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I INTRODUCTION 
 

This thesis is based on the work that has been done for the T-algebra project in 

2004–2008. The outcome of the project is a new interactive learning 

environment for step-by-step solving of expression manipulation problems in 

four different fields, particularly for solving simplification problems in the field 

of exponents, monomials and polynomials. Different general decisions and 

common parts of the system were designed during project seminars by the 

whole project team with help from math teachers involved in the project. Some 

other, field specific decisions were suggested by the responsible author. The 

thesis contains a general description of different aspects of the T-algebra 

environment based on articles published by the author and other team members. 

The main contribution of the thesis is design, implementation, testing and 

evaluating of the environment with a novel step dialogue for proper learning 

and diagnosis of knowledge gaps in solving simplification problems in the field 

of exponents, monomials and polynomials. 

 

 

1.1 Motivation 
 

Expression manipulation is one of the central skills needed for solving tasks in 

practically all fields of mathematics. However, learning outcomes in this area 

are often not satisfying. One of the reasons for poor performance is repetition of 

incorrect solution attempts without getting feedback. In the paper-and-pencil 

training process, students make many mistakes but teachers are not able to 

discover and correct them in time. Thus, mistakes are repeated many times and 

can become habitual. The need to analyse information quickly implies that the 

training could be improved by using computerised training environments. 

At school, the basic types of expression manipulation tasks are usually 

taught together with some solution algorithms. When a student solves such 

tasks, he should at each solution step: 

1. choose a transformation rule corresponding to a certain operation in the 

algorithm (or some simplification or calculation rule known earlier), 

2. select the operands (certain parts of expressions or equations) for this 

rule, 

3. replace them with the result of the operation. 

 

For proper learning of expression manipulation as well as for assessment and 

diagnosis of knowledge gaps, an environment should be available where all the 

necessary decisions and calculations at each solution step would be made by the 

student and the program would be able to understand the mistakes. 

Existing software does not address the whole complex spectrum of potential 

problems. For example, some systems do not allow students to make all 

decisions during the steps, and also do not allow making certain typical errors. 

Some other environments do not provide error diagnosis to support the student. 
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In the next section we will see some examples of existing software that we have 

studied prior to starting our own project. We have formulated the features (see 

section 1.3) that the environment should have to be useful for students. 

In 2004 we started a project for creating a new learning environment called 

T-algebra for four areas of school mathematics: calculation of the values of 

numerical expressions; operations with fractions; solving of linear equations, 

inequalities and systems of linear equation; operations with polynomials. Prior 

to that, in my Master‟s thesis (Lepp, 2003a, Lepp, 2003b), I tried to create a 

prototype of the system with a similar solution step dialogue, which was reused 

and improved for the T-algebra project. Our main goal is to design a solution 

dialogue that allows the program to understand the decisions made by students 

at all three stages of the step. 

 

 

1.2 Related works 
 

Prior to making any decisions we studied similar environments and other 

computerized ways to teach mathematics. Before writing this thesis we checked 

again if some new systems were created, but we have not found any new 

interesting system worth mentioning. We also studied results of other researches 

who have tried to evaluate interactive learning systems, for example, research of 

the TELMA project (Trgalova et al., 2009). In this section we present some 

results of our study. During the study we paid attention to the following 

features: 

 correspondence of the environment to school curriculum; 

 cognitively faithful solution generation possibility with explanation of 

steps; 

 student activity in the environment and system activity; 

 possibility for student to make decisions about solution path; 

 possibility to make errors and system ability to diagnose them and react 

accordingly; 

 what skills are learned while working with computer. 

 

Alessi and Trollip (Alessi et al., 2001) presented a list of categories for math 

education software: 

 drills, 

 tutorials, 

 games, 

 simulations, 

 hypermedia, 

 tools and open-ended learning environments. 

 

Handal (Handal et al., 2003) tried to estimate how relevant are those categories 

nowadays and provided some software examples for each category. He 
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concluded that categories of computer use in schools described by Alessi and 

Trollip are still a helpful framework for classifying web-based mathematics 

learning activities. In our study we concentrated on a slightly different grouping 

of software that we think is more suitable for the complex field of algebraic 

transformations: 

 testing environments; 

 tutorials and spreadsheets; 

 computer algebra systems (CAS) and calculators; 

 interactive problem solving environments. 

 

 
1.2.1 Testing environments 

 

Considering their method, testing environments are very close to drilling 

programs, as they present a certain set of questions and problems to be solved 

by students. In most cases, students can enter only the final answer to the 

problem. In case of complex problems, students have to do calculations on 

paper and enter the answer. The computer reaction is usually limited to 

correct/incorrect, but some testing environments provide a possibility to have a 

different reaction to certain student answers. General-purpose testing 

environments do not have any domain expert module, so there is no separate 

error diagnosis module or some solution generator built in. However, students 

can still learn by getting immediate response to their answers. One example of 

an online testing environment is the testing module of the Blackboard Learning 

System (Blackboard Learning System by Blackboard Inc). In this system, for 

example, the author of questions for the test can define the reactions of the 

system to some typical incorrect answers. 

 

 
1.2.2 Tutorials 

 

Nowadays it is possible to find quite many web-based or standalone tutorials for 

school mathematics and algebra on the Internet. Tutorials present information 

and also guide students through their learning processes. A tutorial usually 

contains an information part and some practical exercises similar to testing 

environments, where students usually only enter the final result. In comparison 

to testing environments, tutorials usually give feedback on the procedure to get 

the correct answer. According to Alessi and Trollip (Alessi et al., 1991), 

tutorials are effective for "presenting factual information, for learning rules and 

principles, or for learning problem-solving strategies”, but not for learning to 

perform separate solution steps and make expression transformations. 

MathAid (MathAid by MathAid) is an example of a typical tutorial system. 

It has a lot of structured material: for each topic, one explanation page and 

several practical problems where students have to enter the final result. It is 

possible to ask for help and then the system will generate a stepwise solution. 
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However, as expressions have a fixed structure, the solution is quite rigid, with 

only constants changing for different problems. MathCentre (MathCentre by 

Mathematics Education Centre) is another example of a tutorial system with 

different learning resources grouped by topics. Mathematics V10 (Mathematics 

V10 by EptSoft) is a further example of an interactive tutorial system. Under 

each topic, students can change certain parameters or generate random 

expressions to illustrate and explain the material. It has also a calculator with a 

good expression editor. However, it does not have a built-in testing component, 

so student learning in the system is quite passive. Tutorials usually include a 

domain expert module of some kind but in most cases it cannot be used for 

proper diagnosis of student errors. 

A slightly different approach is used in applications, which are specifically 

designed for automatic generation of solutions, for example, Equation Wizard 

(Equation Wizard by ElasticLogic). In such a system, students can enter an 

expression (polynomial expression or linear equation) and ask the system to 

simplify or solve an equation. The system produces a step-by-step solution, 

making one simplification on each line and presenting a description of each 

step. The steps and transformation rules used are quite similar to those taught at 

school, so we can say that the solution generator in this system is cognitively 

faithful. In this system, students can enter only the initial expression, they 

cannot make any mistakes and, therefore, no error diagnosis is available. 

Student learning in the system is quite passive, although they can learn the 

solution algorithm and how to create individual solution steps, as those aspects 

are explained. 

 

 
1.2.3 Computer algebra systems and applications 

 

Another category that we have studied is computer algebra systems (CAS) and 

also algebra calculators. Many different CAS are used directly for educational 

needs, for example, Derive (Kutzler, 1996) or WIRIS (Xambo et al., 2002) and 

also algebra calculators like TI-92 (Kutzler, 2000). The use of CAS, such as 

Maple (Stephens et al., 1999), has some positive effects on student results, but 

the teaching methods using computer algebra systems are different from 

traditional teaching. It is not possible to use CAS for practicing problem solving 

(neither algorithms nor applications of single simplification rules), as those are 

not designed for such work. It is possible to get the final answer to a problem 

very easily but, until recently, systems did not generate or show the solution 

path. The commands or transformation rules implemented in CAS are usually 

too powerful for school education, making many simplifications in one step and 

sometimes producing results that are beyond the school curriculum (this can be 

configurable in some cases). Students cannot control the solution process by 

making decisions on the result, nor make any mistakes. 

Although CAS themselves are not best suited for algebraic problem solving 

under student control, they can be used for this purpose in other systems. 
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Serving as a domain expert module of such systems, the core of a CAS can be 

used for application of some simplification rules, checking student results, 

providing feedback, etc. Error diagnosis and feedback to students is usually 

limited to indications whether an answer is correct or incorrect, except for some 

instances when certain typical misconceptions are checked separately. One 

example of such integration of CAS into a task oriented tutorial system is 

described by Postel (Postel, 1999). In the described system, students are able to 

solve equations or simplify algebraic expressions step-by-step under the control 

of the system. The Environment and Tutor modules of the system are custom-

made while the Expert module uses MuPAD. The Expert module is used not 

only for checking students‟ decisions – like whether a given mathematical 

operation is correct and leads towards the solution or whether the result of a 

solution step is mathematically correct and compatible with the corresponding 

operation – but also for computing the result of a solution step and suggesting 

an appropriate mathematical operation as the next solution step. Its design is 

similar to rule-based problem solving environments considered below, but we 

mention it here as an example of CAS integration. Some other examples of 

interactive CAS and possibility to generate step-by-step solutions are presented 

by Maleševic (Maleševic, 2009), for example, when using the “Student” 

package in the Maple integration, the problem solution generated by the system 

is more detailed and contains more smaller steps. CAS are used in other systems 

for computer aided assessment (evaluate student answers and provide 

feedback), for example, STACK (Sangwin, 2007) uses computer algebra system 

Maxima, AiM (Klai et al., 2000) and Wallis (Mavrikis et al., 2003) use Maple. 

In these systems students have to enter only an answer to a question, an 

algebraic expression, and the system makes checks using CAS. Although it 

might be possible to build very complicated response processing trees 

(Sangwin, 2007), the system still reacts according to certain predefined 

responses. The system is not able to generate a solution or diagnose the exact 

position of a mistake in an answer. Help provided by the system is restricted to 

the same response processing tree that has to be defined for each problem, 

which can be time consuming. The student learns from immediate feedback but 

still has to do calculations on paper without any explicit checking. 

 

 
1.2.4 Interactive problem solving environments 

The final group of applications we have studied includes interactive problem 

solving environments, which belong to open-ended learning environments 

according to the categorisation of Alessi and Trollip (Alessi et al., 2001). In 

these environments problems are solved step-by-step under the control of the 

environment and according to a certain schema for making solution steps. We 

have identified the following schemas of problem solving in these environ-

ments: 
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 only rule/command based environments, where students select commands 

and subexpressions and the environment applies the rule automatically; 

 only input based environments, where each step is freely entered by the 

student; 

 combined rule-input based environments, where student makes 

transformations using some rules supported by inputting some parts of 

the result. 

 
1.2.4.1 Rule-based environments 

In Rule-based environments, when a student makes a solution step, he usually 

selects a transformation rule and, in some cases, a part of the expression to 

apply the selected rule to. The transformation itself is made automatically by the 

computer. Generally, in such environments, students can learn and practice the 

solution algorithm, but the learning of performing algorithm steps (details of 

operations) is passive, because the computer performs more work than the user. 

However, the student has some freedom in choosing a solution path and has a 

possibility to make some transformations before others. 

The possibility for students to make mistakes is limited in rule-based 

environments – the only possibilities are selection of incorrect operands and, in 

some cases, selection of inapplicable rules. In some systems it is sufficient to 

select the whole expression for application of the rule and the system 

automatically identifies suitable operands. In other systems, after selecting a 

subexpression, the system provides a list of possible operations on the selected 

expression. 

Although, for applying some rules, students need to input some additional 

information (for example, coefficient to multiply both sides of equation, etc.), 

these systems are not categorised in the group of combined rule-input systems, 

because the result is usually calculated automatically using this entered 

additional information. 

Some examples of rule-based environments worth mentioning are: 

 EXPRESSIONS (Thompson and Thompson, 1987); 

 ALGEBRALAND (Brown, 1985); 

 Mathpert (Beeson, 1990); 

 MathXpert (Beeson, 2002); 

 Aplusix (Nicaud et al., 1999); 

 L‟Algebrista (Cerulli and Mariotti, 2002); 

 AlgeBrain (Alpert et al., 1999); 

 Education Program for Gifted Youth (EPGY) (Ravaglia et al., 1998); 

 Cognitive Tutor Algebra 1 (Cognitive Tutor by Carnegie Learning Inc.); 

 Ms. Lindquist (Heffernan and Koedinger, 2000). 

 

The largest and most popular of them, for example, Cognitive Tutor, 

MathXpert, Ms. Lindquist, Aplusix, are also evaluated in the TELMA project 
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research (Trgalova et al., 2009). A brief description of the listed systems and 

their features is given below. 

EXPRESSIONS is one of the oldest, classic rule-based environments. It has 

two different representations of expressions: the usual (sentential) form and an 

operator-based tree. In order to perform a step, students should select a rule 

(button) and then a subexpression (by clicking on a node in a tree). The program 

changes the expression and the tree accordingly. In their study, Thompson 

detected typical errors that students made in the system: trying to apply an 

inappropriate rule to current expression and trying to apply a correct operation 

to wrong subexpression (in a tree). 

The first version of the Aplusix environment enabled to practice factorizing 

polynomials by choosing an action, selecting an expression and, in some cases, 

entering additional information. The current version of Aplusix utilizes an 

input-only interface with possibility to select some simplification commands. 

Mathpert and its evolution to MathXpert both follow the principle that 

students should not have a possibility to make mistakes. When solving 

problems students should select a subexpression, the system then displays the 

list of suitable rules and, after one of them is selected, the system applies it 

automatically. Therefore, students can err neither in selecting the rule nor in 

applying it. If the student is stuck and unable to proceed, MathXpert can offer 

different kinds of help, for example, generate the next step automatically. 

The L‟Algebrista system also follows the “no mistakes” principle and does 

not allow selecting mathematically incorrect subexpressions, for example, if a 

student wants to select a+3 in the expression 2*a+3, the system will 

automatically extend the selection to the whole expression. 

There are other rule-based systems worth mentioning. In the AlgeBrain web-

based intelligent tutoring system for solving equations, students should select 

operands (a term can be selected by clicking on its primary operator) and an 

operation. Like the systems mentioned above, the system does not allow 

selecting syntactically incorrect parts. The system proposes hints and animated 

feedback. A similar scheme is used in the Education Program for Gifted Youth 

(EPGY). In this system, in order to make solution steps, students usually have 

to enter some additional information. EPGY uses the kernel of Maple as an 

expert module. Cognitive Tutor Algebra 1 includes simplification exercises on 

polynomials and exponents (chapters 9 and 10) where students have to choose 

an operation for making a solution step. For some operations, the system asks to 

enter some additional information or select parts of expression to apply the rule 

to. 

Ms. Lindquist is an algebra word problems tutoring software. The algebra 

model concerns symbolization, i.e., the task of writing an algebraic expression 

given a real-world problem context, which is considered as a major determinant 

of problem difficulty. Although students enter expressions similarly to input-

only environments, the dialogue guides them to the solution step by step, 

making certain steps / operations at each step. 
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1.2.4.2 Input-based environments 

In Input-based environments, when a student makes a solution step, he usually 

enters the result of transformation on a new line. This is more similar to paper-

and-pencil solutions where students simply write transformed expressions line 

by line. In such systems the expression is usually copied to a new line and 

modified. Different techniques can be used for modification, for example, in 

Aplusix users can move parts of expressions with the mouse (for example, 

move terms to other side of equation, etc.). In other systems, simple keyboard 

input is used for entering result. 

When solving problems students have the possibility to make many 

transformations on the same line. Input-based interface also enables students to 

make all the mistakes that are possible on paper. An exact error diagnosis is 

quite complicated for the system – similarly to paper solutions, there is no 

information on the student‟s intentions (what transformation rule and to what 

objects is the student trying to apply). Most input-based environments diagnose 

equivalence of two expressions, which is quite trivial in most cases of school 

algebra. The domain expert module of input-based environments usually does 

not provide a precise diagnosis of errors made. 

When working in input-based environments, students practice both making 

separate steps and making decisions about the solution path. The solution 

algorithm strategy is usually not supported by the system – there are no rules for 

the system to give any hints. Furthermore, input-based environments usually do 

not generate any step-by-step solutions for students. 

Some examples of input-based environments worth mentioning are: 

 BUGGY/DEBUGGY (Brown and Burton, 1978; Burton, 1982); 

 Algebra tutor (Anderson et al., 1990); 

 Aplusix (Nicaud et al., 2004); 

 Math-Teacher (Math-Teacher by MATH-KAL); 

 Treefrog (Strickland and Al-Jumeily, 1999). 

 

The first prototypes of input-based systems that tried to model student 

behaviour were created as early as in the seventies of the last century. BUGGY 

was the first diagnostic system based on “the Buggy model”, where student‟s 

errors are diagnosed as a typical “bug” – a discrete modification to the correct 

skills. The system tried to identify a bug that could explain the student‟s 

answers. DEBUGGY, a development of BUGGY, is a much more sophisticated 

diagnostic system, that takes into account both the fact that more than one bug 

can cause the student's errors and the fact that sometimes there is no hypothesis 

explaining the student's behaviour completely, so that the system has to find a 

model that best explains it. Both systems allowed students to solve in-place 

subtraction problems. 

Algebra tutor, an early version of Cognitive tutor Algebra 1, also required 

only entering of the result and the program tried to figure out, what step was 

performed, and to give appropriate feedback. However, authors of cognitive 
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algebra tutors found that, “The problem was that the students‟ error might well 

have occurred at some intermediate step that the students were no longer fixated 

upon. It was very difficult to communicate to the student what the problem 

was.” (Anderson et al., 1990, p. 42). 

Another problem that arises is the possibility for the theory of a domain to be 

completely specified (as it is possible, for example, to list a complete set of 

rules for arithmetic or high school algebra) – it is difficult, if not impossible, to 

enumerate all the misconceptions and other errors that may possibly be 

encountered in students‟ work, even when one only considers the errors that 

students generally tend to make. That is to say, it is generally impossible to 

have a complete bug library. And even if it were possible to have, at the start, a 

bug library that contained at least the most common errors of a group of 

students, the results of (Payne et al., 1990) suggest that different groups or 

populations of students (e.g., students from different schools) may need 

different bug libraries. 

Aplusix is an ILE for teaching and learning secondary school arithmetic and 

algebra. It lets students solve exercises and provides two fundamental 

feedbacks: it verifies the correctness of calculations and of the end of exercises. 

The current version of Aplusix diagnoses only non-equivalence of a new 

expression to the previous one. The authors of Aplusix are developing the 

program further. They are building a library of correct and incorrect rules, 

which can describe how one expression was transformed by the student to the 

next expression, and adding student modelling using conceptions (the models 

will be provided only for teachers, not students) (Nicaud et al., 2006; Nicaud et 

al., 2005). They are also planning to provide good feedback for the student from 

the calculated conceptions. When solving problems in Aplusix, the program 

copies the content of the previous line (expression, equation or system of 

equations) to the next line and the student should edit it to get the result of the 

step by typing or using drag and drop technique. The system is giving the 

student feedback about correctness of the step. 

Math-Teacher is another example of a system with an input-only interface. It 

covers problems from different fields of mathematics, starting from arithmetical 

problems like calculation of value of numerical expression. It also contains 

problems from algebra like simplifying polynomial expressions, linear and 

quadratic equation solving, etc. However, it also contains material and typical 

problems from calculus and geometry. The expressions in Math-Teacher should 

be entered in a linear, Maple-like form. In most cases, there is a possibility to 

enter the final solution to a problem, although the system advises the user to 

reach the solution step-by-step. The program provides three basic types of 

feedback: correct, incorrect or syntax error. Some help (like hint on the last 

answer line) or information about the lesson is provided. Finally, Treefrog is yet 

another example of an input-based system. Similarly to Math-Teacher, students 

enter the next line of expression and receive feedback whether it is correct or 

not. Students can solve problems step-by-step or enter the final result at once. In 

case of incorrect input, it provides a hint about which operation should be 
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performed first, based on the priority of operations and, in case of equations, a 

solution algorithm. 

 
1.2.4.3 Combined rule-input based environments 

The third group of systems uses direct input while also enabling selection of 

transformation rules and objects (combined rule-input). The intermediate 

version of Cognitive Tutor: Algebra (Anderson et al., 1995) was a system where 

the student could decompose a result of calculation into substeps recursively 

until primitive steps were reached. At each substep, the student had to choose 

the operation that should be performed on the expression, enter the arguments to 

proceed to this operation, and enter the result. The tutor embedded boxes on top 

of boxes to indicate the levels of embedded goals. However, after evaluation the 

authors found that the tutor did not give positive results and “… the major 

reason for the lack of effect was that there was a large difference between the 

tutor interface and the interface used in class (i.e., paper and pencil). It was just 

not obvious how to map the boxed representation of algorithmic decompo-

sitions to the linear line-by-line transformations…” (Anderson et al., 1995, p. 

183). 

In my Master‟s thesis (Lepp, 2003b, Lepp, 2003a) I also tried to implement a 

system with a combined step making mode (input result of application of 

transformation rules) as a prototype for T-algebra. The interface was quite 

similar to paper and pencil working mode but the input stage of transformation 

rules required entering different parts of expressions and the rule argument 

selection was too dependent on the chosen rule. 

The supervisor of the author‟s research had experience with step-by-step 

problem solving environments from early nineties. A package for exercises in 

Mathematical Logic was developed in 1988–91 at the University of Tartu 

(Prank, 1991). One of the programs was an interactive environment for stepwise 

solution of formula manipulation exercises in Propositional Logic (expression 

of formulas through {&, ¬}, {, ¬} or {, ¬} and finding normal forms). The 

first version of this program had an input-only interface. At every step the 

student had to type a new formula on the next line (with some copy-paste 

possibilities). The program checked the syntax, equivalence to the previous line 

and whether the target form of the expression was reached. Prank saw that the 

greatest problems were posed by errors caused by misunderstanding the order of 

operations. The system was generally unable to diagnose them without explicit 

information about the object of conversion. In the second version (Prank and 

Viira, 1991) the step dialog was built using an Object-Action scheme. The 

student had to mark a subformula and then convert it to the result of the step. 

The strings before and after the marked subformula were copied automatically. 

For the second substep, the program had two working modes: input and 

selection of a conversion rule from the menu. As a result, the program was able 

to verify separately the selection of operand and the performed conversion. This 

addition of a marking phase gave a level of feedback that was sufficient for that 
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group of users (second-year students) and it was decided that there is no further 

need to make it more precise. 

 
 

1.2.5 Task-oriented tutorial systems 
 

Holland (Holland, 1994) gives another overview of some intelligent tutoring 

systems from mid 90-s and proposes to use subclasses of tutorial systems for 

teaching mathematics. He defined the so-called subclass of task-oriented 

tutorial systems (TTS). According to Holland, two essential educational goals 

of a TTS are: 

 The students know which operators are required or permissible for 

solving the task (e.g., transformation rules for transforming terms or 

equations). What is to be exercised here is the skill to apply the operators 

in the context of a problem solution consisting of several steps. 

 The students should know and be able to apply heuristic methods to solve 

problems. 

 
1.2.6 Conclusion 

 

In previous sections we have reviewed different learning tools and problem 

solving environments. We think that students can get most effect from problem 

learning environments as they are using “learning-by-doing” technique; 

therefore, we focused mostly on them in our research. However, we have 

pointed to some problems in different solution step making approaches. 

Some systems do not allow students to make all decisions when making 

steps (for example, rule-based systems do not allow entering the result of 

application of a rule or to select objects of a rule), and also do not allow making 

certain typical errors. Learning from own mistakes is the most effective way 

and feedback of the system is extremely important for that. However, as we 

have seen, most environments do not provide an exact error diagnosis to support 

the student. 

From this point of view, the systems with a combined rule-input based 

solution step dialogue are most suitable for students, although there are very 

few examples of systems utilizing this approach. In such a dialogue the students 

make all decisions about the solution step, they can make the same errors that 

are possible on paper and, for the system, this dialogue creates a possibility to 

give most accurate diagnosis based on student decisions. Although Anderson 

faced problems in Cognitive Tutor: Algebra (Anderson et al., 1995, p. 183), 

those were caused by the difference between the user interface and the usual 

paper-and-pencil approach. My supervisor also had a positive experience of 

using this combined rule-input dialogue in an environment for solving problems 

When formulating goals for the T-algebra project, we tried to fulfil both these 
educational goals: student has to be able to practice both applying separate 
transformation rules and choosing correct rules (finding solution path) to solve 
the problem. 
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in Mathematical logic. Therefore, we have chosen the rule-input based solution 

step dialogue for our project. 

 
 

1.3 Problem statement 
 

The goal of the T-algebra project was to design, implement and test a problem 

solving environment of a new kind for proper learning as well as for assessment 

and diagnosis of gaps in the knowledge and skills. The project covers different 

problems from four fields of school mathematics and algebra (grades 4–8): 

 calculation of the values of numerical expressions; 

 operations with fractions; 

 solving of linear equations, inequalities and linear equation systems; 

 operations with exponents, monomials and polynomials. 

 

When designing the functionality of T-algebra, we focused on certain features 

that we decided the system should have: 

 enable students to solve problems step-by-step and line-by-line in a 

manner similar to solving problems on paper; 

 allow the student to make all the necessary decisions and calculations at 

each solution step and explicitly provide this information to the system; 

 leave an opportunity for the student to make the same mistakes as on 

paper; 

 give the possibility to learn both the algorithms and their steps in detail; 

 contain such dialogue that allows the program to understand all decisions 

made by students (collect direct information about chosen operation, 

selected operands, entered result); 

 contain such domain expert module, which would be able to not only 

give an answer, but to show a solution path using the designed interface; 

 be intelligent enough to check the knowledge and skills of the student, 

understand mistakes, offer feedback and advice. 

These features resulted in decisions about solution step dialogue and user 

interface for making solution steps, applications of domain expert module, error 

diagnosis, etc., which are described in Chapter 2 of the thesis. The parts that 

were in my responsibility in the project are listed in the next section. 

 
 

1.4 Contribution of the thesis 
 

As mentioned, this thesis is based on the work that has been done for the 

T-algebra project. The thesis presents general decisions and solutions of the 

problem solving environment as well as particular decisions and imple-

mentation details of rules and problem types for the fields I was responsible for: 

exponents, monomials and polynomials. 
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In T-algebra we used the combination of rule-based and input-based 

approach for making solution steps. We called this the “action-object-input 

scheme”. The decisions and the program implemented in my Master‟s thesis 

(Lepp, 2003b, Lepp, 2003a) were used as a prototype for this scheme. It is hard 

to identify the particular contributions of each team member to designing and 

implementing the general ideas of the action-object-input scheme. Chapter 2 of 

this thesis presents different aspects of the system, even if it is not the main 

contribution of the author. In some cases, materials are based on articles 

presented by other team members (for example, 3 input modes for the input 

stage of a step) but the description of a feature is included in the thesis to 

facilitate a better understanding of the system and other contributions of the 

author. 

The main contribution of the author of the thesis can be divided into three 

large parts: 

 design decisions and implementation of certain general features of 

T-algebra; 

 study, design decisions and implementation of problem types and rules 

for a specific domain – domain of exponents, monomials and poly-

nomials; 

 experimenting efforts in evaluating the general features, like solution 

dialogue of T-algebra as well as domain specific decisions, problem 

types, transformation rules, etc. 

 

When designing and developing T-algebra, some features were designed and 

implemented mainly by the author of the thesis: 

 participation in design and implementation (project seminars with school 

teachers and authors of school textbooks) of action-object-input solution 

step dialogue (presented in section 2.5); 

 implementation of expression parsing and rendering in expression editor; 

 design and implementation of expression editor features to support the 

solution step dialogue (presented in section 2.7); 

 design and implementation of extension to the action-object-input 

dialogue (presented in section 2.6); 

 design and implementation of general principle of error diagnosis and 

categorization (presented in sections 2.8.6 and 2.9); 

 internal design and implementation of basic classes of rule and problem 

type and their usage in general solution algorithm, error diagnosis, etc. 

(presented in sections 3.2.2 and 3.3.1). 

 

The author‟s domain specific (domain of exponents, monomials and poly-

nomials) contribution is: 

 study of problems solved at school in the chosen domain and design of 

problem types for T-algebra (presented in section 3.1); 



24 

 study of school textbooks and student solutions in order to extract 

transformation rules needed in this domain (both domain specific and 

learned before), design of transformation rules in T-algebra, discussion of 

the design with school teachers and publication of decisions (presented in 

section 3.1); 

 investigation of typical errors for the selected domain, based on an 

experiment with students (presented in section 4.1) and related works in 

order to design error diagnosis for designed transformation rules 

(presented in section 2.8.6); 

 implementation of identified problem types, including error diagnosis, 

conditions for starting and ending expressions, solution algorithm, etc. 

(presented as different subsections in section 3.3); 

 implementation of domain specific transformation rules, including error 

diagnosis and domain expert for application of implemented rules 

(presented as different subsections in section 3.2). 

 

The author of the thesis participated in numerous experiments and trials with 

students and teachers (results are presented in Chapter 4): 

 experimental validation of created dialogues with students and teachers; 

 evaluation of the environment in the chosen domain of exponents, 

monomials and polynomials, trials with real students; 

 investigation of student solutions and their mistakes when solving 

problems in T-algebra (particularly problems of the chosen domain) and 

comparison to the results of the experiment for collecting mistakes from 

paper solutions. 

 

 

1.5 Structure of the thesis 
 

In addition to this introduction, the thesis contains four chapters, a conclusion 

and appendices. General description of T-algebra is based on the papers by the 

author presented in the List of original publications and also on papers 

presented by other T-algebra team members. The thesis also contains a large 

chapter on the author‟s domain specific contribution. 

Chapter 2 (T-algebra interactive learning environment) thoroughly describes 

the design decisions for T-algebra and its main components. This chapter 

concentrates on the parts of the system that I was responsible for (either design, 

implementation or both). The first part of this chapter describes T-algebra as a 

task-oriented system and presents its components. The second part introduces 

the problem solving environment T-algebra in general. The third part of Chapter 

2 gives a brief description of the problem composing program and its features 

(including random expression generation). The fourth part gives an overview of 

expressions supported by the system. The fifth part presents the design of 

solution step dialogue as an extension to the dialogue tried in the Master‟s 

thesis. The next part lists extensions to the dialogue designed for the needs of 
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certain rules. The seventh part of Chapter 2 provides details about the 

implemented expression editor for supporting the dialogue. The eighth part of 

this chapter gives an overview of different applications of the domain expert of 

T-algebra. The last part describes different error categories and statistics 

collected by T-algebra. 

Chapter 3 (Problems, rules and algorithms in the domain of exponents, 

monomials and polynomials in school textbooks and in T-algebra) describes the 

domain of exponents, monomials and polynomials. First, exploration of 

mathematics school textbooks is presented (definitions, algorithms, problem 

types). The second part of this chapter describes the rule engine of T-algebra, 

gives information about common checks for the rules, different usages of the 

rules and also some rule implementation details. This part also provides a 

detailed description of the domain specific rules, designed for solving simplifi-

cation problems (exponents, monomials and polynomials) in T-algebra. The last 

part similarly describes different aspects of problem types in T-algebra: general 

information, usage of problem types, common checks, and some 

implementation details. This part also presents composed problem types and 

their solving algorithms in the chosen domain. 

Chapter 4 (Conducted experiments) describes four different experiments 

conducted to validate the user interface, to evaluate the created interactive 

learning environment (the domain of exponents, monomials and polynomials), 

to investigate mistakes made by students during problem solving in T-algebra, 

and to compare them with mistakes made on paper. 

The thesis also contains four Appendices. Appendix A lists the problems 

used for practice exercises in one of the experiments on paper. Appendix B 

contains the list of problems from the problem file that was used in another 

experiment with students. Appendix C provides the list of all error categories 

diagnosed in T-algebra. Appendix D presents, in Backus-Naur Form, a full 

description of expressions supported in T-algebra. 
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T-ALGEBRA 

2 INTERACTIVE LEARNING ENVIRONMENT  

 

 calculation of the values of numerical expressions; 

 operations with fractions; 

 solving of linear equations, inequalities and linear equation systems (my 

contribution to this environment); 

 simplification of polynomials. 

 

T-algebra was developed from 2004 by the Master‟s and Doctoral students of 

the Institute of Computer Science at the University of Tartu (Dmitri Lepp – 

simplification of polynomials; Marina Issakova – solving of linear equations, 

inequalities and linear equation systems; Vahur Vaiksaar – operations with 

fractions and calculation of the values of numerical expressions) and under the 

supervision of their instructors (Rein Prank – project manager, Eno Tõnisson). 

Rein Prank also implemented the random expression generator for different 

types of tasks. 

While designing the most important part of the system – solution dialogue 

and transformation rules – help of consultants was used. Great contributions 

were made by mathematics teachers Mart and Maire Oja and the authors of 

textbooks for schools Tiit Lepmann and Anu Palu. This version is developed as 

a project financed by the „Tiger Leap‟ computerization programme for Estonian 

schools. In the end of 2008, the first release of T-algebra was completed and 

made available for all Estonian schools. 

In this section I describe different general aspects of design and imple-

mentation of T-algebra. I mostly describe those parts of the system I was 

responsible for but, to give full overview of the system, I shortly describe also 

those parts of the system that were designed and implemented by other team 

members. My main contributions in the general part of the system are 

expression text representation and expression editor, extension of action-object-

input scheme (the basis of this scheme was tried in my Master‟s thesis (Lepp, 

2003b, Lepp, 2003a)), design decisions and implementation of base classes for 

rule and problem type (see sections 3.2.2 and 3.3.1), rules and problem types for 

the field of simplification of polynomials (described in sections 3.2 and 3.3). 

Design decisions and implementation details are published by me and other 

T-algebra team members (Issakova and Lepp, 2004; Lepp, 2005; Lepp et al., 

2005; Issakova et al., 2005; Lepp, 2006a; Lepp, 2006b; Lepp, 2006c; Lepp, 

2006d; Issakova et al., 2006; Issakova, 2006; Prank et al., 2006a; Prank et al., 

One contribution of this thesis is to design and implement an interactive learning 
environment for solving polynomial simplification problems. This goal was 
realized as a part of T-algebra interactive learning environment, which enables 
step-by-step solving of algebra problems in four areas of school mathematics: 

2006b; Prank et al., 2007) and some of those articles were used as a basis for 
the material in this section. 
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2.1 T-algebra – a classic task-oriented system 
 

According to Postel (Postel, 1999) and Holland (Holland, 1994) a typical task-

oriented tutorial system (TTS) consists of four main parts: 

 Expert Module: The system must be an expert on the subject in question. 

The system must be able to answer student questions, to solve tasks put to 

the student, and to analyse student answers for bugs and misconceptions. 

 Environment Module: The system must know how to present the subject 

matter in an appropriate way, and must allow the student to enter his/her 

problems in an appropriate way. 

 Tutor Module: The system must have knowledge about the curriculum 

and offer the student a repertoire of tutorial strategies in order to be able 

to intervene tutorially in an optimal way at any point. 

 Student Module: The system must have an idea of each student‟s 

knowledge and skills and be able to adapt its own hypothetical student 

model dynamically to the student‟s learning progress. 

Postel formulated some key features for each component, which are also valid 

for T-algebra. In this section we try to describe all those essential components 

of T-algebra. 

The first component, the Expert Module, should (Postel, 1999): 

 find a solution for each problem of the problem class. The solution is 

appropriate to the knowledge state of the student; 

 be able to check a student solution for correctness and quality. It is able to 

classify errors as they occur; 

 be "transparent", that means, it uses only knowledge and methods the 

student is supposed to learn and use. 

In T-algebra, the expert module is able to generate a solution for all problems 

using exactly the same set of transformation rules that is available for the 

student. A specific set of transformation rules is defined for each problem type, 

based on the curriculum and Estonian schoolbooks. See details in sections 2.8, 

3.1, 3.2 and 3.3. 

The second component, the Environment Module for the dialogue between 

student and tutor should (Postel, 1999): 

 minimize the number of actions (keystrokes, mouse clicks, etc.) which 

are necessary for the communication with the system; 

 represent the problems in that way that the representation reflects the 

structure of the problems; 

 give as much information as possible about the problem-solving process; 

 detect possible mistakes done by the student during the communication 

(e.g., input of syntactical correct mathematical expressions).
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We tried to make the user interface and solution step dialogue in T-algebra 

similar to working on paper. The estimated amount of input required from the 

student is similar to pure input environments and is much smaller than when 

solving problems on paper (Prank et al., 2006a). See some details about the 

environmental module further in sections 2.5, 2.6 and 2.7. 

The third component for tutorial aspects, the Tutor Module, should (Postel, 

1999): 

 monitor each step the student makes toward a solution. For this, the tutor 

makes use of the expert module; 

 offer help at any stage in the problem-solving process to the student in 

form of hierarchically graded help. Help begins with general heuristic 

hints and ends with prescribing the very step toward a solution the expert 

would have chosen in this situation. 

Different ways of using the expert module in T-algebra were described by 

Issakova (Issakova, 2006). One of the usages is providing feedback and 

different kind of help in every situation depending on the current situation/ 

expression and the stage of the step. For details see sections 2.8.5 and 2.8.6. 

The fourth component, the Student module, keeps statistics about the student. 

T-algebra monitors and logs all errors and help usages, tries to classify errors to 

some predefined classes and monitors overall progress of the student. For 

details see sections 2.8.6 and 2.9. 

 

 

2.2 Brief introduction to problem solving  

environment T-algebra 
 

The T-algebra package consists of two programs, one is for students and the 

other is for teachers. The student‟s program is meant for students for solving 

problems but also for teachers for checking solutions, reviewing student errors 

and collecting statistics from student solutions. Students can also use these 

features to revise their own solutions, check the errors made, etc. The teacher‟s 

program is meant for composing problem files. 

The main problem solving window of the T-algebra student‟s program is 

shown in Figure 2.1. The window has been divided into two logical parts; any 

of those can be hidden. The left-hand part contains a field displaying a list of 

problems in opened file. The list includes expressions and formulations of 

problems. In addition, completed problems (green background) and the active 

problem (surrounding red box) are marked on the list. 
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Figure 2.1. Main problem solving window of T-algebra student‟s program 

 

 

The right-hand part of the window is meant for problem solving. It contains a 

list of available transformation rules, buttons for confirming the answer, asking 

for hints, etc. At the top of the right side, there are instructions for the whole 

problem, and at the bottom, instructions for the current stage of solution step. 

The window also contains solution steps (expressions) already performed by the 

student together with an expression editor and a virtual keyboard for entering 

the result of operation. 

The sample window shows the resolution process for the simplification 

problem )44()32()12( xxxx  . The solution is not yet complete, but 

some steps have already been taken. At the first step, polynomial multiplication 

was performed. The resulting polynomial was entered in the result. At the 

second step, polynomial and monomial were multiplied the same way. For the 

last completed step, the operation combine like terms was picked and two like 

terms were selected. The selection has been confirmed and, as the next step, the 

user would have to enter the result of the combining in the yellow box on the 

next line. 
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2.3 Brief description of problem composing 
 

In addition to a problem solving environment, the T-algebra package also 

includes a program that is meant for teacher usage – program for composing 

problem files. Each problem file contains a set of problems, for example, for 

one lesson or for home practice, etc. 

When composing a problem, the teacher has to define the following 

attributes: 

 problem field, problem type; 

 text of the problem (for example Simplify, or Multiply polynomials and 

simplify); 

 decide whether initial expression is entered or generated; 

 type of expression (if an expression is generated); 

 initial expression for the problem, values of parameters if any (if an 

expression is entered); 

 what input mode is used (free, structured, partial); 

 what kind of hint / help is enabled or disabled. 

The last two can be the same for all problems in the file if they are set in general 

properties of the problem file. Figure 2.2 shows a screenshot of the teacher‟s 

program during composition of a problem (initial expression is entered). 

 

 
 

Figure 2.2. Problem composing in T-algebra teacher‟s program 
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Before a problem is added to the list, T-algebra performs the following checks: 

 all necessary fields are filled: problem type, text; 

 in case an expression is entered, T-algebra checks whether the initial 

expression is not empty, is a syntactically correct expression and whether 

the expression is suitable for the problem type (the problem is solvable by 

means of T-algebra rules designed for this problem type); 

 if any additional parameters (for example, values of variables) had to be 

entered, T-algebra checks correctness and suitability of those; 

 if an expression is generated, T-algebra checks whether the type of 

expression is selected. 

While composing the problem, the teacher can check the automatic answer 

(small box and button in the right bottom corner of the window) or generate the 

solution (by means of the same rules that students may use) and decide whether 

the initial expression of the problem is suitable for the students (for example, 

whether all coefficients in the answer and in each line of the solution path are 

integers, etc.). 

 
2.3.1 Random expression generation 

 

We have implemented a random task generation in T-algebra. This creates a 

possibility to prepare many different problem files (for example, in many 

variants) easily. 

For each problem type in T-algebra, we have implemented several types of 

random expressions that are generated – most of them are similar types to those 

used in schoolbooks. For example, in case of problem type combine like terms 

the random expression types are the following (the list includes a short 

description and a sample expression): 

 “2 variables. 2 groups of like terms. Like terms have identical form”, 

sample expression t3b-10bt2b-5b- 2222  ; 

 “2 variables. 3–4 groups of like terms. Like terms have identical form”, 

sample expression 
333233 7ys-s7y-sy-2yss8y4ys-  ; 

 “2 variables. 2 groups of like terms. Like terms can have different form”, 

sample expression b3c-3c-cb9c7bc- 323  ; 

 “3 variables. 3–4 groups of like terms. Like terms can have different 

form”, ex. 33235323434334 tb3bw-bt5w-tb8wbw-bt6bwtb5ww7tb-  . 

From the description of expression types it is clear that either 2 or 3 different 

variables are used in expressions, 2 or 3–4 groups of terms are used (some could 

be also single terms without pairs to combine with) but at least one pair of like 

terms should be present. The last option (same or different form of like terms) 

defines whether all terms of one group have identical variable parts (order of 

variables, powers) or different (for example order of variables can be different 

b3c-7bc- 33
 or the same variable can exist multiple times, not in a normal 
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form cb9c7bc- 23  ). T-algebra allows combining terms in different form but 

it is more difficult for the student to identify such like terms. 

There are two ways how to use random expression generation in T-algebra. 

The first possible way to use random expressions is to save the random 

expression type in the problem file. Each time the problem file is opened in the 

T-algebra student‟s program, new expressions are generated for solving. Using 

this option enables to give students the same problem file and be quite certain 

that all students get different problems to solve (for example, to prevent 

students from copying each other‟s solutions during a test). 

Another way is to generate a set of sample problems and choose one for 

solving or edit it further. In this case the teacher can easily create a problem file 

containing different problems without entering expressions himself. The 

selected sample expressions are saved to a file and every time the problem file 

is opened the same expressions are solved. 

Figure 2.3 shows random expression selection in the problem composition 

window. On the left, an expression type can be selected for the given problem 

type. The right panel displays generated examples; it is possible to ask 

T-algebra to generate another set of examples. There are buttons for deciding 

whether one of the examples will be used as the initial expression or whether an 

expression will be generated when the problem file is opened in the student‟s 

program. 

 

 

 
 

Figure 2.3. Random expression generation in T-algebra teacher‟s program 
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2.4 Expressions in T-algebra 
 

The main objects that T-algebra is working with are algebraic expressions. In 

this section we describe, which expressions are allowed in the program, i.e., 

which expressions are treated as correct. 

Problems solvable in T-algebra belong to four fields of mathematics: 

calculation of the values of numerical expressions; operations with fractions; 

solution of linear equations, inequalities and linear equation systems; poly-

nomial simplification and factorisation. Thus the expressions from T-algebra 

also belong to these fields. 

We define expressions in T-algebra the following way. Elementary expres-

sions (or basis) are integers, decimals and variables. Algebraic expressions are 

composed by recursively applying different operations (unary – and +, binary +, 

-, *, /, exponentiation, fraction). Created algebraic expressions can be connected 

using equality and inequality signs (equations grouping into systems). A list of 

possible operations is presented in Table 2.1 (page 48). A full Backus-Naur 

Form description of expressions in T-algebra is presented in Appendix D. Here 

are some examples of correct expressions: 

 
3

2
2

2

1
 ; 

 
22 )1( xx  ; 

 xx  322 . 

The following expressions are treated by the program as incorrect: 

 
3

2,0
3

2

1
)1(  x , because decimal is not allowed in mixed numbers; 

 
4)1(322  xavbcba , because a multiplication sign is required in 

monomial multiplication, and constants are not permitted between 

variables in monomial multiplication. 

The editor does not put any quantitative constraints on expressions. The editor 

also supports several-storied fractions and exponentiations, etc. However, 

almost all problem types define some constraints on expressions (described in 

section 3.3.5). For example, when solving linear equations, all expressions have 

to be linear equations – they have to contain the equality sign and exactly one 

variable. In almost all problem types, the expression cannot contain fractions 

with variables in denominator. 

There is one expression form, which created some problems for us. When 

defining the order of operations, textbooks declare that operations with the same 

priority are to be applied from left to right. For instance, expression 

abaa 2:)(8 34   would mean, that we divide the first part 
34 )(8 baa   by two 

and then multiply by a . The multiplication sign is often omitted in expressions. 

So expressions )(2 baa   and )(2 baa   have the same meaning. A problem 

arises when we have both division and multiplication in an expression. Some 
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Estonian schoolbooks mean by abaa 2:)(8 34   that the first part of the 

expression 
34 )(8 baa   is divided by monomial a2 . The Council of 

Mathematics at the Ministry of Education of Estonia asked us to support the 

same form in T-algebra. Therefore, T-algebra considers multiplication without 

sign as a higher priority operation than ordinary multiplication or division (as if 

part of the expression were put into parentheses). For example, in expression 

)()(2:)(8 34 baabaabaa   the first part 
34 )(8 baa   is divided by 

abaa )(2   and multiplied by )( ba  . However, we ourselves are not satisfied 

with this solution. 

 

 2.5 General Action-Object-Input dialogue scheme  

in T-algebra 
 

T-algebra enables step-by-step problem solving. There are two basic possibi-

lities for taking a step in interactive programs (discussed in section 1.2.4): free 

input of the step result (for example, in the Aplusix system (Nicaud et al., 

2004)) or conversion by some rules or commands (for example, in the 

MathXpert system (Beeson, 2002)). T-algebra combines both these options – 

conversion by rules is supported by the input of some parts of the result. Each 

solution step in T-algebra consists of three stages: 

1. selecting a transformation rule (action), 

2. marking the parts of expression (object), 

3. entering the result of the application of the selected rule (input). 

Hereinafter we will refer to this scheme as the Action-Object-Input scheme after 

its three stages (Issakova et al., 2004). This type of scheme was first used in the 

program Polynom developed by me as part of my Master‟s thesis (Lepp, 2003a, 

Lepp, 2003b). The following simple example shows, how a student would 

complete the stages of dialogue and how these stages correspond to the solution 

algorithm taught at school. Let the problem be the following: simplify the 

expression 
22 2465 xxxx  . When solving the problem on paper, the 

student would at first examine the expression and then decide to combine like 

terms. Then he would underline the like terms he wants to combine and enter 

the resulting expression after the equality sign. The program follows principally 

the same scheme of actions. The corresponding solution step consists of the 

following three stages: 

1. Selecting a transformation rule: the student selects from the rule list the 

rule of combining like terms – the program allows selecting any rule 

without checking, whether it is possible to apply such transformation at 

this stage. 

2. Marking parts of expression: the student marks all the monomials 

similar to 
2x , using the mouse and selection buttons – the program 

checks, whether the selected parts of the expression are actually like 
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terms, and it also checks, whether these terms can be combined (i.e., 

whether they belong to the same polynomial). 

3. Entering the result of the application of the selected rule: the program 

copies unchanged parts of the expression onto the next line and asks the 

student to enter the resulting monomial or its parts. Depending on the 

input mode, different boxes are shown (see details in section 2.5.2). The 

program checks, whether the entered parts are correct and the whole 

expression is equivalent to the expression displayed in the previous line, 

and then displays the resulting expression in the next line of the 

solution. 

This list should provide an idea of the connection between the actions of the 

student and the program, what and when is checked by the program. If an error 

message is displayed at any checking stage during solving the problems, the 

student must first correct the error himself or let the program correct the error in 

order to proceed to the next stage. For each stage of the solution step, the 

program gives specific instructions („Choose the rule to apply next‟, „Select 

terms to combine‟, etc.). The student can cancel the step at any moment. It is 

also possible at any stage of the step to ask the program for help and let the 

program complete certain stages automatically (see details in section 2.8). 

 

 
2.5.1 Action-Object and Object-Action in general and  

possibility in T-algebra 
 

Interactive programs in which the user processes some kind of objects (text, 

image, table, etc.) step by step usually allow the user to apply different menu-

selectable operations. The user can apply operations in a different order. If the 

operations are applied to the objects with the same structure, it is normal to use 

the so-called Object-Action scheme in which the user first selects objects and 

then chooses an operation to apply to these objects. Such scheme is used, for 

example, in text editors for changing the font of a paragraph, copying text, etc. 

Most computer algebra systems also use this scheme. 

However, when the arguments of different operations have very diverse 

structures (monomials, polynomial, parentheses, etc.), it might be difficult to 

apply the Object-Action scheme. It is not clear before the operation is selected, 

what information needs to be entered to specify the object (whether the object is 

a monomial or a polynomial, an expression in brackets, an exponential 

expression, etc.). In this case, an Action-Object scheme is preferable, i.e. the 

user first selects an operation and then marks the objects to which the operation 

will be applied. Similarly, it is not possible to use the Object-Action scheme in 

dynamic geometry programs, for instance, where the order of objects is 

important (for example, centre of circle and point on a circle, etc.). 

The Action-Object scheme is more suitable for working with the resolution 

algorithms used at school. The algorithm tells the student, what step should be 

taken next (what operation). So the student thinks of the next operation and then 
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tries to find objects and decide whether this operation is possible at this 

moment. 

In the beginning we also chose the Action-Object scheme for T-algebra. As 

each rule can only work with certain types of objects (monomials, polynomials, 

expressions in brackets, variables, fractions, etc.), it should be clear beforehand, 

which objects ought to be marked. After the transformation rule (action) is 

selected, T-algebra is able to provide rule specific instruction on what objects 

should be selected. In addition, after selection of the rule, T-algebra is able to 

help the student and select suitable objects for the operation. 

However, after the first trials we also enabled the Object-Action scheme, as 

we saw that students tried to select objects before the rule. As the user interface 

for selection of objects is common for all rules, we were able to do that easily. 

Students are now able to select objects (parts of expression) and then decide 

what to do with them. The only downside of this is that T-algebra does not 

provide any special instruction about objects to be selected and also cannot help 

the student in selecting those before the action is selected. 

In T-algebra, the Action-Object scheme was upgraded with a third com-

ponent – entering the parts of the resulting expression (Input). This gives the 

student the possibility to participate in the solution process. It also enables the 

program to check the knowledge and skills of the student. 

 

 
2.5.2 Stages of the Action-Object-Input scheme 

 

In this section we describe the details of design, implementation and user 

interface of individual stages of the dialogue. 

 
2.5.2.1 Selection of operation 

At the first stage of a solution step, the student has to select an operation – click 

on one transformation rule on the list on the right of the solution window 

(Figure 2.1). The set of rules displayed in the menu depends on the problem 

type. Rules designed for the domain of powers, monomials and polynomials are 

thoroughly described in section 3.2. It is possible to change the rule before the 

selection of objects is confirmed without recording any error, even if a non-

applicable rule is selected, as this is not confirmed by the student yet. 

T-algebra does not check the selection of rule separately – it is checked 

together with objects. However, it diagnoses separately whether the rule is 

applicable to any objects in the current expression – if not, a separate error 

message is shown to the user after selection of object is confirmed. 

 
2.5.2.2 Selection of objects 

In addition to selection of the operation, T-algebra requires selection of 

operands. Unlike many other programs, T-algebra requires precise marking of 

operands for diagnostic purposes. For example, for the operation Combine like 

terms, the student should mark only those terms that will be actually combined. 
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A special multiple selection mode of the expression editor is implemented for 

selection of objects (see details in section 2.7.4.1) – in this mode, the expression 

editor of T-algebra enables to mark more than one piece of the expression. 

After selection of objects is confirmed, T-algebra checks if the rule is 

applicable to the selected objects (see details in the description of rules in 

section 3.2). 

 
2.5.2.3 Input of the result 

At the third stage (Input) of each step, the student should enter certain parts of 

the expression that result from the previously selected operation. The program 

generates an expression on the next line, based on the selected rule and marked 

parts, and leaves blank certain important parts of the new expression. When 

solving problems at school with paper and pencil, the students always have to 

write an expression of the same length after the equality sign. Consequently, 

they try to reduce their workload by making several transformations at once. 

The program makes the work easier for the students by copying the parts of the 

expression that remain unchanged so that the students would have to enter only 

the parts that were modified. As a result, only one transformation can be made 

in each step. This makes it easier for the program to check the solutions and 

gives a better overview of the student solution to the teacher. 

The parts of the expression that the student has to enter are highlighted with 

yellow boxes. The form and the number of user-definable parts depend on the 

selected rule, marked parts and the mode (see details and examples in section 

2.5.3). While entering the results, the program protects other parts of the 

expression from modification – the expression can be modified only in 

highlighted locations (see details about constrained input of the expression 

editor in section 2.7.4.2). This makes it easier for the program to check the 

solution and, in addition to checking equivalence between the new expression 

and the previous one, it also enables checking the correctness of separately 

entered parts, thus improving the overall responsiveness of the program to 

errors. 

 
2.5.3 Three input modes 

 

As mentioned, the Action-Object-Input scheme was first tested in my Master‟s 

thesis (Lepp, 2003b, Lepp, 2003a), which serves as a prototype of T-algebra. 

The input forms in that program were designed separately for each conversion 

rule, trying thereby to minimize the input so that only critical information for 

the particular operation would have to be entered. The form and number of parts 

that could be entered became too varied for different rules and the user interface 

of the program became too confusing. In T-algebra we try to design, uniformly 

for all rules, three fairly standard input modes, which we have named free input, 

structured input and input of some components. Free input mode is easily 

comprehensible (it is similar to working on paper) and it can be designed for 

each rule. Structured and component input modes are more specific. The 
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program helps the user in a certain way, whether by indicating the structure of 

the result or even by filling out a part of the result. The input mode is selected 

by the teacher during problem composition. It turned out that there are some 

rules for which it is impossible to apply all three input modes. 

At the third stage (Input) of each step, the student should enter certain parts 

of the expression that result from the previously selected operation. The 

program generates an expression on the next line, based on the selected rule and 

marked parts, and leaves blank certain important parts of the new expression. 

Depending on the input mode used, the number and types of empty boxes can 

be different. The following subsections provide details about each input mode 

(Issakova et al., 2005). 

 
2.5.3.1 First input mode: free input 

In the free input mode, the program generates one input box (or two boxes in 

case of some rules with fractions and equations) inside the expression on the 

next line instead of marked parts (Figure 2.4). The input box is in the same 

position as the first marked part in the expression on the previous line. The 

student should enter in the box one expression, replacing the whole marked part 

from the previous line. In the free input mode, the student should also create 

such non-linear elements of the sub-expression as fraction lines and exponents 

if needed. Even though the name of the mode is free input, input is still 

restricted to some extent. The editor gives the student freedom for entering but, 

after the input, the program checks not only syntactical correctness of the 

expression and equivalence to the previous expression, as for example in 

APLUSIX (Nicaud et al., 2004), but in some cases also the correctness of 

applying the rule. 

 

 
 

Figure 2.4. Free input 
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For example, in Figure 2.4, the rule Combine like terms was selected and two 

like terms were marked. After the input is confirmed, the program first checks 

whether the entered part is a syntactically correct expression, then whether the 

entered part is a monomial (because the result of combining like terms should 

be a monomial) and then whether the entered expression is equivalent to 

marked parts. Finally, the program checks equivalence of the complete new line 

to the previous line (sometimes the student should type brackets around the 

entered sub-expression). In some rules where result has a more complex 

structure, only equivalence and some operation priorities are checked. 

The free input mode is the most general input mode. This mode can be de-

signed for all rules. 

 
2.5.3.2 Second input mode: structured input 

In some cases, we do not want students to work on creating the structure of the 

expression by replacing the operands. In the structured input mode, our program 

uses the information about the actual rule and operands, and predicts itself the 

structure of the required input using different input boxes for signs, coefficients, 

variables, exponents, etc. (Figure 2.5). 

 

 
 

Figure 2.5. Structured input 

 

 

The size and position of the boxes should make the user understand at once 

what he should enter. In this mode, input in the boxes is restricted. If the cursor 

is in an input box, the buttons with unavailable symbols on the virtual keyboard 

are inactive and the corresponding keys on the regular keyboard do not work. 

For example, the sign input box enables the user to enter only addition, 

subtraction, multiplication or division signs. The coefficient input box (active 

on Figure 2.5) accepts common fractions, numbers and comma (for decimal 

fractions). The variable input box accepts only letters, etc. 
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For example, in Figure 2.5, where the rule Combine like terms was selected 

and two like terms were marked, the program offers a pattern of monomial with 

six boxes on the next line. The first box is sign input box, the next is coefficient 

input box, followed by boxes for input of variables with exponents. 

Generally, the number of boxes for the variables of one monomial offered by 

our program is the same as the number of variables in the marked parts. 

Variables can be entered in an arbitrary order inside one monomial. However, 

the program requests the user to standardize the result to some extent, because 

the number of offered boxes is limited. For example, although the form of one 

monomial is yxy  in Figure 2.5, the program offers only two boxes for entering 

variables on the next line, i.e., the user must standardize the form yxy  and 

change it to 2xy  or xy 2 . 

While the program offers a pattern of the result and permits certain entries in 

every box, it is possible to leave some boxes empty. For example, if the power 

of a variable is 1, the exponent can be left empty. If the power of a variable is 0, 

both the exponent and variable boxes may be left empty. If the coefficient box 

is left empty, the program interprets this as 1. If all boxes in one monomial are 

left empty, the program presumes that this term is combined or reduced, 

depending on the selected rule, etc. 

If the user has finished entering then the program checks, whether the new 

expression is equivalent to the previous one and whether the entered parts are 

equivalent to the parts calculated by the computer. If they are equivalent, no 

further checking is required. If the expressions are not equivalent, it is possible 

to check the correctness of each entered part to produce a more specific 

diagnosis. 

The structured input mode is rule-specific (each rule requires a unique input 

pattern of the resulting expression) and it turned out that this mode is useless for 

some rules. For example, it would be pointless to offer a pattern for the result if 

the applied rule was Remove parentheses, because only signs change. 

 
2.5.3.3 Third input mode: partial input 

The third mode is a simplified form of the second mode, where the program fills 

some boxes by itself. For example, Figure 2.6 shows the same example as 

Figure 2.5, but using input of some components. 
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Figure 2.6. Partial input 

 

 

The program itself writes the variables with exponents. The user should only 

enter the sign and coefficient of the monomial. The program simplifies the work 

of the user also by doing the standardization of the variables of monomials, i.e., 

converting the monomial into normal form. 

After the input the program checks correctness of the expression and 

equivalence to the previous one as in other modes. 

 

 

2.6 Extended Action-Object-Input dialogue scheme 
 

When designing the rules for T-algebra, we found that it is difficult to realize 

some rules using pure Action-Object-Input dialogue (section 2.5). In order to 

decide, which features we need to add to the dialogue, we studied students‟ works 

on paper – how and which steps do they make while solving problems on paper. 

We also reviewed school textbooks to find all the rules used for making solution 

steps and algorithms for solving the problems. Virtually in every topic we found 

some rules where adequate realization required modification of the dialogue. 

The easiest cases were rules that did not require selection of the object. For 

example, in the solution of one equation or inequality, the rule Multiply the 

sides is always applied to the whole line (however, selection is required in the 

case of a system of equations). 

We found two different reasons for inserting additional sub-steps in the rule 

dialogs. The first reason is that, for some rules, the form of writing the solutions 

as suggested by textbooks contains more than one „input‟. For example, 

Estonian textbooks suggest writing addition of fractions with different 

denominators as follows: 

4 31 3 4 9

6 8 24


   
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Here the students first calculate the common denominator of the fractions 

being added and write it to the resulting fraction after the equality sign. Then 

the students find so-called extenders (the factors for multiplying the numerator 

and the denominator of the fractions) and write them to each addend. After that 

they find the members of the numerator of the result. 

The second reason is that, in some rules, the result of application is not 

uniquely defined by operands but depends on some additional decision of the 

student (the choice of a common denominator in the case of addition of 

fractions, the values of syntactic variables of multiplication/factoring formulas). 

Even if this information is included in the final input, it could be very difficult 

to guess if the input is inconsistent. In some cases, this information is needed 

already for checking the intermediate input (extenders) or for building the 

structure for structured and partial input. 

The third reason for introducing some novelty was that we did not want to 

predict the number of monomials in the result in some operations of the 

structured mode, such as multiplication of polynomials and multiplication/ 

factoring formulas. 

For solving these problems, the dialogue of some rules was modified by 

adding certain special features (Lepp, 2005; Issakova et al., 2006). We extended 

the input stage of the dialogue by adding three new features. Each rule may use 

one or several of these features at once, depending on the mode running. The 

added features are the following: 

 input of rule-specific additional information, 

 input of intermediate result, 

 adding terms to the result. 

 

The following paragraphs present these added features in more detail, 

describing what the program does, what the student has to enter and what the 

program checks. We will also give some usage examples for each new feature. 

 

 
2.6.1 Skipping some stages of the initial dialogue 

 

When designing the rules, we found it unnecessary to realize all the rules using 

all three stages of the dialogue. Therefore, we added the possibility of skipping 

the selection of objects or input of the result in some rules. 

Some rules are applicable to the whole expression (multiply both sides of 

equation, compare the fractions, etc.), which is why it would be pointless to ask 

the user to select the whole expression. Another set of rules is designed 

specifically for single step problems and these rules are not used elsewhere 

(define order of operations, find reciprocal value, compare the fractions, 

calculate approximate value of the fraction). These rules are also applicable to 

the whole expression; therefore, the stage of object selection is skipped. After 

the rule has been selected, the program checks whether the rule is applicable 

and then applies the rule, letting the student to fill in the boxes in the result. 
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The final input stage can also be skipped in some rules. For example, using 

the rule for reducing the fraction, the student enters the result of the application 

of the rule in the intermediate results stage (in a different form, reduction results 

are entered to every part of the fraction) and the program rewrites it auto-

matically. 
 

 
2.6.2 Input of the rule-specific additional information 

 

Application of some rules requires certain specific information, which does not 

belong to the resulting expression or is difficult to extract from the result in case 

of an error. For example, when adding fractions with different denominators, 

the common denominator value should be entered. Even though it is a part of 

the resulting expression, it should be entered before the input editor for the 

resulting expression is created, because this information is needed while 

checking the correctness of extenders. As we still want to check the student‟s 

skills and identify the cause of errors, this specific information has to be entered 

separately. When creating the expression on the next line, the program uses the 

selected rule, objects and information entered. 

For each such rule that needs additional information, a separate input 

window was created containing rule-specific input boxes. For example, when 

adding fractions, the student has to input only one number – common 

denominator of the fractions. However, this window can also have a more 

complex structure, for example, in the case of the rule Factor out common 

factor, the program prompts the user to enter the common monomial to factor. 

Similar input was used in the Mathpert system (Beeson, 1998). 

This added window is the first new feature that can be followed by other 

options or the usual input of the resulting expression. When the objects of the 

rule have been selected, the program checks whether the rule is applicable to 

them and after that displays this input window to the user. After the student has 

made the input in this window, the program checks whether the entered 

information is correct. If no errors were diagnosed, the student may proceed to 

the next stage. Our example shows the additional input window (Figure 2.7) for 

the rule: addition of fractions with different denominators. In this window the 

program asks the user to enter a common denominator for all selected fractions. 

Figure 2.7 shows the initial expression in which the objects (fractions to be 

added) have been marked, and an additional window for entering the common 

denominator. The information entered in this window is used not only for 

additional knowledge testing but also for construction of the resulting 

expression – the resulting fraction already has the denominator filled in. 
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Figure 2.7. Input of the rule-specific additional information in the case of addition of 

fractions with different denominators 

 

 

In the field of polynomials, this additional input window is used, for example, 

when asking the student to enter the common factor in the rule Factor out 

common factor (see details in section 3.2.18). 

 
 

2.6.3 Input of intermediate result 
 

Looking through the solutions on paper, we found that some rules are applied 

using two input stages: first some intermediate result is found (for example, 

extenders for each term are found when multiplying both sides of equation) and 

then the final result is written. We tried to follow the same pattern to extend the 

dialogue that is used when working with pen and paper: at first, the common 

denominator is entered in an additional window, then the extenders of the 

fractions are entered and, after that, the members of the final result are entered. 

As we wanted to keep the initial expression unchanged with the objects selected 

in it, after entering the common denominator, the program copies the expression 

to a new line and provides boxes for entering extenders. The same constraints 

are used here as in structured or partial input – the boxes allow entering only 

limited expressions (only numbers, etc.). Figure 2.8 displays the extenders input 

boxes required by the rule of addition of fractions. 
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Figure 2.8. Input of intermediate result when adding fractions with different denom-

inators 

 

After the intermediate result has been entered, the program checks the correct-

ness of entered parts. In case of an error, the student is given an appropriate 

message and the program lets the student to correct the result before proceeding. 

If no error is diagnosed then the program constructs the result of applying the 

rule based on all the information entered and lets the student to enter some parts 

of the result, depending on the solution mode running. 

 

 
2.6.4 Adding terms to the result 

 

Most rules that are used for making transformations to algebraic expressions 

actually shorten the initial expression: the number of terms decreases, two or 

more terms are joined somehow, etc. However, rules dealing with polynomial 

multiplication lead to a growth of expressions and the structure of added terms 

differs from the structure of the terms that caused this growth. In the free input 

mode, the student has to build the structure of the result himself. In the 

structured input mode, described above, we would give the student too many 

hints on how the result should be found, e.g., the number of terms in the result, 

etc. We have found a better solution. 

The members of the resulting sum have the same general structure. Instead 

of drawing the boxes for all terms, we can draw a box for the first term and give 

the possibility to add more terms dynamically by adding or removing monomial 

structures. When checking the result, the program checks whether an 

appropriate number of terms was added and it also checks each term separately. 

Figure 2.9 shows an example of adding terms to the structure of the result in 
the rule of multiplying two polynomials. The result of application of this rule is 
also a polynomial that the student has to construct of monomials. At first, one 
monomial structure is given (Figure 2.9 on the left). Then the user can extend 
the structure by pressing the appropriate button on the virtual keyboard and the 
program adds one more monomial (Figure 2.9 on the right shows the added 
monomial, input boxes are filled with parts of the result). This mode requires 
exact application of this rule only; combining similar terms is not allowed. 
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Figure 2.9. Adding terms to the result in the rule of multiplying two polynomials 

 

 

2.6.5 Extended dialogue scheme 
 

The following is a summary of the new extended scheme, including all the 

checks performed by the program. If an error is found then the program does 

not permit proceeding to the next stage of the solution step. 

1. The student selects a transformation rule from the menu – the program 

allows selecting any rule without checking, whether it is possible to 

apply such transformation at this stage. 

2. The student selects a set of objects in the expression (may be not used 

in case of some rules) – the program checks, whether the rule is 

applicable to the selected objects. 

3. The student enters rule-specific additional information in a separate 

window (may be not used in case of some rules) – the program checks 

the correctness of entered information. 

4. The student enters an intermediate result of application of the rule (may 

be not used in case of some rules) – the program checks the correctness 

of entered information and the correctness of rule application. 

5. Before the final result is entered, the student can add structures of terms 

to the result to achieve a fitting number of terms (may be not used in 

case of some rules) – the program does not check, whether the number 

of terms was exact. The important question here is, whether the answer 

will fit in. Terms can also be added in the next stage if the result does 

not fit. 

6. The student inputs some part of the resulting expression, depending on 

the problem solving mode (may be not used in case of some rules, the 

program rewrites the intermediate result automatically) – the program 

checks, whether the rule is applied correctly. 

The described scheme or some subset of these stages should be suitable for any 

rule in T-algebra. 
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2.7 Expression editor features to support  

Action-Object-Input solution step scheme 
 

There are different ways to present and enter expressions in different computer 

algebra programs and learning environments. For example, older versions of 

Maple (Maple by Maplesoft) use command line input (linear input for 2D 

expressions) but present expressions naturally in a 2D form. Some other 

systems like MathCAD (MathCAD by PTC) provide WYSIWYG 2D editors: 

both input and representation are 2D. Different ITS also utilize both mentioned 

ways for inputting expressions, some of them even use expression repre-

sentation as a tree and allow selecting nodes for different operations, for 

example, EXPRESSIONS (Thompson and Thompson, 1987). 

We designed our own WYSIWYG 2D expression editor for T-algebra (Lepp 

et al., 2005) to support, in particular, the second and third stages of the step 

(selection of objects to apply selected rule to, and input of essential parts of the 

result). We wanted to achieve the following goals with the editor: 

 The student has to perform as few operations as possible in one solution 

step (compared to pen and pencil solutions, where he has to write all 

unchanged parts of the expression at each step – T-algebra copies 

unchanged parts and protects those from modifying). 

 During solving the student has to have a possibility to make mistakes (in 

selecting the rule and in applying it) and the program should be able to 

help the student to correct errors. 

The last goal is also the reason why we had to design an editor that does not 

guarantee correct structure of the expression. The designed 2D editor is easier 

and clearer to use for school students than command line input. In addition to 

classical operations, the created editor allows some rule dialogue specific 

operations – rule objects selection, constrained input of the result. These 

operations enable to simplify student work when making the solution step, force 

the student to enter parts of the result that are essential in applying the selected 

rule, and identify the correct objects to apply the rule to. 

 
 

2.7.1 Different representations of expressions 
 

In the T-algebra expression editor, there are three different representations of 

expressions: natural 2D representation, linear string (1D) representation and tree 

representation (object representation). Different expression representations are 

discussed by Nicaud and Bouhineau (Nicaud et al., 2008). The natural 2D 

representation is used to display expressions to the user in the editor; most 

people are used to seeing algebraic expressions in this form. This 2D 

representation is used in all textbooks. The other two are used internally by the 

program. In the expression input mode, the program stores them as strings (1D 

representation). String representation is also used when saving problems and 

solutions to a file. When manipulating expressions, applying rules, selecting 
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objects, etc., a tree-like object structure is used. Let us review both these inner 

representations. 

 
2.7.1.1 Inner string representation 

If we check the expressions that are supported by T-algebra (see section 2.4) 

then we can see that most of allowed operations and sub-expressions have linear 

screen representations with some exceptions (fraction, exponent, etc.). When 

storing expressions as strings we define codes for storing such non-linear sub-

expressions, as for example 
2a  is being stored as string „a^{2}”. The program 

keeps the linear parts of the expression unchanged ( bca  is stored as „a+bc”). 

When the user modifies the expression, the inner string representation is 

changed accordingly. All changes are immediately reflected in 2D repre-

sentation. A question can arise at this point: Why was XML or XML-based 

MathML, OpenMath or even TeX syntax not used? The main reason is that we 

wanted to store linear sub-expressions almost unchanged (small changes, note 

that Estonia uses comma as decimal separator but we still used point; schools 

use colon as division sign but we still used slash as division mark) and keep the 

structural sub-expressions using shortest possible codes, so that when 

modifying an expression, all editor keystrokes go directly to the inner string. 

Some supported elements are presented in Table 2.1 along with their code in the 

inner string representation. 

 

 
Table 2.1. Supported elements with their codes 

 

Expression String Expression String Expression String 

yx  22,2  2.2+x^{2}-y 
3

2
1  1{2/3}    b1  (-1)+[-b] 

zyx 2:2   2x*y/2z 232  xx  2x-3=x+2 








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3

yx

yx  x-y=3& 

2x+y=5 

 

      

2.7.1.2 Inner tree structure 

When we have the correct expression then the program can parse the inner 

string representation and build up a tree representation. The program does some 

further operations with this tree – it checks the possibility to apply the rule, 

correctness of the selection of rule objects, and rule application. After that, the 

resulting tree is transformed back to string representation to enable the student 

to input the resulting parts. 

The tree stores operations of the same priority and arguments of these 

operations on the same level. Atomic expressions can be found at tree leaves – 

variables, numbers and operation signs. The inner vertexes of the tree include 

several kinds of objects that define the priority of the next level operations: 

1. System of equations, which has equations as its children. 
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2. Equation and inequality – connecting mark and both sides are the 

children. 

3. Sum-difference objects – children on the next level are sub-expressions 

connected by plus and minus signs. 

4. Product-quotient objects – has multiplication (also with omitted 

multiplication sign) or division members as children. 

5. Power object has 2 children: argument and exponent. 

6. Bracket object includes the bracket kind and sub-expression as its only 

child. 

7. Fraction objects contain 2 children: numerator and denominator. 

8. Mixed number also contains 2 children: integer part and fraction part. 

Such grouping of operations by priorities simplifies program checks and 

application of rules. For example, if we need to check that monomials, selected 

by a student for combining, are suitable we check that they have the same 

parent node in the tree (members of the same sum), we check that the parent 

node is a sum-difference object (that gives that monomials are not members of 

product) and we check separately that variable parts are equal. Figure 2.10 

shows tree representations for the expression ababa 2:1435  . Here the 

sum-difference object is marked as “+-” and the product-quotient object is 

marked as “*/”. 

 
 

Figure 2.10. A tree representation of expression 

 

 

When the student selects a5  and a3  as objects then the program selects both 

roots of these sub-trees and also the preceding sign before the monomial a3  

regardless of whether the sign was selected or not in 2D representation (Figure 

2.10). When applying the combining rule to selected objects, the selected 

objects are removed from the tree, and new monomial a2  is created and 

inserted into the tree to the position of the first selected object. The tree that the 

program gets after applying the combine rule is shown in Figure 2.11. From the 

resulting tree, a new string representation is formed, where some places are left 

for student input “??”. For example, the resulting expression in the partial input 

mode would be “??a+b+14b/2a”. 

 

+– 

*/ + b – */ + */ 

5 a 3 a 14 b / 2 a 
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Figure 2.11. Tree after rule application 

 

 

2.7.2 Expression parser 
 

As we use two different representations, we needed a tool to transform those 

from one to another. It is quite trivial to transform object representation to string 

representation. Each object “knows” how to present itself as a string. In case of 

tree leaves it is trivial (single number, sign or variable). In case of inner 

vertexes of a tree it calls this transformation method to all its children and 

combines the result to one string. To get string representation for the whole 

expression we simply call this “to string” method from the root of expression 

object. 

A bit more complex transformation is from string to objects. We have 

implemented a special expression parser for this case. First of all, object 

representation is always correct, so objects always define the correct string 

representation. However, the string representation can be syntactically incorrect 

(for example, a missing bracket, two operators in a row, etc.). Therefore, the 

parser has a possibility to detect those errors. This feature is used in different 

rules to detect student errors in entering the resulting expression. In many cases 

(especially in the free input mode) students are able to enter an arbitrary 

expression in input boxes, but this expression should be of course mathe-

matically correct. For checking correctness in rules, we first try to parse those 

entered parts and get an error if the entered sub-expressions are syntactically 

incorrect. 

Another similar parser is used in the expression editor itself for expression 

rendering. The rendering parser has many differences, for example, it should be 

able to parse and then to render also incorrect expressions that may appear 

while entering (for example, a missing bracket, empty denominator in fraction, 

etc.). 

 
2.7.3 Expression editor 

 

Let us take a closer look at the 2D expression editor of T-algebra. By 2D editor 

we mean a system, which displays expressions in natural representation and 

enables the user to modify them. This means that the user can move the cursor 

inside the expression and make changes to the expression. The string that is 

actually being modified when the user modifies the expression is the inner 

string representation and the program displays a new expression to the user. We 

+– 

*/ + b + */ 

2 a 14 b / 2 a 
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wish to consider the classical actions of an editor: place the cursor, move the 

cursor, select part of an expression, input or delete at the cursor position or over 

a selection, copy or cut a selection, and paste at the cursor position or over a 

selection. 

There are three modes in which the editor can interact. The first, free input, 

is meant for composing problems. In this mode, no constraints apply to the 

entered expression. The second mode, selection of objects, is meant for 

selecting the objects for applying the rule. The expression in this mode is read 

only. The third mode, constrained input, is meant for input of the essential parts 

of the result at each solution step. The student can modify the expression only in 

specific places defined by the structure of the result. 

If we used the terminology from the APLUSIX articles (Nicaud et al., 2004) 

and (Nicaud et al., 2008), we could say that T-algebra editor also uses the so-

called text&box input mode. In text&box mode, expressions are seen as strings 

of characters or boxes – expression is a string in general with some boxes in it. 

These boxes contain sub-expressions (strings) and could contain other boxes 

(fraction, exponent, etc.) as well. A similar mode is also used in some other 

editors, for example, MathType. 

 
2.7.3.1 Expression correctness in editor 

The editor should be able to deal with both correct and incorrect (incomplete) 

expressions. It is clear that different expressions, including incorrect ones, can 

be entered in the entering mode. The editor displays the expression based on the 

inner string representation. The editor identifies the codes for different 

structures (box operators) such as fractions, exponents, etc., and displays them 

correctly. 

After the input phase, the program checks whether the expression is correct 

and satisfies all the constraints. This is done by parsing the expression into tree. 

The question arises, why we have chosen the text&box mode for our editor? 

The goal of T-algebra is teaching different aspects of problem solving. The 

student should have a possibility to make mistakes in entering results as well as 

in selecting the rule and its objects, which would be impossible in structured 

mode (as in APLUSIX, for example) where the editor guarantees correctness of 

the structure. 

 
2.7.3.2 Classic operations in the editor 

Classic operations were listed in section 2.7.3; let us take a closer look at them. 

In text&box mode, there are two possibilities of entering the expression. The 

first one is to add a symbol to the cursor position and the second is to add a 

structure for entering a nonlinear object to the cursor position. The buttons on 

the virtual keyboard or keyboard shortcuts can be used to enter these so-called 

box-operators. There are also some keyboard buttons duplicated on the virtual 

keyboard – brackets, arithmetical operations, numbers, etc. The virtual 

keyboard and the editor are shown in Figure 2.12. 
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Figure 2.12. Expression editor, virtual keyboard 

 

 
Unlike other system editors, the T-algebra editor does not show empty boxes in 

structures for entering fractions, exponents, etc. 

In text&box mode, an arbitrary string or box can be selected. Selection is 

done similarly to all text editors. Either the keyboard or mouse can be used. In 

case of box-operators, such as a fraction, the user can select a part or the whole 

denominator, numerator or the whole fraction. If the user starts selecting from 

the denominator and drags the mouse to the numerator then the whole fraction 

is selected. If selection is started outside the fraction box and ends inside then 

the program adds the whole fraction to the selection. Such selection can be used 

for copying expressions, etc. 

The next classic operation is input over a selection. Usually in text&box 

mode, when a part of expression is selected and the user executes input, the 

selected part is replaced by the entered one. In T-algebra, input over a selection 

proceeds the usual way, but we have added some features to simplify user work. 

 When the user presses the exponentiation button on the virtual keyboard, 

the selected part is put into brackets and the corresponding exponent (two 

or an empty box) is added. The cursor goes to the exponent entry box. 

 When the user selects one of the fraction buttons, the fraction structure is 

created in place of the selection and the selected part goes to denominator 

or numerator, depending on the selected fraction button. 

There are different kinds of deletion: to the left of the cursor, to the right of the 

cursor, and deleting the selection. When a part of expression is selected and any 

delete action is executed (backspace, delete, buttons on virtual keyboard), only 

the selected part is deleted. There are two possibilities of deleting when nothing 

is selected. If there is a linear symbol at the cursor, then this symbol is deleted. 

If there is a box-structure, the program selects that structure and deletes it after 

the user executes the delete operation (presses button on the keyboard or the 

virtual keyboard) for the second time. 

The final classic operations in the editor are copy, cut and paste. These work 

in the usual way. Copy and cut move the selected part of the expression 

(actually, part of the inner string representation) to the clipboard and cut also 

executes the delete operation. As we wanted to use the Windows clipboard to 



53 

leave the student the possibility to copy parts from other expressions, we had to 

modify the paste operation, so it checks whether symbols being pasted are of 

correct syntax and all box-operators are complete. The paste command is 

disabled in case of unsuitable subexpressions on the clipboard. 

 

 
2.7.4 Advanced features of the editor 

 

As was mentioned above, the T-algebra expression editor offers some additional 

features, which are used by the program for problem solving. 

 
2.7.4.1 Selection of arguments (multiple select) 

Every solution step in T-algebra is application of the selected rule to the 

expression. After the rule is selected, the user has to select objects to apply the 

rule to. The editor in the selection mode is shown in Figure 2.13. 

 

 
 

Figure 2.13. Editor in selection mode 

 

 

As the selected scheme for the rule dialogue is Action-Object-Input scheme, the 

user has to select objects of the rule at the second stage. Selection of the rule 

objects is slightly different from ordinary selection of a part of expression. 

Firstly, selected objects can be located far from one another in the expression. 

Secondly, the student has to have the possibility to select and deselect objects, 

confirm his selection and let the program check it. The corresponding buttons 

are added to editor in this mode:  adds selected part to the objects of the 

rule;  removes selected object from selection. The student can move 

between selected objects using the following buttons . 

Such multiple-selection is rare in CAS (the Mathpert system is probably the 

only example), but is widely used in other programs: word processors (MS 

Word, etc.), table processors (MS Excel, etc.), Windows Explorer, etc. Different 

selection modes are used in the listed systems, but we preferred a slightly 

different selection mode for T-algebra. There are several reasons for that. In the 

listed programs, there are no restrictions on selections. However, if we are 

dealing with expressions and select objects for application of a rule, it is clear 
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that the selected objects should be correct sub-expressions. So the program 

should check for that when adding to the selection. The other reason is that we 

need two different types of selection in one editor (selecting objects for 

applying the rule and selecting a part of expression for copying to the resulting 

expression), so we used two different colours for these selections. 

For user convenience, objects located close to each other can be selected as 

one object. For example, in expression bcbba 2 , when user selects the 

Combine similar terms rule and selects objects containing the variable b , he 

can select b2  and b  as one object and b  as another. During selection of 

rule arguments, the expression is presented as a tree and all selected objects are 

selected in the tree. When the user adds a selection to the rule arguments, the 

program actually selects all sub-trees covered by the selection. Thus, if the user 

selects bb 2  then the program marks the following sub-trees bb ,,2,  . 

Let us see the example in Figure 2.14 (the tree and objects correspond to the 

expression and selections in Figure 2.13) – user-selected parts are shown in blue 

boxes and the selected sub trees are shown in smaller lilac boxes. If the user 

would select all three objects as different parts, the selected sub-trees would be 

the same. 

 

 
 

Figure 2.14. Tree showing selected objects 

 

 

Another simplification made for user convenience is that the user does not have 

to select the operation sign to the left of every object. When applying the rule, 

the program considers that these signs were selected as well. In the same 

example, when the user selects b  without selecting the plus sign, the program 

still selects it automatically in the inner tree. 

When selecting objects, T-algebra checks that selection is syntactically 

correct, for example, it is not possible to select only part of a number as an 

object. 

 
2.7.4.2 Constrained input 

After the rule arguments have been selected and the selection has been 

confirmed, the program first checks whether selected parts are suitable for 

application of the selected rule and then applies the rule. The program leaves 

some essential parts of the resulting expression blank to be entered by the 

student. The parts that are left for the student to enter depend on the selected 

+– 

a + */ – b + c 

2 b 

+ 

 

b 
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rule and input mode. Most rules in the free input mode require the student to 

input the whole part of the result in one piece with no constraints on the sub-

expression to be entered. In other input modes, a structure of the result is built 

and the student is given the opportunity to fill the gaps (structured input mode). 

Figure 2.15 shows the editor in this mode. All input is disabled outside the input 

boxes, protecting the unchanged parts of the expression. 

 

 
 

Figure 2.15. Editor in constrained input mode 

 

 

In the input mode for parts of the resulting expression, the program offers one 

or more boxes for entering the parts. Other parts of the expression are copied 

from the previous step and protected by the program from modifying. There are 

constraints on the kinds of expression parts that can be entered in different 

boxes. The colours, sizes and locations of the input boxes may vary depending 

on these constraints. Different boxes allow entering only variables, numbers, 

operator signs, equality and inequality signs or arbitrary expressions. For 

example, in Figure 2.15, the cursor is in the coefficient box and the virtual 

keyboard shows what possible symbols can be entered in that box. 

 

 

2.8 Applications of domain expert module 
 

When designing and implementing T-algebra, we defined a set of issues or key 

attributes we wanted to achieve. T-algebra has to 

 allow the student to make all the necessary decisions and calculations at 

each solution step; 

 contain such dialogue that allows the program to understand all decisions 

made by students (chosen operation, selected operands, entered result); 

 enable to solve problems step-by-step and line-by-line as on paper; 

 give the possibility to exercise both the algorithms and their steps in 

detail; 

 leave an opportunity for the student to make the same mistakes as on 

paper; 

 automatically calculate answer to a problem; 
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 generate and show a solution path to a problem using the same set of 

rules that is used at school in paper solutions; 

 check students‟ solutions and diagnose errors; 

 offer feedback to the student; 

 provide advice on request how to proceed with solution. 

Out of this list, the first five options are available by design of solution step 

dialogue, expression editor and defined set of rules. The last five options are 

available as a result of the applications of the domain expert module of 

T-algebra. This section presents these options and other main applications of the 

domain expert module in detail. 

 

 
2.8.1 Checking equivalence of two expressions 

 

Checking equivalence of two expressions is the most common application of the 

domain expert module in all intelligent problem solving environments dealing 

with expressions. If we would not need other applications we could even 

consider using a computer algebra system engine for this purpose (Ravaglia et 

al., 1998; Sangwin, 2005). However, as we had implemented a domain expert 

for other needs, we used our own checking engine for this, as it was easy to do 

for supported expressions. 

Checking of equivalence is the most used feature of the domain expert 

module in T-algebra. This is used for different purposes in the implementation 

of almost all rules and problem types, mostly for comparing student input with 

the automatic result of T-algebra in the free input mode. 

The checking algorithm itself is quite simple and straightforward. It uses the 

same transformation rules and simplification / solution algorithm as all problem 

types (described in section 3.3). A fixed set of transformation rules (23 rules) is 

used in this algorithm. For checking equivalence of expressions A  and B , 

T-algebra creates another expression )(BA  and tries to simplify it. If it 

simplifies to 0 then expressions are counted as equivalent. 

The composed checking algorithm might not be an optimal one – not the 

fastest and it may be using resources, but it was not a big problem. In addition, 

this algorithm may not work for every possible algebraic expression. However, 

it is suitable for the expressions appearing in the limited set of problem types 

that we have designed for T-algebra as, for example, T-algebra does not work 

with trigonometry and absolute value. 

This algorithm can be used for checking equivalence of linear expressions. A 

different approach is used, if needed, for more sophisticated cases, for example, 

checking of equivalence of equations or fractions with variables. 

In case of equations, for example, the left and right parts are compared 

separately (this is good enough for checks required in the implementation of the 

rules, but not for general equivalence of equations). Systems of equations can 

be handled the same way; different equations are checked separately. 
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In case of fractional expressions with numbers only, it is easy to compare 

values of the expressions. When variables are introduced then there are only 

some rules that support operations with fractions with variables and special 

separate problem types defined for practicing those, for example, the rule Raise 

quotient to a power. In the free input mode, the student enters the resulting 

fraction himself. As by design we usually do not allow other simplifications, as 

the rule name says, we could check equivalence of student input to the result of 

T-algebra by checking separately the numerator and denominator part of the 

fraction using the same algorithm (otherwise if, for example, the student could 

reduce the fraction at the same time, we could not use the same algorithm). 

When talking about equivalence here and later in the context of T-algebra, 

we mean equivalence as it is taught and used in school. For example, in school 

expressions   11 x  and x  are considered to be equivalent. However, according 

to the definition of equivalence of algebraic expressions, the values of two 

equivalent expressions should be same for every set of variables. In this case the 

value of the first expression is undefined if 0x  and the value of the second 

expression is 0  so those are not equivalent by definition. 

Another variation of equivalence checking is to see whether expressions are 

opposite to each other (for expressions A  and B  it means that )(BA  will 

simplify to 0). This is used, for example, in the rule )(*)( baba   to check 

selection of objects – whether the selected polynomials contain the same 

monomial with different signs. These monomials can be in a different form, 

therefore, some simplification is needed when checking it, for example, xyx
2

1
 

and yx25,0 . 

 

 
2.8.2 Checking the initial expression of a problem 

 

The function of checking the initial expression of a problem is used in two 

cases: when entering new problems in the teacher‟s program and when 

generating a random expression for a problem (we need to be sure that the 

generated problem satisfies exactly the same conditions as the entered one) in 

the student‟s program. A problem type should be selected when composing 

problems – some checks that are performed are specific to problem type. 

This checking process itself contains several smaller checks: 

 syntactical correctness of expression – this is checked using expression 

parser (2.7.2), incorrect expressions generate error on parsing; 

 expression form, defined by the problem type, for example, equation, 

polynomial, fraction, etc.; 

 problem type specific checks (described in subsections of section 3.3), for 

example, for the problem type Combine like terms, the initial expression 

should contain at least one pair of like terms; 
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 problem should be solvable by the rules and algorithm defined for this 

problem type (this is checked by the solution algorithm of the problem 

type). 

 
2.8.3 Calculation of result 

 

T-algebra is able to apply the solution algorithm and calculate the answer to a 

problem (without showing / generating a solution path). This is used in the 

teacher‟s program. While entering new expression for a problem, the teacher 

can check whether the problem is solvable and see the answer by pressing either 

the Show answer or Show solution process button. The teacher can thus decide 

whether the problem is suitable for students (for example, the solution of an 

equation is integer / decimal, the resulting polynomial has only integer 

coefficients, etc.). An example of the problem composing window with the 

result of a problem is shown in Figure 2.16. You can see both the initial 

expression of the problem and the calculated result in the bottom right part of 

the window. 

 

 

 
 

Figure 2.16. Example of automatic calculation of result during problem composing 
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2.8.4 Automatic solution generation 
 

In addition to automatic calculation of the result of a problem, T-algebra is able 

to generate step-by-step solutions to problems. The solution is generated using 

the same transformation rules as may be used by students (from the set of 

transformation rules for the selected problem type) and the algorithms described 

in schoolbooks are followed as closely as possible (defined by the solution 

algorithm of the problem type). 

Automatic solution generation is used in two cases in T-algebra. While 

solving problems in the student‟s program, the user can ask the system to solve 

a problem until the end. The teacher can disable this possibility in the problem 

file. If this feature is enabled then the student can press the Autosolve button at 

any time when solving a problem. See an example of an automatically 

generated solution in Figure 2.17. T-algebra is able to generate an automatic 

solution starting from the expression in the last row of the solution path, 

meaning that the student can make some steps himself and then ask T-algebra to 

complete the solution. Each usage of this automatic solution in the student‟s 

program is logged and saved to the solution file (see details in section 2.9). 

Another way to use this feature is in the teacher‟s program when composing 

problems. It is possible to ask the program to generate the solution for the 

problem being entered (for the current expression). The teacher can estimate the 

solution path and decide whether the entered problem expression is suitable for 

his students (it is similar to automatic calculation of the result, but here it is also 

possible to assess all the intermediate steps). 

 

 

 
 

Figure 2.17. Example of automatically generated solution in the student‟s program 
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2.8.5 Advice on request 
 

In addition to automatic solution generation, T-algebra offers local kinds of 

hints or help to students. Students are able to do the following: 

 ask which rule to perform next, 

 ask the program to select suitable objects for the chosen rule, 

 ask T-algebra to add a correct number of input boxes in the structure 

extending mode (see details in section 2.6.4), 

 ask the program to fill in input boxes in different input stages of the step 

(including input in a separate window). 

These features can also be individually disabled in the teacher‟s program when 

composing a problem file. Let us review those possibilities one by one. 

For selection of a rule, the student is able to ask program which rule should 

be applied by pushing the Hint button. The expert module will choose a suitable 

rule according to the solution algorithm for the problem type and the current 

expression and program will display an appropriate message to the user (Figure 

2.18). The same rule would be used if automatic solution generation was 

selected. If the problem is actually solved, T-algebra will display a different 

message saying that the student has to give answer to a problem. 

 
 

 
 

Figure 2.18. Example of a hint for choosing a rule 
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After the rule is selected, some more buttons become visible in the expression 

editor, including the hint button (Figure 2.19, left side). The student is able to 

ask the program to select suitable objects for this rule by pressing this button. 

As a result, T-algebra selects objects for the active rule or shows the student a 

message if this rule cannot be applied to the current expression. Objects 

suggested in this hint are dependent on the rule and the problem type. If the 

student himself has selected some objects in the expression (either right or 

wrong) those are ignored (unselected). Figure 2.19 shows an example of using 

this hint: the initial expression is on the left and the expression with selected 

objects for the rule combine like terms is on the right. 

 

 

 
 

Figure 2.19. Example of a hint for choosing objects 

 

 

During the input stage (also during the input of additional info in a separate 

window) it is possible to ask the program to fill in input boxes with correct 

values by pressing the hint button in the expression editor. T-algebra calculates 

the correct result of application of the rule to the selected objects and writes it in 

the input boxes. If the student has already entered some results in some boxes 

(either right or wrong), those are overwritten by the parts of the result calculated 

automatically. Figure 2.20 shows an example of using this hint: the initial 

expression with all input boxes empty is on the left and the expression with 

input boxes filled with correct parts of the result is on the right. 

 

 

 
 

Figure 2.20. Example of a hint for input stage 
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In case of extending the structure in the input stage, it is possible to ask the 

program to add a correct number of input boxes by pressing the hint button in 

the expression editor. T-algebra does not change the input of the student (except 

if it reduces the number of boxes to a correct one). Figure 2.21 shows an 

example of using this hint: the initial expression (with one set of boxes) is on 

the left and the expression with correct number of input boxes is on the right. 

 

 

 
 

Figure 2.21. Example of a hint for extending the structure 

 

 

We can compare the hint features of T-algebra with the features of another rule-

based system, Mathpert (Beeson, 1998). It has three different hint features: 

autofinish, autostep and hint. Autofinish is similar to automatic solution 

generation in T-algebra, hint is similar to rule selection hint in T-algebra. 

Autostep automatically makes a next step in the solution; in T-algebra we have 

focused on different stages of a step (rule objects and result), therefore, we have 

separate hints for each stage. 

 
 

2.8.6 Student error diagnosis 
 

When solving on paper, a student can make a mistake and continue solving the 

problem. This leads to a wrong answer and all the steps that the student made 

after the error might not be checked by the teacher. So the student does not get 

any feedback on whether these steps were correct or not. When designing the 

T-algebra solution dialogue, we tried to avoid such situations. Therefore, the 

main principle of problem solving in T-algebra is that as soon as an error is 

found the student cannot proceed to further stages of the step or to the next steps 

before the error is corrected. 

As each solution step in T-algebra consists of three stages and the student 

has to confirm his selection made during the stage (confirm the rule and 

selected objects, confirm the entered resulting expression or its parts in partial 

input mode), the program can check the correctness of each stage of the step. 

Different checks are performed depending on the type of the problem, input 

mode and the rule selected – we will review all of them in the following parts, 

grouped by the stages of a step. 
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2.8.6.1 Error diagnosis after selecting a transformation rule 

At the beginning of each solution step, the student has to select the trans-

formation rule he is going to apply. In T-algebra we tried to implement all the 

different rules that are taught at school and used when solving similar problems 

on paper. The rules were given the same names as in textbooks. 

As we did not want to restrict the students‟ solutions and wanted give them 

freedom in choosing the solution algorithm, the program does not check 

separately whether the selected rule is suitable for applying to the current 

expression. If the rule is not applicable to the current expression, no error 

message is displayed until the student confirms his selection of objects – he is 

given a chance to realize that no suitable objects can be found and correct the 

choice of the rule. After objects are selected and confirmed, T-algebra first 

checks if the rule is applicable to at least some objects in the expression. If not, 

an error message is displayed. If the selected rule is applicable to some objects 

of the expression, T-algebra proceeds with further checks. 

The only check performed immediately upon selecting the rule is whether 

the current expression is already in the form of the answer to the problem (in 

case of simplification problems, a monomial or a polynomial with no similar 

terms). In this case the student has either difficulties recognizing the right form 

of the answer to the problem or he does not know any algorithms for solving the 

given problem. 

 
2.8.6.2 Error diagnosis after selecting the operands 

In T-algebra we let the student make all the decisions on how to solve the 

problem. After selection of the transformation rule, the student has to select the 

objects to which the rule is applied. Many errors arise at this stage. The 

approach in T-algebra is different from the one in the Mathpert system (Beeson, 

1998), where the student selects parts of the expression and the program offers 

rules that are suitable for the selected parts. The approach used in Mathpert does 

not allow students to make mistakes at all, while T-algebra lets students to make 

many mistakes, warns about them and requires them to be corrected. 

When selecting separate objects, the program checks whether the selected 

parts are syntactically correct sub-expressions, and displays an error message if 

they are not (half of a number is selected, a variable is selected without its 

power, one of the brackets is not selected, etc.). After confirming the selected 

objects, some extra checks are performed. 

The first significant issue that the program is able to diagnose is whether the 

student knows and considers the priorities of the operations: for example, tries 

to add two numbers and one number is a member of a multiplication term. 

The second issue that the program is able to check is whether the objects are 

of the correct structure and their number is correct – for example, the rule 

Combine like terms requires selection of at least two similar monomials. After 

the rule is selected, the program tells the user what kinds of objects are required 

by the selected rule – so the program checks whether the student knows and 

recognizes suitable objects in the expression. 
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If an error is found then a corresponding error message is displayed to the 

student. If possible, the program also indicates which object was causing the 

error (Figure 2.22). The student has to correct all errors before proceeding to the 

next stage. In this way he does not have to make unnecessary steps after the 

error, as it would be on paper. In addition, in case of unsuitable objects, the 

program would be unable to offer a structure for the expression on the next line. 

 

 

 
 

 

Figure 2.22. Error in selecting objects for the rule Combine like terms 

 

 

2.8.6.3 Error diagnosis after entering a resulting expression 

When applying the rules, the program copies the unchanged parts of the ex-

pression to a new line and protects them from modification. It only lets the user 

to enter the result of applying the rule – the user has to fill in yellow boxes with 

the result or with essential parts of the result. The number and types of the 

boxes depend on the rule and input mode (in addition to objects), and so the 

checks, possible errors and diagnoses that the program is able to perform 

depend on the rule and input mode. 

When the user confirms his input, the program has full information on the 

selected transformation rule, the objects as well as the result of the application of 

the rule offered by the student. This gives the program a possibility for better 

diagnosis of the exact error and its cause. In most cases, the issue whether the 

entered expression is equivalent to the previous one is not the only aspect that can 

be clarified. Having full information on the rule and objects, the program is able 

to apply the rule itself and compare the student‟s result with the correct one. 

There are some common checks that are always performed, irrespective of 

which particular rule is applied. One of those checks whether the entered parts 

and the whole resulting expression is syntactically or mathematically incorrect, 

for example, missing parentheses or two multiplication signs next to each other, 

etc. Another common check for all rules is whether all necessary yellow boxes 

are filled in (some boxes may be left empty intentionally, for example, 

monomial coefficient 1, etc.). In case of an error, a message is displayed to the 

user and the yellow box with the error is indicated if possible (Figure 2.23). 
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Figure 2.23. Error in input of the result – empty yellow box 

 

 

All further checks depend on the input mode and the rule. In the free input 

mode, a check of the structure of the result is performed in most cases (for 

example, when combining like terms, the result of the application of the rule 

should be a single monomial). Even if the entered expression and the correct 

one are equivalent, an error is still displayed to the user if the structure of the 

answer differs from the correct one (Figure 2.24). This is because we want the 

student to apply exactly the same rule that he chose and not to simplify 

something else (for example, multiply polynomials and immediately combine 

like terms). The other issue that is checked is the priority of operators – whether 

the student knows it and adds brackets if needed (for example, in the case of 

multiplication of polynomials if the product is a member of another 

multiplication). After the structure of the result is checked, the content is 

checked in exactly the same way as it is checked in the structured input mode. 

In some very sophisticated cases, only equivalence between the entered and 

correct expression is checked (for example, raising a multi-level fraction to a 

power, etc.). 

 

 

 
 

Figure 2.24. Error in input of result – incorrect structure of result in the free input mode 

 

 

The free input mode is the closest to the way problems are solved in the Aplusix 

program. The latter only checks equivalence of the entered expression to the 

previous one. Lately, the authors of Aplusix have done some research in 

automatic diagnosis of incorrect rule. However, T-algebra checks not only 

equivalence of the whole expressions, but also equivalence of the exact result of 

the application of the selected rule to the correct result, priority of operators 
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etc., even in the most sophisticated cases. T-algebra diagnoses student‟s 

knowledge of applying exactly the same rule that he chose. 

In the structured input and partial input modes, the resulting expression 

already has the correct structure, because the student is prevented from entering 

unsuitable parts into corresponding boxes (some structure checks are performed 

anyway, just in case). In these input modes the program checks the essential 

parts of the resulting expression separately in order to find the exact error and 

diagnose its cause. When the result is a single monomial, the operation sign, 

coefficient, variables and their powers are checked separately. When the result 

is a polynomial then the set of the monomials in the student‟s result is compared 

to the set of monomials in the correct result. If a difference is found, the exact 

error is diagnosed if possible. For example, when multiplying two monomials/ 

polynomials, the students often forget to consider both operation signs (pluses 

or minuses) or simply do not know the rules and calculate the resulting 

coefficient and variables with powers correctly but make an error calculating 

the operator sign (Figure 2.25). 

In comparison with other similar systems, such full information diagnosis 

has many advantages – the student can be shown the exact place of error and the 

exact error type can also be diagnosed in most cases. 

 

 

 
 

Figure 2.25. Error in input of result – wrong operation sign entered 

 

 

2.8.6.4 Other errors in solution 

We have reviewed different possibilities for making errors in the three stages of 

the solution step. However, there are other possibilities for making errors in 

T-algebra, which system is able to diagnose. Those cases are the following: 

 input of additional rule information in a separate window – diagnosed 

similarly to final input as details are entered in yellow boxes in the editor; 

 input of intermediate information for a solution step – diagnosed 

similarly to final input as details are entered in yellow boxes in the editor; 

 input for extending the structure – errors in adding less or more than the 

correct number of boxes – diagnosed similarly to final input as details are 

entered in yellow boxes in the editor; 
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 error when giving answer to a problem (unfinished solution) – diagnosed 

when the student presses the button for giving an answer (if there are 

rules that need to be applied then an error message is shown); 

 error when giving answer to a problem (choice of answer) – diagnosed in 

a separate window when choosing an answer (for example, for equation it 

is possible that any number is a solution or the equation has no solution). 

 

 

2.9 Error categorization and student statistics 
 

T-algebra calculates different statistics during the solving process. For that, 

every error that is made by the student or every hint usage is recorded. When 

recording the error or help usage, T-algebra records, for subsequent reviewing, 

many different attributes describing the current situation at the time when the 

error occurred / help was used. The student can possibly learn from his mistakes 

and the teacher can use this information on mistakes for assessment or 

information on help usages to identify the hardest parts of the material that 

might need revising. This statistics (error and help usage situations) is also 

saved to the solution file (.lah). Calculated statistics can be viewed from the 

View menu in the student‟s program. 

 

 
2.9.1 Error categories and attributes 

 

While the student is solving problems, T-algebra checks his steps and tries to 

diagnose errors (see section 2.8.6). Each time when an error is diagnosed, 

T-algebra records the error situation and tries to categorize the error. 

We have designed 20 different categories and divided all diagnosed error 

types between them. The categories include, for example, selection of objects of 

wrong form, selection of incompatible objects, errors in the form of entered 

subexpression, calculation errors, errors in calculating the sign of entered 

subexpression, etc. For a full list of categories, see Appendix C. We have 

separated mathematical errors (which are probably caused by a mathematical 

misconception or mistake) and other errors, most likely caused by the use of 

T-algebra / computer for solving, which would probably not happen on paper. 

Those categories are quite common and therefore suitable for all rules and 

problem types that we have implemented. We did not want to confuse the 

teacher by introducing hundreds of categories and typical misconceptions that 

are specific only to a certain rule. We conducted a study (see section 4.4) where 

we tried to divide errors from a certain field into more detailed categories but 

found that the current implementation is quite useful as well. 

For every error situation and every error check that we have implemented, 

there is a separate error message (stored in the language file) that is shown to 

the user if a check results in recognition of an error and a category for this error 

situation (for example, the results of the check for coefficient of monomial are, 
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in most cases, classified as calculation errors). For some most common checks, 

where it was hard to choose a category, there is a separate category of un-

classified errors. 

There are eight different situations where errors are diagnosed, with 

corresponding sets of attributes stored. Because of this, there are also minor 

differences in how error situations are displayed in the review window, but most 

differences are shown in one larger area. The following list catalogues those 

different situations where errors are diagnosed. 

1. Selection errors in the editor – diagnosed by the editor and expression 

parser; 

2. Rule selection errors – diagnosed by the problem type specific 

algorithm or general T-algebra solution engine; 

3. Object selection errors – diagnosed by the selected rule error diagnosis 

and expression parser; 

4. Additional information input errors – diagnosed by the selected rule 

error diagnosis (syntax errors are diagnosed using the expression 

parser); 

5. Intermediate (or final in case of one input) input errors – diagnosed by 

the selected rule error diagnosis (syntax errors are diagnosed using the 

expression parser); 

6. Final (second) input errors – diagnosed by the selected rule error 

diagnosis (syntax errors are diagnosed using the expression parser); 

7. Result errors – diagnosed by the problem type solution engine; 

8. Result selection errors (if used) – diagnosed by the problem type 

solution engine in a separate answer window. 

 

For each error situation, different attributes are stored that fully describe the 

error situation. Some attributes are common for all situations: 

 error category, 

 error time, 

 error code, 

 message shown to student, 

 problem number, 

 problem type, 

 selected rule, 

 input mode. 

 

Other specific attributes are added for different error situations, for example, 

Selection errors in the editor have the following additional attributes: 

 expression in editor, 

 objects already selected in editor, 

 erroneous selection in editor. 
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Another example, Input errors (in case of single input line for the rule), is more 

complex: 

 expression in editor before applying the rule, 

 selected objects for applying rule, 

 additional info, if any (for example, common denominator), 

 expression in editor (with boxes), 

 types of boxes (number, sign, etc.), 

 data entered by student in boxes, 

 index of erroneous input box. 

 

 
2.9.2 Help usage categories and attributes 

 

When the student is solving problems, he is able to ask for help in different 

situations (see section 2.8.5). Each time when the student asks for help, 

T-algebra records the help usage situation. We grouped help usage into 7 

categories depending on the place where help was asked. 

1. Autosolve – automatic problem solving until an answer is given; 

2. Rule selection hint – student asks which rule to apply next according to 

the solution algorithm; 

3. Object selection help – T-algebra automatically selects suitable objects 

for the selected rule; 

4. Help for additional information input – T-algebra automatically 

calculates additional information for the rule, for example, a common 

denominator; 

5. Input help (first input – intermediate result in case of two lines and final 

input in case of one line input per rule) – T-algebra automatically fills 

in all the boxes in the result; 

6. Input help (second input, final input for two lines per rule) – T-algebra 

automatically fills in all the boxes in the final input; 

7. Help for extending the structure – T-algebra automatically adds the 

required number of boxes in the structured input mode in case of rules 

that require extending of the structure. 

 

Similarly to error situations, there are numerous attributes that describe each 

help usage situation. Common attributes are: 

 help usage category, 

 help usage time, 

 problem number, 

 problem type, 

 selected rule, 

 input mode, 

 message shown to student; 

 last expression; 
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 objects selected in last expression (if any); 

 solution step number (especially important in case of autosolve). 

For example, in case of Object selection help, there is only one extra attribute in 

addition to the common ones. In this case, the user-selected objects (before 

asking for help) are stored under common attributes and the correct ones 

(selected by T-algebra) under this extra attribute: 

 correct objects in expression (selected by T-algebra).  

 
2.9.3 User interface for reviewing 

 

As mentioned above, the user interface for reviewing can be used by both 

students and teachers. Students can, at any time, use the error list as a reference 

source and possibly learn from their mistakes. Teachers can open student 

solutions and use the information on mistakes for assessment or information on 

help usages to identify the hardest parts of material that might need revising. 

This user interface is accessible in T-algebra through the View menu. 

First, it is possible to view Error counters and Error list. The error list 

displays a list of single error situations that can be reviewed one by one. In the 

error counters view, errors are grouped into categories and total numbers (per 

problem and total) are shown. It is possible to select errors of one category, 

errors in one problem, or even errors of one category in a certain problem for 

reviewing. This selection works as a filter for the error list view – in such case 

the error list displays only a limited set of error situations. The screenshot 

(Figure 2.26) shows two forms: the bottom one shows error counters grouped 

by category and the top one shows the list of error situations. The window 

displays the data that is stored for one error situation: 

 which problem was being solved, 

 initial expression of the problem, 

 what rule was selected, 

 input mode for the problem, 

 the expression to be transformed at the moment of making the error, 

 which objects were selected, 

 error message shown to the student and red box indicating the error (if 

any) shown to the student. 

In some cases there are more (or less) attributes to display, depending on the 

error category. 
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Figure 2.26. Error counters and description of a particular mistake 

 

 

The other two items in the View menu are Counters of help usage and List of 

help usage. Those act similarly to the error counters and the list or errors – the 

first window shows counters of help usages grouped by categories and the other 

shows a list of help usages where each situation can be checked individually 

(Figure 2.27). The window displays the data that is stored for one help usage 

situation: 

 which problem was being solved, 

 initial expression of the problem, 

 what rule was selected, 

 input mode for the problem, 

 the expression to be transformed at the moment of making the error, 

 which objects were selected, 

 what input boxes were offered to the student and what the student entered 

in those boxes before asking for help, 

 the expression with boxes filled with correct input (generated by the help 

feature). 

In some cases there are more (or less) attributes to show, depending on the help 

usage category.  
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Figure 2.27. Counters of help usage and description of particular help 

 

 

The last item in the View menu is Statistics of solving. This table enables to 

review general statistics of solving, like how many problems are solved and 

how many errors were made. This view combines both errors and help usages, 

but also shows other calculated attributes. An example is shown in the 

screenshot below (Figure 2.28). Fields on the pink background may require 

some attention from the teacher or student (for example, errors or help usages 

not zero for some problem, problem not completely solved, etc.). The following 

data is shown for each problem: 

 problem is solved – indicating that the student has completely solved the 

problem and given an answer to the problem (is also true if the student 

used autosolve help); 

 number of errors made – total number of errors per problem, same as in 

the error counters; 

 including mathematical errors – total number of so-called mathematical 

errors per problem, same as in the error counters; this number is included 

in the total number of errors; 

 number of help usages – total number of help usage situations per 

problem; 

 uses of the autosolve button – true if the student has used the autosolve 

button while solving (at any step); this is included in the previous counter 
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but shown separately as it is quite important – it is counted as only one 

help usage, but it is possible that the student did not complete any steps 

by himself; 

 number of steps – number of steps performed, even if the problem is not 

completely solved; 

 date and time of beginning and end of solving the problem; if not 

completely solved then end is the latest time when any actions were 

performed on this problem; 

 time spent on the problem. 

 

 

 
 

Figure 2.28. Student statistics 
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DOMAIN OF EXPONENTS, MONOMIALS AND 

POLYNOMIALS IN SCHOOL TEXTBOOKS AND  

IN T-ALGEBRA 

3 PROBLEMS, RULES AND ALGORITHMS IN THE 

 

I have chosen the domain of exponents, monomials and polynomials for 

exploration (related to my Master‟s thesis (Lepp, 2003b, Lepp, 2003a)) and 

implementation in T-algebra. First of all, school textbooks in mathematics were 

explored, then the rules were programmed, and finally problem types were 

composed. In this section I describe problems and algorithms in the domain of 

exponents, monomials and polynomials in school textbooks and in T-algebra on 

the basis of published articles (Lepp, 2006a). 

 

 

3.1 Problems, definitions, rules and algorithms  

in schoolbooks 
 

Prior to designing T-algebra, transformation rules and problem types, I studied 

them in school textbooks. For that, I examined different best-known and most 

used textbooks in Estonia. I also studied English school textbooks, but the 

Estonian ones were used as a basis, especially if any differences in rules were 

found. I paid more attention to the following issues: definitions, rules on how 

expressions are changed and also typical tasks in each topic. In the subsections 

of this section, I present the three different fields I was responsible for in 

T-algebra: exponents, monomials and polynomials. 

Almost all typical tasks found in school textbooks are implemented in 

T-algebra as different problem types. At the end of each subsection, we mention 

typical tasks that were not implemented in the existing version of T-algebra, 

mostly word problems, most trivial reordering problems (transformations to 

normal form), some factorisation problems and simplification problems 

containing division by polynomials. 

 

 
3.1.1 Exponents 

 

“Exponents” is a topic in mathematics that is presented very differently in 

different textbooks. According to some textbooks, this topic is studied in the 7th 

grade (Tõnso, 2002), while other series of textbooks divide it between the 7th 

and 8th grades (Nurk et al., 2006 and Lepik et al., 2000; Pais, 1998 and Pais, 

2001), and others introduce it entirely in the 8th grade (Veelmaa, 2004). In 

some textbooks this topic is presented as a separate chapter (for example, Pais, 

1998); in others it is included under the topic “Monomials” (for example, 

Veelmaa, 2004). 
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In all textbooks the topic begins with a description of the number exponent. 

First, the square of number is described: “The square of number a (or the 

second power of number a) is product of this number a with a, and is written as 

aaa 2
”. Then the cube of number is introduced: “The product aaa   is 

called the cube of a (or the third power f number a) and is written as 

aaaa 3
”. After that the general definition of the power of number is 

given: “The nth power of number a is product of n factors of a or 
na  means 

aaaa   (n times). Number a can be any number (positive, negative or 

zero). Number n should be a natural number higher than 1”. After this 

definition, the definition of base and exponent is presented: “In the expression 
na , a is known as the base and n as the exponent (whereas 

na  is the nth power 

of a)”. In some textbooks (Nurk et al., 2006; Zuckerman, 1976) the 

exponentiation is described as the operation of determining a power of a 

number. In Estonian textbooks the following remark is also presented: 

“Applying exponent to a negative number the number should always be in 

parentheses”. In addition, some books (McKeague, 1979) say that there are 

expressions in exponential form (like 
43 ) and in expanded form (like 

3333  ). 

After the exponent and exponentiation are described, the following typical 

exercise tasks are presented for students: “Find the value (raise to a power)”; 

“Convert expression to expanded form (or write power as product) and 

calculate”; “Convert expression to exponential form (or write product as 

power)”. 

After practice of writing and calculating the power, the properties of 

exponents are presented. The properties are presented in a different order in 

Estonian and English textbooks. Here we follow the order that can be found in 

Estonian textbooks. 

Some books (Veelmaa, 2004; Barnett et al., 1990) introduce the properties 

with examples: “
523 999999)99()999(99  ”. After examp-

les, or right in the beginning in some textbooks, the first property is given. In 

Estonian textbooks, the property is formulated in the following way: “To 

multiply two powers of the same variable (number), write down the base and 

add the exponents, or 
nmnm aaa  ”. In English textbooks, a more formal 

definition is given: ”If a is a real number, and r and s are positive integers, then 
srsr aaa  . The product of two expressions with the same base is equi-

valent to the base raised to the sum of the exponents from the original two 

expressions”. In English textbooks the justification for property is also 

presented. 

After introducing the property, typical problems like “Simplify by rewriting 

the expression so that the variable occurs only once”; “Find the product of 

powers”; “Simplify the expression using the property of exponents”; 
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“Calculate”, are practiced in some textbooks. In other textbooks the same 

typical tasks can be found after description of several properties. 

The second property in Estonian textbooks is division of powers. Again, 

some books give an example for introduction: 

“
2

3

5
35 222

222

22222

2

2
2:2 




 ”. The definition of the property 

itself is “To divide two powers of the same variable (number), write down the 

base and subtract the exponents, or 
nmnm aaa : ”. In some textbooks, a 

different style for writing division is used: 
nm

n

m

a
a

a  . In English textbooks 

this property is given as the last property (the fifth or the sixth) and the 

formulation is: “If a is any real number, and r and s are any two integers, then 

sr

s

r

a
a

a  ”. With the help of the second property, the next remark is 

introduced in some textbooks: “From one side 1
32

32

2

2
2:2

5

5
55  . From 

other side 
05555 222:2  
. From this follows that 120  ”. This example is 

generalized as follows: “Every number in power zero is one, or 10 a ”. In 

English textbooks (Barnett et al., 1990) it is noticed that “
00  is not defined”. In 

some books (Veelmaa, 2004) one more remark is introduced: “From one side 

14545 : aaaa  
. From other side a

aaaa

aaaaa
aa 




45 : ”. From this 

follows: “Every number in power 1 is this number itself, or aa 1
”. 

After learning this property and those remarks, students practice the 

following problems: “Simplify the expression using the property of exponents”, 

“Find the quotient of powers”, “Calculate”. 

The next property involves negative-integer exponent: “If 0a  , then 

1n

n
a

a

   and 
1n

n
a

a
 ”. English textbooks give a more formal definition of 

negative-integer exponents: “If a is any nonzero real number and r is a positive 

integer, then 
1r

r
a

a

  . It follows, using equality property, that 
1r

r
a

a
 ”. 

From this property it is derived that negative exponents indicate reciprocals 

1 1
a

a

  . 

In order to clarify these definitions, the following problems are solved: 

“Calculate”; “Write as negative exponent”; “Simplify”; “Simplify and then 

calculate”; “Simplify, leaving answers with negative exponents”; “Simplify, 

leaving answers with positive exponents”. 
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The next property again is presented with examples like 

“
63323 555)5(   Notice: 623  ”. The result is generalized as: “To raise 

a power to another power, write down the base and multiply the exponents, or 

( )m n m na a  ”. English textbooks formulate this property as follows: “If a is a 

real number and r and s are positive integers, then 
srsr aa )( . An expression 

with an exponent, raised to another power, is the same as the base from the 

original expression raised to the product of the powers.” English textbooks also 

provide proof for this property. 

We found the following typical exercise tasks for this property in the 

textbooks: “Calculate”; “Raise to a power”; “Simplify”. 

The next property of exponents arises when we have a product of two or 

more numbers raised to an integer power. For example: 

“
444 3))(3333()3)(3)(3)(3()3( xxxxxxxxxx  ”. This leads to 

the property: “To raise a product to a power, raise every factor to a power and 

multiply the results, or ( )n n nab a b  ” or (English textbooks): “If a and b are 

any two real numbers, and r is a positive integer, then 
rrr baab )( ”. The 

English textbooks provide a justification as well. 

In order to clarify this property, the following problems are solved: “Raise to 

a power”; “Simplify and then calculate”; “Calculate”; “Multiply and then raise 

to a power”; “Raise to a power and then multiply”; “Simplify”. 

The last property in Estonian textbooks is formulated for fractions: “To raise 

a fraction to a power, raise numerator and denominator to a power and divide 

them, or ( )
n

n

n

a a

b b
 ”. English textbooks do not mention fractions, but talk 

about division as follows: “The last property was stated for products. Since 

division is defined in terms of multiplication, we can expect a similar property 

involving quotients. “If a and b are any two real numbers with 0b , and r is a 

positive integer, then 
r

r
r

b

a

b

a
)( ”, and also present proof. 

Typical tasks for practicing this property include: “Raise to a power”; 

“Simplify and then calculate”; “Calculate”; “Divide and then raise to a power”; 

“Raise to a power and then divide”; “Simplify”. 

After all properties are described, students are given problems requiring 

application of several properties, like “Calculate” and “Simplify”. 

Almost all typical textbook problems from the field of exponents were 

implemented in T-algebra as different problem types. Probably the only one that 

was left out is conversion of power to a product, which is quite trivial. For all 

other transformation rules presented here, specific problems were created, and 

also a separate problem type was added for calculation of the values of 

expressions. 
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3.1.2 Monomials 
 

In English textbooks the topic “Monomials” is presented together with the topic 

“Polynomials”. In Estonian textbooks monomials are described separately or 

with the exponents in the 8th grade. That is why the order of presentation of 

definitions is different in Estonian and English textbooks. We follow here the 

Estonian textbooks. In all textbooks that we have studied (except Barnett et al., 

1990) this topic begins with the definition of monomial: “Monomial is the 

product of a constant and one or more variables raised to a whole-number 

exponent. Single number is also a monomial.” In some textbooks (Lepik et al., 

2000; Zuckerman, 1976) the definition of variable is given beforehand: “A 

variable is a symbol that represents any one of a given collection of numbers”. 

In Barnett et al., 1990, monomial is described as one-term polynomial. In 

Estonian textbooks the definition of monomial in normal form (or monomial in 

standard form or simplified monomial) is as follows: “The monomial is in 

normal form if it begins with a numerical factor (with sign of term), followed by 

variables with exponents in alphabetical order”. A definition of coefficient of 

monomial is also presented: “The coefficient of monomial is the single 

occurrence of a numerical factor when the monomial is in the normal form”. It 

is remarked that coefficient 1 is not written and a minus sign before monomial 

means the coefficient -1. Finally, the definition of like monomials is presented: 

“Monomials, which are the same or differ only by coefficient, are called like 

monomials”. The process of combining is revised (the process of combining 

like terms was introduced in the 7th grade under the topic “Linear equation”) as 

follows: “Like monomials are combined by adding their coefficients”. 

There are not too many practice exercises for these definitions, but we did 

find a few: “Transform monomials to normal form”; “Find like monomials”; 

“Calculate the value of monomial”; “Combine like terms”. 

After such introduction almost all textbooks explain the multiplication of 

monomials. The following technique for multiplication is given: “To multiply 

monomials, rearrange the factors: 

1. group all coefficients at the beginning; 

2. group powers of the same variable together. 

Multiply the coefficients. Multiply powers of the same variable (add the 

exponents)”. 

In order to clarify this technique, problems like “Multiply” or “Simplify” are 

solved. 

English textbooks do not describe anything else about monomials. Estonian 

textbooks, in addition to the aspects mentioned, also present raising monomials 

to a power and division of monomials. 

Raising monomials to a power is explained with reference to multiplication 

of monomials and examples: “As raising to a power can be replaced with the 

multiplication, then 
63323322232 8)(2222)2( yxyxxyxyxyxy  ”. 

This concludes to: “To raise a monomial to a power, raise its every factor to a 
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power”. After these examples, the typical problems “Raise to a power” and 

“Simplify” are practiced. 

For division of monomials, the Estonian textbooks mostly use the symbol 

“:”, for example xyyx 6:24 32
. Actually, this division should be presented like 

)6(:24 32 xyyx . Only one textbook (Veelmaa, 2004) mentions that 

parentheses should be written but there is an agreement that they are not written 

for the sake of simplicity. Therefore, division xyyx 6:24 32
 means 

xy

yx

6

24 32

. 

The technique for division of monomials is described as follows: “To divide 

monomials: 

1. find the quotient of coefficients, 

2. find the quotient of variables (subtract the exponents), 

3. multiply the results.” 

It is also mentioned that, for division of complicated monomials, it is reasonable 

to write down division as fraction and then to reduce the fraction. Likewise, it is 

better to leave variables with positive exponent in the result (in the denominator 

if needed). 

After this subtopic the students solve problems: “Divide”, “Reduce” and 

“Simplify”. 

At the end of this topic, students practice simplification problems that 

involve multiplication, raising to a power and division of monomials. 

Most of the typical textbook tasks from the field of monomials were 

implemented in T-algebra. The ones that were left out (find like terms, 

transform to normal form) were based on definitions, as no expression 

transformation takes place in some cases or transformations are trivial. In 

addition, multiplication of monomials is very similar to transformation to 

normal form, except T-algebra does not have special rules for reordering 

variables. Division of monomials in the form of a fraction is not supported (only 

the division sign is used) and reduction of fractions with monomials is not 

implemented (rules for operations with fractions only work with numbers). For 

all other transformation rules presented here, specific problems were created, 

and also a separate problem type was added for calculation of the values of 

expressions. 

 3.1.3 Polynomials 
 

The topic “Polynomials” begins with the definition of polynomial: “Polynomial 

is defined to be a sum of monomials”. Monomials used for sum are named 

terms of polynomial. The definition of like monomials and combining of like 

monomials (presented earlier, see 3.1.2) is repeated once more. This is needed 

for the definition of polynomial in normal form: “To transform polynomial into 

normal form, combine like monomials, order the monomials decreasingly 

according to the sum of exponents of variables in monomial and finally 

transform monomials into normal form”. Then the definitions of binomial and 
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trinomial are given: “If a polynomial consists of two unlike terms, it is said to 

be a binomial. If it has three unlike terms, it is called a trinomial”. The English 

textbooks also present the definition of the degree of polynomial: “The degree 

of a term in a polynomial is the sum of the powers of the variables in the term. 

The degree of polynomial is the degree of its term with the highest degree”. 

There are not many problems for practicing these definitions, but we found 

the following problems: “Combine like terms”; “Evaluate a polynomial for 

specific values of variables”; “Simplify”. 

The next subtopic is addition and subtraction of polynomials: “To add 

polynomials, write one polynomial after the other with the same marks of terms 

and combine like terms if needed. To subtract polynomials, write one poly-

nomial after the other with the opposite marks of terms and combine like terms 

if needed“. The English textbooks also propose to add polynomials vertically: 

“Rearrange the terms so that like terms are in the same column and add their 

coefficients”. The rule of clearing parentheses is also described for addition and 

subtraction of polynomials: “If there is a positive sign directly preceding the 

parentheses surrounding a polynomial, we may just remove the parentheses. If 

there is a negative sign directly preceding the parentheses surrounding a 

polynomial, we may remove the parentheses and preceding negative sign by 

changing the sing of each term within the parentheses”. 

After this subtopic the students solve problems: “Add”; “Subtract”, 

“Simplify”; “Evaluate a polynomial for specific values of variables”. 

Following the addition and subtraction of polynomials, the multiplication of 

polynomials by monomial is described: “To multiply a polynomial by a 

monomial, multiply the monomial with every term of the polynomial and add 

the results”. The English textbooks do not present this technique separately; 

they just mention that it is possible to use distributive law for multiplication of 

polynomials by monomial. 

The tasks for practicing are “Multiply”; “Combine and then multiply”; 

“Simplify”; “Evaluate a polynomial for specific values of variables”. 

The next rule in the Estonian textbooks is division of polynomials by 

monomial: “To divide a polynomial by a monomial, divide every term of the 

polynomial by the monomial and add the results”. The English books again 

describe the division differently: “To divide a polynomial by a monomial, use 

the definition of division (replace division with multiplication) and apply the 

distributive property”. 

We found the following problems after that theme in the textbooks: 

“Divide”; “Simplify”; “Calculate”. 

After multiplication/division of polynomial by monomial, the reverse 

operation (to multiplication), i.e., factoring out common factors, is explained in 

the Estonian textbooks. First, the relationship between multiplication and 

factoring is described and the definition of factoring is given: “Transformation 

of a polynomial to a product is called factoring of the polynomial”. The 

following technique for factoring polynomial is presented: “To factor a 

polynomial 
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1. find the common factor of all terms of the polynomial (a monomial that 

divides (is a factor of) each term of the polynomial); 

2. write the common factor before (or after) the parentheses; 

3. write into the parentheses the polynomial that remains after the given 

polynomial is divided by the common factor.” 

English textbooks do not describe factoring at full length; they only refer to the 

distributive property: “View the distributive property from right to left and 

rewrite a sum as a product”. 

In order to clarify this operation, the following problems are solved: “Factor 

out the given factor”; “Factor out the greatest common factor”; “Calculate as 

simply as possible”; “Evaluate a polynomial for specific values of variables”. 

The next operation to study is multiplication of binomials. Multiplication of 

binomials is explained in the Estonian textbooks with the help of area of 

rectangle with sides ( )a b  and ( )c d . This rectangle is divided into 4 

rectangles and their areas are ac , ad , bc  and bd . Then it is derived that 

( )( )a b c d ac ad bc bd      . The same result is obtained when the 

distributive property is applied twice. Then the rule is formulated as follows: 

“To multiply binomial by binomial, multiply each term of one binomial by each 

term of the other and add the results”. The English textbooks describe the FOIL 

method (First product, Outer product, Inner product, Last product) for quick 

(mental) multiplication of binomials. 

The tasks “Multiply” and “Simplify” are practiced to understand multi-

plication of binomials. 

The next subtopic is the reverse of multiplication of binomials, namely, 

factoring by grouping: “In some situations it is possible to take a polynomial 

with no apparent common factor and find one in two steps (when the terms are 

properly grouped):  

1. rearrange and group terms (sometimes you have to rearrange the terms 

for several times to find proper groups); 

2. remove common factor from each group; 

3. take out the common factor to complete factoring. 

The problems “Factor by grouping” are solved under this subtopic. 

Several subsequent subtopics in the Estonian textbooks describe different 

formulas for different (special) products:  

 formula for difference of squares 
2 2( )( )a b a b a b    : the product of 

the sum of two monomials and the difference of the same monomials is 

the difference of squares of these monomials (English textbooks: To 

multiply two binomials which differ only in the sign between their two 

terms, simply subtract the square of the second term from the square of 

the first term);
 

 
The method is also suitable for trinomials, but before factoring a trinomial you 
have to write it out with four terms”. 
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 formula for square of sum 
2 2 2( ) 2a b a ab b    : the square of the 

sum of two monomials is the square of the first monomial plus double 

product of the first and second monomials plus the square of the second 

monomial (English textbooks, formula for binomial squares: the square 

of binomial is the sum of the square of the first term, twice the product of 

the two terms, and the square of the last term); 

 formula for square of difference 
2 2 2( ) 2a b a ab b    : the square of 

difference of two monomials is the square of the first monomial minus 

double product of the first and second monomials plus the square of the 

second monomial. 

The problems used to practice these formulas include: “Multiply”; “Use the 

formulas”; “Simplify”. 

After using formulas for simplifying polynomials, students are taught 

factoring by these formulas. Left and right sides of formulas are exchanged and 

formulas for perfect square trinomial (
222 )(2 bababa   and 

222 )(2 bababa  ) and the difference of two squares 

( ))((22 bababa  ) that can be used for factoring are received. The 

problems “Factor out” are practiced after the formulas have been described. 

The next rule is multiplication of polynomials, where multiplication of 

binomials is extended to an arbitrary polynomial: “To multiply two poly-

nomials, multiply each term in the first polynomial by each term of the second 

polynomial and add the results”. The English textbooks also present a method 

for multiplication that looks very similar to long multiplication with whole 

numbers: ”The polynomials are lined up vertically, then the rule for 

multiplication of polynomial by monomial is applied and results are added in 

columns”. 

Again the problems “Multiply”, “Simplify” and “Evaluate a polynomial for 

specific values of variables” are solved. 

At the end of the topic “Polynomials”, students are taught some more 

formulas based on multiplication of polynomials: 

 formula for sum of cubes 
3322 ))(( babababa  : the product 

of the sum of two monomials and incomplete square of the difference of 

these monomials is the sum of cubes of these monomials; 

 formula for difference of cubes 
3322 ))(( babababa  : the 

product of difference of two monomials and incomplete square of the 

sum of these monomials is the difference of cubes of these monomials; 

 formula for cube of sum 
32233 33)( babbaaba  : the cube of 

binomial is plus triple product of the square of the first term and second 

term plus triple product of the first term and the square of the second term 

plus the cube of the second term; 

 formula for cube of difference 
32233 33)( babbaaba  . 
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The use of these formulas after reversing the sides for factoring is demonstrated 

as well. 

During the study of these formulas, the following typical tasks are practiced: 

“Multiply”; “Simplify”; “Use the formulas”; “Factor out”; “Simplify and 

evaluate”. 

The English textbooks present the subtopic “Division of polynomial by 

polynomial” under this topic. Since this subtopic is not described in the 

Estonian textbooks, we will not describe it here in greater detail. 

At the end of the topic “Polynomial”, typical problems “Simplify” and 

“Factor out”, involving different operations and techniques, are solved for 

rehearsal. 

Most typical simplification problems from the field of polynomials, found in 

textbooks, were implemented in T-algebra. The ones that were left out are based 

on definitions (transform to normal form) or require factorisation and division 

(reduction) of polynomials by polynomials. Division by monomials in the form 

of fractions is not supported (only the division sign is used). As far as 

factorisation problems are concerned, only the simplest factoring out monomial 

of polynomial is implemented and no grouping technique and use of special 

formulas for factoring is supported in the current version. For all other trans-

formation rules presented here specific problems were created, and also a 

separate problem type was added for calculation of the values of expressions. 

 

 

3.2 Designed rules in T-algebra 
 

We started working with transformation rules for step-by-step problem solving 

environments already when designing the “Polynom” program, which was the 

main part of my Master‟s thesis (Lepp, 2003b, Lepp, 2003a). At that moment 

we designed and implemented rules for simplifying polynomial expressions 

(Lepp, 2006a). Although we tried to follow a similar scheme for the imple-

mentation of different rules, the result was not perfect. The implementation was 

slightly different for different rules and it was also different from the paper and 

pencil way of solving problems. 

Before starting to design and implement rules for T-algebra, we tried to 

study the problems that caused differences in the implementation of rules in the 

Polynom system and define a certain scheme to follow when designing different 

rules. 

The Polynom system used a strictly ordered Action – Object – Input scheme. 

The user first had to select an operation and mark the objects only after that. 

Implementation of the object selection was dependent on the selected 

transformation rule (action); input of the result differed between implemented 

rules – this all caused differences in the implementation of different rules. 

In T-algebra we made changes to this scheme. First of all, we allowed 

selection of the rule and objects in an arbitrary order and it lead to the same 

object selection scheme for all rules. Then we implemented three different 
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standard input modes for each rule (described in section 2.5.3). Other changes 

included new substeps for the solution steps of some rules: additional 

information, intermediate result and adding terms (described in section 2.6). 

 
 

3.2.1 Common checks for three stages of step 
 

The solution step scheme we defined lead to a situation where T-algebra 

performs some common checks after the stages of solution steps. The common 

checks for different stages are listed in this subsection and only rule-specific 

checks are mentioned in the descriptions of particular rules. 

As the rule and object selection can now be performed in an arbitrary order 

and a selected rule can even be changed, we do not check the selection of the 

rule separately; it is checked together with objects. Consequently, after the 

second stage of the step (marking parts of expression to apply the rule to) the 

program checks: 

 whether the selected rule is applicable to the current expression (i.e., 

there at least exists a set of objects to which the rule is applicable); 

 performance of marking (whether some parts are marked if needed); 

 syntactical correctness of marked parts; 

 number of marked parts (only one needed, at least two needed, etc., 

described for every rule separately); 

 form of marked parts (may differ depending on the rule, described for 

every rule separately); 

 position of marked parts (in some cases, described for every rule 

separately). 

The input stage in the Polynom system (the system designed and implemented 

for my Master‟s thesis) was also very different for different rules. The amount 

of input required and the structure of the input were variable. For some rules, 

only the most essential parts of result were entered by the student while for 

other rules, the whole result had to be entered. After studying the 

implementation of rules in Polynom, we extracted three different possibilities 

for the input stage and tried to implement all three input modes in T-algebra 

(see section 2.5.3). There are several common checks that T-algebra performs 

after the input stage in different input modes. 

As my responsibility in T-algebra was to design and implement transfor-

mation rules that are specific to the monomial and polynomial topics, I defined 

the set of common checks for rules specific to these topics. The result of 

applying the simplification operations in these topics is always either a single 

monomial or the polynomial (which is a sum of monomials). 

After the input stage in the free input mode T-algebra checks: 

 completion of input of the result (the boxes are not empty) – in some 

cases boxes can be left empty (for example, when the result of combining 

like terms is 0 and there are other terms in this sum expression); 

 syntactical correctness of entered parts; 
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 equivalence of the entered parts to the parts calculated by the computer. 

Further checks depend on the form of the result. If the result is exactly one 

monomial then T-algebra checks separately: 

 form of result (exactly one monomial); 

 set of variables with powers; 

 coefficient; 

 sign. 

 

If the result is a polynomial (sum of monomials) then the current version of 

T-algebra only diagnoses and alerts about non-equivalence of the entered 

expression to the one calculated by the computer. No further checks are 

performed in the free input mode. This actually leads to several issues worth 

mentioning: 

 students can make additional simplification steps when applying rules 

(for example, combine like terms when multiplying polynomials), which 

are not possible in structured and partial input modes; 

 students can omit some calculations (for example, when multiplying 

polynomials they write the coefficient as a product of two coefficients) 

while T-algebra requires a stricter form of the result in structured and 

partial input modes. 

 

In the structured input mode T-algebra checks: 

 completion of input of the result (the boxes are not empty) – in some 

cases boxes can be left empty (for example, coefficient 1); 

 syntactical correctness of entered part in every box; 

 form of every part (may differ depending on rule, described for every rule 

separately); 

 equivalence of the entered parts to the parts calculated by the computer; 

 every component of term (mark, coefficient, variable). 

In addition, some rules include the possibility to add terms to the result during 

the input stage in the structured input mode. For example, in multiplication of 

polynomials, structures for inputting monomials can be added to the result. 

There is one common check that T-algebra performs in case of all rules that use 

adding of terms: 

 number of added terms (in this mode, the student should not combine any 

like terms when multiplying polynomials, etc., therefore, the correct 

number of terms can be easily defined). 

 

In the partial input mode T-algebra checks: 

 completion of input of the result (the boxes are not empty) – in some 

cases boxes can be left empty (for example, power of variable 1); 

 syntactical correctness of entered parts; 


 

equivalence of the entered parts to the parts calculated by the computer.
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3.2.2 Transformation rule implementation principles 
 

While designing the implementation for the transformation rules, some 

problems had to be solved. We had to create an interface that would allow 

simultaneous implementation of transformation rules for different topics 

separately by many developers. We also had to implement special expression 

object classes and a common functionality for creating input boxes in the 

expression structure and the expression editor (described in section 2.7). 

Therefore, we created the interface for the transformation rules by creating 

the base class TRule and for storing additional step information 

TRuleObject with all the required functions and data structures declared. It 

also included implementation of functions that are common to different 

transformation rules, for example, a large number of functions for checking the 

type of subexpression: is the subexpression a monomial or polynomial, power 

of monomial, number or fraction, etc. The transformation rule also defines 

certain specific error messages that are displayed to the user while solving 

problems when checks are performed. 

When a developer needed to add a new transformation rule they simply had 

to extend the TRule class and override methods with custom functionality. 

Then the newly created class should be registered on a special list to be made 

available to both the student and teacher programs. We tried to develop an 

interface where creation of separate rules would need very limited effort from 

the developer – mostly rule specific functions for objects selection, automatic 

rule application, creation of the structure of input boxes, and checks for user 

input and object selection. 

As the number of transformation rules is quite high, the number of different 

classes is also high. Working with them is quite convenient as they all 

implement one interface TRule. The only problem is storing the state, solution 

files and reading solutions from the solutions file. Therefore, internally we used 

different constants (IDs) that define certain transformation rules and stored 

those IDs. For creating a rule from a given ID, also the scope (Problem) for the 

rule has to be passed as a parameter to the special method that was designed and 

no explicit calls to constructor are used at all: 

 class function CreateRuleById(RuleId: Integer; Problem: 

TProblem): TRule; 

 
 function RuleSteps(const Mode: Integer; const RuleObject: 

TRuleObject): Integer; 

The TRule class has many different methods for simpler creation of separate 
transformation rules. Some methods are specific and not used elsewhere. Here 
we present the main functions and data structures of the base class that are used 
in every rule and that are called from other places in T-algebra. 

The function RuleSteps defines whether a rule in this mode uses input of 
intermediate result (additional row for data input). The default return value is 1, 
meaning only 1 input row per step. 

 procedure Check(const Avaldis: TAvaldis); 
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This function gets the object of expression as the parameter. This expression 

contains information on the selected objects. The function Check verifies the 

student‟s selection of objects and checks whether the rule is applicable to these 

objects. If an error is found, a special type of exception is thrown and a message 

displayed to the user. 
 function FindApplySels(const Avaldis: TAvaldis): 

TSelections; 

 functions DialogueInput* 

 procedure Apply(var Avaldis: TAvaldis; const Mode: Integer; 

const RuleObject: TRuleObject); 

 procedure Analyze(const Avaldis: TAvaldis; const Substs: 

TStrings; const Mode: Integer; const RuleObject: 

TRuleObject); 

 procedure Apply2(var Avaldis: TAvaldis; const Substs: 

TStrings; const Mode: Integer; const RuleObject: 

TRuleObject); 

 procedure Analyze2(const Avaldis: TAvaldis; const Substs: 

TStrings; const PSubsts: TStrings; const Mode: Integer; 

const RuleObject: TRuleObject); 

 
This function gets the expression as the parameter, finds and returns 
information on objects suitable for application of the rule. If a rule is not 
applicable then NULL is returned. When the function is called, the first suitable 
set of objects is returned. This function holds some heuristics. Some rules work 
in a slightly different way for different problems. The problem is given as a 
scope to the rule during creation. This function is used widely in the solution 
algorithm for checking whether the rule is applicable and in the problem type 
heuristic function for choosing the next rule to apply. 

Multiple functions that are responsible for input of additional information in the 
popup: window initialisation, input structure creation, automatic result / help, 
etc. In my three topics, these functions are used only in factorisation. 

The procedure Apply modifies the initial expression given as the parameter 
and applies the rule in given mode using additional information entered in the 
popup (or RuleObject = NULL). The information on the structure of input boxes 
as well as on the constraints for different boxes is stored to the resulting 
expression object. That object is used for empty input structure generation as 
well as automatic result calculation. 

 
The procedure Analyze checks the result of application of the rule as entered 
by the student. The procedure gets the initial expression, additional rule 
information and input mode as the parameters. It is able to apply the rule and 
compare the correct result to the input of the student (given as parameter 
Substs that contains parts of expression entered in input boxes). If an error is 
found, a special type of exception is thrown and a message displayed to the 
user. 
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check student input (analyze), but are used in case of input of an intermediate 

result. Input of an intermediate result is handled by means of procedures 

Apply and Analyze (corresponds to the first input line of the rule). The 

procedures Apply2 and Analyze2 are responsible for the final input (2 

corresponds to the second input line of the rule). Again, if an error is found, a 

special type of exception is thrown and a message displayed to the user. 

 
 

3.2.3 Usage of transformation rules in T-algebra 
 

The student‟s program uses transformation rules while solving problems to: 

 check the selection of objects for application of the rule; 

 help the student and select correct objects for application of the rule 

automatically; 

 generate structure for inputting the resulting expression, intermediate 

result or additional information for the rule; 

 check the student‟s input in the boxes; 

 fill in input boxes with correct parts of the result of application of the 

rule; 

 generate an automatic solution – apply rules automatically to the current 

expression; 

 check whether the rule is applicable to the current expression – mostly 

used by the problem solving algorithm and heuristic functions for 

problem types; 

 check whether generated expression is suitable for the problem type – 

whether some rules are applicable. 

The teacher‟s program uses transformation for two main reasons: 

 generate an automatic solution – apply rules automatically to the current 

expression; 

 check whether generated or entered expression is suitable for the problem 

type – whether some rules are applicable.  

 

3.2.4 Scheme for presentation of transformation rules 
 

In the following sections, we present transformation rules that I have designed 

and implemented in T-algebra for problems in two different fields: exponents, 

monomials and polynomials. Some of these rules are also used in other fields 

(for example, solving of linear expressions), therefore, there are no limitations 

on the expressions the rule can be applied to. 

As transformation rules (appropriate classes) in T-algebra contain a large number 
of attributes and algorithms, these are also widely used. Both the T-algebra 
student program and the teacher program require these transformation rules. 

The procedures Apply2 and Analyze2 work similarly to Apply and 

Analyze – those are used to generate the next expression (apply rule) and 
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A similar scheme is used to describe each transformation rule. We describe 

the most important aspects and give some example of application of the rules in 

T-algebra in different input modes. The following attributes are discussed: 

 Applications – possible applications of the rule, also topics (other than 

polynomial simplifications) where the rule is used; 

 Expression – constraints, if any, on the expressions that can be used for 

applying the rule. Mostly there are no limitations on the expressions so 

this item is skipped; 

 Instruction for marking – instructions that T-algebra displays for the 

student when this rule is selected; 

 Marking – description of the marking process for this rule: what parts 

should be marked, checks that T-algebra performs after confirmation of 

the marking stage, help on selection of objects, and one example of the 

objects selection (screen capture); 

 Instruction for input of additional information – instructions that 

T-algebra shows to the student when it requests input of some rule 

specific information in a popup window (if the rule does not use the 

additional information popup then this part is skipped); 

 Input of additional information – description of input of some rule 

specific information in a popup window – input format, checks 

performed, etc. (if the rule does not use the additional information popup 

then this part is skipped); 

 Instruction for input of intermediate result – instructions that T-algebra 

shows to the student when input of an intermediate result of the solution 

step is required (if the rule does not use this kind of input then this part is 

skipped); 

 Input of intermediate result – description of input, form of the result, 

checks performed, example, etc. (if the rule does not use this kind of 

input then this part is skipped); 

 Instruction for input (in each mode) – instructions that T-algebra shows 

to the student when input of the result of the solution step is required in a 

certain input mode; 

 Input of result (in each mode) – the description of input process for this 

rule: what boxes are offered, checks that T-algebra performs after 

confirmation of input, help on input of the result (automatic solving) and 

one example of input (screen capture); 

 Adding input boxes to the input structure – description of extending the 

input structure in the structured input mode: what kind of boxes are 

added, checks that T-algebra performs (description is skipped if adding is 

not used). 

 Error messages – for two rules (Combine like terms (the result is 

monomial) and Multiply polynomials (the result is polynomial)) I also 

present all error messages that the program shows to the student in case 

of a mistake. 
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3.2.5 Rule Combine like terms 
 

Applications: combine like terms; add/subtract numbers (as numbers are like 

terms), also add and subtract fractions. This rule is also used in solving of linear 

equations, linear inequalities and systems of linear equations. 

Instruction for marking: Mark monomials for combining (only one group 

of like terms). 

Marking: The student has to select like terms to combine (Figure 2.1). The 

student has to select objects precisely – only like monomials for combining 

should be selected. It means, for example, that it is impossible to select the 

whole sub-expression 2 3 5x y x   for combining like terms in it, but different 

parts should be selected separately. However, if two or more objects are placed 

next to each other in the expression these can be selected as one part of 

selection (for example, like terms in the expression 2 5 3x x y  ). If a 

monomial is put into parentheses (because of negative coefficient, for example 

)5(2 xx  ) it can be combined directly without removing parentheses. In this 

case, such monomial should be selected with parentheses. Only one group of 

like terms can be combined at one step. During the selection of objects, the 

student can ask for help and the program selects one group of like terms for 

combining or shows a message if there are no terms to combine. 

After confirming the selections, T-algebra checks correctness of the objects: 

whether all the selected objects are monomials, whether there are at least two 

monomials selected, these monomials belong to the same sum expression (also 

if a monomial in parentheses is selected without parentheses) and all of them 

are like terms. The program does not require all like terms of the same type to 

be marked. The program also considers as like terms the parts in which the 

variables are in different order. It means, for example, that the parts 
25ab , 

ab25  and bab8  are considered as like terms. 

 

 
 

Figure 3.1. Marking stage in applying the rule Combine like terms 

 

Error messages after marking (the message itself does not contain brackets; 

the text in brackets is given to explain the situation when and/or how this error 

is diagnosed): 

 At least two terms should be selected for this operation (empty selection 

or not enough objects); 

 Sign cannot be selected without following term (syntax check); 
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 The term should be selected together with parentheses (check for position 

of objects – same level in the tree); 

 Selected terms should be monomials (check for the form of object); 

 Selected terms are not members of a sum (check for position of objects – 

same level in the tree); 

 At least one of the terms is not similar to others (rule specific check); 

 Selected terms are not members of the same sum! Selected terms cannot 

be combined (check for position of objects – same level in the tree); 

 Terms for collection should belong to one equation (special check for the 

field of equations, position of objects); 

 This rule allows to collect terms only in one side of the equation (special 

check for the field of equations, position of objects). 

Instruction for input of result (free input mode): Enter the result of com-

bining. 

Input of result (free input mode): After marking, if all checks are passed, 

T-algebra copies unchanged parts of the expression to the next line and offers 

input boxes for entering the resulting monomial. In case of the free input mode, 

one box for result is proposed. The position of the input box depends on the 

objects selected. In case of combining like terms (as also in case of most rules), 

the input box is placed to the position of the first selected object (see also the 

example in Figure 3.2). 

The student should enter the whole monomial, including the preceding sign, 

in this box (Figure 3.2). The student can enter variables in an arbitrary order 

(even in an order that was not present in marked like terms) and with arbitrary 

powers, which give the right result (the right part of Figure 3.2). It means that 

the student is free to choose whether to enter the monomial in the normal form 

or to use the same variable several times in different powers. Both positive and 

negative variable powers are supported. 

In special cases, some parts of the result or even the whole result can be left 

empty – actually, there are similar cases when solving on paper. If the result of 

combining is 0 (coefficient is 0) and there are other terms in the sum where the 

initial terms belonged to, then this resulting 0 can be omitted (the box can be 

left empty). However, if a result is entered then it should be entered either as 0 

or 0 with variables in correct powers. If the power of variable is 0 then the 

whole variable can be omitted. In addition, if the power of variable is 1 then the 

power can be omitted. If the coefficient of the monomial is 1 or –1 then it can 

be omitted. The same omitting algorithm is used also in all the other rules where 

the result of the operation is a single monomial. 

After confirming the input, the program performs common checks. As the 

result should be a single monomial, the program checks whether the entered 

result is a single monomial. After that, different parts of the entered monomial 

are compared to the correct ones: sign, coefficient and set of variables with 

powers. The program also controls, whether new variables were introduced. For 

example, in case of combining numbers, the student enters the right number 
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with a variable with power 0. The entered result is equivalent to the right result. 

In this case T-algebra shows a warning about the new variable introduced, and 

the student can correct the result or continue with the new variable. If he 

continues he has to make some unnecessary steps to remove the introduced 

variable. 

During the input of the result, the student can ask for help and the program 

will put the right answers in the boxes. If monomials being combined have a 

different order of variables then the program will propose variables in an 

alphabetic order, only variables with power 0 will be eliminated from the result. 

T-algebra offers the normalized form of monomial in the result even if the 

monomials being combined are not in the normalized form. T-algebra also 

omits as many parts of result as possible (powers 1; coefficients 1, -1; variables 

with powers 0; whole result if coefficient is 0). 

 

 

 
 

Figure 3.2. Input of result (free input mode) in applying the rule Combine like terms 
 

 

Error messages after input of result (free input mode): 

 Result is not entered (empty input but correct result is different from 0 or 

this is the only member); 

 Sign is not entered (part of the result is not entered); 

 Error in entering the expression (syntax error, incorrect expression); 

 Entered expression is not a monomial (error in the form of result); 

 Incorrect sign (sign calculation error – error in certain part of the result); 

 Calculation error (coefficient calculation error – error in certain part of 

the result); 

 Incorrect variable part (power calculation error or wrong variable used – 

error in certain part of the result). 

Instruction for input of result (structured input mode): Enter the result of 

combining (sign before monomial, coefficient, variables and their exponents). 

Input of result (structured input mode): In case of the structured input 

mode, the program offers several boxes (Figure 3.3). As the result of combining 

like terms should be a monomial, the offered structure has the general structure 

of a monomial. The first box is sign input box, the next is coefficient input box, 

followed by boxes for input of variables and exponents. The program offers the 
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same number of boxes for variables of the monomial as was the number of 

variables in the marked parts. Variables can be entered in an arbitrary order 

inside the monomial (the right part of Figure 3.3). However, the program 

requests the user to standardize the result to some extent, because the number of 

offered boxes is limited. For example, although the form of one monomial is 

bab  in Figure 1.3, the program offers only two boxes for entering variables in 

the next line, i.e., the user must standardize the form bab  and change it to 2ab  

or ab 2 . 

After confirmation of input, the program performs common checks. If the 

student asks for help, the program will put the correct monomial in the boxes in 

the same way as in the free input mode. 

 

 

 
 

Figure 3.3. Input of result (structured input mode) in applying the rule Combine like 

terms 

 
 

Error messages after input of result (structured input mode): 

 Result is not entered (empty input but correct result is different from 0 or 

this is the only member); 

 Sign is not entered (part of the result is not entered); 

 Expression after the sign is needed (part of the result is not entered); 

 Error in sign (syntax error, incorrect part of expression); 

 Error in number (syntax error, incorrect part of expression); 

 Error in variable (syntax error, incorrect part of expression); 

 Error in exponent (syntax error, incorrect part of expression); 

 Incorrect sign (sign calculation error – error in certain part of the result); 

 Calculation error (coefficient calculation error – error in certain part of 

the result); 

 Incorrect variable part (power calculation error or wrong variable used – 

error in certain part of the result). 

Instruction for input of result (partial input mode): Enter the missing parts 

of the result of combining (sign before monomial, coefficient). 

Input of result (partial input mode): In case of the partial input mode, only 

boxes for input of sign and coefficient are given (Figure 3.4). The variables and 
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exponents are written by the program. The program simplifies the work of the 

user also by doing the standardization of the variables of monomial, i.e., 

converting the monomial into normal form. As part of the result is already 

entered by the program and cannot be changed in the partial input mode, it is 

impossible to omit such monomial even if the coefficient is 0. In this case extra 

solution steps have to be made to eliminate the 0 term. 

The correctness of sign and coefficient is checked when the correctness of 

the step is evaluated. 

 

 

 
 

Figure 3.4. Input of result (partial input mode) in applying the rule Combine like terms 

 

 

Error messages after input of result (partial input mode): 

 Result is not entered (empty input but correct result is different from 0 or 

this is the only member); 

 Sign is not entered (part of the result is not entered); 

 Error in sign (syntax error, incorrect part of expression); 

 Error in number (syntax error, incorrect part of expression); 

 Incorrect sign (sign calculation error – error in certain part of the result); 

 Calculation error (coefficient calculation error – error in certain part of 

the result). 

 

 
3.2.6 Rule Multiply/Divide monomials 

 

Applications: multiply monomials; divide monomials; multiply and divide (at 

the same time) monomials, also multiply and divide numbers. 

Instruction for marking: Mark in a product/division the monomials to be 

multiplied/divided. 

Marking: The student has to select monomials from one product to multiply 

or divide them (Figure 3.5). The student has to select objects precisely – if the 

product contains polynomials in parentheses then they cannot be selected as 

objects. Similarly to combining like terms, if a monomial with a negative 

coefficient is put into parentheses, it should be selected with them to multiply 

with others (left part of Figure 3.5). At each step, only monomials from one 
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product can be selected – T-algebra does not allow parallel applications of the 

rule. At school, students usually multiply and divide terms from left to right but 

in T-algebra it is possible to multiply or divide in any order. It is also possible to 

multiply and divide terms simultaneously in one product (right part of Figure 

3.5). This makes this rule more similar to the rule Combine like terms. 

After confirming the selections, T-algebra checks correctness of the objects: 

whether all selected objects are monomials, whether there are at least two 

monomials selected and these monomials belong to the same product. If two 

relevant objects are next to each other, it is possible to select them together. 

When selecting monomials, it is possible to select them with or without the 

preceding sign – T-algebra always includes the signs in the selection. 

 

 

 
 

Figure 3.5. Two examples of marking stage in applying the rule Multiply/Divide mono-

mials 

 

 

Instruction for input of result (free input mode): Enter the result of multi-

plication/division (sign before the result and the monomial). 

Input of result (free input mode): In the free input mode, the student gets 

two boxes for input of the result. The bigger box is intended for input of the 

monomial without sign. This box is located in the product on the place of the 

first marked monomial (left part of Figure 3.6). For the sign (plus or minus), 

there is a smaller box, which is located before the whole product – this is 

required because, in some cases, there are other terms in the product between 

the sign and the result (left part of Figure 3.6). Therefore, even if two boxes are 

located close to each other, they are still two different boxes (right part of 

Figure 3.6). The sign should be entered in this special box; the program does 

not accept the answer if the sign is entered in the monomial box. 

T-algebra automatically inserts a multiplication sign before the resulting 

monomial and a correct sign after the resulting monomial before other terms in 

the product, if any. Therefore, it is not possible to leave the result empty even if 

the monomial is 0/1. This automatically added multiplication sign can cause 

problems for the student if he selects two or more divisor monomials and wants 

to multiply those – in this case, he will have to invert the result. However, 

students are not taught to simplify expressions in this way and T-algebra does 

not use it in the automatic solving algorithm, so this should not cause many 

problems. 
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As with the rule Combine like terms, the student can enter variables in an 

arbitrary order. In addition, the program does not require that variables should 

be presented once (i.e., the student can enter zz  instead of 
2z ). Variables with 

power 0 can be skipped. The whole monomial result can be skipped only if it is 

0 and the whole product was selected for multiplication. As the result should be 

a single monomial, the program performs common checks, which were 

described before (see section 3.2.1) – the form of the result and then separately 

each component of the monomial. 

If the student asks for help, the program will fill in the boxes with the right 

sign and the right monomial, where variables are placed in an alphabetic order 

and only variables with power 0 are moved to the end of the monomial (they 

will be removed later, anyway, but the program does not delete them from the 

automatic result). 

 

 

 
 

Figure 3.6. Input of result (free input mode) in applying the rule Multiply/Divide 

monomials 

 

 

Instruction for input of result (structured input mode): Enter the result of 

multiplication/division (sign before monomial, coefficient, variables and their 

exponents). 

Input of result (structured input mode): In the structured input mode, 

T-algebra gives the structure of the resulting monomial (Figure 3.7). The 

proposed structure is very similar to the structured mode of the rule Combine 

like terms. The only difference is that the box for the sign is placed before the 

whole product (as in the free input mode), not before the resulting monomial. 

Separate boxes are added for each variable letter from all initial monomials 

(only one box is added if the same variable exists in two monomials). The 

checks and help are accomplished in the same way as for the rule Combine like 

terms – sign, coefficient, variables and powers are checked separately. 
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Figure 3.7. Input of result (structured input mode) in applying the rule Multiply/Divide 

monomials 

 

 

Instruction for input of result (partial input mode): Enter missing parts of 

the result of multiplication/division (sign before monomial, coefficient, 

exponents of variables). 

Input of result (partial input mode): In the partial input mode, the program 

proposes boxes for entering the sign (placed before the whole product like in 

other modes), the coefficient and the powers of variables (Figure 3.8). As 

T-algebra writes out all variables, which were in the marked parts, the powers 

0  should be entered in the result. T-algebra performs common checks at the 

confirmation of input. There are no specific checks for this mode – the checks 

of coefficient, sign and the powers of variables are all common checks. 

 

 

 
 

Figure 3.8. Input of result (partial input mode) in applying the rule Multiply/Divide 

monomials 

 

 

3.2.7 Rule Raise monomial to a power 
 

Applications: exponentiation of monomials; exponentiation of numbers (as a 

number is also a monomial). 

Instruction for marking: Mark a monomial together with exponent for 

exponentiation. 
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Marking: For application of this rule, the student has to select exactly one 

monomial to be raised to a power (Figure 3.9). The student should mark both 

the base and the power (exponent). If the base is written in parentheses (it is in 

most cases, only single positive numbers can be without parentheses), the 

parentheses should be marked as well. Only one monomial can be raised to a 

power during one step. A monomial can consist only of one number (then it is 

exponentiation of the number), but cannot consist only of one variable, i.e., 
2x  

is not suitable for this rule because the result of this operation would be exactly 

the same. At the confirmation of marking, the program checks all the above 

mentioned attributes. 

 

 
 

Figure 3.9. Marking stage in applying the rule Raise monomial to a power 

 

 

Instruction for input of result (free input mode): Enter the sign and the 

resulting monomial. 

Input of result (free input mode): As in the case of the rule Multiply/Divide 

monomials, two boxes are given for the student for input (Figure 3.10). The first 

box (placed before the whole product) is for input of the sign; the second box 

(placed on place of the marked monomial, may be separated from the other 

input box by some terms) is for input of the resulting monomial. In detection of 

the sign, the sign before the whole product should be taken into account (even 

though it might not have been selected). In the resulting monomial, the co-

efficient should be only a number (i.e., the number should be raised to a power 

and the answer should be calculated). For example, in Figure 3.10, the student 

cannot enter 
52  into the result. After input is confirmed, the common checks 

used for monomials are performed (see section 3.2.1). 
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Figure 3.10. Input of result (free input mode) in applying the rule Raise monomial to a 

power 

 

 

Instruction for input of result (structured input mode): Enter the sign and 

parts of the resulting monomial. 

Input of result (structured input mode): The proposed boxes (Figure 3.11) 

and the checks after confirmation are the same as in case of the rule Multiply/ 

Divide monomials. 

 

 
 

Figure 3.11. Input of result (structured input mode) in applying the rule Raise 

monomial to a power 

 

 

Instruction for input of result (partial input mode): Enter the sign and parts 

of the resulting monomial. 

Input of result (partial input mode): The partial input mode of this rule 

(Figure 3.12) is analogous to partial input mode of the rule Multiply/Divide 

monomials. 
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Figure 3.12. Input of result (partial input mode) in applying the rule Raise monomial to 

a power 

 

 

3.2.8 Rule Clear parentheses 
 

Applications: clear parentheses from the polynomial in the sum expression; 

clear parentheses from a single monomial in a sum (required in case of a 

negative coefficient); clear parentheses from the monomial in the product; clear 

parentheses from a complex expression (for example, a sum of monomials, 

products and other complex expressions), which is a part of the sum expression. 

Instruction for marking: Mark one expression with parentheses for re-

moving the parentheses. 

Marking: The student has to mark an expression with parentheses (Figure 

3.13). The parentheses should always be included in the marking. Only one pair 

of parentheses can be removed at one step. Priority of the main operation of 

expression inside the parentheses should be equal to or higher than the priority 

of the operation outside. For example, it is possible to remove parentheses from 

a polynomial if the operation outside the parentheses is addition or subtraction, 

and it is impossible if the operation outside is multiplication. This rule cannot 

be applied to multiplying a number or a monomial by a polynomial in paren-

theses; for this purpose, the rule Multiply/Divide polynomial by monomial 

(section 3.2.9) or the rule Open parentheses should be selected. 

After confirming the selections, T-algebra checks correctness of the objects: 

only one expression with parentheses can be selected at one step. In addition, 

the program checks whether the student knows the priorities of operations. 

During the selection of objects, the student can ask for help and the program 

selects the first possible expression with parentheses or displays a message that 

there are no suitable parentheses. 
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Figure 3.13. Two examples of marking stage in applying the rule Clear parentheses 
 

 

Instruction for input of result (free input mode, structured input mode and 

partial input mode): Enter pluses and minuses. 

Input of result (free input mode, structured input mode and partial 
input mode): In the current implementation of the rule, all three input modes 

are implemented exactly the same way (essentially, the partial input mode), 

because we are unable to offer any certain structure for the resulting expression 

as we did not want to put any restrictions on the form of the expression in 

parentheses. For example, it is possible to clear parentheses from a fraction in 

parentheses when it is a part of a sum or a product. Therefore, we could not 

prescribe a fixed structure for all cases. 

After the marking stage is completed, T-algebra copies the unchanged parts 

of the expression to the next line and offers boxes for inputting the important 

parts of the resulting expression (Figure 3.14). The student has to fill in the 

yellow boxes with correct signs (pluses or minuses). There are two principal 

cases when this rule is used: to remove parentheses from a polynomial in a sum 

(left part of the figure; in this case, the sign before each monomial should be 

entered) or to remove parentheses from a single term (in a sum or in a product; 

right part of the figure; in this case, a sign should be entered before the term or 

the whole product accordingly). 

The most common mistake that is made during application of this rule is not 

changing the sign of the monomial when there is a minus before the 

parentheses. Sign is the most important part in applying this rule and, in these 

modes, it is the only part of the result that is left for the student to enter. After 

confirming the input, the program checks correctness of all signs separately. 

 

 

 
 

Figure 3.14. Input of result (in both structured and partial input modes) in applying the 

rule Clear parentheses 
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3.2.9 Rule Multiply/Divide polynomial by monomial 
 

Applications: multiply a polynomial by monomial(s); divide a polynomial by 

monomial(s); multiply and divide (simultaneously) a polynomial by mono-

mial(s); also multiply and divide a polynomial by numbers (single numbers are 

monomials as well). 

Instruction for marking: Mark one polynomial and monomial(s) for multi-

plication/division. 

Marking: In order to apply this rule, the student has to select exactly one 

polynomial and one or more monomials from one product to multiply or divide 

them (Figure 3.15). At each step, only objects from one product can be selected 

– T-algebra does not allow parallel applications of the rule. The student can 

decide how many monomials from one product he will use for polynomial 

multiplication/division in one step (either one by one or all together). At school, 

students usually multiply and divide terms from left to right but T-algebra 

enables to multiply or divide in any order. A polynomial should be marked 

together with parentheses. If a monomial has been put into parentheses for some 

reason (for example, it has negative coefficient), it has to be selected together 

with parentheses as well. 

After confirming the selections, T-algebra checks correctness of the objects: 

whether the marked objects include one polynomial and all other objects are 

monomials, whether there are at least two objects marked and these objects 

belong to the same product. 

 

 

 
 

Figure 3.15. Two examples of marking stage in applying the rule Multiply/Divide 

polynomial by monomial 

 

 

Error messages after marking: 

 One polynomial and monomial(s) from the same product should be 

selected (empty selection); 

 In addition, one polynomial should be selected (only one object selected); 

 In addition, one monomial should be selected (only one object selected); 

 Sign cannot be selected without the following term (object syntax error); 

 Selected term is neither monomial nor polynomial (form of the object); 

 Only members of one product/division should be selected (position of 

objects, same level in the tree); 
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 Mark the polynomial together with parentheses (position of objects, same 

level in the tree); 

 For this rule, only one polynomial should be selected (number of terms). 

Instruction for input of result (free input mode): Enter the result of multi-

plication/division. 

Input of result (free input mode): In the free input mode, the whole 

resulting polynomial should be entered in a single yellow box (Figure 3.16). 

The student has to add parentheses himself if the polynomial is a part of a 

product (left part of Figure 3.16). After the input is confirmed, the program 

performs common checks used for polynomials as described above. Then it 

checks whether parentheses were added, if required. From the set of checks to 

be performed (only the equivalence is checked) it is clear that, in the free input 

mode, the student can multiply/divide a polynomial by monomial(s), but he can 

also only write out the right multiplication/division as shown on the right side of 

Figure 3.16 (monomials are multiplied, but the division of the polynomial by 

the resulting monomial is only written out). Another possibility for the student 

is to simplify the resulting polynomial, for example, by combining like terms. 
 

 
 

Figure 3.16. Two examples of input of result (free input mode) in applying the rule 

Multiply/Divide polynomial by monomial 

 

 

Error messages after input of result (free input mode): 

 Error in expression (syntactical error); 

 Parentheses are needed (order of operations); 

 Plus or minus sign is missing (special check); 

 Error in answer (resulting subexpression is not equal to correct expres-

sion – equality check is performed using the automatic simplification 

algorithm, see section 2.8.1). 

 

Instruction for input of result (structured input mode): Create the necessary 

number of boxes for monomials and enter the result. 

Adding input boxes to the input structure: The resulting expression of this 

operation is a polynomial. The number of monomials in the polynomial is an 

essential attribute and we do not want to predict it by providing the complete 
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structure of the result. Therefore, in the structured input mode, we added the 

possibility to construct the result by adding new monomials to it. Initially in this 

additional stage, only the structure of the first monomial (one box for sign and 

one box for coefficient with variables) is given (left part of Figure 3.17) – the 

student has to add more structures by pressing a corresponding button on the 

virtual keyboard (right part of Figure 3.17). He can also remove added 

monomials if needed by pressing another button on the virtual keyboard. If the 

teacher has permitted it, the student can ask the program for help and T-algebra 

will create the correct number of structures that corresponds to the number of 

monomials in the correct result. The program controls whether the correct 

number of monomials was added after the input is confirmed. If less than the 

correct number of terms was added then the user is given an error message 

when confirming the input. Monomials with coefficient 0 can be omitted; 

therefore, no extra box has to be added for this term. The user can add more 

than the correct number of terms and leave some of them empty – empty boxes 

will be cleared in the same way as in other rules where some parts may be 

omitted. The student is not allowed to combine like terms in the result (if the 

initial polynomial contains like terms); all like monomials should be 

multiplied/divided separately. 

 

 

 
 

Figure 3.17. Two examples of adding terms to result in applying the rule Multiply/ 

Divide polynomial by monomial 

 

 

Input of result (structured input mode): After adding the boxes to the result, 

the student has to fill them with parts of the resulting polynomial. If required, 

new boxes can be added during input stage. For each monomial, there are two 

kinds of boxes: small boxes are for input of plus and minus signs, larger boxes 
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are for entering numbers and variables (Figure 3.18). Terms can be placed in the 

boxes in an arbitrary order. As with other rules, the variables with power 0 can 

be skipped. Similarly, whole monomials with coefficient 0 can be skipped. 

In the structured input mode, if the resulting polynomial is a part of product, 

it is put into parentheses (parentheses are added automatically by T-algebra) – it 

should be easier for the student if, for example, the sign before the selected 

product is a minus (left part of Figure 3.18) and the student does not have to 

change the signs of individual monomials at the same time. However, when the 

resulting polynomial is not a part of the product, even if there is a minus sign 

before the initial product, the student has to take that minus sign into account 

and change the signs when multiplying. 

In the structured input mode, T-algebra requires from the student exact 

application of this rule only – no combining of like terms or other 

simplifications are allowed at this step. The program performs common checks. 

The form of every entered part should be a monomial and this is verified by 

performing a rule specific check (form of each part). 

When comparing two polynomials (the correct one calculated by T-algebra 

and the one entered by the student), they are compared as two collections of 

monomials. For each monomial from the student‟s polynomial, T-algebra tries 

to find the corresponding monomial in the correct result. If an identical 

monomial is not found, the program tries to identify the error: either the sign is 

incorrect (an identical monomial with the opposite sign), coefficient is incorrect 

(a similar monomial is found), or powers of variables/variables themselves are 

incorrect (other cases). 

 

 

 
 

Figure 3.18. Two examples of input of result (structured input mode) in applying the 

rule Multiply/Divide polynomial by monomial 

 

 

Error messages after input of result (structured input mode): 

 Result should contain more terms (number of terms added and filled); 

 Result should contain less terms (number of terms added and filled); 

 Result cannot be empty (empty result); 

 Monomial should be entered (empty monomial box with filled sign box); 

 Sign is missing (empty sign box with filled monomial); 
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 Error in sign (syntax error); 

 Error in expression (syntax error); 

 There is a separate box for the sign (form of result); 

 Incorrect sign (sign calculation error); 

 Incorrect coefficient (calculation error); 

 Incorrect variable part. Correct result does not contain such member 

(calculation error – power or variable letter); 

 Result should not contain such monomial (calculation error, other error in 

monomial, completely different from the correct ones). 

Instruction  for input of result (partial  input mode): Enter missing parts of 

the result. 

Input of result (partial input mode): In the partial input mode, the student 

has to fill only gaps – coefficients, signs and powers of variables of the resulting 

monomials (Figure 3.19). The order of terms can be changed only if the variable 

part (letters) is the same as variables are already filled in the result. If the 

resulting polynomial is a part of product then it is put into parentheses. The 

checks in the partial input mode are the same as in the structured mode, except 

the check of the number of monomials – in the partial input mode, the number 

of monomials is already correct by design. As T-algebra writes out all variables 

that were in the marked parts, the powers 0  should be entered in the result. 

T-algebra writes out the variables for all possible terms and, therefore, it is 

impossible to omit monomials with coefficients 0 (an extra step could be made 

later to get rid of 0 monomials, but it should not be an issue, because monomials 

with 0 coefficients are usually removed from the polynomial first). 
 

 

 
 

Figure 3.19. Two examples of input of result (partial input mode) in applying the rule 

Multiply/Divide polynomial by monomial 

 

 

Error messages after input of result (partial input mode): 

 Result cannot be empty (empty result); 

 Result should contain more terms (number of terms added and filled); 

 Monomial should be entered (empty monomial box with filled sign box); 

 Sign is missing (empty sign box with filled monomial box); 
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 Error in sign (syntax error); 

 Error in expression (syntax error); 

 Coefficient should be a number (form of result); 

 Exponent should be an integer (form of result); 

 Incorrect sign (sign calculation error); 

 Incorrect coefficient (calculation error); 

 Incorrect variable part. Correct result does not contain such member 

(calculation error – power or variable letter); 

 Result should not contain such monomial (calculation error, other error in 

monomial, completely different from the correct ones). 

 

 
3.2.10 Rule Multiply polynomials 

 

Applications: multiply polynomials. 

Instruction for marking: Mark two polynomials (together with 

parentheses) for multiplication. 

Marking: After selection of the rule, the student has to select exactly two 

polynomials from one product to multiply (Figure 3.20). At each step, only the 

objects from one product can be selected (no parallel rule applications are 

allowed). Polynomials should be marked together with parentheses. During the 

selection of objects, the student can ask for help as in all other rules. 

At the confirmation of marking, T-algebra checks correctness of the objects: 

whether the selected objects are polynomials, whether exactly two objects were 

selected and these objects belong to the same product. 

 

 
 

Figure 3.20. Two examples of marking stage in applying the rule Multiply polynomials 

 

 

Instruction for input of result (free input mode): Enter the result of multi-

plication. 

Input of result (free input mode): The design of the input is exactly the 

same as in the rule Multiply/Divide polynomial by monomial. In the free input 

mode, the whole polynomial should be entered in a single yellow box (Figure 

3.21). The student has to add parentheses himself in case the polynomial is a 

part of a product. After confirming the input, T-algebra checks equivalence of 

the entered resulting subexpression to the correct polynomial (subexpression) 

and also whether parentheses were added if required (order of operations). As 
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with the rule Multiply/Divide polynomial by monomial, the student is left a 

possibility to do more or less than just multiply the polynomials. For example, 

he can combine like terms (left part of Figure 3.21) or simply write out the 

correct multiplication (right part of Figure 3.21).  
 

 

 
 

Figure 3.21. Two examples of input of result (free input mode) in applying the rule 

Multiply polynomials 

 

 

Instruction for input of result (structured input mode): Create the necessary 

number of boxes for monomials and enter the result. 

Adding input boxes to the input structure: Implementation of the adding 

stage is similar to the adding stage of the rule Multiply/Divide polynomial by 

monomial. If the marking was correct then the structure of the first monomial 

(one box for a sign and one box for a coefficient with variables) is given in the 

position of the first (leftmost) selected polynomial (left part of Figure 3.22). The 

student has to add more monomials using the appropriate button (right part of 

Figure 3.22). 

 

 

 
 

Figure 3.22. Two examples of adding terms to result in applying the rule Multiply poly-

nomials 
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Input of result (structured input mode): The structured input mode is also 

implemented similarly as in the rule Multiply/Divide polynomial by monomial. 

The student has to enter signs and monomials (Figure 3.23). Parentheses are 

added by the program if the result is a part of a product or a sum. The program 

insists on exact application of the rule. Monomials can be entered in an arbitrary 

order (for example, in the upper part of Figure 3.23, the first monomial of the 

first polynomial is multiplied by all terms of the second polynomial, then the 

second monomial of the first polynomial is multiplied by all terms of the second 

polynomial and so on; the lower part of Figure 3.23 illustrates the other possible 

manner of multiplication: all terms of the first polynomial are multiplied by the 

first monomial of the second polynomial, then all terms of the first polynomial 

are multiplied by the second monomial of the second polynomial and so on). If 

the student asks for help then the program fills the boxes with the result, found 

by the same manner of multiplication as shown in the upper part of Figure 1.24. 

The checks are the same as the checks used for the rule Multiply/Divide 

polynomial by monomial. 

 

 
 

Figure 3.23. Two examples of input of result (structured input mode) in applying the 

rule Multiply polynomials 

 

 

Instruction for input of result (partial input mode): Enter missing parts of 

the result. 

Input of result (partial input mode): The partial input mode (boxes, 

checks) (Figure 3.24) is accomplished in the same way as in the rule Multiply/ 

Divide polynomial by monomial. 
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Figure 3.24. Two examples of input of result (partial input mode) in applying the rule 

Multiply polynomials 

 

3.2.11 Rule (a±b)²  
 

Applications: expand the square of sum/difference of two monomials. 

Instruction for marking: Mark a square of a binomial (together with 

exponent) for raising to a power. 

Marking: For application of this rule, the student has to select exactly one 

sum or difference of two monomials, which he wants to square, together with 

exponent (number 2) (Figure 3.25). The sum/difference should be marked 

together with parentheses. On confirmation of the marking, the program checks 

whether the selected parts are appropriate: whether exactly one sum/difference 

is selected; whether this sum/difference consists of exactly two monomials; 

whether the exponent is 2; whether the sum/difference is selected together with 

parentheses. 

 
 

Figure 3.25. Marking stage in applying the rule (a±b)²  
 

 

Instruction for input of result (free input mode): Enter the result of expo-

nentiation. 

Input of result (free input mode): In the free input mode, the whole result 

should be entered in a single yellow box (Figure 3.26). As in other rules, where 

the result of multiplication is entered in one box and the multiplied result is a 
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polynomial, T-algebra allows partial application of the rule. Dealing with 

parentheses, if needed, is the student‟s task. 

The resulting polynomial is subjected to all common checks when the input 

is confirmed. The existence of parentheses is checked as well, if required. If the 

student asks the program for help, T-algebra fills the box with the squared result 

and adds parentheses, if required. 

 

 
 

Figure 3.26. Input of result (free input mode) in applying the rule (a±b)²  

 

 

Instruction for input of result (structured input mode): Create the necessary 

number of boxes for monomials and enter the result. 

Adding input boxes to the input structure: As in other rules, where the 

result is a polynomial, the student should, in the structured input mode, create 

the correct number of boxes (initially, only one monomial box is given)(Figure 

3.27).  

 

 
 

Figure 3.27. Adding terms to result in applying the rule (a±b)²  

 

 

Input of result (structured input mode): After adding the input boxes, the 

student has to enter the result in these boxes (Figure 3.28). As in other rules, 

where the result is a polynomial, the program insists on exact application of the 

rule. The input (arbitrary order of terms), parentheses (if the result is part of a 

sum or product) and checks are handled as in the rules Multiply/Divide 

polynomial by monomial and Multiply polynomials. 
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Figure 3.28. Input of result (structured input mode) in applying the rule (a±b)²  

 

 

Instruction for input of result (partial input mode): Enter missing parts of 

the result. 

Input of result (partial input mode): As in other rules, the partial input 

mode here requires the student only to fill gaps (Figure 3.29). The result is put 

in parentheses by the program, if needed. Common checks are performed when 

the input is confirmed. 

 

 
 

Figure 3.29. Input of result (partial input mode) in applying the rule (a±b)²  

 

 

3.2.12 Rule (a±b)³  
 

Applications: expand the cube of sum/difference of two monomials. 

Instruction for marking: Mark a cube of a binomial (together with expo-

nent) for raising to a power. 

Marking: The marking stage (Figure 3.30) is identical to the marking stage 

of the rule (a±b)²  (the only difference is that the exponent should be number 

3). 
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Figure 3.30. Marking stage in applying the rule (a±b)³  

 

 

Instruction for input of result (free input mode): Enter the result of expo-

nentiation. 

Input of result (free input mode): The free input mode (Figure 3.31) is 

identical to the free input mode of the rule (a±b)²  (except, of course, that the 

result should contain raising to the cube). 

 

 
 

Figure 3.31 Input of result (free input mode) in applying the rule (a±b)³  

 

 

Instruction for input of result (structured input mode): Create the necessary 

number of boxes for monomials and enter the result. 

Adding input boxes to the input structure: The adding stage (Figure 3.32) 

is carried out in the same way as during application of the rule (a±b)² . 

 

 

 
 

Figure 3.32. Adding terms to result in applying the rule (a±b)³  
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Input of result (structured input mode): The structured input mode 

(Figure 3.33) is also analogous to the structured input for the rule (a±b)² . 

 

 
 

Figure 3.33. Input of result (structured input mode) in applying the rule (a±b)³  

 

Instruction for input of result (partial input mode): Enter missing parts of 

the result. 

Input of result (partial input mode): The partial input mode (Figure 3.34) 

is similar to the partial input for the rule (a±b)² . 

 

 
 

Figure 3.34. Input of result (partial input mode) in applying the rule (a±b)³  

 

 

3.2.13 Rule (a+b)(a-b)  
 

Applications: multiply the sum and difference of two monomials. 

Instruction for marking: Mark a product of the sum and difference of two 

monomials to be multiplied. 

Marking: For application of this rule, the student has to select the product of 

the sum and difference of two monomials (Figure 3.35). The monomials inside 

the sum and difference can be in an arbitrary order and the sum and difference 

of these monomials can be in an arbitrary order inside the product (i.e., the 

program allows to apply this formula, for example, to (-b+a)(a+b) and does not 

insist on transforming it to (a+b)(a-b) beforehand). The sum and difference 

should be marked together with parentheses. Of course, the sum and difference 

should belong to one product. 



115 

On confirmation of the marking, the program checks whether the marked 

parts are appropriate: whether exactly one pair (the sum and difference of the 

same monomials) is marked; whether the sum and difference belong to one 

product; whether the sum and difference consist of exactly two monomials; 

whether these monomials are the same in the sum and difference; whether the 

sum/difference is selected together with parentheses. 

 

 

 
 

Figure 3.35. Marking stage in applying the rule (a+b)(a-b)  

 

 

Instruction for input of result (free input mode): Enter the result of 

multiplication. 

Input of result (free input mode): In the free input mode, the student is 

given one box for entering the result (Figure 3.36). Like in other rules, where 

the result is a polynomial, parentheses are the responsibility of the student. The 

program performs common checks when the input is confirmed. The 

parentheses are checked as well, if needed. In the free mode, the program does 

not require exact application of the formula, as only equivalence is checked. 

The student can proceed as if applying the rule Multiply polynomials: multiply 

the polynomials (Figure 3.36) or just write out the correct multiplication. 

 

 

 
 

Figure 3.36. Input of result (free input mode) in applying the rule (a+b)(a-b)  

 

 

Instruction for input of result (structured input mode): Create the necessary 

number of boxes for monomials and enter the result. 
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Adding input boxes to the input structure: For entering result in the 

structured input mode, the student has to add the necessary number of boxes for 

monomials (Figure 3.37). The program initially gives boxes for only one 

monomial. The number of boxes is checked after the input is confirmed. 

 

 

 
 

Figure 3.37. Adding terms to result in applying the rule (a+b)(a-b)  

 

 

Input of result (structured input mode): After input boxes have been added, 

the student should enter the result of application of this rule in these boxes 

(Figure 3.38). In the structured input mode, the program allows only exact 

application of the formula, i.e., the result should be the difference of squared 

monomials. Parentheses are added by the program, if needed. Monomials can 

be entered in an arbitrary order. 

After the input is confirmed, the program performs common checks. In 

addition, during rule-specific check (the form of every part), the program 

checks whether the monomials are entered. 

 

 

 
 

Figure 3.38. Input of result (structured input mode) in applying the rule (a+b)(a-b)  

 

 

Instruction for input of result (partial input mode): Enter missing parts of 

the result. 

Input of result (partial input mode): In the partial input mode, the program 

pre-fills some parts (variables) and the student should enter the rest (signs, 
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coefficients and powers of variables) (Figure 3.39). Only exact application of 

the formula is allowed. The parentheses around the resulting binomial are added 

by the program if a polynomial is a part of the sum or product. After con-

firmation, the common checks are performed. 

 

 
 

Figure 3.39. Input of result (partial input mode) in applying the rule (a+b)(a-b)  

 

 

3.2.14 Rule (a±b)(a²±ab+b²)  
 

Applications: multiply the sum/difference of two monomials by incomplete 

square of the difference/sum. 

Instruction for marking: Mark a sum/difference of two monomials and an 

incomplete square of the difference/sum of the same monomials. 

Marking: Marking (Figure 3.40) is accomplished in the same way as for the 

rule (a+b)(a-b) . 

 

 
 

Figure 3.40. Marking stage in applying the rule (a±b)(a²±ab+b²)  

 

 

Instruction for input of result (free input mode): Enter the result of multi-

plication. 

Input of result (free input mode): The free input mode (Figure 3.41) is 

identical to the free input mode of the rule (a+b)(a-b) . 
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Figure 3.41. Input of result (free input mode) in applying the rule (a±b)(a²±ab+b²)  

 

 

Instruction for input of result (structured input mode): Create the necessary 

number of boxes for monomials and enter the result. 

Adding input boxes to the input structure: Adding of terms (Figure 3.42) 

is performed in the same way as during application of the rule (a+b)(a-b) . 

 

 
 

Figure 3.42. Adding terms to result in applying the rule (a±b)(a²±ab+b²)  

 

 

Input of result (structured input mode): Implementation of the structured 

input mode (Figure 3.43) is similar to the structured input for the rule (a+b)(a-

b) . 

 

 
 

Figure 3.43. Input of result (structured input mode) in applying the rule (a±b) 

(a²±ab+b²)  
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Instruction for input of result (partial input mode): Enter missing parts of 

the result. 

Input of result (partial input mode): The partial input mode (Figure 3.44) 

functions similarly to the partial input mode of the rule (a+b)(a-b) . 

 

 

 
 

Figure 3.44. Input of result (partial input mode) in applying the rule (a±b)(a²±ab+b²)  

 

 

3.2.15 Rule Multiply/Divide terms with the same base 
 

Applications: multiply powers with the same base; divide powers with the 

same base; multiply and divide (at the same time) powers with the same base. 

Instruction for marking: Mark at least two powers with the same base to be 

multiplied/divided. 

Marking: For application of this rule, the student has to mark at least two 

terms with exponents, which have the same base (Figure 3.45). The base can be 

a number (right part of Figure 3.45), a variable (left part of Figure 3.45), a 

monomial, or a more complex expression in parentheses. Terms should be 

marked together with exponents. If the base is written in parentheses, it should 

be selected together with parentheses. On confirmation of the marking, the 

program checks whether the selected terms are appropriate: whether at least two 

terms are marked; whether terms are marked together with exponents; whether 

the terms belong to one product; whether the terms have equivalent bases (for 

example, the rule accepts terms with bases )3( b , )3( b , )12( b , etc.). 

 

 

 
 

Figure 3.45. Two examples of marking stage in applying the rule Multiply/Divide terms 

with the same base 
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Instruction for input of result (free input mode): Enter the result of 

multiplication/division. 

Input of result (free input mode): In the free input mode, the student has to 

enter the whole result in one box (Figure 3.46). Entering the correct sign before 

the result (multiplication/division sign in a product (left part of Figure 3.46), 

addition or subtraction sign in a sum) is also the student‟s task. During appli-

cation of this rule, the student can only add exponents; no further simplification 

(like raising a number to a power) is allowed. The resulting power can also be 

presented as a sum expression (for example, 
21b ). The program separately 

checks equivalence of the entered base to the correct base and correctness of the 

power, as it would in case of a monomial (the only difference being that a base 

can be more complex than a single variable). 

 

 
 

Figure 3.46. Two examples of input of result (free input mode) in applying the rule 

Multiply/Divide terms with the same base 

 

 

Instruction for input of result (structured input mode): Enter parts of the 

result. 

Input of result (structured input mode): In the structured input mode, the 

program proposes the structure of the result by giving three boxes (Figure 3.47). 

The first smaller box is for entering the sign (addition, subtraction, multi-

plication or division, depending on context). The second box is intended for 

input of the base. The third box is designed for exponent. The content of these 

boxes is checked on confirmation of the input. The power is checked together 

with the sign and T-algebra allows entering the result with either a multi-

plication or a division sign if the power is inverted accordingly (
3*b  or 

3:b
). 

The content of the base box has to be equivalent to the base of the selected 

terms. 
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Figure 3.47. Two examples of input of result (structured input mode) in applying the 

rule Multiply/Divide terms with the same base 

 

 

Instruction for input of result (partial input mode): Enter exponent in the 

result. 

Input of result (partial input mode): In the partial input mode, only the 

box for exponent is given (Figure 3.48) and only the exponent is checked on 

confirmation of the input. T-algebra always uses a multiplication sign even if it 

leads to negative exponents. 

 

 

 
 

Figure 3.48. Two examples of input of result (partial input mode) in applying the rule 

Multiply/Divide terms with the same base 

 

 

3.2.16 Rule Raise product/quotient/power to a power 
 

Applications: raise a product to a power; raise a quotient to a power; raise a 

power to a power, raise a complex expression containing products, quotients, 

fractions and powers to a power. 

Constraints for expression: the expression may not contain a fraction with 

the same variable in the numerator and denominator, because the implemented 

fraction reduction rule only works with numbers. 

Instruction for marking: Mark a power of product/quotient/power 

(together with parentheses and exponent), to be raised to a power. 



122 

Marking: After selecting this rule, the student has to mark exactly one 

exponent expression to raise it to a power (Figure 3.49). The exponent base can 

be a product (of variables, powers, more complex expressions), a quotient or a 

fraction (of expressions of the same kind) or a power (of expressions of the 

same kind). The base expression should be marked together with parentheses. 

After confirmation of marking, the program checks whether exactly one suitable 

expression is selected. 

 

 
 

Figure 3.49. Two examples of marking stage in applying the rule Raise product/ 

quotient/power to a power 

 

Instruction for input of result (free input mode): Enter the result of 

exponentiation. 

Input of result (free input mode): In the free input mode the student has to 

enter the whole result in one box (Figure 3.50). T-algebra only checks 

equivalence of the entered result to the corrected one. It means that other 

simplifications, like multiplication of monomials (powers of variables) etc., are 

allowed. If the student asks the program for help, the program fills the box with 

the correct result. T-algebra does not simplify anything in the result; the 

structure (fractions, parentheses, order of variables, etc.) remains exactly the 

same as in the original expression. 

 

 
 

Figure 3.50 Two examples of input of result (free input mode) in applying the rule 

Raise product/quotient/power to a power 
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Instruction for input of result (structured input mode): Enter missing parts 

of the result. 

Input of result (structured input mode): In the structured input mode, the 

student has to enter the result in multiple input boxes, forming the structure of 

the result (Figure 3.51). The structure of the result (fractions, parentheses, order 

of variables, etc.) remains exactly the same as the structure of the exponent base 

in the original expressions. As the structure of the result can be very complex (3 

level fractions, multiplication of such fractions, etc.), checking the input would 

be quite difficult if changing the order of terms in the product or similar 

changes were allowed. Therefore, the order of terms in the result has to be 

exactly the same as in the original expression. Any part of the result entered into 

a specific box is checked independently from others (only for equivalence). If 

the student asks the program for help, the program fills the boxes with the 

correct result. 

 

 
 

Figure 3.51. Two examples of input of result (structured input mode) in applying the 

rule Raise product/quotient/power to a power 

 

 

Instruction for input of result (partial input mode): Enter missing exponents 

and coefficients in the result. 

Input of result (partial input mode): The partial input mode is similar to 

the structured one, but some parts are filled in by the program. Only numeric 

parts of the expression (coefficients and exponents) should be entered by the 

student. 
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Figure 3.52 Two examples of input of result (partial input mode) in applying the rule 

Raise product/quotient/power to a power 

 

 

3.2.17 Rule Raise number to a power 
 

Applications: raise a number (fraction) to a power. 

Instruction for marking: Mark a number together with exponent for 

exponentiation. 

Marking: After selecting this rule, the student has to mark a number and 

power for exponentiation (Figure 3.53). Only one number can be raised to a 

power during one application of the rule. If the number is negative and written 

in parentheses, it should be marked together with parentheses. After con-

firmation of marking, the program checks all the mentioned aspects. 

 

 

 
 

Figure 3.53. Two examples of marking stage in applying the rule Raise number to a 

power 

 

 

Instruction for input of result (free input mode, structured input mode and 

partial input mode): Enter a sign and the resulting number. 

Input of result (free input mode, structured input mode and partial 
input mode): The free input here coincides with the structured and partial input 

modes (structured input is used in all cases). The program gives two boxes for 

entering the result: one for the sign and the other for the number (Figure 3.54). 

Correctness of the sign and the number is checked separately when correctness 

of the step is evaluated. 
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Figure 3.54. Two examples of input of result (free input mode, structured input mode 

and partial input mode) in applying the rule Raise number to a power 

 

 

3.2.18 Rule Factor out common factor 
 

Applications: factor out a common factor from all monomials in a polynomial; 

factor out a variable from one side of an equation (for solving a literal equation 

for a given variable). 

Expression: a polynomial expression (sum of monomials) or a more 

complex expression including a polynomial (factoring out a common factor 

should be possible); an equation where a common factor can be factored out 

from one side of the equation. 

Constraints for expression: a polynomial should consist only of monomials 

with a common factor (different from 1 or -1); terms (in any expression) should 

contain a common factor, which is a number, a variable or a monomial. In case 

of an equation, it should contain a variable for solving. 

Instruction for marking: Choose terms for factoring out a common factor. 

Marking: In order to carry out this operation, the student has to mark terms 

(monomials) for factoring out a common factor (Figure 3.55). If the expression 

is a polynomial (sum of monomials) and the problem type is Factor out com-

mon factor then the student has to mark all monomials (the whole polynomial). 

T-algebra does not allow factoring out a common factor of only some 

monomials in a polynomial if there are other monomials. If the expression is an 

equation then the student has to mark terms only on one side of the equation 

(which should be a polynomial as well). All these attributes are checked on 

confirmation of the marking. If the student asks for help, the program marks all 

possible terms that have a common factor (different from 1). 

 

 
 

Figure 3.55. Two examples of marking stage in applying the rule Factor out common 

factor 
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Instruction for input of additional information: Enter common factor 

(number, variable or monomial). 

Input of additional information: If the selected parts are suitable for 

application of the rule then, in structured and partial input modes, a separate 

window will be opened for entering the common factor (number, variable or 

monomial) (Figure 3.56). The common factor should not be the greatest 

common factor (left part of Figure 3.56). If an expression is entered, the 

program checks whether it is a common factor of all marked terms. If the 

student asks for help, the program writes the greatest common factor of marked 

terms in the box. 

Many conditions are taken into account when calculating the greatest 

common factor. If all monomials contain the same variable in positive powers 

then the maximum power that is allowed in the common factor is the smallest 

power of this variable among all monomials (otherwise, negative exponents will 

appear). If at least one monomial contains a variable with a negative exponent 

then T-algebra, if asked for help, still offers the smallest exponent, but does not 

prevent the user from entering a different one (even if it is larger). Regarding 

the coefficient, if all coefficients are integers, the greatest common divider is 

calculated and used as the coefficient of the greatest common factor (this 

limitation also applies to user-entered coefficients). 
 

 

 
 

Figure 3.56. Two examples of input of additional information in applying the rule 

Factor out common factor 

 

Instruction for input of result (free input mode): Enter the result of facto-

risation. 

Input of result (free input mode): Input of additional information is 

skipped in the free input mode. If the marked parts are suitable for application 

of this rule then, in the free input mode, the program copies the expression onto 

the next line of the main window, replacing the marked parts with one empty 

box (Figure 3.57). The student has to enter the result of factorisation in this box. 
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The result should always be a product. The common factor should not be the 

greatest common factor. 

After the input is confirmed, besides common checks the program checks 

whether the student has factored something out (whether the result is a product). 

If the student asks for help, the program composes a product of the greatest 

common factor and terms in parentheses. 

 

 

 
 

Figure 3.57. Two examples of input of result (free input mode) in applying the rule 

Factor out common factor 

 

 

Instruction for input of result (structured input mode): Enter the result of 

factorisation. 

Input of result (structured input mode): After the input of additional 

information has been confirmed, the program composes the expression on the 

next line of the main window. The program composes a product in place of the 

marked parts (the leftmost selected part): writes the previously entered and 

checked common factor and parentheses and leaves one empty box in 

parentheses for entering the result (Figure 3.58). After confirmation of the 

input, T-algebra performs common checks of the free input mode on the entered 

expression (verification of input, syntactical correctness and equivalence). If the 

student asks for help, the program writes the right polynomial in the box (taking 

into account the common factor entered in the additional window). 

 

 
 

Figure 3.58. Two examples of input of result (structured input mode) in applying the 

rule Factor out common factor 
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Instruction for input of result (partial input mode): Enter the result of facto-

risation. 

Input of result (partial input mode): The partial input mode is similar to 

the structured input mode but, instead of one box inside parentheses, the 

program proposes several boxes (Figure 3.59). There are two kinds of boxes: 

small boxes for input of signs + and –, larger boxes for entering numbers and 

variables with exponents (similar to the structured mode used for entering 

polynomial expressions). The number of boxes corresponds to the number of 

terms in the result (equal to the number of marked monomials). Terms can be 

placed in boxes in an arbitrary order. The program performs common checks of 

the structured input mode. The form of every entered part should be a monomial 

and this is verified by performing a rule specific check (form of every part). If 

the student asks for help, the program writes the correct terms in the boxes. 

 

 
 

Figure 3.59. Two examples of input of result (partial input mode) in applying the rule 

Factor out common factor 
 

 

3.3 Designed problem types in T-algebra 
 

When designing T-algebra, we studied different problems that can be found in 

textbooks under the chosen topics. The problems were variable: there were 

various tasks (solve equation, calculate, simplify, etc.), different types of given 

expressions (equation, fractional numeric expression, polynomials, etc.), diffe-

rent kinds of expressions suitable for answer (a single number in calculation 

tasks, a polynomial in simplification tasks, etc.). For most of the tasks, the 

schoolbooks or teachers define, among other things, a recommended solution 

algorithm to follow. 

In the design of T-algebra, we defined the problem types as sets of different 

attributes. The problem types in T-algebra actually correspond to typical 

problems that we have extracted from textbooks. There are 60 problem types 

implemented in T-algebra, grouped into 7 topics (corresponding to the same 

topics in school programme). I was responsible for designing and implementing 

problems in two fields: exponents and monomials (9 problem types) and 

polynomials (9 problem types). There were some typical problems that I did not 

implement in T-algebra, for example, trivial tasks of transforming a monomial/ 
polynomial to normal form. Different books and teachers use different 
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definitions of this normal form and, therefore, it was difficult to make it suitable 

for all teachers. Furthermore, reordering operations are quite trivial and do not 

reappear later in school programmes. Other typical problems involve 

calculating the result of an expression when the values of variables are given. 

Some problems require students to simplify an expression first and then 

substitute a variable, while others require substitution of variables first and then 

simply calculations. We implemented only the first problem type in T-algebra. 

The second differs only in terms of its solution algorithm but, as it is less used, I 

decided not to implement it. 

If problem types are mentioned in any descriptions anywhere in this thesis, 

without specifying the topic, then it refers to these 18 problem types that were 

my responsibility. 

In the following subsections we describe the implementation issues of 

problem types but, before that, we describe the main attributes of a problem 

type. A problem type in T-algebra contains the following attributes and 

algorithms: 

 topic of the problem; 

 default text of the problem (shown to the student); 

 constraints for the initial expression; 

 set of error messages for showing to the teacher during composition of 

problems; 

 information on additional parameters (values) needed for the problem; 

 constraints for the resulting expression; 

 separate answering dialog (used, for example, in giving solution to an 

equation; possible choices: “no solution”, “any number is solution”, 

“certain number is solution”); 

 set of rules that can be used by the student / T-algebra solution algorithm; 

 heuristic function for selecting a transformation rule for the solution path; 

 solution algorithm; 

 procedure for checking the form of the answer; 

 set of error messages for showing to the student when giving final answer 

to a problem; 

 sign to be shown between rows in the solution (in case of the problems in 

my two fields it is, typically, the equality sign). 

 

There are further two, slightly separate aspects from the viewpoint of imple-

mentation that are, nevertheless, connected to problem types and to problem 

type specific attributes and algorithms: 

 description of random task generation variants; 

 random task (expression and parameter values) generation algorithm. 

 

Later in this thesis, we present all the problem types of these two fields: expo-

nents and monomials (9 problem types) and polynomials (9 problem types). 

However, before proceeding with specific types, some general issues are 

discussed. 
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3.3.1 Problem type implementation principles 

 

When designing the implementation for the problem types, some problems had 

to be solved. We had to create an interface that would allow separate imple-

mentation of problem types for different topics simultaneously by many 

developers. 

Thus, we created an interface for problem types by creating the base class 

TProblem with all the required functions and data structures declared. It also 

included an implementation of functions that are common to different problem 

types. A problem type also defines certain error messages that are displayed to 

the user (both teacher and student) when checks are performed. 

When a developers had to add a new problem type, they simply had to 

extend the TProblem class and override the methods with custom functio-

nality. Then the newly created class had to be registered in a special list to be 

available to both student and teacher programs. We tried to create an interface 

where creation of separate problem types would require very little effort from 

the developer. 

As the number of problem types is quite large, the number of different 

classes is also large. Working with them is quite convenient, because they are 

all implemented through one interface, TProblem. The only problems are 

storing the state and the problem files and reading problems from the problem 

files. Therefore, we used different internal constants (IDs) that define certain 

problem types and stored those IDs. A special method was designed for creating 

a problem from a given ID, initial problem expression and parameters, and no 

explicit calls to constructor are used at all (here TAvaldis is the base class for 

all algebraic expressions in T-algebra): 
 class function CreateProblemById(ProblemId: Integer; 

InitialAvaldis: TAvaldis; Parameters: TTStrings): TProblem; 

The TProblem  class has many different methods for simpler creation of 

separate problem types. Some methods are problem type specific and not used 

elsewhere. Here we present the main functions and data structures of the base 

class that are used in every problem type: 
 class function GetBaseRules(): TIntegers; 

The method GetBaseRules  returns the list of rules (list of rule IDs) 

allowed by a given problem type. Only these rules are used by the automatic 

solver and only these rules are listed in the menu to the student. 
 procedure PreCheck(); 

This method is called after creation of each new problem to check whether 

the form of the initial expression is suitable for this problem type. Some general 

checks of the problem type are performed here, e.g., whether the expression 

includes some like terms (in the problem type combine like terms) or whether 

addition is the main operation of the expression, etc. (see the constraints for the 

initial expression in the descriptions of problem types). The expression is stored 
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internally in the class object and, therefore, no parameters are provided. In case 

of an unsuitable expression, an exception is raised (EProblemException), 

but an expression can be unsuitable even if no exception is raised. This is 

verified by trying to solve the problem from the given initial expression by 

calling the automatic solving function: 
 function Solve(const Avaldis: TAvaldis): Integer; 

This method solves the problem, starting from the expression given as the 

parameter Avaldis; the method returns the number of steps to be performed. 

If the result is 0, it means that Avaldis is also the answer – the expression is 

in the form of the answer and no rules from the algorithm can be applied. This 

method raises an exception if the problem cannot be solved. The solve 

method actually implements the general solution algorithm (section 3.3.3) and 

uses a problem type specific heuristic function to get information on the rule to 

be applied next. Although there is a possibility for the problem type to override 

this general solution algorithm, it appeared to be good enough to be used in all 

problem types. 
 function GetHelp(const Avaldis: TAvaldis): Integer; 

The method GetHelp  provides the student with one specific kind of help 

available in T-algebra – information on which rule to apply next. Other kinds of 

help, e.g., selection of suitable objects and automatic rule application, are pro-

vided by TRule objects (rules). Consequently, this function is called when the 

user asks, from the user interface, for help on which rule to apply next. 

The method GetHelp actually contains the heuristic for choosing the next 

rule to be applied to the expression given as the parameter Avaldis and is 

used by the automatic solving algorithm (function Solve). This method returns 

either ID of the rule to be applied or -1 if no suitable rule is found (either the 

expression is a solution to the problem or an unsuitable initial expression was 

given). This heuristic function is the most important element in the imple-

mentation of each problem type. 
 procedure CheckAnswer(const Avaldis: TAvaldis); 

The method CheckAnswer  checks whether the expression given by the 

parameter is suitable as an answer to a problem of the current problem type 

(form of answer in the description of problem types). Some checks of the 

structure of expression are usually performed (for example, is it a polynomial or 

a single monomial – a very typical answer in simplification problems). 

The other methods in the problem type base class are less important for 

simplification problem types. These methods include, for example, parsing 

parameter values (for instance, values of variables to be replaced by), returning 

the sign to be displayed between expressions on different lines (in simplification 

problems usually the equality sign ), generating a special form of the answer 

(for instance, any number is a solution for equation), and displaying a separate 

window for giving answer to a problem if it differs from the expression on the 
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last line (e.g., in solution of an equation usually a choice of the correct answer 

from the list). 

An average class (problem type) of a simplification problem contains 4 im-

portant methods (PreCheck, GetHelp, GetBaseRules, CheckAnswer) and 

only around 200–300 lines of code, depending on the complexity of the heu-

ristic function and the number of allowed rules. Such small amount of code is 

possible because of a quite large basic class for problem types (>2000 lines of 

code) with all reusable functions to ease implementation of separate problem 

types. In addition, use of rule class API enables checking of different const-

raints in only three lines of code (for example, whether an expression contains 

like terms, whether sum is the main operation of an expression, etc.), which 

makes checking procedures (initial expression and result) quite declarative and 

easy to read. All the above factors make it quite simple to define new problem 

types in T-algebra after they are designed. 

 

 
3.3.2 Usage of problem types 

 

Problem types (appropriate classes) in T-algebra contain a large number of attri-

butes and algorithms. Therefore, problem type classes are also widely used. 

Both the T-algebra student program and the teacher program require definitions 

of problem types. 

The student‟s program uses the problem type definition for several purposes 

during the solving process: to show the student the allowed set of rules, to use 

the solution algorithm defined in the problem type to assist the student when he 

asks for help (for selecting the next rule), to generate an automatic solution, to 

check the student‟s answer, to generate a random problem for solving when the 

file is opened, etc. 

The teacher‟s program also uses the problem type for many operations: to 

check the suitability of the initial expression entered by teacher for the problem 

type, to generate an automatic solution, to calculate an answer, to generate 

random task examples, etc. 

Different values and attributes are also used in different situations: sets of 

error messages are used for displaying messages to the student during solving 

and to the teacher during composing. The sign between expressions is used for 

formatting the solutions (both automatic solutions in the teacher‟s program and 

student solutions in the student‟s program). A set of rules is used to limit the 

number of available rules displayed to the student when solving problems. 

 

 
3.3.3 Automatic solving – general algorithm 

 

As we have said in previous sections, each implementation of a problem type 

defines its own procedure with heuristics for the problem solving algorithm. 

This is implemented through a function that returns the most suitable trans-

formation rule for a particular expression. 
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The general solution algorithm is quite simple. It consists of sequential calls 

to this function for returning a suitable rule for the next step, application of that 

transformation rule (through the transformation rule interface), checking 

whether the resulting expression has the required form of the answer of this 

problem type (through the problem type interface). The algorithm is quite 

straightforward; no recursion is used. The following diagram helps to explain 

the general algorithm (Figure 3.60).  

However, there is a problem in the algorithm. It can possibly end in an 

infinite loop. There are some pairs of transformation rules in T-algebra that 

change expressions in opposite ways (for example, reducing and expanding 

fractions, etc.). If two such rules are used, it can lead to a situation where the 

expression remains the same after consecutive application of these rules. 

For example, the algorithm for combining (section 3.3.4) is used in most 

simplification problems. It contains 3 rules in the following order: 

 Extend common fraction; 

 Combine like terms; 

 Reduce. 

 

If it would extend a fraction in the expression by means of the first rule and then 

reduce the same fraction by means of the third rule then we would end up with 

an infinite loop. Actually, such extending is not needed for T-algebra itself, 

because the rule of combining like terms is able to add fractions with different 

denominators or monomials with fractional coefficients. However, this was 

added in order to generate proper automatic solutions. Thus, to avoid looping, 

we defined such heuristics that the rule of extending is applied only in such 

instances and to those fractions that are combined at the next step. Otherwise, 

no fractions are extended. 

Looping would also occur if a recursive algorithm for searching a solution 

path would be used. We could try to implement a looping detection 

functionality in the algorithm to avoid looping. However, we decided to keep 

the general algorithm as simple as possible. The general algorithm does not 

know anything about the expression and does not take it into account when 

applying rules. 

The whole knowledge of expressions and transformation rules comes from a 

special heuristic function for selecting a suitable transformation rule. This 

function is specific for different problem types. The looping problem is also 

solved through this heuristic function. 
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Figure 3.60. Automatic solving algorithm using the heuristic function for rule selection 

 

 

If any of the recursive algorithms would be used (either depth-first or breadth-

first), we could get the answer to a problem easily but we would face other 

problems. First of all, we would have the mentioned looping problem in case of 

depth-first search. Another problem is the speed of the solution algorithm if the 

number of allowed rules increases. There is also a further issue that made us 
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decide not to use recursion. As automatic solving is also used for assisting 

students (help for selecting the next rule) and generating automatic solutions, 

we did not want to have simply “any” solution. Of course, we could always get 

the shortest possible solution. However, we wanted to have some control over 

the solution path to be able to follow the “official” solution algorithms 

presented to the students in textbooks. Therefore, we decided to use the 

heuristic function. 

This heuristic function is also quite simple in most cases. In the description 

of problem types (see sections 3.3.7 and 3.3.8), there is a preference list. A 

typical heuristic function cycles the list, searching for the first transformation 

rule that is applicable to the current expression. For checking whether a rule is 

applicable or not, a special method of the rule API is used (described in section 

3.2.2). If the first such rule is found, it is returned as a result of the function (and 

the rule is applied). If no suitable rule is found then the algorithm stops (maybe 

the current expression is already a solution to the problem) and the form of 

answer is checked. After the rule is applied, a search for the next rule is 

performed from the start of the preference list. In some sophisticated cases, 

different heuristics is used to avoid looping. 

Such heuristic function solution can be used quite well in polynomial 

simplification problems. Problems can arise in factorisation problems and in 

more complex simplification problems where factorisation operations are 

needed in order to reduce a fraction. However, such problems are beyond the 

scope of the school programme for 5–9
th
 grades and, therefore, we did not 

implement them in T-algebra. 

 

 
3.3.4 Sets of rules for the problem types 

 

For the topics I was responsible for (exponents, monomials and polynomials) I 

have created set of new specific rules. For each new section (as in schoolbooks), 

a new transformation rule is introduced. As polynomials are the last topic from 

the school programme that is implemented in T-algebra, the students should 

already be familiar with the transformation rules designed for other topics. 

Many rules from previous topics are also required to be able to solve different 

polynomial problems. For example, most rules for operations with fractions 

(reducing, adding / subtracting, multiplying / dividing, etc.) are needed. There-

fore, I used rules designed and implemented by other team members in my 

problem types. 

There are two large groups of rules that I have used in my problem types. 

The whole list of rules from those groups is provided here. Later, when 

describing certain problem types, we simply refer to these groups. If at least one 

rule from the group is needed for solving a certain problem type, the whole 

group is added. Therefore, it is possible to refer to them later in descriptions of 

problem types. 
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The first group of rules is meant for manipulations with fractions (referenced 

later as the group of rules for fractions): 

 Decrease integer part; 

 Extend common fraction; 

 Reduce; 

 Improper fraction to mixed number; 

 Mixed number to improper fraction; 

 Common fraction to decimal; 

 Decimal fraction to common. 

 

Another large group of rules is meant for simplification of expressions with 0, 1 

and redundant pluses (referenced later as the group of trivial simplification 

rules): 

 Add/Subtract 0; 

 Multiply/Divide 0; 

 Multiply by 1; 

 Divide by 1; 

 Eliminate fraction with 0 in numerator; 

 Eliminate denominator 1; 

 Remove redundant pluses; 

 Raise to power 1; 

 Raise to power 0; 

 Raise 1 to power; 

 Raise 0 to power. 

 

The order of transformation rules in the last group is important. The automatic 

solving algorithm tries to apply these rules in exactly the same order. Automatic 

algorithms for all problem types use this as a sub-algorithm at some stage, so 

this group of rules in this order is referenced also from the algorithm descrip-

tions of different problem types (algorithm for trivial simplification). 

Another typical algorithm (as a sequence of rules) used in the simplification 

problems is the so-called algorithm for combining. It actually includes the rules 

for operations with fractions. As the rule combine like terms even enables 

adding fractions with different denominators (or monomials with fractional 

coefficients), without converting those to one common denominator, we 

decided to have at least the automatic solution algorithm which will use rules 

for manipulating fractions – convert those to fractions with same denominators, 

etc., before adding and reducing after adding. The following order of rules is 

used for the algorithm, which will be referenced as the algorithm for combining: 

 Decrease integer part; 

 Add/Subtract numbers; 

 Common fraction to decimal; 

 Decimal fraction to common; 
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 Extend common fraction; 

 Combine like terms; 

 Reduce; 

 Improper fraction to mixed number. 

 

It is worth mentioning here that there are 3 pairs of rules that can possibly cause 

infinite loops: 

 Decrease integer part and Improper fraction to mixed number; 

 Extend common fraction and Reduce; 

 Common fraction to decimal and Decimal fraction to common. 

The heuristics used in these cases are similar –  the first rules in these pairs 

(except Decimal fraction to common) are applied to certain fractions or 

decimals only if the same object would be used for combining like terms 

(Figure 3.61) or forming an answer (for example, if the problem type is to 

extend two fractions to the same denominator). In other cases, these rules are 

not used even if it were possible. This is done to avoid looping. 
 

 

 
 

Figure 3.61. Example of heuristic (extend – combine – not reduce) in automatic 

solution 
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3.3.5 Typical constraints for initial and resulting expression in 

simplification problems 
 

As mentioned above (section 3.3), the problem types contain numerous 

attributes, including constraints for the resulting expression. The topics of 

monomials and polynomials are somewhat different from other topics 

implemented in T-algebra. The form of the resulting expression is similar (or 

even almost the same) in all problem types. We have extracted three different 

types of constraints for the resulting expression or the form of answer. Here we 

describe them thoroughly and later, while describing the problem types, we will 

refer to these constraints. 

Before specifying the form of answer, we define how T-algebra checks that 

problem is solved: the constraints for the resulting expression should be valid 

and the heuristic function for the automatic solving algorithm for the given 

problem type should not return any transformation rule that can be applied 

(meaning that T-algebra is not able to simplify the expression further). This 

enables problem type specific checks, depending on the set of rules. For 

example, if the rule set defined by the problem type contains a rule for reducing 

fractions, all fractions in the answer (for example, all coefficients of mono-

mials) should be reduced. As fraction-related rules are added to almost all 

problem types. the following is true for almost all problem types. All fractions, 

if any, in the result should be reduced, integer part separated from the improper 

fraction. 

The first typical form of answer is the so-called simplified polynomial or an 

expanded and reduced polynomial expression. It is used in almost all problem 

types in the topic of polynomials and in some problem types of the topic of 

monomials. The resulting expression should be either a single monomial (a 

single number or fraction is also a monomial) or a polynomial (a sum of 

monomials). All like terms in the polynomial should be combined. No multi-

plication signs are allowed in monomial. Only one instance of each variable 

should be present in a monomial (otherwise, it is possible to multiply mono-

mials), except in the problem type Combine like terms (because no multi-

plication rule is available). 

Some teachers require students to give answers in normal forms – all mono-

mials in normal forms, variables placed in a specific order, monomials within 

polynomials also placed in a strict order. At the same time, there are quite many 

teachers who do not require answers in normal forms. T-algebra does not 

require any special order of variables in monomials or monomials inside 

polynomials. 

Another typical form that is used in some problem types from the field of 

exponents and monomials is derived from simplified polynomials. It is a 

polynomial or single monomial as in previous case where the coefficients of 

monomials do not have to be raised to a power, i.e., it can be presented as a 

power of a number. In general, T-algebra allows the user to raise coefficients to 

a power but also allows giving an answer without it. In addition, a single power 
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with a base of any complexity is allowed as a form of answer, because some 

tasks from schoolbooks have similar answers. We will refer to this form as 

simplified polynomial with powered coefficients. 

One more typical form of the resulting expression, which is mostly used in 

the topic of operations with fractions but also in polynomials, is a single 

number. It is either a single integer, decimal, reduced fraction or a mixed 

number with reduced fractional part. 

If some problem types use their specific form of answer, it will be presented 

in the description of that particular problem type. 

The presented forms of the resulting expression also define the constraints 

for the initial expression. When a problem is composed (or generated), 

T-algebra checks whether it is possible to solve this problem with the set of 

rules defined for that problem type. This is done by running the automatic 

solving algorithm. If T-algebra is able to reach the required form of answer 

using the automatic algorithm (which uses only the set of rules defined in the 

problem type) then the initial expression suits this problem type. Some extra 

checks are still performed to check whether the main operation for the problem 

type is utilized (for example, for the problem type Combine like terms, 

T-algebra checks whether there are at least two terms to combine). These extra 

checks are presented in description of each problem type. 

These extra checks of the initial expression for the problem type usually 

check existence or non-existence of a certain subexpression. For example, the 

problem type Multiply monomials checks whether the initial expression contains 

at least two monomial multiplications and does not contain any monomial 

divisions. These checks are performed with the help of transformation rules. To 

ensure existence of a certain type of subexpression, T-algebra checks that a 

certain rule is applicable to the initial expression. In case of non-existence 

check, the same rule should be inapplicable. For combined rules (multiply/ 

divide something), a special checking function is created that tries to find only 

the objects for division. This way it is possible to check whether an expression 

contains a certain quotient that is either allowed or prohibited by the problem 

type. 

 

 
3.3.6 Scheme for presentation of problem types 

 

In the next two sections we present the problem types for two topics. Each 

problem type is presented according to the same scheme. We describe the most 

important aspects and provide an example of an automatically generated 

solution. The following attributes are discussed: 

 Typical text – the typical text of such problems, extracted from 

schoolbooks; this is used as the default text when adding problems in the 

teacher‟s program; 
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 Constraints (for expression) – special constraints or conditions for the 

initial expression (other than it should be possible to reach the required 

form of answer using the set of rules for this problem type); 

 Parameters – any specific parameters for the problem type (for example, 

values of variables); usually, no parameters are defined and this section is 

skipped; 

 Rules – set of allowed rules for this problem type; uses references to the 

groups of rules (section 3.3.4); 

 T-algebra algorithm – actually, the description of the heuristic function, 

preferred order of transformation rules, stating which rules are to be 

applied to the expression in which order (see also section 3.3.3); 

 Example of generated solution – a figure with a sample solution from 

T-algebra, some comments for certain cases; the figure also presents one 

example of the problem (a suitable initial expression); 

 Form of the resulting expression – the required form for the resulting 

expression, additional constraints, if any. 

 

All problem types in T-algebra correspond to certain typical problems presented 

in Estonian schoolbooks under particular topics. When designing problem 

types, we tried to define the constraints for initial expressions based on the 

expressions used in these typical problems. In addition, sets of rules are limited 

to the rules the student should have learnt by that moment in the school 

programme. 

 

 
3.3.7 Problem types for the field of exponents and monomials 

3.3.7.1 Problem type Multiplication of powers 

Typical text: multiply powers. 

Constraints (for expression): the initial expression for the problem 

 should contain at least one product of powers with the same base; 

 should not contain a quotient of powers with the same base. 

 

Rules: 

 Multiply/Divide terms with the same base; 

 Combine like terms; 

 Multiply/Divide monomials; 

 Raise number to a power; 

 Clear parentheses; 

 Add/Subtract numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 
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T-algebra algorithm (preferred order of rules for heuristic function): 

1. Rule Multiply/Divide terms with the same base; 

2. Algorithm for trivial simplification (section 3.3.4); 

3. Rule Multiply/Divide monomials; 

4. Rule Clear parentheses; 

5. Algorithm for combining (section 3.3.4). 
 

 

 
 

Figure 3.62. Example of generated solution for the problem type Multiplication of powers 

 

 

Even though the rule Raise number to a power is available, the automatic 

algorithm of T-algebra does not use it. This is due to the form of the answer in 

schoolbooks: they instruct students only to calculate the correct power and give 

the answer as is. 

Form of the resulting expression is simplified polynomial with powered 

coefficients (for details, see section 3.3.5). 

 
3.3.7.2 Problem type Division of powers 

The problem type Division of powers is actually very similar to Multiplication 

of powers (section 3.3.7.1). A separate problem type was created mainly for 

convenience of the teacher. The problems are separated in schoolbooks: at first, 

only multiplication problems are presented, then division is explained and 

division problems are introduced. Therefore, in this description we present only 

the differences from the multiplication type. 

Typical text: divide powers. 

Constraints (for expression): the initial expression for the problem should 

contain a quotient of powers with the same base. 

 

 
 

Figure 3.63. Example of generated solution for the problem type Division of powers 
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3.3.7.3 Problem type Raising a product to a power 

Typical text: raise a product to a power. 

Constraints (for expression): the initial expression for the problem 

 should contain at least one product, which should be raised to a power; 

 should not contain a quotient, which should be raised to a power; 

 should not contain a power, which should be raised to a power. 

Rules: 

 Multiply/Divide terms with the same base; 

 Raise product/quotient/power to a power; 

 Combine like terms; 

 Multiply/Divide monomials; 

 Clear parentheses; 

 Add/Subtract numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4); 

 Move minus before the fraction. 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Raise product/quotient/power to a power; 

3. Rule Multiply/Divide terms with the same base; 

4. Rule Multiply/Divide monomials; 

5. Rule Clear parentheses; 

6. Algorithm for combining (section 3.3.4); 

7. Rule Move minus before the fraction.  

 

 
 

Figure 3.64. Two examples of solution for the problem type Raising a product to a 

power: student solution on the left, generated solution on the right 
 
 

There are no special restrictions on the form of the resulting expression for 

this problem type. As the main transformation rule that is used and taught for 

this problem type is Raise product/quotient/power to a power and that rule has 

almost no restrictions on the complexity of the power base expression (the main 

operation of the subexpression should be a quotient, product or a fraction), we 

did not want to restrict the user. The expression is counted as an answer to the 
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problem if the solution algorithm for the problem type is unable to find any rule 

to be applied. Thus the expression should be simplified as far as possible. 

As we can see from the example (Figure 3.64), there are different possi-

bilities for the resulting expression. The main rule gives limited freedom for 

entering the result (present the coefficient as a power of a number as in the left 

part of the figure) and, as there is no rule for raising the number to a power, 

T-algebra accepts such answers. 

 
3.3.7.4 Problem type Raising a quotient to a power 

The problem type Raising a quotient to a power is actually very similar to the 

previous problem type Raising a product to a power (section 3.3.7.3). A 

separate problem type was created mostly for convenience of the teacher. These 

problems are separated in schoolbooks. Therefore, in this description we present 

only the differences from the previous problem type. 

Typical text: raise a quotient to a power. 

Constraints (for expression): the initial expression for the problem 

 should contain at least one quotient, which should be raised to a power; 

 should not contain a power, which should be raised to a power. 

 

 

 
 

Figure 3.65. Example of generated solution for the problem type Raising a quotient to a 

power 
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3.3.7.5 Problem type Raising a power to a power 

The problem type Raising a power to a power is actually very similar to the 

previous problem type Raising a product to a power (section 3.3.7.3). A 

separate problem type was created mostly for convenience of the teacher. These 

problems are separated in schoolbooks. Therefore, in this description we present 

only the differences from the previous problem type. 

Typical text: raise a power to a power. 

Constraints (for expression): the expression should contain at least one power, 

which should be raised to a power. 

 

 
 

Figure 3.66. Example of generated solution for the problem type Raising a power to a 

power 

 

 

3.3.7.6 Problem type Multiplication of monomials 

Typical text: multiply monomials and simplify if possible. 

Constraints (for expression): the initial expression for the problem 

 should contain at least one product of monomials; 

 should not contain a quotient of monomials. 

Rules: 

 Combine like terms; 

 Multiply/Divide monomials; 

 Clear parentheses; 

 Add/Subtract numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Multiply/Divide monomials; 

3. Rule Clear parentheses; 

4. Algorithm for combining (section 3.3.4). 
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Figure 3.67. Example of generated solution for the problem type Multiplication of 

monomials 

 

Form of the resulting expression is simplified polynomial (section 3.3.5). 

 
3.3.7.7 Problem type Division of monomials 

The problem type Division of monomials is actually very similar to the previous 

problem type Multiplication of monomials (section 3.3.7.6). A separate problem 

type was created mostly for convenience of the teacher. These problems are 

separated in schoolbooks. Therefore, in this description we present only the 

differences from the previous problem type. 

Typical text: multiply and divide monomials and simplify if possible. 

Constraints (for expression): the initial expression for the problem should 

contain at least one quotient of monomials (division should be expressed with 

the sign “:”, division as a fraction is not suitable). 

 

 

 
 

Figure 3.68 Example of generated solution for the problem type Division of monomials 

 

 

3.3.7.8 Problem type Raising monomials to a power 

Typical text: raise monomials to a power and simplify if possible. 

Constraints (for expression): the expression should contain at least one 

monomial, which should be raised to a power. 
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Rules: 

 Combine like terms; 

 Multiply/Divide monomials; 

 Raise number to a power; 

 Raise monomial to a power; 

 Clear parentheses; 

 Add/Subtract numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Raise number to a power; 

3. Rule Raise monomial to a power; 

4. Rule Multiply/Divide monomials; 

5. Rule Clear parentheses; 

6. Algorithm for combining (section 3.3.4). 

 

 
 

Figure 3.69. Example of generated solution for the problem type Raising monomials to 

a power  

 

Form of the resulting expression is simplified polynomial (section 3.3.5). 

 

 
3.3.7.9 Problem type Calculation of value of expression with integer 

exponents when values of variables are given 

Typical text: simplify and find the value of expression if the variable values 

are... 

Constraints (for expression): any expression, which is not a linear equation, a 

linear inequality or a system of linear equations. The initial expression should 

contain at least one variable to be substituted with a given value. 
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Parameters: values of variables. 

Rules: 

 Substitute variable; 

 Combine like terms; 

 Multiply/Divide monomials; 

 Clear parentheses; 

 Raise number to a power; 

 Raise monomial to a power; 

 Multiply/Divide terms with the same base; 

 Raise product/quotient/power to a power; 

 Add/Subtract numbers; 

 Multiply/Divide numbers; 

 Move minus before fraction; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Move minus before fraction; 

3. Rule Multiply/Divide numbers; 

4. Rule Multiply/Divide monomials; 

5. Rule Raise number to a power; 

6. Rule Raise monomial to a power; 

7. Rule Raise product/quotient/power to a power; 

8. Rule Clear parentheses; 

9. Algorithm for combining (section 3.3.4); 

10. Rule Substitute variable. 

Example of generated solution: 

Text of the problem: Simplify and find the value of the expression if the 

variable values are a=2, b=-3.  

 
 

Figure 3.70. Example of generated solution for the problem type Calculation of value 
 

Form of the resulting expression is single number (section 3.3.5). 
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3.3.8 Problem types for the field of polynomials 

3.3.8.1 Problem type Combine like terms 

Typical text: combine like terms. 

Constraints (for expression): 

 the sum should contain like terms; 

 parentheses can only be around one monomial. 

Rules: 

 Combine like terms; 

 Add/Subtract numbers; 

 Clear parentheses; 

 Move minus before fraction; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Algorithm for combining (section 3.3.4); 

3. Rule Clear parentheses. 
  

 
 

Figure 3.71. Example of generated solution for the problem type Combine like terms 

 

Form of the resulting expression is simplified polynomial (Section 3.3.5). 
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3.3.8.2 Problem type Addition and subtraction of polynomials 

Typical text: add and subtract polynomials. 

Constraints (for expression): the expression should contain an addition or/and 

a subtraction of polynomials – at least one polynomial should be in parentheses 

and the main operation in the expression should be adding/subtracting. 

Rules: 

 Combine like terms; 

 Clear parentheses; 

 Add/subtract number; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Clear parentheses; 

3. Algorithm for combining (section 3.3.4).  

 
 

Figure 3.72. Example of generated solution for the problem type Addition and sub-

traction of polynomials 

 

Form of the resulting expression is simplified polynomial (Section 3.3.5). 
 

 
3.3.8.3 Problem type Multiplication of polynomial by monomial 

Typical text: multiply polynomials by monomials and combine like terms. 

Constraints (for expression): the expression 

 should contain at least one product of polynomial by monomial; 

 should not contain quotients. 

Rules: 

 Combine like terms; 

 Multiply/Divide monomials; 

 Raise number to a power; 

 Raise monomial to a power; 

 Clear parentheses; 
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 Multiply/Divide polynomial by monomial; 

 Add/Subtract numbers; 

 Multiply/Divide numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Multiply/Divide polynomial by monomial; 

3. Rule Multiply/Divide numbers; 

4. Rule Multiply/Divide monomials; 

5. Rule Raise number to a power; 

6. Rule Raise monomial to a power; 

7. Rule Clear parentheses; 

8. Algorithm for combining (section 3.3.4). 
  

  

Figure 3.73. Example of generated solution for the problem type Multiplication of 

polynomial by monomial 

 

Form of the resulting expression is simplified polynomial (Section 3.3.5). 
 

 
3.3.8.4 Problem type Division of polynomial by monomial 

Typical text: multiply and divide polynomials by monomials and combine like 

terms. 

Constraints (for expression): the expression should contain at least one 

quotient of polynomial by monomial (division should be expressed with the 

sign “:”, division as a fraction is not suitable). 

Rules: 

 Combine like terms; 

 Multiply/Divide monomials; 

 Raise number to a power; 

 Raise monomial to a power; 

 Clear parentheses; 
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 Multiply/Divide polynomial by monomial; 

 Add/Subtract numbers; 

 Multiply/Divide numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Multiply/Divide polynomial by monomial; 

3. Rule Multiply/Divide numbers; 

4. Rule Multiply/Divide monomials; 

5. Rule Raise number to a power; 

6. Rule Raise monomial to a power; 

7. Rule Clear parentheses; 

8. Algorithm for combining (section 3.3.4). 

 

 
 

Figure 3.74. Example of generated solution for the problem type Division of polyno-

mial by monomial 

 
 

Form of the resulting expression is simplified polynomial (section 3.3.5). 

 
 
3.3.8.5 Problem type Multiplication of polynomials 

Typical text: multiply polynomials and combine like terms. 

Constraints (for expression): the expression should contain at least one 

product of polynomials. 

Rules: 

 Combine like terms; 

 Multiply/Divide monomials; 

 Raise number to a power; 

 Raise monomial to a power; 

 Clear parentheses; 

 Multiply/Divide polynomial by monomial; 

 Multiply polynomials; 

 Add/Subtract numbers; 

 Multiply/Divide numbers; 
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 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Multiply polynomials; 

3. Rule Multiply/Divide polynomial by monomial; 

4. Rule Multiply/Divide numbers; 

5. Rule Multiply/Divide monomials; 

6. Rule Raise number to a power; 

7. Rule Raise monomial to a power; 

8. Rule Clear parentheses; 

9. Algorithm for combining (section 3.3.4). 

 

 
 

Figure 3.75. Example of generated solution for the problem type Multiplication of 

polynomials 

 

Form of resulting expression is simplified polynomial (section 3.3.5).  

 
3.3.8.6 Problem type Multiplication of polynomials with the help of 

formulas 

Typical text: multiply polynomials with the help of formulas and then combine 

like terms. 

Constraints (for expression): the expression should contain at least one 

product/power of polynomials, which can be simplified by one of four simplifi-

cation formulas (expand the square of the sum/difference of two monomials, 

expand the cube of the sum/difference of two monomials, multiply the sum and 

difference of two monomials, multiply the sum or the difference of two 

monomials by incomplete square). 

Rules: 

 Combine like terms; 

 Multiply/Divide monomials; 

 Raise number to a power; 

 Raise monomial to a power; 

 Clear parentheses; 

 Multiply/Divide polynomial by monomial; 

 Multiply polynomials; 
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 (a±b)² =>; 

 (a±b)³ =>; 

 (a+b)(a-b) =>; 

 (a±b)(a²±ab+b²) =>; 

 Add/Subtract numbers; 

 Multiply/Divide numbers; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule (a±b)² =>; 

3. Rule (a±b)³ =>; 

4. Rule (a+b)(a-b) =>; 

5. Rule (a±b)(a²±ab+b²) =>; 

6. Rule Multiply polynomials; 

7. Rule Multiply/Divide polynomial by monomial; 

8. Rule Multiply/Divide numbers; 

9. Rule Multiply/Divide monomials; 

10. Rule Raise number to a power; 

11. Rule Raise monomial to a power; 

12. Rule Clear parentheses; 

13. Algorithm for combining (section 3.3.4).  

 
 

Figure 3.76. Example of generated solution for the problem type Multiplication of 

polynomials with the help of formulas 

 

Form of the resulting expression is simplified polynomial (Section 3.3.5). 

 

 
3.3.8.7 Problem type Calculation of value of polynomial when 

values of variables are given 

Typical text: simplify and calculate the value of the expression if the values of 

variables are... 
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Constraints (for expression): 

 any polynomial expression (not linear equation, linear inequality or 

system of linear equations); 

 expression should contain at least one variable. 

Parameters: values of variables. 

Rules: 

 Substitute variable; 

 Combine like terms; 

 Multiply/Divide monomials; 

 Clear parentheses; 

 Raise number to a power; 

 Raise monomial to a power; 

 Multiply/Divide terms with the same base; 

 Raise product/quotient/power to a power; 

 Multiply/Divide polynomial by monomial; 

 Multiply polynomials; 

 (a±b)² =>; 

 (a±b)³ =>; 

 (a+b)(a-b) =>; 

 (a±b)(a²±ab+b²) =>; 

 Add/Subtract numbers; 

 Multiply/Divide numbers; 

 Move minus before fraction; 

 Group of rules for fractions (section 3.3.4); 

 Group of trivial simplification rules (section 3.3.4). 

T-algebra algorithm: 

1. Algorithm for trivial simplification (section 3.3.4); 

2. Rule Move minus before fraction; 

3. Rule (a±b)² =>; 

4. Rule (a±b)³ =>; 

5. Rule (a+b)(a-b) =>; 

6. Rule (a±b)(a²±ab+b²) =>; 

7. Rule Multiply polynomials; 

8. Rule Multiply/Divide polynomial by monomial; 

9. Rule Multiply/Divide numbers; 

10. Rule Multiply/Divide monomials; 

11. Rule Raise number to a power; 

12. Rule Raise monomial to a power; 

13. Rule Raise product/quotient/power to a power; 

14. Rule Clear parentheses; 

15. Algorithm for combining (section 3.3.4); 

16. Rule Substitute variable. 
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Example of generated solution: 

Text of the problem: Simplify and calculate the value of the expression if the 

values of variables are x=–0.6, y=0,3. 

 

 
 

Figure 3.77. Example of generated solution for the problem type Calculating of value 

of polynomial 
 

 

Form of the resulting expression is single number (Section 3.3.5). 

 

 
3.3.8.8 Problem type Factoring out common factor 

Typical text: factor out common factor. 

Constraints (for expression): the expression should contain the sum of such 

monomials that have a common factor different from 1. 

Rules: 

 Factor out common factor; 

 Multiply/Divide monomials; 

 Multiply/Divide numbers; 

 Clear parentheses. 

T-algebra algorithm: 

1. Rule Factor out common factor; 

2. Rule Multiply/Divide numbers; 

3. Rule Multiply/Divide monomials; 

4. Rule Clear parentheses.  

 
 

Figure 3.78. Example of generated solution for the problem type Factoring out com-

mon factor 
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Form of the resulting expression should be a product (an expression where the 

greatest common factor is placed before parentheses). All other typical 

constraints on numbers, monomials and polynomials apply. For example, 

numbers and coefficients should be reduced if they are fractions. 



157 

4 CONDUCTED EXPERIMENTS 
 
We have conducted different experiments with students for different purposes 

while designing and developing T-algebra. I have participated in some that were 

related to the topic of polynomials. This section covers the following experi-

ments and goals: 

1. to identify mistakes made by 7th and 8th grade students (during solving 

polynomial simplification problems) when working with pencil and 

paper and their possibility in T-algebra; 

2. to validate the designed user interface and to study the distribution of 

errors between stages of a solution step; 

3. to try to use T-algebra with students while explaining new material; 

4. to learn about errors made in solving polynomial simplification 

problems by 11th grade students and verify implementation of trans-

formation rules and error diagnosis in T-algebra. 

Results of these experiments are published (Issakova et al., 2006; Lepp, 2007a; 

Lepp, 2007b; Prank and Lepp, 2010). The last experiment was conducted later – 

after T-algebra was distributed to Estonian schools. One of our goals was also 

to perform testing in larger groups. 

  

4.1 Study of student mistakes on paper 
 

Prior to designing the transformation rules for monomial and polynomial 

simplification problems, we conducted a study among different groups of 

students, collected and classified different mistakes that most students make. 

Later we used the collected information to design the general rule dialogue, 

certain transformation rules and error diagnosis procedures for different trans-

formation rules that we have implemented in T-algebra. Designing the rules, we 

have attempted to leave an opportunity for students to make the same mistakes 

in T-algebra as they do in paper solutions. When students apply these rules, 

T-algebra checks many different attributes and tries to detect certain typical 

errors. In case of typical errors for which we have implemented special 

diagnostic procedure, T-algebra shows the student an appropriate message. 

T-algebra can also check for non-equivalence of expressions. We have also 

preserved the possibility to add specific diagnostic procedures for different rules 

in the future if we find further typical errors. 

In order to make the T-algebra intelligent enough to diagnose different 

student errors and help to correct them, we first had to understand these errors 

ourselves. We studied the results of similar researches (Tall et al., 1993; Payne 

et al., 1990; Weitz et al., 2007; Hall, 2002) and conducted our own experiment 

with the students to collect typical errors that students make when solving 

problems (Issakova, 2005). For example, Lewis (Lewis et al., 1987) mention a 

study of errors in factoring problems where they propose to use three input 

modes similar to those we have implemented in T-algebra. 
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The experiment on errors in simplification problems took place in Estonian 

schools (selected schools in Tartu) in the winter of 2005 (experiments related to 

other themes of T-algebra were conducted at the same time). For this study, 

mathematics teachers (Mart and Maire Oja) composed two different tests in two 

variants each. Two different groups of students participated in the tests. The 

tests consisted of different types of problems that were later implemented in 

T-algebra. 

A total of 33 students, aged 13 years (7th grade), participated in the first test. 

The test included calculation problems as well as some easiest simplification 

problems. Simplification problems required application of two simplification 

operations at most: combining like terms (7 problems with at most one variable 

in a monomial, example 6 10b b ) and multiplication of a monomial (usually a 

single number or a variable) by a polynomial (8 problems, example 

(2 4 5)a b b   ). The list of problems is presented in Appendix A. The same 

problems were later used to verify the designed user interface of T-algebra in 

subsequent experiments. 

A total of 54 students, aged 14 years (8th grade; two different classes with 

different math teachers), participated in the second test. The test included 

different types of problems: combine like terms (4 problems, many variables, 

example 2 3 2 23 2u v uuv v u vvv  ), multiply or divide polynomial by a monomial 

(7 problems, example ( 3 2 2 3 2 2(20 12 4 ) : ( 4 )x y x y xy xy   ), multiply polynomials 

(10 problems, example 2( 3) (2 3 1)u u u    ), problems requiring application of 

all the mentioned operations (4 problems), as well as some easiest factorisation 

problems (see the list in Appendix A). 

Both groups of students had learned the topics of the tests in autumn 2004 

and the material of the test was not new. The students did not know about the 

test beforehand and had 45 minutes to complete the test. We collected all the 

solutions, checked them and tried to identify typical errors among solutions of 

students in both age groups. 

Here I present the typical errors of all students in applying the following 

operations: combine like terms, and multiply or divide polynomial by a mono-

mial. I was also able to compare the results of two different groups of children – 

what errors are typical at early stages of learning the simplification rules and 

solving problems and what errors become more typical at further stages of the 

education process. 

The result of the test confirmed our assumptions that students make both 

topic-specific mistakes that occur only in simplification problems as well as 

mistakes related to previously studied material. The following two tables 

present typical errors (that were made at least by two students) in applying the 

two mentioned operations. The columns with numbers of students show the 

number and the percentage of students (in an age group) who made this 

mistake. These tables do not reflect if the students made these mistakes more 

than once. 
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Table 4.1. Mistakes in combining like terms 

 

No Nature of mistake Example of mistake Number of 

students 

7th grade 

Number of 

students 

8th grade 

1 Combines non-like 

terms, combines terms 

with different variable 

parts 

2 2 2

3 7 10

3 2

m m

ab a b ab

 

 

 4 (12%) 14 (26%) 

2 Forgets to take into 

account some signs 

before monomials 
2 2 2

7 2 2 3

5 5 10

b b b b

ab ab ab

    

 

 
8 (24%) 9 (17%) 

3 Error in calculating 

the sign of the 

resulting monomial 
2 2 2 2

... 4 2 ... 2

7 12 7 2

x x x

b b b b

   

   
 

8 (24%) 5 (9%) 

4 Arithmetical error in 

calculating the 

coefficient 

9 4 12

10 2 8

x x x

xy yx xy xy

 

  
 9 (27%) 26 (48%) 

5 Error in powers of 

variables 

2 2 4 2

2

9 4 13

10 9

x z x z x z

xyx x y xy

 

 

 
0 (0%) 6 (11%) 

6 Does not combine all 

terms, does not 

recognize like terms if 

they are like 

2 2 23 2 4 2

2 2 3 2

x z x z xzx x z xzx

a b a b a b b

   

     
 

6 (18%) 18 (33%) 

7 Forgets to copy some 

unchanged terms, 

copies terms with 

mistakes 

2 22 3

2 3 2

y y x y y y x

x x x

   

   

 
8 (24%) 3 (6%) 

 

 

Table 4.2. Mistakes in multiplying or dividing of a polynomial by a monomial 

 

No Nature of mistake Example of mistake Number of 

students 

7th grade 

Number of 

students 

8th grade 

8 Does not multiply or 

divide one of the 

terms of the 

polynomial by the 

monomial 

26)23(2

834)23(

2 



xxx

uu
 

8 (24%) 2 (4%) 

9 Does not change signs 

of some monomials in 

result 

(3 2 4) 3 2 4

2 ( 2 ) 2 2 4

m x y mx my m

x y x x y x y x

      

         
 

14 (42%) 8 (15%) 

10 Multiplies the 

polynomials or 

polynomials by 

monomials instead of 

adding 

2

16 (5 3 1) 80 48 16

( 2) ( ) 2 2

x y x y

x x y x xy x y

     

      

 

4 (12%) 11 (20%) 
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No Nature of mistake Example of mistake Number of 

students 

7th grade 

Number of 

students 

8th grade 

11 Mistake in calculating 

the coefficient of 

single monomial in 

the result 

(2 3 ) 2 2

3 (4 3 ) 7 6

a b c ab ac

x y z xy xz

  

  
 

8 (24%) 3 (6%) 

12 Mistake in calculating 

the power of a 

variable in a single 

monomial in the result 

2 3 2 3 4 2 3

2 5 6

(2 3 ) 2 3

3 (4 3 ) 12 9

ab a b ab a b a b

x x y x y

  

  

 

0 (0%) 

impossible 

in 7th grade 

problems 

13 (24%) 

13 When dividing the 

same monomials the 

result is 0 

3 2 2 3 2 2

2

(20 12 4 ) : ( 4 )

5 3

x y x y xy xy

x xy

   

  

 
0 (0%) 

impossible 

in 7th grade 

problems 

8 (15%) 

 

 

As can be seen from the tables, the errors made by the students are of different 

kind. In some errors (1, 6 and 10), the student does not recognize correct objects 

of transformation (correct like terms, monomial and polynomial product, etc.). 

Another group contains errors where the student calculates the result of 

operation incorrectly. The error can be associated with the signs of monomials 

(2, 3 and 9), coefficients of monomials (4, 11 and 13), or powers of variables (5, 

12). The errors where the student forgets to copy unchanged parts of expression 

belong to a different group and are probably caused by oversight. These errors 

almost disappear in the 8th grade. 

Let us compare the numbers of students who made different types of errors 

in 7th and 8th grade. We can see that the percentage of students who made 

errors in recognising like terms (1, 6) has greatly increased. This is probably 

because of the complexity of the problems (in 8th grade, more variables are 

used, different forms of monomials are used, such as xyx  and 
2x y , etc.). We 

can also see that the number of arithmetical errors (4) has grown, probably 

owing to the fact that the problems contain larger numbers and more negative 

numbers than the 7th grade problems, but also because the students tend to 

combine three or more terms at the same time. A new kind of errors (5) also 

appears in the 8th grade – errors in calculating the powers of variables. This is 

probably because, in the 7th grade, there are only variables (in the power of 1) 

and also because of the new operations that the students have learnt in the 8th 

grade (about half of the errors are such where the student adds the coefficients 

and also adds the powers of variables as if he was trying to multiply the 

monomials). New kinds of errors (12, 13) in application of the operation 

“multiply or divide polynomial by monomial” were found that were not present 

in the 7th grade solutions – these errors are caused by more complex problems 

(in the 7th grade, variables usually do not have powers; division of polynomial 

by a monomial is not introduced yet). There is an increase in errors associated 

with the recognition of a correct operation or correct operands. At this stage, the 
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students learn the operation “multiply the polynomials” and apply it even if it is 

not applicable (to the sum of polynomials). 

 

 
4.1.1 Design decisions for transformation rules and typical error 

diagnosing in T-algebra 
 

As we have seen, the difficulties that the students have when solving problems 

are of different kinds. They either cannot find the correct operation or the 

operands for it, or they make mistakes in calculating the resulting expression. 

Therefore, designing T-algebra, we had to leave a possibility for making both 

groups of errors and to make it easy for T-algebra to detect these errors. This 

resulted in an action-object-input scheme for a solution step. 

T-algebra checks for correctness of each stage of every single solution step 

and can respond to errors with appropriate error messages. For every rule 

implemented in T-algebra, we have designed a specific set of input boxes for 

different input modes as well as diagnostic procedures in order to be able to 

diagnose different typical errors of students. Description of two rules mentioned 

in the study is given in section 3.2 (rule Combine like terms – section 3.2.5 and 

rule Multiply/Divide polynomial by monomial – section 3.2.9). 

Let us consider which of the typical mistakes that students make on paper 

can be made in T-algebra. By saying that the mistake can be made, I mean not 

only the possibility for the student to make such errors but also that T-algebra 

can diagnose it, respond to it accordingly, or at least inform the user about the 

non-equivalence of expressions. The error numbers in the following table 

correspond to those from tables above. For each error type, I indicate the 

possibility of making it in T-algebra, how it is diagnosed and the error message 

shown to the student. 

When applying the rule Combine like terms, most mistakes are made in 

recognizing like terms (can be easily diagnosed at the object selection stage), 

calculating the sign and coefficient of the resulting monomial (diagnosed at the 

input stage, separate boxes in structured and partial input modes). Less frequent 

among students and less important are mistakes in variables and their powers 

(can still be diagnosed in free and structured modes). 

When applying the rule Multiply/Divide polynomial by monomial, most 

mistakes are made in recognizing the objects (can be easily diagnosed at the 

object selection stage), calculating the signs, coefficients and powers of 

variables in the monomials forming the resulting polynomial (diagnosed at the 

input stage, separate boxes for signs and monomials or their parts in structured 

and partial input modes) and in the number of monomials in the result (can be 

diagnosed in free and structured input modes). Less frequent among students 

and less important are mistakes in variables and their powers (can still be easily 

diagnosed in free and structured modes). 
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Table 4.3. Possibility of making typical errors made on paper when solving problems in 

T-algebra 

 

No Possible Error diagnosis procedure or comment Error message 

1 yes Diagnosed at object selection stage “At least one of the terms 

is not similar to others” 

2 yes Compare combinations of coefficients 

with different signs with student input 

specific check is not 

implemented, reports 

“Calculation error” 

3 yes Diagnosed at input stage “Incorrect sign” 

4 yes Diagnosed at input stage “Calculation error” 

5 yes Diagnosed at input stage, check whether 

resulting monomial is like with objects 

“Incorrect variable part” 

6 yes Diagnosed when student tries to give an 

answer to a problem 

“Like terms are not yet 

combined” 

7 no T-algebra copies unchanged parts - 

8 yes Compare each resulting monomial with 

each initial one 

currently not 

implemented, reports 

“Result should not 

contain such monomial” 

9 yes Diagnosed at input stage “Incorrect sign” 

10 yes Diagnosed at object selection stage, 

selected unsuitable objects 

“One monomial and one 

polynomial from the 

same product should be 

selected” 

11 yes Diagnosed at input stage, compared 

coefficient of each resulting monomial 

“Incorrect coefficient” 

12 yes Diagnosed at input stage “Incorrect variable part” 

13 yes Diagnosed at input stage, number of terms “Result should contain 

more terms” 

 

    

4.1.2 Conclusions 
 

The study on student errors has indicated that even a small group of students 

can provide us with information on typical errors that students make when 

solving simplification problems on paper. The mistakes that two different 

groups of students make are very similar (8th grade students make some 

additional mistakes). I have collected sets of typical mistakes that students make 

when applying different transformation rules and later used this information to 

design the common rule dialogue, three input modes, diagnostic procedures and 

the input stage for each rule separately for the step-by-step problem-solving 

environment T-algebra. In addition, I have shown that all typical important 

errors that students make on paper can also be made when solving in the 

T-algebra. 
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4.2 Experiment for validation of user interface 
 

In the spring of 2005, the same students from the first experiment participated 

in the trial of T-algebra. T-algebra was in the development phase at that time 

and, therefore, the objective of this trial was to validate only the user interface 

of the program from the point of view of its usability. Two topics were chosen 

for that purpose: operations with fractions and simplification of polynomials 

(the same topics were covered in paper tests). In this trial, the students were 

given exactly the same problems as in previously completed tests on paper. In 

addition, the problem set contained some demonstration examples from other 

chapters. The trial was conducted in two different classes. A 6th grade class was 

chosen for the topic of operations with fractions and an 8th grade class for the 

topic of simplification of polynomials. The students already had sufficient 

experience with computers (using the keyboard, mouse, Windows), but it was 

the first time they had seen T-algebra. The students could choose whether they 

wanted to sit at the computer alone or in pairs. For operations with fractions we 

had 25 computers occupied by the students and for simplification of 

polynomials 21 computers were occupied. 

The sessions lasted one hour. During the first five minutes we demonstrated 

T-algebra and the solution processes in T-algebra and wrote our general 

dialogue scheme on the blackboard. In the first ten minutes, the students asked 

questions concerning the use of the computer (keyboard), the use of T-algebra 

tools (how to mark the objects and what to enter into the boxes), and mathe-

matical questions about the solution steps. After that, questions concerning the 

use of software disappeared. Questions about mathematics (on operations with 

fractions and polynomials) continued after the first ten minutes. Questions 

relating to which rule to select in the menu continued to be asked throughout the 

trial. At that time, the concrete problem types were not yet implemented in our 

program and the menu contained all the rules needed for the actual topic. In 

most cases, the students even knew how they wanted to change the expression 

but they were often unable to find the name of the necessary operation. It is 

clear that we should pay attention to this issue when preparing the teachers for 

using rule-based software. 

We collected the records of this trial – files with data about errors made by 

the students – for further study. The collected data included initial expression, 

current expression, selected rule, marked objects, entered parts (in case of errors 

at the input stage) and any error messages shown to the student. We also had 

some notes taken by the observers during the trial (two mathematics teachers 

and the four authors of T-algebra). When reviewing the files containing the 

students‟ mistakes, we initially noticed that almost all the students had made 

mistakes in marking the objects for applying the rule. The reason was probably 

that the students did not understand how to use the software – how and which 

parts of the expressions had to be marked for applying the rules. The mistakes 

of this type occurred two or three times in the beginning and then disappeared. 

Almost all subsequent mistakes were due to a lack of mathematical knowledge 
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(how to calculate the result of applying the rule, arithmetic errors, etc.) – 

students made the same mistakes as they made in paper tests. 

While observing the trial, we noticed that many students preferred to mark 

the objects of the rule before selecting the rule itself (despite the “Select the 

rule” instruction on the screen and the instruction “1. Select the rule. 2. Mark 

the operands. 3. Enter the result” on the blackboard). At that time, our program 

gave no opportunity for marking more than one part in the expression before the 

rule was selected – this confused some students and they asked questions about 

that. After the trial, we added the possibility to select objects for applying the 

rule before the rule itself is selected. Yet, hints on selection of objects become 

available only after selection of a rule. 

 

 
4.2.1 Distribution of student mistakes between three stages  

of solution step 
 

From the previous experiment on paper, we saw that in some rules up to 30% 

students make mistakes in choosing the correct transformation and objects for it 

(mistakes 1, 2, 6 in Table 2.1 and mistakes 8, 10 in Table 4.2). While 

calculating and writing the result of transformation, in some cases up to 50% 

students make errors (mistakes 3, 4, 5 in Table 2.1 and mistakes 9, 11, 12, 13 in 

Table 4.2). I tried to compare it with the distribution of student mistakes 

between stages of a solution step in T-algebra. 

After the user interface trial with students, I collected information on student 

errors in T-algebra from the solutions. As already mentioned, 21 students from 

8th grade participated in the polynomial test. In this trial, the students were 

given exactly the same problems as in paper tests (see Appendix A). We have 

collected the students‟ solutions (error logs) and I studied them: what mistakes 

were made by the students, what errors were made at each stage of solution 

step, how many errors can be diagnosed before the input stage, etc. 

In the following tables I present some results of this study, grouped by the 

rules used. By the moment of trial, typical errors in T-algebra were not 

classified; therefore, I tried to figure out the common nature of mistake from the 

log files. These are different from the typical errors identified in the first experi-

ment (some typical errors are combined, etc.) but allow comparing the 

distribution of errors between the stages of the step. I calculated the percentage 

of users who made this type of mistake and also listed the stage of the action-

object-input scheme where T-algebra could diagnose this error. These tables do 

not reflect if the students made these mistakes more than once. 
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Table 4.4. Mistakes in combining like terms when solving problems in T-algebra 
 

No Nature of mistake % of students Stage 

1 Unsuitable operation – rule combine like terms 

cannot be applied 

19% action 

2 Unsuitable objects – selected objects are not like 42% object 

3 Unsuitable objects – selected monomials do not 

belong to the same sum, or one of the monomials is a 

part of product 

28% object 

4 Mistake in calculating the coefficient of single 

monomial in the result 

47% input 

5 Mistake in calculating the power of a variable in a 

single monomial in the result 

23% input 

6 Mistake in calculating the sign before single 

monomial in the result 

33% input 

 

 

Table 4.5. Mistakes in multiplying the monomials when solving problems in T-algebra 
 

No Nature of mistake % of students Stage 

1 Unsuitable operation – rule multiply the polynomials 

cannot be applied 

14% action 

2 Unsuitable objects selected 23% object 

3 Mistake in calculating the coefficient of single 

monomial in the result 

29% input 

4 Mistake in calculating the power of a variable in a 

single monomial in the result 

47% input 

5 Mistake in calculating the sign before single 

monomial in the result 

10% input 

 

 

Table 4.6. Mistakes in raising the monomial to a power when solving problems in 

T-algebra 
 

No Nature of mistake % of students Stage 

1 Unsuitable operation – rule raise monomial to a 

power cannot be applied 

29% action 

2 Unsuitable objects selected 19% object 

3 Mistake in calculating the coefficient of single 

monomial in the result 

10% input 

4 Mistake in calculating the power of a variable in a 

single monomial in the result 

28% input 

5 Mistake in calculating the sign before single 

monomial in the result 

10% input 

 

 

At that moment, T-algebra did not diagnose the possibility of applying the 

selected rule separately after the rule was selected. The user had a possibility to 
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change the selected rule and confirmed this selection together with the selection 

of objects – therefore, T-algebra actually checks that after the object stage. 

I also tried to compare (for one rule, Combine like terms) distributions of 

errors between the stages of a solution step on paper and in T-algebra. As 

students from 8th grade participated in the test with T-algebra, we took only the 

paper test of 8th grade (in fact, the same students) for comparison. In T-algebra, 

we can say exactly at what stage an error was made, but on paper it is very 

difficult to distinguish whether a mistake was made at the Action or the Object 

stage, because we do not have explicit information on students‟ thoughts (the 

students do not write the operation and often do not mark the objects for 

operation). This is why we combined the first two stages together in the 

following table. 

 

 
Table 4.7. Distribution of mistakes in combining like terms on paper and in T-algebra 

 

Stage Paper T-algebra 

Action-Object 65% 55% (11% Action + 44% Object) 

Input 35% 45% 

 

 

From this comparison, we can see that checking errors at early stages is as 

important as checking errors in the input of the result. In both, paper solutions 

and in T-algebra, more than half of errors were caused by wrong selection of 

rule or objects. Therefore, the use of the action-object-input scheme where the 

user has to explicitly select the rule and the objects, with appropriate checks 

before the input of result, could be useful. 

 

 
4.2.2 Conclusions 

 

Summarising the results of the first user interface trial with T-algebra, we can 

say that the time required for learning the dialogue stages is quite short. In the 

first hour with T-algebra, most of the students had solved the same number of 

problems that were given to them in paper sessions. However, unlike in the 

paper tests, the students corrected all the mistakes they made. Error messages 

shown by the program were clear enough for the students to correct the 

mistakes. Different input modes of different rules were tested during the trial – 

all input modes were found useful. When solving the problems, no questions 

were asked on why all three stages of the dialogue are needed; the idea of the 

first two stages was clear to the students. All the students (even the weakest in 

mathematics) were using the program with great interest. A possible reason is 

that it was something new and different from ordinary school lessons. After the 

experiment, the students were asked how they liked the software – most of them 

answered that, “the program was great”. 
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The Action – Object – Input scheme and error diagnosis after each step was 

found useful. First of all, we make the students learn the names of operations. 

T-algebra is able to diagnose errors before the result of transformation is 

entered, thereby preventing unnecessary computation and input by students. 

 

 

4.3 Trial with T-algebra while explaining new material 
 

In November 2005, we organized one more trial, this time in one class of so-

called “difficult” children, who were studying in the 8th grade for the second 

year. There were 15 students and they had 45 minutes to try T-algebra. The 

topic was addition and subtraction of polynomials. We did not plan this trial in 

advance – the class teacher Mart Oja who was also engaged in the development 

of T-algebra wanted to try it when explaining the new material. The problem set 

contained 20 problems: 5 problems on combining like terms (this topic was 

already covered before) and 15 problems covering a new topic (5 on addition of 

polynomials, 5 on subtraction of polynomials, and 5 problems combining both 

addition and subtraction). Their teacher usually prepares the same number of 

problems for the pencil and paper work in the same topic. 

During the first 5 minutes, the students were demonstrated the T-algebra and 

the solution process – the first problem (combine like terms) was solved by the 

teacher from the beginning till the end. Then they were given 10 minutes to 

complete four other combining problems. When solving these problems, 

students apply either the rule Combine like terms or the rule Add/Subtract 

numbers. After an introduction to T-algebra and solving the first 5 problems, 

the teacher explained the new rule – Clear parentheses. He solved one problem 

on the blackboard and after that the students solved the remaining fifteen 

problems (based on the new material) in T-algebra by themselves. By the end of 

the trial, almost everyone had solved all the problems; the students were solving 

the problems with great interest, although mathematics is not one of their 

favourite subjects. As the set of possible rules was limited, the students did not 

have difficulties in selecting the correct rules. 

In this session, we saw that when the students made a mistake and the 

program displayed an error message, many of them were closing the message 

window without reading the diagnosis. They were then unable to correct the 

error and they even thought that their result was the correct one. Therefore, we 

have now added a small delay for the error messages – students cannot close the 

window for the first 3 seconds and some of them will now probably read the 

message. In the teacher‟s opinion, the ability of the students to recognize like 

terms in expressions improved after this session. He thought it was probably 

because they had to mark like terms explicitly when working in T-algebra. The 

use of T-algebra helped the teacher – it reduced his workload in correcting the 

students‟ solutions and all the errors made by the students were corrected 

(compared to pencil and paper work, where some errors remain uncorrected on 

the paper). 
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4.4 Study of student mistakes in T-algebra 
 

In March 2009, we organized one more trial with T-algebra. This time one class 

of 11th grade students (31 students) came to the university computer lab to try 

T-algebra. This class was specialized in math (they had more than average math 

lessons per week). The material for the trial was learnt 3 years ago and actually 

those transformation rules are used in many other topics. 

This was the first time when the students had seen T-algebra. Therefore, we 

first demonstrated T-algebra, then the students were given the first problem file 

(a set of 24 problems from different fields implemented in T-algebra) to try and 

learn to use T-algebra (for one hour). After that the students were given the 

second problem file (a set of 46 problems from the field of exponents and 

monomials, see Appendix B for the complete list) and one hour to complete the 

test. The problems were quite short, most of the problems required application 

of one main operation only (and some simplifications if needed). The problems 

used were actually the same as in paper tests of the first experiment. During the 

test students were still able to use help (but not generate automatic solutions). 

The free input mode was used. 

After the experiment we collected student solution files and studied them. 

First, we collected some statistical data. Not all problems were solved by all 

students (on average, 40 problems per student were solved), although there was 

time left. The average time spent on solving problems was 41 minutes (out of 

60 minutes given, maximum time spent was 47 minutes). After some of the first 

students completed the test and started to leave the room, some others ended 

their test and did not solve all problems (this is the reason why the average is 

less than 60 minutes, even though all problems were not solved). 

Although the students were able to use help features of T-algebra, there were 

only a few cases of usage (meaning that the students tried to solve problems 

themselves). Only one student used the help function 80 times (he used 96% 

automatic filling-in of the result) – that student was the first to complete the test 

(only 26 minutes) but still made more than average number of mistakes. Other 

students used help features less than 10 times (11 students) or did not use them 

at all. Therefore, in order to be more objective, we excluded the student who 

used too much help from any further mistake studies and statistics. 

We thoroughly studied the mistakes of 30 students (the results of 1 student 

were not included, as he used help features too many times). A total of 739 

mistakes were made (which makes 24 mistakes per student on average). It is 

very difficult to compare the number of mistakes with the number of mistakes 

made on paper, as on paper we usually check until we find the first error in a 

solution but in T-algebra students can make many errors on each step before it 

is correct (as T-algebra does not allow to proceed until errors are corrected). Out 

of these mistakes, T-algebra classified 534 mistakes (17.8 in average per 

student) as “mathematical” (where the possible cause had a mathematical 

background, for example, calculation error, and not incorrect use of the user 

interface, etc.). We studied all the errors and tried to divide those into 
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Table 4.8. Statistics grouped by different nature of mistake 

 

Category Name Examples of mistake Expression 

ACTION1 Selected unsuitable 

operation 

Student selects the rule 

“Combine like terms”  

ACTION2 Tries to apply the 

monomial 

multiplication rule 

to a power of 

monomial 

Student selects the rule 

“Multiply monomials”  

OBJECT1 Syntactical mistake 

in marking 

Student selects incorrect 

part of expression, for 

example, only one 

parenthesis, etc. 

 

OBJECT2 Mistakes in 

cancelling selection 

Student tries to deselect 

object but does not mark 

anything 

 

OBJECT3 Objects not selected Student does not select any 

object for the rule and tries 

to proceed 

 

OBJECT4 Selection errors 

related to 

parentheses 

Student selects objects 

from different levels for 

one operation 

 

OBJECT5 Parallel application 

of "Raise monomial 

to a power" 

Student selects more than 

one / one group of objects 

for operation 
 

categories. We used a slightly different classification for errors from that used 
in T-algebra. In T-algebra the same classification is used for all topics; 
therefore, categories are quite general (for example, calculation errors, etc.). 
Here we used more specific categories for simplification problems and even for 
certain operations. 

Table 4.8 contains a description of mistake categories with examples of 
mistakes (in further tables, we used short category names from the first 
column). Table 4.9 contains some general statistical data from student solutions 
(number of completed problems, spent time, number of help usages and number 
of mistakes made by student, both per student and total / average values). Table 
4.10 contains information about mistakes (by student, total) grouped by 
categories that we have studied and discussed further. The table contains at least 
the following columns: 

 total (total number of mistakes for each category), 
 percentage of this mistake out of all mistakes, 
 average number of mistakes of this category per student, 
 number of students who made a mistake from this category at least once, 
 percentage of students who have made errors from this category. 
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INPUT1 Calculation error 

(coefficient) 

Student calculates a 

coefficient of a monomial 

incorrectly (here actually 

he had to divide 12 by 4, 

not multiply) 

 

INPUT2 Calculation error 

(power) 

Student calculates a power 

of a variable incorrectly 

(here the student does not 

take into account division 

and simply adds all 

powers) 

 

INPUT3 Syntactical mistake 

in entering result 

Here, instead of power 7, 

the student enters it to the 

same level 

 

INPUT4 Sign or parentheses 

missing 

Here the student replaces a 

variable with its value. As 

he did not add parentheses, 

the expression is changed  

INPUT5 Error in sign Student calculates the sign 

of coefficient or power 

incorrectly 

 
INPUT6 Mistakes in the 

form of monomial 

According to definition, a 

monomial should not 

contain fractional parts 

(only coefficient can be 

fraction)  
INPUT7 Power in 

denominator instead 

of negative power 

The student moves powers 

of variables to 

denominator 

 
OTHER1 Offers an 

unsimplified answer 

The student tries to give 

answer by confirming an 

expression that can still be 

simplified somehow 

 

OTHER2 Error in T-algebra 

implementation 

Here T-algebra required 

entering of sign (-). It is 

actually (+) and is not 

needed here. 
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We have reviewed some topmost categories of errors and tried to explain the 

numbers or thought of some ways to improve T-algebra to respond better to 

those mistakes. Students made quite many mistakes in solutions. Of course, 

some are caused by the user interface and certain special requirements of 

T-algebra, but there were also quite many actual mistakes. We have mentioned 

that students preferred to work fast, even if that caused extra errors due to 

oversight. 

Most of the problems in the test required application of one main trans-

formation rule only and its name was also quite similar to the text of the 

problem (for example, “multiply monomials”, etc.). Nevertheless, as we can see 

from Table 4.10, students had difficulties in choosing the correct (applicable) 

rule (the most frequent mistake, made 154 times (21% of all mistakes) by 26 

students (87% of all students)). In many cases, we have seen that students were 

just mixing terminology (combine or collect VS reduce, multiply numbers VS 

multiply monomials, etc.). T-algebra did not diagnose separately for a selected 

rule whether that rule was applicable – it only checked selection of the rule 

together with objects. As we could see, students selected an incorrect rule that 

could not be applied and tried to guess a different set of objects for the rule or to 

select the same objects in a different form, for example, selecting a monomial 

with sign and without the sign, etc. (making 3-4 mistakes in a row), before 

realizing that this was a wrong rule. Similar results were actually seen during 

the first trial (Table 4.4, Table 4.5 and Table 4.6). After this trial, we imple-

mented the check for selection of an unsuitable rule in T-algebra. 

The next most frequent mistakes were calculation errors: mistakes in 

calculating the power of a variable (total 80 (11%) mistakes made by 27 (90%) 

students) and mistakes in calculating the coefficient of a monomial (total 76 

(10%) mistakes made by 24 (80%) students). Sign errors are also worth 

mentioning (total 40 (5%) mistakes made by 22 (73%) students). Such errors 

are made by students on paper as well, so there is nothing strange in similar 

results in T-algebra (compare, for example, with those in Table 2.1, up to 48% 

of students made calculation errors). 

Another typical error (total 56 (8%) mistakes made by 23 (77%) students) is 

offering an unfinished (un-simplified) solution as an answer, which is also quite 

frequent on paper. Students perform the main operation in the problem, leave 

the result as it is, and do not simplify it further. When checking solutions on 

paper, teachers are not so strict with these errors because there are no common 

rules on what exactly needs to be simplified. T-algebra is stricter and it makes 

students think what else can be simplified. 

Another common mistake we collected was error in the form of monomial 

(total 50 (7%) mistakes made by 20 (67%) students). Students tried to enter 

monomials that did not match the definition (for example, 
5

2 32 yx
 instead of 
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32

5

2
yx  or 

3

22

y

x
 instead of 

322 yx , etc.). This can be explained by the fact 

that we had students of 11
th
 grade, who were already used to more difficult tasks 

and to having more freedom in applying rules. However, T-algebra required 

strict application of the rule (as it is taught in 7
th
 and 8

th
 grades) and inputting 

the result as one monomial (according to definition). Actually, these mistakes 

could be avoided if another input mode would be used for the problems – in the 

structured and partial input modes, the structure for inputting the monomial is 

given. 

Another typical error we have also seen in paper tests is that students try to 

apply the monomial multiplication rule incorrectly (only 29 (4%) mistakes but 

made by 16 (53%) students). When multiplying monomials, students try to 

multiply not only coefficients but also powers of variables (instead of adding) – 

this is probably caused by the influence of other rules learned subsequently 

(raising monomial to a power when it is really needed to multiply powers). 

Quite many students make that mistake, but usually once or twice – after that 

they remember how to apply rule correctly. This is a positive effect of using 

T-algebra with immediate feedback to students about errors – they learn by 

making mistakes and getting feedback. 

Other mistakes appeared less frequently but still worth mentioning are such 

mistakes that are caused by the usage of T-algebra and would not be possible on 

paper. Those are, for example, different mistakes connected to selection of 

objects (syntactical error, UI problems when selecting / deselecting objects, 

trying to apply a rule with no objects selected, total 40 (5%) mistakes, made by 

11 (37%) students), incorrect selection of object connected to powers and 

parentheses (need to select both power and expression, do not need to select 

parentheses when doing operations inside them, etc., total 11 (2%) mistakes, 

made by 10 (33%) students). In addition, we have mentioned that quite many 

students were trying parallel application of the rules (raise 2 monomials to a 

power in one solutions step), as they would probably do on paper (15 (2%) 

mistakes, made by 14 (47%) students). Such mistakes are not frequent (only 1–

2 mistakes per student, less than 5% of all mistakes, but made by many 

students) and were probably caused by the fact that the students were new to 

T-algebra – such errors should disappear after some experience. Teachers may 

also consider explaining those issues to students better before they start 

working. We think that such mistakes would not be made after this trial 

anymore as they were made 1-2 times only (the students learned that parallel 

application of rules is not possible, understood how object selection works in 

the UI, etc.). 

As an additional goal of this trial, we wanted to test T-algebra with a larger 

group of students under our control (because other users may not report all 

errors, even if they find those) to check if there are still some errors in 

implementation. This goal was successfully achieved. We were able to figure 

out some minor errors in solution algorithm, implementation of some rules and 
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found a possibility for students to enter an incorrect response in the free input 

mode. Those were fixed after the experiment. 

 

 
4.4.1 Conclusions 

 

As a result of this trial, we have shown that students make the same typical 

mistakes in T-algebra as on paper. In addition, students quite often selected 

unsuitable rules and we added the possibility for T-algebra to diagnose such 

errors and inform the student. In the latest version of T-algebra, when checking 

for objects selected by the student, T-algebra first checks if the rule is 

applicable at all (maybe to some other parameters) and only then starts checking 

the objects selected by the student. Through this check of non-applicable rules, 

a positive effect of using the environment would be knowledge of the names of 

operations. 

We have mentioned some positive effects of using T-algebra and giving 

immediate feedback to the students when making mistakes. We identified 

certain groups of errors that were made by many students, but only once or 

twice, mostly on the first usage of a rule. It means that the students learned from 

the feedback and did not make the same mistakes in further problems. 

In addition, we have seen that the amount of errors caused by the use of 

T-algebra (various UI usage errors and T-algebra specific restrictions) was 

minimal (around 5%) even during first trial and would probably almost 

disappear during further usage. Some restrictions caused more errors (for 

example, 7% in the form of monomial) but this can be altered if a different 

input mode is used. Furthermore, those errors would not appear if T-algebra 

were used all the time during teaching new material. 

In this study, we tried to use a different error categorisation (more field 

specific) for most common mistakes. We observed the mistakes and created a 

new set of categories. However, we later found that almost all categories that 

we identified are actually separate error categories in T-algebra as well. Only 

some very field specific errors (for example, ACTION1 and ACTION2, 

OBJECT5 and INPUT7) required categories different from those identified by 

T-algebra (those are special cases, like subcategories for categories in 

T-algebra). Therefore, we can conclude that categorisation in T-algebra is quite 

useful to some extent for reviewing errors. 

As a bonus of testing the environment with a larger group of students, we 

were able to detect some errors in the implementation of transformation rules 

and correct them. 



176 

CONCLUSIONS 
 

This thesis is based on the work that has been done for the T-algebra project. 

The main goal of the project was to create an interactive environment for 

simplification problem solving in four fields of school mathematics and algebra:  

 calculation of the values of numerical expressions; 

 operations with fractions; 

 solving of linear equations, inequalities and linear equation systems; 

 operations with exponents, monomials and polynomials. 

 

Prior to making any decisions and implementations, we studied related works: 

existing software and different solution step approaches used in them. We 

studied experiments related to student errors in the fields of mathematics that 

we decided to implement in T-algebra and also conducted our own experiments. 

As a result, we formulated the requirements and key features for T-algebra: 

 enable students to solve problems step-by-step and line-by-line in a 

manner similar to solving problems on paper; 

 allow students to make all the necessary decisions and calculations at 

each solution step and explicitly provide this information to the system; 

 leave an opportunity for students to make the same mistakes as on paper; 

 give the possibility to learn both the algorithms and their steps in detail; 

 include such dialogue that allows the program to understand all decisions 

made by students (collect direct information about chosen operation, 

selected operands, entered result); 

 contain such domain expert module, which would be able to not only 

give an answer, but to show a solution path using the designed interface; 

 be intelligent enough to check the knowledge and skills of students, 

understand mistakes, offer feedback and advice. 

 

These main requirements were achieved by designing and implementing a 

special three-stage solution step dialogue (called action-object-input scheme) 

and also other key components to support this scheme (for example, an 

expression editor). We improved the input stage with three different input 

modes and extended the dialogue with additional steps for some rules. Solving 

problems in T-algebra by making steps according to the dialogue is very similar 

to solving problems on paper. A student has to make all decisions himself and 

also has the opportunity to make various errors. However, in comparison to 

solving on paper, T-algebra is able to assist the student and perform some steps 

automatically if the student is lost. Furthermore, T-algebra is able to diagnose 

student errors and provide feedback. Based on the information entered by the 

student at different stages of the steps, it is possible to make quite adequate 

diagnosis of student errors and, in future developments, possibly to diagnose 

misconceptions with very small amount of guesswork and computational 

efforts. 
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The solution step dialogue, design of different field specific transformation 

rules and problem types as well as support for adequate error diagnosis are key 

attributes that distinguish T-algebra from other similar environments. In 

addition to those, T-algebra includes a cognitively faithful domain expert that 

provides hints and generates automatic solutions to problems corresponding to 

algorithms taught in classroom. 

This thesis describes different aspects of the created system, design decisions 

of different components and some implementation details. These also include 

parts mainly contributed by the author of the thesis, which could be summarized 

in three large parts: 

 design decisions and implementation of some general T-algebra features; 

 study, design decisions and implementation of problem types and rules 

for a specific domain – the domain of exponents, monomials and 

polynomials; 

 experimenting efforts in evaluating the general features, like solution 

dialogue of T-algebra, as well as domain specific decisions, problem 

types, transformation rules, etc. 

 

When designing and developing T-algebra, some features were designed and 

implemented mainly by the author of thesis: 

 participation in design and implementation (project seminars with school 

teachers and authors of school textbooks) of the action-object-input 

solution step dialogue (presented in section 2.5); 

 implementation of expression parsing and rendering in the expression 

editor; 

 design and implementation of expression editor features to support the 

solution step dialogue (presented in section 2.7); 

 design and implementation of an extension to the action-object-input 

dialogue (presented in section 2.6); 

 design and implementation of the general principle of error diagnosis and 

categorisation (presented in sections 2.8.6 and 2.9); 

 internal design and implementation of the basic classes of rule and 

problem type and their usage in general solution algorithm, error 

diagnosis, etc. (presented in sections 3.2.2 and 3.3.1). 

 

One of the main contributions of the author was domain specific part of the 

system for the domain of exponents, monomials and polynomials. This included 

the following tasks, which are thoroughly described in the thesis: 

 study of problems solved at school in the chosen domain and design of 

problem types for T-algebra (presented in sections 3.1 and 3.3); 

 study of school textbooks and student solutions in order to extract the 

transformation rules needed for this domain (both domain specific and 

learned before), design of transformation rules in T-algebra, discussion of 



178 

the design with school teachers, and publication of decisions (presented 

in sections 3.1 and 4.1); 

 investigation of the typical errors for the selected domain, based on 

experiments with students (presented in section 4.1) and related works in 

order to design error diagnosis for the designed transformation rules 

(presented in section 2.8.6); 

 implementation of identified problem types, including error diagnosis, 

conditions for starting and ending expressions, solution algorithm, etc. 

(presented in section 3.3); 

 implementation of domain specific transformation rules, including error 

diagnosis and a domain expert for application of implemented rules 

(presented in section 3.2). 

 

The author of the thesis participated in numerous experiments and trials with 

students and teachers (results are presented in Chapter 4): 

 experimental validation of created dialogues with students and teachers 

(presented in sections 4.2 and 4.3); 

 evaluation of the environment in the chosen domain of exponents, 

monomials and polynomials, trials with real students (presented in 

sections 4.2 and 4.3); 

 investigation of student solutions and their mistakes when solving 

problems in T-algebra (particularly problems of the chosen domain) and 

comparison with the results of the experiment of collecting mistakes from 

paper solutions (presented in section 4.4). 

 

The main result of the experiments with students was that the introduced 

solution step dialogue was easy to learn and use, error diagnosis and messages 

were helpful. The latest study of student errors in T-algebra gave us positive 

results. However, we definitely cannot make judgements about the usability and 

effectiveness of the created environment, based on the results of brief 

experiments because, at this stage, results can be influenced by the novelty of 

the program for students and teachers. Teachers need to experiment with 

different ways of using the system, such as explaining new material, self-study 

by students, rehearsing old material, and assessment. The development of the 

current version of T-algebra was completed in 2009 and the environment is now 

available to all schools in Estonia. 

Finally, we have identified some future development possibilities for the 

T-algebra environment. 

First of all, we could implement an even more refined error diagnosis where 

different typical misconceptions are identified. In the current version of 

T-algebra, in some transformation rules, the diagnosis in the structured and 

partial input modes is more detailed than in the free input mode. We could 

implement a more detailed diagnosis for the free input mode as well, which 

would add some constraints and reduce the freedom of students when entering 
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step results. For example, at the moment, when multiplying two polynomials in 

the free input mode, it is possible to enter a partial multiplication result – the 

sum of products with monomials (members of the first polynomial) and the 

second polynomial. Or it is possible to combine like terms in the result of 

multiplication. In the structured and partial input modes, T-algebra requires the 

student to enter the result of multiplication as a polynomial. Thus, one 

additional constraint, that the resulting subexpression has to be a polynomial, 

would give us the same result in this case. 

Secondly, we could improve the student-modelling component, which would 

reflect the system‟s understanding of students‟ conceptions and misconceptions 

and would change in the course problem solving. This component could be used 

in automatic assessment of students and, for example, in random problem 

generation to provide the student with expressions that have been most 

problematic for that student. 

We could also implement a students‟ tutoring module for T-algebra, which 

would contain some explanations and examples of all simplification rules, and 

presentations of solution algorithms for all implemented problem types. This 

would allow us to upgrade T-algebra from a task oriented system to a fully 

qualified intelligent tutoring system. 

Finally, we could implement certain automatic components that would allow 

us to collect statistics on some larger groups of students in a central storage, 

analyse it and use it for future experiments (Prank and Lepp, 2010). 
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SUMMARY IN ESTONIAN 
 

Astmete, üksliikmete ja hulkliikmete valdkonna 

lihtsustamisülesannete lahendamine interaktiivses  

õpikeskkonnas T-algebra 

Antud väitekiri baseerub tööl, mis on tehtud T-algebra projekti raames. Projekti 

peamine eesmärk oli luua uut tüüpi interaktiivne teisendusülesannete lahenda-

mise keskkond probleemide lahendamiseks neljas koolimatemaatika ja algebra 

valdkonnas: 

 aritmeetilised operatsioonid ja avaldiste väärtuste arvutamine; 

 tehted murdudega; 

 lineaarvõrrandite, lineaarvõrratuste ja lineaarsete võrrandisüsteemide 

lahendamine; 

 lihtsustamise ülesanded astmete, üksliikmete ning hulkliikmete teemas. 

Süsteemi disaini ja loomise etappidele eelnes olemasolevate sarnaste program
-

mide analüüs, me uurisime kasutajaliidesega võimaldatud sammude tegemise 

viise olemasolevates süsteemides. Samuti me uurisime erinevate eksperimentide 

tulemusi, kus uuriti õpilaste poolt tehtud vigu valitud matemaatika valdkon-

dades ning korraldasime oma lahenduskatseid. Lisaks me uurisime koolides 

kasutatavad õpikud ja õpilaste kontrolltööde lahendusi, et korjata kokku 

kasutatavad teisendusreeglid ning tüüpilised ülesanded, mida lahendatakse 

koolis. Uuringute tulemusena me identifitseerisime probleemid olemasolevates 

süsteemides ja formuleerisime mitu olulist printsiipi, mida me jälgisime süs-

teemi disainimisel ja loomisel. Loodav süsteem 

 võimaldab lahendada ülesandeid sammhaaval sarnaselt paberil lahen-

damisele; 

 lubab õpilasel teha kõik arvutused ja otsused igal lahenduse sammul; 

 võimaldab õpilastel teha samu tüüpilisi vigu nagu paberil töötades; 

 annab võimaluse õppida ja harjutada nii lahendusalgoritme kui ka 

üksikute lahendussammude tegemist; 

 kasutab sellist dialoogi sammude tegemisel, et süsteem on võimeline aru 

saama kõikidest õpilase otsustest (kogub infot valitud reegli, operandide 

ning sisestatud tulemuse kohta); 

 omab sisseehitatud valdkonna eksperdi moodulit, mis annab võimaluse 

mitte ainult anda vastust, vaid genereerida ülesande lahenduskäik, kasu-

tades samu reegleid, mida saab kasutada õpilane; 

 oskab diagnoosida õpilase poolt tehtud vigu ning anda arusaadavat 

tagasisidet ja vajadusel aidata õpilasi soovitustega või automaatselt 

tehtavate sammude abil. 

Analüüsi käigus me ei leidnud süsteeme, mis töötaksid täiel määral vastavalt 

eespool kirjeldatud printsiipidele. Ühte osa programmidest võib kasutada ainult 

lahendusalgoritmide õpetamisel, kuna nendega töötades puudub õpilastel 

võimalus teha vigu. Teised sobivad ainult teadmiste kontrolliks, kuna nad ei 

diagnoosi täpselt õpilaste vigu või ei paku abi lahendamisel. 
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Sammude tegemise dialoog on see, mis eristab T-algebrat teistest sarnastest 

süsteemidest. Tänu sellele õnnestub T-algebral täita põhiprintsiipe, mis on 

kirjeldatud eespool. Iga samm programmis koosneb kolmest etapist. Dialoogi 

prototüüp sai läbi proovitud minu magistritöös. T-algebra jaoks me parandasime 

ning täiendasime esialgset dialoogi: ühtlustasime sisestusetappi erinevate 

reeglite jaoks kolme erineva sisestusrežiimi väljatöötamisega ning täiendasime 

skeemi lisaetappidega mõnede reeglite puhul (lisainfo sisestamine, vaheetapi 

lisamine ning struktuuri laiendamine). Loodud dialoog annab võimaluse õppida 

ja harjutada ülesannete lahendamise strateegiaid ning samuti üksikute sammude 

tegemise tehnikat. 

Ülesannete lahendamine T-algebras on sarnane ülesannete lahendamisega 

paberil. Iga sammu tegemisel rakendab õpilane ühte konkreetset teisendus-

reeglit, märgib objektid ning sisestab tulemuse. Ülesannete lahendamise ajal 

õpilane teeb kõik otsused lahenduskäigu kohta. T-algebra annab võimaluse teha 

samu vigu nagu paberil, kuid erinevalt paberist on võimeline diagnoosima 

õpilase vigu ning aitama õpilast üksikute sammude tegemisel. Enne sammu 

dialoogi ning vigade diagnoosi disainimist me korraldasime eksperimendid 

õpilastega, et välja selgitada tüüpilised vead, mida nad teevad paberil ning 

lisaks vaatasime ka teiste analoogsete uurimiste tulemusi. Tänu kolmesam-

mulisele dialoogile T-algebral on olemas kogu eelinfo, mida õpilane valib ja 

sisestab alametappidel. See annab parema võimaluse diagnoosida vigu võrreldes 

süsteemidega, kus on olemas ainult info sisestatud sammu tulemuse kohta. 

Väitekiri kirjeldab loodud süsteemi erinevaid aspekte, erinevate kompo-

nentide disainiotsuseid ning realisatsiooni detaile. Väitekirja autori panuse ja 

tulemused võib liigitada kolme kategooriasse: 

 T-algebra üldiste funktsionaalsete komponentide disain ja realisatsioon; 

 valdkonna spetsiifiliste ülesannete tüüpide ja teisendusreeglite disain ja 

realisatsioon (lihtsustamise ülesanded astmete, üksliikmete ning hulkliik-

mete teemas); 

 osalemine eksperimentides ning nende korraldamine selleks, et hinnata 

nii T-algebra üldise lahenduse erinevaid aspekte kui ka valdkonna 

spetsiifilise disaini ja realisatsiooni otsuseid. 

Väitekirja eraldi osades on kirjeldatud need süsteemi osad, mille loomise või 

disainimise eest vastutas väitekirja autor: 

 osalemine sammu dialoogi (action-object-input) disainis ja realisatsioonis 

(projekti seminarid õpetajatega ja õpikute autoritega) (esitatud peatükis 

2.5); 

 avaldiste parsimine ja kuvamine redaktoris (esitatud peatükkides 2.7.1 ja 

2.7.2); 

 avaldiste redaktori ja sammu dialoogiga seotud funktsionaalsuse disain ja 

realisatsioon (esitatud peatükis 2.7); 

 sammu tegemise dialoogi ja selle laienduste disain ja realisatsioon 

(esitatud peatükis 2.6); 
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 vigade diagnoosimise ja kategoriseerimise printsiip (esitatud peatükkides 

2.8.6 ja 2.9); 

 reeglite ja ülesannete tüüpide klasside sisemine disain ja realisatsioon ja 

nende rakendused automaatses lahendamise algoritmis, vigade diagnoosis 

jne. (esitatud peatükkides 3.2.2 ja 3.3.1). 

Olulise osa tööst moodustavad teisendusreeglite ja ülesannete tüüpide üldise 

disaini ja realisatsiooni detailid ning minu teema (astmete, üksliikmete ja 

hulkliikmete lihtsustamisülesanded) reeglite ja tüüpide detailsed kirjeldused: 

 valitud valdkonna erinevate tüüpülesannete väljaselgitamine ning nende 

disainimine ülesande tüüpidena T-algebras (esitatud peatükkides 3.1 ja 

3.3); 

 õpikute ja õpilaste lahenduste analüüs eesmärgiga koguda infot kasuta-

tavate teisendusreeglite kohta antud valdkonna ülesannetes, reeglite 

disain T-algebras ja disaini otsuste arutamine õpetajatega (esitatud 

peatükkides 3.1 ja 4.1); 

 valitud valdkonna tüüpiliste vigade kogumine ning nende arvestamine 

reeglite ja vastavate vigade diagnoosi disainis (esitatud peatükis 4.1); 

 eelnevalt loetletud ülesannete tüüpide realiseerimine, sealhulgas vigade 

diagnoosi realisatsioon, algavaldise ja lõppavaldise tingimused, lahenda-

mise algoritm jne. (esitatud peatükis 3.3); 

 valitud valdkonna spetsiifiliste teisendusreeglite realiseerimine, seal-

hulgas vigade diagnoosi realisatsioon, valdkonna eksperti osa nende 

reeglite automaatse rakendamise kohta (esitatud peatükis 3.2). 

Väitekirja autor korraldas mõned eksperimendid ja katsed T-algebraga ning 

osales kogu meeskonna poolt organiseeritud eksperimentides, selleks et hinnata 

T-algebra erinevaid aspekte (tulemused on esitatud väitekirja 4. osas): 

 sammu dialoogi valideerimine õpilastega ja õpetajatega (esitatud 

peatükkides 4.2 ja 4.3); 

 T-algebra hindamine valitud valdkonnas (tehted üksliikmetega), katsed 

õpilastega (esitatud peatükkides 4.2 ja 4.3); 

 õpilaste ülesannete lahenduste ja tehtud vigade uuring ülesannete 

lahendamisel T-algebra-s (lihtsustamise ülesanded astmete, üksliikmete 

ning hulkliikmete teemas) ning tulemuste võrdlus paberitesti analüüsi 

tulemustega (esitatud peatükis 4.4). 

Eksperimentide peamine tulemus on see, et loodud sammu tegemise skeem on 

kergesti omandatav õpilaste poolt, vigade diagnoos ja abiteated on arusaadavad 

ja aitavad õpilasi parandada vigu ja lahendada ülesandeid. Viimases eksperi-

mendis me uurisime vigu, mida õpilased teevad T-algebras ja saime positiivseid 

tulemusi. Juba esimesel lahendamise sessioonil T-algebraga õpilased õppisid 

oma vigadest tänu kohesele diagnoosile ja programmi reaktsioonile. Me nägime 

mõnede vigade tüüpide korral, et õpilased tegid selliseid vigu üks või kaks 

korda ja hilisemates ülesannetes enam ei teinud sama tüüpi vigu. Loomulikult 

me ei saa hinnata T-algebra kasutatavust ja efektiivsust nende lühikeste 
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nas, kuid T-algebra oli nende jaoks uus kogemus ja see võis mõjutada eksperi-

mentide tulemusi. Osade õpetajate jaoks on T-algebra kasutamine õpetamisel 

samuti uus kogemus, paremate tulemuste saavutamiseks on vaja pikemat aega 

eksperimenteerida erinevate õpetamisviisidega ning luua piisavalt õppe-

materjale. 

2009 aastal me lõpetasime jooksva T-algebra versiooni arenduse ning see on 

nüüd kättesaadav kõikides eesti koolides. Paljud õpetajad läbisid ka T-algebra 

alased koolitused ja kasutavad programmi õpetamisel. Me loodame saada 

õpetajatelt väärtuslikku tagasisidet, mis võiks anda infot võimalike vigade kohta 

ning ideed T-algebra edasiarendamiseks. 

Siin võib tuua mõned võimalikud suunad süsteemi edasiseks arendamiseks: 

 esiteks võiks disainida ja realiseerida veelgi täpsema vigade diagnoosi 

osade reeglite puhul; 

 teiseks me võiksime realiseerida T-algebras mingisuguse variandi õpilase 

mudelist, mida saaks kasutada näiteks teadmiste hindamisel või üles-

annete genereerimisel, selleks et pakkuda õpilasele lahendamiseks just 

selliseid probleeme, millega tal tekib raskusi; 

 lisada T-algebrasse tuutori moodul, mis sisaldaks kõikide realiseeritud 

reeglite seletusi näidistega ning erinevate ülesannete tüüpide puhul 

lahendusalgoritmide kirjeldusi näidistega; 

 T-algebrasse võiks lisada statistilise komponendi, mis lubaks korjata 

terve klassi õpilaste lahenduste ja vigade statistika andmed ja kasutada 

neid võimalikes uurimistes (Prank and Lepp, 2010). 

eksperimentide tulemusena. Õpilastele meeldis lahendada ülesanded keskkon-
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APPENDIX A 
 

Tests for 7th and 8th grades 
 

The test for 7th grade included calculation problems as well as some easiest 

simplification problems. Simplification problems of variant A were the 

following (the subset that I used for analysis in my field): 

 

 open parentheses: 1) )2(7 yx  ; 2) 5)143(  nm ; 3) )35( nm ; 

4) )132(4  yx ; 5) )3()23(  vu ; 6) )32( cba  ; 

7) )423(  yxm ; 8) )345(2,0  yx ; 

 combine like terms: 1) cc 79  ; 2) aa 7 ; 3) mmm 243  ; 

4) xxx 2123429  ; 5) 322635  nnn ; 

6) babaaba 242373  ; 

7) 6335934  xyxyx . 

 

The problems of variant B were the following: 

 open parentheses: 1) )3(5 nm ; 2) 7)152(  nx ; 3) )43( nu  ; 

4) )125(2  ya ; 5) )2()43(  ts ; 6) )37( vut  ; 

7) )542(  bba ; 8) )7105(4,0  nm ; 

 combine like terms: 1) bb 106  ; 2) kk 5 ; 3) mmm 3125  ; 

4) 2123429  yyy ; 5) 852974  nnn ; 

6) 2433737  abab ; 

7) 6335934  mnmnm . 

 

The test for 8th grade included different types of problems. The problems of 

variant A were the following: 

 combine like terms: 1) abbaababbaab 235279 2222  ; 

2) 
323222 2538512 xyzzxyxyzyzxzxyyzx  ; 

3) nmnmnm 85)2()3(9  ; 4) xxyyxxyx  232 ; 

 perform operations: 1) )24()52( yxyx  ; 

2) )925()723(  nmnm ; 

3) )3125()532()397(  vuvuvu ; 4) )32(3 yxx  ; 

5) )43(2 222 mnnmmnnm  ; 6) 
4323 )32( vuuvvuuv  ; 

7) )3(:)12918( 23344527 vuvuvuvu  ; 

8) )6(:)1824( 56857768 npmpnmpnm  ; 9) )32)((  xyx ; 

10) )23)(2( yxyx  ; 11) )12)(39(  xx ; 

12) )13)(2( 2  mmm ; 13) )2)(2( 2  xyxyx ; 
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14) )2)(2( cbacba  ; 15) )32)(32(  xx ; 

16) )4)(4(  mm ; 17) 
2)5( x ; 18) 

2)32( y ; 

19) )93)(3( 2  xxx ; 20) 
3)2( yx  ; 

 simplify: 1) )(4)2)(2()2( 2 yxxyxyxyx  ; 

2) 12)34()18)(32( 2  mmm ; 

 simplify and then evaluate for specific values of variables: 

1) )3(:)912()3(2 2344322 xyyxyxyxxyx  , if 2x  and 3y ; 

2) )2)(15()2)(2()32( 2  mmnmnmm , if 5m  and 

2n . 

 

The problems of variant B were the following: 

 combine like terms: 1) mnnmmnmnnmmn 456753 2222  ; 

2) 
2222332233223 453352 cbacabbcacabbcacab  ; 

3) yyxxyx 846)3()2(5  ; 4) vvvuvuuvvu 2232 23  ; 

 perform operations: 1) )2()34( nmnm  ; 

2) )952()752(  vuvu ; 

3) )327()453()132( 222  xxxxxx ; 4) )12(5  mm ; 

5) 
3222 2)23( vuuvuvvu  ; 6) )32( 322 abbaabba  ; 

7) )4(:)41220( 223223 xyxyyxyx  ; 

8) )7(:)2128( 32322535 tusutsuts  ; 9) )2)(3(  mnm ; 

10) )52)(23( baba  ; 11) )23)(35(  yy ; 

12) )132)(3( 2  uuu ; 13) )12)(2( 2  mnmnm ; 

14) )2)(2( nmknmk  ; 15) )34)(34( yy  ; 

16) )3)(3( uu  ; 17) 
2)5( n ; 18) 

2)32( ba  ; 

19) )42)(2( 2  xxx ; 20) 
3)2( nm  ; 

 simplify: 1) 
22 6)3)(3()2()2(2 uvuvuvuvuu  ; 

2) nnnn 20)52)(12()32( 2  ; 

 simplify and then evaluate for specific values of variables: 

1) yyxyxyxyxyxxy 3)5)(2()2)(2()23(3 2  , if 

5x  and 2y ; 

2) )32(2)6(:)2418( 2224334 uvvuuuvvuvu  , if 1u  and 

2v . 
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APPENDIX B 
 

Problem file for trial with 11th grade students  

in T-algebra 
 

 

1. Multiply powers 

  
2. Multiply powers 

  
3. Divide powers 

  
4. Divide powers 

  
5. Divide powers 

  
6. Divide powers 

 
7. Raise to a power 

  
8. Raise to a power 

 
9. Raise to a power 

 
10. Raise a quotient to a power 

  
11. Raise a quotient to a power 

  
12. Raise a quotient to a power 

 
13. Raise a quotient to a power 

 
14. Raise to a power 

  

15. Raise to a power 

   
16. Raise to a power 

  
17. Raise to a power 

  
18. Simplify 

 
19. Raise to a power  

 
20. Raise to a power  

 
21. Raise to a power  

 
22. Multiply monomials and simplify 

if possible 

 
23. Multiply monomials and simplify 

if possible 

 
24. Multiply monomials and simplify 

if possible 

 
25. Multiply monomials and simplify 

if possible 

 
26. Multiply monomials and simplify 

if possible 

 
27. Multiply monomials and simplify 

if possible 
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28. Multiply and divide monomials 

and simplify if possible 

  
29. Multiply and divide monomials 

and simplify if possible 

 
30. Raise to a power and simplify if 

possible 

 
31. Raise to a power and simplify if 

possible 

 
32. Raise to a power and simplify if 

possible 

 
33. Raise to a power and simplify 

 
34. Raise to a power and simplify 

 
35. Multiply and divide monomials 

and simplify if possible 

 
36. Multiply and divide monomials 

and simplify if possible 

 
37. Raise monomials to a power and 

simplify if possible 

 

38. Raise monomials to a power and 

simplify if possible 

  
39. Raise monomials to a power and 

simplify if possible 

 
40. Simplify 

 
41. Calculate the value of expression 

if values of variables are a=–2 

b=-1 

 
42. Simplify and calculate the value 

of expression if values of 

variables are x=3 y=27 

  
43. Simplify and calculate the value 

of expression if values of 

variables are x=-6 y=-2 

 
44. Raise a quotient to a power 

 
45. Calculate 

 
46. Calculate 
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APPENDIX C 
 

Categorization of errors in T-algebra 
 

1. Unclassified errors 

2. Impossible rule selected 

3. Rule does not correspond to the solution algorithm 

4. Selected syntactically incorrect object 

5. Selected objects are of unsuitable form for applying the rule 

6. Selected objects are not compatible 

7. Selected objects belong to different subexpressions or to subexpressions of 

wrong form 

8. Too few objects selected 

9. Too many objects selected 

10. Input is incomplete (some boxes are empty) 

11. Syntactically incorrect expression entered 

12. The form of the result is incorrect (does not correspond to rule and objects) 

13. Calculation errors 

14. Sign errors 

15. Entered terms are not equivalent to selected objects 

16. The whole expression is not equivalent to the previous 

17. Did not recognise the answer 

18. Unfinished solution offered as an answer 

19. Error in final answer 

20. Messages concerning the program's special requirements 

In this list, errors 2-3 are usually diagnosed on rule / object selection, 4-9 and 20 

are diagnosed on object selection, 10-16 and 20 are diagnosed on input of result 

(or intermediate result), 17-19 are diagnosed on reporting the answer to a 

problem. 



195 

APPENDIX D 
 

Backus-Naur Form full description of expressions 
 

Backus-Naur Form full description of expressions in T-algebra is as follows: 
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

<non-zero digit> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

<integer> ::= <non-zero digit> | <digit> | <non-zero digit> <integer> 

<power> ::= ^ <integer> | ^ + <integer> | ^ - <integer> 

<decimal separator> ::= , | . 

<zero> ::= 0 | 0 <zero> 

<decimal> ::= <integer> <decimal separator> <integer> | <integer> 

<decimal separator> <zero> <integer> 

<number> ::= <integer> | <integer> <power> | <decimal> | <decimal> 

<power> | <numerical fraction> | <mixed number> 

<numerical atom> ::= <numerical parentheses> | <numerical parentheses> 

<numerical atom> | <numerical parentheses> <number> | 

<numerical parentheses> <number> <numerical atom> 

<numerical term> ::= <number> | <numerical atom> | <number> <numerical 

atom> 

<numerical mul div> ::= <numerical term> | <numerical term> * <numerical mul 

div> | <numerical term> : <numerical mul div> 

<numerical sign mul 

div> :: = 

+ <numerical mul div> | - <numerical mul div> 

<numerical non-sign 

sum sub> ::= 

<numerical mul div> | <numerical mul div> + <numerical 

non-sign sum sub> | <numerical mul div> - <numerical 

non-sign sum sub> 

<numerical sum sub> 

::= 

<numerical non-sign sum sub> | <numerical sign mul 

div> | <numerical sign mul div> + <numerical non-sign 

sum sub> | <numerical sign mul div> - <numerical non-

sign sum sub> 

<numerical 

parentheses> ::= 

[ <numerical sum sub> ] | ( <numerical sum sub> ) | 

[ <numerical sum sub> ] <power> | ( <numerical sum 

sub> ) <power> 

<numerical fraction> ::= <numerical sum sub> / <numerical sum sub> 

<mixed number> ::= <integer> <numerical fraction> 

<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u 

| v | w | x | y | z 

<variable> ::= <letter> | <letter> <power> 

<atom> ::= <variable> | <parentheses> | <variable> <atom> | 

<parentheses> <atom> | <parentheses> <number> | 

<parentheses> <number> <atom> 

<term> ::= <number> | <atom> | <number> <atom> 

<mul div> ::= <term> | <term> * <mul div> | <term> : <mul div> 

<sign mul div> :: = + <mul div> | - <mul div> 

<non-sign sum sub> ::= <mul div> | <mul div> + <non-sign sum sub> | <mul div> 

- <non-sign sum sub> 

<sum sub> ::= <non-sign sum sub> | <sign mul div> | <sign mul div> + 

<non-sign sum sub> | <sign mul div> - <non-sign sum 

sub> 
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<parentheses> ::= [ <sum sub> ] | ( <sum sub> ) | [ <sum sub> ] <power> | 

( <sum sub> ) <power> 

<fraction> ::= <sum sub> / <sum sub> 

<equation inequality 

signs> ::= 

= | < | > | <= | >= 

<equation inequality> 

::= 

<sum sub> <equation inequality signs> <sum sub> 

<system> ::= <equation inequality> & <equation inequality> | 

<equation inequality> & <system> 

<expression> ::= <system> | <equation inequality> | <sum sub> 
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