
University of Tartu
Faculty of Science and Technology

Institute of Mathematics and Statistics

Martin Puškin
On Unequal Data Demand Private Information Retrieval

Codes
Mathematics

Bachelor Thesis (9 ECTS)

Supervisors:
prof. Henk D.L. Hollmann

Dr. Ago-Erik Riet

Tartu 2022

ON UNEQUAL DATA DEMAND PRIVATE INFORMATION RETRIEVAL CODES
Bachelor thesis
Martin Puškin

Abstract
A t-PIR code allows the recovery of an encoded data symbol from each of t disjoint collections of
code word symbols. We consider a generalization where some data symbols are in higher demand
than other data symbols. We refer to such codes as (t1, . . . , tk)-UDD PIR codes, where now the
i-th data symbol can be recovered from each of ti disjoint collections of code word symbols, for
i = 1, . . . , k.
We generalize the Griesmer bound for the length of the shortest possible t-PIR code to the (t1, . . . , tk)-
UDD PIR code case and provide two separate proofs for the bound. We show that the Griesmer
bound is tight for k ≤ 3 but not in general for k = 4. We also generalize other known upper and
lower bounds for the shortest possible t-PIR codes to the (t1, . . . , tk)-UDD PIR code case.
CERCS research specialisation: P110 Mathematical logic, set theory, combinatorics.
Key Words: PIR codes, UDD PIR Codes, Griesmer Bound.

EBAVÕRDSE ANDMENÕUDLUSEGA PRIVAATSE INFOOTSINGU KOODID
Bakalaureusetöö
Martin Puškin

Lühikokkuvõte
t-PIR kood võimaldab igat kodeeritud andmesümbolit t lõikumatust koodsõna sümbolite hulgast
dekodeerida. Töös uuritakse ülesande üldistust, kus mõned andmesümbolid võivad olla kõrgema
nõudluse all kui teised. Me kutsume selliseid koode (t1, . . . , tk)-UDD PIR koodideks, kus nüüd on
i-ndat andmesümbolit võimalik ti lõikumatust koodsõna sümbolite hulgast dekodeerida, i = 1, . . . , k.

Me üldistame Griesmeri tõket lühima võimaliku t-PIR koodi jaoks UDD PIR koodi juhule ja toome
tõkke jaoks kaks erinevat tõestust. Me näitame, et Griesmeri tõke on k ≤ 3 korral võrdus, kuid
mitte üldiselt k = 4 korral. Samuti üldistame teisi tuntud alumisi ja ülemisi tõkkeid lühima t-PIR
koodi jaoks (t1, . . . , tk)-UDD PIR koodi juhule.
CERCS teaduseriala: P110 Matemaatiline loogika, hulgateooria, kombinatoorika
Märksõnad: PIR koodid, UDD PIR koodid, Griesmeri tõke.

1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Unequal Error Protection (UEP) codes . 5
2.2 Examples of UDD PIR Codes . 6
2.3 Some General Results About UDD PIR Codes . 7

3 UDD PIR Codes With k ≤ 3 9

4 The Griesmer Bound 11
4.1 Proof Using Hyperplanes . 11
4.2 Proof Using UEP Codes . 14

5 Some other bounds 16

6 UDD PIR codes for k = 4 18
6.1 Upper bound . 18
6.2 Lower bound . 20

6.2.1 Theoretical Approach . 20
6.2.2 Computer-Based Approach . 24

Conclusions 26

References 27

2

1 Introduction

This thesis concerns new type of codes which we coin unequal data demand (UDD) codes and which are a
generalization of private information retrieval (PIR) codes. The latter were first discussed by Fazeli, Vardy
and Yaakobi in [2] (this is the shorter refereed version of [3]) and are used in schemes where users can request
any item from a database distributed among n ∈ N servers and must be able to receive it in such a way that
no server gets any information about which piece of data was retrieved by the user.

An important characteristic of a PIR code is how many people can simultaneously ask for and obtain the
same piece of data from the system of servers without having to wait for the previous query to be carried
out. For positive integers k and t we define a (k, t)-PIR code to be a setup which allows up to t people to
simultaneously request the same piece of data from a database of k items. Another way to advantage of a
(k, t)-PIR code is that all data is still redeemable if any t− 1 servers are simultaneously down.

In this work, N denotes the non-negative integers, i.e. N := {0, 1, 2, . . .}. We denote by F2 the field with
two elements, by Matk,n(F2) the set of k-by-n matrices over F2 and [n] := {1, . . . , n} for n ∈ N. We now
formally define a PIR code.

For a k-dimensional subspace C of Fn2 , a matrix for which mG ∈ C holds for all m ∈ Fk2 is called the
generator matrix G ∈ Matk,n(F2) of C.

Definition 1.1. Let C be a linear subspace of Fk2 . We call a generator matrix G ∈ Matk,n(F2) of C a
(binary) (k, t)-PIR code if it has the following property: for every 1 ≤ i ≤ k, there exist t disjoint sets of
column indices I1, ..., It ⊆ [n] such that for every 1 ≤ j ≤ t, the columns of G with indices from Ij sum up
to the i-th unit vector.

If we have such a PIR code G, then it is possible to distribute k pieces of data among n servers so that t
users can simultaneously request any piece of data and the privacy condition is fulfilled for all of them. If
the reader is interested in how exactly this is done, they are referred to a good introduction to the topic in
[3].

The generalization that we make in this thesis is that of considering a vector (t1, . . . , tk) ∈ Nk instead of the
integer t. In this case, the value ti, i ∈ [k], of how many people can simultaneously ask for the i-th item
can be different between all the k symbols. This corresponds to prescribing different values of importance
or popularity to different pieces of data. We call such a generalization a (k, (t1, . . . , tk))-UDD PIR code.

We can do this by just concatenating regular PIR codes, one for each different value of ti, however, we can
sometimes do better.

Definition 1.2. Let C be a linear subspace of Fk2 . We call a generator matrix G ∈ Matk,n(F2) of C a
(binary) (k, (t1, . . . , tk))-UDD PIR code if it has the following property: for every 1 ≤ i ≤ k, there exist ti
disjoint sets of column indices I1, ..., Iti ⊆ [n]} such that for every 1 ≤ j ≤ ti, the columns of G with indices
from Ij sum up to the i-th unit vector.

For simplicity, we usually call a (k, (t1, . . . , tk))-UDD PIR code a (t1, . . . , tk)-UDD code.

As a (k, (t1, . . . , tk))-UDD code clearly exists for all choices of k and (t1, . . . , tk) (just consider the matrix
with ti columns of the i-th unit vector), we are interested in the shortest possible code which satisfies this
condition for fixed k and (t1, . . . , tk). We call the length n of such a code P (k, (t1, . . . , tk)). We may clearly
always assume w.l.o.g. that t1 ≥ . . . ≥ tk.

We can now formally phrase the main problem of this thesis.

Problem 1.3. Let k ∈ N and T = (t1, . . . , tk) with t1, . . . , tk ∈ N and t1 ≥ . . . ≥ tk. How long is the
shortest T -UDD code i.e. what is the value of P (k, T)?

3

In the first chapter we introduce other relevant concepts for this thesis, give some examples of UDD codes
and prove a few general statements about UDD codes.

In the second chapter we completely solve problem 1.3 for k ≤ 3 by showing that in this case a general lower
bound for P (k, (t1, . . . , tk)) called the Griesmer bound can always be achieved. However, we do not prove
the Griesmer bound in the second chapter.

In the third chapter we provide two different proofs for the Griesmer bound. The first proof uses hyperplanes
in the vector space Fk2 and the second proof draws on the theory of unequal error protection (UEP) codes.

In the fourth chapter we provide several other useful upper and lower bounds for UDD PIR codes which are
all generalizations of known similar bounds for regular PIR codes.

Finally, in the fifth chapter we use the above as well as a computer-based approach to solve the problem for
k = 4.

4

2 Preliminaries

2.1 Unequal Error Protection (UEP) codes

We call a k-dimensional subspace C of Fn2 a binary [n, k] linear code. The parameters n and k are called
the length and rank of the code C, respectively. An encoder of the code C is a linear bijection ϵ : Fk2 → C

which maps the message word m ∈ Fk2 to a corresponding code word mG ∈ C, where G ∈ Matk,n(F2). The
matrix G is called a generator matrix of the code C. Clearly, the rows of G form a basis for C. But also
conversely, every k-by-n matrix whose rows are linearly independent defines an [n, k] linear code.

One aspect that one can study in a linear code is its resistance to corruption. The most commonly inves-
tigated form of corruption is that of additive noise: when a code word c ∈ C is sent through a channel,
sometimes some bits in the word are changed. This can be viewed as the addition of the error vector e ∈ Fn2
i.e. the word received on the other side of the channel is c + e for an unknown vector e. The goal of error
protection codes is to either detect an error or even make it possible recover c from c + e provided the
corruption is “small enough”. This notion of a small error brings us to the concept of a weight of a vector.

Definition 2.1 (Hamming weight). The (Hamming) weight wt(v) of the vector v ∈ Fn2 is the number of
nonzero components of v.

Usually error protection codes are set up so as to be able to detect or correct and error given wt(e) ≤ t for
some positive integer t. A closely related concept to Hamming weight is that of Hamming distance.

Definition 2.2 (Hamming distance). The (Hamming) distance d(v, w) between two vectors v, w ∈ Fn2
is defined as wt(v − w). The distance d(v, S) between a vector v ∈ Fn2 and a subspace S ≤ Fn2 is defined as
min
w∈S

d(v, w).

One can study a generalization of this problem where different bits of the message word m may not be of the
same importance. In this case, some bits can be more protected than others and independently recovered
when others cannot. Such codes are called Unequal Error Protection codes or UEP codes. In order to
formally define such a code’s error protection capability, we must first introduce the concept of the weight
of a vector.

Dunning and Robins [1] introduced the concept of a separation vector to characterize the error protection
capability of UEP codes.

Definition 2.3 (Separation vector). For a linear [n, k] code C with a generator matrix G we define the
separation vector S(G) = (S(G)1, . . . , S(G)k) by

S(G)i := min{wt(mG) | m ∈ Fk2 ,mi ̸= 0}. (1)

The following theorem shows that the higher the value S(G)i the stronger the protection for the i-th data
symbol.

Theorem 2.4. Let C be a linear [n, k] code with a generator matrix G and the separation vector S(G) as in

(1). If the weight of the error vector e satisfies wt(e) <
S(G)i

2
, then the i-th data symbol can be recovered.

Proof. Let us look at two message words m1 and m2 where the i-th coordinates of m1 and m2 differ, i.e.
m1
i ̸= m2

i . This means that (m1 −m2)i ̸= 0 and by (1), wt(m1G−m2G) = wt((m1 −m2)G) ≥ S(G)i. This
means that the code words m1G and m2G differ in at least S(G)i coordinates.

For i ∈ [k] and q ∈ F2, we define Siq = {mG | m ∈ Fk2 ,mi = q}.

Let m be a message word and wt(e) <
S(G)i

2
. Then the distance between m and the subspace Simi is

5

wt(e) <
S(G)i

2
and the distance between m and any other subspace Siq is at least S(G)i − wt(e) >

S(G)i
2

.

Thus, we can decode the i-th symbol ofm by finding the closest subspace Siq to the received vectormG+e.

2.2 Examples of UDD PIR Codes

We recall the definition of a binary UDD PIR code.

Definition 1.2. Let C be a linear subspace of Fk2 . We call a generator matrix G ∈ Matk,n(F2) of C a
(binary) (k, (t1, . . . , tk))-UDD PIR code if it has the following property: for every 1 ≤ i ≤ k, there exist ti
disjoint sets of column indices I1, ..., Iti ⊆ [n]} such that for every 1 ≤ j ≤ ti, the columns of G with indices
from Ij sum up to the i-th unit vector.

Example 2.5. As mentioned in the introduction, there exists a (k, (t1, . . . , tk))-UDD PIR code for all k ∈ N
and (t1, . . . , tk) ∈ Nk because we have the following trivial construction:

t1︷ ︸︸ ︷ t2︷ ︸︸ ︷ tk︷ ︸︸ ︷

G =



1 . . . 1

0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0

0 . . . 0

1 . . . 1
...

. . .
...

0 . . . 0

0 . . . 0

. . .

. . .

. . .

. . .

. . .

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0

1 . . . 1


.

This example also gives the upper bound P (k, (t1, . . . , tk)) ≤
k∑
i=1

ti.

Let us fix a k ∈ N. We will henceforth denote by ei the vector which if read from bottom to top gives the
binary representation of the integer i (adding zeroes to the beginning if necessary). We denote the zero
vector by 0. For example, for k = 3 we have the following vectors:

0 e1 e2 e3 e4 e5 e6 e7

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

 .

Note that the unit vectors are e2i−1 where i ∈ [k].

If we have a matrix G, we denote by ai the number of columns ei in the matrix G.

The next example shows that the upper bound in Example 2.5 is far from being tight.

Example 2.6 (Simplex code). Let k = 3 and t1 = t2 = t3 = 4. We consider the following matrix whose
columns are all of the non-zero vectors of F4

2

G =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


Let i ∈ [3]. All the columns of G except e2i−1 can be formed into pairs {v, v + e2i−1}. As these pairs are
disjoint recovery sets for e2i−1 and {e2i−1} is also a recovery set, we have found 4 disjoint recovery sets for
e2i−1 .

Obviously, nothing is special about k = 3 and we have P (k, (2k−1, . . . , 2k−1)) ≤ 2k − 1 for all k ∈ N. Such

6

codes are very important and have the special name simplex code.

2.3 Some General Results About UDD PIR Codes

We will always assume that the k rows of the matrix G are linearly independent. Now, this is obviously true
if G is the generator matrix for a linear subspace C as in Definition 1.2 but the following theorem shows
that we can assume this in an even more general case.

Theorem 2.7. Let G = (gij) ∈ Matk,n(F2) be a matrix and i1, . . . , il ∈ [k]. Assume that the rows gi1 , . . . , gil

of G sum to the 0-vector 0. Then G has no recovery sets for ei1 , . . . , eil .

Proof. We show that there is no recovery set for ei1 . Assume for contradiction that the columns gj1 , . . . , gjm

are a recovery set for ei1 i.e.
m∑
r=1

gjr = ei1 . This is equivalent to
m∑
r=1

gi,jr =

1, if i = i1,

0 otherwise.
But now

summing both sides over i1, . . . , il gives a contradiction, as the left side gives 0 by assumption and the right
side gives 1.

If the rows of G are not linearly independent, there must be a set of rows which sum to 0 (not over a general
finite field but certainly over F2). As per the previous theorem, these rows are not useful and can be left
out.

We call a system of recovery sets for a unit vector maximal if there exists no system of recovery sets for the
same vector which is larger, i.e. has more recovery sets. We have the following useful result which greatly
simplifies counting the recovery sets for a given unit vector.

Theorem 2.8. Let G be a binary k × n matrix. For all x ∈ Fk2 \ {0}, let ax be the number of the columns
x in G. Then for any unit vector ei, there exists a maximal system of recovery sets for ei which for all
x ∈ Fk2 \ {0, ei} has min{ax, ax+ei} recovery sets of the form {x, x+ ei}.

Proof. Let Ri be any maximal system of recovery sets for ei. Let x ∈ Fk2 \ {0, ei} and assume that there are
fewer than min{ax, ax+ei} recovery sets of the form {x, x+ ei}. Then we have two cases:

• There exist recovery sets A and B of size 3 or larger in Ri with x ∈ A and x+ ei ∈ B. We can replace
A and B with two new recovery sets {x, x+ ei} and (A ∪B) \ {x, x+ ei}.

• x is not in any recovery set in Ri and x + ei is in a recovery set B of size 3 or larger. Then we can
use the recovery set {x, x+ ei} instead of B.

Both of these moves retain the number of recovery sets for ei but add a recovery set of the type {x, x+ ei}.
These moves can be made until there are exactly min{ax, ax+ei} recovery sets {x, x+ ei}, as desired.

This theorem has a useful consequence.

Corollary 2.9. Let G be a (k, (t1, . . . , tk))-UDD PIR code of length n which has among its columns at least
one of each non-zero vector of Fk2 . Then

n ≥ P (k, (t1 − 2k−1, . . . , tk − 2k−1)) + 2k − 1.

Proof. As G has one of each non-zero column, we can form the simplex code (cf. Example 2.6) from its
columns. As the simplex code has only recovery sets of size 1 and 2, we can always assume that the columns
are paired up in this way by virtue of Theorem 2.8.

Finally, it remains to note that a simplex code of dimension k has 2k−1 recovery sets for each unit vector
and is of length 2k − 1.

7

We define a recovery set to be minimal if it has no subset whose sum is the zero vector. If the latter is the
case, then we can simply leave out the zero-sum set and still have a recovery set. By this consideration, we
may clearly assume that all recovery sets are minimal. Similarly, we define a set to be a minimal zero-sum
set or a circuit if none of its subsets have sum 0.

To end this chapter, we provide an algorithm to generate all minimal recovery sets for the unit vector e1.

Algorithm 2.10. As all sets with more than k vectors are linearly dependent and thus must have a zero-
sum subset (this is true in Fk2 but not in a general field), we can reduce ourselves to finding recovery sets of
size up to k.

It is not difficult, even if cumbersome, to determine all the linearly independent sets of Fk−1
2 (one can, for

example, begin with one-dimensional subspaces of Fk−1
2 and one by one add vectors which preserve linear

independence). We can use this to find all the circuits of Fk−1
2 , as it is easy to see that all circuits are of the

form {v1, v2, . . . , vm, v1 + . . .+ vm} where {v1, . . . , vm} is a linearly independent set.

Now, let us consider the columns in a minimal recovery set for e1 in Fk2 . If we ignore the first row, we must
get a circuit in Fk−1

2 . Indeed, we must get a zero-sum set and it were not minimal, then the original recovery
set would also not be minimal.

It remains to note that any minimal recovery set for e1 must have an odd number of columns with 1 as the
first coordinate. Now every minimal recovery set in Fk2 can be built from a circuit in Fk−1

2 by inserting them
into Fk2 with the first coordinate 1 for an odd number of vectors.

8

3 UDD PIR Codes With k ≤ 3

In this section we will look at Problem 1.3 with few data symbols (k ≤ 3). We prove that given t1 ≥ t2 ≥ t3,

we have P (3, (t1, t2, t3)) = t1 +

⌈
t2
2

⌉
+

⌈
t3
4

⌉
. Note that this immediately implies P (2, (t1, t2)) = t1 +

⌈
t2
2

⌉
and P (1, (t1)) = t1 by setting t3 = 0 and t2 = t3 = 0 respectively.

We first show that P (3, {t1, t2, t3}) ≤ t1 +

⌈
t2
2

⌉
+

⌈
t3
4

⌉
by constructing a code of length t1 +

⌈
t2
2

⌉
+

⌈
t3
4

⌉
.

Lemma 3.1. Let t1 ≥ t2 ≥ t3. Then P (3, {t1, t2, t3}) ≤ G(t1, t2, t3) := t1 +

⌈
t2
2

⌉
+

⌈
t3
4

⌉
.

Proof. To show that P (3, {t1, t2, t3}) ≤ t1+

⌈
t2
2

⌉
+

⌈
t3
4

⌉
, we must give an algorithm for constructing a code

for all triples t1 ≥ t2 ≥ t3. We will do this in 3 parts.

1. a) Assume we have a (t1, t2, t3)-UDD code with length G(t1, t2, t3). Then, as G(t1 + 1, t2, t3) =

G(t1, t2, t3)+1, we can get a (t1+1, t2, t3)-UDD code of length G(t1+1, t2, t3) just by increasing
a1 by 1.

b) Note that G(t1 +2, t2 +2, t3) = G(t1, t2, t3)+3. Assume we already have a (t1, t2, t3)-UDD code
with length G(t1, t2, t3). We can get a (t1 +2, t2 +2, t3)-UDD code of length G(t1 +2, t2 +2, t3)

by adding the vectors e1, e2 and e3.

c) Note that G(t1 + 4, t2 + 4, t3 + 4) = G(t1, t2, t3) + 7. Assume we already have a code for
T = (t1, t2, t3) with length G(t1, t2, t3). We can get a code of length G(t1 + 4, t2 + 4, t3 + 4) for
T = (t1+4, t2+4, t3+4) by increasing the value of each of a1, a2, a3, a4, a5, a6, a7 in the previous
code by 1 (i.e. adding the simplex code).

d) Note that G(t1, t2, 4m) = G(t1, t2, 4m − 1) = G(t1, t2, 4m − 2) = G(t1, t2, 4m − 3). Thus, if we
assume that we have a (t1, t2, t3)-UDD code of length G(t1, t2, t3), then we can instead construct
a code for (t1, t2,m) where t3 := min{t2,m} where m is the smallest multiple of 4 larger than t3.

2. We now look at some special codes.

a) t1 = t2 = t3 = 0. A corresponding code of length G(0, 0, 0) = 0 is the empty code i.e.
(a1, a2, a3, a4, a5, a6, a7) = (0, 0, 0, 0, 0, 0, 0).

b) t1 = t2 = t3 = 1. A corresponding code of length G(1, 1, 1) = 1 +

⌈
1

2

⌉
+

⌈
1

4

⌉
= 3 is with

(a1, a2, a3, a4, a5, a6, a7) = (1, 1, 0, 1, 0, 0, 0).

c) t1 = t2 = t3 = 2. A corresponding code of length G(2, 2, 2) = 2 +

⌈
2

2

⌉
+

⌈
2

4

⌉
= 4 is

(a1, a2, a3, a4, a5, a6, a7) = (1, 1, 0, 1, 0, 0, 1).

d) t1 = t2 = t3 = 3. A corresponding code of length G(3, 3, 3) = 3 +

⌈
3

2

⌉
+

⌈
3

4

⌉
= 6 is

(a1, a2, a3, a4, a5, a6, a7) = (1, 1, 1, 1, 1, 1, 0).

e) t1 = t2 = t3 = 4. A corresponding code of length G(4, 4, 4) = 4 +

⌈
4

2

⌉
+

⌈
4

4

⌉
= 7 is

(a1, a2, a3, a4, a5, a6, a7) = (1, 1, 1, 1, 1, 1, 1).

f) t1 = t2 = 1, t3 = 0. A corresponding code of length G(1, 1, 0) = 1 +

⌈
1

2

⌉
+

⌈
0

4

⌉
= 2 is

(a1, a2, a3, a4, a5, a6, a7) = (1, 1, 0, 0, 0, 0, 0).

3. By repeatedly using 1. on the codes presented in 2., we can construct a code of desired length for all
vectors (t1, t2, t3). This is explicitly demonstrated by the algorithm below.

9

Algorithm 3.2. Let t1 ≥ t2 ≥ t3. We construct a matrix G of a (t1, t2, t3)-UDD code of length G(t1, t2, t3)

with the following steps.

• Add
⌊
t2 − t3

2

⌋
vectors e1, e2 and e3 to G. Set t′1 := t1 − 2

⌊
t2 − t3

2

⌋
and t′2 = t2 − 2

⌊
t2 − t3

2

⌋
.

• Add t′1 − t′2 columns of e1 to the matrix G and set t′′1 := t′2.

• Let m be the smallest multiple of 4 which is greater than or equal to t3. We will instead construct a
code for T = (t′′1 , t

′
2, t

′
3) where t′3 := min{m, t′2}.

• Add
⌊
t′3
4

⌋
columns of each type (i.e. e1, e2, e3, e4, e5, e6, e7) and set t′′′1 := t′′1−4

⌊
t′3
4

⌋
, t′′2 := t′2−4

⌊
t′3
4

⌋
,

t′′3 := t′3 − 4

⌊
t′3
4

⌋
.

• We have constructed the code of the desired length for T ′ := (t′′′1 , t
′′
2 , t

′′
3) in point 2 of the previous

lemma. Add the corresponding columns to the matrix G.

We will also illustrate this construction with an example.

Example 3.3. Let T = (t1, t2, t3) = (13, 9, 6). We want a code of length G(13, 9, 6) = 20.

• As
⌊
t2 − t3

2

⌋
= 1, we add 1 vector of each of the types e1, e2 and e3 to G. Set t′1 = 13− 2 = 11 and

t′2 = 9− 2 = 7. We currently have (a1, a2, a3, a4, a5, a6, a7) = (1, 1, 1, 0, 0, 0, 0).

• t′1 − t′2 = 11 − 7 = 4 so we add 4 vectors e1 and set t′′1 = 7. Now we have (a1, a2, a3, a4, a5, a6, a7) =

(5, 1, 1, 0, 0, 0, 0).

• The smallest multiple of 4 which is larger than or equal to t3 is m = 8. We set t′3 = min{m, t2} =

min{7, 8} = 7.

• We now add
⌊
t′3
4

⌋
= 1 of each vector and set t′′′1 = t′′1 − 4 = 3, t′′2 = t′2 − 4 = 3 and t′′3 = t′3 − 4 = 3.

We now have (a1, a2, a3, a4, a5, a6, a7) = (6, 2, 2, 1, 1, 1, 1).

• In point 1.d) of Lemma 3.1 we constructed a code for (t′′′1 , t
′′
2 , t

′′
3) = (3, 3, 3). Thus, we add 1 of each

vector except e7. Our final matrix will have the following number of each vector:
(a1, a2, a3, a4, a5, a6, a7) = (7, 3, 3, 2, 2, 2, 1).

The reverse inequality P (3, (t1, t2, t3)) ≥ G(t1, t2, t3) follows from a more general inequality, Theorem 4.1,
which is a generalization of Theorem 4 in [5]. This will be proven in the next chapter.

10

4 The Griesmer Bound

A very important lower bound for UDD codes is the Griesmer bound:

Theorem 4.1 (Griesmer Bound). Let t1, . . . , tk ∈ N ∪ {0} with t1 ≥ . . . ≥ tk. Then

P (k, (t1, . . . , tk)) ≥ G(t1, . . . , tk) :=

k∑
i=1

⌈
ti

2i−1

⌉
.

4.1 Proof Using Hyperplanes

Before proving Theorem 4.1, we must do some preparation. We first provide some important definitions.

Definition 4.2 (Hyperplane). Let V be a k-dimensional vector space. Then a k−1-dimensional subspace
of V is called a hyperplane in V .

Definition 4.3 (Scalar product). Let v = (v1, . . . , vk) and w = (w1, . . . , wk) be two vectors from Fk2 . We
define the scalar product v · w : Fk2 × Fk2 → F2 of v and w as follows:

v · w :=

k∑
i=1

viwi.

The scalar product is commutative and distributive over addition.

Definition 4.4 (Orthogonal complement). Let S be a subspace of Fk2 . Then the orthogonal complement
S⊥ of S is defined as

S⊥ := {v ∈ Fk2 | v · w = 0 ∀w ∈ S}.

It easy to check that the orthogonal complement of any subspace of Fk2 is itself a subspace of Fk2 .

A well-known fact from linear algebra states that for a subspace S of a linear space V , we have

dimS + dimS⊥ = dimV. (2)

The identity (2) defines a one-to-one correspondence between hyperplanes and one-dimensional subspaces
of Fk2 .

We note that as in general the implication v · v = 0 ⇒ v = 0 does not hold in fields of finite characteristic,
S and S⊥ can have a non-trivial intersection.

We define ψ(j) := max{k ∈ N | 2k | j}, that is, ψ(j) returns the highest power of 2 that divides j. The
following lemma is a generalization of Lemma 4 from [5].

Lemma 4.5. Let k ∈ N and T = (t1, . . . , tk), where t1 ≥ . . . ≥ tk ≥ 0. Let j ∈ [2k − 1], then e⊥j := H ≤ Fk2
is a hyperplane. Then ∑

r∈[2k−1]
er ̸∈H

ar ≥ tψ(j)+1. (3)

Proof. We define H and ψ(j) as above. Since the 2ψ(j)-th coordinate of ej is 1, we have e2ψ(j) · ej = 1 i.e.
the unit vector e2ψ(j) ̸∈ H. As H is a subspace of Fk2 , it is closed under addition. This means that any
recovery set of e2ψ(j) must include a vector that is not an element of H. Since there must be tψ(j)+1 disjoint
recovery sets for e2ψ(j) , the inequality (3) follows.

Let us now consider the (2k − 1)× (2k − 1) matrix of scalar products of vectors ei, i ∈ [2k − 1]. For k = 2,

11

we get the following matrix:
e1 e2 e3

e1

e2

e3

1 0 1

0 1 1

1 1 0

 (4)

The next lemma proves that it is easy to inductively generate these matrices for all k ≥ 2 and highlights
many relevant symmetries in this sequence of matrices.

Lemma 4.6. Let k ∈ N and Hk be the (2k−1)×(2k−1) matrix of scalar products of the vectors e1, . . . , e2k−1.
We denote 1m×n the m-by-n dimensional matrix consisting of ones and 0m×n the m-by-n dimensional matrix
consisting of zeroes. The following statements hold.

1. The (2k+1 − 1)× (2k+1 − 1) matrix of scalar products of the vectors e1, . . . , e2k+1−1 has the following
form:

Hk+1 =


Hk 0(2k−1)×1 Hk

01×(2k−1) 1 11×(2k−1)

Hk 1(2k−1)×1 1(2k−1)×(2k−1) −Hk

 (5)

2. Every row of Hk has exactly 2k−1 − 1 zeroes and 2k−1 ones.

3. Adding (in F2k−1
2) any two odd-numbered rows of Hk gives an even-numbered row of Hk.

4. Let k ≥ 2 and i ∈ [2k − 1] be odd. The submatrix which consists of the columns where there is 0 in the
i-th row and of all the even-numbered rows of Hk is Hk−1.

Proof. 1. The product of two vectors of length k + 1 will only be different from the results in Hk when
the k + 1-st coordinate of both of these vectors is 1. The identity (5) is now easy to check.

2. This is a direct consequence of (5) and H1 = (1). Alternatively, the elements whose scalar product
with ei is 0 form a hyperplane and a hyperplane has exactly 2k elements, including the zero vector.

3. Let i, j ∈ [2k − 1] be odd numbers. As the scalar product is distributive over addition, the l-th
coordinate in the sum of the i-th and j-th row is

ei · el + ej · el = (ei + ej) · el.

As i and j are both odd, the first coordinate of both of them is 1. This means that the first coordinate
of their sum is 0 and i+ j is even (and ei + ej ̸= 0 as i ̸= j).

4. We prove a stronger claim:

a) The submatrix which consists of the columns where there is 0 in the i-th row and of all the
even-numbered rows of Hk is Hk−1.

b) The submatrix which consists of the columns where there is 1 in the i-th row and of all the
even-numbered rows of Hk is (0(2k−1−1)×1|Hk−1).

It is routine to check that the claim is true for k = 2 (the matrix can be seen in (4)). Let us assume
that the claim holds for Hk and show that it then also holds for Hk+1.

In all the following cases, the investigated submatrix includes the middle row of Hk+1 and it will
always have the right form. Thus, to use (5), we must prove that the top left, bottom left and top right
quadrants of the submatrix areHk−1 and that the bottom right quadrant is 1(2k−1−1)×(2k−1−1)−Hk−1.
We must additionally either have the middle column of Hk+1 in our submatrix or have an extra column
to replace it.

12

a) • Let i ∈ [2k − 1] i.e. we fix a row in the top half of the matrix Hk+1. Then the submatrix
restricted to the top left quadrant of Hk+1 will be Hk−1 by a) in the induction hypothesis.
Symmetrically, this will also be true for the bottom left quadrant and top right quadrant. As
the bottom right quadrant is just the top right quadrant with the zeroes and ones swapped,
we get 1(2k−1−1)×(2k−1−1) −Hk−1 there. Finally, as the i-th row has a zero in the middle
column of Hk+1, we also have this column in the submatrix and will get exactly Hk by (5).

• Let i ∈ [2k+1 − 1] \ [2k − 1] i.e. we fix a row in the bottom half of the matrix Hk+1. As the
bottom left quadrant is Hk, we get from the induction hypothesis a) that the bottom left
quadrant of our submatrix is Hk−1. This extends to the whole left half of the submatrix as
we choose the same columns in the top left quadrant of Hk+1.

The columns which have 0 in the i-th row on the right side of Hk−1 are exactly the columns
which have 1 in the i − 2k-th row in the top right quadrant. By the induction hypothesis
b), we get the matrix (0(2k−1−1)×1|Hk−1) in the top right quadrant and thus

1(2k−1−1)×(2k−1−1) − (0(2k−1−1)×1|Hk−1) = (1(2k−1−1)×1|1(2k−1−1)×(2k−1−1) −Hk−1)

in the bottom right quadrant.

Again by (5), the four quadrants together give us Hk, as desired.

b) • Let i ∈ [2k−1] i.e. we fix a row in the top half of the matrix Hk+1. The induction hypothesis
b) on Hk in the top left quadrant gives us (0(2k−1−1)×1|Hk−1) in the top left quadrant of the
submatrix. Symmetry gives us the same matrix in the bottom left and top right quadrants.
In the bottom right quadrant we get

1(2k−1−1)×(2k−1) − (0(2k−1−1)×1|Hk−1) = (1(2k−1−1)×1|Hk−1).

By (5), the submatrix will be Hk, as desired.

• Let i ∈ [2k+1−1]\ [2k−1] i.e. we fix a row in the bottom half of the matrix Hk+1. In the left
half everything will go as before. We also choose the middle column of Hk+1 as the i-th row
has 1 there. The bottom right quadrant has ones exactly where the top right quadrant has
zeroes. Thus, by the induction hypothesis a) on the i− 2k-th row in the top right quadrant,
we get Hk−1 in the top right quadrant and consequently 1(2k−1−1)×(2k−1) − Hk−1 in the
bottom right quadrant.

By (5), the submatrix will be Hk, as desired.

We are now ready to prove the Griesmer bound.

Proof of theorem 4.1. The proof will be by induction. The lower bound P (1, (t1)) ≥ t1 obviously holds for
all t1 ≥ 0. We now assume that for all tuples (t1, . . . , tk) with t1 ≥ . . . ≥ tk ≥ 0 we have P (k, (t1, . . . , tk)) ≥
G(t1, . . . , tk). We show that then the bound P (k + 1, (t1, . . . , tk+1)) ≥ G(t1, . . . , tk+1) holds for any tuple
(t1, . . . , tk+1) with t1 ≥ . . . ≥ tk+1 ≥ 0.

We assume that we have an optimal (t1, . . . , tk+1)-UDD code of length n = P (k+1, (t1, . . . , tk+1)). Lemma
4.5 gives us 2k+1 − 1 inequalities for a1, . . . , a2k+1−1, one for each hyperplane. If we order the inequalities
according to the hyperplanes that generate them, i.e. in the order e⊥1 , . . . , e

⊥
2k+1−1, then the system of

inequalities will have exactly the matrix Hk+1 as in Lemma 4.6 (a vector is not in the hyperplane e⊥j exactly
when its scalar product with ej is 1).

13

Every odd row of the matrix will correspond to an inequality
∑

r∈[2k+1−1]
er ̸∈H

ar ≥ t1. We notice these are the

only inequalities that have the variable a1 in them. Now, if none of these inequalities were sharp then we
could reduce a1 by 1 and all the inequalities would still hold and we would not have a minimal solution.
Hence, we can assume that one of these inequalities, let it be the i-th one (i is odd), is actually an equality.

We can now subtract the i-th inequality (equality) from any other inequality and the inequality will still
hold. Thus, we subtract (in Z2k+1−1) the i-th row of Hk−1 from all the other odd rows. This will give
inequalities of the form ∑

r∈[2k+1−1]
er ̸∈H

ar −
∑

r∈[2k+1−1]

er ̸∈e⊥i

ar ≥ 0. (6)

Point 3. of Lemma 4.6 says that each odd row except the i-th one now have 1s and −1s in exactly the same
columns as a certain even row has 1s. Of these columns, the 1s will be in the ones where the i-th row has a
0 and the −1s in the other ones.

This allows us to pair up the even rows with the odd rows other than the i-th one. Let us add the odd row
in each pair to the corresponding even row, this won’t change the right hand side of the inequality. Now,
the 1s and -1s cancel out and the even row will have 2s in exactly the columns where it originally had 1s
and the i-th row had zeroes. Point 4. in Lemma 4.6 says that reading from top to bottom, this gets us the
matrix Hk with 2s instead of 1s.

Dividing each inequality through by 2 and restricting ourselves only to the even rows gives a new system of

inequalities. Its matrix is Hk and the right hand side has
tij+2

2
in the j-th row. As the left hand side of the

inequalities is integral, we can write
⌈
tij+2

2

⌉
instead. As

⌈
t2
2

⌉
≥ . . . ≥

⌈
tk+1

2

⌉
, we can apply the induction

hypothesis. Accordingly, we have

∑
j∈[2k+1−1]

ej∈e⊥i

aj ≥ Gr

(⌈
t2
2

⌉
, . . . ,

⌈
tk+1

2

⌉)

=

⌈
t2
2

⌉
+

⌈⌈
t3
2

⌉
2

⌉
+ . . .+


⌈
tk+1

2

⌉
2k−1


=

⌈
t2
2

⌉
+

⌈
t3
4

⌉
+ · · ·+

⌈
tk+1

2k

⌉
.

Now, as
∑

j∈[2k+1−1]

ej ̸∈e⊥i

aj = t1, we have

n =
∑

j∈[2k+1−1]

aj =
∑

j∈[2k+1−1]

ej∈e⊥i

aj +
∑

j∈[2k+1−1]

ej ̸∈e⊥i

aj ≥ t1 +

⌈
t2
2

⌉
+ · · ·+

⌈
tk+1

2k

⌉
= G(t1, . . . , tk).

□

4.2 Proof Using UEP Codes

In this chapter we establish a connection between unequal error protection (UEP) codes and UDD codes.
UEP codes were discussed in chapter 2.1.

We will need the following result, proved by van Gils in [4]:

14

Theorem 4.7 (Griesmer Bound for UEP Codes). [[4], Part I Corollary 14] Let C be an [n,k] linear
code with the separation vector S = (S1, . . . , Sk) ∈ (N ∪ {0})k with S1 ≥ S2 ≥ . . . ≥ Sk. Then

n ≥
k∑
i=1

⌈
Si
2i−1

⌉
.

Theorem 4.1 will now be an immediate consequence of the following lemma.

Lemma 4.8. Let t1 ≥ . . . ≥ tk ≥ 0 and G = (gij) be a matrix for a (t1, . . . , tk)-UDD code. Then G has a
separation vector of (S(G)1, . . . , S(G)k) where S(G)i ≥ ti for all i ∈ [k].

Proof. Let i ∈ [k]. Assume w.l.o.g. that ti ≥ 1. Then we have ti disjoint sets of column indices Ii1 , . . . , Iiti ,
all of whose respective columns in G sum to ei. We will show that given a message vectorm = (m1, . . . ,mk) ∈
Fk2 with mi ̸= 0 and a recovery set Iij = {ij1 , . . . , ijl}, the restriction of mG to Iij will not be the zero
vector (i.e. mG|Iij ̸= 0). Then each recovery set increases the weight of mG by at least one which proves
the claim.

Assume for contradiction that mG|Iij is the zero-vector. Then
k∑
r=1

mrgr,ijs = 0 for all s = 1, . . . , l. But this

gives the contradiction

0 =

l∑
s=1

k∑
r=1

mrgr,ijs =

k∑
r=1

l∑
s=1

mrgr,ijs =

k∑
r=1

mr

l∑
s=1

gr,ijs =

k∑
r=1

mrδri = 1,

where δri =

1 if r = i,

0 otherwise
is the Kronecker delta symbol.

Proof of Theorem 4.1. Let G be the matrix form of a (t1, . . . , tk)-UDD code. Then G is a generator matrix
for an [n, k] linear code with the separation vector (S(G)1, . . . , S(G)k) by Lemma 4.8. Now the bound follows
from Theorem 4.7. □

15

5 Some other bounds

In this chapter we generalize some known bounds for regular PIR codes to the UDD PIR code case.

Theorem 5.1 (Puncturing constraint). [[3], Lemma 13] Let k ∈ N and t1 ≥ . . . ≥ tk ≥ 1. Then

P (k, (t1, . . . , tk)) ≥ P (k, (t1 − 1, . . . , tk − 1)) + 1.

Proof. Let c = (a1, . . . , a2k−1) be a (t1, . . . , tk)-UDD code of length P (k, (t1, . . . , tk)). Puncturing (removing)
any one vector from the code can decrease the number of recovery sets for each symbol by at most one.
Thus

P (k, (t1, . . . , tk))− 1 ≥ P (k, (t1 − 1, . . . , tk − 1)).

Theorem 5.2 (Concatenating codes). [[3], Lemma 13] Let k ∈ N, t′1 ≥ . . . , t′k, t
′′
1 ≥ . . . ≥ t′′k and

ti = t′i + t′′i for all i = 1, . . . , k. Then

P (k, (t1, . . . , tk)) ≤ P (k, (t′1, . . . , t
′
k)) + P (k, (t′′1 , . . . , t

′′
k)).

Proof. Let G′ be a generator matrix for a (t′1, . . . , t
′
k)-UDD code and G′′ be a generator matrix for a

(t′′1 , . . . , t
′′
k)-UDD code. Then (G′ G′′) is a generator matrix for a (t1, . . . , tk)-UDD code.

Theorem 5.3. [[3], Lemma 14] Let k ∈ N and t1 ≥ . . . ≥ tk ≥ 0. Then

P

(
k,

(
2

⌊
t1 + 1

2

⌋
, . . . , 2

⌊
tk + 1

2

⌋))
≤ P (k, (t1, . . . , tk)) + 1.

Proof. Assume G is a generator matrix for a (t1, . . . , tk)-UDD code of length P (k, (t1, . . . , tk)). Let g be the
sum of the column vectors of G. If g ̸= 0, define G′ to be G with the additional column g. If g = 0, define
G′ := G.

Let ti be odd. Then the sum of all the recovery sets for ti in G is the i-th unit vector. Now, as the sum of
all the columns of G′ is 0, the remaining vectors of G must also sum up to the i-th unit vector, meaning
that G′ has ti + 1 recovery sets for the i-th unit vector.

Theorem 5.4 (Simplex codes). Let k ∈ N. Then

P (k, (2k−1, . . . , 2k−1)) = G(2k−1, . . . , 2k−1) = 2k − 1

where G(t1, . . . , tk) =

k∑
j=1

⌈
tj

2j−1

⌉
is the Griesmer bound.

Proof. We argued that P (k, (2k−1, . . . , 2k−1)) ≤ 2k − 1 after Example 2.6. The reverse inequality follows
from Theorem 4.1.

Corollary 5.5. Let k ∈ N and t1 ≥ . . . ≥ tk ≥ 0. Then

P (k, (t1, . . . , tk)) ≤
⌈

t1
2k−1

⌉
(2k − 1).

Proof. We get this bound by concatenating
⌈

t1
2k−1

⌉
simplex codes.

16

Theorem 5.6. [[6], Theorem 3]

P (k, (3, . . . , 3)) ≥ k +

⌈√
2k +

1

4
+

1

2

⌉
.

Furthermore, for t1 ≥ . . . ≥ tk ≥ 3, we have

P (k, (t1, . . . , tk)) ≥ k +

⌈√
2k +

1

4
+

1

2

⌉
+ tk − 3.

Proof. See Theorem 3 in [6]. The second claim follows from repeated application of Theorem 5.1.

Theorem 5.7. [[5], Proposition 18] Let ℓ be a positive integer with ℓ ≥ P (k, (t1, . . . , tk)) − 2tk. Let t′i =
ti + 2k−1ℓ and t′′i = ti + 2k−1(ℓ− 1), i = 1, . . . , k. Then

P (k, (t′1, . . . , t
′
k)) = P (k, (t′′1 , . . . , t

′′
k)) + 2k − 1.

Proof. Since the k-dimensional simplex code has length 2k − 1 and 2k−1 recovery sets for each unit vector,
the inequality P (k, (t′1, . . . , t

′
k)) ≤ P (k, (t′′1 , . . . , t

′′
k)) + 2k − 1 follows from Theorem 5.2.

For the opposite inequality, we first assume that every non-zero vector appears as a column of a generator
matrix G of a (t′i, . . . , t

′
k)-UDD code. Then Lemma 2.8 allows us to further assume that each system of

recovery recovery sets includes the recovery sets of the k-dimensional simplex code (i.e. recovery sets of the
form {ei} and {x, x+ei} for the unit vector ei). The inequality P (k, (t′1, . . . , t

′
k)) ≥ P (k, (t′′1 , . . . , t

′′
k))+2k−1

follows, as the simplex code has length 2k − 1 and has 2k−1 recovery sets for all unit vectors.

Thus, we finally assume that there exists a non-zero vector v ∈ Fk2 which does not appear as a column vector
in G ∈ Matk,n(F2). Let aj denote the number of occurrences of the vector j (written in binary) as a column
vector of G. Lemma 4.5 gives

∑
j ̸∈H

aj ≥ t′k for every hyperplane H of Fk2 .

Now, summing this over the 2k−1 hyperplanes which do not contain v, gives∑
H≤Fk2 : dim(H)=k−1,v ̸∈H

∑
j ̸∈H

aj ≥ 2k−1 · t′k.

The coefficient of av on the left hand side is 2k−1 and the coefficient of aw for every other non-zero vector
w ̸= v is

|(Fk2 \ v⊥) ∩ (Fk2 \ w⊥)| = |Fk2 | − |v⊥| − |w⊥|+ |v⊥ ∩ w⊥| = 2k − 2k−1 − 2k−1 + 2k−2 = 2k−2.

Using av = 0, we get
2k−2n = 2k−2

∑
j∈Fk2\{0}

aj ≥ 2k−1 · t′k,

so n ≥ 2t′k = (2tk + ℓ) + (2k − 1) · ℓ. Now, since P (k, (t′′1 , . . . , t
′′
k)) ≤ P (k, (t1, . . . , tk)) + (2k − 1)(ℓ− 1) (this

follows from theorem 5.4), we get

n ≥ (2tk + ℓ) + (2k − 1) · ℓ

≥ P (k, (t1, . . . , tk)) + (2k − 1) · ℓ

≥ P (k, (t′′1 , . . . , t
′′
k)) + 2k − 1.

17

6 UDD PIR codes for k = 4

We saw in chapter 3 that the Griesmer bound is tight for k ∈ {1, 2, 3}. This will not be true in general and
counterexamples exist for k = 4 already. For m ∈ N we define

Em = {(3 + 8m, 3 + 8m, 3 + 8m, 3 + 8m), (4 + 8m, 4 + 8m, 3 + 8m, 3 + 8m),

(4 + 8m, 4 + 8m, 4 + 8m, 3 + 8m), (4 + 8m, 4 + 8m, 4 + 8m, 4 + 8m),

(5 + 8m, 4 + 8m, 4 + 8m, 4 + 8m)}

and set
E :=

⋃
m∈N∪{0}

Em.

The main result of this chapter will be the following theorem:

Theorem 6.1. Let t1 ≥ t2 ≥ t3 ≥ t4 ≥ 0. Let Gr(t1, t2, t3, t4) denote the Griesmer bound i.e. Gr(t1, t2, t3, t4) =

t1 +

⌈
t2
2

⌉
+

⌈
t3
4

⌉
+

⌈
t4
8

⌉
. Then

P (4, (t1, t2, t3, t4)) = H(t1, t2, t3, t4) :=

Gr(t1, t2, t3, t4) + 1 if (t1, t2, t3, t4) ∈ E,

Gr(t1, t2, t3, t4) otherwise.

6.1 Upper bound

We shall first prove the upper bound.

Lemma 6.2. Let H be as in Theorem 6.1. Then

P (4, (t1, t2, t3, t4)) ≤ H(t1, t2, t3, t4).

Proof. 1. We first show that we only need to consider codes with t1 ≤ 8.

a) The simplex code
(a1, . . . , a15) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

is an (8, 8, 8, 8)-UDD code of length 15.

Thus, as H(t1 + 8, t2 + 8, t3 + 8, t4 + 8) = H(t1, t2, t3, t4) + 15, if we have a (t1, t2, t3, t4)-UDD
code of length H(t1, t2, t3, t4), we can get a (t1 + 8, t2 + 8, t3 + 8, t4 + 8)-UDD code of length
H(t1 + 8, t2 + 8, t3 + 8, t4 + 8) by adding one of each non-zero vector to the code.

Considering this, we may assume t4 ≤ 7.

b) Now, assume t3 ≥ 9.

Let us first assume that t4 ≥ 5. Then H(t1, t2, t3, t4) = Gr(t1, t2, t3, t4) and thus

H(t1, t2, t3, t4) = Gr(t1, t2, t3, 8) = H(t1 − 8, t2 − 8, t3 − 8, 0) + 15

and we reduced the problem to a code with t4 ≤ 4.

Let now t4 ≤ 4. Consider the code

(a1, . . . , a15) = (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0).

It is a (4, 4, 4, 0)-UDD code with length 7. As Gr(t1 + 4, t2 + 4, t3 + 4, t4) = Gr(t1, t2, t3, t4) + 7,
if we have a (t1, t2, t3, t4)-UDD code with length H(t1, t2, t3, t4) = Gr(t1, t2, t3, t4), we can get a

18

(t1+4, t2+4, t3+4, t4)-UDD code of length H(t1+4, t2+4, t3+4, t4) = Gr(t1+4, t2+4, t3+4, t4)

by increasing by 1 the number of each vector whose fourth coordinate is 0.

Since given t4 ≤ 7 we have H(t1, t2, t3, t4) ̸= Gr(t1, t2, t3, t4) only if t3 ≤ 4, we certainly have
H(t1 − 4, t2 − 4, t3 − 4, t4) = Gr(t1 − 4, t2 − 4, t3 − 4, t4) (as t3 − 4 ≥ 5). Repeatedly applying
this allows to assume that t3 ≤ 8.

c) Assume t2 ≥ 9.

Let us first assume that t3 = 8. Then H(t1, t2, t3, t4) = H(t1, t2, 8, 8) = H(t1 − 8, t2 − 8, 0, 0) and
we reduced the problem to a case where t3 ≤ 7.

Setting
(a1, . . . , a15) = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

we get a (2, 2, 0, 0)-UDD code of length 3. As Gr(t1 + 2, t2 + 2, t3, t4) = Gr(t1, t2, t3, t4) + 4, if
we have a (t1, t2, t3, t4)-UDD code with length H(t1, t2, t3, t4) = Gr(t1, t2, t3, t4), we can get a
(t1 + 2, t2 + 2, t3, t4)-UDD code of length H(t1 + 2, t2 + 2, t3, t4) = Gr(t1 + 2, t2 + 2, t3, t4) by
increasing by 1 the number of each vector whose third and fourth coordinate are 0.

Since given t3 ≤ 8 we have H(t1, t2, t3, t4) ̸= Gr(t1, t2, t3, t4) only if t2 ≤ 5, we certainly have
H(t1 − 2, t2 − 2, t3, t4) = Gr(t1 − 2, t2 − 2, t3, t4). Repeatedly applying this allows to assume that
t2 ≤ 8.

d) Finally, assume that t1 ≥ 9. Since t2 ≤ 8, we have H(t1, t2, t3, t4) ̸= Gr(t1, t2, t3, t4) only if
t1 ≤ 5 and thus H(t1 − 1, t2, t3, t4) = Gr(t1 − 1, t2, t3, t4). Repeatedly applying this, we have
H(t1, t2, t3, t4) = H(8, t2, t3, t4) + t1 − 8 and we reduced the problem to t1 ≤ 8.

2. We now show that H(t1, t2, t3, t4) is indeed an upper bound to the minimum length of a (t1, t2, t3, t4)-
UDD code. We define (t1, t2, t3, t4) ≤ (t′1, t

′
2, t

′
3, t

′
4) ⇔ ti ≤ t′i ∀i ∈ [4].

Now, let T = (t1, t2, t3, t4) and T ′ = (t′1, t
′
2, t

′
3, t

′
4) where t′1 ≥ t1 and t′i = min{t′i−1, 2

i⌈ti/2i⌉} for
i = 2, 3, 4 (here we define the values t′i in the order i = 1, 2, 3, 4).

Let now T ′′ = (t′′1 , t
′′
2 , t

′′
3 , t

′′
4) and T ≤ T ′′ ≤ T ′. Then, if T, T ′′ ∈ E or T, T ′′ ̸∈ E then proving the

upper bound for T ′′ proves the upper bound for T too.

We finally note that if t4 = 0, then the Griesmer bound is tight by Lemma 3.1 (taking t4 = 0).

We provide sample codes which by virtue of the preceding considerations prove the lemma.

a) A (2, 2, 2, 2)-UDD code of length H(2, 2, 2, 2) = Gr(2, 2, 2, 2) = 5 is given by

(a1, . . . , a15) = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1).

b) A (4, 4, 3, 2)-UDD code of length H(4, 4, 3, 2) = Gr(4, 4, 3, 2) = 8 is given by

(a1, . . . , a15) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0).

c) A (4, 3, 3, 3)-UDD code of length H(4, 3, 3, 3) = Gr(4, 3, 3, 3) = 8 is given by

(a1, . . . , a15) = (1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0).

This is also a (3, 3, 3, 3)-UDD code of length H(3, 3, 3, 3) = Gr(3, 3, 3, 3) + 1 = 8.

d) A (4, 4, 4, 2)-UDD code of length H(4, 4, 4, 2) = Gr(4, 4, 4, 2) = 8 is given by

(a1, . . . , a15) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)

e) A (4, 4, 4, 4)-UDD code of length H(4, 4, 4, 4) = Gr(4, 4, 4, 4) + 1 = 9 is given by

(a1, . . . , a15) = (0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0).

19

Taking here a1 = 1 we get a (5, 4, 4, 4)-UDD code of length H(5, 4, 4, 4) = Gr(5, 4, 4, 4)+1 = 10.

f) A (5, 5, 4, 4)-UDD code of length H(5, 5, 4, 4) = Gr(5, 5, 4, 4) = 10 is given by

(a1, . . . , a15) = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

g) A (5, 5, 5, 5)-UDD code of length H(5, 5, 5, 5) = Gr(5, 5, 5, 5) = 11 is given by

(a1, . . . , a15) = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0).

h) A (6, 6, 4, 4)-UDD code of length H(6, 6, 4, 4) = Gr(6, 6, 4, 4) = 11 is given by

(a1, . . . , a15) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

i) A (6, 6, 6, 6)-UDD code of length H(6, 6, 6, 6) = Gr(6, 6, 6, 6) = 12 is given by

(a1, . . . , a15) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0).

j) A (7, 7, 4, 4)-UDD code of length H(7, 7, 4, 4) = Gr(7, 7, 4, 4) = 13 is given by

(a1, . . . , a15) = (2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

k) A (7, 7, 7, 7)-UDD code of length H(7, 7, 7, 7) = Gr(7, 7, 7, 7) = 14 is given by

(a1, . . . , a15) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0).

l) A (8, 8, 4, 4)-UDD code of length H(8, 8, 4, 4) = Gr(8, 8, 4, 4) = 14 is given by

(a1, . . . , a15) = (2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0).

m) A (8, 8, 8, 8)-UDD code of length H(8, 8, 8, 8) = Gr(8, 8, 8, 8) = 15 is given by

(a1, . . . , a15) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

6.2 Lower bound

For the cases where H(t1, t2, t3, t4) = Gr(t1, t2, t3, t4), Theorem 4.1 suffices for the lower bound. However,
when H(t1, t2, t3, t4) = Gr(t1, t2, t3, t4) + 1, additional work needs to be done.

We remind the reader that

E0 = {(3, 3, 3, 3), (4, 4, 3, 3), (4, 4, 4, 3), (4, 4, 4, 4), (5, 4, 4, 4)}.

Considering Theorem 5.7, it suffices to prove the lower bound for

(t1, t2, t3, t4) ∈ E0 ∪ {(12, 12, 11, 11), (12, 12, 12, 11), (13, 12, 12, 12), (20, 20, 19, 19), (20, 20, 20, 19)}.

6.2.1 Theoretical Approach

In this chapter we use the notation dji to denote the number of recovery sets of size j for the vector e2i−1 in
a given code. Obviously, d1i = a2i−1 . Also, we only ever consider minimal recovery sets.

20

Lemma 6.3. Let k ∈ N and t1,≥ . . . ≥ tk ≥ 0. Let G be a generator matrix for a (t1, . . . , tk)-UDD code of
length n. Let i ∈ [k], then

2ti − n ≤ d1i ≤ n−Gr(t1, . . . , ti−1, ti+1, . . . , tk).

Proof. For the inequality d1i ≥ 2ti − n, it suffices to see that any code with d1i < 2ti − n would have at least
2ti − d1i recovery sets of size 2 or larger for d1i and we would consequently have

2ti − d1i > n ≥ d1i + 2(2ti − d1i) = 4ti − d1i

which gives the contradiction ti > 2ti.

For the inequality d1i ≤ n − Gr(t1, . . . , ti−1, ti+1, . . . , tk), let us consider the matrix G′ which we get by
removing all the columns e2i−1 and the 2i−1-st row from G. Now for any other unit vector e2j−1 , j ∈ [k]\{i},
every recovery set for it in G is also a recovery set for it in G′. However we can ignore the columns e2i−1 , as
they will be zero-vectors in G′. Thus, G′ is a generator matrix of length n−d1i for a (t1, . . . , ti−1, ti+1, . . . , tk)-
UDD code and must satisfy the Griesmer bound.

Lemma 6.4. Let k ∈ N and t1,≥ . . . ≥ tk ≥ 0. Let G be a generator matrix for a (t1, . . . , tk)-UDD code of
length n. Let i ∈ [k], then

d2i ≥ 3ti − 2d1i − n.

Proof. We need ti − d1i recovery sets of size 2 or larger for e2i−1 and have ti − d1i − d2i recovery sets of size 3
or larger. Thus,

n ≥ d1i + 2d2i + 3(ti − d1i − d2i) = 3ti − 2d1i − d2i .

Lemma 6.5. Let k ∈ N and t1,≥ . . . ≥ tk ≥ 0. Let G be a generator matrix for a (t1, . . . , tk)-UDD code of
length n. Let i ∈ [k] and assume a1 ≥ a2. Then

a3 ≥ a2 − a1 + 2t1 − n.

Proof. Since d21 ≥ 3t1 − 2d11 − n = 3t1 − 2a1 − n by (6.4), there can be at most n− a1 − 2(3t1 − 2a1 − n) =

3n − 6t1 + 3a1 columns of G in recovery sets of size 3 or larger for e1. This means that we have at most
3n− 6t1 + 3ai

3
= n − 2t1 + a1 recovery sets of size 3 or larger for e1. Now, since none of these recovery

sets can include the vector e2 more than once, we have at least a2 − (n − 2t1 − a1) = a2 − a1 + 2t1 − n

recovery sets of size 2 which include the vector e2. The other vector in each of these sets must be e3 and
(6.5) follows.

For a, b ∈ {0, 1}, we define

B(a, b) :=


1 0 1 0

1 1 0 0

a a a a

b b b b


and N as the number of disjoint (i.e. sharing no columns) submatrices of G of the form B(a, b).

Lemma 6.6. Let k ∈ N and t1,≥ . . . ≥ tk ≥ 0. Let G be a generator matrix for a (t1, . . . , tk)-UDD code of
length n. Let i ∈ [k] and assume a1 ≥ a2. Then

N ≥
⌈
8t1 + 3t2 − 5n− 5a1 − 2a2

2

⌉
.

21

Proof. Because of Lemmas 6.3 and 6.5, we can write G in the following form:

a1︷ ︸︸ ︷ a2︷ ︸︸ ︷ a2−a1+2t1−n︷ ︸︸ ︷ 2n−2t1−2a2︷ ︸︸ ︷

G =


1 . . . 1

0 . . . 0

0 . . . 0

0 . . . 0

0 . . . 0

1 . . . 1

0 . . . 0

0 . . . 0

1 . . . 1

1 . . . 1

0 . . . 0

0 . . . 0

G′

 .

We denote G \G′ the submatrix formed of the columns of G not in G′. G′ is of length n− a1 − a2 − (a2 −
a1 + 2t1 − n) = 2n− 2t1 − 2a2.

Assume we have two different recovery sets of size 2 for e1, i.e. we have a submatrix

B =


1 0 1 0

a a d d

b b e e

c c f f


If there is a recovery set of size 2 for e2 among these columns, then we necessarily get d = a+ 1, b = e and
c = f , B = B(b, c). We also get a second recovery set for e2. This means that in order to get a lower bound
on N , we can count how many recovery sets of size 2 for e2 have both columns as parts of recovery sets of
size 2 for e1. Also, we have no submatrices B(0, 0), as then G would have a zero-column.

By Lemma 6.4, G has at least 3t1 − 2a1 − n recovery sets of size two for e1. As a2 ≥ a2 − a1 + 2t1 − n

by Lemma 6.3, we have that every such recovery set which includes a column from G \ G′ must include a
column e2. Hence, there must be at least 3t1 − 2a1 − n− a2 recovery sets for e1 whose both columns are in
G′. Similarly, we have at least 3t2 − 2a2 −n−a1 recovery sets of size 2 for e2 whose both columns are in G′.

We want to find how many of these 3t2−2a2−n−a1 recovery sets for e2 in G′ must have both columns among
the 3t1 − 2a1 −n−a2 recovery sets for e1 in G′. For this not to be the case for a recovery set, at least one of
its columns must be among the (2n− 2t1 − 2a2)− 2(3t1 − 2a1 −n− a2) = 4n− 8t1 +4a1 columns which are
not in some recovery set of size 2 for e1 in G′. Hence, there are at least 3t2−2a2−n−a1−(4n−8t1+4a1) =

8t1 + 3t2 − 5n− 5a1 − 2a2 suitable recovery sets for e2. Such recovery sets come in pairs (we have the pairs
{(1, 1, b, c)T , (1, 0, b, c)} and {(0, 1, b, c)T , (0, 0, b, c)}) and each pair gives a submatrix B(b, c). Thus

N ≥
⌈
8t1 + 3t2 − 5n− 5a1 − 2a2

2

⌉
.

Theorem 6.7. We have P (4, (20, 20, 19, 19)) = P (4, (12, 12, 11, 11)) + 15.

Proof. We will show that any (20, 20, 19, 19)-UDD code of length n = Gr(20, 20, 19, 19) = 38 must necessarily
contain one of each non-zero vector in F4

2. This gives P (4, (20, 20, 19, 19)) ≥ P (4, (12, 12, 11, 11)) by Corollary
2.9. The opposite inequality follows from Theorem 5.2 in conjunction with Theorem 5.4.

We assume that we have a matrix G corresponding to a (20, 20, 19, 19)-UDD code of length 38. Showing
that G has one of each non-zero vector as a column is equivalent to showing that G contains the columns
e1, e2, e3 as well as the submatrices B(1, 1), B(1, 0) and B(0, 1).

By Lemma 6.3, we have 2 ≤ a1, a2 ≤ 3. We can w.l.o.g. assume a1 ≥ a2.

1. We first assume a1 = a2 = 3.

22

Using the Lemmas 6.3, 6.4, 6.5 and 6.6, we get the following bounds:

• d11 = d12 = 3, d13, d
1
4 ≤ 3.

• d21, d
2
2 ≥ 16, d23, d

2
4 ≥ 13.

• a3 ≥ 2 and N ≥ 5.

This gets us the following form for G:
1 1 1 0 0 0 1 1

B(a, b) B(c, d) B(e, f) B(g, h) B(k, l)

1 0 1 0 1 0 1 0 α ϵ

0 0 0 1 1 1 1 1 m m q q t t x x β ζ

0 0 0 0 0 0 0 0 n n r r u u y y γ η

0 0 0 0 0 0 0 0 p p s s v v z z δ θ


We also make the following observations:

• Every recovery set for e2i−1 has a column with 1 in the i-th row. Thus, there are at least ti ones
in the i-th row.

• Any recovery set for e8 must have a column of the form (−,−, 1, 0)T or (−,−, 0, 1)T . Thus, there
must be at least t8 ≥ 19 columns of the form (−,−, 1, 0)T or (−,−, 0, 1)T .

The third and fourth row must have 19 ones and thus 3 of the submatrices in the middle B(−,−) must
be of the form B(1,−) and three of the form B(−, 1). By the pigeonhole principle, there must be at
least one submatrix B(1, 1) and we assume w.l.o.g. that a = b = 1. If there also existed submatrices
of both the forms B(1, 0) and B(0, 1), we would already have the full simplex subcode and be done.
Thus, we assume w.l.o.g. that we do not have a submatrix B(0, 1).

We previously argued that we must have at least 3 submatrices B(−, 1), so we have 3 submatrices
B(1, 1). But now we cannot have t4 = 19 columns (−,−, 1, 0)T or (−,−, 0, 1)T . This is a contradiction.

2. Assume now a1 = 3 and a2 = 2. Using the Lemmas 6.3, 6.4, 6.5 and 6.6, we get the following bounds
(we omit the argumentation in a)):

• d11 = 3, d12 = 2, d13, d
1
4 ≤ 3.

• d21 ≥ 16, d22 = 18, d23, d
2
4 ≥ 13.

• a3 ≥ 1 and N ≥ 6.

We get the following form for G:
1 1 1 0 0 1

B(a, b) B(c, d) B(e, f) B(g, h) B(k, l) B(m,n)

1 0 1 0 1 0 α ϵ

0 0 0 1 1 1 p p s s v v β ζ

0 0 0 0 0 0 q q t t w w γ η

0 0 0 0 0 0 r r u u x x δ θ


We make the same additional observations as before.

The third and fourth row must both have at least 19 ones, so the middle part of G must have at least
4 submatrices of the form B(1,−) and 4 of the form B(−, 1). By the pigeonhole principle, we must
have at least 2 submatrices B(1, 1), so w.l.o.g., we let a = b = c = d = 1.

As we must have 19 columns of the form (−,−, 1, 0)T or (−,−, 0, 1)T , we must have at least 3 of the
middle B(−,−) submatrices be B(1, 0) or B(0, 1). If we have both B(1, 0) and B(0, 1), we are done.
We thus assume that we do not have B(0, 1) and e = g = k = m = 1 and h = l = n = 0. But now we
cannot have t3 = 19 zeroes in the third row.

3. Let a1 = a2 = 2. Using the Lemmas 6.4, 6.5 and 6.6, we get the following bounds:

• d11 = 2, d12 = 2, d13, d
1
4 ≤ 3.

• d21 = 18, d22 = 18, d23, d
2
4 ≥ 13.

23

• a3 ≥ 2 and N = 8.

Thus, we have the following form for G:
1 1 0 0 1 1

B(a, b) B(c, d) B(e, f) B(g, h) B(k, l) B(m,n) B(p, q) B(r, s)
0 0 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0


We make the following additional observations:

• The i-th row has at least d2i zeroes, as every recovery set of size 2 has a column with a zero in
the i-th row)

• The i-th row has at least ti ones.

Since the third and fourth row must have 19 ones, there must be at least 5 submatrices B(1,−) and 5

submatrices B(−, 1). By the pigeonhole principle, there are at least two submatrices B(1, 1). As the
third and fourth row must both have at least 13 zeroes (every recovery set of size 2 has one), there
must be submatrices B(−, 0) and B(0,−). As we cannot have any submatrices B(0, 0), because G
does not have zero-columns, G has the submatrices B(1, 0) and B(0, 1) and we are done.

A similar method can be used to reduce determining P (4, (12, 12, 11, 11)) and P (4, (13, 12, 12, 12)) to de-
termining P (4, (4, 4, 3, 3)) and P (4, (5, 4, 4, 4)). However, the arguments will be longer and much more
convoluted without having lots of theoretical value.

We will therefore not do this and instead propose another solution.

6.2.2 Computer-Based Approach

As we have reduced the infinite problem to a finite problem, we can use a computer to determine the lower
bounds. Let t1 ≥ t2 ≥ t3 ≥ t4 as always. We propose the following algorithm to determine if the Griesmer
bound Gr(t1, t2, t3, t4) can be achieved:

Algorithm 6.8. • We first generate all the recovery sets for each unit vector (for example using algo-
rithm 2.10).

• We now write a function which takes in a vector (a1, . . . , a15) and returns the (maximal) number of
recovery sets for each unit vector in a matrix with ai columns ei, i ∈ [15]. This can be implemented
as follows:

– As recovery sets of size 1 and 2 do not intersect, we first count how many of these we have. We
can assume that we use up all these columns by Theorem 2.8.

We count and remove these recovery sets from G and consequently reduce (a1, . . . , a15) to a
vector with at most 7 non-zero entries.

– We check which recovery sets from our list of recovery sets of size 3 or 4 do not include columns
of which we have 0 in our new (a1, . . . , a15).

– We recursively go through all combinations of such recovery sets and determine the best one.
We use dynamic programming for efficiency.

• We now set up a 15-fold for-loop to go through all the vectors (a1, . . . , a15) with
15∑
i=1

ai = Gr(t1, t2, t3, t4).

For each one, we find the number of recovery set for each unit vector and check whether they satisfy
the UDD condition.

24

The efficiency of this step can be greatly improved by using the Lemmas 6.3 and 6.4 to set up additional
restrictions to which vectors (a1, . . . , a15) are considered.

• If a suitable solution (a1, . . . , a15) is found, we return it and stop the program. Otherwise we return
that the Griesmer bound can not be attained.

The bound P (4, (3, 3, 3, 3)) ≥ 8 follows from Theorem 5.6.

Using algorithm 6.8, we determine that P (4, (4, 4, 3, 3)) > Gr(4, 4, 3, 3), P (4, (5, 4, 4, 4)) > Gr(5, 4, 4, 4),
P (4, (12, 12, 11, 11)) > Gr(12, 12, 11, 11) and P (4, (13, 12, 12, 12)) > Gr(13, 12, 12, 12). By virtue of Theorem
6.7, we also get P (4, (20, 20, 19, 19)) > Gr(20, 20, 19, 19).

It is easy to see that the above implies the lower bound P (4, (t1, t2, t3, t4)) ≥ H(t1, t2, t3, t4) for all the
vectors

(t1, t2, t3, t4) ∈ E0 ∪ {(12, 12, 11, 11), (12, 12, 12, 11), (13, 12, 12, 12), (20, 20, 19, 19), (20, 20, 20, 19)}.

This in conjunction with Lemma 6.2 and Theorem 4.1 proves Theorem 6.1.

To finish this chapter, we state the conjecture 24 from [5] in terms of UDD PIR codes:

Conjecture 6.9.
lim
k→∞

P (k, T)−Gr(T) = ∞,

where T = (2k−2, . . . , 2k−2) and Gr(T) = Gr(2k−2, . . . , 2k−2) = 2k−1.

In essence, this conjecture states that the Griesmer bound can arbitrarily loose and suggests that the differ-
ence between P (k, (t1, . . . , tk)) and Gr(t1, . . . , tk) is especially large when (t1, . . . , tk) is near (2k−2, . . . , 2k−2)

i.e. when
k∑
i=1

|ti − 2k−2| is small.

25

Conclusions

In this thesis, we defined the concept of a UDD PIR code as a generalization of a (regular) PIR code. We
provided two proofs for an important lower bound called the Griesmer bound for such codes. Furthermore,
we proved that this bound is tight for sufficiently small codes (k ≤ 3) but showed in chapter 6 that it is not
tight in general by solving the problem for k = 4. In chapter 5, we generalized other known bounds from
the PIR case to the more general UDD PIR case.

In the future, the problem could be generalized to non-binary codes. Additionally, using a computer to
prove lower bounds is only feasible for small parameters and it would be useful to establish other general
lower bounds that are in some cases better than the Griesmer bound (like the bound in Theorem 5.6). As
UEP codes have a strong link with UDD codes (cf. Lemma 4.8), this could be done by investigating the
PIR capabilities of UEP codes.

26

References

[1] L. A. Dunning and W. E. Robbins. “Optimal encodings of linear block codes for unequal error
protection”. Information and control 37.2 (1978), pp. 150–177.

[2] Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. “Codes for distributed PIR with low storage
overhead”. 2015 IEEE International Symposium on Information Theory (ISIT). 2015, pp. 2852–
2856.

[3] Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. “PIR with low storage overhead: coding
instead of replication”. arXiv:1505.06241 (2015).

[4] W. J. van Gils. “Design of error-control coding schemes for three problems of noisy information
transmission, storage and processing”. https://doi.org/10.6100/IR274904. PhD thesis.
Eindhoven University of Technology, 1988.

[5] Sascha Kurz and Eitan Yaakobi. “PIR Codes with Short Block Length”. Designs, Codes and
Cryptography 89.3 (2021), pp. 559–587.

[6] Sankeerth Rao and Alexander Vardy. “Lower bound on the redundancy of PIR codes”. arXiv:1605.01869
(2017).

27

Lihtlitsents lõputöö reprodutseerimiseks ja üldsusele kättesaadavaks tegemiseks

Mina, Martin Puškin,

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) minu loodud teose On Unequal Data Demand Private
Information Retrieval Codes, mille juhendajad on Ago-Erik Riet ja Henk D.L. Hollmann, reprodutseer-
imiseks eesmärgiga seda säilitada, sealhulgas lisada digitaalarhiivi DSpace kuni autoriõiguse kehtivuse
lõppemiseni.

2. Annan Tartu Ülikoolile loa teha punktis 1 nimetatud teos üldsusele kättesaadavaks Tartu Ülikooli
veebikeskkonna, sealhulgas digitaalarhiivi DSpace kaudu Creative Commonsi litsentsiga CC BY NC
ND 3.0, mis lubab autorile viidates teost reprodutseerida, levitada ja üldsusele suunata ning keelab
luua tuletatud teost ja kasutada teost ärieesmärgil, kuni autoriõiguse kehtivuse lõppemiseni.

3. Olen teadlik, et punktides 1 ja 2 nimetatud õigused jäävad alles ka autorile.

4. Kinnitan, et lihtlitsentsi andmisega ei riku ma teiste isikute intellektuaalomandi ega isikuandmete
kaitse õigusaktidest tulenevaid õigusi.

Martin Puškin
10.05.2022

28

