
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

INSTITUTE OF COMPUTER SCIENCE

Kristjan Reinloo

Addressing Smartphones Located
Behind Firewalls

Bachelor’s Thesis (6 ECTS)

Supervisor:
Satish Narayana Srirama, PhD

Author: . ”........” May 2013

Supervisor: . ”........” May 2013

Professor: . ”........” May 2013

Tartu 2013

Contents

Introduction 4

1 State of the Art 5
1.1 Smartphones . 5
1.2 Related Work . 6
1.3 Existing Solutions . 6

1.3.1 Skype . 6
1.3.2 Zeroconf and Bonjour 7

1.4 Used Technologies . 7
1.4.1 Android . 7
1.4.2 Node.js . 8
1.4.3 MongoDB . 9
1.4.4 Google Cloud Messaging for Android 9
1.4.5 Raw Sockets . 10

2 Problem Statement 11
2.1 Addressing Mechanisms . 11
2.2 Network Address Translation 12

2.2.1 NAT Principles . 12

3 Proposed Solution 14
3.1 Architecture . 14
3.2 Flow Description . 15

3.2.1 Device Registration . 15
3.2.2 Address Exchange . 16
3.2.3 Connection Establishment 18

3.3 Test Results, Identified Limitations 19

Conclusions 21

Tulemüüride taga paiknevate nutitelefonide adresseerimine 22

2

References 24

Appendices 26
Appendix A . 26

List of Figures

1.1 Overview of Android system architecture 8

3.1 Device and service registration 16
3.2 Exchanging addresses . 17
3.3 Sending messages to smartphones through GCM 17
3.4 Connection establishment, NAT hole punching 19

3

Introduction

In recent years, smartphones have become considerably popular. They are
inseparable companions for their owners while offering both entertainment
and assistance in daily routines.

Such popularity has different reasons - with the development of technolo-
gies like touchscreens and microprocessors, smartphones are becoming more
and more powerful in terms of computational power. This sets precondi-
tions for the development of rather sophisticated software as well. Today it
is already possible to play 3D games or record high-definition videos with
mobiles. Moreover, smartphones and tablets are replacing laptops and desk-
tops since they offer almost the same functionality and user experience while
fitting into pockets and weighing only couple of hundred grams.

Most of the applications currently available for smartphones usually con-
sume different kind of resources from the Internet, thus acting as clients.
But given the fact that handheld devices have already roughly the same
computational power as low-end laptops and netbooks, it is possible to of-
fer services from the smartphones as well which could lead to new types of
mobile applications and use cases.

Unfortunately, it is not trivial to access smartphones or any other host
from the Internet due to widespread usage of some networking processes, for
example, network address translation (NAT). To overcome such difficulties
problems, an application suite is proposed in this thesis, which helps smart-
phones to become accessible service provides not only within local network
but also across the Internet by mitigating some common addressing problems.

This thesis is divided into three chapters, followed by conclusions which
include summary of created application suite and ideas for future work.
Chapter 1 focuses on state of the art, it gives an overview of current smart-
phones’ capabilities, related work and existing proprietary software. Chapter
2 describes existing problems and basic networking principles which prohibit
smartphones from acting as servers. Chapter 3 introduces a solution which
helps to mitigate problems found in previous chapter followed by test results
and limitations of given software.

4

Chapter 1

State of the Art

This chapter includes short overview of latest developments regarding smart-
phones, related work in targeting addressing problems and description of
available proprietary software which tackles similar above-mentioned prob-
lems. Finally, a list of used technologies which were used in the implemen-
tation part of this thesis is given.

1.1 Smartphones

In recent years, smartphones have considerably evolved regarding their per-
formance. It is seen that the traditional calling has become a rarely used
functionality, since nowadays smartphones are equipped with other commu-
nication interfaces, e.g. 3G or WiFi, besides older technologies like GSM.
Aforementioned new technologies offer more bandwidth resulting in fast and
data-heavy communication, like browsing the Internet or making video calls.
Locally, smartphones have several sensors, for example gyroscope, accelerom-
eter, GPS, pressure sensor, temperature sensor and even humidity sensor.
These hardware gadgets enable developers to create both interesting and en-
tertaining games and applications. Given the fact, that newer smartphones
have already quad-core central processing units (CPUs), there is plenty of
computing power for complex applications.

Speaking of software, two of the most popular operating systems found on
handheld devices are Apple iOS and Android. Both are grown out of more
general operating systems, OS X and GNU/Linux respectively. In fourth
quarter of 2012, these operating systems were found in nearly 91% of total
devices sold in that period of time [1].

5

1.2 Related Work

To solve the problem that hosts behind NAT routers can not be accessed from
remote networks, this thesis makes use of NAT hole punching which creates
temporary tunnels and allows peers to establish connection with each other.

Academics have been interested in NAT technology and addressing for
quite some time. Hole-punching method called SYN injection, which is used
in this thesis has been described by scientists from University of Duisburg,
Germany [2]. In given paper, 9 different routers were used to evaluate the
current method. This resulted in 9×8 = 72 test cases. It was found that the
overall success rate of TCP connection establishment was 78%. It is worth
mentioning that their testing took place in laboratory, therefore such factors
like firewalls which could possibly reduce the success rate, were out of scope.

Detailed description of NAT and its characteristics are described in ”Peer-
to-Peer Communication Across Network Address Translators” [3], which also
looks into UDP connection establishment, in addition to TCP. Several tests
were also carried out in that paper, including complex network setups, where
peers are behind several NAT layers. Tests included hardware from 9 different
vendors and also 3 OS-based NAT solutions. Overall results show that 82%
UDP and 64% TCP connections were successful, resulting in true peer-to-
peer (P2P) connections.

1.3 Existing Solutions

1.3.1 Skype

Probably one of the best known voice over IP (VoIP) applications which uses
combination of client-server and P2P models is Skype. Unfortunately, little
is known how Skype internally works since it is a proprietary software. Still,
some papers have been published regarding its architecture and protocols
which are based mainly on observations.

Baset [4] claims that Skype uses a similiar architecture as KaZaa, where
there are different kind of nodes: ordinary nodes and supernodes. While
many ordinary nodes are behind firewalls and NAT routers, they still manage
to connect seamlessly to other such hosts when establishing call sessions.
In [4], it is stated that variations of STUN [5] and TURN [6] protocols are
used in order to determine NAT and firewall properties. Guha et al. [7] also
support this claim, saying that Skype tries different approaches to establish a
connection between two peers and that the final fallback method is to simply
relay the session through a publicly accessible supernode.

6

1.3.2 Zeroconf and Bonjour

Zeroconf is a protocol for interconnected devices to automatically set up a
network which includes IP interface configuration, translation between host
name and IP address, IP multicast address allocation and service discovery
- all without any user intervention [8].

Bonjour is an implementation of given protocol by Apple and among
other things it is used for discovering available printers and iTunes libraries
on a new network [9]. With the help of dynamic domain name system (DNS)
provider, it is possible to statically configure local networks where hosts and
their services are accessible from outside the network as well [10].

1.4 Used Technologies

This section describes briefly technologies and available software, which were
needed for implementing the proposed solution of this thesis. Chapter 3
includes more details on how any of the given technologies were used.

1.4.1 Android

Android is an operating system which is based on GNU/Linux. It was orig-
inally created by Android Inc, a company founded in 2003 for developing a
new operating system for mobile devices. In 2005, Google acquired Android
Inc and its operating system [11]. Since then, Android has become the most
popular operating system for smartphones [1].

Because it is based on GNU/Linux, all kernel changes are published under
GNU General Public License version 2 (GPLv2) and rest of the operating
system mostly under Apache License version 2.0. The entire operating sys-
tem can easily be downloaded from Android Git repositories [12]. Buying
an Android-based smartphone means also using non-free software since ev-
ery vendor packs some proprietary software to the device, for example it is
common that hardware drivers are only developed in-house and not released
for public access.

By default, Android applications run in an isolated environment. More
specifically, every application is assigned with a unique user ID under which
it is ran [13]. System files are placed under a separate partition which is
mount as read-only partition to improve security and avoid any modification
of critical files.

7

Figure 1.1: Overview of Android system architecture[14]

What is more, users usually do not even have root permissions on the
phone, only very few system components run under root privileges. This
has both positive and negative effects. Most probably an average user does
not even care if he has such privileges or not, because when applications run
without any problems this goes unnoticed and user can enjoy safe execution
of his applications. On the other hand, advanced users may want to debug
certain applications or run some code in root privileges and have absolute
control over the operating system. In that case the device has to be “rooted“
where a kernel bug or any other security flaw has to be exploited in order
to gain such rights. Usually these actions require some technical background
and skills, thus too complicated for regular users.

1.4.2 Node.js

Node.js is a server-side JavaScript environment based on V8 JavaScript en-
gine from Google. Its architecture is based on event-driven non-blocking

8

I/O model which allows development of real-time scalable applications. It
was originally created by Ryan Dahl, after he dropped out from his PhD pro-
gramme in 2009 [15]. Currently Joyent Inc is responsible for the maintenance
and development of the project.

Since Node.js uses JavaScript as its programming language, it is fairly
easy to get started and learn the basics of it. However, the event-driven
model is something that can take time to truly master it.

1.4.3 MongoDB

MongoDB [16] is an open-source document-oriented NoSQL database. As
with Node.js, it is built with scalability in mind. MongoDB itself is written
in C++, but there are several client libraries for different languages, including
JavaScript.

Everything in MongoDB is stored as documents, which are JSON-like
objects. Unlike relational databases, objects can have variable amount of
data fields and it is important to note that there are no database tables. In-
stead, MongoDB uses something called collections, which are slightly similar
to tables, in sense that they group together objects with similar properties.

Another interesting aspect is the fact that MongoDB does not use tradi-
tional database schemas. This means that one does not have to define strict
format of data which is stored in the database. However, in most cases it
makes sense to store data with similar properties in common structures.

1.4.4 Google Cloud Messaging for Android

“Google Cloud Messaging for Android (GCM) is a service that allows you to
send data from your server to your users’ Android-powered device.“ [17].

GCM is a successor to the Android Cloud to Device Messaging (C2DM)
framework. Its main purpose is to offer the functionality of sending notifica-
tion messages to Android devices at any given time. What is more interest-
ing, applications do not even have to be running when the messages are sent
to the smartphone - the operating system will wake up the corresponding
application if everything is correctly configured. This way applications can
still receive updates from external sources while preserving battery as much
as possible since they do not have to constantly run in the background.

For developers it is rather easy to migrate given framework to their exist-
ing applications. One just has to add the Android library to one’s application
and implement callbacks which are called when certain events happen (e.g.
message has been received, device has been unregistered, etc).

9

1.4.5 Raw Sockets

Raw sockets do not necessarily refer to a specific technology, it is just a way
of manually sending and receiving Internet Protocol (IP) packets for example
without following specific protocols. Most of the modern operating systems
support such actions, though there are some restrictions - for example on
GNU/Linux, root privileges are required if one wants to use raw sockets.

In other words, using raw sockets, developers can cook packets by them-
selves which are then sent out via network interface controller (NIC) by the
operating system. It is possible to manually specify for example media access
control (MAC) addresses, IP addresses, port numbers and even add payload
to the packet, if needed. This all relates to Open Systems Interconnection
(OSI) model layers 2-7.

Raw sockets can be used with both good and bad intentions. For example
malicious users can write software which could be used for different network
attacks. One such attach type is known as SYN-flooding, where TCP packets
with SYN flags set are sent to a server which sends back packet with SYN-
ACK flags and waits for final ACK packet from the client in order to finish
TCP three-way handshake1. Since server allocates small amount of memory
for this half-open connection, it is possible to remotely force the server to
consume all of its available memory and in worst case scenario, knock the
server offline.

1TCP connection establishment using the three-way handshake - https://tools.

ietf.org/html/rfc793#section-3.4

10

https://tools.ietf.org/html/rfc793#section-3.4
https://tools.ietf.org/html/rfc793#section-3.4

Chapter 2

Problem Statement

This chapter talks about networking principles and addressing problems
which currently exist on the Internet due its various architectural design
decisions and limitations. A short description of one technique which is used
to mitigate some of the defined problems is given in more detail.

2.1 Addressing Mechanisms

Currently most of the Internet uses Internet Protocol Version 4 (IPv4) for
exchanging packets on the network layer with respect to OSI model. Since
exactly 32 bits are allocated for both source and destination address in the
IP packet header, there can be total of 232 distinct addresses. Unfortunately,
due to the number of end-points on the Internet, almost all of these addresses
are already in use.

The main problem with smartphones (or any other device on the local
network in that matter) wanting to offer services not just to local network
hosts is the fact that they can not be addressed and accessed from the Inter-
net. This is because due to the shortage of IPv4 addresses, most of the edge
routers perform network address translation in order to reduce the amount
of required IPv4 addresses.

To overcome this problem, some applications use NAT hole punching,
where they trick routers and firewalls to allow temporary tunnels in order
to pass incoming traffic from external networks to the local area network
without initiating an outgoing connection first.

11

2.2 Network Address Translation

Network address translation is a technique which includes modifying IP
header fields by routers. There are several rationales behind such activity,
most notably, it tries to mitigate the problem of IP address space exhaus-
tion in order to make it possible to add new devices on the Internet without
requiring more public IP addresses.

Another reason why NAT is so widely deployed is related to different se-
curity aspects. By hiding entire networks behind a single IP address prevents
network scanning by malicious users. In addition, with the help of NAT it
is easy to enforce firewall rules which allow or deny certain connections to
remote networks.

Moreover, by default NAT routers act as firewalls and drop all incoming
packets which are trying to establish a connection (e.g. TCP packet with
SYN flag set), since they do not know what to do with such packets other
than to discard them. This helps to avoid any unwanted connections to local
area network, thus increasing significantly security of servers which are meant
to be accessed from local network only.

2.2.1 NAT Principles

NAT principles where the source address and port number is changed (SNAT)
can be described by following example: let there be a local area network
which consists of ten computers C{1-10}, all of them have a unique IP address
in range of 192.168.1.{1–10} and that the routing device R on given LAN
has IP address 192.168.1.254. Moreover, R has another IP address, given by
its Internet Service Provider (ISP), which is 90.190.30.10. This address shall
be called a public IP address.

Now let’s say that one of the computers (C1) with IP address 192.168.1.1
wants to connect to public web server S on the Internet with IP address
74.125.232.110. In this case C1 constructs a TCP packet with source port
410001 and destination port 80 and wraps it into an IP packet where the
source IP address is marked as 192.168.1.1 and destination as 74.125.232.110.
C1 decides with the help of its routing table that it has to send this packet
to R which acts as default gateway for this LAN.

When this packet reaches R, it will not be forwarded immediately. In-
stead, R changes the source IP address to 90.190.30.10 which is the public IP
address of R. Besides that, R looks into the TCP header fields and changes
the source port to 321231. R has now created a mapping 192.168.1.1:41000

1randomly chosen from available port number pool

12

↔ 90.190.30.10:32123 and it forwards the packet according to its routing
table. When S responds to C1 ’s request, it sends packet back to R with the
destination IP address marked as 90.190.30.10 and destination port 32123
because S knows nothing about the C1 ’s real IP address.

When the packet reaches R, it looks up its mapping table and sees that IP
address 90.190.30.10 and port 32123 were mapped to C1 ’s IP 192.168.1.1 and
port 41000. R changes the destination IP to C1 ’s IP and destination port
to 41000 and forward the packet to C1. C1 has now successfully changed
packets with S, while knowing nothing about NAT which was performed by
R.

By doing such packet modification, computers C{1-10} require only one
public IP address (90.190.30.10) to communicate with other peers on the In-
ternet, since R updates its mapping table every time a connection is initiated
by any of the LAN hosts and it remembers where to forward incoming pack-
ets with the destination IP address 90.190.30.10. Moreover, many different
local networks can use same address space for their network. Three such
address spaces which are not routed on the Internet, are especially allocated
for this [18].

13

Chapter 3

Proposed Solution

This chapter gives an overview of the application suite which was created in
order to overcome addressing problems in networks where NAT is deployed.
At first, a high-level design of the applications is presented, followed by
description how connection between peers is established. Finally, initial test
results and list of limitations are presented.

3.1 Architecture

In this thesis an application suite was designed and implemented which tries
to apply NAT hole punching on smartphones, making them accessible from
anywhere on the Internet. It consists of several components: a rendezvous
server, an Android application and a library for NAT hole punching. The
application suite allows running arbitrary server software on the smartphone
without any special preconfiguration and it takes care of forwarding incoming
connections to the real server software on the phone.

The rendezvous server runs on publicly accessible server. Main respon-
sibilities of it include handling registration / unregistration of smartphones
and their services, GCM messaging and offering assistance during P2P con-
nection establishment. Current implementation is written in Node.js while
including NoSQL database (MongoDB) as its storage solution.

The Android application runs on the smartphone, while handling GCM
messages which are sent by rendezvous server, establishing P2P connection
and offering interface for registering / unregistering the smartphone and ser-
vices which run on it. It is written in Java, using the official Android SDK.

Library for NAT hole punching and creating the P2P connection is writ-
ten in C to be portable for both personal computers (only GNU/Linux is
currently supported) and Android-based smartphones. Furthermore, raw

14

sockets’ API is not usually available on higher level languages, even though
some third-party libraries exist. Java-based Android application can call and
run native code through Java Native Interface (JNI).

3.2 Flow Description

3.2.1 Device Registration

In order to access smartphone from the Internet, it first has to register itself
with GCM server and rendezvous server (Figure 3.1). At first the smartphone
uses the GCM library provided by Google to ask for a registration ID which
can later be used to send GCM messages back to the phone. Smartphone has
to provide a sender ID which identifies the application (rendezvous server in
this case) because otherwise it is not possible to distinguish GCM messages
meant for different application on the phone.

After receiving the registration ID, the smartphone uses it as a parameter
of a REST1 call to the rendezvous server. The rendezvous server stores the
GCM registration ID in its database and responds with another ID which is
used to identify different smartphones on the server. The smartphone stores
this ID in its application settings and uses it in subsequent REST calls.

Now that the device has registered itself, it can also register one or more
services which are running on the phone. Service registration process is
similar to device registration where a HTTP POST request is made to corre-
sponding end-point, but as an additional info, the ID which was received after
registration is now added to the request. Services themselves are identified
currently only by name.

Unregistration of services and the device is similar to registration pro-
cesses, but instead of POST, the DELETE is chosen as the HTTP request
method.

1representational state transfer - https://www.ics.uci.edu/~fielding/pubs/

dissertation/rest_arch_style.htm

15

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Smartphone GCM server Rendezvous
server

REGISTER(<senderID>)

<registrationID>

POST /api/devices
HTTP/1.1
gcm=<registrationID>

HTTP/1.1 201 Created
{ "id" : <id> }

[hasUnregisteredServices = true]

loop

POST /api/services HTTP/1.1
service=<serviceName>
device=<id>

HTTP/1.1 201 Created

Figure 3.1: Device and service registration

3.2.2 Address Exchange

After registration, it is possible to exchange current public addresses between
end-points who wish to establish connections. To do so, initiating side has
to open a TCP connection with the rendezvous server and tell which service
it wants to access as shown in Figure 3.2.

When the rendezvous server receives a request, it queries from its database
for service which was specified in the packet. When no such service can be
found, the server simply closes the connection. However, on a successful
response from the MongoDB, the server looks up the GCM registration ID
of the device with another database query, whose service was returned during
the first search.

16

Client Rendezvous server Smartphone

TCP
{"event":"request",
"service":<name>}

GCM
{"event":"request","service":
<name>,"id":<requestID>}

TCP
{"event":"response",
"id":<requestID>}

{"ip":<ip>,"port":<port",
"peer_ip":<ip>,"peer_port":<port>}

{"ip":<ip>,"port":<port",
"peer_ip":<ip>,"peer_port":<port>}

lookupService() &&
lookupDevice()

Figure 3.2: Exchanging addresses

The server can now send a GCM message to the corresponding smart-
phone. This requires making a single HTTP POST request. HTTP headers
of an abbreviated example request are shown in Figure 3.3, where the key is
obtained from the Google API console while registering a new application,
registration id is the ID which smartphone used to register itself with
the rendezvous server and data.message is plain text message which is sent
directly to the device.

When the smartphone receives the GCM message, it also opens a TCP
connection with the rendezvous server and notifies it by sending a JSON-
encoded message to indicate that the smartphone is ready to accept an in-
coming connection. Now both peer are connected to an agent who knows
their public addresses. As the final step here, the rendezvous server sends
out one packet to each peer which consists of IP addresses and port numbers
of both clients.

POST /gcm/send HTTP/1.1

Host: android.googleapis.com

Content-Type: application/x-www-form-urlencoded;charset=UTF-8

Authorization: key=<PRIVATE_API_KEY>

registration_id=<DEVICE_ID>&data.message=<MESSAGE>

Figure 3.3: Sending messages to smartphones through GCM

17

3.2.3 Connection Establishment

The final phase in establishing a connection between two peers includes creat-
ing TCP sockets and creating NAT mappings. By this time, both peers know
each other’s IP addresses and port numbers. NAT hole punching method
used in current implementation is a modified version of the SYN injection
found in [2].

At first, the initiating side creates a raw socket and a regular TCP socket,
deliberately setting the time to live (TTL) to a low value of the latter by
using the setsockopt() API call. By doing so, the client ensures that when
the SYN packet is sent, a NAT mapping is created at the client’s router but
since the packet never reaches the smartphone’s router, it can not responding
with a RST packet, which would cause the connection to fail1. When the
SYN packet is sent, the client captures the initial sequence number and the
timestamp of given packet by using the raw socket and sends this data to
the rendezvous server using the TCP socket which was used for exchanging
addresses. The rendezvous server forwards this captured TCP packet data
to the smartphone using also the same communication channel which was
established previously.

Similarly to the client, the smartphone also forces its router to create a
NAT mapping by sending out a packet with a low TTL value and the client’s
IP marked as the destination.

1not all routers respond with a RST packet

18

TCP
{"event":"connection_info",
"id":<id>, "isn":<isn>,
"ts_val":<ts_val>}

Client Rendezvous server Smartphone

TCP SYN
(low TTL)

TCP
{"event":"connection_info",
"id":<id>, "isn":<isn>,
"ts_val":<ts_val>}

TCP SYN

TCP SYN-ACK

TCP ACK
(low TTL)

TCP ACK

TCP SYN
(low TTL)

Figure 3.4: Connection establishment, NAT hole punching

Smartphone then crafts a packet where the source address is the client’s
IP address and the destination is the smartphone’s IP address. Also, the
sequence number and the timestamp are set using the information received
from the rendezvous server. It continues to inject this packet into its own
networking stack. Since a server application listens on the port which was
specified as the destination port in the injected packet, the kernel sends out a
SYN-ACK packet to the client as the second step in the three-way handshake.

The SYN-ACK packet sent from the smartphone reaches the client since
a NAT mapping was previously created, so the router in front of the client
knows where to forward it. As a response, the client sends out an ACK packet
indicating a successful establishment of the connection. Unfortunately, this
packet is also sent out with a low TTL value, so the client must capture this
packet, increase the TTL value and resend it, in order to finish the connection
establishment. As the final step, the client restores the TTL value of its
regular socket so that all following packets sent to the smartphone reach
their destination.

3.3 Test Results, Identified Limitations

Given solution has been tested in two network setups: a) smartphone is
behind a NAT router, connecting client is publicly accessible, i.e. all ports are

19

open and no network adressing translation is performed; b) both smartphone
and connection client are behind NAT routers. It is worth mentioning that
in all cases, peers were behind one NAT layer.

For a test scenario, a standalone HTTP server application for Android
was written using an open-source HTTP library [19]. The HTTP server was
started and registered with the rendezvous server.

In both network setups, the connection establishment was successful and
the client could access the HTTP server with a web browser. However,
current implementation has some drawbacks and restrictions with regard to
network topology and smartphone.

The first prerequisite comes from the fact that in order to use raw sockets,
some code needs to be executed with root privileges. This means that the
smartphone has to be rooted and the su binary has to be installed on it.

Another limitation assumes presence of some specific network attributes.
To begin with, the routers in front of connecting peers need to add map-
pings to their NAT tables in an incremental manner. If a router assigns port
numbers randomly from the available port pool, then the connection estab-
lishment will fail since there is no way to predict the NAT mapping which
router has created.

This sets ground for another restriction, which is that when two peers
are trying to establish a connection, any new connection initialized between
address exchange (see Section 3.2.2 for details) and hole punching by any of
the two peers will cause the connection establishment to fail as well. The
reason is that currently, the peer port number is incremented by one when
it is received from the rendezvous server. So most likely, on a busy network,
the current implementation is not very stable.

Security aspects were not addressed in this thesis, but it is worth mention-
ing that currently the messages between peers and the rendezvous server are
exchanged in plain text format in order to speed up the prototyping process.

20

Conclusions

In this thesis a solution was proposed how to mitigate addressing problems
of hosts which are located behind firewalls. Given solution was implemented
by creating an application suite consisting of three separate modules: a ren-
dezvous server, an Android application and a library for NAT hole punching.

It was tested in two scenarios where the smartphone whose services were
accessed, was located behind a router which performed network address
translation. In both of those cases, the connection establishment was suc-
cessful. However, some limitations of current implementation were identified.

Identified limitations included executing code with root privileges in the
smartphone, incremental NAT mapping by the routers and relatively idle
local network of both connecting peers.

As the current implementation is only an initial prototype, it is not yet
mature enough to be used in real applications. Nonetheless, given solution
could be improved in different ways, e.g. adding more NAT hole punching
techniques which have different prerequisites making it more stable in other
network environments. Also the functionality to discover the network and
NAT properties could be added.

21

Tulemüüride taga paiknevate
nutitelefonide adresseerimine

Bakalaurusetöö (6EAP)
Autor: Kristjan Reinloo
Juhendaja: Dr. Satish Narayana Srirama

Resümee

Nutitelefonid on tänapäeval kogumas järjest enam populaarsust, kuna nen-
de tehniliste parameetrite arengu tõttu on nad hakanud asendama süle- ja
lauaarvuteid.

Traditsioonilised nutitelefonide rakendused enamasti ainult tarbivad in-
ternetis leiduvat informatsiooni. Kuna aga tarkade seadmete arvutusvõimsus
on juba võrreldav kodukasutaja sülearvutitega, saab neid kasutada ka hoo-
pis serveritena. See loob omakorda aga eeltingimused uut tüüpi rakenduste
arenguks.

Paraku on tõsine probleem nii nutitelefonide kui ka teiste seadmete ad-
resseerimisega üle interneti, mis asuvad tavalistes kohtvõrkudes nagu näiteks
kodudes. Antud probleem on enamasti tingitud tõsiasjast, et kõikide võrgus
leiduvate seadmete identifitseerimiseks ei jätku unikaalseid aadresse. Seetõttu
on kasutusele võetud võrguaadresside tõlkimine (network address transla-
tion), mis aga omakorda raskendab suvaliste seadmete adresseerimist.

Antud töös on välja pakutud üks võimalikest lahendustest, kuidas luua
ühendus nutitelefonidega, mis asuvad võrguaadresse tõlkivate ruuterite taga.
Selleks on kasutatud nutitelefonidele teatiste saatmise võimalust ning ma-
nuaalselt internetiprotokolli (IP) pakettide koostamist, et tekitada ajutised
tunnelid ruuterites.

Tarkvara, mis selle töö raames kirjutati, testiti olukorras, kus mõnda tee-
nust pakkuv nutitelefon oli võrguaadresse tõlkiva ruuteri taga. Ühenduse
loomine oli edukas, kuid antud lahendus nõuab mõningate eeltingumuste
täitmist. Näiteks peab nutitelefonis olema võimalik jooksutada koodi ad-

22

ministraatori õigustes, ruuterid peavad võrguaadresside tõlkimisel kasutama
kasvavaid pordinumbreid ning võrk ei tohi olla liialt koormatud.

Kuna valminud lahendus on alles esmane prototüüp, saab seda tulevikus
edasi arendada, et see oleks kasutatav ka reaalsetes rakendustes. Töös on
välja toodud soovitused lisada ruuterite ja tulemüüride omaduste avastamise
funktsionaalsus ning muude tunnelite tekitamise meetodeid, mis töötaksid ka
teistsuguste omadustega võrkude ja seadmete korral.

23

References

[1] Gartner Inc. Gartner Says Worldwide Mobile Phone Sales Declined 1.7
Percent in 2012. https://www.gartner.com/newsroom/id/2335616.
Accessed: 21.04.2013.

[2] S. Holzapfel, M. Wander, A. Wacker, and T. Weis. SYNI - TCP Hole
Punching Based on SYN Injection. In Network Computing and Ap-
plications (NCA), 2011 10th IEEE International Symposium on, pages
241–246, 2011.

[3] G. Marchetto, M.P. Manzillo, L. Torrero, L. Ciminiera, and F. Risso.
Robustness analysis of an unstructured overlay for media communica-
tion. Communications, IET, 5(4):409–417, 2011.

[4] Salman A Baset and Henning Schulzrinne. An analysis of the skype
peer-to-peer internet telephony protocol. In IEEE infocom, volume 6,
pages 23–29, 2006.

[5] Jonathan Rosenberg, Joel Weinberger, Christian Huitema, and Rohan
Mahy. Stun-simple traversal of user datagram protocol (udp) through
network address translators (nats). Technical report, RFC 3489, IETF,
Mar, 2003.

[6] J Rosenberg, R Mahy, and C Huitema. Turn: traversal using relay nat.
Technical report, Internet draft, Internet Engineering Task Force, 2004.

[7] Saikat Guha and Neil Daswani. An experimental study of the skype
peer-to-peer voip system. Technical report, Cornell University, 2005.

[8] A. Williams. Requirements for Automatic Configuration of IP Hosts.
http://files.zeroconf.org/draft-ietf-zeroconf-reqts-12.txt.
Accessed: 02.05.2013.

[9] Apple Inc. Apple - Support - Bonjour. https://www.apple.com/

support/bonjour/. Accessed: 02.05.2013.

24

https://www.gartner.com/newsroom/id/2335616
http://files.zeroconf.org/draft-ietf-zeroconf-reqts-12.txt
https://www.apple.com/support/bonjour/
https://www.apple.com/support/bonjour/

[10] Dyn. Bonjour and DNS Service Discovery - Dyn. http://dyn.com/

support/bonjour-and-dns-discovery/. Accessed: 04.05.2013.

[11] Bloomberg L.P. Google Buys Android for Its Mobile Ar-
senal - Businessweek. http://www.businessweek.com/stories/

2005-08-16/google-buys-android-for-its-mobile-arsenal. Ac-
cessed: 30.04.2013.

[12] Google Inc. Android Git Repositories - Git at Google. https:

//android.googlesource.com/. Accessed: 30.04.2013.

[13] Google Inc. Android Security Overview — Android Open Source. http:
//source.android.com/tech/security/. Accessed: 30.04.2013.

[14] File:Android-System-Architecture.svg - Wikimedia Com-
mons. https://commons.wikimedia.org/wiki/File:

Android-System-Architecture.svg. Accessed: 11.05.2013.

[15] Ryan Dahl - History of Node.js - YouTube. https://www.youtube.

com/watch?v=SAc0vQCC6UQ. Accessed: 11.05.2013.

[16] 10gen Inc. MongoDB. http://www.mongodb.org/. Accessed:
21.04.2013.

[17] Google Inc. Google Cloud Messaging for Android — Android Develop-
ers. https://developer.android.com/google/gcm/index.html. Ac-
cessed: 27.04.2013.

[18] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
Address Allocation for Private Internets. https://tools.ietf.org/

html/rfc1918. Accessed: 04.05.2013.

[19] Paul Hawke. Nanohttpd/nanohttpd - GitHub. https://github.com/

NanoHttpd/nanohttpd. Accessed: 11.05.2013.

25

http://dyn.com/support/bonjour-and-dns-discovery/
http://dyn.com/support/bonjour-and-dns-discovery/
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
https://android.googlesource.com/
https://android.googlesource.com/
http://source.android.com/tech/security/
http://source.android.com/tech/security/
https://commons.wikimedia.org/wiki/File:Android-System-Architecture.svg
https://commons.wikimedia.org/wiki/File:Android-System-Architecture.svg
https://www.youtube.com/watch?v=SAc0vQCC6UQ
https://www.youtube.com/watch?v=SAc0vQCC6UQ
http://www.mongodb.org/
https://developer.android.com/google/gcm/index.html
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918
https://github.com/NanoHttpd/nanohttpd
https://github.com/NanoHttpd/nanohttpd

Appendices

Appendix A

The source code of the implementation is available on a following web page

https://github.com/kreinloo/bscthesis

With the given hash of the last commit

1fcfda7dc4965ce73978425dcf44cf014197afe7

26

https://github.com/kreinloo/bscthesis

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Kristjan Reinloo (date of birth: 24.04.1991), herewith grant the University
of Tartu a free permit (non-exclusive licence) to:

• reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

• make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

Addressing Smartphones Located Behind Firewalls
. ,

supervised by Dr. Satish Narayana Srirama.

• I am aware of the fact that the author retains these rights.

• I certify that granting the non-exclusive licence does not infringe the
intellectual property rights or rights arising from the Personal Data
Protection Act.

Tartu, 13.05.2013

27

	Introduction
	State of the Art
	Smartphones
	Related Work
	Existing Solutions
	Skype
	Zeroconf and Bonjour

	Used Technologies
	Android
	Node.js
	MongoDB
	Google Cloud Messaging for Android
	Raw Sockets

	Problem Statement
	Addressing Mechanisms
	Network Address Translation
	NAT Principles

	Proposed Solution
	Architecture
	Flow Description
	Device Registration
	Address Exchange
	Connection Establishment

	Test Results, Identified Limitations

	Conclusions
	Tulemüüride taga paiknevate nutitelefonide adresseerimine
	References
	Appendices
	Appendix A

