-s and proposes to use subclasses of tutorial systems for

teaching mathematics. He defined the so-called subclass of task-oriented

tutorial systems (TTS). According to Holland, two essential educational goals

of a TTS are:

 The students know which operators are required or permissible for

solving the task (e.g., transformation rules for transforming terms or

equations). What is to be exercised here is the skill to apply the operators

in the context of a problem solution consisting of several steps.

 The students should know and be able to apply heuristic methods to solve

problems.

1.2.6 Conclusion

In previous sections we have reviewed different learning tools and problem

solving environments. We think that students can get most effect from problem

learning environments as they are using “learning-by-doing” technique;

therefore, we focused mostly on them in our research. However, we have

pointed to some problems in different solution step making approaches.

Some systems do not allow students to make all decisions when making

steps (for example, rule-based systems do not allow entering the result of

application of a rule or to select objects of a rule), and also do not allow making

certain typical errors. Learning from own mistakes is the most effective way

and feedback of the system is extremely important for that. However, as we

have seen, most environments do not provide an exact error diagnosis to support

the student.

From this point of view, the systems with a combined rule-input based

solution step dialogue are most suitable for students, although there are very

few examples of systems utilizing this approach. In such a dialogue the students

make all decisions about the solution step, they can make the same errors that

are possible on paper and, for the system, this dialogue creates a possibility to

give most accurate diagnosis based on student decisions. Although Anderson

faced problems in Cognitive Tutor: Algebra (Anderson et al., 1995, p. 183),

those were caused by the difference between the user interface and the usual

paper-and-pencil approach. My supervisor also had a positive experience of

using this combined rule-input dialogue in an environment for solving problems

When formulating goals for the T-algebra project, we tried to fulfil both these
educational goals: student has to be able to practice both applying separate
transformation rules and choosing correct rules (finding solution path) to solve
the problem.

22

in Mathematical logic. Therefore, we have chosen the rule-input based solution

step dialogue for our project.

1.3 Problem statement

The goal of the T-algebra project was to design, implement and test a problem

solving environment of a new kind for proper learning as well as for assessment

and diagnosis of gaps in the knowledge and skills. The project covers different

problems from four fields of school mathematics and algebra (grades 4–8):

 calculation of the values of numerical expressions;

 operations with fractions;

 solving of linear equations, inequalities and linear equation systems;

 operations with exponents, monomials and polynomials.

When designing the functionality of T-algebra, we focused on certain features

that we decided the system should have:

 enable students to solve problems step-by-step and line-by-line in a

manner similar to solving problems on paper;

 allow the student to make all the necessary decisions and calculations at

each solution step and explicitly provide this information to the system;

 leave an opportunity for the student to make the same mistakes as on

paper;

 give the possibility to learn both the algorithms and their steps in detail;

 contain such dialogue that allows the program to understand all decisions

made by students (collect direct information about chosen operation,

selected operands, entered result);

 contain such domain expert module, which would be able to not only

give an answer, but to show a solution path using the designed interface;

 be intelligent enough to check the knowledge and skills of the student,

understand mistakes, offer feedback and advice.

These features resulted in decisions about solution step dialogue and user

interface for making solution steps, applications of domain expert module, error

diagnosis, etc., which are described in Chapter 2 of the thesis. The parts that

were in my responsibility in the project are listed in the next section.

1.4 Contribution of the thesis

As mentioned, this thesis is based on the work that has been done for the

T-algebra project. The thesis presents general decisions and solutions of the

problem solving environment as well as particular decisions and imple-

mentation details of rules and problem types for the fields I was responsible for:

exponents, monomials and polynomials.

23

In T-algebra we used the combination of rule-based and input-based

approach for making solution steps. We called this the “action-object-input

scheme”. The decisions and the program implemented in my Master‟s thesis

(Lepp, 2003b, Lepp, 2003a) were used as a prototype for this scheme. It is hard

to identify the particular contributions of each team member to designing and

implementing the general ideas of the action-object-input scheme. Chapter 2 of

this thesis presents different aspects of the system, even if it is not the main

contribution of the author. In some cases, materials are based on articles

presented by other team members (for example, 3 input modes for the input

stage of a step) but the description of a feature is included in the thesis to

facilitate a better understanding of the system and other contributions of the

author.

The main contribution of the author of the thesis can be divided into three

large parts:

 design decisions and implementation of certain general features of

T-algebra;

 study, design decisions and implementation of problem types and rules

for a specific domain – domain of exponents, monomials and poly-

nomials;

 experimenting efforts in evaluating the general features, like solution

dialogue of T-algebra as well as domain specific decisions, problem

types, transformation rules, etc.

When designing and developing T-algebra, some features were designed and

implemented mainly by the author of the thesis:

 participation in design and implementation (project seminars with school

teachers and authors of school textbooks) of action-object-input solution

step dialogue (presented in section 2.5);

 implementation of expression parsing and rendering in expression editor;

 design and implementation of expression editor features to support the

solution step dialogue (presented in section 2.7);

 design and implementation of extension to the action-object-input

dialogue (presented in section 2.6);

 design and implementation of general principle of error diagnosis and

categorization (presented in sections 2.8.6 and 2.9);

 internal design and implementation of basic classes of rule and problem

type and their usage in general solution algorithm, error diagnosis, etc.

(presented in sections 3.2.2 and 3.3.1).

The author‟s domain specific (domain of exponents, monomials and poly-

nomials) contribution is:

 study of problems solved at school in the chosen domain and design of

problem types for T-algebra (presented in section 3.1);

24

 study of school textbooks and student solutions in order to extract

transformation rules needed in this domain (both domain specific and

learned before), design of transformation rules in T-algebra, discussion of

the design with school teachers and publication of decisions (presented in

section 3.1);

 investigation of typical errors for the selected domain, based on an

experiment with students (presented in section 4.1) and related works in

order to design error diagnosis for designed transformation rules

(presented in section 2.8.6);

 implementation of identified problem types, including error diagnosis,

conditions for starting and ending expressions, solution algorithm, etc.

(presented as different subsections in section 3.3);

 implementation of domain specific transformation rules, including error

diagnosis and domain expert for application of implemented rules

(presented as different subsections in section 3.2).

The author of the thesis participated in numerous experiments and trials with

students and teachers (results are presented in Chapter 4):

 experimental validation of created dialogues with students and teachers;

 evaluation of the environment in the chosen domain of exponents,

monomials and polynomials, trials with real students;

 investigation of student solutions and their mistakes when solving

problems in T-algebra (particularly problems of the chosen domain) and

comparison to the results of the experiment for collecting mistakes from

paper solutions.

1.5 Structure of the thesis

In addition to this introduction, the thesis contains four chapters, a conclusion

and appendices. General description of T-algebra is based on the papers by the

author presented in the List of original publications and also on papers

presented by other T-algebra team members. The thesis also contains a large

chapter on the author‟s domain specific contribution.

Chapter 2 (T-algebra interactive learning environment) thoroughly describes

the design decisions for T-algebra and its main components. This chapter

concentrates on the parts of the system that I was responsible for (either design,

implementation or both). The first part of this chapter describes T-algebra as a

task-oriented system and presents its components. The second part introduces

the problem solving environment T-algebra in general. The third part of Chapter

2 gives a brief description of the problem composing program and its features

(including random expression generation). The fourth part gives an overview of

expressions supported by the system. The fifth part presents the design of

solution step dialogue as an extension to the dialogue tried in the Master‟s

thesis. The next part lists extensions to the dialogue designed for the needs of

25

certain rules. The seventh part of Chapter 2 provides details about the

implemented expression editor for supporting the dialogue. The eighth part of

this chapter gives an overview of different applications of the domain expert of

T-algebra. The last part describes different error categories and statistics

collected by T-algebra.

Chapter 3 (Problems, rules and algorithms in the domain of exponents,

monomials and polynomials in school textbooks and in T-algebra) describes the

domain of exponents, monomials and polynomials. First, exploration of

mathematics school textbooks is presented (definitions, algorithms, problem

types). The second part of this chapter describes the rule engine of T-algebra,

gives information about common checks for the rules, different usages of the

rules and also some rule implementation details. This part also provides a

detailed description of the domain specific rules, designed for solving simplifi-

cation problems (exponents, monomials and polynomials) in T-algebra. The last

part similarly describes different aspects of problem types in T-algebra: general

information, usage of problem types, common checks, and some

implementation details. This part also presents composed problem types and

their solving algorithms in the chosen domain.

Chapter 4 (Conducted experiments) describes four different experiments

conducted to validate the user interface, to evaluate the created interactive

learning environment (the domain of exponents, monomials and polynomials),

to investigate mistakes made by students during problem solving in T-algebra,

and to compare them with mistakes made on paper.

The thesis also contains four Appendices. Appendix A lists the problems

used for practice exercises in one of the experiments on paper. Appendix B

contains the list of problems from the problem file that was used in another

experiment with students. Appendix C provides the list of all error categories

diagnosed in T-algebra. Appendix D presents, in Backus-Naur Form, a full

description of expressions supported in T-algebra.

26

T-ALGEBRA

2 INTERACTIVE LEARNING ENVIRONMENT

 calculation of the values of numerical expressions;

 operations with fractions;

 solving of linear equations, inequalities and linear equation systems (my

contribution to this environment);

 simplification of polynomials.

T-algebra was developed from 2004 by the Master‟s and Doctoral students of

the Institute of Computer Science at the University of Tartu (Dmitri Lepp –

simplification of polynomials; Marina Issakova – solving of linear equations,

inequalities and linear equation systems; Vahur Vaiksaar – operations with

fractions and calculation of the values of numerical expressions) and under the

supervision of their instructors (Rein Prank – project manager, Eno Tõnisson).

Rein Prank also implemented the random expression generator for different

types of tasks.

While designing the most important part of the system – solution dialogue

and transformation rules – help of consultants was used. Great contributions

were made by mathematics teachers Mart and Maire Oja and the authors of

textbooks for schools Tiit Lepmann and Anu Palu. This version is developed as

a project financed by the „Tiger Leap‟ computerization programme for Estonian

schools. In the end of 2008, the first release of T-algebra was completed and

made available for all Estonian schools.

In this section I describe different general aspects of design and imple-

mentation of T-algebra. I mostly describe those parts of the system I was

responsible for but, to give full overview of the system, I shortly describe also

those parts of the system that were designed and implemented by other team

members. My main contributions in the general part of the system are

expression text representation and expression editor, extension of action-object-

input scheme (the basis of this scheme was tried in my Master‟s thesis (Lepp,

2003b, Lepp, 2003a)), design decisions and implementation of base classes for

rule and problem type (see sections 3.2.2 and 3.3.1), rules and problem types for

the field of simplification of polynomials (described in sections 3.2 and 3.3).

Design decisions and implementation details are published by me and other

T-algebra team members (Issakova and Lepp, 2004; Lepp, 2005; Lepp et al.,

2005; Issakova et al., 2005; Lepp, 2006a; Lepp, 2006b; Lepp, 2006c; Lepp,

2006d; Issakova et al., 2006; Issakova, 2006; Prank et al., 2006a; Prank et al.,

One contribution of this thesis is to design and implement an interactive learning
environment for solving polynomial simplification problems. This goal was
realized as a part of T-algebra interactive learning environment, which enables
step-by-step solving of algebra problems in four areas of school mathematics:

2006b; Prank et al., 2007) and some of those articles were used as a basis for
the material in this section.

27

2.1 T-algebra – a classic task-oriented system

According to Postel (Postel, 1999) and Holland (Holland, 1994) a typical task-

oriented tutorial system (TTS) consists of four main parts:

 Expert Module: The system must be an expert on the subject in question.

The system must be able to answer student questions, to solve tasks put to

the student, and to analyse student answers for bugs and misconceptions.

 Environment Module: The system must know how to present the subject

matter in an appropriate way, and must allow the student to enter his/her

problems in an appropriate way.

 Tutor Module: The system must have knowledge about the curriculum

and offer the student a repertoire of tutorial strategies in order to be able

to intervene tutorially in an optimal way at any point.

 Student Module: The system must have an idea of each student‟s

knowledge and skills and be able to adapt its own hypothetical student

model dynamically to the student‟s learning progress.

Postel formulated some key features for each component, which are also valid

for T-algebra. In this section we try to describe all those essential components

of T-algebra.

The first component, the Expert Module, should (Postel, 1999):

 find a solution for each problem of the problem class. The solution is

appropriate to the knowledge state of the student;

 be able to check a student solution for correctness and quality. It is able to

classify errors as they occur;

 be "transparent", that means, it uses only knowledge and methods the

student is supposed to learn and use.

In T-algebra, the expert module is able to generate a solution for all problems

using exactly the same set of transformation rules that is available for the

student. A specific set of transformation rules is defined for each problem type,

based on the curriculum and Estonian schoolbooks. See details in sections 2.8,

3.1, 3.2 and 3.3.

The second component, the Environment Module for the dialogue between

student and tutor should (Postel, 1999):

 minimize the number of actions (keystrokes, mouse clicks, etc.) which

are necessary for the communication with the system;

 represent the problems in that way that the representation reflects the

structure of the problems;

 give as much information as possible about the problem-solving process;

 detect possible mistakes done by the student during the communication

(e.g., input of syntactical correct mathematical expressions).

28

We tried to make the user interface and solution step dialogue in T-algebra

similar to working on paper. The estimated amount of input required from the

student is similar to pure input environments and is much smaller than when

solving problems on paper (Prank et al., 2006a). See some details about the

environmental module further in sections 2.5, 2.6 and 2.7.

The third component for tutorial aspects, the Tutor Module, should (Postel,

1999):

 monitor each step the student makes toward a solution. For this, the tutor

makes use of the expert module;

 offer help at any stage in the problem-solving process to the student in

form of hierarchically graded help. Help begins with general heuristic

hints and ends with prescribing the very step toward a solution the expert

would have chosen in this situation.

Different ways of using the expert module in T-algebra were described by

Issakova (Issakova, 2006). One of the usages is providing feedback and

different kind of help in every situation depending on the current situation/

expression and the stage of the step. For details see sections 2.8.5 and 2.8.6.

The fourth component, the Student module, keeps statistics about the student.

T-algebra monitors and logs all errors and help usages, tries to classify errors to

some predefined classes and monitors overall progress of the student. For

details see sections 2.8.6 and 2.9.

2.2 Brief introduction to problem solving

environment T-algebra

The T-algebra package consists of two programs, one is for students and the

other is for teachers. The student‟s program is meant for students for solving

problems but also for teachers for checking solutions, reviewing student errors

and collecting statistics from student solutions. Students can also use these

features to revise their own solutions, check the errors made, etc. The teacher‟s

program is meant for composing problem files.

The main problem solving window of the T-algebra student‟s program is

shown in Figure 2.1. The window has been divided into two logical parts; any

of those can be hidden. The left-hand part contains a field displaying a list of

problems in opened file. The list includes expressions and formulations of

problems. In addition, completed problems (green background) and the active

problem (surrounding red box) are marked on the list.

29

Figure 2.1. Main problem solving window of T-algebra student‟s program

The right-hand part of the window is meant for problem solving. It contains a

list of available transformation rules, buttons for confirming the answer, asking

for hints, etc. At the top of the right side, there are instructions for the whole

problem, and at the bottom, instructions for the current stage of solution step.

The window also contains solution steps (expressions) already performed by the

student together with an expression editor and a virtual keyboard for entering

the result of operation.

The sample window shows the resolution process for the simplification

problem)44()32()12(xxxx  . The solution is not yet complete, but

some steps have already been taken. At the first step, polynomial multiplication

was performed. The resulting polynomial was entered in the result. At the

second step, polynomial and monomial were multiplied the same way. For the

last completed step, the operation combine like terms was picked and two like

terms were selected. The selection has been confirmed and, as the next step, the

user would have to enter the result of the combining in the yellow box on the

next line.

30

2.3 Brief description of problem composing

In addition to a problem solving environment, the T-algebra package also

includes a program that is meant for teacher usage – program for composing

problem files. Each problem file contains a set of problems, for example, for

one lesson or for home practice, etc.

When composing a problem, the teacher has to define the following

attributes:

 problem field, problem type;

 text of the problem (for example Simplify, or Multiply polynomials and

simplify);

 decide whether initial expression is entered or generated;

 type of expression (if an expression is generated);

 initial expression for the problem, values of parameters if any (if an

expression is entered);

 what input mode is used (free, structured, partial);

 what kind of hint / help is enabled or disabled.

The last two can be the same for all problems in the file if they are set in general

properties of the problem file. Figure 2.2 shows a screenshot of the teacher‟s

program during composition of a problem (initial expression is entered).

Figure 2.2. Problem composing in T-algebra teacher‟s program

31

Before a problem is added to the list, T-algebra performs the following checks:

 all necessary fields are filled: problem type, text;

 in case an expression is entered, T-algebra checks whether the initial

expression is not empty, is a syntactically correct expression and whether

the expression is suitable for the problem type (the problem is solvable by

means of T-algebra rules designed for this problem type);

 if any additional parameters (for example, values of variables) had to be

entered, T-algebra checks correctness and suitability of those;

 if an expression is generated, T-algebra checks whether the type of

expression is selected.

While composing the problem, the teacher can check the automatic answer

(small box and button in the right bottom corner of the window) or generate the

solution (by means of the same rules that students may use) and decide whether

the initial expression of the problem is suitable for the students (for example,

whether all coefficients in the answer and in each line of the solution path are

integers, etc.).

2.3.1 Random expression generation

We have implemented a random task generation in T-algebra. This creates a

possibility to prepare many different problem files (for example, in many

variants) easily.

For each problem type in T-algebra, we have implemented several types of

random expressions that are generated – most of them are similar types to those

used in schoolbooks. For example, in case of problem type combine like terms

the random expression types are the following (the list includes a short

description and a sample expression):

 “2 variables. 2 groups of like terms. Like terms have identical form”,

sample expression t3b-10bt2b-5b- 2222  ;

 “2 variables. 3–4 groups of like terms. Like terms have identical form”,

sample expression
333233 7ys-s7y-sy-2yss8y4ys-  ;

 “2 variables. 2 groups of like terms. Like terms can have different form”,

sample expression b3c-3c-cb9c7bc- 323  ;

 “3 variables. 3–4 groups of like terms. Like terms can have different

form”, ex. 33235323434334 tb3bw-bt5w-tb8wbw-bt6bwtb5ww7tb-  .

From the description of expression types it is clear that either 2 or 3 different

variables are used in expressions, 2 or 3–4 groups of terms are used (some could

be also single terms without pairs to combine with) but at least one pair of like

terms should be present. The last option (same or different form of like terms)

defines whether all terms of one group have identical variable parts (order of

variables, powers) or different (for example order of variables can be different

b3c-7bc- 33
 or the same variable can exist multiple times, not in a normal

32

form cb9c7bc- 23 ). T-algebra allows combining terms in different form but

it is more difficult for the student to identify such like terms.

There are two ways how to use random expression generation in T-algebra.

The first possible way to use random expressions is to save the random

expression type in the problem file. Each time the problem file is opened in the

T-algebra student‟s program, new expressions are generated for solving. Using

this option enables to give students the same problem file and be quite certain

that all students get different problems to solve (for example, to prevent

students from copying each other‟s solutions during a test).

Another way is to generate a set of sample problems and choose one for

solving or edit it further. In this case the teacher can easily create a problem file

containing different problems without entering expressions himself. The

selected sample expressions are saved to a file and every time the problem file

is opened the same expressions are solved.

Figure 2.3 shows random expression selection in the problem composition

window. On the left, an expression type can be selected for the given problem

type. The right panel displays generated examples; it is possible to ask

T-algebra to generate another set of examples. There are buttons for deciding

whether one of the examples will be used as the initial expression or whether an

expression will be generated when the problem file is opened in the student‟s

program.

Figure 2.3. Random expression generation in T-algebra teacher‟s program

33

2.4 Expressions in T-algebra

The main objects that T-algebra is working with are algebraic expressions. In

this section we describe, which expressions are allowed in the program, i.e.,

which expressions are treated as correct.

Problems solvable in T-algebra belong to four fields of mathematics:

calculation of the values of numerical expressions; operations with fractions;

solution of linear equations, inequalities and linear equation systems; poly-

nomial simplification and factorisation. Thus the expressions from T-algebra

also belong to these fields.

We define expressions in T-algebra the following way. Elementary expres-

sions (or basis) are integers, decimals and variables. Algebraic expressions are

composed by recursively applying different operations (unary – and +, binary +,

-, *, /, exponentiation, fraction). Created algebraic expressions can be connected

using equality and inequality signs (equations grouping into systems). A list of

possible operations is presented in Table 2.1 (page 48). A full Backus-Naur

Form description of expressions in T-algebra is presented in Appendix D. Here

are some examples of correct expressions:


3

2
2

2

1
 ;


22)1(xx  ;

 xx  322 .

The following expressions are treated by the program as incorrect:


3

2,0
3

2

1
)1( x , because decimal is not allowed in mixed numbers;


4)1(322  xavbcba , because a multiplication sign is required in

monomial multiplication, and constants are not permitted between

variables in monomial multiplication.

The editor does not put any quantitative constraints on expressions. The editor

also supports several-storied fractions and exponentiations, etc. However,

almost all problem types define some constraints on expressions (described in

section 3.3.5). For example, when solving linear equations, all expressions have

to be linear equations – they have to contain the equality sign and exactly one

variable. In almost all problem types, the expression cannot contain fractions

with variables in denominator.

There is one expression form, which created some problems for us. When

defining the order of operations, textbooks declare that operations with the same

priority are to be applied from left to right. For instance, expression

abaa 2:)(8 34  would mean, that we divide the first part
34)(8 baa  by two

and then multiply by a . The multiplication sign is often omitted in expressions.

So expressions)(2 baa  and)(2 baa  have the same meaning. A problem

arises when we have both division and multiplication in an expression. Some

34

Estonian schoolbooks mean by abaa 2:)(8 34  that the first part of the

expression
34)(8 baa  is divided by monomial a2 . The Council of

Mathematics at the Ministry of Education of Estonia asked us to support the

same form in T-algebra. Therefore, T-algebra considers multiplication without

sign as a higher priority operation than ordinary multiplication or division (as if

part of the expression were put into parentheses). For example, in expression

)()(2:)(8 34 baabaabaa  the first part
34)(8 baa  is divided by

abaa)(2  and multiplied by)(ba  . However, we ourselves are not satisfied

with this solution.

 2.5 General Action-Object-Input dialogue scheme

in T-algebra

T-algebra enables step-by-step problem solving. There are two basic possibi-

lities for taking a step in interactive programs (discussed in section 1.2.4): free

input of the step result (for example, in the Aplusix system (Nicaud et al.,

2004)) or conversion by some rules or commands (for example, in the

MathXpert system (Beeson, 2002)). T-algebra combines both these options –

conversion by rules is supported by the input of some parts of the result. Each

solution step in T-algebra consists of three stages:

1. selecting a transformation rule (action),

2. marking the parts of expression (object),

3. entering the result of the application of the selected rule (input).

Hereinafter we will refer to this scheme as the Action-Object-Input scheme after

its three stages (Issakova et al., 2004). This type of scheme was first used in the

program Polynom developed by me as part of my Master‟s thesis (Lepp, 2003a,

Lepp, 2003b). The following simple example shows, how a student would

complete the stages of dialogue and how these stages correspond to the solution

algorithm taught at school. Let the problem be the following: simplify the

expression
22 2465 xxxx  . When solving the problem on paper, the

student would at first examine the expression and then decide to combine like

terms. Then he would underline the like terms he wants to combine and enter

the resulting expression after the equality sign. The program follows principally

the same scheme of actions. The corresponding solution step consists of the

following three stages:

1. Selecting a transformation rule: the student selects from the rule list the

rule of combining like terms – the program allows selecting any rule

without checking, whether it is possible to apply such transformation at

this stage.

2. Marking parts of expression: the student marks all the monomials

similar to
2x , using the mouse and selection buttons – the program

checks, whether the selected parts of the expression are actually like

35

terms, and it also checks, whether these terms can be combined (i.e.,

whether they belong to the same polynomial).

3. Entering the result of the application of the selected rule: the program

copies unchanged parts of the expression onto the next line and asks the

student to enter the resulting monomial or its parts. Depending on the

input mode, different boxes are shown (see details in section 2.5.2). The

program checks, whether the entered parts are correct and the whole

expression is equivalent to the expression displayed in the previous line,

and then displays the resulting expression in the next line of the

solution.

This list should provide an idea of the connection between the actions of the

student and the program, what and when is checked by the program. If an error

message is displayed at any checking stage during solving the problems, the

student must first correct the error himself or let the program correct the error in

order to proceed to the next stage. For each stage of the solution step, the

program gives specific instructions („Choose the rule to apply next‟, „Select

terms to combine‟, etc.). The student can cancel the step at any moment. It is

also possible at any stage of the step to ask the program for help and let the

program complete certain stages automatically (see details in section 2.8).

2.5.1 Action-Object and Object-Action in general and

possibility in T-algebra

Interactive programs in which the user processes some kind of objects (text,

image, table, etc.) step by step usually allow the user to apply different menu-

selectable operations. The user can apply operations in a different order. If the

operations are applied to the objects with the same structure, it is normal to use

the so-called Object-Action scheme in which the user first selects objects and

then chooses an operation to apply to these objects. Such scheme is used, for

example, in text editors for changing the font of a paragraph, copying text, etc.

Most computer algebra systems also use this scheme.

However, when the arguments of different operations have very diverse

structures (monomials, polynomial, parentheses, etc.), it might be difficult to

apply the Object-Action scheme. It is not clear before the operation is selected,

what information needs to be entered to specify the object (whether the object is

a monomial or a polynomial, an expression in brackets, an exponential

expression, etc.). In this case, an Action-Object scheme is preferable, i.e. the

user first selects an operation and then marks the objects to which the operation

will be applied. Similarly, it is not possible to use the Object-Action scheme in

dynamic geometry programs, for instance, where the order of objects is

important (for example, centre of circle and point on a circle, etc.).

The Action-Object scheme is more suitable for working with the resolution

algorithms used at school. The algorithm tells the student, what step should be

taken next (what operation). So the student thinks of the next operation and then

36

tries to find objects and decide whether this operation is possible at this

moment.

In the beginning we also chose the Action-Object scheme for T-algebra. As

each rule can only work with certain types of objects (monomials, polynomials,

expressions in brackets, variables, fractions, etc.), it should be clear beforehand,

which objects ought to be marked. After the transformation rule (action) is

selected, T-algebra is able to provide rule specific instruction on what objects

should be selected. In addition, after selection of the rule, T-algebra is able to

help the student and select suitable objects for the operation.

However, after the first trials we also enabled the Object-Action scheme, as

we saw that students tried to select objects before the rule. As the user interface

for selection of objects is common for all rules, we were able to do that easily.

Students are now able to select objects (parts of expression) and then decide

what to do with them. The only downside of this is that T-algebra does not

provide any special instruction about objects to be selected and also cannot help

the student in selecting those before the action is selected.

In T-algebra, the Action-Object scheme was upgraded with a third com-

ponent – entering the parts of the resulting expression (Input). This gives the

student the possibility to participate in the solution process. It also enables the

program to check the knowledge and skills of the student.

2.5.2 Stages of the Action-Object-Input scheme

In this section we describe the details of design, implementation and user

interface of individual stages of the dialogue.

2.5.2.1 Selection of operation

At the first stage of a solution step, the student has to select an operation – click

on one transformation rule on the list on the right of the solution window

(Figure 2.1). The set of rules displayed in the menu depends on the problem

type. Rules designed for the domain of powers, monomials and polynomials are

thoroughly described in section 3.2. It is possible to change the rule before the

selection of objects is confirmed without recording any error, even if a non-

applicable rule is selected, as this is not confirmed by the student yet.

T-algebra does not check the selection of rule separately – it is checked

together with objects. However, it diagnoses separately whether the rule is

applicable to any objects in the current expression – if not, a separate error

message is shown to the user after selection of object is confirmed.

2.5.2.2 Selection of objects

In addition to selection of the operation, T-algebra requires selection of

operands. Unlike many other programs, T-algebra requires precise marking of

operands for diagnostic purposes. For example, for the operation Combine like

terms, the student should mark only those terms that will be actually combined.

37

A special multiple selection mode of the expression editor is implemented for

selection of objects (see details in section 2.7.4.1) – in this mode, the expression

editor of T-algebra enables to mark more than one piece of the expression.

After selection of objects is confirmed, T-algebra checks if the rule is

applicable to the selected objects (see details in the description of rules in

section 3.2).

2.5.2.3 Input of the result

At the third stage (Input) of each step, the student should enter certain parts of

the expression that result from the previously selected operation. The program

generates an expression on the next line, based on the selected rule and marked

parts, and leaves blank certain important parts of the new expression. When

solving problems at school with paper and pencil, the students always have to

write an expression of the same length after the equality sign. Consequently,

they try to reduce their workload by making several transformations at once.

The program makes the work easier for the students by copying the parts of the

expression that remain unchanged so that the students would have to enter only

the parts that were modified. As a result, only one transformation can be made

in each step. This makes it easier for the program to check the solutions and

gives a better overview of the student solution to the teacher.

The parts of the expression that the student has to enter are highlighted with

yellow boxes. The form and the number of user-definable parts depend on the

selected rule, marked parts and the mode (see details and examples in section

2.5.3). While entering the results, the program protects other parts of the

expression from modification – the expression can be modified only in

highlighted locations (see details about constrained input of the expression

editor in section 2.7.4.2). This makes it easier for the program to check the

solution and, in addition to checking equivalence between the new expression

and the previous one, it also enables checking the correctness of separately

entered parts, thus improving the overall responsiveness of the program to

errors.

2.5.3 Three input modes

As mentioned, the Action-Object-Input scheme was first tested in my Master‟s

thesis (Lepp, 2003b, Lepp, 2003a), which serves as a prototype of T-algebra.

The input forms in that program were designed separately for each conversion

rule, trying thereby to minimize the input so that only critical information for

the particular operation would have to be entered. The form and number of parts

that could be entered became too varied for different rules and the user interface

of the program became too confusing. In T-algebra we try to design, uniformly

for all rules, three fairly standard input modes, which we have named free input,

structured input and input of some components. Free input mode is easily

comprehensible (it is similar to working on paper) and it can be designed for

each rule. Structured and component input modes are more specific. The

38

program helps the user in a certain way, whether by indicating the structure of

the result or even by filling out a part of the result. The input mode is selected

by the teacher during problem composition. It turned out that there are some

rules for which it is impossible to apply all three input modes.

At the third stage (Input) of each step, the student should enter certain parts

of the expression that result from the previously selected operation. The

program generates an expression on the next line, based on the selected rule and

marked parts, and leaves blank certain important parts of the new expression.

Depending on the input mode used, the number and types of empty boxes can

be different. The following subsections provide details about each input mode

(Issakova et al., 2005).

2.5.3.1 First input mode: free input

In the free input mode, the program generates one input box (or two boxes in

case of some rules with fractions and equations) inside the expression on the

next line instead of marked parts (Figure 2.4). The input box is in the same

position as the first marked part in the expression on the previous line. The

student should enter in the box one expression, replacing the whole marked part

from the previous line. In the free input mode, the student should also create

such non-linear elements of the sub-expression as fraction lines and exponents

if needed. Even though the name of the mode is free input, input is still

restricted to some extent. The editor gives the student freedom for entering but,

after the input, the program checks not only syntactical correctness of the

expression and equivalence to the previous expression, as for example in

APLUSIX (Nicaud et al., 2004), but in some cases also the correctness of

applying the rule.

Figure 2.4. Free input

39

For example, in Figure 2.4, the rule Combine like terms was selected and two

like terms were marked. After the input is confirmed, the program first checks

whether the entered part is a syntactically correct expression, then whether the

entered part is a monomial (because the result of combining like terms should

be a monomial) and then whether the entered expression is equivalent to

marked parts. Finally, the program checks equivalence of the complete new line

to the previous line (sometimes the student should type brackets around the

entered sub-expression). In some rules where result has a more complex

structure, only equivalence and some operation priorities are checked.

The free input mode is the most general input mode. This mode can be de-

signed for all rules.

2.5.3.2 Second input mode: structured input

In some cases, we do not want students to work on creating the structure of the

expression by replacing the operands. In the structured input mode, our program

uses the information about the actual rule and operands, and predicts itself the

structure of the required input using different input boxes for signs, coefficients,

variables, exponents, etc. (Figure 2.5).

Figure 2.5. Structured input

The size and position of the boxes should make the user understand at once

what he should enter. In this mode, input in the boxes is restricted. If the cursor

is in an input box, the buttons with unavailable symbols on the virtual keyboard

are inactive and the corresponding keys on the regular keyboard do not work.

For example, the sign input box enables the user to enter only addition,

subtraction, multiplication or division signs. The coefficient input box (active

on Figure 2.5) accepts common fractions, numbers and comma (for decimal

fractions). The variable input box accepts only letters, etc.

40

For example, in Figure 2.5, where the rule Combine like terms was selected

and two like terms were marked, the program offers a pattern of monomial with

six boxes on the next line. The first box is sign input box, the next is coefficient

input box, followed by boxes for input of variables with exponents.

Generally, the number of boxes for the variables of one monomial offered by

our program is the same as the number of variables in the marked parts.

Variables can be entered in an arbitrary order inside one monomial. However,

the program requests the user to standardize the result to some extent, because

the number of offered boxes is limited. For example, although the form of one

monomial is yxy in Figure 2.5, the program offers only two boxes for entering

variables on the next line, i.e., the user must standardize the form yxy and

change it to 2xy or xy 2 .

While the program offers a pattern of the result and permits certain entries in

every box, it is possible to leave some boxes empty. For example, if the power

of a variable is 1, the exponent can be left empty. If the power of a variable is 0,

both the exponent and variable boxes may be left empty. If the coefficient box

is left empty, the program interprets this as 1. If all boxes in one monomial are

left empty, the program presumes that this term is combined or reduced,

depending on the selected rule, etc.

If the user has finished entering then the program checks, whether the new

expression is equivalent to the previous one and whether the entered parts are

equivalent to the parts calculated by the computer. If they are equivalent, no

further checking is required. If the expressions are not equivalent, it is possible

to check the correctness of each entered part to produce a more specific

diagnosis.

The structured input mode is rule-specific (each rule requires a unique input

pattern of the resulting expression) and it turned out that this mode is useless for

some rules. For example, it would be pointless to offer a pattern for the result if

the applied rule was Remove parentheses, because only signs change.

2.5.3.3 Third input mode: partial input

The third mode is a simplified form of the second mode, where the program fills

some boxes by itself. For example, Figure 2.6 shows the same example as

Figure 2.5, but using input of some components.

41

Figure 2.6. Partial input

The program itself writes the variables with exponents. The user should only

enter the sign and coefficient of the monomial. The program simplifies the work

of the user also by doing the standardization of the variables of monomials, i.e.,

converting the monomial into normal form.

After the input the program checks correctness of the expression and

equivalence to the previous one as in other modes.

2.6 Extended Action-Object-Input dialogue scheme

When designing the rules for T-algebra, we found that it is difficult to realize

some rules using pure Action-Object-Input dialogue (section 2.5). In order to

decide, which features we need to add to the dialogue, we studied students‟ works

on paper – how and which steps do they make while solving problems on paper.

We also reviewed school textbooks to find all the rules used for making solution

steps and algorithms for solving the problems. Virtually in every topic we found

some rules where adequate realization required modification of the dialogue.

The easiest cases were rules that did not require selection of the object. For

example, in the solution of one equation or inequality, the rule Multiply the

sides is always applied to the whole line (however, selection is required in the

case of a system of equations).

We found two different reasons for inserting additional sub-steps in the rule

dialogs. The first reason is that, for some rules, the form of writing the solutions

as suggested by textbooks contains more than one „input‟. For example,

Estonian textbooks suggest writing addition of fractions with different

denominators as follows:

4 31 3 4 9

6 8 24


 

42

Here the students first calculate the common denominator of the fractions

being added and write it to the resulting fraction after the equality sign. Then

the students find so-called extenders (the factors for multiplying the numerator

and the denominator of the fractions) and write them to each addend. After that

they find the members of the numerator of the result.

The second reason is that, in some rules, the result of application is not

uniquely defined by operands but depends on some additional decision of the

student (the choice of a common denominator in the case of addition of

fractions, the values of syntactic variables of multiplication/factoring formulas).

Even if this information is included in the final input, it could be very difficult

to guess if the input is inconsistent. In some cases, this information is needed

already for checking the intermediate input (extenders) or for building the

structure for structured and partial input.

The third reason for introducing some novelty was that we did not want to

predict the number of monomials in the result in some operations of the

structured mode, such as multiplication of polynomials and multiplication/

factoring formulas.

For solving these problems, the dialogue of some rules was modified by

adding certain special features (Lepp, 2005; Issakova et al., 2006). We extended

the input stage of the dialogue by adding three new features. Each rule may use

one or several of these features at once, depending on the mode running. The

added features are the following:

 input of rule-specific additional information,

 input of intermediate result,

 adding terms to the result.

The following paragraphs present these added features in more detail,

describing what the program does, what the student has to enter and what the

program checks. We will also give some usage examples for each new feature.

2.6.1 Skipping some stages of the initial dialogue

When designing the rules, we found it unnecessary to realize all the rules using

all three stages of the dialogue. Therefore, we added the possibility of skipping

the selection of objects or input of the result in some rules.

Some rules are applicable to the whole expression (multiply both sides of

equation, compare the fractions, etc.), which is why it would be pointless to ask

the user to select the whole expression. Another set of rules is designed

specifically for single step problems and these rules are not used elsewhere

(define order of operations, find reciprocal value, compare the fractions,

calculate approximate value of the fraction). These rules are also applicable to

the whole expression; therefore, the stage of object selection is skipped. After

the rule has been selected, the program checks whether the rule is applicable

and then applies the rule, letting the student to fill in the boxes in the result.

43

The final input stage can also be skipped in some rules. For example, using

the rule for reducing the fraction, the student enters the result of the application

of the rule in the intermediate results stage (in a different form, reduction results

are entered to every part of the fraction) and the program rewrites it auto-

matically.

2.6.2 Input of the rule-specific additional information

Application of some rules requires certain specific information, which does not

belong to the resulting expression or is difficult to extract from the result in case

of an error. For example, when adding fractions with different denominators,

the common denominator value should be entered. Even though it is a part of

the resulting expression, it should be entered before the input editor for the

resulting expression is created, because this information is needed while

checking the correctness of extenders. As we still want to check the student‟s

skills and identify the cause of errors, this specific information has to be entered

separately. When creating the expression on the next line, the program uses the

selected rule, objects and information entered.

For each such rule that needs additional information, a separate input

window was created containing rule-specific input boxes. For example, when

adding fractions, the student has to input only one number – common

denominator of the fractions. However, this window can also have a more

complex structure, for example, in the case of the rule Factor out common

factor, the program prompts the user to enter the common monomial to factor.

Similar input was used in the Mathpert system (Beeson, 1998).

This added window is the first new feature that can be followed by other

options or the usual input of the resulting expression. When the objects of the

rule have been selected, the program checks whether the rule is applicable to

them and after that displays this input window to the user. After the student has

made the input in this window, the program checks whether the entered

information is correct. If no errors were diagnosed, the student may proceed to

the next stage. Our example shows the additional input window (Figure 2.7) for

the rule: addition of fractions with different denominators. In this window the

program asks the user to enter a common denominator for all selected fractions.

Figure 2.7 shows the initial expression in which the objects (fractions to be

added) have been marked, and an additional window for entering the common

denominator. The information entered in this window is used not only for

additional knowledge testing but also for construction of the resulting

expression – the resulting fraction already has the denominator filled in.

44

Figure 2.7. Input of the rule-specific additional information in the case of addition of

fractions with different denominators

In the field of polynomials, this additional input window is used, for example,

when asking the student to enter the common factor in the rule Factor out

common factor (see details in section 3.2.18).

2.6.3 Input of intermediate result

Looking through the solutions on paper, we found that some rules are applied

using two input stages: first some intermediate result is found (for example,

extenders for each term are found when multiplying both sides of equation) and

then the final result is written. We tried to follow the same pattern to extend the

dialogue that is used when working with pen and paper: at first, the common

denominator is entered in an additional window, then the extenders of the

fractions are entered and, after that, the members of the final result are entered.

As we wanted to keep the initial expression unchanged with the objects selected

in it, after entering the common denominator, the program copies the expression

to a new line and provides boxes for entering extenders. The same constraints

are used here as in structured or partial input – the boxes allow entering only

limited expressions (only numbers, etc.). Figure 2.8 displays the extenders input

boxes required by the rule of addition of fractions.

45

Figure 2.8. Input of intermediate result when adding fractions with different denom-

inators

After the intermediate result has been entered, the program checks the correct-

ness of entered parts. In case of an error, the student is given an appropriate

message and the program lets the student to correct the result before proceeding.

If no error is diagnosed then the program constructs the result of applying the

rule based on all the information entered and lets the student to enter some parts

of the result, depending on the solution mode running.

2.6.4 Adding terms to the result

Most rules that are used for making transformations to algebraic expressions

actually shorten the initial expression: the number of terms decreases, two or

more terms are joined somehow, etc. However, rules dealing with polynomial

multiplication lead to a growth of expressions and the structure of added terms

differs from the structure of the terms that caused this growth. In the free input

mode, the student has to build the structure of the result himself. In the

structured input mode, described above, we would give the student too many

hints on how the result should be found, e.g., the number of terms in the result,

etc. We have found a better solution.

The members of the resulting sum have the same general structure. Instead

of drawing the boxes for all terms, we can draw a box for the first term and give

the possibility to add more terms dynamically by adding or removing monomial

structures. When checking the result, the program checks whether an

appropriate number of terms was added and it also checks each term separately.

Figure 2.9 shows an example of adding terms to the structure of the result in
the rule of multiplying two polynomials. The result of application of this rule is
also a polynomial that the student has to construct of monomials. At first, one
monomial structure is given (Figure 2.9 on the left). Then the user can extend
the structure by pressing the appropriate button on the virtual keyboard and the
program adds one more monomial (Figure 2.9 on the right shows the added
monomial, input boxes are filled with parts of the result). This mode requires
exact application of this rule only; combining similar terms is not allowed.

46

Figure 2.9. Adding terms to the result in the rule of multiplying two polynomials

2.6.5 Extended dialogue scheme

The following is a summary of the new extended scheme, including all the

checks performed by the program. If an error is found then the program does

not permit proceeding to the next stage of the solution step.

1. The student selects a transformation rule from the menu – the program

allows selecting any rule without checking, whether it is possible to

apply such transformation at this stage.

2. The student selects a set of objects in the expression (may be not used

in case of some rules) – the program checks, whether the rule is

applicable to the selected objects.

3. The student enters rule-specific additional information in a separate

window (may be not used in case of some rules) – the program checks

the correctness of entered information.

4. The student enters an intermediate result of application of the rule (may

be not used in case of some rules) – the program checks the correctness

of entered information and the correctness of rule application.

5. Before the final result is entered, the student can add structures of terms

to the result to achieve a fitting number of terms (may be not used in

case of some rules) – the program does not check, whether the number

of terms was exact. The important question here is, whether the answer

will fit in. Terms can also be added in the next stage if the result does

not fit.

6. The student inputs some part of the resulting expression, depending on

the problem solving mode (may be not used in case of some rules, the

program rewrites the intermediate result automatically) – the program

checks, whether the rule is applied correctly.

The described scheme or some subset of these stages should be suitable for any

rule in T-algebra.

47

2.7 Expression editor features to support

Action-Object-Input solution step scheme

There are different ways to present and enter expressions in different computer

algebra programs and learning environments. For example, older versions of

Maple (Maple by Maplesoft) use command line input (linear input for 2D

expressions) but present expressions naturally in a 2D form. Some other

systems like MathCAD (MathCAD by PTC) provide WYSIWYG 2D editors:

both input and representation are 2D. Different ITS also utilize both mentioned

ways for inputting expressions, some of them even use expression repre-

sentation as a tree and allow selecting nodes for different operations, for

example, EXPRESSIONS (Thompson and Thompson, 1987).

We designed our own WYSIWYG 2D expression editor for T-algebra (Lepp

et al., 2005) to support, in particular, the second and third stages of the step

(selection of objects to apply selected rule to, and input of essential parts of the

result). We wanted to achieve the following goals with the editor:

 The student has to perform as few operations as possible in one solution

step (compared to pen and pencil solutions, where he has to write all

unchanged parts of the expression at each step – T-algebra copies

unchanged parts and protects those from modifying).

 During solving the student has to have a possibility to make mistakes (in

selecting the rule and in applying it) and the program should be able to

help the student to correct errors.

The last goal is also the reason why we had to design an editor that does not

guarantee correct structure of the expression. The designed 2D editor is easier

and clearer to use for school students than command line input. In addition to

classical operations, the created editor allows some rule dialogue specific

operations – rule objects selection, constrained input of the result. These

operations enable to simplify student work when making the solution step, force

the student to enter parts of the result that are essential in applying the selected

rule, and identify the correct objects to apply the rule to.

2.7.1 Different representations of expressions

In the T-algebra expression editor, there are three different representations of

expressions: natural 2D representation, linear string (1D) representation and tree

representation (object representation). Different expression representations are

discussed by Nicaud and Bouhineau (Nicaud et al., 2008). The natural 2D

representation is used to display expressions to the user in the editor; most

people are used to seeing algebraic expressions in this form. This 2D

representation is used in all textbooks. The other two are used internally by the

program. In the expression input mode, the program stores them as strings (1D

representation). String representation is also used when saving problems and

solutions to a file. When manipulating expressions, applying rules, selecting

48

objects, etc., a tree-like object structure is used. Let us review both these inner

representations.

2.7.1.1 Inner string representation

If we check the expressions that are supported by T-algebra (see section 2.4)

then we can see that most of allowed operations and sub-expressions have linear

screen representations with some exceptions (fraction, exponent, etc.). When

storing expressions as strings we define codes for storing such non-linear sub-

expressions, as for example
2a is being stored as string „a^{2}”. The program

keeps the linear parts of the expression unchanged (bca is stored as „a+bc”).

When the user modifies the expression, the inner string representation is

changed accordingly. All changes are immediately reflected in 2D repre-

sentation. A question can arise at this point: Why was XML or XML-based

MathML, OpenMath or even TeX syntax not used? The main reason is that we

wanted to store linear sub-expressions almost unchanged (small changes, note

that Estonia uses comma as decimal separator but we still used point; schools

use colon as division sign but we still used slash as division mark) and keep the

structural sub-expressions using shortest possible codes, so that when

modifying an expression, all editor keystrokes go directly to the inner string.

Some supported elements are presented in Table 2.1 along with their code in the

inner string representation.

Table 2.1. Supported elements with their codes

Expression String Expression String Expression String

yx  22,2 2.2+x^{2}-y
3

2
1 1{2/3}    b1 (-1)+[-b]

zyx 2:2  2x*y/2z 232  xx 2x-3=x+2









52

3

yx

yx x-y=3&

2x+y=5

2.7.1.2 Inner tree structure

When we have the correct expression then the program can parse the inner

string representation and build up a tree representation. The program does some

further operations with this tree – it checks the possibility to apply the rule,

correctness of the selection of rule objects, and rule application. After that, the

resulting tree is transformed back to string representation to enable the student

to input the resulting parts.

The tree stores operations of the same priority and arguments of these

operations on the same level. Atomic expressions can be found at tree leaves –

variables, numbers and operation signs. The inner vertexes of the tree include

several kinds of objects that define the priority of the next level operations:

1. System of equations, which has equations as its children.

49

2. Equation and inequality – connecting mark and both sides are the

children.

3. Sum-difference objects – children on the next level are sub-expressions

connected by plus and minus signs.

4. Product-quotient objects – has multiplication (also with omitted

multiplication sign) or division members as children.

5. Power object has 2 children: argument and exponent.

6. Bracket object includes the bracket kind and sub-expression as its only

child.

7. Fraction objects contain 2 children: numerator and denominator.

8. Mixed number also contains 2 children: integer part and fraction part.

Such grouping of operations by priorities simplifies program checks and

application of rules. For example, if we need to check that monomials, selected

by a student for combining, are suitable we check that they have the same

parent node in the tree (members of the same sum), we check that the parent

node is a sum-difference object (that gives that monomials are not members of

product) and we check separately that variable parts are equal. Figure 2.10

shows tree representations for the expression ababa 2:1435  . Here the

sum-difference object is marked as “+-” and the product-quotient object is

marked as “*/”.

Figure 2.10. A tree representation of expression

When the student selects a5 and a3 as objects then the program selects both

roots of these sub-trees and also the preceding sign before the monomial a3

regardless of whether the sign was selected or not in 2D representation (Figure

2.10). When applying the combining rule to selected objects, the selected

objects are removed from the tree, and new monomial a2 is created and

inserted into the tree to the position of the first selected object. The tree that the

program gets after applying the combine rule is shown in Figure 2.11. From the

resulting tree, a new string representation is formed, where some places are left

for student input “??”. For example, the resulting expression in the partial input

mode would be “??a+b+14b/2a”.

+–

*/ + b – */ + */

5 a 3 a 14 b / 2 a

50

Figure 2.11. Tree after rule application

2.7.2 Expression parser

As we use two different representations, we needed a tool to transform those

from one to another. It is quite trivial to transform object representation to string

representation. Each object “knows” how to present itself as a string. In case of

tree leaves it is trivial (single number, sign or variable). In case of inner

vertexes of a tree it calls this transformation method to all its children and

combines the result to one string. To get string representation for the whole

expression we simply call this “to string” method from the root of expression

object.

A bit more complex transformation is from string to objects. We have

implemented a special expression parser for this case. First of all, object

representation is always correct, so objects always define the correct string

representation. However, the string representation can be syntactically incorrect

(for example, a missing bracket, two operators in a row, etc.). Therefore, the

parser has a possibility to detect those errors. This feature is used in different

rules to detect student errors in entering the resulting expression. In many cases

(especially in the free input mode) students are able to enter an arbitrary

expression in input boxes, but this expression should be of course mathe-

matically correct. For checking correctness in rules, we first try to parse those

entered parts and get an error if the entered sub-expressions are syntactically

incorrect.

Another similar parser is used in the expression editor itself for expression

rendering. The rendering parser has many differences, for example, it should be

able to parse and then to render also incorrect expressions that may appear

while entering (for example, a missing bracket, empty denominator in fraction,

etc.).

2.7.3 Expression editor

Let us take a closer look at the 2D expression editor of T-algebra. By 2D editor

we mean a system, which displays expressions in natural representation and

enables the user to modify them. This means that the user can move the cursor

inside the expression and make changes to the expression. The string that is

actually being modified when the user modifies the expression is the inner

string representation and the program displays a new expression to the user. We

+–

*/ + b + */

2 a 14 b / 2 a

51

wish to consider the classical actions of an editor: place the cursor, move the

cursor, select part of an expression, input or delete at the cursor position or over

a selection, copy or cut a selection, and paste at the cursor position or over a

selection.

There are three modes in which the editor can interact. The first, free input,

is meant for composing problems. In this mode, no constraints apply to the

entered expression. The second mode, selection of objects, is meant for

selecting the objects for applying the rule. The expression in this mode is read

only. The third mode, constrained input, is meant for input of the essential parts

of the result at each solution step. The student can modify the expression only in

specific places defined by the structure of the result.

If we used the terminology from the APLUSIX articles (Nicaud et al., 2004)

and (Nicaud et al., 2008), we could say that T-algebra editor also uses the so-

called text&box input mode. In text&box mode, expressions are seen as strings

of characters or boxes – expression is a string in general with some boxes in it.

These boxes contain sub-expressions (strings) and could contain other boxes

(fraction, exponent, etc.) as well. A similar mode is also used in some other

editors, for example, MathType.

2.7.3.1 Expression correctness in editor

The editor should be able to deal with both correct and incorrect (incomplete)

expressions. It is clear that different expressions, including incorrect ones, can

be entered in the entering mode. The editor displays the expression based on the

inner string representation. The editor identifies the codes for different

structures (box operators) such as fractions, exponents, etc., and displays them

correctly.

After the input phase, the program checks whether the expression is correct

and satisfies all the constraints. This is done by parsing the expression into tree.

The question arises, why we have chosen the text&box mode for our editor?

The goal of T-algebra is teaching different aspects of problem solving. The

student should have a possibility to make mistakes in entering results as well as

in selecting the rule and its objects, which would be impossible in structured

mode (as in APLUSIX, for example) where the editor guarantees correctness of

the structure.

2.7.3.2 Classic operations in the editor

Classic operations were listed in section 2.7.3; let us take a closer look at them.

In text&box mode, there are two possibilities of entering the expression. The

first one is to add a symbol to the cursor position and the second is to add a

structure for entering a nonlinear object to the cursor position. The buttons on

the virtual keyboard or keyboard shortcuts can be used to enter these so-called

box-operators. There are also some keyboard buttons duplicated on the virtual

keyboard – brackets, arithmetical operations, numbers, etc. The virtual

keyboard and the editor are shown in Figure 2.12.

52

Figure 2.12. Expression editor, virtual keyboard

Unlike other system editors, the T-algebra editor does not show empty boxes in

structures for entering fractions, exponents, etc.

In text&box mode, an arbitrary string or box can be selected. Selection is

done similarly to all text editors. Either the keyboard or mouse can be used. In

case of box-operators, such as a fraction, the user can select a part or the whole

denominator, numerator or the whole fraction. If the user starts selecting from

the denominator and drags the mouse to the numerator then the whole fraction

is selected. If selection is started outside the fraction box and ends inside then

the program adds the whole fraction to the selection. Such selection can be used

for copying expressions, etc.

The next classic operation is input over a selection. Usually in text&box

mode, when a part of expression is selected and the user executes input, the

selected part is replaced by the entered one. In T-algebra, input over a selection

proceeds the usual way, but we have added some features to simplify user work.

 When the user presses the exponentiation button on the virtual keyboard,

the selected part is put into brackets and the corresponding exponent (two

or an empty box) is added. The cursor goes to the exponent entry box.

 When the user selects one of the fraction buttons, the fraction structure is

created in place of the selection and the selected part goes to denominator

or numerator, depending on the selected fraction button.

There are different kinds of deletion: to the left of the cursor, to the right of the

cursor, and deleting the selection. When a part of expression is selected and any

delete action is executed (backspace, delete, buttons on virtual keyboard), only

the selected part is deleted. There are two possibilities of deleting when nothing

is selected. If there is a linear symbol at the cursor, then this symbol is deleted.

If there is a box-structure, the program selects that structure and deletes it after

the user executes the delete operation (presses button on the keyboard or the

virtual keyboard) for the second time.

The final classic operations in the editor are copy, cut and paste. These work

in the usual way. Copy and cut move the selected part of the expression

(actually, part of the inner string representation) to the clipboard and cut also

executes the delete operation. As we wanted to use the Windows clipboard to

53

leave the student the possibility to copy parts from other expressions, we had to

modify the paste operation, so it checks whether symbols being pasted are of

correct syntax and all box-operators are complete. The paste command is

disabled in case of unsuitable subexpressions on the clipboard.

2.7.4 Advanced features of the editor

As was mentioned above, the T-algebra expression editor offers some additional

features, which are used by the program for problem solving.

2.7.4.1 Selection of arguments (multiple select)

Every solution step in T-algebra is application of the selected rule to the

expression. After the rule is selected, the user has to select objects to apply the

rule to. The editor in the selection mode is shown in Figure 2.13.

Figure 2.13. Editor in selection mode

As the selected scheme for the rule dialogue is Action-Object-Input scheme, the

user has to select objects of the rule at the second stage. Selection of the rule

objects is slightly different from ordinary selection of a part of expression.

Firstly, selected objects can be located far from one another in the expression.

Secondly, the student has to have the possibility to select and deselect objects,

confirm his selection and let the program check it. The corresponding buttons

are added to editor in this mode: adds selected part to the objects of the

rule; removes selected object from selection. The student can move

between selected objects using the following buttons .

Such multiple-selection is rare in CAS (the Mathpert system is probably the

only example), but is widely used in other programs: word processors (MS

Word, etc.), table processors (MS Excel, etc.), Windows Explorer, etc. Different

selection modes are used in the listed systems, but we preferred a slightly

different selection mode for T-algebra. There are several reasons for that. In the

listed programs, there are no restrictions on selections. However, if we are

dealing with expressions and select objects for application of a rule, it is clear

54

that the selected objects should be correct sub-expressions. So the program

should check for that when adding to the selection. The other reason is that we

need two different types of selection in one editor (selecting objects for

applying the rule and selecting a part of expression for copying to the resulting

expression), so we used two different colours for these selections.

For user convenience, objects located close to each other can be selected as

one object. For example, in expression bcbba 2 , when user selects the

Combine similar terms rule and selects objects containing the variable b , he

can select b2 and b as one object and b as another. During selection of

rule arguments, the expression is presented as a tree and all selected objects are

selected in the tree. When the user adds a selection to the rule arguments, the

program actually selects all sub-trees covered by the selection. Thus, if the user

selects bb 2 then the program marks the following sub-trees bb ,,2,  .

Let us see the example in Figure 2.14 (the tree and objects correspond to the

expression and selections in Figure 2.13) – user-selected parts are shown in blue

boxes and the selected sub trees are shown in smaller lilac boxes. If the user

would select all three objects as different parts, the selected sub-trees would be

the same.

Figure 2.14. Tree showing selected objects

Another simplification made for user convenience is that the user does not have

to select the operation sign to the left of every object. When applying the rule,

the program considers that these signs were selected as well. In the same

example, when the user selects b without selecting the plus sign, the program

still selects it automatically in the inner tree.

When selecting objects, T-algebra checks that selection is syntactically

correct, for example, it is not possible to select only part of a number as an

object.

2.7.4.2 Constrained input

After the rule arguments have been selected and the selection has been

confirmed, the program first checks whether selected parts are suitable for

application of the selected rule and then applies the rule. The program leaves

some essential parts of the resulting expression blank to be entered by the

student. The parts that are left for the student to enter depend on the selected

+–

a + */ – b + c

2 b

+

b

55

rule and input mode. Most rules in the free input mode require the student to

input the whole part of the result in one piece with no constraints on the sub-

expression to be entered. In other input modes, a structure of the result is built

and the student is given the opportunity to fill the gaps (structured input mode).

Figure 2.15 shows the editor in this mode. All input is disabled outside the input

boxes, protecting the unchanged parts of the expression.

Figure 2.15. Editor in constrained input mode

In the input mode for parts of the resulting expression, the program offers one

or more boxes for entering the parts. Other parts of the expression are copied

from the previous step and protected by the program from modifying. There are

constraints on the kinds of expression parts that can be entered in different

boxes. The colours, sizes and locations of the input boxes may vary depending

on these constraints. Different boxes allow entering only variables, numbers,

operator signs, equality and inequality signs or arbitrary expressions. For

example, in Figure 2.15, the cursor is in the coefficient box and the virtual

keyboard shows what possible symbols can be entered in that box.

2.8 Applications of domain expert module

When designing and implementing T-algebra, we defined a set of issues or key

attributes we wanted to achieve. T-algebra has to

 allow the student to make all the necessary decisions and calculations at

each solution step;

 contain such dialogue that allows the program to understand all decisions

made by students (chosen operation, selected operands, entered result);

 enable to solve problems step-by-step and line-by-line as on paper;

 give the possibility to exercise both the algorithms and their steps in

detail;

 leave an opportunity for the student to make the same mistakes as on

paper;

 automatically calculate answer to a problem;

56

 generate and show a solution path to a problem using the same set of

rules that is used at school in paper solutions;

 check students‟ solutions and diagnose errors;

 offer feedback to the student;

 provide advice on request how to proceed with solution.

Out of this list, the first five options are available by design of solution step

dialogue, expression editor and defined set of rules. The last five options are

available as a result of the applications of the domain expert module of

T-algebra. This section presents these options and other main applications of the

domain expert module in detail.

2.8.1 Checking equivalence of two expressions

Checking equivalence of two expressions is the most common application of the

domain expert module in all intelligent problem solving environments dealing

with expressions. If we would not need other applications we could even

consider using a computer algebra system engine for this purpose (Ravaglia et

al., 1998; Sangwin, 2005). However, as we had implemented a domain expert

for other needs, we used our own checking engine for this, as it was easy to do

for supported expressions.

Checking of equivalence is the most used feature of the domain expert

module in T-algebra. This is used for different purposes in the implementation

of almost all rules and problem types, mostly for comparing student input with

the automatic result of T-algebra in the free input mode.

The checking algorithm itself is quite simple and straightforward. It uses the

same transformation rules and simplification / solution algorithm as all problem

types (described in section 3.3). A fixed set of transformation rules (23 rules) is

used in this algorithm. For checking equivalence of expressions A and B ,

T-algebra creates another expression)(BA and tries to simplify it. If it

simplifies to 0 then expressions are counted as equivalent.

The composed checking algorithm might not be an optimal one – not the

fastest and it may be using resources, but it was not a big problem. In addition,

this algorithm may not work for every possible algebraic expression. However,

it is suitable for the expressions appearing in the limited set of problem types

that we have designed for T-algebra as, for example, T-algebra does not work

with trigonometry and absolute value.

This algorithm can be used for checking equivalence of linear expressions. A

different approach is used, if needed, for more sophisticated cases, for example,

checking of equivalence of equations or fractions with variables.

In case of equations, for example, the left and right parts are compared

separately (this is good enough for checks required in the implementation of the

rules, but not for general equivalence of equations). Systems of equations can

be handled the same way; different equations are checked separately.

57

In case of fractional expressions with numbers only, it is easy to compare

values of the expressions. When variables are introduced then there are only

some rules that support operations with fractions with variables and special

separate problem types defined for practicing those, for example, the rule Raise

quotient to a power. In the free input mode, the student enters the resulting

fraction himself. As by design we usually do not allow other simplifications, as

the rule name says, we could check equivalence of student input to the result of

T-algebra by checking separately the numerator and denominator part of the

fraction using the same algorithm (otherwise if, for example, the student could

reduce the fraction at the same time, we could not use the same algorithm).

When talking about equivalence here and later in the context of T-algebra,

we mean equivalence as it is taught and used in school. For example, in school

expressions   11 x and x are considered to be equivalent. However, according

to the definition of equivalence of algebraic expressions, the values of two

equivalent expressions should be same for every set of variables. In this case the

value of the first expression is undefined if 0x and the value of the second

expression is 0 so those are not equivalent by definition.

Another variation of equivalence checking is to see whether expressions are

opposite to each other (for expressions A and B it means that)(BA will

simplify to 0). This is used, for example, in the rule)(*)(baba  to check

selection of objects – whether the selected polynomials contain the same

monomial with different signs. These monomials can be in a different form,

therefore, some simplification is needed when checking it, for example, xyx
2

1

and yx25,0 .

2.8.2 Checking the initial expression of a problem

The function of checking the initial expression of a problem is used in two

cases: when entering new problems in the teacher‟s program and when

generating a random expression for a problem (we need to be sure that the

generated problem satisfies exactly the same conditions as the entered one) in

the student‟s program. A problem type should be selected when composing

problems – some checks that are performed are specific to problem type.

This checking process itself contains several smaller checks:

 syntactical correctness of expression – this is checked using expression

parser (2.7.2), incorrect expressions generate error on parsing;

 expression form, defined by the problem type, for example, equation,

polynomial, fraction, etc.;

 problem type specific checks (described in subsections of section 3.3), for

example, for the problem type Combine like terms, the initial expression

should contain at least one pair of like terms;

58

 problem should be solvable by the rules and algorithm defined for this

problem type (this is checked by the solution algorithm of the problem

type).

2.8.3 Calculation of result

T-algebra is able to apply the solution algorithm and calculate the answer to a

problem (without showing / generating a solution path). This is used in the

teacher‟s program. While entering new expression for a problem, the teacher

can check whether the problem is solvable and see the answer by pressing either

the Show answer or Show solution process button. The teacher can thus decide

whether the problem is suitable for students (for example, the solution of an

equation is integer / decimal, the resulting polynomial has only integer

coefficients, etc.). An example of the problem composing window with the

result of a problem is shown in Figure 2.16. You can see both the initial

expression of the problem and the calculated result in the bottom right part of

the window.

Figure 2.16. Example of automatic calculation of result during problem composing

59

2.8.4 Automatic solution generation

In addition to automatic calculation of the result of a problem, T-algebra is able

to generate step-by-step solutions to problems. The solution is generated using

the same transformation rules as may be used by students (from the set of

transformation rules for the selected problem type) and the algorithms described

in schoolbooks are followed as closely as possible (defined by the solution

algorithm of the problem type).

Automatic solution generation is used in two cases in T-algebra. While

solving problems in the student‟s program, the user can ask the system to solve

a problem until the end. The teacher can disable this possibility in the problem

file. If this feature is enabled then the student can press the Autosolve button at

any time when solving a problem. See an example of an automatically

generated solution in Figure 2.17. T-algebra is able to generate an automatic

solution starting from the expression in the last row of the solution path,

meaning that the student can make some steps himself and then ask T-algebra to

complete the solution. Each usage of this automatic solution in the student‟s

program is logged and saved to the solution file (see details in section 2.9).

Another way to use this feature is in the teacher‟s program when composing

problems. It is possible to ask the program to generate the solution for the

problem being entered (for the current expression). The teacher can estimate the

solution path and decide whether the entered problem expression is suitable for

his students (it is similar to automatic calculation of the result, but here it is also

possible to assess all the intermediate steps).

Figure 2.17. Example of automatically generated solution in the student‟s program

60

2.8.5 Advice on request

In addition to automatic solution generation, T-algebra offers local kinds of

hints or help to students. Students are able to do the following:

 ask which rule to perform next,

 ask the program to select suitable objects for the chosen rule,

 ask T-algebra to add a correct number of input boxes in the structure

extending mode (see details in section 2.6.4),

 ask the program to fill in input boxes in different input stages of the step

(including input in a separate window).

These features can also be individually disabled in the teacher‟s program when

composing a problem file. Let us review those possibilities one by one.

For selection of a rule, the student is able to ask program which rule should

be applied by pushing the Hint button. The expert module will choose a suitable

rule according to the solution algorithm for the problem type and the current

expression and program will display an appropriate message to the user (Figure

2.18). The same rule would be used if automatic solution generation was

selected. If the problem is actually solved, T-algebra will display a different

message saying that the student has to give answer to a problem.

Figure 2.18. Example of a hint for choosing a rule

61

After the rule is selected, some more buttons become visible in the expression

editor, including the hint button (Figure 2.19, left side). The student is able to

ask the program to select suitable objects for this rule by pressing this button.

As a result, T-algebra selects objects for the active rule or shows the student a

message if this rule cannot be applied to the current expression. Objects

suggested in this hint are dependent on the rule and the problem type. If the

student himself has selected some objects in the expression (either right or

wrong) those are ignored (unselected). Figure 2.19 shows an example of using

this hint: the initial expression is on the left and the expression with selected

objects for the rule combine like terms is on the right.

Figure 2.19. Example of a hint for choosing objects

During the input stage (also during the input of additional info in a separate

window) it is possible to ask the program to fill in input boxes with correct

values by pressing the hint button in the expression editor. T-algebra calculates

the correct result of application of the rule to the selected objects and writes it in

the input boxes. If the student has already entered some results in some boxes

(either right or wrong), those are overwritten by the parts of the result calculated

automatically. Figure 2.20 shows an example of using this hint: the initial

expression with all input boxes empty is on the left and the expression with

input boxes filled with correct parts of the result is on the right.

Figure 2.20. Example of a hint for input stage

62

In case of extending the structure in the input stage, it is possible to ask the

program to add a correct number of input boxes by pressing the hint button in

the expression editor. T-algebra does not change the input of the student (except

if it reduces the number of boxes to a correct one). Figure 2.21 shows an

example of using this hint: the initial expression (with one set of boxes) is on

the left and the expression with correct number of input boxes is on the right.

Figure 2.21. Example of a hint for extending the structure

We can compare the hint features of T-algebra with the features of another rule-

based system, Mathpert (Beeson, 1998). It has three different hint features:

autofinish, autostep and hint. Autofinish is similar to automatic solution

generation in T-algebra, hint is similar to rule selection hint in T-algebra.

Autostep automatically makes a next step in the solution; in T-algebra we have

focused on different stages of a step (rule objects and result), therefore, we have

separate hints for each stage.

2.8.6 Student error diagnosis

When solving on paper, a student can make a mistake and continue solving the

problem. This leads to a wrong answer and all the steps that the student made

after the error might not be checked by the teacher. So the student does not get

any feedback on whether these steps were correct or not. When designing the

T-algebra solution dialogue, we tried to avoid such situations. Therefore, the

main principle of problem solving in T-algebra is that as soon as an error is

found the student cannot proceed to further stages of the step or to the next steps

before the error is corrected.

As each solution step in T-algebra consists of three stages and the student

has to confirm his selection made during the stage (confirm the rule and

selected objects, confirm the entered resulting expression or its parts in partial

input mode), the program can check the correctness of each stage of the step.

Different checks are performed depending on the type of the problem, input

mode and the rule selected – we will review all of them in the following parts,

grouped by the stages of a step.

63

2.8.6.1 Error diagnosis after selecting a transformation rule

At the beginning of each solution step, the student has to select the trans-

formation rule he is going to apply. In T-algebra we tried to implement all the

different rules that are taught at school and used when solving similar problems

on paper. The rules were given the same names as in textbooks.

As we did not want to restrict the students‟ solutions and wanted give them

freedom in choosing the solution algorithm, the program does not check

separately whether the selected rule is suitable for applying to the current

expression. If the rule is not applicable to the current expression, no error

message is displayed until the student confirms his selection of objects – he is

given a chance to realize that no suitable objects can be found and correct the

choice of the rule. After objects are selected and confirmed, T-algebra first

checks if the rule is applicable to at least some objects in the expression. If not,

an error message is displayed. If the selected rule is applicable to some objects

of the expression, T-algebra proceeds with further checks.

The only check performed immediately upon selecting the rule is whether

the current expression is already in the form of the answer to the problem (in

case of simplification problems, a monomial or a polynomial with no similar

terms). In this case the student has either difficulties recognizing the right form

of the answer to the problem or he does not know any algorithms for solving the

given problem.

2.8.6.2 Error diagnosis after selecting the operands

In T-algebra we let the student make all the decisions on how to solve the

problem. After selection of the transformation rule, the student has to select the

objects to which the rule is applied. Many errors arise at this stage. The

approach in T-algebra is different from the one in the Mathpert system (Beeson,

1998), where the student selects parts of the expression and the program offers

rules that are suitable for the selected parts. The approach used in Mathpert does

not allow students to make mistakes at all, while T-algebra lets students to make

many mistakes, warns about them and requires them to be corrected.

When selecting separate objects, the program checks whether the selected

parts are syntactically correct sub-expressions, and displays an error message if

they are not (half of a number is selected, a variable is selected without its

power, one of the brackets is not selected, etc.). After confirming the selected

objects, some extra checks are performed.

The first significant issue that the program is able to diagnose is whether the

student knows and considers the priorities of the operations: for example, tries

to add two numbers and one number is a member of a multiplication term.

The second issue that the program is able to check is whether the objects are

of the correct structure and their number is correct – for example, the rule

Combine like terms requires selection of at least two similar monomials. After

the rule is selected, the program tells the user what kinds of objects are required

by the selected rule – so the program checks whether the student knows and

recognizes suitable objects in the expression.

64

If an error is found then a corresponding error message is displayed to the

student. If possible, the program also indicates which object was causing the

error (Figure 2.22). The student has to correct all errors before proceeding to the

next stage. In this way he does not have to make unnecessary steps after the

error, as it would be on paper. In addition, in case of unsuitable objects, the

program would be unable to offer a structure for the expression on the next line.

Figure 2.22. Error in selecting objects for the rule Combine like terms

2.8.6.3 Error diagnosis after entering a resulting expression

When applying the rules, the program copies the unchanged parts of the ex-

pression to a new line and protects them from modification. It only lets the user

to enter the result of applying the rule – the user has to fill in yellow boxes with

the result or with essential parts of the result. The number and types of the

boxes depend on the rule and input mode (in addition to objects), and so the

checks, possible errors and diagnoses that the program is able to perform

depend on the rule and input mode.

When the user confirms his input, the program has full information on the

selected transformation rule, the objects as well as the result of the application of

the rule offered by the student. This gives the program a possibility for better

diagnosis of the exact error and its cause. In most cases, the issue whether the

entered expression is equivalent to the previous one is not the only aspect that can

be clarified. Having full information on the rule and objects, the program is able

to apply the rule itself and compare the student‟s result with the correct one.

There are some common checks that are always performed, irrespective of

which particular rule is applied. One of those checks whether the entered parts

and the whole resulting expression is syntactically or mathematically incorrect,

for example, missing parentheses or two multiplication signs next to each other,

etc. Another common check for all rules is whether all necessary yellow boxes

are filled in (some boxes may be left empty intentionally, for example,

monomial coefficient 1, etc.). In case of an error, a message is displayed to the

user and the yellow box with the error is indicated if possible (Figure 2.23).

65

Figure 2.23. Error in input of the result – empty yellow box

All further checks depend on the input mode and the rule. In the free input

mode, a check of the structure of the result is performed in most cases (for

example, when combining like terms, the result of the application of the rule

should be a single monomial). Even if the entered expression and the correct

one are equivalent, an error is still displayed to the user if the structure of the

answer differs from the correct one (Figure 2.24). This is because we want the

student to apply exactly the same rule that he chose and not to simplify

something else (for example, multiply polynomials and immediately combine

like terms). The other issue that is checked is the priority of operators – whether

the student knows it and adds brackets if needed (for example, in the case of

multiplication of polynomials if the product is a member of another

multiplication). After the structure of the result is checked, the content is

checked in exactly the same way as it is checked in the structured input mode.

In some very sophisticated cases, only equivalence between the entered and

correct expression is checked (for example, raising a multi-level fraction to a

power, etc.).

Figure 2.24. Error in input of result – incorrect structure of result in the free input mode

The free input mode is the closest to the way problems are solved in the Aplusix

program. The latter only checks equivalence of the entered expression to the

previous one. Lately, the authors of Aplusix have done some research in

automatic diagnosis of incorrect rule. However, T-algebra checks not only

equivalence of the whole expressions, but also equivalence of the exact result of

the application of the selected rule to the correct result, priority of operators

66

etc., even in the most sophisticated cases. T-algebra diagnoses student‟s

knowledge of applying exactly the same rule that he chose.

In the structured input and partial input modes, the resulting expression

already has the correct structure, because the student is prevented from entering

unsuitable parts into corresponding boxes (some structure checks are performed

anyway, just in case). In these input modes the program checks the essential

parts of the resulting expression separately in order to find the exact error and

diagnose its cause. When the result is a single monomial, the operation sign,

coefficient, variables and their powers are checked separately. When the result

is a polynomial then the set of the monomials in the student‟s result is compared

to the set of monomials in the correct result. If a difference is found, the exact

error is diagnosed if possible. For example, when multiplying two monomials/

polynomials, the students often forget to consider both operation signs (pluses

or minuses) or simply do not know the rules and calculate the resulting

coefficient and variables with powers correctly but make an error calculating

the operator sign (Figure 2.25).

In comparison with other similar systems, such full information diagnosis

has many advantages – the student can be shown the exact place of error and the

exact error type can also be diagnosed in most cases.

Figure 2.25. Error in input of result – wrong operation sign entered

2.8.6.4 Other errors in solution

We have reviewed different possibilities for making errors in the three stages of

the solution step. However, there are other possibilities for making errors in

T-algebra, which system is able to diagnose. Those cases are the following:

 input of additional rule information in a separate window – diagnosed

similarly to final input as details are entered in yellow boxes in the editor;

 input of intermediate information for a solution step – diagnosed

similarly to final input as details are entered in yellow boxes in the editor;

 input for extending the structure – errors in adding less or more than the

correct number of boxes – diagnosed similarly to final input as details are

entered in yellow boxes in the editor;

67

 error when giving answer to a problem (unfinished solution) – diagnosed

when the student presses the button for giving an answer (if there are

rules that need to be applied then an error message is shown);

 error when giving answer to a problem (choice of answer) – diagnosed in

a separate window when choosing an answer (for example, for equation it

is possible that any number is a solution or the equation has no solution).

2.9 Error categorization and student statistics

T-algebra calculates different statistics during the solving process. For that,

every error that is made by the student or every hint usage is recorded. When

recording the error or help usage, T-algebra records, for subsequent reviewing,

many different attributes describing the current situation at the time when the

error occurred / help was used. The student can possibly learn from his mistakes

and the teacher can use this information on mistakes for assessment or

information on help usages to identify the hardest parts of the material that

might need revising. This statistics (error and help usage situations) is also

saved to the solution file (.lah). Calculated statistics can be viewed from the

View menu in the student‟s program.

2.9.1 Error categories and attributes

While the student is solving problems, T-algebra checks his steps and tries to

diagnose errors (see section 2.8.6). Each time when an error is diagnosed,

T-algebra records the error situation and tries to categorize the error.

We have designed 20 different categories and divided all diagnosed error

types between them. The categories include, for example, selection of objects of

wrong form, selection of incompatible objects, errors in the form of entered

subexpression, calculation errors, errors in calculating the sign of entered

subexpression, etc. For a full list of categories, see Appendix C. We have

separated mathematical errors (which are probably caused by a mathematical

misconception or mistake) and other errors, most likely caused by the use of

T-algebra / computer for solving, which would probably not happen on paper.

Those categories are quite common and therefore suitable for all rules and

problem types that we have implemented. We did not want to confuse the

teacher by introducing hundreds of categories and typical misconceptions that

are specific only to a certain rule. We conducted a study (see section 4.4) where

we tried to divide errors from a certain field into more detailed categories but

found that the current implementation is quite useful as well.

For every error situation and every error check that we have implemented,

there is a separate error message (stored in the language file) that is shown to

the user if a check results in recognition of an error and a category for this error

situation (for example, the results of the check for coefficient of monomial are,

68

in most cases, classified as calculation errors). For some most common checks,

where it was hard to choose a category, there is a separate category of un-

classified errors.

There are eight different situations where errors are diagnosed, with

corresponding sets of attributes stored. Because of this, there are also minor

differences in how error situations are displayed in the review window, but most

differences are shown in one larger area. The following list catalogues those

different situations where errors are diagnosed.

1. Selection errors in the editor – diagnosed by the editor and expression

parser;

2. Rule selection errors – diagnosed by the problem type specific

algorithm or general T-algebra solution engine;

3. Object selection errors – diagnosed by the selected rule error diagnosis

and expression parser;

4. Additional information input errors – diagnosed by the selected rule

error diagnosis (syntax errors are diagnosed using the expression

parser);

5. Intermediate (or final in case of one input) input errors – diagnosed by

the selected rule error diagnosis (syntax errors are diagnosed using the

expression parser);

6. Final (second) input errors – diagnosed by the selected rule error

diagnosis (syntax errors are diagnosed using the expression parser);

7. Result errors – diagnosed by the problem type solution engine;

8. Result selection errors (if used) – diagnosed by the problem type

solution engine in a separate answer window.

For each error situation, different attributes are stored that fully describe the

error situation. Some attributes are common for all situations:

 error category,

 error time,

 error code,

 message shown to student,

 problem number,

 problem type,

 selected rule,

 input mode.

Other specific attributes are added for different error situations, for example,

Selection errors in the editor have the following additional attributes:

 expression in editor,

 objects already selected in editor,

 erroneous selection in editor.

69

Another example, Input errors (in case of single input line for the rule), is more

complex:

 expression in editor before applying the rule,

 selected objects for applying rule,

 additional info, if any (for example, common denominator),

 expression in editor (with boxes),

 types of boxes (number, sign, etc.),

 data entered by student in boxes,

 index of erroneous input box.

2.9.2 Help usage categories and attributes

When the student is solving problems, he is able to ask for help in different

situations (see section 2.8.5). Each time when the student asks for help,

T-algebra records the help usage situation. We grouped help usage into 7

categories depending on the place where help was asked.

1. Autosolve – automatic problem solving until an answer is given;

2. Rule selection hint – student asks which rule to apply next according to

the solution algorithm;

3. Object selection help – T-algebra automatically selects suitable objects

for the selected rule;

4. Help for additional information input – T-algebra automatically

calculates additional information for the rule, for example, a common

denominator;

5. Input help (first input – intermediate result in case of two lines and final

input in case of one line input per rule) – T-algebra automatically fills

in all the boxes in the result;

6. Input help (second input, final input for two lines per rule) – T-algebra

automatically fills in all the boxes in the final input;

7. Help for extending the structure – T-algebra automatically adds the

required number of boxes in the structured input mode in case of rules

that require extending of the structure.

Similarly to error situations, there are numerous attributes that describe each

help usage situation. Common attributes are:

 help usage category,

 help usage time,

 problem number,

 problem type,

 selected rule,

 input mode,

 message shown to student;

 last expression;

70

 objects selected in last expression (if any);

 solution step number (especially important in case of autosolve).

For example, in case of Object selection help, there is only one extra attribute in

addition to the common ones. In this case, the user-selected objects (before

asking for help) are stored under common attributes and the correct ones

(selected by T-algebra) under this extra attribute:

 correct objects in expression (selected by T-algebra).

2.9.3 User interface for reviewing

As mentioned above, the user interface for reviewing can be used by both

students and teachers. Students can, at any time, use the error list as a reference

source and possibly learn from their mistakes. Teachers can open student

solutions and use the information on mistakes for assessment or information on

help usages to identify the hardest parts of material that might need revising.

This user interface is accessible in T-algebra through the View menu.

First, it is possible to view Error counters and Error list. The error list

displays a list of single error situations that can be reviewed one by one. In the

error counters view, errors are grouped into categories and total numbers (per

problem and total) are shown. It is possible to select errors of one category,

errors in one problem, or even errors of one category in a certain problem for

reviewing. This selection works as a filter for the error list view – in such case

the error list displays only a limited set of error situations. The screenshot

(Figure 2.26) shows two forms: the bottom one shows error counters grouped

by category and the top one shows the list of error situations. The window

displays the data that is stored for one error situation:

 which problem was being solved,

 initial expression of the problem,

 what rule was selected,

 input mode for the problem,

 the expression to be transformed at the moment of making the error,

 which objects were selected,

 error message shown to the student and red box indicating the error (if

any) shown to the student.

In some cases there are more (or less) attributes to display, depending on the

error category.

71

Figure 2.26. Error counters and description of a particular mistake

The other two items in the View menu are Counters of help usage and List of

help usage. Those act similarly to the error counters and the list or errors – the

first window shows counters of help usages grouped by categories and the other

shows a list of help usages where each situation can be checked individually

(Figure 2.27). The window displays the data that is stored for one help usage

situation:

 which problem was being solved,

 initial expression of the problem,

 what rule was selected,

 input mode for the problem,

 the expression to be transformed at the moment of making the error,

 which objects were selected,

 what input boxes were offered to the student and what the student entered

in those boxes before asking for help,

 the expression with boxes filled with correct input (generated by the help

feature).

In some cases there are more (or less) attributes to show, depending on the help

usage category.

72

Figure 2.27. Counters of help usage and description of particular help

The last item in the View menu is Statistics of solving. This table enables to

review general statistics of solving, like how many problems are solved and

how many errors were made. This view combines both errors and help usages,

but also shows other calculated attributes. An example is shown in the

screenshot below (Figure 2.28). Fields on the pink background may require

some attention from the teacher or student (for example, errors or help usages

not zero for some problem, problem not completely solved, etc.). The following

data is shown for each problem:

 problem is solved – indicating that the student has completely solved the

problem and given an answer to the problem (is also true if the student

used autosolve help);

 number of errors made – total number of errors per problem, same as in

the error counters;

 including mathematical errors – total number of so-called mathematical

errors per problem, same as in the error counters; this number is included

in the total number of errors;

 number of help usages – total number of help usage situations per

problem;

 uses of the autosolve button – true if the student has used the autosolve

button while solving (at any step); this is included in the previous counter

73

but shown separately as it is quite important – it is counted as only one

help usage, but it is possible that the student did not complete any steps

by himself;

 number of steps – number of steps performed, even if the problem is not

completely solved;

 date and time of beginning and end of solving the problem; if not

completely solved then end is the latest time when any actions were

performed on this problem;

 time spent on the problem.

Figure 2.28. Student statistics

74

DOMAIN OF EXPONENTS, MONOMIALS AND

POLYNOMIALS IN SCHOOL TEXTBOOKS AND

IN T-ALGEBRA

3 PROBLEMS, RULES AND ALGORITHMS IN THE

I have chosen the domain of exponents, monomials and polynomials for

exploration (related to my Master‟s thesis (Lepp, 2003b, Lepp, 2003a)) and

implementation in T-algebra. First of all, school textbooks in mathematics were

explored, then the rules were programmed, and finally problem types were

composed. In this section I describe problems and algorithms in the domain of

exponents, monomials and polynomials in school textbooks and in T-algebra on

the basis of published articles (Lepp, 2006a).

3.1 Problems, definitions, rules and algorithms

in schoolbooks

Prior to designing T-algebra, transformation rules and problem types, I studied

them in school textbooks. For that, I examined different best-known and most

used textbooks in Estonia. I also studied English school textbooks, but the

Estonian ones were used as a basis, especially if any differences in rules were

found. I paid more attention to the following issues: definitions, rules on how

expressions are changed and also typical tasks in each topic. In the subsections

of this section, I present the three different fields I was responsible for in

T-algebra: exponents, monomials and polynomials.

Almost all typical tasks found in school textbooks are implemented in

T-algebra as different problem types. At the end of each subsection, we mention

typical tasks that were not implemented in the existing version of T-algebra,

mostly word problems, most trivial reordering problems (transformations to

normal form), some factorisation problems and simplification problems

containing division by polynomials.

3.1.1 Exponents

“Exponents” is a topic in mathematics that is presented very differently in

different textbooks. According to some textbooks, this topic is studied in the 7th

grade (Tõnso, 2002), while other series of textbooks divide it between the 7th

and 8th grades (Nurk et al., 2006 and Lepik et al., 2000; Pais, 1998 and Pais,

2001), and others introduce it entirely in the 8th grade (Veelmaa, 2004). In

some textbooks this topic is presented as a separate chapter (for example, Pais,

1998); in others it is included under the topic “Monomials” (for example,

Veelmaa, 2004).

75

In all textbooks the topic begins with a description of the number exponent.

First, the square of number is described: “The square of number a (or the

second power of number a) is product of this number a with a, and is written as

aaa 2
”. Then the cube of number is introduced: “The product aaa  is

called the cube of a (or the third power f number a) and is written as

aaaa 3
”. After that the general definition of the power of number is

given: “The nth power of number a is product of n factors of a or
na means

aaaa  (n times). Number a can be any number (positive, negative or

zero). Number n should be a natural number higher than 1”. After this

definition, the definition of base and exponent is presented: “In the expression
na , a is known as the base and n as the exponent (whereas

na is the nth power

of a)”. In some textbooks (Nurk et al., 2006; Zuckerman, 1976) the

exponentiation is described as the operation of determining a power of a

number. In Estonian textbooks the following remark is also presented:

“Applying exponent to a negative number the number should always be in

parentheses”. In addition, some books (McKeague, 1979) say that there are

expressions in exponential form (like
43) and in expanded form (like

3333 ).

After the exponent and exponentiation are described, the following typical

exercise tasks are presented for students: “Find the value (raise to a power)”;

“Convert expression to expanded form (or write power as product) and

calculate”; “Convert expression to exponential form (or write product as

power)”.

After practice of writing and calculating the power, the properties of

exponents are presented. The properties are presented in a different order in

Estonian and English textbooks. Here we follow the order that can be found in

Estonian textbooks.

Some books (Veelmaa, 2004; Barnett et al., 1990) introduce the properties

with examples: “
523 999999)99()999(99  ”. After examp-

les, or right in the beginning in some textbooks, the first property is given. In

Estonian textbooks, the property is formulated in the following way: “To

multiply two powers of the same variable (number), write down the base and

add the exponents, or
nmnm aaa  ”. In English textbooks, a more formal

definition is given: ”If a is a real number, and r and s are positive integers, then
srsr aaa  . The product of two expressions with the same base is equi-

valent to the base raised to the sum of the exponents from the original two

expressions”. In English textbooks the justification for property is also

presented.

After introducing the property, typical problems like “Simplify by rewriting

the expression so that the variable occurs only once”; “Find the product of

powers”; “Simplify the expression using the property of exponents”;

76

“Calculate”, are practiced in some textbooks. In other textbooks the same

typical tasks can be found after description of several properties.

The second property in Estonian textbooks is division of powers. Again,

some books give an example for introduction:

“
2

3

5
35 222

222

22222

2

2
2:2 




 ”. The definition of the property

itself is “To divide two powers of the same variable (number), write down the

base and subtract the exponents, or
nmnm aaa : ”. In some textbooks, a

different style for writing division is used:
nm

n

m

a
a

a  . In English textbooks

this property is given as the last property (the fifth or the sixth) and the

formulation is: “If a is any real number, and r and s are any two integers, then

sr

s

r

a
a

a  ”. With the help of the second property, the next remark is

introduced in some textbooks: “From one side 1
32

32

2

2
2:2

5

5
55  . From

other side
05555 222:2  
. From this follows that 120  ”. This example is

generalized as follows: “Every number in power zero is one, or 10 a ”. In

English textbooks (Barnett et al., 1990) it is noticed that “
00 is not defined”. In

some books (Veelmaa, 2004) one more remark is introduced: “From one side

14545 : aaaa  
. From other side a

aaaa

aaaaa
aa 




45 : ”. From this

follows: “Every number in power 1 is this number itself, or aa 1
”.

After learning this property and those remarks, students practice the

following problems: “Simplify the expression using the property of exponents”,

“Find the quotient of powers”, “Calculate”.

The next property involves negative-integer exponent: “If 0a  , then

1n

n
a

a

  and
1n

n
a

a
 ”. English textbooks give a more formal definition of

negative-integer exponents: “If a is any nonzero real number and r is a positive

integer, then
1r

r
a

a

  . It follows, using equality property, that
1r

r
a

a
 ”.

From this property it is derived that negative exponents indicate reciprocals

1 1
a

a

  .

In order to clarify these definitions, the following problems are solved:

“Calculate”; “Write as negative exponent”; “Simplify”; “Simplify and then

calculate”; “Simplify, leaving answers with negative exponents”; “Simplify,

leaving answers with positive exponents”.

77

The next property again is presented with examples like

“
63323 555)5( Notice: 623  ”. The result is generalized as: “To raise

a power to another power, write down the base and multiply the exponents, or

()m n m na a  ”. English textbooks formulate this property as follows: “If a is a

real number and r and s are positive integers, then
srsr aa )(. An expression

with an exponent, raised to another power, is the same as the base from the

original expression raised to the product of the powers.” English textbooks also

provide proof for this property.

We found the following typical exercise tasks for this property in the

textbooks: “Calculate”; “Raise to a power”; “Simplify”.

The next property of exponents arises when we have a product of two or

more numbers raised to an integer power. For example:

“
444 3))(3333()3)(3)(3)(3()3(xxxxxxxxxx  ”. This leads to

the property: “To raise a product to a power, raise every factor to a power and

multiply the results, or ()n n nab a b  ” or (English textbooks): “If a and b are

any two real numbers, and r is a positive integer, then
rrr baab )(”. The

English textbooks provide a justification as well.

In order to clarify this property, the following problems are solved: “Raise to

a power”; “Simplify and then calculate”; “Calculate”; “Multiply and then raise

to a power”; “Raise to a power and then multiply”; “Simplify”.

The last property in Estonian textbooks is formulated for fractions: “To raise

a fraction to a power, raise numerator and denominator to a power and divide

them, or ()
n

n

n

a a

b b
 ”. English textbooks do not mention fractions, but talk

about division as follows: “The last property was stated for products. Since

division is defined in terms of multiplication, we can expect a similar property

involving quotients. “If a and b are any two real numbers with 0b , and r is a

positive integer, then
r

r
r

b

a

b

a
)(”, and also present proof.

Typical tasks for practicing this property include: “Raise to a power”;

“Simplify and then calculate”; “Calculate”; “Divide and then raise to a power”;

“Raise to a power and then divide”; “Simplify”.

After all properties are described, students are given problems requiring

application of several properties, like “Calculate” and “Simplify”.

Almost all typical textbook problems from the field of exponents were

implemented in T-algebra as different problem types. Probably the only one that

was left out is conversion of power to a product, which is quite trivial. For all

other transformation rules presented here, specific problems were created, and

also a separate problem type was added for calculation of the values of

expressions.

78

3.1.2 Monomials

In English textbooks the topic “Monomials” is presented together with the topic

“Polynomials”. In Estonian textbooks monomials are described separately or

with the exponents in the 8th grade. That is why the order of presentation of

definitions is different in Estonian and English textbooks. We follow here the

Estonian textbooks. In all textbooks that we have studied (except Barnett et al.,

1990) this topic begins with the definition of monomial: “Monomial is the

product of a constant and one or more variables raised to a whole-number

exponent. Single number is also a monomial.” In some textbooks (Lepik et al.,

2000; Zuckerman, 1976) the definition of variable is given beforehand: “A

variable is a symbol that represents any one of a given collection of numbers”.

In Barnett et al., 1990, monomial is described as one-term polynomial. In

Estonian textbooks the definition of monomial in normal form (or monomial in

standard form or simplified monomial) is as follows: “The monomial is in

normal form if it begins with a numerical factor (with sign of term), followed by

variables with exponents in alphabetical order”. A definition of coefficient of

monomial is also presented: “The coefficient of monomial is the single

occurrence of a numerical factor when the monomial is in the normal form”. It

is remarked that coefficient 1 is not written and a minus sign before monomial

means the coefficient -1. Finally, the definition of like monomials is presented:

“Monomials, which are the same or differ only by coefficient, are called like

monomials”. The process of combining is revised (the process of combining

like terms was introduced in the 7th grade under the topic “Linear equation”) as

follows: “Like monomials are combined by adding their coefficients”.

There are not too many practice exercises for these definitions, but we did

find a few: “Transform monomials to normal form”; “Find like monomials”;

“Calculate the value of monomial”; “Combine like terms”.

After such introduction almost all textbooks explain the multiplication of

monomials. The following technique for multiplication is given: “To multiply

monomials, rearrange the factors:

1. group all coefficients at the beginning;

2. group powers of the same variable together.

Multiply the coefficients. Multiply powers of the same variable (add the

exponents)”.

In order to clarify this technique, problems like “Multiply” or “Simplify” are

solved.

English textbooks do not describe anything else about monomials. Estonian

textbooks, in addition to the aspects mentioned, also present raising monomials

to a power and division of monomials.

Raising monomials to a power is explained with reference to multiplication

of monomials and examples: “As raising to a power can be replaced with the

multiplication, then
63323322232 8)(2222)2(yxyxxyxyxyxy  ”.

This concludes to: “To raise a monomial to a power, raise its every factor to a

79

power”. After these examples, the typical problems “Raise to a power” and

“Simplify” are practiced.

For division of monomials, the Estonian textbooks mostly use the symbol

“:”, for example xyyx 6:24 32
. Actually, this division should be presented like

)6(:24 32 xyyx . Only one textbook (Veelmaa, 2004) mentions that

parentheses should be written but there is an agreement that they are not written

for the sake of simplicity. Therefore, division xyyx 6:24 32
 means

xy

yx

6

24 32

.

The technique for division of monomials is described as follows: “To divide

monomials:

1. find the quotient of coefficients,

2. find the quotient of variables (subtract the exponents),

3. multiply the results.”

It is also mentioned that, for division of complicated monomials, it is reasonable

to write down division as fraction and then to reduce the fraction. Likewise, it is

better to leave variables with positive exponent in the result (in the denominator

if needed).

After this subtopic the students solve problems: “Divide”, “Reduce” and

“Simplify”.

At the end of this topic, students practice simplification problems that

involve multiplication, raising to a power and division of monomials.

Most of the typical textbook tasks from the field of monomials were

implemented in T-algebra. The ones that were left out (find like terms,

transform to normal form) were based on definitions, as no expression

transformation takes place in some cases or transformations are trivial. In

addition, multiplication of monomials is very similar to transformation to

normal form, except T-algebra does not have special rules for reordering

variables. Division of monomials in the form of a fraction is not supported (only

the division sign is used) and reduction of fractions with monomials is not

implemented (rules for operations with fractions only work with numbers). For

all other transformation rules presented here, specific problems were created,

and also a separate problem type was added for calculation of the values of

expressions.

 3.1.3 Polynomials

The topic “Polynomials” begins with the definition of polynomial: “Polynomial

is defined to be a sum of monomials”. Monomials used for sum are named

terms of polynomial. The definition of like monomials and combining of like

monomials (presented earlier, see 3.1.2) is repeated once more. This is needed

for the definition of polynomial in normal form: “To transform polynomial into

normal form, combine like monomials, order the monomials decreasingly

according to the sum of exponents of variables in monomial and finally

transform monomials into normal form”. Then the definitions of binomial and

80

trinomial are given: “If a polynomial consists of two unlike terms, it is said to

be a binomial. If it has three unlike terms, it is called a trinomial”. The English

textbooks also present the definition of the degree of polynomial: “The degree

of a term in a polynomial is the sum of the powers of the variables in the term.

The degree of polynomial is the degree of its term with the highest degree”.

There are not many problems for practicing these definitions, but we found

the following problems: “Combine like terms”; “Evaluate a polynomial for

specific values of variables”; “Simplify”.

The next subtopic is addition and subtraction of polynomials: “To add

polynomials, write one polynomial after the other with the same marks of terms

and combine like terms if needed. To subtract polynomials, write one poly-

nomial after the other with the opposite marks of terms and combine like terms

if needed“. The English textbooks also propose to add polynomials vertically:

“Rearrange the terms so that like terms are in the same column and add their

coefficients”. The rule of clearing parentheses is also described for addition and

subtraction of polynomials: “If there is a positive sign directly preceding the

parentheses surrounding a polynomial, we may just remove the parentheses. If

there is a negative sign directly preceding the parentheses surrounding a

polynomial, we may remove the parentheses and preceding negative sign by

changing the sing of each term within the parentheses”.

After this subtopic the students solve problems: “Add”; “Subtract”,

“Simplify”; “Evaluate a polynomial for specific values of variables”.

Following the addition and subtraction of polynomials, the multiplication of

polynomials by monomial is described: “To multiply a polynomial by a

monomial, multiply the monomial with every term of the polynomial and add

the results”. The English textbooks do not present this technique separately;

they just mention that it is possible to use distributive law for multiplication of

polynomials by monomial.

The tasks for practicing are “Multiply”; “Combine and then multiply”;

“Simplify”; “Evaluate a polynomial for specific values of variables”.

The next rule in the Estonian textbooks is division of polynomials by

monomial: “To divide a polynomial by a monomial, divide every term of the

polynomial by the monomial and add the results”. The English books again

describe the division differently: “To divide a polynomial by a monomial, use

the definition of division (replace division with multiplication) and apply the

distributive property”.

We found the following problems after that theme in the textbooks:

“Divide”; “Simplify”; “Calculate”.

After multiplication/division of polynomial by monomial, the reverse

operation (to multiplication), i.e., factoring out common factors, is explained in

the Estonian textbooks. First, the relationship between multiplication and

factoring is described and the definition of factoring is given: “Transformation

of a polynomial to a product is called factoring of the polynomial”. The

following technique for factoring polynomial is presented: “To factor a

polynomial

81

1. find the common factor of all terms of the polynomial (a monomial that

divides (is a factor of) each term of the polynomial);

2. write the common factor before (or after) the parentheses;

3. write into the parentheses the polynomial that remains after the given

polynomial is divided by the common factor.”

English textbooks do not describe factoring at full length; they only refer to the

distributive property: “View the distributive property from right to left and

rewrite a sum as a product”.

In order to clarify this operation, the following problems are solved: “Factor

out the given factor”; “Factor out the greatest common factor”; “Calculate as

simply as possible”; “Evaluate a polynomial for specific values of variables”.

The next operation to study is multiplication of binomials. Multiplication of

binomials is explained in the Estonian textbooks with the help of area of

rectangle with sides ()a b and ()c d . This rectangle is divided into 4

rectangles and their areas are ac , ad , bc and bd . Then it is derived that

()()a b c d ac ad bc bd      . The same result is obtained when the

distributive property is applied twice. Then the rule is formulated as follows:

“To multiply binomial by binomial, multiply each term of one binomial by each

term of the other and add the results”. The English textbooks describe the FOIL

method (First product, Outer product, Inner product, Last product) for quick

(mental) multiplication of binomials.

The tasks “Multiply” and “Simplify” are practiced to understand multi-

plication of binomials.

The next subtopic is the reverse of multiplication of binomials, namely,

factoring by grouping: “In some situations it is possible to take a polynomial

with no apparent common factor and find one in two steps (when the terms are

properly grouped):

1. rearrange and group terms (sometimes you have to rearrange the terms

for several times to find proper groups);

2. remove common factor from each group;

3. take out the common factor to complete factoring.

The problems “Factor by grouping” are solved under this subtopic.

Several subsequent subtopics in the Estonian textbooks describe different

formulas for different (special) products:

 formula for difference of squares
2 2()()a b a b a b    : the product of

the sum of two monomials and the difference of the same monomials is

the difference of squares of these monomials (English textbooks: To

multiply two binomials which differ only in the sign between their two

terms, simply subtract the square of the second term from the square of

the first term);

The method is also suitable for trinomials, but before factoring a trinomial you
have to write it out with four terms”.

82

 formula for square of sum
2 2 2() 2a b a ab b    : the square of the

sum of two monomials is the square of the first monomial plus double

product of the first and second monomials plus the square of the second

monomial (English textbooks, formula for binomial squares: the square

of binomial is the sum of the square of the first term, twice the product of

the two terms, and the square of the last term);

 formula for square of difference
2 2 2() 2a b a ab b    : the square of

difference of two monomials is the square of the first monomial minus

double product of the first and second monomials plus the square of the

second monomial.

The problems used to practice these formulas include: “Multiply”; “Use the

formulas”; “Simplify”.

After using formulas for simplifying polynomials, students are taught

factoring by these formulas. Left and right sides of formulas are exchanged and

formulas for perfect square trinomial (
222)(2 bababa  and

222)(2 bababa ) and the difference of two squares

())((22 bababa ) that can be used for factoring are received. The

problems “Factor out” are practiced after the formulas have been described.

The next rule is multiplication of polynomials, where multiplication of

binomials is extended to an arbitrary polynomial: “To multiply two poly-

nomials, multiply each term in the first polynomial by each term of the second

polynomial and add the results”. The English textbooks also present a method

for multiplication that looks very similar to long multiplication with whole

numbers: ”The polynomials are lined up vertically, then the rule for

multiplication of polynomial by monomial is applied and results are added in

columns”.

Again the problems “Multiply”, “Simplify” and “Evaluate a polynomial for

specific values of variables” are solved.

At the end of the topic “Polynomials”, students are taught some more

formulas based on multiplication of polynomials:

 formula for sum of cubes
3322))((babababa  : the product

of the sum of two monomials and incomplete square of the difference of

these monomials is the sum of cubes of these monomials;

 formula for difference of cubes
3322))((babababa  : the

product of difference of two monomials and incomplete square of the

sum of these monomials is the difference of cubes of these monomials;

 formula for cube of sum
32233 33)(babbaaba  : the cube of

binomial is plus triple product of the square of the first term and second

term plus triple product of the first term and the square of the second term

plus the cube of the second term;

 formula for cube of difference
32233 33)(babbaaba  .

83

The use of these formulas after reversing the sides for factoring is demonstrated

as well.

During the study of these formulas, the following typical tasks are practiced:

“Multiply”; “Simplify”; “Use the formulas”; “Factor out”; “Simplify and

evaluate”.

The English textbooks present the subtopic “Division of polynomial by

polynomial” under this topic. Since this subtopic is not described in the

Estonian textbooks, we will not describe it here in greater detail.

At the end of the topic “Polynomial”, typical problems “Simplify” and

“Factor out”, involving different operations and techniques, are solved for

rehearsal.

Most typical simplification problems from the field of polynomials, found in

textbooks, were implemented in T-algebra. The ones that were left out are based

on definitions (transform to normal form) or require factorisation and division

(reduction) of polynomials by polynomials. Division by monomials in the form

of fractions is not supported (only the division sign is used). As far as

factorisation problems are concerned, only the simplest factoring out monomial

of polynomial is implemented and no grouping technique and use of special

formulas for factoring is supported in the current version. For all other trans-

formation rules presented here specific problems were created, and also a

separate problem type was added for calculation of the values of expressions.

3.2 Designed rules in T-algebra

We started working with transformation rules for step-by-step problem solving

environments already when designing the “Polynom” program, which was the

main part of my Master‟s thesis (Lepp, 2003b, Lepp, 2003a). At that moment

we designed and implemented rules for simplifying polynomial expressions

(Lepp, 2006a). Although we tried to follow a similar scheme for the imple-

mentation of different rules, the result was not perfect. The implementation was

slightly different for different rules and it was also different from the paper and

pencil way of solving problems.

Before starting to design and implement rules for T-algebra, we tried to

study the problems that caused differences in the implementation of rules in the

Polynom system and define a certain scheme to follow when designing different

rules.

The Polynom system used a strictly ordered Action – Object – Input scheme.

The user first had to select an operation and mark the objects only after that.

Implementation of the object selection was dependent on the selected

transformation rule (action); input of the result differed between implemented

rules – this all caused differences in the implementation of different rules.

In T-algebra we made changes to this scheme. First of all, we allowed

selection of the rule and objects in an arbitrary order and it lead to the same

object selection scheme for all rules. Then we implemented three different

84

standard input modes for each rule (described in section 2.5.3). Other changes

included new substeps for the solution steps of some rules: additional

information, intermediate result and adding terms (described in section 2.6).

3.2.1 Common checks for three stages of step

The solution step scheme we defined lead to a situation where T-algebra

performs some common checks after the stages of solution steps. The common

checks for different stages are listed in this subsection and only rule-specific

checks are mentioned in the descriptions of particular rules.

As the rule and object selection can now be performed in an arbitrary order

and a selected rule can even be changed, we do not check the selection of the

rule separately; it is checked together with objects. Consequently, after the

second stage of the step (marking parts of expression to apply the rule to) the

program checks:

 whether the selected rule is applicable to the current expression (i.e.,

there at least exists a set of objects to which the rule is applicable);

 performance of marking (whether some parts are marked if needed);

 syntactical correctness of marked parts;

 number of marked parts (only one needed, at least two needed, etc.,

described for every rule separately);

 form of marked parts (may differ depending on the rule, described for

every rule separately);

 position of marked parts (in some cases, described for every rule

separately).

The input stage in the Polynom system (the system designed and implemented

for my Master‟s thesis) was also very different for different rules. The amount

of input required and the structure of the input were variable. For some rules,

only the most essential parts of result were entered by the student while for

other rules, the whole result had to be entered. After studying the

implementation of rules in Polynom, we extracted three different possibilities

for the input stage and tried to implement all three input modes in T-algebra

(see section 2.5.3). There are several common checks that T-algebra performs

after the input stage in different input modes.

As my responsibility in T-algebra was to design and implement transfor-

mation rules that are specific to the monomial and polynomial topics, I defined

the set of common checks for rules specific to these topics. The result of

applying the simplification operations in these topics is always either a single

monomial or the polynomial (which is a sum of monomials).

After the input stage in the free input mode T-algebra checks:

 completion of input of the result (the boxes are not empty) – in some

cases boxes can be left empty (for example, when the result of combining

like terms is 0 and there are other terms in this sum expression);

 syntactical correctness of entered parts;

85

 equivalence of the entered parts to the parts calculated by the computer.

Further checks depend on the form of the result. If the result is exactly one

monomial then T-algebra checks separately:

 form of result (exactly one monomial);

 set of variables with powers;

 coefficient;

 sign.

If the result is a polynomial (sum of monomials) then the current version of

T-algebra only diagnoses and alerts about non-equivalence of the entered

expression to the one calculated by the computer. No further checks are

performed in the free input mode. This actually leads to several issues worth

mentioning:

 students can make additional simplification steps when applying rules

(for example, combine like terms when multiplying polynomials), which

are not possible in structured and partial input modes;

 students can omit some calculations (for example, when multiplying

polynomials they write the coefficient as a product of two coefficients)

while T-algebra requires a stricter form of the result in structured and

partial input modes.

In the structured input mode T-algebra checks:

 completion of input of the result (the boxes are not empty) – in some

cases boxes can be left empty (for example, coefficient 1);

 syntactical correctness of entered part in every box;

 form of every part (may differ depending on rule, described for every rule

separately);

 equivalence of the entered parts to the parts calculated by the computer;

 every component of term (mark, coefficient, variable).

In addition, some rules include the possibility to add terms to the result during

the input stage in the structured input mode. For example, in multiplication of

polynomials, structures for inputting monomials can be added to the result.

There is one common check that T-algebra performs in case of all rules that use

adding of terms:

 number of added terms (in this mode, the student should not combine any

like terms when multiplying polynomials, etc., therefore, the correct

number of terms can be easily defined).

In the partial input mode T-algebra checks:

 completion of input of the result (the boxes are not empty) – in some

cases boxes can be left empty (for example, power of variable 1);

 syntactical correctness of entered parts;



equivalence of the entered parts to the parts calculated by the computer.

86

3.2.2 Transformation rule implementation principles

While designing the implementation for the transformation rules, some

problems had to be solved. We had to create an interface that would allow

simultaneous implementation of transformation rules for different topics

separately by many developers. We also had to implement special expression

object classes and a common functionality for creating input boxes in the

expression structure and the expression editor (described in section 2.7).

Therefore, we created the interface for the transformation rules by creating

the base class TRule and for storing additional step information

TRuleObject with all the required functions and data structures declared. It

also included implementation of functions that are common to different

transformation rules, for example, a large number of functions for checking the

type of subexpression: is the subexpression a monomial or polynomial, power

of monomial, number or fraction, etc. The transformation rule also defines

certain specific error messages that are displayed to the user while solving

problems when checks are performed.

When a developer needed to add a new transformation rule they simply had

to extend the TRule class and override methods with custom functionality.

Then the newly created class should be registered on a special list to be made

available to both the student and teacher programs. We tried to develop an

interface where creation of separate rules would need very limited effort from

the developer – mostly rule specific functions for objects selection, automatic

rule application, creation of the structure of input boxes, and checks for user

input and object selection.

As the number of transformation rules is quite high, the number of different

classes is also high. Working with them is quite convenient as they all

implement one interface TRule. The only problem is storing the state, solution

files and reading solutions from the solutions file. Therefore, internally we used

different constants (IDs) that define certain transformation rules and stored

those IDs. For creating a rule from a given ID, also the scope (Problem) for the

rule has to be passed as a parameter to the special method that was designed and

no explicit calls to constructor are used at all:

 class function CreateRuleById(RuleId: Integer; Problem:

TProblem): TRule;

 function RuleSteps(const Mode: Integer; const RuleObject:

TRuleObject): Integer;

The TRule class has many different methods for simpler creation of separate
transformation rules. Some methods are specific and not used elsewhere. Here
we present the main functions and data structures of the base class that are used
in every rule and that are called from other places in T-algebra.

The function RuleSteps defines whether a rule in this mode uses input of
intermediate result (additional row for data input). The default return value is 1,
meaning only 1 input row per step.

 procedure Check(const Avaldis: TAvaldis);

87

This function gets the object of expression as the parameter. This expression

contains information on the selected objects. The function Check verifies the

student‟s selection of objects and checks whether the rule is applicable to these

objects. If an error is found, a special type of exception is thrown and a message

displayed to the user.
 function FindApplySels(const Avaldis: TAvaldis):

TSelections;

 functions DialogueInput*

 procedure Apply(var Avaldis: TAvaldis; const Mode: Integer;

const RuleObject: TRuleObject);

 procedure Analyze(const Avaldis: TAvaldis; const Substs:

TStrings; const Mode: Integer; const RuleObject:

TRuleObject);

 procedure Apply2(var Avaldis: TAvaldis; const Substs:

TStrings; const Mode: Integer; const RuleObject:

TRuleObject);

 procedure Analyze2(const Avaldis: TAvaldis; const Substs:

TStrings; const PSubsts: TStrings; const Mode: Integer;

const RuleObject: TRuleObject);

This function gets the expression as the parameter, finds and returns
information on objects suitable for application of the rule. If a rule is not
applicable then NULL is returned. When the function is called, the first suitable
set of objects is returned. This function holds some heuristics. Some rules work
in a slightly different way for different problems. The problem is given as a
scope to the rule during creation. This function is used widely in the solution
algorithm for checking whether the rule is applicable and in the problem type
heuristic function for choosing the next rule to apply.

Multiple functions that are responsible for input of additional information in the
popup: window initialisation, input structure creation, automatic result / help,
etc. In my three topics, these functions are used only in factorisation.

The procedure Apply modifies the initial expression given as the parameter
and applies the rule in given mode using additional information entered in the
popup (or RuleObject = NULL). The information on the structure of input boxes
as well as on the constraints for different boxes is stored to the resulting
expression object. That object is used for empty input structure generation as
well as automatic result calculation.

The procedure Analyze checks the result of application of the rule as entered
by the student. The procedure gets the initial expression, additional rule
information and input mode as the parameters. It is able to apply the rule and
compare the correct result to the input of the student (given as parameter
Substs that contains parts of expression entered in input boxes). If an error is
found, a special type of exception is thrown and a message displayed to the
user.

88

check student input (analyze), but are used in case of input of an intermediate

result. Input of an intermediate result is handled by means of procedures

Apply and Analyze (corresponds to the first input line of the rule). The

procedures Apply2 and Analyze2 are responsible for the final input (2

corresponds to the second input line of the rule). Again, if an error is found, a

special type of exception is thrown and a message displayed to the user.

3.2.3 Usage of transformation rules in T-algebra

The student‟s program uses transformation rules while solving problems to:

 check the selection of objects for application of the rule;

 help the student and select correct objects for application of the rule

automatically;

 generate structure for inputting the resulting expression, intermediate

result or additional information for the rule;

 check the student‟s input in the boxes;

 fill in input boxes with correct parts of the result of application of the

rule;

 generate an automatic solution – apply rules automatically to the current

expression;

 check whether the rule is applicable to the current expression – mostly

used by the problem solving algorithm and heuristic functions for

problem types;

 check whether generated expression is suitable for the problem type –

whether some rules are applicable.

The teacher‟s program uses transformation for two main reasons:

 generate an automatic solution – apply rules automatically to the current

expression;

 check whether generated or entered expression is suitable for the problem

type – whether some rules are applicable.

3.2.4 Scheme for presentation of transformation rules

In the following sections, we present transformation rules that I have designed

and implemented in T-algebra for problems in two different fields: exponents,

monomials and polynomials. Some of these rules are also used in other fields

(for example, solving of linear expressions), therefore, there are no limitations

on the expressions the rule can be applied to.

As transformation rules (appropriate classes) in T-algebra contain a large number
of attributes and algorithms, these are also widely used. Both the T-algebra
student program and the teacher program require these transformation rules.

The procedures Apply2 and Analyze2 work similarly to Apply and

Analyze – those are used to generate the next expression (apply rule) and

89

A similar scheme is used to describe each transformation rule. We describe

the most important aspects and give some example of application of the rules in

T-algebra in different input modes. The following attributes are discussed:

 Applications – possible applications of the rule, also topics (other than

polynomial simplifications) where the rule is used;

 Expression – constraints, if any, on the expressions that can be used for

applying the rule. Mostly there are no limitations on the expressions so

this item is skipped;

 Instruction for marking – instructions that T-algebra displays for the

student when this rule is selected;

 Marking – description of the marking process for this rule: what parts

should be marked, checks that T-algebra performs after confirmation of

the marking stage, help on selection of objects, and one example of the

objects selection (screen capture);

 Instruction for input of additional information – instructions that

T-algebra shows to the student when it requests input of some rule

specific information in a popup window (if the rule does not use the

additional information popup then this part is skipped);

 Input of additional information – description of input of some rule

specific information in a popup window – input format, checks

performed, etc. (if the rule does not use the additional information popup

then this part is skipped);

 Instruction for input of intermediate result – instructions that T-algebra

shows to the student when input of an intermediate result of the solution

step is required (if the rule does not use this kind of input then this part is

skipped);

 Input of intermediate result – description of input, form of the result,

checks performed, example, etc. (if the rule does not use this kind of

input then this part is skipped);

 Instruction for input (in each mode) – instructions that T-algebra shows

to the student when input of the result of the solution step is required in a

certain input mode;

 Input of result (in each mode) – the description of input process for this

rule: what boxes are offered, checks that T-algebra performs after

confirmation of input, help on input of the result (automatic solving) and

one example of input (screen capture);

 Adding input boxes to the input structure – description of extending the

input structure in the structured input mode: what kind of boxes are

added, checks that T-algebra performs (description is skipped if adding is

not used).

 Error messages – for two rules (Combine like terms (the result is

monomial) and Multiply polynomials (the result is polynomial)) I also

present all error messages that the program shows to the student in case

of a mistake.

90

3.2.5 Rule Combine like terms

Applications: combine like terms; add/subtract numbers (as numbers are like

terms), also add and subtract fractions. This rule is also used in solving of linear

equations, linear inequalities and systems of linear equations.

Instruction for marking: Mark monomials for combining (only one group

of like terms).

Marking: The student has to select like terms to combine (Figure 2.1). The

student has to select objects precisely – only like monomials for combining

should be selected. It means, for example, that it is impossible to select the

whole sub-expression 2 3 5x y x  for combining like terms in it, but different

parts should be selected separately. However, if two or more objects are placed

next to each other in the expression these can be selected as one part of

selection (for example, like terms in the expression 2 5 3x x y ). If a

monomial is put into parentheses (because of negative coefficient, for example

)5(2 xx ) it can be combined directly without removing parentheses. In this

case, such monomial should be selected with parentheses. Only one group of

like terms can be combined at one step. During the selection of objects, the

student can ask for help and the program selects one group of like terms for

combining or shows a message if there are no terms to combine.

After confirming the selections, T-algebra checks correctness of the objects:

whether all the selected objects are monomials, whether there are at least two

monomials selected, these monomials belong to the same sum expression (also

if a monomial in parentheses is selected without parentheses) and all of them

are like terms. The program does not require all like terms of the same type to

be marked. The program also considers as like terms the parts in which the

variables are in different order. It means, for example, that the parts
25ab ,

ab25 and bab8 are considered as like terms.

Figure 3.1. Marking stage in applying the rule Combine like terms

Error messages after marking (the message itself does not contain brackets;

the text in brackets is given to explain the situation when and/or how this error

is diagnosed):

 At least two terms should be selected for this operation (empty selection

or not enough objects);

 Sign cannot be selected without following term (syntax check);

91

 The term should be selected together with parentheses (check for position

of objects – same level in the tree);

 Selected terms should be monomials (check for the form of object);

 Selected terms are not members of a sum (check for position of objects –

same level in the tree);

 At least one of the terms is not similar to others (rule specific check);

 Selected terms are not members of the same sum! Selected terms cannot

be combined (check for position of objects – same level in the tree);

 Terms for collection should belong to one equation (special check for the

field of equations, position of objects);

 This rule allows to collect terms only in one side of the equation (special

check for the field of equations, position of objects).

Instruction for input of result (free input mode): Enter the result of com-

bining.

Input of result (free input mode): After marking, if all checks are passed,

T-algebra copies unchanged parts of the expression to the next line and offers

input boxes for entering the resulting monomial. In case of the free input mode,

one box for result is proposed. The position of the input box depends on the

objects selected. In case of combining like terms (as also in case of most rules),

the input box is placed to the position of the first selected object (see also the

example in Figure 3.2).

The student should enter the whole monomial, including the preceding sign,

in this box (Figure 3.2). The student can enter variables in an arbitrary order

(even in an order that was not present in marked like terms) and with arbitrary

powers, which give the right result (the right part of Figure 3.2). It means that

the student is free to choose whether to enter the monomial in the normal form

or to use the same variable several times in different powers. Both positive and

negative variable powers are supported.

In special cases, some parts of the result or even the whole result can be left

empty – actually, there are similar cases when solving on paper. If the result of

combining is 0 (coefficient is 0) and there are other terms in the sum where the

initial terms belonged to, then this resulting 0 can be omitted (the box can be

left empty). However, if a result is entered then it should be entered either as 0

or 0 with variables in correct powers. If the power of variable is 0 then the

whole variable can be omitted. In addition, if the power of variable is 1 then the

power can be omitted. If the coefficient of the monomial is 1 or –1 then it can

be omitted. The same omitting algorithm is used also in all the other rules where

the result of the operation is a single monomial.

After confirming the input, the program performs common checks. As the

result should be a single monomial, the program checks whether the entered

result is a single monomial. After that, different parts of the entered monomial

are compared to the correct ones: sign, coefficient and set of variables with

powers. The program also controls, whether new variables were introduced. For

example, in case of combining numbers, the student enters the right number

92

with a variable with power 0. The entered result is equivalent to the right result.

In this case T-algebra shows a warning about the new variable introduced, and

the student can correct the result or continue with the new variable. If he

continues he has to make some unnecessary steps to remove the introduced

variable.

During the input of the result, the student can ask for help and the program

will put the right answers in the boxes. If monomials being combined have a

different order of variables then the program will propose variables in an

alphabetic order, only variables with power 0 will be eliminated from the result.

T-algebra offers the normalized form of monomial in the result even if the

monomials being combined are not in the normalized form. T-algebra also

omits as many parts of result as possible (powers 1; coefficients 1, -1; variables

with powers 0; whole result if coefficient is 0).

Figure 3.2. Input of result (free input mode) in applying the rule Combine like terms

Error messages after input of result (free input mode):

 Result is not entered (empty input but correct result is different from 0 or

this is the only member);

 Sign is not entered (part of the result is not entered);

 Error in entering the expression (syntax error, incorrect expression);

 Entered expression is not a monomial (error in the form of result);

 Incorrect sign (sign calculation error – error in certain part of the result);

 Calculation error (coefficient calculation error – error in certain part of

the result);

 Incorrect variable part (power calculation error or wrong variable used –

error in certain part of the result).

Instruction for input of result (structured input mode): Enter the result of

combining (sign before monomial, coefficient, variables and their exponents).

Input of result (structured input mode): In case of the structured input

mode, the program offers several boxes (Figure 3.3). As the result of combining

like terms should be a monomial, the offered structure has the general structure

of a monomial. The first box is sign input box, the next is coefficient input box,

followed by boxes for input of variables and exponents. The program offers the

93

same number of boxes for variables of the monomial as was the number of

variables in the marked parts. Variables can be entered in an arbitrary order

inside the monomial (the right part of Figure 3.3). However, the program

requests the user to standardize the result to some extent, because the number of

offered boxes is limited. For example, although the form of one monomial is

bab in Figure 1.3, the program offers only two boxes for entering variables in

the next line, i.e., the user must standardize the form bab and change it to 2ab

or ab 2 .

After confirmation of input, the program performs common checks. If the

student asks for help, the program will put the correct monomial in the boxes in

the same way as in the free input mode.

Figure 3.3. Input of result (structured input mode) in applying the rule Combine like

terms

Error messages after input of result (structured input mode):

 Result is not entered (empty input but correct result is different from 0 or

this is the only member);

 Sign is not entered (part of the result is not entered);

 Expression after the sign is needed (part of the result is not entered);

 Error in sign (syntax error, incorrect part of expression);

 Error in number (syntax error, incorrect part of expression);

 Error in variable (syntax error, incorrect part of expression);

 Error in exponent (syntax error, incorrect part of expression);

 Incorrect sign (sign calculation error – error in certain part of the result);

 Calculation error (coefficient calculation error – error in certain part of

the result);

 Incorrect variable part (power calculation error or wrong variable used –

error in certain part of the result).

Instruction for input of result (partial input mode): Enter the missing parts

of the result of combining (sign before monomial, coefficient).

Input of result (partial input mode): In case of the partial input mode, only

boxes for input of sign and coefficient are given (Figure 3.4). The variables and

94

exponents are written by the program. The program simplifies the work of the

user also by doing the standardization of the variables of monomial, i.e.,

converting the monomial into normal form. As part of the result is already

entered by the program and cannot be changed in the partial input mode, it is

impossible to omit such monomial even if the coefficient is 0. In this case extra

solution steps have to be made to eliminate the 0 term.

The correctness of sign and coefficient is checked when the correctness of

the step is evaluated.

Figure 3.4. Input of result (partial input mode) in applying the rule Combine like terms

Error messages after input of result (partial input mode):

 Result is not entered (empty input but correct result is different from 0 or

this is the only member);

 Sign is not entered (part of the result is not entered);

 Error in sign (syntax error, incorrect part of expression);

 Error in number (syntax error, incorrect part of expression);

 Incorrect sign (sign calculation error – error in certain part of the result);

 Calculation error (coefficient calculation error – error in certain part of

the result).

3.2.6 Rule Multiply/Divide monomials

Applications: multiply monomials; divide monomials; multiply and divide (at

the same time) monomials, also multiply and divide numbers.

Instruction for marking: Mark in a product/division the monomials to be

multiplied/divided.

Marking: The student has to select monomials from one product to multiply

or divide them (Figure 3.5). The student has to select objects precisely – if the

product contains polynomials in parentheses then they cannot be selected as

objects. Similarly to combining like terms, if a monomial with a negative

coefficient is put into parentheses, it should be selected with them to multiply

with others (left part of Figure 3.5). At each step, only monomials from one

95

product can be selected – T-algebra does not allow parallel applications of the

rule. At school, students usually multiply and divide terms from left to right but

in T-algebra it is possible to multiply or divide in any order. It is also possible to

multiply and divide terms simultaneously in one product (right part of Figure

3.5). This makes this rule more similar to the rule Combine like terms.

After confirming the selections, T-algebra checks correctness of the objects:

whether all selected objects are monomials, whether there are at least two

monomials selected and these monomials belong to the same product. If two

relevant objects are next to each other, it is possible to select them together.

When selecting monomials, it is possible to select them with or without the

preceding sign – T-algebra always includes the signs in the selection.

Figure 3.5. Two examples of marking stage in applying the rule Multiply/Divide mono-

mials

Instruction for input of result (free input mode): Enter the result of multi-

plication/division (sign before the result and the monomial).

Input of result (free input mode): In the free input mode, the student gets

two boxes for input of the result. The bigger box is intended for input of the

monomial without sign. This box is located in the product on the place of the

first marked monomial (left part of Figure 3.6). For the sign (plus or minus),

there is a smaller box, which is located before the whole product – this is

required because, in some cases, there are other terms in the product between

the sign and the result (left part of Figure 3.6). Therefore, even if two boxes are

located close to each other, they are still two different boxes (right part of

Figure 3.6). The sign should be entered in this special box; the program does

not accept the answer if the sign is entered in the monomial box.

T-algebra automatically inserts a multiplication sign before the resulting

monomial and a correct sign after the resulting monomial before other terms in

the product, if any. Therefore, it is not possible to leave the result empty even if

the monomial is 0/1. This automatically added multiplication sign can cause

problems for the student if he selects two or more divisor monomials and wants

to multiply those – in this case, he will have to invert the result. However,

students are not taught to simplify expressions in this way and T-algebra does

not use it in the automatic solving algorithm, so this should not cause many

problems.

96

As with the rule Combine like terms, the student can enter variables in an

arbitrary order. In addition, the program does not require that variables should

be presented once (i.e., the student can enter zz instead of
2z). Variables with

power 0 can be skipped. The whole monomial result can be skipped only if it is

0 and the whole product was selected for multiplication. As the result should be

a single monomial, the program performs common checks, which were

described before (see section 3.2.1) – the form of the result and then separately

each component of the monomial.

If the student asks for help, the program will fill in the boxes with the right

sign and the right monomial, where variables are placed in an alphabetic order

and only variables with power 0 are moved to the end of the monomial (they

will be removed later, anyway, but the program does not delete them from the

automatic result).

Figure 3.6. Input of result (free input mode) in applying the rule Multiply/Divide

monomials

Instruction for input of result (structured input mode): Enter the result of

multiplication/division (sign before monomial, coefficient, variables and their

exponents).

Input of result (structured input mode): In the structured input mode,

T-algebra gives the structure of the resulting monomial (Figure 3.7). The

proposed structure is very similar to the structured mode of the rule Combine

like terms. The only difference is that the box for the sign is placed before the

whole product (as in the free input mode), not before the resulting monomial.

Separate boxes are added for each variable letter from all initial monomials

(only one box is added if the same variable exists in two monomials). The

checks and help are accomplished in the same way as for the rule Combine like

terms – sign, coefficient, variables and powers are checked separately.

97

Figure 3.7. Input of result (structured input mode) in applying the rule Multiply/Divide

monomials

Instruction for input of result (partial input mode): Enter missing parts of

the result of multiplication/division (sign before monomial, coefficient,

exponents of variables).

Input of result (partial input mode): In the partial input mode, the program

proposes boxes for entering the sign (placed before the whole product like in

other modes), the coefficient and the powers of variables (Figure 3.8). As

T-algebra writes out all variables, which were in the marked parts, the powers

0 should be entered in the result. T-algebra performs common checks at the

confirmation of input. There are no specific checks for this mode – the checks

of coefficient, sign and the powers of variables are all common checks.

Figure 3.8. Input of result (partial input mode) in applying the rule Multiply/Divide

monomials

3.2.7 Rule Raise monomial to a power

Applications: exponentiation of monomials; exponentiation of numbers (as a

number is also a monomial).

Instruction for marking: Mark a monomial together with exponent for

exponentiation.

98

Marking: For application of this rule, the student has to select exactly one

monomial to be raised to a power (Figure 3.9). The student should mark both

the base and the power (exponent). If the base is written in parentheses (it is in

most cases, only single positive numbers can be without parentheses), the

parentheses should be marked as well. Only one monomial can be raised to a

power during one step. A monomial can consist only of one number (then it is

exponentiation of the number), but cannot consist only of one variable, i.e.,
2x

is not suitable for this rule because the result of this operation would be exactly

the same. At the confirmation of marking, the program checks all the above

mentioned attributes.

Figure 3.9. Marking stage in applying the rule Raise monomial to a power

Instruction for input of result (free input mode): Enter the sign and the

resulting monomial.

Input of result (free input mode): As in the case of the rule Multiply/Divide

monomials, two boxes are given for the student for input (Figure 3.10). The first

box (placed before the whole product) is for input of the sign; the second box

(placed on place of the marked monomial, may be separated from the other

input box by some terms) is for input of the resulting monomial. In detection of

the sign, the sign before the whole product should be taken into account (even

though it might not have been selected). In the resulting monomial, the co-

efficient should be only a number (i.e., the number should be raised to a power

and the answer should be calculated). For example, in Figure 3.10, the student

cannot enter
52 into the result. After input is confirmed, the common checks

used for monomials are performed (see section 3.2.1).

99

Figure 3.10. Input of result (free input mode) in applying the rule Raise monomial to a

power

Instruction for input of result (structured input mode): Enter the sign and

parts of the resulting monomial.

Input of result (structured input mode): The proposed boxes (Figure 3.11)

and the checks after confirmation are the same as in case of the rule Multiply/

Divide monomials.

Figure 3.11. Input of result (structured input mode) in applying the rule Raise

monomial to a power

Instruction for input of result (partial input mode): Enter the sign and parts

of the resulting monomial.

Input of result (partial input mode): The partial input mode of this rule

(Figure 3.12) is analogous to partial input mode of the rule Multiply/Divide

monomials.

100

Figure 3.12. Input of result (partial input mode) in applying the rule Raise monomial to

a power

3.2.8 Rule Clear parentheses

Applications: clear parentheses from the polynomial in the sum expression;

clear parentheses from a single monomial in a sum (required in case of a

negative coefficient); clear parentheses from the monomial in the product; clear

parentheses from a complex expression (for example, a sum of monomials,

products and other complex expressions), which is a part of the sum expression.

Instruction for marking: Mark one expression with parentheses for re-

moving the parentheses.

Marking: The student has to mark an expression with parentheses (Figure

3.13). The parentheses should always be included in the marking. Only one pair

of parentheses can be removed at one step. Priority of the main operation of

expression inside the parentheses should be equal to or higher than the priority

of the operation outside. For example, it is possible to remove parentheses from

a polynomial if the operation outside the parentheses is addition or subtraction,

and it is impossible if the operation outside is multiplication. This rule cannot

be applied to multiplying a number or a monomial by a polynomial in paren-

theses; for this purpose, the rule Multiply/Divide polynomial by monomial

(section 3.2.9) or the rule Open parentheses should be selected.

After confirming the selections, T-algebra checks correctness of the objects:

only one expression with parentheses can be selected at one step. In addition,

the program checks whether the student knows the priorities of operations.

During the selection of objects, the student can ask for help and the program

selects the first possible expression with parentheses or displays a message that

there are no suitable parentheses.

101

Figure 3.13. Two examples of marking stage in applying the rule Clear parentheses

Instruction for input of result (free input mode, structured input mode and

partial input mode): Enter pluses and minuses.

Input of result (free input mode, structured input mode and partial
input mode): In the current implementation of the rule, all three input modes

are implemented exactly the same way (essentially, the partial input mode),

because we are unable to offer any certain structure for the resulting expression

as we did not want to put any restrictions on the form of the expression in

parentheses. For example, it is possible to clear parentheses from a fraction in

parentheses when it is a part of a sum or a product. Therefore, we could not

prescribe a fixed structure for all cases.

After the marking stage is completed, T-algebra copies the unchanged parts

of the expression to the next line and offers boxes for inputting the important

parts of the resulting expression (Figure 3.14). The student has to fill in the

yellow boxes with correct signs (pluses or minuses). There are two principal

cases when this rule is used: to remove parentheses from a polynomial in a sum

(left part of the figure; in this case, the sign before each monomial should be

entered) or to remove parentheses from a single term (in a sum or in a product;

right part of the figure; in this case, a sign should be entered before the term or

the whole product accordingly).

The most common mistake that is made during application of this rule is not

changing the sign of the monomial when there is a minus before the

parentheses. Sign is the most important part in applying this rule and, in these

modes, it is the only part of the result that is left for the student to enter. After

confirming the input, the program checks correctness of all signs separately.

Figure 3.14. Input of result (in both structured and partial input modes) in applying the

rule Clear parentheses

102

3.2.9 Rule Multiply/Divide polynomial by monomial

Applications: multiply a polynomial by monomial(s); divide a polynomial by

monomial(s); multiply and divide (simultaneously) a polynomial by mono-

mial(s); also multiply and divide a polynomial by numbers (single numbers are

monomials as well).

Instruction for marking: Mark one polynomial and monomial(s) for multi-

plication/division.

Marking: In order to apply this rule, the student has to select exactly one

polynomial and one or more monomials from one product to multiply or divide

them (Figure 3.15). At each step, only objects from one product can be selected

– T-algebra does not allow parallel applications of the rule. The student can

decide how many monomials from one product he will use for polynomial

multiplication/division in one step (either one by one or all together). At school,

students usually multiply and divide terms from left to right but T-algebra

enables to multiply or divide in any order. A polynomial should be marked

together with parentheses. If a monomial has been put into parentheses for some

reason (for example, it has negative coefficient), it has to be selected together

with parentheses as well.

After confirming the selections, T-algebra checks correctness of the objects:

whether the marked objects include one polynomial and all other objects are

monomials, whether there are at least two objects marked and these objects

belong to the same product.

Figure 3.15. Two examples of marking stage in applying the rule Multiply/Divide

polynomial by monomial

Error messages after marking:

 One polynomial and monomial(s) from the same product should be

selected (empty selection);

 In addition, one polynomial should be selected (only one object selected);

 In addition, one monomial should be selected (only one object selected);

 Sign cannot be selected without the following term (object syntax error);

 Selected term is neither monomial nor polynomial (form of the object);

 Only members of one product/division should be selected (position of

objects, same level in the tree);

103

 Mark the polynomial together with parentheses (position of objects, same

level in the tree);

 For this rule, only one polynomial should be selected (number of terms).

Instruction for input of result (free input mode): Enter the result of multi-

plication/division.

Input of result (free input mode): In the free input mode, the whole

resulting polynomial should be entered in a single yellow box (Figure 3.16).

The student has to add parentheses himself if the polynomial is a part of a

product (left part of Figure 3.16). After the input is confirmed, the program

performs common checks used for polynomials as described above. Then it

checks whether parentheses were added, if required. From the set of checks to

be performed (only the equivalence is checked) it is clear that, in the free input

mode, the student can multiply/divide a polynomial by monomial(s), but he can

also only write out the right multiplication/division as shown on the right side of

Figure 3.16 (monomials are multiplied, but the division of the polynomial by

the resulting monomial is only written out). Another possibility for the student

is to simplify the resulting polynomial, for example, by combining like terms.

Figure 3.16. Two examples of input of result (free input mode) in applying the rule

Multiply/Divide polynomial by monomial

Error messages after input of result (free input mode):

 Error in expression (syntactical error);

 Parentheses are needed (order of operations);

 Plus or minus sign is missing (special check);

 Error in answer (resulting subexpression is not equal to correct expres-

sion – equality check is performed using the automatic simplification

algorithm, see section 2.8.1).

Instruction for input of result (structured input mode): Create the necessary

number of boxes for monomials and enter the result.

Adding input boxes to the input structure: The resulting expression of this

operation is a polynomial. The number of monomials in the polynomial is an

essential attribute and we do not want to predict it by providing the complete

104

structure of the result. Therefore, in the structured input mode, we added the

possibility to construct the result by adding new monomials to it. Initially in this

additional stage, only the structure of the first monomial (one box for sign and

one box for coefficient with variables) is given (left part of Figure 3.17) – the

student has to add more structures by pressing a corresponding button on the

virtual keyboard (right part of Figure 3.17). He can also remove added

monomials if needed by pressing another button on the virtual keyboard. If the

teacher has permitted it, the student can ask the program for help and T-algebra

will create the correct number of structures that corresponds to the number of

monomials in the correct result. The program controls whether the correct

number of monomials was added after the input is confirmed. If less than the

correct number of terms was added then the user is given an error message

when confirming the input. Monomials with coefficient 0 can be omitted;

therefore, no extra box has to be added for this term. The user can add more

than the correct number of terms and leave some of them empty – empty boxes

will be cleared in the same way as in other rules where some parts may be

omitted. The student is not allowed to combine like terms in the result (if the

initial polynomial contains like terms); all like monomials should be

multiplied/divided separately.

Figure 3.17. Two examples of adding terms to result in applying the rule Multiply/

Divide polynomial by monomial

Input of result (structured input mode): After adding the boxes to the result,

the student has to fill them with parts of the resulting polynomial. If required,

new boxes can be added during input stage. For each monomial, there are two

kinds of boxes: small boxes are for input of plus and minus signs, larger boxes

105

are for entering numbers and variables (Figure 3.18). Terms can be placed in the

boxes in an arbitrary order. As with other rules, the variables with power 0 can

be skipped. Similarly, whole monomials with coefficient 0 can be skipped.

In the structured input mode, if the resulting polynomial is a part of product,

it is put into parentheses (parentheses are added automatically by T-algebra) – it

should be easier for the student if, for example, the sign before the selected

product is a minus (left part of Figure 3.18) and the student does not have to

change the signs of individual monomials at the same time. However, when the

resulting polynomial is not a part of the product, even if there is a minus sign

before the initial product, the student has to take that minus sign into account

and change the signs when multiplying.

In the structured input mode, T-algebra requires from the student exact

application of this rule only – no combining of like terms or other

simplifications are allowed at this step. The program performs common checks.

The form of every entered part should be a monomial and this is verified by

performing a rule specific check (form of each part).

When comparing two polynomials (the correct one calculated by T-algebra

and the one entered by the student), they are compared as two collections of

monomials. For each monomial from the student‟s polynomial, T-algebra tries

to find the corresponding monomial in the correct result. If an identical

monomial is not found, the program tries to identify the error: either the sign is

incorrect (an identical monomial with the opposite sign), coefficient is incorrect

(a similar monomial is found), or powers of variables/variables themselves are

incorrect (other cases).

Figure 3.18. Two examples of input of result (structured input mode) in applying the

rule Multiply/Divide polynomial by monomial

Error messages after input of result (structured input mode):

 Result should contain more terms (number of terms added and filled);

 Result should contain less terms (number of terms added and filled);

 Result cannot be empty (empty result);

 Monomial should be entered (empty monomial box with filled sign box);

 Sign is missing (empty sign box with filled monomial);

106

 Error in sign (syntax error);

 Error in expression (syntax error);

 There is a separate box for the sign (form of result);

 Incorrect sign (sign calculation error);

 Incorrect coefficient (calculation error);

 Incorrect variable part. Correct result does not contain such member

(calculation error – power or variable letter);

 Result should not contain such monomial (calculation error, other error in

monomial, completely different from the correct ones).

Instruction for input of result (partial input mode): Enter missing parts of

the result.

Input of result (partial input mode): In the partial input mode, the student

has to fill only gaps – coefficients, signs and powers of variables of the resulting

monomials (Figure 3.19). The order of terms can be changed only if the variable

part (letters) is the same as variables are already filled in the result. If the

resulting polynomial is a part of product then it is put into parentheses. The

checks in the partial input mode are the same as in the structured mode, except

the check of the number of monomials – in the partial input mode, the number

of monomials is already correct by design. As T-algebra writes out all variables

that were in the marked parts, the powers 0 should be entered in the result.

T-algebra writes out the variables for all possible terms and, therefore, it is

impossible to omit monomials with coefficients 0 (an extra step could be made

later to get rid of 0 monomials, but it should not be an issue, because monomials

with 0 coefficients are usually removed from the polynomial first).

Figure 3.19. Two examples of input of result (partial input mode) in applying the rule

Multiply/Divide polynomial by monomial

Error messages after input of result (partial input mode):

 Result cannot be empty (empty result);

 Result should contain more terms (number of terms added and filled);

 Monomial should be entered (empty monomial box with filled sign box);

 Sign is missing (empty sign box with filled monomial box);

107

 Error in sign (syntax error);

 Error in expression (syntax error);

 Coefficient should be a number (form of result);

 Exponent should be an integer (form of result);

 Incorrect sign (sign calculation error);

 Incorrect coefficient (calculation error);

 Incorrect variable part. Correct result does not contain such member

(calculation error – power or variable letter);

 Result should not contain such monomial (calculation error, other error in

monomial, completely different from the correct ones).

3.2.10 Rule Multiply polynomials

Applications: multiply polynomials.

Instruction for marking: Mark two polynomials (together with

parentheses) for multiplication.

Marking: After selection of the rule, the student has to select exactly two

polynomials from one product to multiply (Figure 3.20). At each step, only the

objects from one product can be selected (no parallel rule applications are

allowed). Polynomials should be marked together with parentheses. During the

selection of objects, the student can ask for help as in all other rules.

At the confirmation of marking, T-algebra checks correctness of the objects:

whether the selected objects are polynomials, whether exactly two objects were

selected and these objects belong to the same product.

Figure 3.20. Two examples of marking stage in applying the rule Multiply polynomials

Instruction for input of result (free input mode): Enter the result of multi-

plication.

Input of result (free input mode): The design of the input is exactly the

same as in the rule Multiply/Divide polynomial by monomial. In the free input

mode, the whole polynomial should be entered in a single yellow box (Figure

3.21). The student has to add parentheses himself in case the polynomial is a

part of a product. After confirming the input, T-algebra checks equivalence of

the entered resulting subexpression to the correct polynomial (subexpression)

and also whether parentheses were added if required (order of operations). As

108

with the rule Multiply/Divide polynomial by monomial, the student is left a

possibility to do more or less than just multiply the polynomials. For example,

he can combine like terms (left part of Figure 3.21) or simply write out the

correct multiplication (right part of Figure 3.21).

Figure 3.21. Two examples of input of result (free input mode) in applying the rule

Multiply polynomials

Instruction for input of result (structured input mode): Create the necessary

number of boxes for monomials and enter the result.

Adding input boxes to the input structure: Implementation of the adding

stage is similar to the adding stage of the rule Multiply/Divide polynomial by

monomial. If the marking was correct then the structure of the first monomial

(one box for a sign and one box for a coefficient with variables) is given in the

position of the first (leftmost) selected polynomial (left part of Figure 3.22). The

student has to add more monomials using the appropriate button (right part of

Figure 3.22).

Figure 3.22. Two examples of adding terms to result in applying the rule Multiply poly-

nomials

109

Input of result (structured input mode): The structured input mode is also

implemented similarly as in the rule Multiply/Divide polynomial by monomial.

The student has to enter signs and monomials (Figure 3.23). Parentheses are

added by the program if the result is a part of a product or a sum. The program

insists on exact application of the rule. Monomials can be entered in an arbitrary

order (for example, in the upper part of Figure 3.23, the first monomial of the

first polynomial is multiplied by all terms of the second polynomial, then the

second monomial of the first polynomial is multiplied by all terms of the second

polynomial and so on; the lower part of Figure 3.23 illustrates the other possible

manner of multiplication: all terms of the first polynomial are multiplied by the

first monomial of the second polynomial, then all terms of the first polynomial

are multiplied by the second monomial of the second polynomial and so on). If

the student asks for help then the program fills the boxes with the result, found

by the same manner of multiplication as shown in the upper part of Figure 1.24.

The checks are the same as the checks used for the rule Multiply/Divide

polynomial by monomial.

Figure 3.23. Two examples of input of result (structured input mode) in applying the

rule Multiply polynomials

Instruction for input of result (partial input mode): Enter missing parts of

the result.

Input of result (partial input mode): The partial input mode (boxes,

checks) (Figure 3.24) is accomplished in the same way as in the rule Multiply/

Divide polynomial by monomial.

110

Figure 3.24. Two examples of input of result (partial input mode) in applying the rule

Multiply polynomials

3.2.11 Rule (a±b)² 

Applications: expand the square of sum/difference of two monomials.

Instruction for marking: Mark a square of a binomial (together with

exponent) for raising to a power.

Marking: For application of this rule, the student has to select exactly one

sum or difference of two monomials, which he wants to square, together with

exponent (number 2) (Figure 3.25). The sum/difference should be marked

together with parentheses. On confirmation of the marking, the program checks

whether the selected parts are appropriate: whether exactly one sum/difference

is selected; whether this sum/difference consists of exactly two monomials;

whether the exponent is 2; whether the sum/difference is selected together with

parentheses.

Figure 3.25. Marking stage in applying the rule (a±b)² 

Instruction for input of result (free input mode): Enter the result of expo-

nentiation.

Input of result (free input mode): In the free input mode, the whole result

should be entered in a single yellow box (Figure 3.26). As in other rules, where

the result of multiplication is entered in one box and the multiplied result is a

111

polynomial, T-algebra allows partial application of the rule. Dealing with

parentheses, if needed, is the student‟s task.

The resulting polynomial is subjected to all common checks when the input

is confirmed. The existence of parentheses is checked as well, if required. If the

student asks the program for help, T-algebra fills the box with the squared result

and adds parentheses, if required.

Figure 3.26. Input of result (free input mode) in applying the rule (a±b)² 

Instruction for input of result (structured input mode): Create the necessary

number of boxes for monomials and enter the result.

Adding input boxes to the input structure: As in other rules, where the

result is a polynomial, the student should, in the structured input mode, create

the correct number of boxes (initially, only one monomial box is given)(Figure

3.27).

Figure 3.27. Adding terms to result in applying the rule (a±b)² 

Input of result (structured input mode): After adding the input boxes, the

student has to enter the result in these boxes (Figure 3.28). As in other rules,

where the result is a polynomial, the program insists on exact application of the

rule. The input (arbitrary order of terms), parentheses (if the result is part of a

sum or product) and checks are handled as in the rules Multiply/Divide

polynomial by monomial and Multiply polynomials.

112

Figure 3.28. Input of result (structured input mode) in applying the rule (a±b)² 

Instruction for input of result (partial input mode): Enter missing parts of

the result.

Input of result (partial input mode): As in other rules, the partial input

mode here requires the student only to fill gaps (Figure 3.29). The result is put

in parentheses by the program, if needed. Common checks are performed when

the input is confirmed.

Figure 3.29. Input of result (partial input mode) in applying the rule (a±b)² 

3.2.12 Rule (a±b)³ 

Applications: expand the cube of sum/difference of two monomials.

Instruction for marking: Mark a cube of a binomial (together with expo-

nent) for raising to a power.

Marking: The marking stage (Figure 3.30) is identical to the marking stage

of the rule (a±b)²  (the only difference is that the exponent should be number

3).

113

Figure 3.30. Marking stage in applying the rule (a±b)³ 

Instruction for input of result (free input mode): Enter the result of expo-

nentiation.

Input of result (free input mode): The free input mode (Figure 3.31) is

identical to the free input mode of the rule (a±b)²  (except, of course, that the

result should contain raising to the cube).

Figure 3.31 Input of result (free input mode) in applying the rule (a±b)³ 

Instruction for input of result (structured input mode): Create the necessary

number of boxes for monomials and enter the result.

Adding input boxes to the input structure: The adding stage (Figure 3.32)

is carried out in the same way as during application of the rule (a±b)² .

Figure 3.32. Adding terms to result in applying the rule (a±b)³ 

114

Input of result (structured input mode): The structured input mode

(Figure 3.33) is also analogous to the structured input for the rule (a±b)² .

Figure 3.33. Input of result (structured input mode) in applying the rule (a±b)³ 

Instruction for input of result (partial input mode): Enter missing parts of

the result.

Input of result (partial input mode): The partial input mode (Figure 3.34)

is similar to the partial input for the rule (a±b)² .

Figure 3.34. Input of result (partial input mode) in applying the rule (a±b)³ 

3.2.13 Rule (a+b)(a-b) 

Applications: multiply the sum and difference of two monomials.

Instruction for marking: Mark a product of the sum and difference of two

monomials to be multiplied.

Marking: For application of this rule, the student has to select the product of

the sum and difference of two monomials (Figure 3.35). The monomials inside

the sum and difference can be in an arbitrary order and the sum and difference

of these monomials can be in an arbitrary order inside the product (i.e., the

program allows to apply this formula, for example, to (-b+a)(a+b) and does not

insist on transforming it to (a+b)(a-b) beforehand). The sum and difference

should be marked together with parentheses. Of course, the sum and difference

should belong to one product.

115

On confirmation of the marking, the program checks whether the marked

parts are appropriate: whether exactly one pair (the sum and difference of the

same monomials) is marked; whether the sum and difference belong to one

product; whether the sum and difference consist of exactly two monomials;

whether these monomials are the same in the sum and difference; whether the

sum/difference is selected together with parentheses.

Figure 3.35. Marking stage in applying the rule (a+b)(a-b) 

Instruction for input of result (free input mode): Enter the result of

multiplication.

Input of result (free input mode): In the free input mode, the student is

given one box for entering the result (Figure 3.36). Like in other rules, where

the result is a polynomial, parentheses are the responsibility of the student. The

program performs common checks when the input is confirmed. The

parentheses are checked as well, if needed. In the free mode, the program does

not require exact application of the formula, as only equivalence is checked.

The student can proceed as if applying the rule Multiply polynomials: multiply

the polynomials (Figure 3.36) or just write out the correct multiplication.

Figure 3.36. Input of result (free input mode) in applying the rule (a+b)(a-b) 

Instruction for input of result (structured input mode): Create the necessary

number of boxes for monomials and enter the result.

116

Adding input boxes to the input structure: For entering result in the

structured input mode, the student has to add the necessary number of boxes for

monomials (Figure 3.37). The program initially gives boxes for only one

monomial. The number of boxes is checked after the input is confirmed.

Figure 3.37. Adding terms to result in applying the rule (a+b)(a-b) 

Input of result (structured input mode): After input boxes have been added,

the student should enter the result of application of this rule in these boxes

(Figure 3.38). In the structured input mode, the program allows only exact

application of the formula, i.e., the result should be the difference of squared

monomials. Parentheses are added by the program, if needed. Monomials can

be entered in an arbitrary order.

After the input is confirmed, the program performs common checks. In

addition, during rule-specific check (the form of every part), the program

checks whether the monomials are entered.

Figure 3.38. Input of result (structured input mode) in applying the rule (a+b)(a-b) 

Instruction for input of result (partial input mode): Enter missing parts of

the result.

Input of result (partial input mode): In the partial input mode, the program

pre-fills some parts (variables) and the student should enter the rest (signs,

117

coefficients and powers of variables) (Figure 3.39). Only exact application of

the formula is allowed. The parentheses around the resulting binomial are added

by the program if a polynomial is a part of the sum or product. After con-

firmation, the common checks are performed.

Figure 3.39. Input of result (partial input mode) in applying the rule (a+b)(a-b) 

3.2.14 Rule (a±b)(a²±ab+b²) 

Applications: multiply the sum/difference of two monomials by incomplete

square of the difference/sum.

Instruction for marking: Mark a sum/difference of two monomials and an

incomplete square of the difference/sum of the same monomials.

Marking: Marking (Figure 3.40) is accomplished in the same way as for the

rule (a+b)(a-b) .

Figure 3.40. Marking stage in applying the rule (a±b)(a²±ab+b²) 

Instruction for input of result (free input mode): Enter the result of multi-

plication.

Input of result (free input mode): The free input mode (Figure 3.41) is

identical to the free input mode of the rule (a+b)(a-b) .

118

Figure 3.41. Input of result (free input mode) in applying the rule (a±b)(a²±ab+b²) 

Instruction for input of result (structured input mode): Create the necessary

number of boxes for monomials and enter the result.

Adding input boxes to the input structure: Adding of terms (Figure 3.42)

is performed in the same way as during application of the rule (a+b)(a-b) .

Figure 3.42. Adding terms to result in applying the rule (a±b)(a²±ab+b²) 

Input of result (structured input mode): Implementation of the structured

input mode (Figure 3.43) is similar to the structured input for the rule (a+b)(a-

b) .

Figure 3.43. Input of result (structured input mode) in applying the rule (a±b)

(a²±ab+b²) 

119

Instruction for input of result (partial input mode): Enter missing parts of

the result.

Input of result (partial input mode): The partial input mode (Figure 3.44)

functions similarly to the partial input mode of the rule (a+b)(a-b) .

Figure 3.44. Input of result (partial input mode) in applying the rule (a±b)(a²±ab+b²) 

3.2.15 Rule Multiply/Divide terms with the same base

Applications: multiply powers with the same base; divide powers with the

same base; multiply and divide (at the same time) powers with the same base.

Instruction for marking: Mark at least two powers with the same base to be

multiplied/divided.

Marking: For application of this rule, the student has to mark at least two

terms with exponents, which have the same base (Figure 3.45). The base can be

a number (right part of Figure 3.45), a variable (left part of Figure 3.45), a

monomial, or a more complex expression in parentheses. Terms should be

marked together with exponents. If the base is written in parentheses, it should

be selected together with parentheses. On confirmation of the marking, the

program checks whether the selected terms are appropriate: whether at least two

terms are marked; whether terms are marked together with exponents; whether

the terms belong to one product; whether the terms have equivalent bases (for

example, the rule accepts terms with bases)3(b ,)3(b ,)12(b , etc.).

Figure 3.45. Two examples of marking stage in applying the rule Multiply/Divide terms

with the same base

120

Instruction for input of result (free input mode): Enter the result of

multiplication/division.

Input of result (free input mode): In the free input mode, the student has to

enter the whole result in one box (Figure 3.46). Entering the correct sign before

the result (multiplication/division sign in a product (left part of Figure 3.46),

addition or subtraction sign in a sum) is also the student‟s task. During appli-

cation of this rule, the student can only add exponents; no further simplification

(like raising a number to a power) is allowed. The resulting power can also be

presented as a sum expression (for example,
21b). The program separately

checks equivalence of the entered base to the correct base and correctness of the

power, as it would in case of a monomial (the only difference being that a base

can be more complex than a single variable).

Figure 3.46. Two examples of input of result (free input mode) in applying the rule

Multiply/Divide terms with the same base

Instruction for input of result (structured input mode): Enter parts of the

result.

Input of result (structured input mode): In the structured input mode, the

program proposes the structure of the result by giving three boxes (Figure 3.47).

The first smaller box is for entering the sign (addition, subtraction, multi-

plication or division, depending on context). The second box is intended for

input of the base. The third box is designed for exponent. The content of these

boxes is checked on confirmation of the input. The power is checked together

with the sign and T-algebra allows entering the result with either a multi-

plication or a division sign if the power is inverted accordingly (
3*b or

3:b
).

The content of the base box has to be equivalent to the base of the selected

terms.

121

Figure 3.47. Two examples of input of result (structured input mode) in applying the

rule Multiply/Divide terms with the same base

Instruction for input of result (partial input mode): Enter exponent in the

result.

Input of result (partial input mode): In the partial input mode, only the

box for exponent is given (Figure 3.48) and only the exponent is checked on

confirmation of the input. T-algebra always uses a multiplication sign even if it

leads to negative exponents.

Figure 3.48. Two examples of input of result (partial input mode) in applying the rule

Multiply/Divide terms with the same base

3.2.16 Rule Raise product/quotient/power to a power

Applications: raise a product to a power; raise a quotient to a power; raise a

power to a power, raise a complex expression containing products, quotients,

fractions and powers to a power.

Constraints for expression: the expression may not contain a fraction with

the same variable in the numerator and denominator, because the implemented

fraction reduction rule only works with numbers.

Instruction for marking: Mark a power of product/quotient/power

(together with parentheses and exponent), to be raised to a power.

122

Marking: After selecting this rule, the student has to mark exactly one

exponent expression to raise it to a power (Figure 3.49). The exponent base can

be a product (of variables, powers, more complex expressions), a quotient or a

fraction (of expressions of the same kind) or a power (of expressions of the

same kind). The base expression should be marked together with parentheses.

After confirmation of marking, the program checks whether exactly one suitable

expression is selected.

Figure 3.49. Two examples of marking stage in applying the rule Raise product/

quotient/power to a power

Instruction for input of result (free input mode): Enter the result of

exponentiation.

Input of result (free input mode): In the free input mode the student has to

enter the whole result in one box (Figure 3.50). T-algebra only checks

equivalence of the entered result to the corrected one. It means that other

simplifications, like multiplication of monomials (powers of variables) etc., are

allowed. If the student asks the program for help, the program fills the box with

the correct result. T-algebra does not simplify anything in the result; the

structure (fractions, parentheses, order of variables, etc.) remains exactly the

same as in the original expression.

Figure 3.50 Two examples of input of result (free input mode) in applying the rule

Raise product/quotient/power to a power

123

Instruction for input of result (structured input mode): Enter missing parts

of the result.

Input of result (structured input mode): In the structured input mode, the

student has to enter the result in multiple input boxes, forming the structure of

the result (Figure 3.51). The structure of the result (fractions, parentheses, order

of variables, etc.) remains exactly the same as the structure of the exponent base

in the original expressions. As the structure of the result can be very complex (3

level fractions, multiplication of such fractions, etc.), checking the input would

be quite difficult if changing the order of terms in the product or similar

changes were allowed. Therefore, the order of terms in the result has to be

exactly the same as in the original expression. Any part of the result entered into

a specific box is checked independently from others (only for equivalence). If

the student asks the program for help, the program fills the boxes with the

correct result.

Figure 3.51. Two examples of input of result (structured input mode) in applying the

rule Raise product/quotient/power to a power

Instruction for input of result (partial input mode): Enter missing exponents

and coefficients in the result.

Input of result (partial input mode): The partial input mode is similar to

the structured one, but some parts are filled in by the program. Only numeric

parts of the expression (coefficients and exponents) should be entered by the

student.

124

Figure 3.52 Two examples of input of result (partial input mode) in applying the rule

Raise product/quotient/power to a power

3.2.17 Rule Raise number to a power

Applications: raise a number (fraction) to a power.

Instruction for marking: Mark a number together with exponent for

exponentiation.

Marking: After selecting this rule, the student has to mark a number and

power for exponentiation (Figure 3.53). Only one number can be raised to a

power during one application of the rule. If the number is negative and written

in parentheses, it should be marked together with parentheses. After con-

firmation of marking, the program checks all the mentioned aspects.

Figure 3.53. Two examples of marking stage in applying the rule Raise number to a

power

Instruction for input of result (free input mode, structured input mode and

partial input mode): Enter a sign and the resulting number.

Input of result (free input mode, structured input mode and partial
input mode): The free input here coincides with the structured and partial input

modes (structured input is used in all cases). The program gives two boxes for

entering the result: one for the sign and the other for the number (Figure 3.54).

Correctness of the sign and the number is checked separately when correctness

of the step is evaluated.

125

Figure 3.54. Two examples of input of result (free input mode, structured input mode

and partial input mode) in applying the rule Raise number to a power

3.2.18 Rule Factor out common factor

Applications: factor out a common factor from all monomials in a polynomial;

factor out a variable from one side of an equation (for solving a literal equation

for a given variable).

Expression: a polynomial expression (sum of monomials) or a more

complex expression including a polynomial (factoring out a common factor

should be possible); an equation where a common factor can be factored out

from one side of the equation.

Constraints for expression: a polynomial should consist only of monomials

with a common factor (different from 1 or -1); terms (in any expression) should

contain a common factor, which is a number, a variable or a monomial. In case

of an equation, it should contain a variable for solving.

Instruction for marking: Choose terms for factoring out a common factor.

Marking: In order to carry out this operation, the student has to mark terms

(monomials) for factoring out a common factor (Figure 3.55). If the expression

is a polynomial (sum of monomials) and the problem type is Factor out com-

mon factor then the student has to mark all monomials (the whole polynomial).

T-algebra does not allow factoring out a common factor of only some

monomials in a polynomial if there are other monomials. If the expression is an

equation then the student has to mark terms only on one side of the equation

(which should be a polynomial as well). All these attributes are checked on

confirmation of the marking. If the student asks for help, the program marks all

possible terms that have a common factor (different from 1).

Figure 3.55. Two examples of marking stage in applying the rule Factor out common

factor

126

Instruction for input of additional information: Enter common factor

(number, variable or monomial).

Input of additional information: If the selected parts are suitable for

application of the rule then, in structured and partial input modes, a separate

window will be opened for entering the common factor (number, variable or

monomial) (Figure 3.56). The common factor should not be the greatest

common factor (left part of Figure 3.56). If an expression is entered, the

program checks whether it is a common factor of all marked terms. If the

student asks for help, the program writes the greatest common factor of marked

terms in the box.

Many conditions are taken into account when calculating the greatest

common factor. If all monomials contain the same variable in positive powers

then the maximum power that is allowed in the common factor is the smallest

power of this variable among all monomials (otherwise, negative exponents will

appear). If at least one monomial contains a variable with a negative exponent

then T-algebra, if asked for help, still offers the smallest exponent, but does not

prevent the user from entering a different one (even if it is larger). Regarding

the coefficient, if all coefficients are integers, the greatest common divider is

calculated and used as the coefficient of the greatest common factor (this

limitation also applies to user-entered coefficients).

Figure 3.56. Two examples of input of additional information in applying the rule

Factor out common factor

Instruction for input of result (free input mode): Enter the result of facto-

risation.

Input of result (free input mode): Input of additional information is

skipped in the free input mode. If the marked parts are suitable for application

of this rule then, in the free input mode, the program copies the expression onto

the next line of the main window, replacing the marked parts with one empty

box (Figure 3.57). The student has to enter the result of factorisation in this box.

127

The result should always be a product. The common factor should not be the

greatest common factor.

After the input is confirmed, besides common checks the program checks

whether the student has factored something out (whether the result is a product).

If the student asks for help, the program composes a product of the greatest

common factor and terms in parentheses.

Figure 3.57. Two examples of input of result (free input mode) in applying the rule

Factor out common factor

Instruction for input of result (structured input mode): Enter the result of

factorisation.

Input of result (structured input mode): After the input of additional

information has been confirmed, the program composes the expression on the

next line of the main window. The program composes a product in place of the

marked parts (the leftmost selected part): writes the previously entered and

checked common factor and parentheses and leaves one empty box in

parentheses for entering the result (Figure 3.58). After confirmation of the

input, T-algebra performs common checks of the free input mode on the entered

expression (verification of input, syntactical correctness and equivalence). If the

student asks for help, the program writes the right polynomial in the box (taking

into account the common factor entered in the additional window).

Figure 3.58. Two examples of input of result (structured input mode) in applying the

rule Factor out common factor

128

Instruction for input of result (partial input mode): Enter the result of facto-

risation.

Input of result (partial input mode): The partial input mode is similar to

the structured input mode but, instead of one box inside parentheses, the

program proposes several boxes (Figure 3.59). There are two kinds of boxes:

small boxes for input of signs + and –, larger boxes for entering numbers and

variables with exponents (similar to the structured mode used for entering

polynomial expressions). The number of boxes corresponds to the number of

terms in the result (equal to the number of marked monomials). Terms can be

placed in boxes in an arbitrary order. The program performs common checks of

the structured input mode. The form of every entered part should be a monomial

and this is verified by performing a rule specific check (form of every part). If

the student asks for help, the program writes the correct terms in the boxes.

Figure 3.59. Two examples of input of result (partial input mode) in applying the rule

Factor out common factor

3.3 Designed problem types in T-algebra

When designing T-algebra, we studied different problems that can be found in

textbooks under the chosen topics. The problems were variable: there were

various tasks (solve equation, calculate, simplify, etc.), different types of given

expressions (equation, fractional numeric expression, polynomials, etc.), diffe-

rent kinds of expressions suitable for answer (a single number in calculation

tasks, a polynomial in simplification tasks, etc.). For most of the tasks, the

schoolbooks or teachers define, among other things, a recommended solution

algorithm to follow.

In the design of T-algebra, we defined the problem types as sets of different

attributes. The problem types in T-algebra actually correspond to typical

problems that we have extracted from textbooks. There are 60 problem types

implemented in T-algebra, grouped into 7 topics (corresponding to the same

topics in school programme). I was responsible for designing and implementing

problems in two fields: exponents and monomials (9 problem types) and

polynomials (9 problem types). There were some typical problems that I did not

implement in T-algebra, for example, trivial tasks of transforming a monomial/
polynomial to normal form. Different books and teachers use different

129

definitions of this normal form and, therefore, it was difficult to make it suitable

for all teachers. Furthermore, reordering operations are quite trivial and do not

reappear later in school programmes. Other typical problems involve

calculating the result of an expression when the values of variables are given.

Some problems require students to simplify an expression first and then

substitute a variable, while others require substitution of variables first and then

simply calculations. We implemented only the first problem type in T-algebra.

The second differs only in terms of its solution algorithm but, as it is less used, I

decided not to implement it.

If problem types are mentioned in any descriptions anywhere in this thesis,

without specifying the topic, then it refers to these 18 problem types that were

my responsibility.

In the following subsections we describe the implementation issues of

problem types but, before that, we describe the main attributes of a problem

type. A problem type in T-algebra contains the following attributes and

algorithms:

 topic of the problem;

 default text of the problem (shown to the student);

 constraints for the initial expression;

 set of error messages for showing to the teacher during composition of

problems;

 information on additional parameters (values) needed for the problem;

 constraints for the resulting expression;

 separate answering dialog (used, for example, in giving solution to an

equation; possible choices: “no solution”, “any number is solution”,

“certain number is solution”);

 set of rules that can be used by the student / T-algebra solution algorithm;

 heuristic function for selecting a transformation rule for the solution path;

 solution algorithm;

 procedure for checking the form of the answer;

 set of error messages for showing to the student when giving final answer

to a problem;

 sign to be shown between rows in the solution (in case of the problems in

my two fields it is, typically, the equality sign).

There are further two, slightly separate aspects from the viewpoint of imple-

mentation that are, nevertheless, connected to problem types and to problem

type specific attributes and algorithms:

 description of random task generation variants;

 random task (expression and parameter values) generation algorithm.

Later in this thesis, we present all the problem types of these two fields: expo-

nents and monomials (9 problem types) and polynomials (9 problem types).

However, before proceeding with specific types, some general issues are

discussed.

130

3.3.1 Problem type implementation principles

When designing the implementation for the problem types, some problems had

to be solved. We had to create an interface that would allow separate imple-

mentation of problem types for different topics simultaneously by many

developers.

Thus, we created an interface for problem types by creating the base class

TProblem with all the required functions and data structures declared. It also

included an implementation of functions that are common to different problem

types. A problem type also defines certain error messages that are displayed to

the user (both teacher and student) when checks are performed.

When a developers had to add a new problem type, they simply had to

extend the TProblem class and override the methods with custom functio-

nality. Then the newly created class had to be registered in a special list to be

available to both student and teacher programs. We tried to create an interface

where creation of separate problem types would require very little effort from

the developer.

As the number of problem types is quite large, the number of different

classes is also large. Working with them is quite convenient, because they are

all implemented through one interface, TProblem. The only problems are

storing the state and the problem files and reading problems from the problem

files. Therefore, we used different internal constants (IDs) that define certain

problem types and stored those IDs. A special method was designed for creating

a problem from a given ID, initial problem expression and parameters, and no

explicit calls to constructor are used at all (here TAvaldis is the base class for

all algebraic expressions in T-algebra):
 class function CreateProblemById(ProblemId: Integer;

InitialAvaldis: TAvaldis; Parameters: TTStrings): TProblem;

The TProblem class has many different methods for simpler creation of

separate problem types. Some methods are problem type specific and not used

elsewhere. Here we present the main functions and data structures of the base

class that are used in every problem type:
 class function GetBaseRules(): TIntegers;

The method GetBaseRules returns the list of rules (list of rule IDs)

allowed by a given problem type. Only these rules are used by the automatic

solver and only these rules are listed in the menu to the student.
 procedure PreCheck();

This method is called after creation of each new problem to check whether

the form of the initial expression is suitable for this problem type. Some general

checks of the problem type are performed here, e.g., whether the expression

includes some like terms (in the problem type combine like terms) or whether

addition is the main operation of the expression, etc. (see the constraints for the

initial expression in the descriptions of problem types). The expression is stored

131

internally in the class object and, therefore, no parameters are provided. In case

of an unsuitable expression, an exception is raised (EProblemException),

but an expression can be unsuitable even if no exception is raised. This is

verified by trying to solve the problem from the given initial expression by

calling the automatic solving function:
 function Solve(const Avaldis: TAvaldis): Integer;

This method solves the problem, starting from the expression given as the

parameter Avaldis; the method returns the number of steps to be performed.

If the result is 0, it means that Avaldis is also the answer – the expression is

in the form of the answer and no rules from the algorithm can be applied. This

method raises an exception if the problem cannot be solved. The solve

method actually implements the general solution algorithm (section 3.3.3) and

uses a problem type specific heuristic function to get information on the rule to

be applied next. Although there is a possibility for the problem type to override

this general solution algorithm, it appeared to be good enough to be used in all

problem types.
 function GetHelp(const Avaldis: TAvaldis): Integer;

The method GetHelp provides the student with one specific kind of help

available in T-algebra – information on which rule to apply next. Other kinds of

help, e.g., selection of suitable objects and automatic rule application, are pro-

vided by TRule objects (rules). Consequently, this function is called when the

user asks, from the user interface, for help on which rule to apply next.

The method GetHelp actually contains the heuristic for choosing the next

rule to be applied to the expression given as the parameter Avaldis and is

used by the automatic solving algorithm (function Solve). This method returns

either ID of the rule to be applied or -1 if no suitable rule is found (either the

expression is a solution to the problem or an unsuitable initial expression was

given). This heuristic function is the most important element in the imple-

mentation of each problem type.
 procedure CheckAnswer(const Avaldis: TAvaldis);

The method CheckAnswer checks whether the expression given by the

parameter is suitable as an answer to a problem of the current problem type

(form of answer in the description of problem types). Some checks of the

structure of expression are usually performed (for example, is it a polynomial or

a single monomial – a very typical answer in simplification problems).

The other methods in the problem type base class are less important for

simplification problem types. These methods include, for example, parsing

parameter values (for instance, values of variables to be replaced by), returning

the sign to be displayed between expressions on different lines (in simplification

problems usually the equality sign), generating a special form of the answer

(for instance, any number is a solution for equation), and displaying a separate

window for giving answer to a problem if it differs from the expression on the

132

last line (e.g., in solution of an equation usually a choice of the correct answer

from the list).

An average class (problem type) of a simplification problem contains 4 im-

portant methods (PreCheck, GetHelp, GetBaseRules, CheckAnswer) and

only around 200–300 lines of code, depending on the complexity of the heu-

ristic function and the number of allowed rules. Such small amount of code is

possible because of a quite large basic class for problem types (>2000 lines of

code) with all reusable functions to ease implementation of separate problem

types. In addition, use of rule class API enables checking of different const-

raints in only three lines of code (for example, whether an expression contains

like terms, whether sum is the main operation of an expression, etc.), which

makes checking procedures (initial expression and result) quite declarative and

easy to read. All the above factors make it quite simple to define new problem

types in T-algebra after they are designed.

3.3.2 Usage of problem types

Problem types (appropriate classes) in T-algebra contain a large number of attri-

butes and algorithms. Therefore, problem type classes are also widely used.

Both the T-algebra student program and the teacher program require definitions

of problem types.

The student‟s program uses the problem type definition for several purposes

during the solving process: to show the student the allowed set of rules, to use

the solution algorithm defined in the problem type to assist the student when he

asks for help (for selecting the next rule), to generate an automatic solution, to

check the student‟s answer, to generate a random problem for solving when the

file is opened, etc.

The teacher‟s program also uses the problem type for many operations: to

check the suitability of the initial expression entered by teacher for the problem

type, to generate an automatic solution, to calculate an answer, to generate

random task examples, etc.

Different values and attributes are also used in different situations: sets of

error messages are used for displaying messages to the student during solving

and to the teacher during composing. The sign between expressions is used for

formatting the solutions (both automatic solutions in the teacher‟s program and

student solutions in the student‟s program). A set of rules is used to limit the

number of available rules displayed to the student when solving problems.

3.3.3 Automatic solving – general algorithm

As we have said in previous sections, each implementation of a problem type

defines its own procedure with heuristics for the problem solving algorithm.

This is implemented through a function that returns the most suitable trans-

formation rule for a particular expression.

133

The general solution algorithm is quite simple. It consists of sequential calls

to this function for returning a suitable rule for the next step, application of that

transformation rule (through the transformation rule interface), checking

whether the resulting expression has the required form of the answer of this

problem type (through the problem type interface). The algorithm is quite

straightforward; no recursion is used. The following diagram helps to explain

the general algorithm (Figure 3.60).

However, there is a problem in the algorithm. It can possibly end in an

infinite loop. There are some pairs of transformation rules in T-algebra that

change expressions in opposite ways (for example, reducing and expanding

fractions, etc.). If two such rules are used, it can lead to a situation where the

expression remains the same after consecutive application of these rules.

For example, the algorithm for combining (section 3.3.4) is used in most

simplification problems. It contains 3 rules in the following order:

 Extend common fraction;

 Combine like terms;

 Reduce.

If it would extend a fraction in the expression by means of the first rule and then

reduce the same fraction by means of the third rule then we would end up with

an infinite loop. Actually, such extending is not needed for T-algebra itself,

because the rule of combining like terms is able to add fractions with different

denominators or monomials with fractional coefficients. However, this was

added in order to generate proper automatic solutions. Thus, to avoid looping,

we defined such heuristics that the rule of extending is applied only in such

instances and to those fractions that are combined at the next step. Otherwise,

no fractions are extended.

Looping would also occur if a recursive algorithm for searching a solution

path would be used. We could try to implement a looping detection

functionality in the algorithm to avoid looping. However, we decided to keep

the general algorithm as simple as possible. The general algorithm does not

know anything about the expression and does not take it into account when

applying rules.

The whole knowledge of expressions and transformation rules comes from a

special heuristic function for selecting a suitable transformation rule. This

function is specific for different problem types. The looping problem is also

solved through this heuristic function.

134

Given initial

expression for the

problem

Get the rule to apply next using specific

heuristic algorithm for problem type

Rule found

Check the form of resulting expression

NO

Find objects for the rule in the

expression, using rule API

YES

Apply the rule to found objects

Check the form of resulting expression

Expression is in the

form of result

NO

Found the answer

to a problem

YES

Expression is in the

form of result

YES

Initial expression

incorrect, unsolvable

problem

NO

Figure 3.60. Automatic solving algorithm using the heuristic function for rule selection

If any of the recursive algorithms would be used (either depth-first or breadth-

first), we could get the answer to a problem easily but we would face other

problems. First of all, we would have the mentioned looping problem in case of

depth-first search. Another problem is the speed of the solution algorithm if the

number of allowed rules increases. There is also a further issue that made us

135

decide not to use recursion. As automatic solving is also used for assisting

students (help for selecting the next rule) and generating automatic solutions,

we did not want to have simply “any” solution. Of course, we could always get

the shortest possible solution. However, we wanted to have some control over

the solution path to be able to follow the “official” solution algorithms

presented to the students in textbooks. Therefore, we decided to use the

heuristic function.

This heuristic function is also quite simple in most cases. In the description

of problem types (see sections 3.3.7 and 3.3.8), there is a preference list. A

typical heuristic function cycles the list, searching for the first transformation

rule that is applicable to the current expression. For checking whether a rule is

applicable or not, a special method of the rule API is used (described in section

3.2.2). If the first such rule is found, it is returned as a result of the function (and

the rule is applied). If no suitable rule is found then the algorithm stops (maybe

the current expression is already a solution to the problem) and the form of

answer is checked. After the rule is applied, a search for the next rule is

performed from the start of the preference list. In some sophisticated cases,

different heuristics is used to avoid looping.

Such heuristic function solution can be used quite well in polynomial

simplification problems. Problems can arise in factorisation problems and in

more complex simplification problems where factorisation operations are

needed in order to reduce a fraction. However, such problems are beyond the

scope of the school programme for 5–9
th
 grades and, therefore, we did not

implement them in T-algebra.

3.3.4 Sets of rules for the problem types

For the topics I was responsible for (exponents, monomials and polynomials) I

have created set of new specific rules. For each new section (as in schoolbooks),

a new transformation rule is introduced. As polynomials are the last topic from

the school programme that is implemented in T-algebra, the students should

already be familiar with the transformation rules designed for other topics.

Many rules from previous topics are also required to be able to solve different

polynomial problems. For example, most rules for operations with fractions

(reducing, adding / subtracting, multiplying / dividing, etc.) are needed. There-

fore, I used rules designed and implemented by other team members in my

problem types.

There are two large groups of rules that I have used in my problem types.

The whole list of rules from those groups is provided here. Later, when

describing certain problem types, we simply refer to these groups. If at least one

rule from the group is needed for solving a certain problem type, the whole

group is added. Therefore, it is possible to refer to them later in descriptions of

problem types.

136

The first group of rules is meant for manipulations with fractions (referenced

later as the group of rules for fractions):

 Decrease integer part;

 Extend common fraction;

 Reduce;

 Improper fraction to mixed number;

 Mixed number to improper fraction;

 Common fraction to decimal;

 Decimal fraction to common.

Another large group of rules is meant for simplification of expressions with 0, 1

and redundant pluses (referenced later as the group of trivial simplification

rules):

 Add/Subtract 0;

 Multiply/Divide 0;

 Multiply by 1;

 Divide by 1;

 Eliminate fraction with 0 in numerator;

 Eliminate denominator 1;

 Remove redundant pluses;

 Raise to power 1;

 Raise to power 0;

 Raise 1 to power;

 Raise 0 to power.

The order of transformation rules in the last group is important. The automatic

solving algorithm tries to apply these rules in exactly the same order. Automatic

algorithms for all problem types use this as a sub-algorithm at some stage, so

this group of rules in this order is referenced also from the algorithm descrip-

tions of different problem types (algorithm for trivial simplification).

Another typical algorithm (as a sequence of rules) used in the simplification

problems is the so-called algorithm for combining. It actually includes the rules

for operations with fractions. As the rule combine like terms even enables

adding fractions with different denominators (or monomials with fractional

coefficients), without converting those to one common denominator, we

decided to have at least the automatic solution algorithm which will use rules

for manipulating fractions – convert those to fractions with same denominators,

etc., before adding and reducing after adding. The following order of rules is

used for the algorithm, which will be referenced as the algorithm for combining:

 Decrease integer part;

 Add/Subtract numbers;

 Common fraction to decimal;

 Decimal fraction to common;

137

 Extend common fraction;

 Combine like terms;

 Reduce;

 Improper fraction to mixed number.

It is worth mentioning here that there are 3 pairs of rules that can possibly cause

infinite loops:

 Decrease integer part and Improper fraction to mixed number;

 Extend common fraction and Reduce;

 Common fraction to decimal and Decimal fraction to common.

The heuristics used in these cases are similar – the first rules in these pairs

(except Decimal fraction to common) are applied to certain fractions or

decimals only if the same object would be used for combining like terms

(Figure 3.61) or forming an answer (for example, if the problem type is to

extend two fractions to the same denominator). In other cases, these rules are

not used even if it were possible. This is done to avoid looping.

Figure 3.61. Example of heuristic (extend – combine – not reduce) in automatic

solution

138

3.3.5 Typical constraints for initial and resulting expression in

simplification problems

As mentioned above (section 3.3), the problem types contain numerous

attributes, including constraints for the resulting expression. The topics of

monomials and polynomials are somewhat different from other topics

implemented in T-algebra. The form of the resulting expression is similar (or

even almost the same) in all problem types. We have extracted three different

types of constraints for the resulting expression or the form of answer. Here we

describe them thoroughly and later, while describing the problem types, we will

refer to these constraints.

Before specifying the form of answer, we define how T-algebra checks that

problem is solved: the constraints for the resulting expression should be valid

and the heuristic function for the automatic solving algorithm for the given

problem type should not return any transformation rule that can be applied

(meaning that T-algebra is not able to simplify the expression further). This

enables problem type specific checks, depending on the set of rules. For

example, if the rule set defined by the problem type contains a rule for reducing

fractions, all fractions in the answer (for example, all coefficients of mono-

mials) should be reduced. As fraction-related rules are added to almost all

problem types. the following is true for almost all problem types. All fractions,

if any, in the result should be reduced, integer part separated from the improper

fraction.

The first typical form of answer is the so-called simplified polynomial or an

expanded and reduced polynomial expression. It is used in almost all problem

types in the topic of polynomials and in some problem types of the topic of

monomials. The resulting expression should be either a single monomial (a

single number or fraction is also a monomial) or a polynomial (a sum of

monomials). All like terms in the polynomial should be combined. No multi-

plication signs are allowed in monomial. Only one instance of each variable

should be present in a monomial (otherwise, it is possible to multiply mono-

mials), except in the problem type Combine like terms (because no multi-

plication rule is available).

Some teachers require students to give answers in normal forms – all mono-

mials in normal forms, variables placed in a specific order, monomials within

polynomials also placed in a strict order. At the same time, there are quite many

teachers who do not require answers in normal forms. T-algebra does not

require any special order of variables in monomials or monomials inside

polynomials.

Another typical form that is used in some problem types from the field of

exponents and monomials is derived from simplified polynomials. It is a

polynomial or single monomial as in previous case where the coefficients of

monomials do not have to be raised to a power, i.e., it can be presented as a

power of a number. In general, T-algebra allows the user to raise coefficients to

a power but also allows giving an answer without it. In addition, a single power

139

with a base of any complexity is allowed as a form of answer, because some

tasks from schoolbooks have similar answers. We will refer to this form as

simplified polynomial with powered coefficients.

One more typical form of the resulting expression, which is mostly used in

the topic of operations with fractions but also in polynomials, is a single

number. It is either a single integer, decimal, reduced fraction or a mixed

number with reduced fractional part.

If some problem types use their specific form of answer, it will be presented

in the description of that particular problem type.

The presented forms of the resulting expression also define the constraints

for the initial expression. When a problem is composed (or generated),

T-algebra checks whether it is possible to solve this problem with the set of

rules defined for that problem type. This is done by running the automatic

solving algorithm. If T-algebra is able to reach the required form of answer

using the automatic algorithm (which uses only the set of rules defined in the

problem type) then the initial expression suits this problem type. Some extra

checks are still performed to check whether the main operation for the problem

type is utilized (for example, for the problem type Combine like terms,

T-algebra checks whether there are at least two terms to combine). These extra

checks are presented in description of each problem type.

These extra checks of the initial expression for the problem type usually

check existence or non-existence of a certain subexpression. For example, the

problem type Multiply monomials checks whether the initial expression contains

at least two monomial multiplications and does not contain any monomial

divisions. These checks are performed with the help of transformation rules. To

ensure existence of a certain type of subexpression, T-algebra checks that a

certain rule is applicable to the initial expression. In case of non-existence

check, the same rule should be inapplicable. For combined rules (multiply/

divide something), a special checking function is created that tries to find only

the objects for division. This way it is possible to check whether an expression

contains a certain quotient that is either allowed or prohibited by the problem

type.

3.3.6 Scheme for presentation of problem types

In the next two sections we present the problem types for two topics. Each

problem type is presented according to the same scheme. We describe the most

important aspects and provide an example of an automatically generated

solution. The following attributes are discussed:

 Typical text – the typical text of such problems, extracted from

schoolbooks; this is used as the default text when adding problems in the

teacher‟s program;

140

 Constraints (for expression) – special constraints or conditions for the

initial expression (other than it should be possible to reach the required

form of answer using the set of rules for this problem type);

 Parameters – any specific parameters for the problem type (for example,

values of variables); usually, no parameters are defined and this section is

skipped;

 Rules – set of allowed rules for this problem type; uses references to the

groups of rules (section 3.3.4);

 T-algebra algorithm – actually, the description of the heuristic function,

preferred order of transformation rules, stating which rules are to be

applied to the expression in which order (see also section 3.3.3);

 Example of generated solution – a figure with a sample solution from

T-algebra, some comments for certain cases; the figure also presents one

example of the problem (a suitable initial expression);

 Form of the resulting expression – the required form for the resulting

expression, additional constraints, if any.

All problem types in T-algebra correspond to certain typical problems presented

in Estonian schoolbooks under particular topics. When designing problem

types, we tried to define the constraints for initial expressions based on the

expressions used in these typical problems. In addition, sets of rules are limited

to the rules the student should have learnt by that moment in the school

programme.

3.3.7 Problem types for the field of exponents and monomials

3.3.7.1 Problem type Multiplication of powers

Typical text: multiply powers.

Constraints (for expression): the initial expression for the problem

 should contain at least one product of powers with the same base;

 should not contain a quotient of powers with the same base.

Rules:

 Multiply/Divide terms with the same base;

 Combine like terms;

 Multiply/Divide monomials;

 Raise number to a power;

 Clear parentheses;

 Add/Subtract numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

141

T-algebra algorithm (preferred order of rules for heuristic function):

1. Rule Multiply/Divide terms with the same base;

2. Algorithm for trivial simplification (section 3.3.4);

3. Rule Multiply/Divide monomials;

4. Rule Clear parentheses;

5. Algorithm for combining (section 3.3.4).

Figure 3.62. Example of generated solution for the problem type Multiplication of powers

Even though the rule Raise number to a power is available, the automatic

algorithm of T-algebra does not use it. This is due to the form of the answer in

schoolbooks: they instruct students only to calculate the correct power and give

the answer as is.

Form of the resulting expression is simplified polynomial with powered

coefficients (for details, see section 3.3.5).

3.3.7.2 Problem type Division of powers

The problem type Division of powers is actually very similar to Multiplication

of powers (section 3.3.7.1). A separate problem type was created mainly for

convenience of the teacher. The problems are separated in schoolbooks: at first,

only multiplication problems are presented, then division is explained and

division problems are introduced. Therefore, in this description we present only

the differences from the multiplication type.

Typical text: divide powers.

Constraints (for expression): the initial expression for the problem should

contain a quotient of powers with the same base.

Figure 3.63. Example of generated solution for the problem type Division of powers

142

3.3.7.3 Problem type Raising a product to a power

Typical text: raise a product to a power.

Constraints (for expression): the initial expression for the problem

 should contain at least one product, which should be raised to a power;

 should not contain a quotient, which should be raised to a power;

 should not contain a power, which should be raised to a power.

Rules:

 Multiply/Divide terms with the same base;

 Raise product/quotient/power to a power;

 Combine like terms;

 Multiply/Divide monomials;

 Clear parentheses;

 Add/Subtract numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4);

 Move minus before the fraction.

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Raise product/quotient/power to a power;

3. Rule Multiply/Divide terms with the same base;

4. Rule Multiply/Divide monomials;

5. Rule Clear parentheses;

6. Algorithm for combining (section 3.3.4);

7. Rule Move minus before the fraction.

Figure 3.64. Two examples of solution for the problem type Raising a product to a

power: student solution on the left, generated solution on the right

There are no special restrictions on the form of the resulting expression for

this problem type. As the main transformation rule that is used and taught for

this problem type is Raise product/quotient/power to a power and that rule has

almost no restrictions on the complexity of the power base expression (the main

operation of the subexpression should be a quotient, product or a fraction), we

did not want to restrict the user. The expression is counted as an answer to the

143

problem if the solution algorithm for the problem type is unable to find any rule

to be applied. Thus the expression should be simplified as far as possible.

As we can see from the example (Figure 3.64), there are different possi-

bilities for the resulting expression. The main rule gives limited freedom for

entering the result (present the coefficient as a power of a number as in the left

part of the figure) and, as there is no rule for raising the number to a power,

T-algebra accepts such answers.

3.3.7.4 Problem type Raising a quotient to a power

The problem type Raising a quotient to a power is actually very similar to the

previous problem type Raising a product to a power (section 3.3.7.3). A

separate problem type was created mostly for convenience of the teacher. These

problems are separated in schoolbooks. Therefore, in this description we present

only the differences from the previous problem type.

Typical text: raise a quotient to a power.

Constraints (for expression): the initial expression for the problem

 should contain at least one quotient, which should be raised to a power;

 should not contain a power, which should be raised to a power.

Figure 3.65. Example of generated solution for the problem type Raising a quotient to a

power

144

3.3.7.5 Problem type Raising a power to a power

The problem type Raising a power to a power is actually very similar to the

previous problem type Raising a product to a power (section 3.3.7.3). A

separate problem type was created mostly for convenience of the teacher. These

problems are separated in schoolbooks. Therefore, in this description we present

only the differences from the previous problem type.

Typical text: raise a power to a power.

Constraints (for expression): the expression should contain at least one power,

which should be raised to a power.

Figure 3.66. Example of generated solution for the problem type Raising a power to a

power

3.3.7.6 Problem type Multiplication of monomials

Typical text: multiply monomials and simplify if possible.

Constraints (for expression): the initial expression for the problem

 should contain at least one product of monomials;

 should not contain a quotient of monomials.

Rules:

 Combine like terms;

 Multiply/Divide monomials;

 Clear parentheses;

 Add/Subtract numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Multiply/Divide monomials;

3. Rule Clear parentheses;

4. Algorithm for combining (section 3.3.4).

145

Figure 3.67. Example of generated solution for the problem type Multiplication of

monomials

Form of the resulting expression is simplified polynomial (section 3.3.5).

3.3.7.7 Problem type Division of monomials

The problem type Division of monomials is actually very similar to the previous

problem type Multiplication of monomials (section 3.3.7.6). A separate problem

type was created mostly for convenience of the teacher. These problems are

separated in schoolbooks. Therefore, in this description we present only the

differences from the previous problem type.

Typical text: multiply and divide monomials and simplify if possible.

Constraints (for expression): the initial expression for the problem should

contain at least one quotient of monomials (division should be expressed with

the sign “:”, division as a fraction is not suitable).

Figure 3.68 Example of generated solution for the problem type Division of monomials

3.3.7.8 Problem type Raising monomials to a power

Typical text: raise monomials to a power and simplify if possible.

Constraints (for expression): the expression should contain at least one

monomial, which should be raised to a power.

146

Rules:

 Combine like terms;

 Multiply/Divide monomials;

 Raise number to a power;

 Raise monomial to a power;

 Clear parentheses;

 Add/Subtract numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Raise number to a power;

3. Rule Raise monomial to a power;

4. Rule Multiply/Divide monomials;

5. Rule Clear parentheses;

6. Algorithm for combining (section 3.3.4).

Figure 3.69. Example of generated solution for the problem type Raising monomials to

a power

Form of the resulting expression is simplified polynomial (section 3.3.5).

3.3.7.9 Problem type Calculation of value of expression with integer

exponents when values of variables are given

Typical text: simplify and find the value of expression if the variable values

are...

Constraints (for expression): any expression, which is not a linear equation, a

linear inequality or a system of linear equations. The initial expression should

contain at least one variable to be substituted with a given value.

147

Parameters: values of variables.

Rules:

 Substitute variable;

 Combine like terms;

 Multiply/Divide monomials;

 Clear parentheses;

 Raise number to a power;

 Raise monomial to a power;

 Multiply/Divide terms with the same base;

 Raise product/quotient/power to a power;

 Add/Subtract numbers;

 Multiply/Divide numbers;

 Move minus before fraction;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Move minus before fraction;

3. Rule Multiply/Divide numbers;

4. Rule Multiply/Divide monomials;

5. Rule Raise number to a power;

6. Rule Raise monomial to a power;

7. Rule Raise product/quotient/power to a power;

8. Rule Clear parentheses;

9. Algorithm for combining (section 3.3.4);

10. Rule Substitute variable.

Example of generated solution:

Text of the problem: Simplify and find the value of the expression if the

variable values are a=2, b=-3.

Figure 3.70. Example of generated solution for the problem type Calculation of value

Form of the resulting expression is single number (section 3.3.5).

148

3.3.8 Problem types for the field of polynomials

3.3.8.1 Problem type Combine like terms

Typical text: combine like terms.

Constraints (for expression):

 the sum should contain like terms;

 parentheses can only be around one monomial.

Rules:

 Combine like terms;

 Add/Subtract numbers;

 Clear parentheses;

 Move minus before fraction;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Algorithm for combining (section 3.3.4);

3. Rule Clear parentheses.

Figure 3.71. Example of generated solution for the problem type Combine like terms

Form of the resulting expression is simplified polynomial (Section 3.3.5).

149

3.3.8.2 Problem type Addition and subtraction of polynomials

Typical text: add and subtract polynomials.

Constraints (for expression): the expression should contain an addition or/and

a subtraction of polynomials – at least one polynomial should be in parentheses

and the main operation in the expression should be adding/subtracting.

Rules:

 Combine like terms;

 Clear parentheses;

 Add/subtract number;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Clear parentheses;

3. Algorithm for combining (section 3.3.4).

Figure 3.72. Example of generated solution for the problem type Addition and sub-

traction of polynomials

Form of the resulting expression is simplified polynomial (Section 3.3.5).

3.3.8.3 Problem type Multiplication of polynomial by monomial

Typical text: multiply polynomials by monomials and combine like terms.

Constraints (for expression): the expression

 should contain at least one product of polynomial by monomial;

 should not contain quotients.

Rules:

 Combine like terms;

 Multiply/Divide monomials;

 Raise number to a power;

 Raise monomial to a power;

 Clear parentheses;

150

 Multiply/Divide polynomial by monomial;

 Add/Subtract numbers;

 Multiply/Divide numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Multiply/Divide polynomial by monomial;

3. Rule Multiply/Divide numbers;

4. Rule Multiply/Divide monomials;

5. Rule Raise number to a power;

6. Rule Raise monomial to a power;

7. Rule Clear parentheses;

8. Algorithm for combining (section 3.3.4).

Figure 3.73. Example of generated solution for the problem type Multiplication of

polynomial by monomial

Form of the resulting expression is simplified polynomial (Section 3.3.5).

3.3.8.4 Problem type Division of polynomial by monomial

Typical text: multiply and divide polynomials by monomials and combine like

terms.

Constraints (for expression): the expression should contain at least one

quotient of polynomial by monomial (division should be expressed with the

sign “:”, division as a fraction is not suitable).

Rules:

 Combine like terms;

 Multiply/Divide monomials;

 Raise number to a power;

 Raise monomial to a power;

 Clear parentheses;

151

 Multiply/Divide polynomial by monomial;

 Add/Subtract numbers;

 Multiply/Divide numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Multiply/Divide polynomial by monomial;

3. Rule Multiply/Divide numbers;

4. Rule Multiply/Divide monomials;

5. Rule Raise number to a power;

6. Rule Raise monomial to a power;

7. Rule Clear parentheses;

8. Algorithm for combining (section 3.3.4).

Figure 3.74. Example of generated solution for the problem type Division of polyno-

mial by monomial

Form of the resulting expression is simplified polynomial (section 3.3.5).

3.3.8.5 Problem type Multiplication of polynomials

Typical text: multiply polynomials and combine like terms.

Constraints (for expression): the expression should contain at least one

product of polynomials.

Rules:

 Combine like terms;

 Multiply/Divide monomials;

 Raise number to a power;

 Raise monomial to a power;

 Clear parentheses;

 Multiply/Divide polynomial by monomial;

 Multiply polynomials;

 Add/Subtract numbers;

 Multiply/Divide numbers;

152

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Multiply polynomials;

3. Rule Multiply/Divide polynomial by monomial;

4. Rule Multiply/Divide numbers;

5. Rule Multiply/Divide monomials;

6. Rule Raise number to a power;

7. Rule Raise monomial to a power;

8. Rule Clear parentheses;

9. Algorithm for combining (section 3.3.4).

Figure 3.75. Example of generated solution for the problem type Multiplication of

polynomials

Form of resulting expression is simplified polynomial (section 3.3.5).

3.3.8.6 Problem type Multiplication of polynomials with the help of

formulas

Typical text: multiply polynomials with the help of formulas and then combine

like terms.

Constraints (for expression): the expression should contain at least one

product/power of polynomials, which can be simplified by one of four simplifi-

cation formulas (expand the square of the sum/difference of two monomials,

expand the cube of the sum/difference of two monomials, multiply the sum and

difference of two monomials, multiply the sum or the difference of two

monomials by incomplete square).

Rules:

 Combine like terms;

 Multiply/Divide monomials;

 Raise number to a power;

 Raise monomial to a power;

 Clear parentheses;

 Multiply/Divide polynomial by monomial;

 Multiply polynomials;

153

 (a±b)² =>;

 (a±b)³ =>;

 (a+b)(a-b) =>;

 (a±b)(a²±ab+b²) =>;

 Add/Subtract numbers;

 Multiply/Divide numbers;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule (a±b)² =>;

3. Rule (a±b)³ =>;

4. Rule (a+b)(a-b) =>;

5. Rule (a±b)(a²±ab+b²) =>;

6. Rule Multiply polynomials;

7. Rule Multiply/Divide polynomial by monomial;

8. Rule Multiply/Divide numbers;

9. Rule Multiply/Divide monomials;

10. Rule Raise number to a power;

11. Rule Raise monomial to a power;

12. Rule Clear parentheses;

13. Algorithm for combining (section 3.3.4).

Figure 3.76. Example of generated solution for the problem type Multiplication of

polynomials with the help of formulas

Form of the resulting expression is simplified polynomial (Section 3.3.5).

3.3.8.7 Problem type Calculation of value of polynomial when

values of variables are given

Typical text: simplify and calculate the value of the expression if the values of

variables are...

154

Constraints (for expression):

 any polynomial expression (not linear equation, linear inequality or

system of linear equations);

 expression should contain at least one variable.

Parameters: values of variables.

Rules:

 Substitute variable;

 Combine like terms;

 Multiply/Divide monomials;

 Clear parentheses;

 Raise number to a power;

 Raise monomial to a power;

 Multiply/Divide terms with the same base;

 Raise product/quotient/power to a power;

 Multiply/Divide polynomial by monomial;

 Multiply polynomials;

 (a±b)² =>;

 (a±b)³ =>;

 (a+b)(a-b) =>;

 (a±b)(a²±ab+b²) =>;

 Add/Subtract numbers;

 Multiply/Divide numbers;

 Move minus before fraction;

 Group of rules for fractions (section 3.3.4);

 Group of trivial simplification rules (section 3.3.4).

T-algebra algorithm:

1. Algorithm for trivial simplification (section 3.3.4);

2. Rule Move minus before fraction;

3. Rule (a±b)² =>;

4. Rule (a±b)³ =>;

5. Rule (a+b)(a-b) =>;

6. Rule (a±b)(a²±ab+b²) =>;

7. Rule Multiply polynomials;

8. Rule Multiply/Divide polynomial by monomial;

9. Rule Multiply/Divide numbers;

10. Rule Multiply/Divide monomials;

11. Rule Raise number to a power;

12. Rule Raise monomial to a power;

13. Rule Raise product/quotient/power to a power;

14. Rule Clear parentheses;

15. Algorithm for combining (section 3.3.4);

16. Rule Substitute variable.

155

Example of generated solution:

Text of the problem: Simplify and calculate the value of the expression if the

values of variables are x=–0.6, y=0,3.

Figure 3.77. Example of generated solution for the problem type Calculating of value

of polynomial

Form of the resulting expression is single number (Section 3.3.5).

3.3.8.8 Problem type Factoring out common factor

Typical text: factor out common factor.

Constraints (for expression): the expression should contain the sum of such

monomials that have a common factor different from 1.

Rules:

 Factor out common factor;

 Multiply/Divide monomials;

 Multiply/Divide numbers;

 Clear parentheses.

T-algebra algorithm:

1. Rule Factor out common factor;

2. Rule Multiply/Divide numbers;

3. Rule Multiply/Divide monomials;

4. Rule Clear parentheses.

Figure 3.78. Example of generated solution for the problem type Factoring out com-

mon factor

156

Form of the resulting expression should be a product (an expression where the

greatest common factor is placed before parentheses). All other typical

constraints on numbers, monomials and polynomials apply. For example,

numbers and coefficients should be reduced if they are fractions.

157

4 CONDUCTED EXPERIMENTS

We have conducted different experiments with students for different purposes

while designing and developing T-algebra. I have participated in some that were

related to the topic of polynomials. This section covers the following experi-

ments and goals:

1. to identify mistakes made by 7th and 8th grade students (during solving

polynomial simplification problems) when working with pencil and

paper and their possibility in T-algebra;

2. to validate the designed user interface and to study the distribution of

errors between stages of a solution step;

3. to try to use T-algebra with students while explaining new material;

4. to learn about errors made in solving polynomial simplification

problems by 11th grade students and verify implementation of trans-

formation rules and error diagnosis in T-algebra.

Results of these experiments are published (Issakova et al., 2006; Lepp, 2007a;

Lepp, 2007b; Prank and Lepp, 2010). The last experiment was conducted later –

after T-algebra was distributed to Estonian schools. One of our goals was also

to perform testing in larger groups.

4.1 Study of student mistakes on paper

Prior to designing the transformation rules for monomial and polynomial

simplification problems, we conducted a study among different groups of

students, collected and classified different mistakes that most students make.

Later we used the collected information to design the general rule dialogue,

certain transformation rules and error diagnosis procedures for different trans-

formation rules that we have implemented in T-algebra. Designing the rules, we

have attempted to leave an opportunity for students to make the same mistakes

in T-algebra as they do in paper solutions. When students apply these rules,

T-algebra checks many different attributes and tries to detect certain typical

errors. In case of typical errors for which we have implemented special

diagnostic procedure, T-algebra shows the student an appropriate message.

T-algebra can also check for non-equivalence of expressions. We have also

preserved the possibility to add specific diagnostic procedures for different rules

in the future if we find further typical errors.

In order to make the T-algebra intelligent enough to diagnose different

student errors and help to correct them, we first had to understand these errors

ourselves. We studied the results of similar researches (Tall et al., 1993; Payne

et al., 1990; Weitz et al., 2007; Hall, 2002) and conducted our own experiment

with the students to collect typical errors that students make when solving

problems (Issakova, 2005). For example, Lewis (Lewis et al., 1987) mention a

study of errors in factoring problems where they propose to use three input

modes similar to those we have implemented in T-algebra.

158

The experiment on errors in simplification problems took place in Estonian

schools (selected schools in Tartu) in the winter of 2005 (experiments related to

other themes of T-algebra were conducted at the same time). For this study,

mathematics teachers (Mart and Maire Oja) composed two different tests in two

variants each. Two different groups of students participated in the tests. The

tests consisted of different types of problems that were later implemented in

T-algebra.

A total of 33 students, aged 13 years (7th grade), participated in the first test.

The test included calculation problems as well as some easiest simplification

problems. Simplification problems required application of two simplification

operations at most: combining like terms (7 problems with at most one variable

in a monomial, example 6 10b b) and multiplication of a monomial (usually a

single number or a variable) by a polynomial (8 problems, example

(2 4 5)a b b  ). The list of problems is presented in Appendix A. The same

problems were later used to verify the designed user interface of T-algebra in

subsequent experiments.

A total of 54 students, aged 14 years (8th grade; two different classes with

different math teachers), participated in the second test. The test included

different types of problems: combine like terms (4 problems, many variables,

example 2 3 2 23 2u v uuv v u vvv ), multiply or divide polynomial by a monomial

(7 problems, example (3 2 2 3 2 2(20 12 4) : (4)x y x y xy xy  ), multiply polynomials

(10 problems, example 2(3) (2 3 1)u u u   ), problems requiring application of

all the mentioned operations (4 problems), as well as some easiest factorisation

problems (see the list in Appendix A).

Both groups of students had learned the topics of the tests in autumn 2004

and the material of the test was not new. The students did not know about the

test beforehand and had 45 minutes to complete the test. We collected all the

solutions, checked them and tried to identify typical errors among solutions of

students in both age groups.

Here I present the typical errors of all students in applying the following

operations: combine like terms, and multiply or divide polynomial by a mono-

mial. I was also able to compare the results of two different groups of children –

what errors are typical at early stages of learning the simplification rules and

solving problems and what errors become more typical at further stages of the

education process.

The result of the test confirmed our assumptions that students make both

topic-specific mistakes that occur only in simplification problems as well as

mistakes related to previously studied material. The following two tables

present typical errors (that were made at least by two students) in applying the

two mentioned operations. The columns with numbers of students show the

number and the percentage of students (in an age group) who made this

mistake. These tables do not reflect if the students made these mistakes more

than once.

159

Table 4.1. Mistakes in combining like terms

No Nature of mistake Example of mistake Number of

students

7th grade

Number of

students

8th grade

1 Combines non-like

terms, combines terms

with different variable

parts

2 2 2

3 7 10

3 2

m m

ab a b ab

 

 

 4 (12%) 14 (26%)

2 Forgets to take into

account some signs

before monomials
2 2 2

7 2 2 3

5 5 10

b b b b

ab ab ab

    

 

8 (24%) 9 (17%)

3 Error in calculating

the sign of the

resulting monomial
2 2 2 2

... 4 2 ... 2

7 12 7 2

x x x

b b b b

   

   

8 (24%) 5 (9%)

4 Arithmetical error in

calculating the

coefficient

9 4 12

10 2 8

x x x

xy yx xy xy

 

  
 9 (27%) 26 (48%)

5 Error in powers of

variables

2 2 4 2

2

9 4 13

10 9

x z x z x z

xyx x y xy

 

 

0 (0%) 6 (11%)

6 Does not combine all

terms, does not

recognize like terms if

they are like

2 2 23 2 4 2

2 2 3 2

x z x z xzx x z xzx

a b a b a b b

   

     

6 (18%) 18 (33%)

7 Forgets to copy some

unchanged terms,

copies terms with

mistakes

2 22 3

2 3 2

y y x y y y x

x x x

   

   

8 (24%) 3 (6%)

Table 4.2. Mistakes in multiplying or dividing of a polynomial by a monomial

No Nature of mistake Example of mistake Number of

students

7th grade

Number of

students

8th grade

8 Does not multiply or

divide one of the

terms of the

polynomial by the

monomial

26)23(2

834)23(

2 



xxx

uu

8 (24%) 2 (4%)

9 Does not change signs

of some monomials in

result

(3 2 4) 3 2 4

2 (2) 2 2 4

m x y mx my m

x y x x y x y x

      

         

14 (42%) 8 (15%)

10 Multiplies the

polynomials or

polynomials by

monomials instead of

adding

2

16 (5 3 1) 80 48 16

(2) () 2 2

x y x y

x x y x xy x y

     

      

4 (12%) 11 (20%)

160

No Nature of mistake Example of mistake Number of

students

7th grade

Number of

students

8th grade

11 Mistake in calculating

the coefficient of

single monomial in

the result

(2 3) 2 2

3 (4 3) 7 6

a b c ab ac

x y z xy xz

  

  

8 (24%) 3 (6%)

12 Mistake in calculating

the power of a

variable in a single

monomial in the result

2 3 2 3 4 2 3

2 5 6

(2 3) 2 3

3 (4 3) 12 9

ab a b ab a b a b

x x y x y

  

  

0 (0%)

impossible

in 7th grade

problems

13 (24%)

13 When dividing the

same monomials the

result is 0

3 2 2 3 2 2

2

(20 12 4) : (4)

5 3

x y x y xy xy

x xy

   

  

0 (0%)

impossible

in 7th grade

problems

8 (15%)

As can be seen from the tables, the errors made by the students are of different

kind. In some errors (1, 6 and 10), the student does not recognize correct objects

of transformation (correct like terms, monomial and polynomial product, etc.).

Another group contains errors where the student calculates the result of

operation incorrectly. The error can be associated with the signs of monomials

(2, 3 and 9), coefficients of monomials (4, 11 and 13), or powers of variables (5,

12). The errors where the student forgets to copy unchanged parts of expression

belong to a different group and are probably caused by oversight. These errors

almost disappear in the 8th grade.

Let us compare the numbers of students who made different types of errors

in 7th and 8th grade. We can see that the percentage of students who made

errors in recognising like terms (1, 6) has greatly increased. This is probably

because of the complexity of the problems (in 8th grade, more variables are

used, different forms of monomials are used, such as xyx and
2x y , etc.). We

can also see that the number of arithmetical errors (4) has grown, probably

owing to the fact that the problems contain larger numbers and more negative

numbers than the 7th grade problems, but also because the students tend to

combine three or more terms at the same time. A new kind of errors (5) also

appears in the 8th grade – errors in calculating the powers of variables. This is

probably because, in the 7th grade, there are only variables (in the power of 1)

and also because of the new operations that the students have learnt in the 8th

grade (about half of the errors are such where the student adds the coefficients

and also adds the powers of variables as if he was trying to multiply the

monomials). New kinds of errors (12, 13) in application of the operation

“multiply or divide polynomial by monomial” were found that were not present

in the 7th grade solutions – these errors are caused by more complex problems

(in the 7th grade, variables usually do not have powers; division of polynomial

by a monomial is not introduced yet). There is an increase in errors associated

with the recognition of a correct operation or correct operands. At this stage, the

161

students learn the operation “multiply the polynomials” and apply it even if it is

not applicable (to the sum of polynomials).

4.1.1 Design decisions for transformation rules and typical error

diagnosing in T-algebra

As we have seen, the difficulties that the students have when solving problems

are of different kinds. They either cannot find the correct operation or the

operands for it, or they make mistakes in calculating the resulting expression.

Therefore, designing T-algebra, we had to leave a possibility for making both

groups of errors and to make it easy for T-algebra to detect these errors. This

resulted in an action-object-input scheme for a solution step.

T-algebra checks for correctness of each stage of every single solution step

and can respond to errors with appropriate error messages. For every rule

implemented in T-algebra, we have designed a specific set of input boxes for

different input modes as well as diagnostic procedures in order to be able to

diagnose different typical errors of students. Description of two rules mentioned

in the study is given in section 3.2 (rule Combine like terms – section 3.2.5 and

rule Multiply/Divide polynomial by monomial – section 3.2.9).

Let us consider which of the typical mistakes that students make on paper

can be made in T-algebra. By saying that the mistake can be made, I mean not

only the possibility for the student to make such errors but also that T-algebra

can diagnose it, respond to it accordingly, or at least inform the user about the

non-equivalence of expressions. The error numbers in the following table

correspond to those from tables above. For each error type, I indicate the

possibility of making it in T-algebra, how it is diagnosed and the error message

shown to the student.

When applying the rule Combine like terms, most mistakes are made in

recognizing like terms (can be easily diagnosed at the object selection stage),

calculating the sign and coefficient of the resulting monomial (diagnosed at the

input stage, separate boxes in structured and partial input modes). Less frequent

among students and less important are mistakes in variables and their powers

(can still be diagnosed in free and structured modes).

When applying the rule Multiply/Divide polynomial by monomial, most

mistakes are made in recognizing the objects (can be easily diagnosed at the

object selection stage), calculating the signs, coefficients and powers of

variables in the monomials forming the resulting polynomial (diagnosed at the

input stage, separate boxes for signs and monomials or their parts in structured

and partial input modes) and in the number of monomials in the result (can be

diagnosed in free and structured input modes). Less frequent among students

and less important are mistakes in variables and their powers (can still be easily

diagnosed in free and structured modes).

162

Table 4.3. Possibility of making typical errors made on paper when solving problems in

T-algebra

No Possible Error diagnosis procedure or comment Error message

1 yes Diagnosed at object selection stage “At least one of the terms

is not similar to others”

2 yes Compare combinations of coefficients

with different signs with student input

specific check is not

implemented, reports

“Calculation error”

3 yes Diagnosed at input stage “Incorrect sign”

4 yes Diagnosed at input stage “Calculation error”

5 yes Diagnosed at input stage, check whether

resulting monomial is like with objects

“Incorrect variable part”

6 yes Diagnosed when student tries to give an

answer to a problem

“Like terms are not yet

combined”

7 no T-algebra copies unchanged parts -

8 yes Compare each resulting monomial with

each initial one

currently not

implemented, reports

“Result should not

contain such monomial”

9 yes Diagnosed at input stage “Incorrect sign”

10 yes Diagnosed at object selection stage,

selected unsuitable objects

“One monomial and one

polynomial from the

same product should be

selected”

11 yes Diagnosed at input stage, compared

coefficient of each resulting monomial

“Incorrect coefficient”

12 yes Diagnosed at input stage “Incorrect variable part”

13 yes Diagnosed at input stage, number of terms “Result should contain

more terms”

4.1.2 Conclusions

The study on student errors has indicated that even a small group of students

can provide us with information on typical errors that students make when

solving simplification problems on paper. The mistakes that two different

groups of students make are very similar (8th grade students make some

additional mistakes). I have collected sets of typical mistakes that students make

when applying different transformation rules and later used this information to

design the common rule dialogue, three input modes, diagnostic procedures and

the input stage for each rule separately for the step-by-step problem-solving

environment T-algebra. In addition, I have shown that all typical important

errors that students make on paper can also be made when solving in the

T-algebra.

163

4.2 Experiment for validation of user interface

In the spring of 2005, the same students from the first experiment participated

in the trial of T-algebra. T-algebra was in the development phase at that time

and, therefore, the objective of this trial was to validate only the user interface

of the program from the point of view of its usability. Two topics were chosen

for that purpose: operations with fractions and simplification of polynomials

(the same topics were covered in paper tests). In this trial, the students were

given exactly the same problems as in previously completed tests on paper. In

addition, the problem set contained some demonstration examples from other

chapters. The trial was conducted in two different classes. A 6th grade class was

chosen for the topic of operations with fractions and an 8th grade class for the

topic of simplification of polynomials. The students already had sufficient

experience with computers (using the keyboard, mouse, Windows), but it was

the first time they had seen T-algebra. The students could choose whether they

wanted to sit at the computer alone or in pairs. For operations with fractions we

had 25 computers occupied by the students and for simplification of

polynomials 21 computers were occupied.

The sessions lasted one hour. During the first five minutes we demonstrated

T-algebra and the solution processes in T-algebra and wrote our general

dialogue scheme on the blackboard. In the first ten minutes, the students asked

questions concerning the use of the computer (keyboard), the use of T-algebra

tools (how to mark the objects and what to enter into the boxes), and mathe-

matical questions about the solution steps. After that, questions concerning the

use of software disappeared. Questions about mathematics (on operations with

fractions and polynomials) continued after the first ten minutes. Questions

relating to which rule to select in the menu continued to be asked throughout the

trial. At that time, the concrete problem types were not yet implemented in our

program and the menu contained all the rules needed for the actual topic. In

most cases, the students even knew how they wanted to change the expression

but they were often unable to find the name of the necessary operation. It is

clear that we should pay attention to this issue when preparing the teachers for

using rule-based software.

We collected the records of this trial – files with data about errors made by

the students – for further study. The collected data included initial expression,

current expression, selected rule, marked objects, entered parts (in case of errors

at the input stage) and any error messages shown to the student. We also had

some notes taken by the observers during the trial (two mathematics teachers

and the four authors of T-algebra). When reviewing the files containing the

students‟ mistakes, we initially noticed that almost all the students had made

mistakes in marking the objects for applying the rule. The reason was probably

that the students did not understand how to use the software – how and which

parts of the expressions had to be marked for applying the rules. The mistakes

of this type occurred two or three times in the beginning and then disappeared.

Almost all subsequent mistakes were due to a lack of mathematical knowledge

164

(how to calculate the result of applying the rule, arithmetic errors, etc.) –

students made the same mistakes as they made in paper tests.

While observing the trial, we noticed that many students preferred to mark

the objects of the rule before selecting the rule itself (despite the “Select the

rule” instruction on the screen and the instruction “1. Select the rule. 2. Mark

the operands. 3. Enter the result” on the blackboard). At that time, our program

gave no opportunity for marking more than one part in the expression before the

rule was selected – this confused some students and they asked questions about

that. After the trial, we added the possibility to select objects for applying the

rule before the rule itself is selected. Yet, hints on selection of objects become

available only after selection of a rule.

4.2.1 Distribution of student mistakes between three stages

of solution step

From the previous experiment on paper, we saw that in some rules up to 30%

students make mistakes in choosing the correct transformation and objects for it

(mistakes 1, 2, 6 in Table 2.1 and mistakes 8, 10 in Table 4.2). While

calculating and writing the result of transformation, in some cases up to 50%

students make errors (mistakes 3, 4, 5 in Table 2.1 and mistakes 9, 11, 12, 13 in

Table 4.2). I tried to compare it with the distribution of student mistakes

between stages of a solution step in T-algebra.

After the user interface trial with students, I collected information on student

errors in T-algebra from the solutions. As already mentioned, 21 students from

8th grade participated in the polynomial test. In this trial, the students were

given exactly the same problems as in paper tests (see Appendix A). We have

collected the students‟ solutions (error logs) and I studied them: what mistakes

were made by the students, what errors were made at each stage of solution

step, how many errors can be diagnosed before the input stage, etc.

In the following tables I present some results of this study, grouped by the

rules used. By the moment of trial, typical errors in T-algebra were not

classified; therefore, I tried to figure out the common nature of mistake from the

log files. These are different from the typical errors identified in the first experi-

ment (some typical errors are combined, etc.) but allow comparing the

distribution of errors between the stages of the step. I calculated the percentage

of users who made this type of mistake and also listed the stage of the action-

object-input scheme where T-algebra could diagnose this error. These tables do

not reflect if the students made these mistakes more than once.

165

Table 4.4. Mistakes in combining like terms when solving problems in T-algebra

No Nature of mistake % of students Stage

1 Unsuitable operation – rule combine like terms

cannot be applied

19% action

2 Unsuitable objects – selected objects are not like 42% object

3 Unsuitable objects – selected monomials do not

belong to the same sum, or one of the monomials is a

part of product

28% object

4 Mistake in calculating the coefficient of single

monomial in the result

47% input

5 Mistake in calculating the power of a variable in a

single monomial in the result

23% input

6 Mistake in calculating the sign before single

monomial in the result

33% input

Table 4.5. Mistakes in multiplying the monomials when solving problems in T-algebra

No Nature of mistake % of students Stage

1 Unsuitable operation – rule multiply the polynomials

cannot be applied

14% action

2 Unsuitable objects selected 23% object

3 Mistake in calculating the coefficient of single

monomial in the result

29% input

4 Mistake in calculating the power of a variable in a

single monomial in the result

47% input

5 Mistake in calculating the sign before single

monomial in the result

10% input

Table 4.6. Mistakes in raising the monomial to a power when solving problems in

T-algebra

No Nature of mistake % of students Stage

1 Unsuitable operation – rule raise monomial to a

power cannot be applied

29% action

2 Unsuitable objects selected 19% object

3 Mistake in calculating the coefficient of single

monomial in the result

10% input

4 Mistake in calculating the power of a variable in a

single monomial in the result

28% input

5 Mistake in calculating the sign before single

monomial in the result

10% input

At that moment, T-algebra did not diagnose the possibility of applying the

selected rule separately after the rule was selected. The user had a possibility to

166

change the selected rule and confirmed this selection together with the selection

of objects – therefore, T-algebra actually checks that after the object stage.

I also tried to compare (for one rule, Combine like terms) distributions of

errors between the stages of a solution step on paper and in T-algebra. As

students from 8th grade participated in the test with T-algebra, we took only the

paper test of 8th grade (in fact, the same students) for comparison. In T-algebra,

we can say exactly at what stage an error was made, but on paper it is very

difficult to distinguish whether a mistake was made at the Action or the Object

stage, because we do not have explicit information on students‟ thoughts (the

students do not write the operation and often do not mark the objects for

operation). This is why we combined the first two stages together in the

following table.

Table 4.7. Distribution of mistakes in combining like terms on paper and in T-algebra

Stage Paper T-algebra

Action-Object 65% 55% (11% Action + 44% Object)

Input 35% 45%

From this comparison, we can see that checking errors at early stages is as

important as checking errors in the input of the result. In both, paper solutions

and in T-algebra, more than half of errors were caused by wrong selection of

rule or objects. Therefore, the use of the action-object-input scheme where the

user has to explicitly select the rule and the objects, with appropriate checks

before the input of result, could be useful.

4.2.2 Conclusions

Summarising the results of the first user interface trial with T-algebra, we can

say that the time required for learning the dialogue stages is quite short. In the

first hour with T-algebra, most of the students had solved the same number of

problems that were given to them in paper sessions. However, unlike in the

paper tests, the students corrected all the mistakes they made. Error messages

shown by the program were clear enough for the students to correct the

mistakes. Different input modes of different rules were tested during the trial –

all input modes were found useful. When solving the problems, no questions

were asked on why all three stages of the dialogue are needed; the idea of the

first two stages was clear to the students. All the students (even the weakest in

mathematics) were using the program with great interest. A possible reason is

that it was something new and different from ordinary school lessons. After the

experiment, the students were asked how they liked the software – most of them

answered that, “the program was great”.

167

The Action – Object – Input scheme and error diagnosis after each step was

found useful. First of all, we make the students learn the names of operations.

T-algebra is able to diagnose errors before the result of transformation is

entered, thereby preventing unnecessary computation and input by students.

4.3 Trial with T-algebra while explaining new material

In November 2005, we organized one more trial, this time in one class of so-

called “difficult” children, who were studying in the 8th grade for the second

year. There were 15 students and they had 45 minutes to try T-algebra. The

topic was addition and subtraction of polynomials. We did not plan this trial in

advance – the class teacher Mart Oja who was also engaged in the development

of T-algebra wanted to try it when explaining the new material. The problem set

contained 20 problems: 5 problems on combining like terms (this topic was

already covered before) and 15 problems covering a new topic (5 on addition of

polynomials, 5 on subtraction of polynomials, and 5 problems combining both

addition and subtraction). Their teacher usually prepares the same number of

problems for the pencil and paper work in the same topic.

During the first 5 minutes, the students were demonstrated the T-algebra and

the solution process – the first problem (combine like terms) was solved by the

teacher from the beginning till the end. Then they were given 10 minutes to

complete four other combining problems. When solving these problems,

students apply either the rule Combine like terms or the rule Add/Subtract

numbers. After an introduction to T-algebra and solving the first 5 problems,

the teacher explained the new rule – Clear parentheses. He solved one problem

on the blackboard and after that the students solved the remaining fifteen

problems (based on the new material) in T-algebra by themselves. By the end of

the trial, almost everyone had solved all the problems; the students were solving

the problems with great interest, although mathematics is not one of their

favourite subjects. As the set of possible rules was limited, the students did not

have difficulties in selecting the correct rules.

In this session, we saw that when the students made a mistake and the

program displayed an error message, many of them were closing the message

window without reading the diagnosis. They were then unable to correct the

error and they even thought that their result was the correct one. Therefore, we

have now added a small delay for the error messages – students cannot close the

window for the first 3 seconds and some of them will now probably read the

message. In the teacher‟s opinion, the ability of the students to recognize like

terms in expressions improved after this session. He thought it was probably

because they had to mark like terms explicitly when working in T-algebra. The

use of T-algebra helped the teacher – it reduced his workload in correcting the

students‟ solutions and all the errors made by the students were corrected

(compared to pencil and paper work, where some errors remain uncorrected on

the paper).

168

4.4 Study of student mistakes in T-algebra

In March 2009, we organized one more trial with T-algebra. This time one class

of 11th grade students (31 students) came to the university computer lab to try

T-algebra. This class was specialized in math (they had more than average math

lessons per week). The material for the trial was learnt 3 years ago and actually

those transformation rules are used in many other topics.

This was the first time when the students had seen T-algebra. Therefore, we

first demonstrated T-algebra, then the students were given the first problem file

(a set of 24 problems from different fields implemented in T-algebra) to try and

learn to use T-algebra (for one hour). After that the students were given the

second problem file (a set of 46 problems from the field of exponents and

monomials, see Appendix B for the complete list) and one hour to complete the

test. The problems were quite short, most of the problems required application

of one main operation only (and some simplifications if needed). The problems

used were actually the same as in paper tests of the first experiment. During the

test students were still able to use help (but not generate automatic solutions).

The free input mode was used.

After the experiment we collected student solution files and studied them.

First, we collected some statistical data. Not all problems were solved by all

students (on average, 40 problems per student were solved), although there was

time left. The average time spent on solving problems was 41 minutes (out of

60 minutes given, maximum time spent was 47 minutes). After some of the first

students completed the test and started to leave the room, some others ended

their test and did not solve all problems (this is the reason why the average is

less than 60 minutes, even though all problems were not solved).

Although the students were able to use help features of T-algebra, there were

only a few cases of usage (meaning that the students tried to solve problems

themselves). Only one student used the help function 80 times (he used 96%

automatic filling-in of the result) – that student was the first to complete the test

(only 26 minutes) but still made more than average number of mistakes. Other

students used help features less than 10 times (11 students) or did not use them

at all. Therefore, in order to be more objective, we excluded the student who

used too much help from any further mistake studies and statistics.

We thoroughly studied the mistakes of 30 students (the results of 1 student

were not included, as he used help features too many times). A total of 739

mistakes were made (which makes 24 mistakes per student on average). It is

very difficult to compare the number of mistakes with the number of mistakes

made on paper, as on paper we usually check until we find the first error in a

solution but in T-algebra students can make many errors on each step before it

is correct (as T-algebra does not allow to proceed until errors are corrected). Out

of these mistakes, T-algebra classified 534 mistakes (17.8 in average per

student) as “mathematical” (where the possible cause had a mathematical

background, for example, calculation error, and not incorrect use of the user

interface, etc.). We studied all the errors and tried to divide those into

169

Table 4.8. Statistics grouped by different nature of mistake

Category Name Examples of mistake Expression

ACTION1 Selected unsuitable

operation

Student selects the rule

“Combine like terms”

ACTION2 Tries to apply the

monomial

multiplication rule

to a power of

monomial

Student selects the rule

“Multiply monomials”

OBJECT1 Syntactical mistake

in marking

Student selects incorrect

part of expression, for

example, only one

parenthesis, etc.

OBJECT2 Mistakes in

cancelling selection

Student tries to deselect

object but does not mark

anything

OBJECT3 Objects not selected Student does not select any

object for the rule and tries

to proceed

OBJECT4 Selection errors

related to

parentheses

Student selects objects

from different levels for

one operation

OBJECT5 Parallel application

of "Raise monomial

to a power"

Student selects more than

one / one group of objects

for operation

categories. We used a slightly different classification for errors from that used
in T-algebra. In T-algebra the same classification is used for all topics;
therefore, categories are quite general (for example, calculation errors, etc.).
Here we used more specific categories for simplification problems and even for
certain operations.

Table 4.8 contains a description of mistake categories with examples of
mistakes (in further tables, we used short category names from the first
column). Table 4.9 contains some general statistical data from student solutions
(number of completed problems, spent time, number of help usages and number
of mistakes made by student, both per student and total / average values). Table
4.10 contains information about mistakes (by student, total) grouped by
categories that we have studied and discussed further. The table contains at least
the following columns:

 total (total number of mistakes for each category),
 percentage of this mistake out of all mistakes,
 average number of mistakes of this category per student,
 number of students who made a mistake from this category at least once,
 percentage of students who have made errors from this category.

170

INPUT1 Calculation error

(coefficient)

Student calculates a

coefficient of a monomial

incorrectly (here actually

he had to divide 12 by 4,

not multiply)

INPUT2 Calculation error

(power)

Student calculates a power

of a variable incorrectly

(here the student does not

take into account division

and simply adds all

powers)

INPUT3 Syntactical mistake

in entering result

Here, instead of power 7,

the student enters it to the

same level

INPUT4 Sign or parentheses

missing

Here the student replaces a

variable with its value. As

he did not add parentheses,

the expression is changed

INPUT5 Error in sign Student calculates the sign

of coefficient or power

incorrectly

INPUT6 Mistakes in the

form of monomial

According to definition, a

monomial should not

contain fractional parts

(only coefficient can be

fraction)
INPUT7 Power in

denominator instead

of negative power

The student moves powers

of variables to

denominator

OTHER1 Offers an

unsimplified answer

The student tries to give

answer by confirming an

expression that can still be

simplified somehow

OTHER2 Error in T-algebra

implementation

Here T-algebra required

entering of sign (-). It is

actually (+) and is not

needed here.

T
a

b
le

 4
.9

.
G

en
er

al
 s

ta
ti

st
ic

s
fr

o
m

 s
tu

d
en

t
so

lu
ti

o
n

s
 S

tu
d

e
n

t
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

T
o

ta
l

A
v

e
ra

g
e

P
ro

b
le

m
s

c
o

m
p

le
te

d
4

0
4

3
4

0
4

0
3

1
4

4
3

9
3

8
4

0
3

7
3

9
4

2
3

7
3

0
3

8
4

0
4

6
4

6
3

7
3

5
4

3
4

6
4

0
4

5
4

1
4

3
4

5
4

0
3

8
3

7
4

0

S
p

e
n

t
ti

m
e

4
0

:1
3

4
5

:0
2

4
4

:1
6

4
2

:3
0

4
2

:0
2

4
2

:1
5

4
3

:0
3

4
5

:3
7

4
7

:2
8

4
2

:0
5

4
4

:0
5

4
1

:2
5

4
5

:2
0

3
6

:3
3

4
4

:3
8

4
6

:4
1

4
1

:3
5

4
2

:3
2

4
2

:3
2

4
3

:1
9

4
3

:3
7

4
5

:5
1

4
5

:3
3

4
6

:0
2

4
6

:5
7

4
0

:1
4

4
5

:4
4

4
2

:1
0

4
1

:4
1

4
3

:1
5

4
3

:2
9

N
u

m
b

e
r

o
f

h
e
lp

 u
s
a

g
e
s

0
0

0
1

0
9

4
0

0
1

0
0

0
0

1
2

1
2

3
0

0
1

0
0

0
0

2
0

0
0

7
4

3
1

,4
3

N
u

m
b

e
r

o
f

m
is

ta
k

e
s

1
2

2
6

7
1

6
1

8
1

4
3

4
3

8
1

5
3

2
1

3
3

1
2

7
2

0
2

8
4

4
2

8
2

9
2

5
2

8
1

8
2

0
1

9
4

4
1

7
4

6
4

3
1

3
1

4
2

0
7

3
9

2
4

,6
3

M
a
th

e
m

a
ti

c
a

l
m

is
ta

k
e
s

1
2

1
6

5
1

4
1

1
9

2
8

3
0

1
4

2
2

9
2

7
2

1
1

5
1

8
3

6
2

5
1

8
1

4
1

3
1

3
1

4
1

6
2

6
1

4
3

5
2

6
8

1
3

1
2

5
3

4
1

7
,8

0

T
a

b
le

 4
.1

0
.

S
ta

ti
st

ic
s

g
ro

u
p

ed
 b

y
 d

if
fe

re
n
t

n
a
tu

re
 o

f
m

is
ta

k
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

T
o

ta
l

%
 o

f

m
is

ta
k
e
s

A
v

e
ra

g
e

S
tu

d
e
n

ts

%
 o

f

s
tu

d
e
n

ts

1
2

2
6

7
1
6

1
8

1
4

3
4

3
8

1
5

3
2

1
3

3
1

2
7

2
0

2
8

4
4

2
8

2
9

2
5

2
8

1
8

2
0

1
9

4
4

1
7

4
6

4
3

1
3

1
4

2
0

7
3
9

2
4
,6

A
C

T
IO

N
1

5
4

2
2

1
0

7
3

1
1

4
6

1
5

1
5

9
6

7
4

1
3

5
6

6
6

1
6

2
8

1
5
4

2
0
,8

5
,9

2
6

8
6
,7

A
C

T
IO

N
2

1
1

1
1

2
1

7
2

1
2

1
2

3
1

2
1

2
9

3
,9

1
,8

1
6

5
3
,3

O
B

J
E

C
T

1
4

1
1

1
2

2
1

5
3

2
2

2
4

3
,2

2
,2

1
1

3
6
,7

O
B

J
E

C
T

2
3

3
1

2
9

1
,2

2
,3

4
1
3
,3

O
B

J
E

C
T

3
2

2
4

2
3

6
1

2
0

2
,7

2
,9

7
2
3
,3

O
B

J
E

C
T

4
1

1
1

2
1

1
1

1
1

1
1
1

1
,5

1
,1

1
0

3
3
,3

O
B

J
E

C
T

5
1

1
1

1
1

2
1

1
1

1
1

1
1

1
1
5

2
,0

1
,1

1
4

4
6
,7

IN
P

U
T

1
1

5
1

1
3

7
1

3
6

1
4

7
3

2
3

4
2

2
6

1
3

4
4

2
7
6

1
0
,3

3
,2

2
4

8
0
,0

IN
P

U
T

2
1

1
2

3
3

5
2

3
5

5
2

1
3

3
7

3
1

3
2

2
3

4
1

9
2

2
2

8
0

1
0
,8

3
,0

2
7

9
0
,0

IN
P

U
T

3
1

1
1

2
1

2
1

1
3

4
1

2
2
0

2
,7

1
,7

1
2

4
0
,0

IN
P

U
T

4
3

2
1

1
2

2
2

1
1

1
4

1
2
1

2
,8

1
,8

1
2

4
0
,0

IN
P

U
T

5
1

1
1

2
2

3
3

2
1

2
2

5
1

3
1

1
2

1
1

3
1

1
4
0

5
,4

1
,8

2
2

7
3
,3

IN
P

U
T

6
2

2
3

4
3

1
1

2
5

1
1

1
2

1
1

1
4

3
3
8

5
,1

2
,1

1
8

6
0
,0

IN
P

U
T

7
3

3
1

2
2

1
1
2

1
,6

2
,0

6
2
0
,0

O
T

H
E

R
1

1
1

6
6

1
2

1
3

2
3

4
2

1
1

3
3

3
1

4
1

5
1

1
5
6

7
,6

2
,4

2
3

7
6
,7

O
T

H
E

R
2

1
1

2
3

2
1

1
1

4
1
6

2
,2

1
,8

9
3
0
,0

1
0

2
6

7
1
6

1
5

1
3

2
8

2
8

1
0

2
6

1
0

3
0

2
6

1
4

1
6

4
0

2
4

2
3

1
5

1
8

1
6

1
7

1
7

3
1

1
5

3
9

3
8

7
1
4

1
6

6
0
5

2
0
,2

2
0

0
0

3
1

6
1
0

5
6

3
1

1
6

1
2

4
4

6
1
0

1
0

2
3

2
1
3

2
7

5
6

0
4

1
3
4

4
,5

O t h e rS
tu

d
e
n

t

N
u
m

b
e
r

o
f

m
is

ta
k
e
s

T
o
ta

l
c
la

s
s
if
ie

d

U
n
c
la

s
s
if
ie

d

A c t i o nO b j e c t I n p u t

173

We have reviewed some topmost categories of errors and tried to explain the

numbers or thought of some ways to improve T-algebra to respond better to

those mistakes. Students made quite many mistakes in solutions. Of course,

some are caused by the user interface and certain special requirements of

T-algebra, but there were also quite many actual mistakes. We have mentioned

that students preferred to work fast, even if that caused extra errors due to

oversight.

Most of the problems in the test required application of one main trans-

formation rule only and its name was also quite similar to the text of the

problem (for example, “multiply monomials”, etc.). Nevertheless, as we can see

from Table 4.10, students had difficulties in choosing the correct (applicable)

rule (the most frequent mistake, made 154 times (21% of all mistakes) by 26

students (87% of all students)). In many cases, we have seen that students were

just mixing terminology (combine or collect VS reduce, multiply numbers VS

multiply monomials, etc.). T-algebra did not diagnose separately for a selected

rule whether that rule was applicable – it only checked selection of the rule

together with objects. As we could see, students selected an incorrect rule that

could not be applied and tried to guess a different set of objects for the rule or to

select the same objects in a different form, for example, selecting a monomial

with sign and without the sign, etc. (making 3-4 mistakes in a row), before

realizing that this was a wrong rule. Similar results were actually seen during

the first trial (Table 4.4, Table 4.5 and Table 4.6). After this trial, we imple-

mented the check for selection of an unsuitable rule in T-algebra.

The next most frequent mistakes were calculation errors: mistakes in

calculating the power of a variable (total 80 (11%) mistakes made by 27 (90%)

students) and mistakes in calculating the coefficient of a monomial (total 76

(10%) mistakes made by 24 (80%) students). Sign errors are also worth

mentioning (total 40 (5%) mistakes made by 22 (73%) students). Such errors

are made by students on paper as well, so there is nothing strange in similar

results in T-algebra (compare, for example, with those in Table 2.1, up to 48%

of students made calculation errors).

Another typical error (total 56 (8%) mistakes made by 23 (77%) students) is

offering an unfinished (un-simplified) solution as an answer, which is also quite

frequent on paper. Students perform the main operation in the problem, leave

the result as it is, and do not simplify it further. When checking solutions on

paper, teachers are not so strict with these errors because there are no common

rules on what exactly needs to be simplified. T-algebra is stricter and it makes

students think what else can be simplified.

Another common mistake we collected was error in the form of monomial

(total 50 (7%) mistakes made by 20 (67%) students). Students tried to enter

monomials that did not match the definition (for example,
5

2 32 yx
 instead of

174

32

5

2
yx or

3

22

y

x
 instead of

322 yx , etc.). This can be explained by the fact

that we had students of 11
th
 grade, who were already used to more difficult tasks

and to having more freedom in applying rules. However, T-algebra required

strict application of the rule (as it is taught in 7
th
 and 8

th
 grades) and inputting

the result as one monomial (according to definition). Actually, these mistakes

could be avoided if another input mode would be used for the problems – in the

structured and partial input modes, the structure for inputting the monomial is

given.

Another typical error we have also seen in paper tests is that students try to

apply the monomial multiplication rule incorrectly (only 29 (4%) mistakes but

made by 16 (53%) students). When multiplying monomials, students try to

multiply not only coefficients but also powers of variables (instead of adding) –

this is probably caused by the influence of other rules learned subsequently

(raising monomial to a power when it is really needed to multiply powers).

Quite many students make that mistake, but usually once or twice – after that

they remember how to apply rule correctly. This is a positive effect of using

T-algebra with immediate feedback to students about errors – they learn by

making mistakes and getting feedback.

Other mistakes appeared less frequently but still worth mentioning are such

mistakes that are caused by the usage of T-algebra and would not be possible on

paper. Those are, for example, different mistakes connected to selection of

objects (syntactical error, UI problems when selecting / deselecting objects,

trying to apply a rule with no objects selected, total 40 (5%) mistakes, made by

11 (37%) students), incorrect selection of object connected to powers and

parentheses (need to select both power and expression, do not need to select

parentheses when doing operations inside them, etc., total 11 (2%) mistakes,

made by 10 (33%) students). In addition, we have mentioned that quite many

students were trying parallel application of the rules (raise 2 monomials to a

power in one solutions step), as they would probably do on paper (15 (2%)

mistakes, made by 14 (47%) students). Such mistakes are not frequent (only 1–

2 mistakes per student, less than 5% of all mistakes, but made by many

students) and were probably caused by the fact that the students were new to

T-algebra – such errors should disappear after some experience. Teachers may

also consider explaining those issues to students better before they start

working. We think that such mistakes would not be made after this trial

anymore as they were made 1-2 times only (the students learned that parallel

application of rules is not possible, understood how object selection works in

the UI, etc.).

As an additional goal of this trial, we wanted to test T-algebra with a larger

group of students under our control (because other users may not report all

errors, even if they find those) to check if there are still some errors in

implementation. This goal was successfully achieved. We were able to figure

out some minor errors in solution algorithm, implementation of some rules and

175

found a possibility for students to enter an incorrect response in the free input

mode. Those were fixed after the experiment.

4.4.1 Conclusions

As a result of this trial, we have shown that students make the same typical

mistakes in T-algebra as on paper. In addition, students quite often selected

unsuitable rules and we added the possibility for T-algebra to diagnose such

errors and inform the student. In the latest version of T-algebra, when checking

for objects selected by the student, T-algebra first checks if the rule is

applicable at all (maybe to some other parameters) and only then starts checking

the objects selected by the student. Through this check of non-applicable rules,

a positive effect of using the environment would be knowledge of the names of

operations.

We have mentioned some positive effects of using T-algebra and giving

immediate feedback to the students when making mistakes. We identified

certain groups of errors that were made by many students, but only once or

twice, mostly on the first usage of a rule. It means that the students learned from

the feedback and did not make the same mistakes in further problems.

In addition, we have seen that the amount of errors caused by the use of

T-algebra (various UI usage errors and T-algebra specific restrictions) was

minimal (around 5%) even during first trial and would probably almost

disappear during further usage. Some restrictions caused more errors (for

example, 7% in the form of monomial) but this can be altered if a different

input mode is used. Furthermore, those errors would not appear if T-algebra

were used all the time during teaching new material.

In this study, we tried to use a different error categorisation (more field

specific) for most common mistakes. We observed the mistakes and created a

new set of categories. However, we later found that almost all categories that

we identified are actually separate error categories in T-algebra as well. Only

some very field specific errors (for example, ACTION1 and ACTION2,

OBJECT5 and INPUT7) required categories different from those identified by

T-algebra (those are special cases, like subcategories for categories in

T-algebra). Therefore, we can conclude that categorisation in T-algebra is quite

useful to some extent for reviewing errors.

As a bonus of testing the environment with a larger group of students, we

were able to detect some errors in the implementation of transformation rules

and correct them.

176

CONCLUSIONS

This thesis is based on the work that has been done for the T-algebra project.

The main goal of the project was to create an interactive environment for

simplification problem solving in four fields of school mathematics and algebra:

 calculation of the values of numerical expressions;

 operations with fractions;

 solving of linear equations, inequalities and linear equation systems;

 operations with exponents, monomials and polynomials.

Prior to making any decisions and implementations, we studied related works:

existing software and different solution step approaches used in them. We

studied experiments related to student errors in the fields of mathematics that

we decided to implement in T-algebra and also conducted our own experiments.

As a result, we formulated the requirements and key features for T-algebra:

 enable students to solve problems step-by-step and line-by-line in a

manner similar to solving problems on paper;

 allow students to make all the necessary decisions and calculations at

each solution step and explicitly provide this information to the system;

 leave an opportunity for students to make the same mistakes as on paper;

 give the possibility to learn both the algorithms and their steps in detail;

 include such dialogue that allows the program to understand all decisions

made by students (collect direct information about chosen operation,

selected operands, entered result);

 contain such domain expert module, which would be able to not only

give an answer, but to show a solution path using the designed interface;

 be intelligent enough to check the knowledge and skills of students,

understand mistakes, offer feedback and advice.

These main requirements were achieved by designing and implementing a

special three-stage solution step dialogue (called action-object-input scheme)

and also other key components to support this scheme (for example, an

expression editor). We improved the input stage with three different input

modes and extended the dialogue with additional steps for some rules. Solving

problems in T-algebra by making steps according to the dialogue is very similar

to solving problems on paper. A student has to make all decisions himself and

also has the opportunity to make various errors. However, in comparison to

solving on paper, T-algebra is able to assist the student and perform some steps

automatically if the student is lost. Furthermore, T-algebra is able to diagnose

student errors and provide feedback. Based on the information entered by the

student at different stages of the steps, it is possible to make quite adequate

diagnosis of student errors and, in future developments, possibly to diagnose

misconceptions with very small amount of guesswork and computational

efforts.

177

The solution step dialogue, design of different field specific transformation

rules and problem types as well as support for adequate error diagnosis are key

attributes that distinguish T-algebra from other similar environments. In

addition to those, T-algebra includes a cognitively faithful domain expert that

provides hints and generates automatic solutions to problems corresponding to

algorithms taught in classroom.

This thesis describes different aspects of the created system, design decisions

of different components and some implementation details. These also include

parts mainly contributed by the author of the thesis, which could be summarized

in three large parts:

 design decisions and implementation of some general T-algebra features;

 study, design decisions and implementation of problem types and rules

for a specific domain – the domain of exponents, monomials and

polynomials;

 experimenting efforts in evaluating the general features, like solution

dialogue of T-algebra, as well as domain specific decisions, problem

types, transformation rules, etc.

When designing and developing T-algebra, some features were designed and

implemented mainly by the author of thesis:

 participation in design and implementation (project seminars with school

teachers and authors of school textbooks) of the action-object-input

solution step dialogue (presented in section 2.5);

 implementation of expression parsing and rendering in the expression

editor;

 design and implementation of expression editor features to support the

solution step dialogue (presented in section 2.7);

 design and implementation of an extension to the action-object-input

dialogue (presented in section 2.6);

 design and implementation of the general principle of error diagnosis and

categorisation (presented in sections 2.8.6 and 2.9);

 internal design and implementation of the basic classes of rule and

problem type and their usage in general solution algorithm, error

diagnosis, etc. (presented in sections 3.2.2 and 3.3.1).

One of the main contributions of the author was domain specific part of the

system for the domain of exponents, monomials and polynomials. This included

the following tasks, which are thoroughly described in the thesis:

 study of problems solved at school in the chosen domain and design of

problem types for T-algebra (presented in sections 3.1 and 3.3);

 study of school textbooks and student solutions in order to extract the

transformation rules needed for this domain (both domain specific and

learned before), design of transformation rules in T-algebra, discussion of

178

the design with school teachers, and publication of decisions (presented

in sections 3.1 and 4.1);

 investigation of the typical errors for the selected domain, based on

experiments with students (presented in section 4.1) and related works in

order to design error diagnosis for the designed transformation rules

(presented in section 2.8.6);

 implementation of identified problem types, including error diagnosis,

conditions for starting and ending expressions, solution algorithm, etc.

(presented in section 3.3);

 implementation of domain specific transformation rules, including error

diagnosis and a domain expert for application of implemented rules

(presented in section 3.2).

The author of the thesis participated in numerous experiments and trials with

students and teachers (results are presented in Chapter 4):

 experimental validation of created dialogues with students and teachers

(presented in sections 4.2 and 4.3);

 evaluation of the environment in the chosen domain of exponents,

monomials and polynomials, trials with real students (presented in

sections 4.2 and 4.3);

 investigation of student solutions and their mistakes when solving

problems in T-algebra (particularly problems of the chosen domain) and

comparison with the results of the experiment of collecting mistakes from

paper solutions (presented in section 4.4).

The main result of the experiments with students was that the introduced

solution step dialogue was easy to learn and use, error diagnosis and messages

were helpful. The latest study of student errors in T-algebra gave us positive

results. However, we definitely cannot make judgements about the usability and

effectiveness of the created environment, based on the results of brief

experiments because, at this stage, results can be influenced by the novelty of

the program for students and teachers. Teachers need to experiment with

different ways of using the system, such as explaining new material, self-study

by students, rehearsing old material, and assessment. The development of the

current version of T-algebra was completed in 2009 and the environment is now

available to all schools in Estonia.

Finally, we have identified some future development possibilities for the

T-algebra environment.

First of all, we could implement an even more refined error diagnosis where

different typical misconceptions are identified. In the current version of

T-algebra, in some transformation rules, the diagnosis in the structured and

partial input modes is more detailed than in the free input mode. We could

implement a more detailed diagnosis for the free input mode as well, which

would add some constraints and reduce the freedom of students when entering

179

step results. For example, at the moment, when multiplying two polynomials in

the free input mode, it is possible to enter a partial multiplication result – the

sum of products with monomials (members of the first polynomial) and the

second polynomial. Or it is possible to combine like terms in the result of

multiplication. In the structured and partial input modes, T-algebra requires the

student to enter the result of multiplication as a polynomial. Thus, one

additional constraint, that the resulting subexpression has to be a polynomial,

would give us the same result in this case.

Secondly, we could improve the student-modelling component, which would

reflect the system‟s understanding of students‟ conceptions and misconceptions

and would change in the course problem solving. This component could be used

in automatic assessment of students and, for example, in random problem

generation to provide the student with expressions that have been most

problematic for that student.

We could also implement a students‟ tutoring module for T-algebra, which

would contain some explanations and examples of all simplification rules, and

presentations of solution algorithms for all implemented problem types. This

would allow us to upgrade T-algebra from a task oriented system to a fully

qualified intelligent tutoring system.

Finally, we could implement certain automatic components that would allow

us to collect statistics on some larger groups of students in a central storage,

analyse it and use it for future experiments (Prank and Lepp, 2010).

180

REFERENCES

Alessi, S.M. and Trollip, S.R. (2001). Multimedia for learning: Methods and develop-

ment. 3rd ed., Allyn & Bacon.

Alessi, S.M. and Trollip, S.R. (1991). Computer-based instruction: Methods and

development. 2nd ed., Prentice Hall

Alpert, S.R., Singley, M.K. and Fairweather, P.G. (1999). Deploying Intelligent Tutors

on the Web: An Architecture and an Example. International Journal of Artificial

Intelligence in Education, 10(2): 183–197.

Anderson, J.R., Corbett, A.T., Koedinger, K. and Pelletier, R. (1995). Cognitive tutors:

Lessons learned. The Journal of Learning Sciences 4: 167–207.

Anderson, J.R., Boyle, C.F., Corbett, A. and Lewis, M.W. (1990). Cognitive modelling

and intelligent tutoring. Artificial Intelligence, 42: 7–49.

Barnett, R.A. and Kearns, T.J. (1990). Intermediate Algebra: Structure and Use. 4th ed.

McGraw-Hill.

Beeson, M. (2002). MathXpert: un logiciel pour aider les élèves à apprendre les

mathématiques par l'action. Sciences et Techniques Educatives, 9(1–2). English

translation „MathXpert: Learning Mathematics in the 21st Century‟ available at

http://www.mathcs.sjsu.edu/faculty/beeson/Papers/English-ste/English-ste.html.

Visited on 24.03.2010.

Beeson, M. (1998). Design Principles of Mathpert: Software to support education in

algebra and calculus. In Computer-Human Interaction in Symbolic Computation, pp.

89–115, Springer-Verlag.

Beeson, M. (1990). Mathpert: a computerized learning environment for algebra, trigo-

nometry, and calculus. International Journal of Artificial Intelligence in Education,

1(4): 65–76.

Blackboard Learning System by Blackboard Inc. Available at

http://www.blackboard.com/. Visited on 28.03.2010.

Brown, J.S. (1985). Process versus Product: A perspective on tools for communal and

informal electronic learning. Journal of Educational Computing Research, 1: 179–

201.

Brown, J.S. and Burton, R.R. (1978). Diagnostic models for procedural bugs in basic

mathematical skills. Cognitive Science, 2: 155–192.

Burton, R.R. (1982). Diagnosing bugs in a simple procedural skill. In Intelligent

Tutoring Systems, pp. 157–183, Academic Press.

Cerulli, M. and Mariotti, M.A. (2002). L'Algebrista: un micromonde pour l'enseigne-

ment et l'apprentissage de l'algèbre. Science et techniques éducatives, 9: 149–170.

Cognitive Tutor by Carnegie Learning, Inc. Available at

http://www.carnegielearning.com/. Visited on 02.05.2010.

Equation Wizard by ElasticLogic. Available at http://www.equationwizard.com/.

Visited on 29.03.2010.

Hall, R. (2002). An Analysis of Errors Made in the Solution of Simple Linear

Equations. Philosophy of Mathematics Education Journal, 15, 2002.

Handal, B. and Herrington, A. (2003). Re-examining categories of computer-based

learning in mathematics education. In Contemporary Issues in Technology and

Teacher Education [Online serial], 3(3).

Heffernan, N.T. and Koedinger, K.R. (2000). Intelligent Tutoring Systems are Missing

the Tutor: Building a More Strategic Dialog-Based Tutor. In Proceedings of the

http://www.mathcs.sjsu.edu/faculty/beeson/Papers/English-ste/English-ste.html
http://www.blackboard.com/
http://www.carnegielearning.com/
http://www.equationwizard.com/

181

AAAI Fall Symposium on Building Dialogue Systems for Tutorial Applications, pp.

14–19.

Holland, G. (1994). Intelligent Tutorial Systems. In Didactics of Mathematics as a

Scientific Discipline, pp. 213–223.

Issakova, M. (2006). Domain Expert Module for Step-By-Step Linear Equation

Solving. In Proceedings of The 11th Asian Technology Conference in Mathematics

(ATCM 2006), pp. 193–202, Hong Kong, China.

Issakova, M. (2005). Possible Mistakes During Linear Equation Solving On Paper And

In T-algebra Environment. In Proceedings of the 7
th

 International Conference on

Technology in Mathematics Teaching, Volume 1, pp. 250–258. Bristol, UK.

Issakova, M. and Lepp, D. (2004). Rule dialogue in problem solving environment

T-algebra. In Proceedings TIME–2004: Montreal International Symposium on

Technology and its Integration into Mathematics Education, 16 p., Montreal,

Canada.

Issakova, M., Lepp, D. and Prank, R. (2006). T-algebra: Adding Input Stage To Rule-

Based Interface For Expression Manipulation. International Journal for Technology

in Mathematics Education, 13(2): 89–96.

Issakova, M., Lepp, D. and Prank, R. (2005). Input Design in Interactive Learning

Environment T-algebra. In Proceedings ICALT–2005: The 5th IEEE International

Conference on Advanced Learning Technologies, pp. 489–491, Kaohsiung, Taiwan.

Klai, S., Kolokolnikov, T. and Van den Bergh, N. (2000). Using Maple and the web to

grade mathematics tests. In Proceedings of the International Workshop on Advanced

Learning Technologies.

Kutzler B., (2000): The Algebraic Calculator as a Pedagogical Tool for Teaching

Mathematics. In International Journal of Computer Algebra in Mathematics Edu-

cation, v7 n1, pp. 5–23.

Kutzler, B. (1996). Improving Mathematics Teaching with DERIVE. Chartwell-Bratt

Publishing & Training Ltd.

Lepik, M., Nurk, E., Telgmaa, A. and Undusk, A. (2000). Mathematics for VIII grade

(in Estonian). Koolibri.

Lepp, D. (2007a). Study of Student Mistakes in Solving Simplification Problems on

Paper and Possibility of these Mistakes in the T-algebra. In Proceedings of the 8th

International Conference on Technology in Mathematics Teaching (ICTMT8), 6p.,

Hradec Králové, Czech Republic.

Lepp, D. (2007b). Distribution of student mistakes between three stages of solution

steps in case of Action-Object-Input solution scheme. In Abstracts of First Central-

and Eastern European Conference on Computer Algebra- and Dynamic Geometry

Systems in Mathematics Education (CADGME), p. 27, Pecs, Hungary.

Lepp, D. (2006a). Design of polynomial transformation rules in problem solving

environment T-algebra. In Proceedings DES–TIME–2006: Dresden International

Symposium on Technology and its Integration into Mathematics Education 2006,

15p., Dresden, Germany.

Lepp, D. (2006b). Error Diagnosis in Problem Solving Environment Using Action-

Object-Input Scheme. In ITS 2006 Proceedings, LNCS 4053, pp. 769–771,

Springer-Verlag.

Lepp, D. (2006c). Using Action-Object-Input Scheme for Error Diagnosis in Problem

Solving Environment. In Proceedings of the Student Track ITS 2006, pp. 18–27,

Jhongli, Taiwan.

182

Lepp, D. (2006d). Error Diagnosis and Categorization in Problem Solving Environment

Using Action-Object-Input Scheme. In Proceedings of The 11th Asian Technology

Conference in Mathematics (ATCM 2006), pp. 215–224, Hong Kong, China.

Lepp, D. (2005). Extended Solution Step Dialogue In Problem Solving Environment

T-algebra. In Proceedings of the 7th International Conference on Technology in

Mathematics Teaching (ICTMT7), volume 1, pp. 267–274, Bristol, UK.

Lepp, D. (2003a). Program for exercises on operations with polynomial. In Proceedings

of the 6th International Conference Technology in Mathematics Teaching

(ICTMT6), pp. 365–369.

Lepp, D. (2003b). Program “Polynom” for exercises on operations with polynomials (in

Estonian). Master thesis.

Lepp, D., Issakova, M. and Vaiksaar, V. (2005). Expression Editor Features That

Simplify Student Work On Manipulating Expressions. In Proceedings of the 7th

International Conference on Technology in Mathematics Teaching (ICTMT7),

volume 1, pp. 259–266, Bristol, UK.

Lewis, M. W., Milson, R., and Anderson, J. R. (1987). The teacher's apprentice:

Designing an intelligent authoring system for high school mathematics. In Artificial

Intelligence and Instruction, pp. 269–301, MA: Addison-Wesley, Reading.

Mavrikis, M. and Maciocia, A. (2003). Wallis: a web-based ILE for science and

engineering students studying mathematics. In Workshop of Advanced Technology

for Mathematics Education in the 11th International Conference on Artificial

Intelligence in Education, pp. 505–512.

Maleševic, B. (2009). A way to improve the use of CAS for integration. In 6th CAME

Symposium: Structured Abstracts, pp. 17–18.

Maple by Maplesoft. Available at http://www.maplesoft.com/. Visited on 15.05.2010.

MathAid by MathAid. Available at http://www.mathaid.com/. Visited on 26.03.2010.

MathCAD by Parametric Technology Corporation (PTC). Available at

http://www.ptc.com/products/mathcad/. Visited on 15.05.2010.

MathCentre by Mathematics Education Centre of Loughborough University. Available

at http://www.mathcentre.ac.uk/. Visited on 25.03.2010.

Mathematics V10 by EptSoft. Available at http://www.eptsoft.com/Maths-

HTML/Mathematics%20Index.htm. Visited on 27.03.2010.

Math-Teacher by MATH-KAL. Available at http://www.mathkalusa.com. Visited on

08.05.2010.

McKeague, C.P. (1979). Intermediate Algebra. Academic Press.

Nicaud, J.F. and Bouhineau, D. (2008). Natural Editing of Algebraic Expressions. In

Les Cahiers Leibniz, volume 169, pages 1–15. Longer version of MathUI workshop

paper, Linz, Austria, 2007.

Nicaud, J.F., Chaachoua, H. and Bittar, M. (2006). Automatic Calculation of Students‟

Conceptions in Elementary Algebra from Aplusix Log Files. In ITS 2006 Pro-

ceedings, LNCS 4053, pp. 433–442, Springer-Verlag.

Nicaud, J.F., Chaachoua, H., Bittar, M. and Bouhineau, D. (2005). Student‟s modelling

with a lattice of conceptions in the domain of linear equations and inequations. In

Proceedings of AIED 05 Workshop 1: Usage Analysis in Learning Systems, pp. 81–

88.

Nicaud, J.F., Bouhineau, D. and Chaachoua, H. (2004). Mixing microworld and CAS

features in building computer systems that help students learn algebra. In Inter-

national Journal of Computers for Mathematical Learning, 5, pp. 169–211.

http://www.maplesoft.com/
http://www.mathaid.com/
http://www.ptc.com/products/mathcad/
http://www.mathcentre.ac.uk/
http://www.eptsoft.com/Maths-HTML/Mathematics%20Index.htm
http://www.eptsoft.com/Maths-HTML/Mathematics%20Index.htm
http://www.mathkalusa.com/

183

Nicaud, J.F., Bouhineau, D., Varlet, C. and Nguyen-Xuan, A. (1999). Towards a pro-

duct for teaching formal algebra. In Proceedings of Artificial Intelligence in Edu-

cation, pp. 207–217.

Nurk, E., Telgmaa, A. and Undusk, A. (2006). Mathematics for VII grade (in Estonian).

Koolibri.

Pais, E. (2001). Mathematics for VIII grade (in Estonian). Avita.

Pais, E. (1998). Mathematics for VII grade (in Estonian). Avita.

Payne, S. and Squibb, H. (1990). Algebra malrules and cognitive accounts of errors. In

Cognitive Science, 14, pp. 445–481.

Postel, F. (1999). MuPAD as a Tool, Tutee and Tutor. In Proceedings of ACDCA

summer academy.

Prank, R. (1991). Using Computerised Exercises on Mathematical Logic. Informatik-

Fachberichte, 292: 34–38, Springer-Verlag.

Prank, R. and Viira, H. (1991). Algebraic Manipulation Assistant for Propositional

Logic. Computerised Logic Teaching Bulletin, 4(1): 13–18.

Prank, R. and Lepp, D. (2010). Tools for acquiring data about student work in

interactive learning environment T-algebra. In Proceedings of ITS 2010, LNCS

6095, pp. 396–398.

Prank, R., Issakova, M., Lepp, D., Tõnisson, E. and Vaiksaar, V. (2007). Integrating

rule-based and input-based approaches for better error diagnosis in expression mani-

pulation tasks. In Symbolic Computation and Education, pp. 174–191, World

Scientific Publishing Co.

Prank, R., Issakova, M., Lepp, D. and Vaiksaar, V. (2006a). Designing Next-Generation

Training and Testing Environment for Expression Manipulation. In International

Conference on Computational Science (ICCS 2006), Part I, LNCS 3991, pp. 928–

931, Springer-Verlag.

Prank, R., Issakova, M., Lepp, D., Vaiksaar, V. and Tõnisson, E. (2006b). Problem sol-

ving environment T-algebra. In Proceedings of 7th International Conference

Teaching Mathematics: Retrospective and Perspectives, pp. 190–197, Tartu,

Estonia.

Ravaglia, R., Alper, T., Rozenfeld, M. and Suppes, P. (1998). Successful pedagogical

applications of symbolic computation. In Computer-Human Interaction in Symbolic

Computation, pp. 61–88, Springer-Verlag.

Sangwin, C. J. (2007). STACK: making many fine judgements rapidly. In CAME.

Sangwin, C.J. (2005). Making Mathematical Distinctions In CAA With Computer

Algebra. In Proceedings of the 7th International Conference on Technology in

Mathematics Teaching (ICTMT7), volume 1, pp. 292–299, Bristol, UK.

Stephens, L. J. and Konvalina, J. (1999). The use of computer algebra software in

teaching intermediate and college algebra. In International Journal of Mathematical

Education in Science and Technology, 30, 4, pp. 483–488.

Strickland, P., and Al-Jumeily, D. (1999). A Computer Algebra System for improving

student's manipulation skills in Algebra. The International Journal of Computer

Algebra in Mathematics Education, 6(1): 17–24.

Tall, D. and Rashidi Razali, M. (1993). Diagnosing Students‟ Difficulties in Learning

Mathematics. In Int J. Math Ed, Sci & Techn., 24 2, pp. 209–202.

Thompson, P. and Thompson, A. (1987). Computer presentations of structure in

algebra. In Proceedings of the Eleventh Annual Meeting of the International Group

for the Psychology of Mathematics Education, volume 1, pp. 248–254.

184

Trgalova, J., Bouhineau, D. and Nicaud J.F. (2009). An Analysis of Interactive

Learning Environments for Arithmetic and Algebra Through an Integrative

Perspective. In International Journal of Computers for Mathematical Learning, 14

3, pp. 299–331.

Tõnso, T. (2002). Mathematics for VII grade (in Estonian). Mathema.

Veelmaa, A. (2004). Mathematics for VIII grade (in Estonian). Mathema.

Weitz, R., Heffernan, N, Kodaganallur, V. and Rosenthal, D. (2007). The Distribution

of Student Errors Across Schools: An Initial Study. In Proceedings of the 13th

International Conference on Artificial Intelligence in Education, pp. 671–673.

Xambo, S., Eixarch, R., and Marques, D. (2002). WIRIS: An Internet platform for the

teaching of mathematics in large educational communities. Contributions to Science,

2 (2): 269–276.

Zuckerman, M.M. (1976). Intermediate algebra. W. W. Norton & Company.

185

SUMMARY IN ESTONIAN

Astmete, üksliikmete ja hulkliikmete valdkonna

lihtsustamisülesannete lahendamine interaktiivses

õpikeskkonnas T-algebra

Antud väitekiri baseerub tööl, mis on tehtud T-algebra projekti raames. Projekti

peamine eesmärk oli luua uut tüüpi interaktiivne teisendusülesannete lahenda-

mise keskkond probleemide lahendamiseks neljas koolimatemaatika ja algebra

valdkonnas:

 aritmeetilised operatsioonid ja avaldiste väärtuste arvutamine;

 tehted murdudega;

 lineaarvõrrandite, lineaarvõrratuste ja lineaarsete võrrandisüsteemide

lahendamine;

 lihtsustamise ülesanded astmete, üksliikmete ning hulkliikmete teemas.

Süsteemi disaini ja loomise etappidele eelnes olemasolevate sarnaste program
-

mide analüüs, me uurisime kasutajaliidesega võimaldatud sammude tegemise

viise olemasolevates süsteemides. Samuti me uurisime erinevate eksperimentide

tulemusi, kus uuriti õpilaste poolt tehtud vigu valitud matemaatika valdkon-

dades ning korraldasime oma lahenduskatseid. Lisaks me uurisime koolides

kasutatavad õpikud ja õpilaste kontrolltööde lahendusi, et korjata kokku

kasutatavad teisendusreeglid ning tüüpilised ülesanded, mida lahendatakse

koolis. Uuringute tulemusena me identifitseerisime probleemid olemasolevates

süsteemides ja formuleerisime mitu olulist printsiipi, mida me jälgisime süs-

teemi disainimisel ja loomisel. Loodav süsteem

 võimaldab lahendada ülesandeid sammhaaval sarnaselt paberil lahen-

damisele;

 lubab õpilasel teha kõik arvutused ja otsused igal lahenduse sammul;

 võimaldab õpilastel teha samu tüüpilisi vigu nagu paberil töötades;

 annab võimaluse õppida ja harjutada nii lahendusalgoritme kui ka

üksikute lahendussammude tegemist;

 kasutab sellist dialoogi sammude tegemisel, et süsteem on võimeline aru

saama kõikidest õpilase otsustest (kogub infot valitud reegli, operandide

ning sisestatud tulemuse kohta);

 omab sisseehitatud valdkonna eksperdi moodulit, mis annab võimaluse

mitte ainult anda vastust, vaid genereerida ülesande lahenduskäik, kasu-

tades samu reegleid, mida saab kasutada õpilane;

 oskab diagnoosida õpilase poolt tehtud vigu ning anda arusaadavat

tagasisidet ja vajadusel aidata õpilasi soovitustega või automaatselt

tehtavate sammude abil.

Analüüsi käigus me ei leidnud süsteeme, mis töötaksid täiel määral vastavalt

eespool kirjeldatud printsiipidele. Ühte osa programmidest võib kasutada ainult

lahendusalgoritmide õpetamisel, kuna nendega töötades puudub õpilastel

võimalus teha vigu. Teised sobivad ainult teadmiste kontrolliks, kuna nad ei

diagnoosi täpselt õpilaste vigu või ei paku abi lahendamisel.

186

Sammude tegemise dialoog on see, mis eristab T-algebrat teistest sarnastest

süsteemidest. Tänu sellele õnnestub T-algebral täita põhiprintsiipe, mis on

kirjeldatud eespool. Iga samm programmis koosneb kolmest etapist. Dialoogi

prototüüp sai läbi proovitud minu magistritöös. T-algebra jaoks me parandasime

ning täiendasime esialgset dialoogi: ühtlustasime sisestusetappi erinevate

reeglite jaoks kolme erineva sisestusrežiimi väljatöötamisega ning täiendasime

skeemi lisaetappidega mõnede reeglite puhul (lisainfo sisestamine, vaheetapi

lisamine ning struktuuri laiendamine). Loodud dialoog annab võimaluse õppida

ja harjutada ülesannete lahendamise strateegiaid ning samuti üksikute sammude

tegemise tehnikat.

Ülesannete lahendamine T-algebras on sarnane ülesannete lahendamisega

paberil. Iga sammu tegemisel rakendab õpilane ühte konkreetset teisendus-

reeglit, märgib objektid ning sisestab tulemuse. Ülesannete lahendamise ajal

õpilane teeb kõik otsused lahenduskäigu kohta. T-algebra annab võimaluse teha

samu vigu nagu paberil, kuid erinevalt paberist on võimeline diagnoosima

õpilase vigu ning aitama õpilast üksikute sammude tegemisel. Enne sammu

dialoogi ning vigade diagnoosi disainimist me korraldasime eksperimendid

õpilastega, et välja selgitada tüüpilised vead, mida nad teevad paberil ning

lisaks vaatasime ka teiste analoogsete uurimiste tulemusi. Tänu kolmesam-

mulisele dialoogile T-algebral on olemas kogu eelinfo, mida õpilane valib ja

sisestab alametappidel. See annab parema võimaluse diagnoosida vigu võrreldes

süsteemidega, kus on olemas ainult info sisestatud sammu tulemuse kohta.

Väitekiri kirjeldab loodud süsteemi erinevaid aspekte, erinevate kompo-

nentide disainiotsuseid ning realisatsiooni detaile. Väitekirja autori panuse ja

tulemused võib liigitada kolme kategooriasse:

 T-algebra üldiste funktsionaalsete komponentide disain ja realisatsioon;

 valdkonna spetsiifiliste ülesannete tüüpide ja teisendusreeglite disain ja

realisatsioon (lihtsustamise ülesanded astmete, üksliikmete ning hulkliik-

mete teemas);

 osalemine eksperimentides ning nende korraldamine selleks, et hinnata

nii T-algebra üldise lahenduse erinevaid aspekte kui ka valdkonna

spetsiifilise disaini ja realisatsiooni otsuseid.

Väitekirja eraldi osades on kirjeldatud need süsteemi osad, mille loomise või

disainimise eest vastutas väitekirja autor:

 osalemine sammu dialoogi (action-object-input) disainis ja realisatsioonis

(projekti seminarid õpetajatega ja õpikute autoritega) (esitatud peatükis

2.5);

 avaldiste parsimine ja kuvamine redaktoris (esitatud peatükkides 2.7.1 ja

2.7.2);

 avaldiste redaktori ja sammu dialoogiga seotud funktsionaalsuse disain ja

realisatsioon (esitatud peatükis 2.7);

 sammu tegemise dialoogi ja selle laienduste disain ja realisatsioon

(esitatud peatükis 2.6);

187

 vigade diagnoosimise ja kategoriseerimise printsiip (esitatud peatükkides

2.8.6 ja 2.9);

 reeglite ja ülesannete tüüpide klasside sisemine disain ja realisatsioon ja

nende rakendused automaatses lahendamise algoritmis, vigade diagnoosis

jne. (esitatud peatükkides 3.2.2 ja 3.3.1).

Olulise osa tööst moodustavad teisendusreeglite ja ülesannete tüüpide üldise

disaini ja realisatsiooni detailid ning minu teema (astmete, üksliikmete ja

hulkliikmete lihtsustamisülesanded) reeglite ja tüüpide detailsed kirjeldused:

 valitud valdkonna erinevate tüüpülesannete väljaselgitamine ning nende

disainimine ülesande tüüpidena T-algebras (esitatud peatükkides 3.1 ja

3.3);

 õpikute ja õpilaste lahenduste analüüs eesmärgiga koguda infot kasuta-

tavate teisendusreeglite kohta antud valdkonna ülesannetes, reeglite

disain T-algebras ja disaini otsuste arutamine õpetajatega (esitatud

peatükkides 3.1 ja 4.1);

 valitud valdkonna tüüpiliste vigade kogumine ning nende arvestamine

reeglite ja vastavate vigade diagnoosi disainis (esitatud peatükis 4.1);

 eelnevalt loetletud ülesannete tüüpide realiseerimine, sealhulgas vigade

diagnoosi realisatsioon, algavaldise ja lõppavaldise tingimused, lahenda-

mise algoritm jne. (esitatud peatükis 3.3);

 valitud valdkonna spetsiifiliste teisendusreeglite realiseerimine, seal-

hulgas vigade diagnoosi realisatsioon, valdkonna eksperti osa nende

reeglite automaatse rakendamise kohta (esitatud peatükis 3.2).

Väitekirja autor korraldas mõned eksperimendid ja katsed T-algebraga ning

osales kogu meeskonna poolt organiseeritud eksperimentides, selleks et hinnata

T-algebra erinevaid aspekte (tulemused on esitatud väitekirja 4. osas):

 sammu dialoogi valideerimine õpilastega ja õpetajatega (esitatud

peatükkides 4.2 ja 4.3);

 T-algebra hindamine valitud valdkonnas (tehted üksliikmetega), katsed

õpilastega (esitatud peatükkides 4.2 ja 4.3);

 õpilaste ülesannete lahenduste ja tehtud vigade uuring ülesannete

lahendamisel T-algebra-s (lihtsustamise ülesanded astmete, üksliikmete

ning hulkliikmete teemas) ning tulemuste võrdlus paberitesti analüüsi

tulemustega (esitatud peatükis 4.4).

Eksperimentide peamine tulemus on see, et loodud sammu tegemise skeem on

kergesti omandatav õpilaste poolt, vigade diagnoos ja abiteated on arusaadavad

ja aitavad õpilasi parandada vigu ja lahendada ülesandeid. Viimases eksperi-

mendis me uurisime vigu, mida õpilased teevad T-algebras ja saime positiivseid

tulemusi. Juba esimesel lahendamise sessioonil T-algebraga õpilased õppisid

oma vigadest tänu kohesele diagnoosile ja programmi reaktsioonile. Me nägime

mõnede vigade tüüpide korral, et õpilased tegid selliseid vigu üks või kaks

korda ja hilisemates ülesannetes enam ei teinud sama tüüpi vigu. Loomulikult

me ei saa hinnata T-algebra kasutatavust ja efektiivsust nende lühikeste

188

nas, kuid T-algebra oli nende jaoks uus kogemus ja see võis mõjutada eksperi-

mentide tulemusi. Osade õpetajate jaoks on T-algebra kasutamine õpetamisel

samuti uus kogemus, paremate tulemuste saavutamiseks on vaja pikemat aega

eksperimenteerida erinevate õpetamisviisidega ning luua piisavalt õppe-

materjale.

2009 aastal me lõpetasime jooksva T-algebra versiooni arenduse ning see on

nüüd kättesaadav kõikides eesti koolides. Paljud õpetajad läbisid ka T-algebra

alased koolitused ja kasutavad programmi õpetamisel. Me loodame saada

õpetajatelt väärtuslikku tagasisidet, mis võiks anda infot võimalike vigade kohta

ning ideed T-algebra edasiarendamiseks.

Siin võib tuua mõned võimalikud suunad süsteemi edasiseks arendamiseks:

 esiteks võiks disainida ja realiseerida veelgi täpsema vigade diagnoosi

osade reeglite puhul;

 teiseks me võiksime realiseerida T-algebras mingisuguse variandi õpilase

mudelist, mida saaks kasutada näiteks teadmiste hindamisel või üles-

annete genereerimisel, selleks et pakkuda õpilasele lahendamiseks just

selliseid probleeme, millega tal tekib raskusi;

 lisada T-algebrasse tuutori moodul, mis sisaldaks kõikide realiseeritud

reeglite seletusi näidistega ning erinevate ülesannete tüüpide puhul

lahendusalgoritmide kirjeldusi näidistega;

 T-algebrasse võiks lisada statistilise komponendi, mis lubaks korjata

terve klassi õpilaste lahenduste ja vigade statistika andmed ja kasutada

neid võimalikes uurimistes (Prank and Lepp, 2010).

eksperimentide tulemusena. Õpilastele meeldis lahendada ülesanded keskkon-

189

ACKNOWLEDGEMENTS

I would like to thank my parents, my brother and especially my wife Marina

Lepp, who gave me the opportunity to concentrate on my PhD thesis. Separate

thanks to my son Kristjan, who encouraged me to finish the thesis. I would also

like to thank all my friends for their support.

I wish to thank my supervisor Rein Prank for pleasant cooperation. I would

like to thank mathematics teachers Mart Oja and Maire Oja for their co-

operation in discussing important design decisions for T-algebra. I would

separately like to thank all students for solving tests and participating in

different experiments.

I also wish to thank Alar Helstein for correcting my English in this thesis.

During my PhD studies I was supported by the „Tiger Leap‟ computerization

programme for Estonian schools as they financed the T-algebra project. I was

partially supported by the Estonian Science Foundation under grants 5272, 7180

and by the targeted financing project SF0182712s06 “The methods, environ-

ments, and applications for solving large and complex computational prob-

lems”. I was also supported by the Estonian Information Technology Foun-

dation and Estonian Doctoral School in Information and Communication

Technologies.

190

APPENDIX A

Tests for 7th and 8th grades

The test for 7th grade included calculation problems as well as some easiest

simplification problems. Simplification problems of variant A were the

following (the subset that I used for analysis in my field):

 open parentheses: 1))2(7 yx  ; 2) 5)143( nm ; 3))35(nm ;

4))132(4  yx ; 5))3()23( vu ; 6))32(cba  ;

7))423( yxm ; 8))345(2,0  yx ;

 combine like terms: 1) cc 79  ; 2) aa 7 ; 3) mmm 243  ;

4) xxx 2123429  ; 5) 322635  nnn ;

6) babaaba 242373  ;

7) 6335934  xyxyx .

The problems of variant B were the following:

 open parentheses: 1))3(5 nm ; 2) 7)152( nx ; 3))43(nu  ;

4))125(2  ya ; 5))2()43( ts ; 6))37(vut  ;

7))542( bba ; 8))7105(4,0  nm ;

 combine like terms: 1) bb 106  ; 2) kk 5 ; 3) mmm 3125  ;

4) 2123429  yyy ; 5) 852974  nnn ;

6) 2433737  abab ;

7) 6335934  mnmnm .

The test for 8th grade included different types of problems. The problems of

variant A were the following:

 combine like terms: 1) abbaababbaab 235279 2222  ;

2)
323222 2538512 xyzzxyxyzyzxzxyyzx  ;

3) nmnmnm 85)2()3(9  ; 4) xxyyxxyx  232 ;

 perform operations: 1))24()52(yxyx  ;

2))925()723( nmnm ;

3))3125()532()397( vuvuvu ; 4))32(3 yxx  ;

5))43(2 222 mnnmmnnm  ; 6)
4323)32(vuuvvuuv  ;

7))3(:)12918(23344527 vuvuvuvu  ;

8))6(:)1824(56857768 npmpnmpnm  ; 9))32)(( xyx ;

10))23)(2(yxyx  ; 11))12)(39( xx ;

12))13)(2(2  mmm ; 13))2)(2(2  xyxyx ;

191

14))2)(2(cbacba  ; 15))32)(32( xx ;

16))4)(4( mm ; 17)
2)5(x ; 18)

2)32(y ;

19))93)(3(2  xxx ; 20)
3)2(yx  ;

 simplify: 1))(4)2)(2()2(2 yxxyxyxyx  ;

2) 12)34()18)(32(2  mmm ;

 simplify and then evaluate for specific values of variables:

1))3(:)912()3(2 2344322 xyyxyxyxxyx  , if 2x and 3y ;

2))2)(15()2)(2()32(2  mmnmnmm , if 5m and

2n .

The problems of variant B were the following:

 combine like terms: 1) mnnmmnmnnmmn 456753 2222  ;

2)
2222332233223 453352 cbacabbcacabbcacab  ;

3) yyxxyx 846)3()2(5  ; 4) vvvuvuuvvu 2232 23  ;

 perform operations: 1))2()34(nmnm  ;

2))952()752( vuvu ;

3))327()453()132(222  xxxxxx ; 4))12(5  mm ;

5)
3222 2)23(vuuvuvvu  ; 6))32(322 abbaabba  ;

7))4(:)41220(223223 xyxyyxyx  ;

8))7(:)2128(32322535 tusutsuts  ; 9))2)(3( mnm ;

10))52)(23(baba  ; 11))23)(35( yy ;

12))132)(3(2  uuu ; 13))12)(2(2  mnmnm ;

14))2)(2(nmknmk  ; 15))34)(34(yy  ;

16))3)(3(uu  ; 17)
2)5(n ; 18)

2)32(ba  ;

19))42)(2(2  xxx ; 20)
3)2(nm  ;

 simplify: 1)
22 6)3)(3()2()2(2 uvuvuvuvuu  ;

2) nnnn 20)52)(12()32(2  ;

 simplify and then evaluate for specific values of variables:

1) yyxyxyxyxyxxy 3)5)(2()2)(2()23(3 2  , if

5x and 2y ;

2))32(2)6(:)2418(2224334 uvvuuuvvuvu  , if 1u and

2v .

192

APPENDIX B

Problem file for trial with 11th grade students

in T-algebra

1. Multiply powers

2. Multiply powers

3. Divide powers

4. Divide powers

5. Divide powers

6. Divide powers

7. Raise to a power

8. Raise to a power

9. Raise to a power

10. Raise a quotient to a power

11. Raise a quotient to a power

12. Raise a quotient to a power

13. Raise a quotient to a power

14. Raise to a power

15. Raise to a power

16. Raise to a power

17. Raise to a power

18. Simplify

19. Raise to a power

20. Raise to a power

21. Raise to a power

22. Multiply monomials and simplify

if possible

23. Multiply monomials and simplify

if possible

24. Multiply monomials and simplify

if possible

25. Multiply monomials and simplify

if possible

26. Multiply monomials and simplify

if possible

27. Multiply monomials and simplify

if possible

193

28. Multiply and divide monomials

and simplify if possible

29. Multiply and divide monomials

and simplify if possible

30. Raise to a power and simplify if

possible

31. Raise to a power and simplify if

possible

32. Raise to a power and simplify if

possible

33. Raise to a power and simplify

34. Raise to a power and simplify

35. Multiply and divide monomials

and simplify if possible

36. Multiply and divide monomials

and simplify if possible

37. Raise monomials to a power and

simplify if possible

38. Raise monomials to a power and

simplify if possible

39. Raise monomials to a power and

simplify if possible

40. Simplify

41. Calculate the value of expression

if values of variables are a=–2

b=-1

42. Simplify and calculate the value

of expression if values of

variables are x=3 y=27

43. Simplify and calculate the value

of expression if values of

variables are x=-6 y=-2

44. Raise a quotient to a power

45. Calculate

46. Calculate

194

APPENDIX C

Categorization of errors in T-algebra

1. Unclassified errors

2. Impossible rule selected

3. Rule does not correspond to the solution algorithm

4. Selected syntactically incorrect object

5. Selected objects are of unsuitable form for applying the rule

6. Selected objects are not compatible

7. Selected objects belong to different subexpressions or to subexpressions of

wrong form

8. Too few objects selected

9. Too many objects selected

10. Input is incomplete (some boxes are empty)

11. Syntactically incorrect expression entered

12. The form of the result is incorrect (does not correspond to rule and objects)

13. Calculation errors

14. Sign errors

15. Entered terms are not equivalent to selected objects

16. The whole expression is not equivalent to the previous

17. Did not recognise the answer

18. Unfinished solution offered as an answer

19. Error in final answer

20. Messages concerning the program's special requirements

In this list, errors 2-3 are usually diagnosed on rule / object selection, 4-9 and 20

are diagnosed on object selection, 10-16 and 20 are diagnosed on input of result

(or intermediate result), 17-19 are diagnosed on reporting the answer to a

problem.

195

APPENDIX D

Backus-Naur Form full description of expressions

Backus-Naur Form full description of expressions in T-algebra is as follows:
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<non-zero digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<integer> ::= <non-zero digit> | <digit> | <non-zero digit> <integer>

<power> ::= ^ <integer> | ^ + <integer> | ^ - <integer>

<decimal separator> ::= , | .

<zero> ::= 0 | 0 <zero>

<decimal> ::= <integer> <decimal separator> <integer> | <integer>

<decimal separator> <zero> <integer>

<number> ::= <integer> | <integer> <power> | <decimal> | <decimal>

<power> | <numerical fraction> | <mixed number>

<numerical atom> ::= <numerical parentheses> | <numerical parentheses>

<numerical atom> | <numerical parentheses> <number> |

<numerical parentheses> <number> <numerical atom>

<numerical term> ::= <number> | <numerical atom> | <number> <numerical

atom>

<numerical mul div> ::= <numerical term> | <numerical term> * <numerical mul

div> | <numerical term> : <numerical mul div>

<numerical sign mul

div> :: =

+ <numerical mul div> | - <numerical mul div>

<numerical non-sign

sum sub> ::=

<numerical mul div> | <numerical mul div> + <numerical

non-sign sum sub> | <numerical mul div> - <numerical

non-sign sum sub>

<numerical sum sub>

::=

<numerical non-sign sum sub> | <numerical sign mul

div> | <numerical sign mul div> + <numerical non-sign

sum sub> | <numerical sign mul div> - <numerical non-

sign sum sub>

<numerical

parentheses> ::=

[<numerical sum sub>] | (<numerical sum sub>) |

[<numerical sum sub>] <power> | (<numerical sum

sub>) <power>

<numerical fraction> ::= <numerical sum sub> / <numerical sum sub>

<mixed number> ::= <integer> <numerical fraction>

<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u

| v | w | x | y | z

<variable> ::= <letter> | <letter> <power>

<atom> ::= <variable> | <parentheses> | <variable> <atom> |

<parentheses> <atom> | <parentheses> <number> |

<parentheses> <number> <atom>

<term> ::= <number> | <atom> | <number> <atom>

<mul div> ::= <term> | <term> * <mul div> | <term> : <mul div>

<sign mul div> :: = + <mul div> | - <mul div>

<non-sign sum sub> ::= <mul div> | <mul div> + <non-sign sum sub> | <mul div>

- <non-sign sum sub>

<sum sub> ::= <non-sign sum sub> | <sign mul div> | <sign mul div> +

<non-sign sum sub> | <sign mul div> - <non-sign sum

sub>

196

<parentheses> ::= [<sum sub>] | (<sum sub>) | [<sum sub>] <power> |

(<sum sub>) <power>

<fraction> ::= <sum sub> / <sum sub>

<equation inequality

signs> ::=

= | < | > | <= | >=

<equation inequality>

::=

<sum sub> <equation inequality signs> <sum sub>

<system> ::= <equation inequality> & <equation inequality> |

<equation inequality> & <system>

<expression> ::= <system> | <equation inequality> | <sum sub>

197

CURRICULUM VITAE

Dmitri Lepp

Citizenship: Republic of Estonia

Born: May 2, 1981, Võru, Estonia

Marital status: married

Address: Loopealse 20, Ülenurme alevik, Tartumaa, Estonia

Contacts: phone: +372 55 85 309

 e-mail: dmitri@ut.ee; dmitri.lepp@ee.fujitsu.com

Education

1987–1991 Tartu Secondary School No. 4

1991–1998 Tartu Annelinn Upper Secondary School

1998–2001 University of Tartu, Bachelor in Computer Science (cum laude)

2001–2003 University of Tartu, MSc in Computer Science

2003–… University of Tartu, PhD studies in Computer Science

Professional employment

2001–… AS Fujitsu Services, project manager

Scientific work

The main fields of interest are interactive learning environments and the use of

computers in mathematics education.

198

CURRICULUM VITAE

Dmitri Lepp

Kodakondsus: Eesti Vabariik

Sünniaeg ja -koht: 2. mai 1981, Võru, Eesti

Perekonnaseis: abielus

Aadress: Loopealse 20, Ülenurme alevik, Tartumaa, Eesti

Kontakt: tel.: +372 55 85 309

 e-post: dmitri@ut.ee; dmitri.lepp@ee.fujitsu.com

Haridus

1987–1991 Tartu 4. keskkool

1991–1998 Tartu Annelinna gümnaasium

1998–2001 Tartu Ülikool, informaatika bakalaureus (cum laude)

2001–2003 Tartu Ülikool, informaatika magister (MSc)

2003–… Tartu Ülikool, doktoriõpe informaatika erialal

Erialane teenistuskäik

2001–… AS Fujitsu Services, projektijuht

Teadustegevus

Peamine uurimisvaldkond on interaktiivsed õpisüsteemid ja arvutid mate-

maatikahariduses.

199

DISSERTATIONES MATHEMATICAE
UNIVERSITATIS TARTUENSIS

 1. Mati Heinloo. The design of nonhomogeneous spherical vessels, cylindrical

tubes and circular discs. Tartu, 1991, 23 p.
 2. Boris Komrakov. Primitive actions and the Sophus Lie problem. Tartu,

1991, 14 p.
 3. Jaak Heinloo. Phenomenological (continuum) theory of turbulence. Tartu,

1992, 47 p.
 4. Ants Tauts. Infinite formulae in intuitionistic logic of higher order. Tartu,

1992, 15 p.
 5. Tarmo Soomere. Kinetic theory of Rossby waves. Tartu, 1992, 32 p.
 6. Jüri Majak. Optimization of plastic axisymmetric plates and shells in the

case of Von Mises yield condition. Tartu, 1992, 32 p.
 7. Ants Aasma. Matrix transformations of summability and absolute summa-

bility fields of matrix methods. Tartu, 1993, 32 p.
 8. Helle Hein. Optimization of plastic axisymmetric plates and shells with

piece-wise constant thickness. Tartu, 1993, 28 p.
 9. Toomas Kiho. Study of optimality of iterated Lavrentiev method and

its generalizations. Tartu, 1994, 23 p.
10. Arne Kokk. Joint spectral theory and extension of non-trivial multiplica-

tive linear functionals. Tartu, 1995, 165 p.
11. Toomas Lepikult. Automated calculation of dynamically loaded rigid-

plastic structures. Tartu, 1995, 93 p, (in Russian).
12. Sander Hannus. Parametrical optimization of the plastic cylindrical shells

by taking into account geometrical and physical nonlinearities. Tartu, 1995,
74 p, (in Russian).

13. Sergei Tupailo. Hilbert’s epsilon-symbol in predicative subsystems of
analysis. Tartu, 1996, 134 p.

14. Enno Saks. Analysis and optimization of elastic-plastic shafts in torsion.
Tartu, 1996, 96 p.

15. Valdis Laan. Pullbacks and flatness properties of acts. Tartu, 1999, 90 p.
16. Märt Põldvere. Subspaces of Banach spaces having Phelps’ uniqueness

property. Tartu, 1999, 74 p.
17. Jelena Ausekle. Compactness of operators in Lorentz and Orlicz sequence

spaces. Tartu, 1999, 72 p.
18. Krista Fischer. Structural mean models for analyzing the effect of

compliance in clinical trials. Tartu, 1999, 124 p.

19. Helger Lipmaa. Secure and efficient time-stamping systems. Tartu, 1999,
56 p.

20. Jüri Lember. Consistency of empirical k-centres. Tartu, 1999, 148 p.
21. Ella Puman. Optimization of plastic conical shells. Tartu, 2000, 102 p.
22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000, 107 lk.
23. Varmo Vene. Categorical programming with inductive and coinductive

types. Tartu, 2000, 116 p.
24. Olga Sokratova. Ω-rings, their flat and projective acts with some appli-

cations. Tartu, 2000, 120 p.
25. Maria Zeltser. Investigation of double sequence spaces by soft and hard

analitical methods. Tartu, 2001, 154 p.
26. Ernst Tungel. Optimization of plastic spherical shells. Tartu, 2001, 90 p.
27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline ühesta-

mine. Tartu, 2001, 138 p.
28. Rainis Haller. M(r,s)-inequalities. Tartu, 2002, 78 p.
29. Jan Villemson. Size-efficient interval time stamps. Tartu, 2002, 82 p.
30. Eno Tõnisson. Solving of expession manipulation exercises in computer

algebra systems. Tartu, 2002, 92 p.
31. Mart Abel. Structure of Gelfand-Mazur algebras. Tartu, 2003. 94 p.
32. Vladimir Kuchmei. Affine completeness of some ockham algebras. Tartu,

2003. 100 p.
33. Olga Dunajeva. Asymptotic matrix methods in statistical inference

problems. Tartu 2003. 78 p.
34. Mare Tarang. Stability of the spline collocation method for volterra

integro-differential equations. Tartu 2004. 90 p.
35. Tatjana Nahtman. Permutation invariance and reparameterizations in

linear models. Tartu 2004. 91 p.
36. Märt Möls. Linear mixed models with equivalent predictors. Tartu 2004.

70 p.
37. Kristiina Hakk. Approximation methods for weakly singular integral

equations with discontinuous coefficients. Tartu 2004, 137 p.
38. Meelis Käärik. Fitting sets to probability distributions. Tartu 2005, 90 p.
39. Inga Parts. Piecewise polynomial collocation methods for solving weakly

singular integro-differential equations. Tartu 2005, 140 p.
40. Natalia Saealle. Convergence and summability with speed of functional

series. Tartu 2005, 91 p.
41. Tanel Kaart. The reliability of linear mixed models in genetic studies.

Tartu 2006, 124 p.
42. Kadre Torn. Shear and bending response of inelastic structures to dynamic

load. Tartu 2006, 142 p.

200

43. Kristel Mikkor. Uniform factorisation for compact subsets of Banach
spaces of operators. Tartu 2006, 72 p.

44. Darja Saveljeva. Quadratic and cubic spline collocation for Volterra
integral equations. Tartu 2006, 117 p.

45. Kristo Heero. Path planning and learning strategies for mobile robots in
dynamic partially unknown environments. Tartu 2006, 123 p.

46. Annely Mürk. Optimization of inelastic plates with cracks. Tartu 2006.
137 p.

47. Annemai Raidjõe. Sequence spaces defined by modulus functions and
superposition operators. Tartu 2006, 97 p.

48. Olga Panova. Real Gelfand-Mazur algebras. Tartu 2006, 82 p.
49. Härmel Nestra. Iteratively defined transfinite trace semantics and program

slicing with respect to them. Tartu 2006, 116 p.
50. Margus Pihlak. Approximation of multivariate distribution functions.

Tartu 2007, 82 p.
51. Ene Käärik. Handling dropouts in repeated measurements using copulas.

Tartu 2007, 99 p.
52. Artur Sepp. Affine models in mathematical finance: an analytical approach.

Tartu 2007, 147 p.
53. Marina Issakova. Solving of linear equations, linear inequalities and

systems of linear equations in interactive learning environment. Tartu 2007,
170 p.

54. Kaja Sõstra. Restriction estimator for domains. Tartu 2007, 104 p.
55. Kaarel Kaljurand. Attempto controlled English as a Semantic Web language.

Tartu 2007, 162 p.
56. Mart Anton. Mechanical modeling of IPMC actuators at large deforma-

tions. Tartu 2008, 123 p.
57. Evely Leetma. Solution of smoothing problems with obstacles. Tartu 2009,

81 p.
58. Ants Kaasik. Estimating ruin probabilities in the Cramér-Lundberg model

with heavy-tailed claims. Tartu 2009, 139 p.
59. Reimo Palm. Numerical Comparison of Regularization Algorithms for

Solving Ill-Posed Problems. Tartu 2010, 105 p.
60. Indrek Zolk. The commuting bounded approximation property of Banach

spaces. Tartu 2010, 107 p.
61. Jüri Reimand. Functional analysis of gene lists, networks and regulatory

systems. Tartu 2010, 153 p.
62. Ahti Peder. Superpositional Graphs and Finding the Description of Struc-

ture by Counting Method. Tartu 2010, 87 p.
63. Marek Kolk. Piecewise Polynomial Collocation for Volterra Integral

Equations with Singularities. Tartu 2010, 134 p.

201

64. Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs.
Tartu 2010, 137 p.

65. Larissa Roots. Free vibrations of stepped cylindrical shells containing
cracks. Tartu 2010, 94 p.

66. Mark Fišel. Optimizing Statistical Machine Translation via Input Modifi-
cation. Tartu 2011, 104 p.

67. Margus Niitsoo. Black-box Oracle Separation Techniques with Appli-
cations in Time-stamping. Tartu 2011, 174 p.

68. Olga Liivapuu. Graded q-differential algebras and algebraic models in
noncommutative geometry. Tartu 2011, 112 p.

69. Aleksei Lissitsin. Convex approximation properties of Banach spaces.
Tartu 2011, 107 p.

70. Lauri Tart. Morita equivalence of partially ordered semigroups. Tartu
2011, 101 p.

71. Siim Karus. Maintainability of XML Transformations. Tartu 2011, 142 p.
72. Margus Treumuth. A Framework for Asynchronous Dialogue Systems:

Concepts, Issues and Design Aspects. Tartu 2011, 95 p.

