
University of Tartu

Faculty of Mathematics and Computer Science

Institute of Computer Science

Alisa Pankova

Bilinear Mappings in Formal

Cryptography

Bachelor's thesis (6ECTS)

Supervisor: Peeter Laud

Author: ............................................... "....." June 2011

Supervisor: .......................................... "....." June 2011

Allowed to defend

Professor: ............................................ "....." June 2011

Tartu 2011





Contents

Abstract 4

1 Introduction 5

2 Formal View of Cryptography 7

3 Pairing-Based Cryptography in Formal Model 11
3.1 Equational Theory for Bilinear Mappings . . . . . . . . . . . . 11
3.2 Exponent-ground Theory for Bilinear Mappings . . . . . . . . 12
3.3 Encoding the Terms to Equivalence Classes . . . . . . . . . . . 19
3.4 Derivation Rules for Encoded Terms . . . . . . . . . . . . . . 22
3.5 Decoding the Terms: Soundness of the Reduction . . . . . . . 30

4 Implementation 39
4.1 Implementation of the Protocols Fully Supported by the Theory 39
4.2 Implementation of the Protocols Partially Supported by the

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 E�ciency of the Analyzer . . . . . . . . . . . . . . . . . . . . 47

5 Conclusions and Future Work 48

Resume (in Estonian) 49

References 50

Appendix � CD containing the sources of the transformer 51

3



Abstract

Bilinear mappings are quite powerful mathematical structures that can be
used in cryptography. They allow constructing cryptographic primitives that
would be otherwise ine�ective or even impossible. In formal cryptography,
the protocols are based on term algebras and process calculi, and can be
represented through Horn clauses for analysis purposes. The security of
these protocols can be tested with analyzers based on resolution methods.
However, there are problems with realization of arithmetic operations. It is
easy to compute ga if the values of both g and a are known, but the values are
usually unde�ned in the protocols. Some research works have been written
about the representation of exponentiation in formal model, but there are still
many things that should be done. In this work, an attempt to implement an
analysis of bilinear mappings in formal cryptography has been done.
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1 Introduction

The security properties of the cryptographic primitives are mostly based
on mathematical problems that presumably cannot be solved in polynomial
time. One of such problems is the discrete logarithm problem. Let G = 〈P 〉
(G is generated by P ) be a multiplicative group of order n. Hardness of the
discrete logarithm in group G means that given the generator P , size of the
group n, and some group element P a, it is impossible to �nd the exponent a
in polynomial time. A related problem is the Di�e-Hellman problem: given
P , P a and P b, �nd P ab. This problem may be used for key exchange between
two parties.

Let A and B be the two parties. Let G = 〈P 〉 be the group of order n.
First, each party generates a random number from Zn. A generates an integer
a; B generates an integer b. Then they exchange the following values:

• A→ B: P a

• B → A: P b

Each party may now derive a key P ab that can be used as a new secret
key for communication between A and B. The party A calculates (P b)a =
P ba = P ab, and the party B similarly (P a)b = P ab. If the intruder eavesdrops
on the network and gets P a and P b, he cannot derive the secret key P ab if
the Di�e-Hellman problem cannot be solved in the group G.

The DH problem can be extended to groups with bilinear mappings [7].
This allows the construction of very e�cient cryptographic primitives.

Let n be a prime number. Consider two groups of the order n: G1 and
GT . Let G1 be an additive group generated by P . Let GT be a multiplicative
group. A mapping e can be de�ned:

e : G1 ×G1 → GT ,

which satis�es the following properties:

1. Bilinearity: ∀R, S, T ∈ G1, e(R + S, T ) = e(R, T )e(S, T ), and e(R, S +
T ) = e(R, S)e(R, T ).

2. Non-degeneracy: e(P, P ) 6= 1.

3. Computability: e is easy to compute.

According to bilinearity, the generator of GT is the value e(P, P ). This
fact makes the property of non-degeneracy very important. If the generator
of the group GT was 1, then the whole group would consist only of a single
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element 1, and it would make no use in cryptography. The computability is
necessary since otherwise the mapping would have no practical use.

Another way to de�ne bilinearity is the following equation:

∀R, S ∈ G1,∀a, b ∈ Z, e(aR, bS) = e(R, S)ab .

This de�nition is better to use if we allow only products in exponents.
For cryptography, the most interesting case is when the discrete loga-

rithm problem is hard in the group G1. According to bilinearity, the discrete
logarithm problem should also be hard in the group GT . If it did not, then
we could use GT for �nding the discrete logarithms of G1 elements. Given
aP ∈ G1, we might apply the bilinear function e to aP and P . The result
would be e(aP, P ) = e(P, P )a, and if the discrete logarithm problem could
be solved in GT , we would get the a and thus solve the discrete logarithm
problem in G1.

A new problem can be de�ned (Bilinear Di�e-Hellman Problem): given
aP , bP , cP , and P , �nd e(P, P )abc. This problem cannot be solved if the
discrete logarithm problem is hard in G1.

For cryptography, it is very important that such groups and appropriate
bilinear mappings do exist in reality (like Weil and Tate pairings over elliptic
curves). These things are of practical use and can be applied in real life.
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2 Formal View of Cryptography

There are two main views of cryptography:

1. Formal (Dolev-Yao) view.

• Messages are elements of term algebra.

• Possible operations on terms are enumerated.

• Protocol is represented through a process calculus or a theory.

2. Computational view.

• Messages are bit strings.

• Possible operations on bit strings - everything in Probabilistic
Polynomial Time.

• Protocol is a set of probabilistic interactive Turing machines.

The computational view is close to the real world, but it is much more
di�cult to analyze the security properties of a protocol.

The formal view is simpler to analyze. We may rather easily describe the
protocol and the set of possible operations that may be applied on the terms.
In Dolev-Yao model, everything can be represented as terms:

• Hashing: h(S) is the term that represents the result of applying a
hash function h to some bit string S. We do not have to think on
what this hash function actually does. It is su�cient to state that if
the intruder gets the term h(S), he cannot extract S from it (perfect
cryptography assumption), and we have it by default if we do not write
additional rules for it. The property that if S1 6= S2, then h(S1) 6= h(S2)
(collision-resistance) is assumed by default, since these two terms are
syntactically di�erent (if we do not factorize the terms in such a way
that h(S1) and h(S2) are equivalent).

• Encryption: enc(K,M) is the term that represents the message M
encrypted by the key K. We may de�ne di�erent functions for di�er-
ent kinds of encryption. Additionally, we need to de�ne the rules for
decryption with an appropriate key:

� dec(K, enc(K,M)) = M for the symmetric encryption (decrypt
with the same key).

� dec(K, enc(pk(K),M)) = M for asymmetric encryption. Here we
use a term pk(K) which represents a public key that corresponds
to the secret key K.
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• Signing: sign(K,M) is the message M signed by the key K. As
in the case of encryption, we need rules for ejecting the message out
of the signature: readsign(pk(K), sign(K,M)) = M allows to read
the signed message by using the public key of the signer. There can
be di�erent realizations of signing, we may also write something like
verify(pk(K), sign(K,M)) = true.

These examples are just standard cryptographic operations, and we may
de�ne more functions that will be used in the particular protocol.

There are di�erent automatic protocol analyzers that can be used for
verifying the secrecy of protocols in the formal model. One of them is ProVerif
[2]. It supports description of a protocol in two formats: Horn clauses and
pi-calculus. A protocol de�ned in pi-calculus is internally also transformed
to Horn clauses.

A Horn clause is a logical implication where F1, . . . , Fn and G are atoms:

F1 & . . .& Fn → G ,

which means that if the claims F1, . . . , Fn are true, then G is also true.
In cryptography, a logical clause may represent the fact that the attacker

knows some value. We may de�ne a predicate I such that I(X) is true i� the
intruder knows the value of X (it is also possible to de�ne several intruders
if necessary). The rules that may be applied on terms can be described with
Horn clauses. For example:

I(key) & I(enc(key,mesage))→ I(message)

is the rule that states: if the intruder I has a key and a message encrypted
with that key, he may decrypt it and get the message.

There are actually more things that we need to describe: the protocol
itself. This can also be done by using Horn clauses. The messages that are
moving in the network are sent out by the communicating parties. We may
assume that the �rst-round messages are sent out in any case (otherwise
the protocol would not work), and the intruder gets these messages as facts.
The messages of the next rounds depend on the messages that the parties
received from the previous rounds, and it is the intruder who decides what
the particular party receives in the particular session. If a party A, getting
some term X, answers with a term Y , we may write it as I(X) → I(Y ),
since if the intruder has X, he may send it to A and get the Y . The exact
contents of X and Y (evaluations of their free variables) are determined by
the substitution that is applied to both of them at the same time.
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Sometimes it is di�cult to write a protocol as a set of Horn clauses,
especially if it uses many rounds. A protocol can be described as some pro-
cess calculus, where we may de�ne separate processes for di�erent parties.
ProVerif allows describing a protocol in pi-calculus, but afterwards it trans-
lates the processes into Horn clauses, so that pi-calculus is just an auxiliary
method for describing a protocol.

It is important that two syntactically di�erent terms may actually be
cryptographically equivalent. For example, in the case of bilinear mappings,
we know that e(x, y) = e(y, x). If we want correct analysis of our protocol,
we need to use equational theories. There may exist vulnerabilities that are
caused by equivalence of some terms.

An equational theory has been developed for Di�e-Hellman exponentia-
tion in formal model [6]. It allows only ground exponents in terms and only
multiplication of exponents, but for some protocols it is su�cient. This work
is based on the following equations:

• (x ↑ y) ↑ z = (x ↑ z) ↑ y;

• (x ↑ y) ↑ y−1 = x;

• (x−1)−1 = x.

It is not easy to implement these equations in ProVerif since it does not
support associativity in equations. Therefore, a solution was developed that
is based on term encoding.
The intruder may perform two operations: exponentiation and inversion.

• I(x), I(y)→ I(x ↑ y);

• I(x)→ I(x−1).

The theory that contains these two rules has been de�ned as TDH .
Since there is �nite number of ground exponents, the intruder may use

only prede�ned grounded exponents that belong to some set C. Since in-
version is allowed, the intruder may also exponentiate group elements with
inverses of these exponents (the set C−1). If there are only products in
exponents, then the rule that allows �nding inverses of group elements is
unnecessary. This rule would not give the intruder any additional power.
Therefore, the rules of intruder will be the following:

• I(x), I(c)→ I(x ↑ c) for each c ∈ C;

• I(x), I(c)→ I(x ↑ c−1) for each c ∈ C.
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This kind theory has been de�ned as TC
DH , and its rules are determined

by the set C.
In order to provide syntactical equality, the terms have to be encoded in

such a way that congruent terms would have the same encoding. ProVerif
should perform the analysis on encoded terms.

The main idea of [6] is to �nd out all the possible exponents that will
be used in the protocol. It was proved that we do not need to consider
unbounded number of sessions in case of DH exponentiation, and therefore
we may use �nite number of exponents.

Let all the possible exponents be c1, . . . , cm. Each group element may
then be encoded as exp(g, x1, . . . , xm), where x1, . . . , xm are the powers of
exponents in the given group element, and g is some group element whose
exponents are unknown, or, most probably, is the group generator. For exam-
ple, having the set of exponents {a, b, c}, we may encode P ab as exp(P, 1, 1, 0).
A more complex term P a3c−1

would then be encoded as exp(P, 3, 0,−1). The
problem is that the powers cannot be denoted directly with numbers since
ProVerif does not support arithmetic operations. The integers also have to
be be encoded: 0→ 0, 1→ s(0), 2→ s(s(0)) . . .− 1→ p(0), −2→ s(0) . . ..
As the result, P ab would then look like exp(P, s(0), s(0), 0), and P a3c−1

like
exp(P, s(s(s(0))), 0, p(0)).

A set of rules has been de�ned for exponentiation of the encoded group
elements. This kind of encoding allows syntactical equivalence of congru-
ent terms. For example, the encoding of both P ab and P bacc−1

will be
exp(P, s(0), s(0), 0).

This solution made it possible to test with ProVerif several actual proto-
cols using DH exponentiation, and this work is a good base for construction
of a similar theory for bilinear mappings.
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3 Pairing-Based Cryptography in Formal Model

3.1 Equational Theory for Bilinear Mappings

If we want to use the properties of bilinear pairings in our protocols, we need
to de�ne a set of rules for the intruder. This set of rules is actually a theory.
The intruder is permitted to multiply elements of G1 with integers, apply the
pairing function e to elements of G1, and raise elements of GT into powers.
No addition of exponents is allowed since this theory is based on the [6]'s
theory for exponentiation.

Let ↑ denote the exponentiation and ? the multiplication. The algebraic
properties for bilinear mappings can be modelled by congruence relation ∼
on terms by following equations:

1. (x ↑ y) ↑ z ∼ (x ↑ z) ↑ y for each x ∈ GT , y ∈ Z;

2. (x ↑ y) ↑ y−1 ∼ x for each x ∈ GT , y ∈ Z;

3. (x ? y) ? z ∼ (x ? z) ? y for each x ∈ G1, y ∈ Z;

4. (x ? y) ? y−1 ∼ x for each x ∈ G1, y ∈ Z;

5. (x−1)−1 ∼ x for inverses in G1, GT , and Z;.

6. e(x, y ? z) ∼ e(x, y) ↑ z for each x, y ∈ G1, z ∈ Z;

7. e(x, y−1) ∼ e(x, y)−1 for each x, y ∈ G1;

8. e(x, y) ∼ e(y, x) for each x, y ∈ G1.

The last equation is actually implied by bilinearity property, but we have
to add this rule separately. The theory does not contain information about
the size of the group or its generator, and ProVerif cannot reduce any ex-
pression e(x, y) to the form e(P, P ) ↑ c, where P is the generator of G1 and
c is some integer.

In [6], several notions were de�ned. These de�nitions will be a little bit
di�erent for the theory of bilinear mappings, since we extend the signature
and add more rules to the existing theory.

De�nition 1 A term is called reduced, if the '2' cannot be applied from left
to right (mod ′1′), the ′4′ cannot be applied from left to right (mod ′3′), the
′7′ cannot be applied from left to right (mod ′6′), and ′5′ cannot be applied
from left to right (mod ′1′), (mod ′3′), and (mod ′6′).
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De�nition 2 A term is called standard, if its head symbol is neither ?, ↑,
−1, nor e.

De�nition 3 A term is called pure, if the symbols ?, ↑, −1, and e do not
occur in it.

After the congruence relations have been described, we need to de�ne
rules for the intruder. They are described in the following theory (TE):

1. I(x), I(y)→ I(e(x, y)) for each x, y ∈ G1;

2. I(x), I(y)→ I(x ? y) for each x ∈ G1, y ∈ Z;

3. I(x), I(y)→ I(x ↑ y) for each x ∈ GT , y ∈ Z;

4. I(x)→ I(x−1).

Here the same notation x−1 is used for inverses in G1, GT , and Z.
AlthoughG1 is additive andGT is multiplicative, the intruder has freedom

to apply the addition operation to the elements of GT and multiplication
operation to the elements of G1. This, however, does not give him anything
useful, and therefore type constraints can be added to the intruder rules when
applying this theory with ProVerif.

Given a protocol P and a message m, the fact that TP ∪ TE 0E I(m)
means that the intruder cannot get the message m even employing algebraic
properties of bilinear mappings. Here `E denotes derivation modulo the
congruence ∼.

3.2 Exponent-ground Theory for Bilinear Mappings

In [6], the theory for Di�e-Hellman exponentiation TDH is constrained to a
theory TC

DH , that can be used only with exponent-ground terms. In the same
way, the theory TE should be constrained to TC

E . First, we need to de�ne
what does it mean for a term to be exponent-ground in the theory TE.

De�nition 4 A term t is well-formed if every subterm of t of the form s−1

only occurs in a context of the form s′ ↑ s−1 or s′ ? s−1 for some s′.

De�nition 5 A term is exponent-ground if it is well-formed and for each of
its subterms of the form t ↑ s or t ? s it is true that s is of the form c or c−1,
where c is a pure, ground term.

De�nition 6 A term is C-exponent-ground if it is exponent-ground and has
exponents only from the prede�ned �nite set C.
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We need to de�ne a C-exponent ground theory TC
E that allows multipli-

cation in G1 and exponentiation in GT only with ground multipliers (expo-
nents). Let C be the set of ground variables that may be used as multipliers
in G1 and exponents in GT . The theory contains the following rules:

1. I(x), I(y)→ I(e(x, y));

2. I(x), I(c)→ I(x ↑ c) for each c ∈ C;

3. I(x), I(c)→ I(x ↑ c−1) for each c ∈ C;

4. I(x), I(c)→ I(x ? c) for each c ∈ C;

5. I(x), I(c)→ I(x ? c−1) for each c ∈ C.

In these rules we no longer need the rule that allows the intruder to
�nd inverses of the elements. We do not need the inverses of G1 and GT

if we are dealing only with products in exponents, and the rules 3 and 5
actually give intruder the ability to �nd inverses of integers when performing
multiplication (exponentiation).

Let T be a C-exponent-ground theory that represents some protocol. We
need to show that if a C-exponent-ground atom a can be derived using the
properties of bilinear pairings from a C-exponent-ground theory T (T∪TE `E
a), then there exists a C-exponent-ground derivation of a.

Theorem 1 Let T be a C-exponent-ground Horn theory and "a" be a C-
exponent-ground atom. If T∪TE `E a, then there exists a C-exponent-ground
derivation for T ∪TC

E `E a, where the substitutions applied to this derivation
are also C-exponent-ground.

First, we need to de�ne a function δC which turns any terms into C-
exponent-ground terms. Applying this function to some derivation T ∪TE `E
a returns a C-exponent-ground derivation T ∪ TC

E `E a.
Let C∗ = C ∪ C−1. The function will be de�ned by induction:

• δC(x) = x for a variable x;

• δC(t ↑ s) = δC(t) ↑ s if s ∈ C∗;

• δC(t ↑ s) = δC(t) if s /∈ C∗;

• δC(t−1) = δC(t);

• δC(t ? s) = δC(t) ? s if s ∈ C∗;

• δC(t ? s) = δC(t) if s /∈ C∗;
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• δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)) for f /∈ {↑, ?,−1 } .

If the set C is �xed, we may write simply δ instead of δC . In order to prove
the Theorem 1, we need to prove several lemmas �rst.

Lemma 1 For any set C of pure, ground terms and for every term t we
have:

1. δC(δC(t)) = δC(t).

2. δC(t) is C-exponent-ground.

3. δC(t) = t i� t is C-exponent-ground.

Proof: This lemma summarizes the properties of the function δC de�ned
above. The proof of each point is based on induction. We have to look
through all the possible cases of application of δC .

1. δC(δC(t)) = δC(t).

• t = x for a variable x: δC(δC(x)) = δC(x) = δC(t), according to
the de�nition. This can be considered as the induction basis.

• t = t′−1 for a term t′: δC(δC(t′−1)) = δC(t)).

• t = t′ ↑ s, where t′ is some term and s ∈ C∗. δC(δC(t′ ↑ s)) =
δC(δC(t′) ↑ s) = δC(δC(t′)) ↑ s, and by induction hypothesis it
equals δC(t′) ↑ s = δC(t).

• t = t′ ↑ s, where t′ is some term and s /∈ C∗. δC(δC(t′ ↑ s)) =
δC(δC(t′)) = δC(t′) by induction hypothesis. We also have that
δC(t′ ↑ s) = δC(t′) = δC(t).

• t = t′ ? s, where t′ is some term and s ∈ C∗. δC(δC(t′ ? s)) =
δC(δC(t′) ? s) = δC(δC(t′)) ? s, and by induction hypothesis it
equals δC(t′) ? s = δC(t).

• t = t′ ? s, where t′ is some term and s /∈ C∗. δC(δC(t′ ? s)) =
δC(δC(t′)) = δC(t′) by induction hypothesis. On the other hand,
δC(t′ ? s) = δC(t′) = δC(t).

• t = f(t1, . . . tn) for some terms t1, . . . , tn. δC(δC(f(t1, . . . tn))) =
δC(f(δC(t1), . . . δC(tn))) = f(δC(δC(t1)), . . . δC(δC(tn))), which ac-
cording to induction hypothesis equals f(δC(t1), . . . δC(tn)) = δC(f(t1, . . . tn)) =
δC(t).

2. δC(t) is C-exponent ground.
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• t = x for a variable x: δC(x) = x, and a variable is considered to
be C-exponent-ground since it does not use any exponents at all.

• t = t′−1 for a term t′: δC(t′−1) = δC(t′). The term δC(t′) is C-
exponent-ground according to induction hypothesis.

• t = t′ ↑ s, where t′ is some term and s ∈ C∗. δC(t′ ↑ s) = δC(t′) ↑
s. Since t′ is C-exponent-ground by induction hypothesis, and
s ∈ C∗, the whole term is also C-exponent-ground.

• t = t′ ↑ s, where t′ is some term and s /∈ C∗. δC(t′ ↑ s) =
δC(t′), and δC(t′) is C-exponent-ground according to induction
hypothesis.

• t = t′ ? s, where t′ is some term and s ∈ C∗. δC(t′ ? s) = δC(t′) ? s.
Since t′ is C-exponent-ground by induction hypothesis, and s ∈
C∗, the whole term is also C-exponent-ground.

• t = t′?s, where t′ is some term and s /∈ C∗. δC(t′?s) = δC(t′), and
δC(t′) is C-exponent-ground according to induction hypothesis.

• t = f(t1, . . . tn) for some terms t1, . . . , tn.
δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)). The arguments of f , namely
δC(t1), . . . δC(tn), are C-exponent-ground by induction hypothesis,
and after applying the function f , the term is still C-exponent-
ground.

3. δC(t) = t i� t is C-exponent ground. The function δC(t) transforms all
the terms to C-exponent-ground. It implies that, even if t is not C-
exponent-ground, the term δC(t) is C-exponent-ground, and therefore
cannot be equal to t. It is su�cient to prove that if t is C-exponent-
ground, then δC(t) = t.

• t = x for a variable x. A variable is C-exponent-ground. δC(x) =
x = t.

• t = t′−1 for a term t′. The term t is not C-exponent-ground.

• t = t′ ↑ s, where t′ is some term and s ∈ C∗. δC(t′ ↑ s) =
δC(t′) ↑ s. If t is C-exponent-ground, it means that t′ should also
be C-exponent-ground (otherwise t would not be). By induction
hypothesis, t′ = δC(t′). We get that δC(t) = t′ ↑ s.
• t = t′ ↑ s, where t′ is some term and s /∈ C∗. The term t is not
C-exponent-ground.

• t = t′?s, where t′ is some term and s ∈ C∗. δC(t′?s) = δC(t′)?s. If t
is C-exponent-ground, it means that t′ should also be C-exponent-
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ground (otherwise t would not be). By induction hypothesis, t′ =
δC(t′). We get that δC(t) = t′ ? s.

• t = t′ ? s, where t′ is some term and s /∈ C∗. The term t is not
C-exponent-ground.

• t = f(t1, . . . tn) for some terms t1, . . . , tn.
δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)). The arguments of f ,
δC(t1), . . . δC(tn), should be C-exponent-ground (otherwise t would
not be), and, by induction hypothesis,
f(δC(t1), . . . δC(tn)) = f(t1, . . . tn) = t. �

De�nition 7 A term t is exponent-reduced, if every subterm s of t, which
occurs as an exponent, is reduced.

Now it is necessary to prove that δ preserves the equivalence on exponent-
reduced terms.

Lemma 2 For all exponent-reduced terms t and s, if t ∼ s, then δ(t) ∼ δ(s).

Proof: It is su�cient to prove this lemma only for the case where s is a
reduced form of t. If r is a reduced form of t and t ∼ s, then δ(t) ∼ δ(r),
and δ(r) ∼ δ(s). By transitivity of equivalence relation, δ(t) ∼ δ(s).

Assume that t is exponent-reduced and s is its reduced form. We proceed
by induction on the size of t and consider the following cases:

1. If the head symbol of t is neither ?,−1 nor ↑, the s should have the same
head symbol. There are now two cases for t:

(a) t is a constant or a variable: δ(t) = t = s = δ(s).

(b) t is of the form f(t1, . . . , tn): s is also of the form f(s1, . . . , sn),
where si is a reduced form of ti. By the induction hypothesis,
δ(ti) ∼ δ(si), and therefore
δ(t) = f(δ(t1), . . . , δ(tn)) ∼ f(δ(s1), . . . , δ(sn)) = δ(s).

2. If the head symbol of t is −1, then t = u−1 for some u. There are two
cases for u:

(a) If u is of the form r−1 for some r, then s is a reduced form of r
and, based on induction hypothesis, δ(t) = δ(r) ∼ δ(s).

(b) If u is not of the form r−1 for some r, then s should be of the form
w−1 where w is a reduced form of u (otherwise there would be a
contradiction with head symbols). By the induction hypothesis,
δ(u) ∼ δ(w), and since δ(t) = δ(u) and δ(s) = δ(w) (from the
de�nition of δ), we have δ(t) ∼ δ(s).
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3. If the head symbol of t is ↑, we may write t as t0 ↑ t1 ↑ . . . ↑ tn, where
the head symbol of t0 is not ↑.

(a) There are i, j ∈ {1, . . . , n} such that ti ∼ t−1j . If we take these
two out from t and get t′, we have that s is a reduced form of t′.
Because t is exponent-reduced, it follows that ti = t−1j or t−1i = tj:
we get that ti ∈ C∗ i� tj ∈ C∗. We have δ(t) ∼ δ(t′), and by
induction hypothesis δ(t′) ∼ δ(s), which implies δ(t) ∼ δ(s).

(b) If there are no such i and j, then s must be of the form s0 ↑ s1 ↑
. . . ↑ sn, where head symbol of s0 is not ↑, s0 is a reduced form of t0,
and ti = si for each i ∈ {1, . . . , n} (t is exponent-reduced implies
that all ti-s are exponent-reduced). Now, δ(t) = δ(t0) ↑ ti1 ↑
. . . ↑ tik , where ti1 , . . . , tik are exactly these elements of t1, . . . , tn
which belong to C∗. We have that ti ∈ C∗ i� si ∈ C∗ for each
i ∈ {1, . . . , n}, and therefore δ(s) = δ(s0) ↑ si1 ↑ . . . ↑ sik . By the
induction hypothesis, δ(t0) = δ(s0). It follows that δ(t) ∼ δ(s).

4. If the head symbol of t is ?, we may write t as t0 ? t1 ? . . . ? tn, where
the head symbol of t0 is not ?. We have to look through exactly the
same cases as in the exponentiation. �

Lemma 3 Let C be a set of pure, ground terms. Let t be a C-exponent-
ground term, and θ be a substitution. Then δ(tθ) = tδ(θ).

Proof: The proof is done by induction on the structure of t:

1. If t is a standard term, δ(tθ) = tδ(θ). Let it be the induction basis.

2. If t = s−1 for some s, then t was not a C-exponent-ground term. We
do not have to consider this case.

3. If t = s ↑ s′, it follows that s is C-exponent-ground and s′ ∈ C∗. We
have δ(tθ) = δ(sθ ↑ s′) = δ(sθ) ↑ s′. By the induction hypothesis,
δ(sθ) = sδ(θ). Thus, δ(sθ) ↑ s′ = sδ(θ) ↑ s′ = tδ(θ).

4. If t = s ? s′, it follows that s is C-exponent-ground and s′ ∈ C∗. We
have δ(tθ) = δ(sθ ? s′) = δ(sθ) ? s′. By the induction hypothesis,
δ(sθ) = sδ(θ). Thus, δ(sθ) ? s′ = sδ(θ) ? s′ = tδ(θ). �

Proof of Theorem 1: Now the Theorem 1 can be proved, based on lemmas
1-3. Let π = b1, . . . , bl be a derivation for T ∪ TE `E a, where bl ∼ a. We
can assume that the a and all bi-s are reduced. We need to show that δ(π)
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is a derivation for T ∪ TC
E `E a. This completes the proof, because σ(π) is

C-exponent-ground by Lemma 1.
Because bl ∼ a and both bl and a are reduced, by Lemma 2, we have

δ(bl) ∼ δ(a). By Lemma 1, δ(a) = a since a is C-exponent-ground, so we
have δ(bl) ∼ a. To prove that δ(π) is a derivation for T ∪ TC

E `E a, we
only need to show for each i ∈ {1, . . . , l} that δ(bi) can be obtained from
{δ(b1), . . . , δ(bi−1)} by applying one of the Horn clauses from T ∪ TC

E . We
need to consider �ve cases: whether bi is obtained by one of the clauses in
theory T or one of the rules de�ned in the theory TE.

1. bi is obtained by applying some C-exponent-ground clause from T .
There exists a clause a1, . . . , an → a0 in T such that a0, . . . , an are
C-exponent-ground. There exists a substitution θ such that a0θ = bi
and for each j ∈ {1, . . . , n} there exists kj ∈ {1, . . . , n} with ajθ =
bkj . Since aj is C-exponent-ground and θ is reduced, ajθ is exponent-
reduced. By Lemma 2, δ(ajθ) ∼ δ(bkj) for all j ∈ {0, . . . , n}. By
Lemma 3, ajδ(θ) ∼ δ(bkj). We can apply the same clause a1, . . . , an →
a0 in T with the substitution δ(θ) to δ(bk1), . . . , δ(bkn) and obtain
δ(bk0) = δ(bi).

2. bi is obtained by applying I(x), I(y)→ I(e(x, y)). In this case, bi is of
the form I(t), and, for some j, k < i, the atom bj is of the form I(s),
and the atom bk is of the form I(r) such that t ∼ e(s, r). We need
to show that I(δ(t)) can be obtained from I(δ(s)) and I(δ(r)). Since
s and r are reduced by induction hypothesis, by Lemma 2 we have
δ(t) ∼ e(δ(s), δ(r)). We apply the clause I(x), I(y) → I(e(x, y)) from
theory TC

E to get I(δ(e(s, r)) from I(δ(s)) and I(δ(r)).

3. bi is obtained by applying I(x) → I(x−1). In this case, bi is of the
form I(t) and, for some j < i, the atom bj is of the form I(s) with t ∼
s−1. Since t and s are reduced and thus both t and s−1 are exponent-
reduced, we use Lemma 2 to obtain δ(t) ∼ δ(s−1) = δ(s). Hence,
δ(bi) = I(δ(t)) ∼ I(δ(s)) = δ(bj).

4. bi is obtained by applying I(x), I(y) → I(x ↑ y). In this case, bi is of
the form I(t) and there are atoms I(s) and I(r) amongst b1, . . . , bi−1
such that t ∼ s ↑ r. We need to show that I(δ(t)) can be obtained
from I(δ(s)) and I(δ(r)).
Since s and r are reduced, s ↑ r is exponent-reduced. By Lemma 2, we
have δ(t) = δ(s ↑ r), so it is enough to show that I(δ(s ↑ r)) can be
obtained from I(δ(s)) and I(δ(r)). Consider three subcases:

(a) If r /∈ C∗, then δ(s ↑ r) = δ(s).
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(b) If r ∈ C, then δ(r) = r, and therefore δ(s ↑ r) = δ(s) ↑ r = δ(s) ↑
δ(r). I(δ(s ↑ r)) can be obtained from I(δ(s)) and I(δ(r)) using
the rule I(x), I(c)→ I(x ↑ c).

(c) If r ∈ C−1, then r = δ(r)−1 and therefore δ(s ↑ t) = δ(s) ↑ t =
δ(s) ↑ δ(r)−1. I(δ(s ↑ r)) can be obtained from I(δ(s)) and I(δ(r))
using the rule I(x), I(c)→ I(x ↑ c−1).

5. bi is obtained by applying I(x), I(y) → I(x ? y). In this case, bi is of
the form I(t) and there are atoms I(s) and I(r) amongst b1, . . . , bi−1
such that t ∼ s ? r. We need to show that I(δ(t)) can be obtained
from I(δ(s)) and I(δ(r)), and it can be done in the same way as it
was done for exponentiation, using the rules I(x), I(c) → I(x ? c) and
I(x), I(c)→ I(x ? c−1). �

3.3 Encoding the Terms to Equivalence Classes

Now there should be de�ned a theory TC that will include properties of bi-
linear pairings and support the equivalence relations mod E so that instead
of using derivation `E it would be possible to use a simple syntactical deriva-
tion `. The only equation that will be used even in syntactical derivation is
e(x, y) ∼ e(y, x). This property does not have to be encoded since it does not
make a problem for ProVerif, and the equation will be de�ned separately.

We also have to describe the predicates that will be used by ProVerif.
After constructing the theory, it is necessary to prove that, if the protocol
is secure in theory TC , it is also secure in theory TE. In other words, it is
needed to prove that, for any protocol theory TP , we have that TP ∪TE `E a
i� TP ∪ TC ` a′, where a′ is the encoding of a. That would mean that the
theory TC can be used for veri�cation of cryptographic protocols that use
bilinear pairings with products in exponents.

Let C = {c1, . . . , cm} be the set of pure, ground terms used in the
derivation. Let Σ be the signature that contains all the constant, func-
tional and predicate symbols that are used in the protocol. De�ne Σpair =
(Σ \ {↑,−1 , ?}) ∪ {0, succ, prev, exp,mult} as the new signature.

The constant 0 and the unary functions succ and prev are used for en-
coding integers, as in [6]. For example, the integer n will be encoded as
succn(0) = succ(succ(. . . succ(0) . . .)), and −n as prevn(0). There are con-
version functions i2t(n) (integer to term) and t2i(t) (term to integer), where
t2i(i2t(n)) = n. These functions are actually not a part of the theory, and
they are needed only for its explanation.

Both mult and exp are functions of arity m + 1, and are used to encode
multiplication in G1 and exponentiation in GT . The encoding of C-exponent-
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ground terms will be done over this signature. We need to consider only
C-exponent-ground terms in the derivations. A term of the form s ↑ c(n1)

1 ↑
. . . ↑ c(nm)

m will be encoded as the term exp(s, i2t(n1), . . . , i2t(nm)) over Σpair.
Similarly, a term of the form s ? c

(n1)
1 ? . . . ? c

(nm)
m will be encoded as the term

mult(s, i2t(n1), . . . , i2t(nm)).
There are two more metatheoretical functions that have been de�ned for

increasing and decreasing integers: incr(t) = i2t(t2i(t) + 1) and decr(t) =
i2t(t2i(t)− 1). Formally, they are de�ned:

• incr(t) = t′, if t = prev(t′), and incr(t) = succ(t) otherwise;

• decr(t) = t′, if t = decr(t′), and decr(t) = prev(t) otherwise.

For each i ∈ {1, . . . ,m} there must be de�ned the functions incri and
decri, that will be used in increasing powers of multipliers and exponents.
We have to de�ne di�erent functions for multiplication and exponentiation
in order to distinguish these operations. Let these functions be increxpi for
exponentiation, and incrmult

i for multiplication. All of them are also metathe-
oretical, and these notations will not be present in the theory TC . We de�ne
the following:

• increxpi (exp(t0, . . . , tm)) = t0 if ti = prev(0) and tj = 0 for all j 6= i;

• increxpi (exp(t0, . . . , tm)) = exp(t0, . . . , ti−1, incr(ti), ti+1, . . . , tm) other-
wise;

• increxpi (t) = increxpi (exp(t, 0, . . . , 0)) for t not of the form exp(t0, . . . , tm);

• decrexpi (exp(t0, . . . , tm)) = t0 if ti = succ(0) and tj = 0 for all j 6= i;

• decrexpi (exp(t0, . . . , tm)) = exp(t0, . . . , ti−1, decr(ti), ti+1, . . . , tm) other-
wise;

• decrexpi (t) = decrexpi (exp(t, 0, . . . , 0)) for t not of the form exp(t0, . . . , tm);

• incrmult
i (mult(t0, . . . , tm)) = t0 if ti = prev(0) and tj = 0 for all j 6= i;

• incrmult
i (mult(t0, . . . , tm)) = mult(t0, . . . , ti−1, incr(ti), ti+1, . . . , tm) oth-

erwise;

• incrmult
i (t) = incrmult

i (mult(t, 0, . . . , 0))
for t not of the form mult(t0, . . . , tm);

• decrmult
i (mult(t0, . . . , tm)) = t0 if ti = succ(0) and tj = 0 for all j 6= i;
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• decrmult
i (mult(t0, . . . , tm)) = mult(t0, . . . , ti−1, decr(ti), ti+1, . . . , tm) oth-

erwise;

• decrmult
i (t) = decrmult

i (mult(t, 0, . . . , 0))
for t not of the form mult(t0, . . . , tm).

Now we need to transform the terms over Σ into terms of Σpair, so that
the terms could be used in ProVerif. For a C-exponent-ground term t over
Σ, de�ne recursively its encoding ptq, which is a term over Σpair:

• pxq = x for a variable x;

• pf(t1, . . . , tn)q = f(pt1q, . . . , ptnq) for f /∈ {↑,−1 , ?, e} ;

• pt ↑ ciq = increxpi (ptq);

• pt ↑ c−1i q = decrexpi (ptq);

• pt ? ciq = incrmult
i (ptq);

• pt ? c−1i q = decrmult
i (ptq);

• pe(t1 ? ci, t2)q = pe(t1, t2) ↑ ciq;

• pe(t1, t2 ? ci)q = pe(t1, t2) ↑ ciq;

• pe(t1, t2)q = e(pt1q, pt2q).

Note that, in the given de�nition of p·q, we do not need to de�ne re-
cursively the encoding of bilinear mapping (we do not need to write pe(t1 ?
ci, t2)q = ppe(t1, t2)q ↑ ciq), since the encoding function is applied to e(t1, t2)
later, according to the rule pt ↑ ciq = increxpi (ptq).

Lemma 4 For C-exponent-ground terms t and s, if t ∼ s, then ptq ∼ psq.

Proof: Assume that t ∼ s. There exists a term r which is a reduced form
of both t and s. We can obtain r from s or from t applying the equations
de�ned for bilinear mappings:

1. (x ↑ y) ↑ z = (x ↑ z) ↑ y;
(x ? y) ? z = (x ? z) ? y;
e(x, y ? z) = e(x, y) ↑ z
can be applied from left to right and from right to left a number of
times. The transformation preserves p.q according to the de�nition of
p.q.
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2. (x ↑ y) ↑ y−1 = x;
(x ? y) ? y−1 = x
can be applied from left to right a number of times. The transformation
preserves p.q according to the de�nition of p.q.

3. (x−1)−1 = x;
e(x, y−1) = e(x, y)−1

cannot be applied, since t and s are C-exponent-ground and all the
transformations preserve C-exponent-groundness.

4. e(x, y) = e(y, x).
Does not involve any transformations and therefore preserves p.q. It is
important that we do not achieve this equivalence by applying p.q, and
this property is not encoded. In ProVerif, we will de�ne this equation
in the heading of the protocol. In this theory, we assume that it holds
and does not have to be proven by encoding. �

Example: Let C = {c1, c2, c3}. The expression e(c1 ? P, c2 ? Q) is encoded
into exp(e(P,Q), succ(0), succ(0), 0). We carry over all the ground-variable
multipliers from G1 into GT , and therefore the C-exponent-ground terms
that are congruent by bilinearity have the same syntactical representation.

3.4 Derivation Rules for Encoded Terms

Now we are going to de�ne the theory TC that will deal only with encoded
terms and their syntactical derivations. It will be similar to the theory TC
that was de�ned in the [6], but it contains additional rules for bilinear pair-
ings.

The following rules are dealing with integers: the intruder must be able
to derive any integer term.

1. I(0);

2. I(x)→ I(succ(x));

3. I(x)→ I(prev(x)).

The intruder must be able to switch between t and exp(t, 0, . . . , 0), be-
tween t and mult(t, 0, . . . , 0).

1. I(x)→ I(exp(x, 0, . . . , 0));

2. I(exp(x, 0, . . . , 0))→ I(x);
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3. I(x)→ I(mult(x, 0, . . . , 0));

4. I(mult(x, 0, . . . , 0))→ I(x).

If the intruder knows ci, he is allowed to multiply (exponentiate) the
term with c(n)i for some integer n. This kind of reduction works better with
ProVerif than just multiplying (exponentiating) a term with ci n times.

1. I(ci), I(y), I(exp(x0, x1, . . . , xm))→
I(exp(x0, . . . , xi−1, y, xi+1, . . . , xm)) for each ci ∈ C;

2. I(ci), I(y), I(mult(x0, x1, . . . , xm))→
I(mult(x0, . . . , xi−1, y, xi+1, . . . , xm)) for each ci ∈ C.

In ProVerif, something must be done with the addition of exponents.
When we try to encode e(x ? c(x1) ? . . . ? c(xm), y ? c(y1) ? . . . ? c(ym)), we get
something like e(x, y) ↑ c(z1) ↑ . . . ↑ c(zm), where for each i: zi = xi + yi. We
need to de�ne addition of exponents by introducing a predicate A: A(x, y, z)
is true i� z = i2t(t2i(x) + t2i(y)).

The problem is that we cannot list all the possible variants like in case of
multiplication(exponentiation), because we would have an in�nite number of
clauses. We need to de�ne this predicate recursively. We will use auxiliary
predicates INCR(x, incr(x)) and DECR(x, decr(x)):

1. INCR(x, incr(x)) for x ∈ {0, succ(x), prev(x)} ;

2. DECR(x, decr(x)) for x ∈ {0, succ(x), prev(x)} ;

3. A(x, 0, x);

4. A(x, y, z), INCR(z, w) → A(x, s(y), w);

5. A(x, y, z), DECR(z, w) → A(x, p(y), w).

Now de�ne the rule that allows the intruder to use bilinear pairing func-
tion: he gets the result of applying bilinear mapping e, transferring all the
possible exponents out of G1 into GT :

1. A(x1, y1, z1), . . . ,A(xm, ym, zm),
I(mult(x, x1, . . . , xm)), . . . , I(mult(y, y1, . . . , ym))→
I(exp(e(x, y), z1, . . . , zm)).

De�ne new predicates E,M , and P which will express exponentiation,
multiplication and pairing for C-exponent-ground terms:
E(x, y, z) is true i� x ↑ y ∼ z.
M(x, y, z) is true i� x ? y ∼ z.
P (x, y, z) is true i� e(x, y) ∼ z.
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1. E(t, ci, incr
exp
i (t)) for each ci ∈ C and t ∈ A+

i ;

2. E(t, ci, decr
exp
i (t)) for each ci ∈ C−1 and t ∈ A−i ;

• A+
i = {x, exp(x0, . . . , xm), exp(x0, . . . , prev(xi), . . . , xm), px ↑ c−1i q};

• A−i = {x, exp(x0, . . . , xm), exp(x0, . . . , succ(xi), . . . , xm), px ↑ ciq};

3. M(t, ci, incr
mult
i (t)) for each ci ∈ C and t ∈ B+

i ;

4. M(t, ci, decr
mult
i (t)) for each ci ∈ C−1 and t ∈ B−i ;

• B+
i = {x,mult(x0, . . . , xm),mult(x0, . . . , prev(xi), . . . , xm), px?c−1i q};

• B−i = {x,mult(x0, . . . , xm),mult(x0, . . . , succ(xi), . . . , xm), px?ciq}.

Rules for bilinear mappings are a little bit longer, because we have to add
multipliers for each ci ∈ C separately. This is the main reason why derivation
time with ProVerif grows so rapidly with increasing the set C.

1. P (x, y, e(x, y));

2. P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm));

3. P (x,mult(y, y1, . . . , ym), exp(e(x, y), y1, . . . , ym)).

The case x = mult(x, x1, . . . , xm) and y = mult(y, y1, . . . , ym) would
have in�nite number of clauses. We need to describe this case in another
way:

4. A(x1, y1, z1), . . . ,A(xm, ym, zm) →
P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)).

This rule may give us answers like exp(e(x, y), 0, . . . , 0). The intruder
may easily transfom these into e(x, y), but there would be some con-
tradictions within the protocol rules de�ned in a protocol theory T .
For example, there would be no congruence between e(x, y) ↑ c−11 ↑
c1 = e(x, y) and e(x ? c1, y ? c

−1
1 ) = exp(e(x, y), 0). We need to de�ne a

separate rule for this case:

5. A(x1, y1, 0), . . . ,A(xm, ym, 0) →
P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)).

These predicates allow to encode the rules of any theory T into the rules
of theory TC . In this way, any protocol using bilinear pairings with products
in exponents can be encoded to the form appropriate for ProVerif.

Given clauses r1, . . . , rn → r0 from a theory T , it is necessary to substi-
tute all non-ground, non-standard subterms with their C-exponent-ground
encodings.
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1. M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj, xj),
E(pθ(t′1)q, d1, y1), . . . ,E(pθ(t′k)q, dk, yk),
P (pθ(u′1)q, pθ(v

′
1)q, z1), . . . ,P (pθ(u′l)q, pθ(v

′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q

for each clause r1, . . . , rn → r0 in T where s1 = s′1 ? b1, . . . , sj = s′j ? bj,
t1 = t′1 ↑ d1, . . . , tk = t′k ↑ dk, w1 = e(u′1, v

′
1), . . . , wl = e(u′l, v

′
l) are

non-ground, non-standard sumterms of r0, . . . , rn, and θ replaces each
si with a new variable xi, ti with yi, wi with zi.

Lemma 5 Let t and s be ground terms, c ∈ C and assume that t and s are
C-exponent-ground. Then:

• E(ptq, c, pt ↑ cq) is an instance of E(t, ci, incr
exp
i (t)).

• E(ptq, c−1, pt ↑ c−1q) is an instance of E(t, ci, decr
exp
i (t)).

• M(ptq, c, pt ? cq) is an instance of M(t, ci, incr
mult
i (t)).

• M(ptq, c−1, pt ? c−1q) is an instance of M(t, ci, decr
mult
i (t)).

• P (ptq, psq, pe(t, s)q) is an instance of P (x, y, e(x, y)).

• P (pt ? ci1 ? . . . ? cikq, psq, pe(t, s) ↑ ci1 ↑ . . . ↑ cikq) is an instance of
P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)).

• P (ptq, ps ? ci1 ? . . . ? cikq, pe(t, s) ↑ ci1 ↑ . . . ↑ cikq) is an instance of
P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)).

• P (pt ? ci1 ? . . . ? cikq, ps ? cj1 ? . . . ? cjlq, pe(t, s) ↑ ci1 ↑ . . . ↑ cik ↑ cj1 ↑
. . . ↑ cjlq) is an instance of
P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)),
where the variables satisfy the predicates A(x1, y1, z1), . . . , A(xm, ym, zm).

• P (pt ? ci1 ? . . . ? cikq, ps ? cj1 ? . . . ? cjlq, pe(t, s)q) is an instance of
P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)), where the variables
satisfy the predicates A(x1, y1, 0), . . . , A(xm, ym, 0).

Proof: The proof of this lemma is based on the de�nition of the encoding
function p·q. In the rules, we may substitute the variables with any terms.

• E(ptq, c, pt ↑ cq) = E(ptq, ci, incr
exp
i (ptq))), which is an instance of

E(t, ci, incr
exp
i (t)) for some i where c = ci.
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• E(ptq, c−1, pt ↑ c−1q) = E(ptq, ci, decr
exp
i (ptq))), which is an instance

of E(t, ci, decr
exp
i (t)) for some i where c = ci.

• M(ptq, c, pt ? cq) = M(ptq, ci, incrmult
i (ptq))), which is an instance of

M(t, ci, incr
mult
i (t)) for some i where c = ci.

• M(ptq, c−1, pt ? c−1q) = M(ptq, ci, decrmult
i (ptq))), which is an instance

of M(t, ci, decr
mult
i (t)) for some i where c = ci.

• P (ptq, psq, pe(t, s)q) = P (ptq, psq, e(psq, ptq)), which is an instance of
P (x, y, e(x, y)).

• P (pt ? ci1 ? . . . ? cikq, psq, pe(t, s) ↑ ci1 ↑ . . . ↑ cikq) =
P (incrmult

ik (. . . (incrmult
i1 (ptq)) . . .), psq,

increxpik (. . . (increxpi1 (e(ptq, psq))) . . .)),
which is an instance of P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)),
according to the de�nition of increxp and incrmult.

• P (ptq, ps ? ci1 ? . . . ? cikq, pe(t, s) ↑ ci1 ↑ . . . ↑ cikq) =
P (incrmult

ik (. . . (incrmult
i1 (ptq)) . . .), incrmult

jl (. . . (incrmult
j1 (psq)) . . .),

increxpjl (. . . (increxpj1 (. . . (increxpik (. . . (increxpi1 (e(ptq, psq))) . . .)) . . .)) . . .).
This is an instance of
P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)),
where the predicates A(x1, y1, z1), . . . , A(xm, ym, zm) are true, according
to the de�nitions of the functions increxp, incrmult, and of the predicate
A(x, y, z).

• P (ptq, ps ? ci1 ? . . . ? cikq, pe(t, s)q) =
P (incrmult

ik (. . . (incrmult
i1 (ptq)) . . .), incrmult

jl (. . . (incrmult
j1 (psq)) . . .),

e(ptq, psq)).
This is an instance of P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)),
where the predicates A(x1, y1, 0), . . . , A(xm, ym, 0) are true, according
to the de�nitions of the functions increxp, incrmult, and of the predicate
A(x, y, z).

Example: Suppose that C = {a, b}, and we are given pt ? a ? b−1q =
mult(t, succ(0), prev(0)) and ps ? bq = mult(s, 0, prev(0)). According to the
de�nition of P , P (pt ? a ? b−1q, ps ? bq, pe(t ? a ? b−1, s ? b)q) is the instance of
P (mult(t, succ(0), prev(0)),mult(t, 0, succ(0)), exp(e(t, s), succ(0), 0)), where
A(succ(0), 0, succ(0)), A(prev(0), succ(0), 0) is true. On the other hand, us-
ing the function p.q gives us the same value exp(e(t, s), succ(0), 0)):
pe(t ? a ? b−1, s ? b)q
= pe(t ? a, s ? b) ↑ b−1q
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= decrexpb (pe(t ? a, s ? b)q)
= decrexpb (pe(t, s ? b) ↑ aq)
= decrexpb (increxpa (pe(t, s ? b)q))
= decrexpb (increxpa (pe(t, s) ↑ bq))
= decrexpb (increxpa (increxpb (pe(t, s)q)))
= decrexpb (increxpa (increxpb (e(ptq, psq))))
= decrexpb (increxpa (increxpb (e(t, s))))
= decrexpb (increxpa (exp(e(t, s), 0, succ(0))))
= decrexpb (exp(e(t, s), succ(0), succ(0)))
= exp(e(t, s), succ(0), 0).

Now let us consider the clauses given by the rule:
M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj, xj),
E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),
P (pθ(u′1)q, pθ(v

′
1)q, z1), . . . , P (pθ(u′l)q, pθ(v

′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q
for some clause A = (r1, . . . , rn → r0).

Let us denote the clause in TC resulting from A by A∗. First, if A does not
contain neither multiplication(exponentiation) symbols nor the bilinear pair-
ing function, then A∗ = A. If A contains some term t ↑ d with a non-ground
term t, it is replaced by a fresh variable y, and the relation between t, d, and
y is captured by adding E(t, d, y) to the clause. Similarly, a term t ? d adds
a new clause M(t, d, y), and e(s, t) adds a new clause P (s, t, y). These steps
are applied recursively to the remaining non-ground, non-standard subterms
of A, including the subterms of s and t. All terms are encoded using p.q to
obtain terms over Σpair.

Theorem 2 Let T be a non-trivial, C-exponent-ground theory over Σ and
b = p(t) be a C-exponent-ground atom over Σ, with p being a predicate oc-
curing in T . Then, T ∪ TE `E b i� TC ` pbq.

If we prove this theorem, it means that any derivation mod E(using the
properties of bilinear mappings) can be reduced to a purely syntactical deriva-
tion and can be analyzed by ProVerif.

Lemma 6 If there exists a C-exponent-ground derivation for T ∪ TC
E `E b

obtained using C-exponent-ground substitutions, then TC ` pbq.

Proof: Let π = b1, . . . , bl be a C-exponent-ground derivation for T ∪ TC
E `E

b obtained using C-exponent-ground substitutions. Prove by induction on
length of π:

• Base: If l = 0, there is no derivation
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• Step: Let π<l = b1, . . . , bl−1. We know that b ∼ bl can be derived
from π<l by applying a clause from T ∪TC

E using a C-exponent-ground
substitution σ. It is enough to show that pbq can be syntactically
derived from pπ<lq using TC . There are two cases to consider:

1. If b is obtained using a clause of TC
E , then b = I(t) for some C-exponent-

ground term t. There are three subcases:

(a) The set π<l contains atoms I(r) for a C-exponent-ground r and
I(ci) for ci ∈ C, such that t ∼ r ↑ ci or t ∼ r ↑ c−1i . The atom
I(ptq) can be obtained from I(prq) and I(pciq) using the following
clauses:

i. I(x) → I(exp(x, 0, . . . , 0)), if the reduced form of r is stan-
dard.

ii. I(ci), I(y), I(exp(x0, x1, . . . , xm))→
I(exp(x0, . . . , xi−1, y, xi+1, . . . , xm)) is used with an appropri-
ate integer term derived by integer-derivation clauses:
I(0); I(x)→ I(succ(x)); I(x)→ I(prev(x)).

iii. If the reduced form of t is standard, then I(exp(x, 0, . . . , 0))→
I(x) is applied.

(b) The set π<l contains atoms I(r) for a C-exponent-ground r and
I(ci) for ci ∈ C, such that t ∼ r ? ci or t ∼ r ? c−1i . The atom
I(ptq) can be obtained from I(prq) and I(pciq) using analogical
clauses that are de�ned for multiplication in TC .

(c) The set π<l contains atoms I(r) and I(s) for C-exponent-ground
r and s, such that t ∼ e(r, s). The atom I(ptq) can be obtained
from I(prq) and I(psq) using the following clauses:

i. If r(or s) is not of the form mult(x0, x1, . . . , xm), then I(x)→
I(mult(x, 0, . . . , 0)) must be applied to r(or s) in order to
get I(mult(r0, r1, . . . , rm)) and I(mult(s0, s1, . . . , sm)), where
r ∼ mult(r0, r1, . . . , rm) and s ∼ mult(s0, s1, . . . , sm).

ii. Apply the rule
A(x1, y1, z1), . . . , A(xm, ym, zm),
I(mult(x, x1, . . . , xm)), . . . , I(mult(y, y1, . . . , ym))→
I(exp(e(x, y), z1, . . . , zm))
to mult(r0, r1, . . . , rm) and mult(s0, s1, . . . , sm).

2. If b is obtained by some C-exponent-ground clause r1, . . . , rn → r0 of
T , there exists a C-exponent-ground substitution σ such that b ∼ σ(r0)
and all σ(r1), . . . , σ(rn) belong to π<l (mod E). The pbq can be obtained
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by using the clause that uses predicates E,M , and P . Denote the clause
r1, . . . , rn → r0 as R → S. We will use the same variables that are
de�ned in the statement of this rule,
M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj, xj),
E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),
P (pθ(u′1)q, pθ(v

′
1)q, z1), . . . , P (pθ(u′l)q, pθ(v

′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q.
De�ne a substitution σ∗, which will be applied to R→ S to obtain pbq
as follows:

• σ∗(x) = pσ(x)q, for x ∈ var(r1, . . . , rn);

• σ∗(xi) = pσ(si)q;

• σ∗(yi) = pσ(ti)q;

• σ∗(zi) = pσ(wi)q.

It is easy to show by induction that, for each subterm u of r0, . . . , rm,
which is not of the form w−1, we have σ∗(pθ(u)q) = pσ(u)q:

(a) If u is standard, the claim immediately follows by inducion hy-
pothesis.

(b) if u is a ground, non-standard subterm, then both σ∗(pθ(u)q) and
pσ(u)q are equal to puq.

(c) If u is non-ground and non-standard, then:

i. if u ∈ {s1, . . . , sk}, then θ(u) = xi for some i.

ii. if u ∈ {t1, . . . , tk}, then θ(u) = yi for some i.

iii. if u ∈ {w1, . . . , wk}, then θ(u) = zi for some i.

The claim follows from the de�nition of σ∗.

Now we have that σ∗(pθ(ri)q) = pσ(ri)q for each i ∈ {0, . . . , n}; in
particular, σ∗(pθ(ri)q) ∈ pπ<lq for each i ∈ {1, . . . , n}, and we obtain
σ∗(pθ(ri)q) = pσ(r0)q = pbq by applying R → S with substitution σ∗

(the equality follows from Lemma 4). It remains to prove that:
σ∗(M(pθ(s′i)q, bi, xi)),
σ∗(E(pθ(t′i)q, di, yi)),
σ∗(P (pθ(u′i)q, pθ(v

′
i)q, zi))

can all be derived from TC .

• We have σ∗(E(pθ(t′i)q, di, yi)) = E(σ∗(pθ(t′i)q), di, σ
∗(yi)),

which is equal to E(pσ(t′i)q, di, pσ(ti)q),
and therefore is equal to E(pσ(t′i)q, di, pσ(t′i) ↑ diq).
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By Lemma 5, this fact is an instance of E(t, ci, incr
exp
i (t)) or

E(t, ci, decr
exp
i (t)), depending on whether di belongs to C or C−1.

• Analogically, we have
σ∗(M(pθ(s′i)q, bi, xi))
= M(σ∗(pθ(s′i)q), bi, σ

∗(xi))
= M(pσ(s′i)q, bi, pσ(si)q)
= M(pσ(s′i)q, bi, pσ(s′i) ? biq).
By Lemma 5, this fact is an instance of M(t, ci, incr

mult
i (t)) or

M(t, ci, decr
mult
i (t)), depending on whether bi belongs to C or C−1.

• We have
σ∗(P (pθ(u′i)q, pθ(v

′
i)q, zi)) = P (σ∗(pθ(u′i)q), σ

∗(pθ(v′i)q), σ
∗(zi)),

which is equal to P (pσ(u′i)q, pσ(v′i)q, pσ(wi)q), and therefore to
P (pσ(u′i)q, pσ(v′i)q, pe(σ(u′i), σ(v′i))q). By Lemma 5, this fact is an
instance of:

� P (x, y, e(x, y)), if the head symbol of both u′i and v
′
i is not ?.

� P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)), if the head
symbol of u′i is ?, and the head symbol of v′i is not ?.

� P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)), if the head
symbol of u′i is not ?, and the head symbol of v′i is ?.

� P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym),
exp(e(x, y), z1, . . . , zm)),
(where the variables satisfy A(x1, y1, z1), . . . , A(xm, ym, zm)),
if the head symbols of both u′i and v′i are ? and zi is of the
form exp(. . .).

� P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)), (where the
variables satisfy the predicates A(x1, y1, 0), . . . , A(xm, ym, 0)),
if the head symbols of both u′i and v

′
i are ? and zi is not of

the form exp(. . .). �

3.5 Decoding the Terms: Soundness of the Reduction

Now we are going to prove that TC ` pbq implies T ∪ TE `E b. It is very
important since it proves the soundness of our reduction. In order to do that,
we need to de�ne a decoding function that would turn terms over Σpair back
into terms over Σ.

In the process of decoding, we will use non-triviality of the protocol theory
T : that there exists some u such that T ∪ TE `E I(u). If T was empty, we
would not need to test it with ProVerif.

First, we need to extend the domain of the function t2i, that was de�ned
before:
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• t2i(0) = 0;

• t2i(succ(t)) = t2i(t) + 1;

• t2i(prev(t)) = t2i(t)− 1;

• t2i(t) = 0, for any term t /∈ {0, succ(t′), prev(t′)} for some t′.

De�ne the decoding function, a mapping x·y from terms over Σpair to
terms over Σ:

• xxy = x, for a variable x;

• x0y = u;

• xsucc(t)y = u;

• xprev(t)y = u;

• xexp(t, s1, . . . , sm)y = xty ↑ ct2i(s1)1 ↑ . . . ↑ ct2i(sm)
m ;

• xmult(t, s1, . . . , sm)y = xty ? ct2i(s1)1 ? . . . ? c
t2i(sm)
m ;

• xf(t1, . . . , tn)y = f(xt1y, . . . , xtny), where f /∈ {0, succ, pre, exp,mult} ;

• xp(t)y = p(xty), for an atom p(t).

There must be relationship between the functions p.q and x.y. Everything
that was encoded may be later decoded. These functions are not the inverse
functions of each other, since syntactically di�erent congruent terms have the
same encoding, an the decoding function does not know the initial values of
an encoded term. But we do not need the syntactical equivalence of a term
t and xptqy, it would be enough if these were equivalent mod E.

Lemma 7 Let t be a C-exponent-ground term over Σ. Then xptqy ∼ t.

Proof: This lemma can be proven by structural induction on t. If t is
standard, the statement immediately follows by the induction hypothesis.
If t is not standard, let t′ be its reduced form. We have three cases for a
non-standard form:

• If t′ = t0 ↑ c(k1)1 ↑ . . . ↑ c(km)
m for some integers k1, . . . , km and a C-

exponent ground term t0, then pt′q = exp(pt0q, i2t(k1), . . . , i2t(km)).
By de�nition of x·y and the fact that t2i(i2t(k)) = k, we obtain
xpt′qy = xpt0qy ↑ c(k1)1 ↑ . . . ↑ c(km)

m . The induction hypothesis yields
that xpt0qy ∼ t0, and therefore xpt′qy ∼ t0 ↑ c(k1)1 ↑ . . . ↑ c(km)

m . Hence,
xpt′qy ∼ t′. Since t ∼ t′, Lemma 4 implies that pt′q = ptq and so
xpt′qy = xptqy. Consequently, t ∼ t′ ∼ xptqy.
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• If t′ = t0 ? c
(k1)
1 ? . . . ? c

(km)
m for some integers k1, . . . , km and a C-

exponent ground term t0, then pt′q = mult(pt0q, i2t(k1), . . . , i2t(km)).
As in the case of exponentiation, we get xpt′qy = xpt0qy ? c

(k1)
1 ? . . . ?

c
(km)
m . According to induction hypothesis, xpt′qy ∼ t0 ? c

(k1)
1 ? . . . ? c

(km)
m .

Applying Lemma 4, we again get that t ∼ t′ ∼ xptqy.

• If t′ = e(r′, s′), then we have three di�erent cases:

� If r′ and s′ are standard, then t′ is also standard.

� If either r′ = r0 ? c
(k1)
1 ? . . . ? c

(km)
m or s′ = s0 ? c

(k1)
1 ? . . . ? c

(km)
m , then

pt′q = exp(e(pr0q, ps′q), i2t(k1), . . . , i2t(km)) or
pt′q = exp(e(pr′q, ps0q), i2t(k1), . . . , i2t(km)).
By de�nition of x·y, we obtain:
xpt′qy = e(xpr′qy, xps0qy) ↑ c(k1)1 ↑ . . . ↑ c(km)

m or
xpt′qy = e(xpr0qy, xps′qy) ↑ c(k1)1 ↑ . . . ↑ c(km)

m .
The induction hypothesis yields that xpr0qy ∼ r0, xps0qy ∼ s0,
xpr′qy ∼ r′, and xps′qy ∼ s′. We get that:
xpt′qy = e(r′, s0) ↑ c(k1)1 ↑ . . . ↑ c(km)

m or
xpt′qy = e(r0, s

′) ↑ c(k1)1 ↑ . . . ↑ c(km)
m .

We get that xpt′qy ∼ t′, and, according to Lemma 4, t ∼ xpt′qy.
� If both r′ = r0 ? c

(k1)
1 ? . . . ? c

(km)
m and s′ = s0 ? c

(l1)
1 ? . . . ? c

(lm)
m , then

pt′q = exp(e(pr0q, ps0q), i2t(k1 + l1), . . . , i2t(km + lm)).
Again, by de�nition of x·y, we get that:
xpt′qy = e(xpr0qy, xps0qy) ↑ c(k1+l1)

1 ↑ . . . ↑ c(km+lm)
m .

By induction hypothesis, xpt′qy = e(r0, s0) ↑ c
(k1+l1)
1 ↑ . . . ↑

c
(km+lm)
m . Applying Lemma 4, we again have t ∼ xpt′qy. �

Lemma 8 Let t,d, and s be ground terms over Σpair. If E(t, d, s) can be
derived from TC, then d ∈ C ∪ C−1 and xsy ∼ xty ↑ d.

Proof: The variable d belongs to the set C ∪ C−1 because the rules for
predicate E are all only of the form E(t, ci, incr

exp
i (t)), where ci ∈ C, or of

the form E(t, ci, decr
exp
i (t)), where ci ∈ C−1. The proof of equivalence can

be carried out by case distinction.

• E(t, d, s) = E(t, ci, incr
exp
i (t)). Then, xsy = xincrexpi (t)y. We have

three di�erent cases for t:

� Let t be of the form exp(t0, . . . , tm), where ti = prev(0) and ∀j 6= 0
tj = 0. We have that xincrexpi (t)y = xt0y. On the other hand,
xty ↑ d = xty ↑ ci = xexp(t0, . . . , tm)y ↑ ci = xt0y ↑ c(t2i(t1))1 ↑ . . . ↑
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c
(t2i(tm))
m ↑ ci. Since ti = prev(0) and ∀j 6= 0 tj = 0, this equals to
xt0y ↑ c(0)1 ↑ . . . ↑ c−1i ↑ . . . ↑ c

(0)
m ↑ ci ∼ xt0y ↑ c(−1)i ↑ ci ∼ xt0y.

� Let t be of the form exp(t0, . . . , tm), where either ti 6= prev(0) or
∃j 6= i tj 6= 0. We have that
xincrexpi (t)y
= xexp(t0, . . . , ti−1, incr(ti), ti+1, . . . , tm)y
= xt0y ↑ c(t2i(t1))1 ↑ . . . ↑ c(t2i(incr(ti)))i ↑ . . . ↑ c(t2i(tm))

m .
On the other hand,
xty ↑ d
= xty ↑ ci
= xexp(t0, t1, . . . , tm)y ↑ ci
= xt0y ↑ c(t2i(t1))1 ↑ . . . ↑ c(t2i(tm))

m ↑ ci
∼ xt0y ↑ c(t2i(t1))1 ↑ . . . ↑ c(t2i(ti)+1)

i ↑ . . . ↑ c(t2i(tm))
m

= xt0y ↑ c(t2i(t1))1 ↑ . . . ↑ c(t2i(succ(ti)))i ↑ . . . ↑ c(t2i(tm))
m

= xt0y ↑ c(t2i(t1))1 ↑ . . . ↑ c(t2i(incr(ti)))i ↑ . . . ↑ c(t2i(tm))
m .

� If t be not of the form exp(t0, . . . , tm), then, by de�nition of func-
tion increxpi , we have
xincrexpi (t)y
= xincrexpi (exp(t, 0, . . . , 0))y
= xexp(t, 0, . . . , increxpi (0), . . . , 0)y
= xty ↑ c(t2i(0))1 ↑ . . . ↑ c(t2i(succ(0)))i ↑ . . . ↑ c(t2i(0))m

∼ xty ↑ ci.

• E(t, d, s) = E(t, ci, decr
exp
i (t)). The proof is very similar to the case

E(t, d, s) = E(t, ci, incr
exp
i (t)). We only need to replace all instances of

increxpi with decrexpi and use the properties of the function decrexpi . �

Example: Let C = {a, b}. E(exp(x0, x1, x2), a
−1, exp(x0, prev(x1), x2)) is a

fact of TC . Consider substitution σ = {g/x0, g/x1, 0/x2} for a constant g.
Then, E(exp(g, g, 0), a−1, exp(g, prev(g), 0)) is an instance of TC . We have
that xexp(g, prev(g), 0))y ∼ g ↑ a−1 ∼ xexp(g, g, 0))y ↑ a−1.

Lemma 9 Let t,d, and s be ground terms over Σpair. If M(t, d, s) can be
derived from TC, then d ∈ C ∪ C−1 and xsy ∼ xty ? d.

Proof: This lemma is analogical to the previous one, only instead of ex-
ponentiation there is multiplication. We need to use functions incrmult

i and
decrmult

i . �

Lemma 10 Let r,s, and t be ground terms over Σpair. If P (r, s, t) can be
derived from TC, then xty ∼ e(xry, xsy).
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Proof: This equivalence can also be proved by case distinction. We have to
look through all possible instances of the predicate P .

• P (r, s, t) = P (x, y, e(x, y)). This is the simplest case, we have that
xty = xe(x, y)y = e(xxy, xyy), directly from the de�nition of x·y.

• P (r, s, t) = P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)). We have:
xty = xexp(e(x, y), x1, . . . , xm)y
= xe(x, y)y ↑ c(t2i(x1))

1 ↑ . . . ↑ c(t2i(xm))
m

= e(xxy, xyy) ↑ c(t2i(x1))
1 ↑ . . . ↑ c(t2i(xm))

m .
On the other hand,
e(xry, xsy) = e(xmult(x, x1, . . . , xm)y, xyy)
= e(xxy ? ct2i(x1)

1 ? . . . ? c
t2i(xm)
m , xyy)

∼ e(xxy, xyy) ↑ ct2i(x1)
1 ↑ . . . ↑ ct2i(xm)

m .

• P (r, s, t) = P (x,mult(y, y1, . . . , ym), exp(e(x, y), y1, . . . , ym)).
The proof is almost the same, and the only di�erence is that the argu-
ments of e are switched.

• P (r, s, t) =
P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)),
which requires the predicates A(x1, y1, z1), . . . , A(xm, ym, zm) to be true.
In this case, we actually have that ∀i zi = i2t(t2i(xi)+ t2i(yi)), accord-
ing to the de�nition of the predicate A.
xty = xexp(e(x, y), z1, . . . , zm))y
= xe(x, y)y ↑ c(t2i(i2t(t2i(x1)+t2i(y1)))

1 ↑ . . . ↑ c(t2i(i2t(t2i(xm)+t2i(ym)))
m .

Since t2i(i2t(t)) = t, this equals to
xe(x, y)y ↑ c(t2i(x1)+t2i(y1))

1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))
m

= e(xxy, xyy) ↑ c(t2i(x1)+t2i(y1))
1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))

m .
On the other hand, e(xmult(x, x1, . . . , xm))y, xmult(y, y1, . . . , ym))y)
= e(xxy ? ci2t(x1)

1 ? . . . ? c
i2t(xm)
m , xyy ? ci2t(y1)1 ? . . . ? c

i2t(ym)
m )

∼ e(xxy, xyy) ↑ ci2t(x1)
1 ↑ . . . ↑ ci2t(xm)

m ↑ ci2t(y1)1 ↑ . . . ↑ ci2t(ym)
m

∼ e(xxy, xyy) ↑ c(t2i(x1)+t2i(y1))
1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))

m .

• P (r, s, t) = P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y). This is
just a particular case of the previous rule. Here we have that ∀i zi = 0.
As in the previous example, we get that
xty = xxy = e(xxy, xyy) ↑ c(t2i(x1)+t2i(y1))

1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))
m ,

which actually equals to
e(xxy, xyy) ↑ c(0)1 ↑ . . . ↑ c

(0)
m

∼ e(xxy, xyy)
= e(xry, xsy). �
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Example: The most interesting case is when both arguments of pairing
function contain multipliers. Let C = {a, b}. A(x1, y1, z1), A(x2, y2, z2)→
P (mult(x0, x1, x2),mult(y0, y1, y2), exp(e(x0, y0), z1, z2)) is a rule of TC .
Consider the substitution

σ = {g/x0, 0/x1, succ(succ(0))/x2, h/y0, prev(0)/y1, prev(0)/y2}

for some constants g and h. The rule above substitutes z1 = prev(0), z2 =
succ(0), because only with these values the predicates A(0, prev(0), prev(0))
and A(succ(succ(0)), prev(0), succ(0)) are true. Then,
P (mult(g, 0, succ(succ(0))),mult(h, prev(0), prev(0)),
exp(e(g, h), prev(0), succ(0)))
is an instance of TC . We have:
xexp(e(g, h), prev(0), succ(0))y
∼ e(g, h) ↑ a−1 ↑ b
∼ e(g ? b2, h ? a−1 ? b−1)
∼ e(xmult(g, 0, succ(succ(0)))y, xmult(g, prev(0), prev(0))y).

Lemma 11 Let a = p(t) be an atom, such that p occurs in T . Then, TC ` a
implies T ∪ TE `E xay.

Proof: Let π = a1, . . . , al be a (syntactic) derivation for TC ` a. The proof
proceeds by induction on the length of π. The induction base is l = 0, there
is nothing to show. For the induction step, we need to show that xaly can
be derived from xπ<ly, where π<l = a1, . . . , al−1, and π<l is the sequence of
atoms obtained from π<l by removing all atoms of the form E(. . .), M(. . .),
and P (. . .), by replacing all the remaining atoms ai by xaiy.
By assumption, predicate symbols E,M , and P do not occur in T . It su�ces
to consider the following cases:

1. If al is obtained using integer derivation terms, it must be of the form
I(0), I(succ(t)), or I(prev(t)). Therefore, xaly = u, and we have T ∪
TE `E I(u) by de�nition of u.

2. If al is obtained using rules:
I(x)→ I(exp(x, 0, . . . , 0)),
I(exp(x, 0, . . . , 0))→ I(x),
I(x)→ I(mult(x, 0, . . . , 0)),
or I(mult(x, 0, . . . , 0))→ I(x),
it is enough to note that xty = xexp(t, 0, . . . , 0)y = xmult(t, 0, . . . , 0)y.

3. If al is obtained using I(ci), I(y)→ I(exp(x0, . . . , xi−1, y, xi+1, . . . , xm)),
the atom al is of the form I(exp(s0, . . . , si−1, s

′
i, si+1, . . . , sm)) such that
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I(exp(s0, . . . , sm)), I(ci), and I(s′i) occur in π<l.
Set b = I(exp(s0, . . . , sm)). Then, xby = I(xexp(s0, . . . , sm)y) and
xI(ci)y = I(ci) are elements of xπ<ly.
Now we need to derive xaly from xby and I(ci).

• If t2i(s′i) > t2i(si), apply the clause I(x), I(y) → I(x ↑ y) from
TE t2i(s′i)− t2i(si) times.
• If t2i(s′i) < t2i(si), apply the clause I(x) → I(x−1) to I(ci), then
apply I(x), I(y)→ I(x ↑ y) t2i(si)− t2i(s′i) times.
• If t2i(s′i) = t2i(si), then xaly is a repetition of xby.

4. If al is obtained using I(ci), I(y)→ I(mult(x0, . . . , xi−1, y, xi+1, . . . , xm)),
the atom al is of the form I(mult(s0, . . . , si−1, s

′
i, si+1, . . . , sm)) such

that I(mult(s0, . . . , sm)), I(ci), and I(s′i) occur in π<l. The derivation
in this case is analogical to exponentiation:

• If t2i(s′i) > t2i(si), apply the clause I(x), I(y)→ I(x?y) t2i(s′i)−
t2i(si) times.

• If t2i(s′i) < t2i(si), apply the clause I(x) → I(x−1) to I(ci), then
apply I(x), I(y)→ I(x ? y) t2i(si)− t2i(s′i) times.
• If t2i(s′i) = t2i(si), then xaly is a repetition of xby.

5. If al is obtained using the rule:
A(x1, y1, z1), . . . , A(xm, ym, zm),
I(mult(x, x1, . . . , xm)), . . . , I(mult(y, y1, . . . , ym))→
I(exp(e(x, y), z1, . . . , zm)),
then the atom al is of the form exp(e(u0, v0), s1, . . . , sm), such that
I(mult(u0, u1, . . . , um)), I(mult(v0, v1, . . . , vm)) occur in π<l, and the
terms A(u1, v1, s1), . . . , A(um, vm, sm) are true. By de�nition of the
predicate A, they are true i� si = i2t(t2i(u1) + t2i(vi)) for each i.
Set b1 = I(mult(u0, u1, . . . , um)), and b2 = I(mult(v0, v1, . . . , vm)).
xb1y = I(xmult(u0, u1, . . . , um)y) and
xb2y = I(xmult(v0, v1, . . . , vm)y)
are elements of xπ<ly. Then, xaly can be derived from xb1y and xb2y
by applying the rule I(x), I(y)→ I(e(x, y)).
We get a term e(. . . , . . .), without any exponents, but using equa-
tions e(x, y ? z) = e(x, y) ↑ z and e(x, y) = e(y, x) we get that the
result is actually equivalent to xaly. Each exponent ci is taken out
from xb1y ui times, and from xb2y vi times. As the result, we get
xexp(e(u0, v0), i2t(t2i(u1) + t2i(v1)), . . . , i2t(t2i(um) + t2i(vm)))y =
xexp(e(u0, v0), s1, . . . , sm))y = xaly.
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6. Suppose that al is obtained using the rule:
M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj, xj),
E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),
P (pθ(u′1)q, pθ(v

′
1)q, z1), . . . , P (pθ(u′l)q, pθ(v

′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q.
Assume that this clause was instantiated with a substitution σ: it
means that al = σ(pr0q). Furthermore, all the σ(pθ(ri)q) for all i ∈
{1, . . . , n}, and all the E(σ(pθ(t′i)q), di, σ(yi)), M(σ(pθ(s′i)q), bi, σ(xi)),
and P (σ(pθ(u′i)q), σ(pθ(v′i)q), σ(zi)) for all i ∈ {1, . . . , k}, are in π<l.
Therefore, xσ(pθ(ri)q)y for all i ∈ {1, . . . , n} are in xπ<ly.
By Lemma 8, we have xσ(yi)y ∼ xσ(pθ(t′i)q)y ↑ di.
By Lemma 9, we have xσ(xi)y ∼ xσ(pθ(s′i)q)y ? bi.
By Lemma 10, we have xσ(zi)y ∼ e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y).
Let σ∗(x) = xσ(x)y. For each subterm t of r0, . . . , rn such that t is not
of the form w−1, we show by induction on the size of t, that σ∗(t) ∼
xσ(pθ(t)q)y:

(a) If t = x is a variable: pθ(x)q = x, and thus σ∗(x) = xσ(pθ(x)q)y,
by de�nition of σ∗.

(b) If t = f(t1, . . . , tn) for f /∈ {↑, ?}: the claim easily follows by
induction.

(c) If t = t′ ↑ d and t is ground: xσ(pθ(t)q)y = xptqy, and σ∗(t) = t.
We know that xptqy = t by Lemma 7.

(d) If t = t′ ? d and t is ground: xσ(pθ(t)q)y = xptqy, and σ∗(t) = t.
We know that xptqy = t by Lemma 7.

(e) If t = ti = t′i ↑ di: we have σ∗(ti) = σ∗(t′i) ↑ di ∼ xσ(pθ(t′i)q)y ↑ di,
by the induction hypothesis. We have xσ(yi)y ∼ xσ(pθ(t′i)q)y ↑ di.
Therefore, σ∗(ti) ∼ xσ(yi)y = x(pθ(ti)q)y.

(f) If t = si = s′i ? bi: we have σ
∗(si) = σ∗(s′i) ? bi ∼ xσ(pθ(s′i)q)y ↑ bi,

by the induction hypothesis. We have xσ(xi)y ∼ xσ(pθ(s′i)q)y?bi.
Therefore, σ∗(si) ∼ xσ(xi)y = x(pθ(si)q)y.

(g) If t = wi = e(u′i, v
′
i): we have σ

∗(wi) = e(σ∗(u′i), σ
∗(v′i)) ∼

e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y), by the induction hypothesis. We
have xσ(zi)y ∼ e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y). Therefore, σ

∗(wi) ∼
xσ(zi)y = x(pθ(wi)q)y.

By the above, we have that σ∗(ri) ∼ xσ(pθ(ri)q)y (ri can not be of
the form w−1 since it is C-exponent-ground). We have that all the
xσ(pθ(ri)q)y for all i ∈ {1, . . . , n} are in xπ<ly, which means that
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we can apply the clause r1, . . . , rn → r0 with σ∗ to obtain σ∗(r0) ∼
xσ(pθ(r0)q)y = xaly. �

Proof of Theorem 2: Now, suppose that TC ` pbq. By assumption,
b = p(t), where p occurs in T . Lemma 11 implies that T ∪ TE `E xpbqy. By
Lemma 7, xpbqy ∼ b, and therefore T ∪ TE `E b. �

As the result, we get that any cryptographic protocol that uses bilinear
pairings with products in exponents can be encoded by some pre-written
protocol transformer and derived to a form that is suitable for ProVerif. We
have proven that if ProVerif proves that the encoded protocol is secure, it
implies that the actual protocol is also secure. If ProVerif �nds a �aw in
it, it shows which rules the intruder applied with the encoded protocol. We
have analogical rules in the theory TE, and these are the rules that would be
applied by the intruder in the reality.
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4 Implementation

4.1 Implementation of the Protocols Fully Supported
by the Theory

The Di�e-Hellman protocol transformer that was used in the [6] was up-
graded. There are now two versions of the protocol transformer for protocols
with using types and without using types. The protocol is written �rst as an
ordinary Prolog program, and afterwards it is translated to a �le that can be
tested by ProVerif. The version that supports types cannot yet check if all
the functions that are present in the protocol are actually prede�ned, since
the syntax is slightly more complex.

Several protocols that are using bilinear mappings have been tested in
ProVerif. All of them are key-agreement protocols. More complex proto-
cols have been �rst written in pi-calculus, and afterwards converted to Horn
clauses and processed by a program that converts theory T to theory TC .

Let G1 be a group generated by P . Let the generator P and the size of
the group be known to everyone. Let a, b, and c be the nonces generated by
parties A, B, and C.

TEST 1 Joux's protocol [5]

• A→ B,C : aP

• B → A,C : bP

• C → A,B : cP

The three parties may then calculate the key by following:

• A gets e(bP, cP )a.

• B gets e(aP, cP )b.

• C gets e(aP, bP )c.

According to bilinearity, the new key is e(P, P )abc.
It was tested for both authenticated and non-authenticated channels. It is

vulnerable if the channels are non-authenticated because the active adversary
may substitute coming values aP , bP , and cP with whatever he wants. It is
secure for authenticated channels.

TEST 2 Shim's protocol variation [4]
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This protocol requires a little bit more variables. It takes into account
secret and public keys of the parties. Let x, y, and z be the secret keys of
A, B, and C. Let xP , yP , and zP be the corresponding public keys. The
public keys are found in the certi�cates.

• A→ B,C : aP, a(xP ), CertA

• A→ B,C : bP, b(yP ), CertB

• A→ B,C : cP, c(zP ), CertC

• A checks: e(bP, yP ) == e(b(yP ), P ), e(cP, zP ) == e(c(zP ), P ).

• B checks: e(aP, xP ) == e(a(xP ), P ), e(cP, zP ) == e(c(zP ), P ).

• C checks: e(bP, yP ) == e(b(yP ), P ), e(aP, xP ) == e(a(xP ), P ).

• A gets e(b(yP ), c(zP ))ax.

• B gets e(a(xP ), c(zP ))by.

• C gets e(b(yP ), a(xP ))cz.

According to bilinearity, the new key is e(P, P )abcxyz.
The most tricky place in this protocol is the comparison. We cannot

simply use equation, we need equivalnce instead. The current version of
protocol transformer does not support comparison of two terms mod E in-
side the protocol. We had to add the comparision through a newly de�ned
variable. For example, in order to compare e(x, y) and e(w, z), we write
P (x, y, v) &P (w, z, v). It is true i� e(x, y) ∼ e(w, z), according to the de�ni-
tion of P . If we do not use the comparison, then ProVerif claims the protocol
to be insecure. It is secure if we do compare the appropriate values.

TEST 3 TAK 1 [1]

This protocol again uses public and private keys of the parties. Addition-
ally, we will need to de�ne a hash function H.
This protocol was �rst written in pi-calculus and afterwards converted to
Horn clauses and transformed. In this case, we did not need to add anything
by hand. It does not use comparison.

• A→ B,C : aP,CertA

• A→ B,C : bP, CertB
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• A→ B,C : cP, CertC

• A gets H((e(bP, cP )a, e(yP, zP )x)).

• B gets H((e(aP, cP )b, e(xP, zP )y)).

• C gets H((e(aP, bP )c, e(xP, yP )z)).

The new key is H((e(P, P )abc, e(P, P )xyz)).
There were no problems in this protocol, and it turned out to be secure.

TEST 4 A Six Pass Pairing Based AKC Protocol [1]

This protocol also makes use of the public and private keys, but it does
not include these keys in the newly generated symmetric key.

The structure of the given protocol is a little bit more complex than the
previous protocols. It was really necessary to write it �rst in pi-calculus to
avoid mistakes.

• A→ B : aP,CertA

• B → C : aP,CertA, bP, CertB

• C → A : bP, CertB, cP, CertC, enc(Kabc, sign(Kc, (A,B, aP, bP, cP ))

• A→ B : cP, CertC, enc(Kabc, sign(Kc, (A,B, aP, bP, cP ))),
enc(Kabc, sign(Ka, (B,C, aP, bP, cP )))

• B → C : enc(Kabc, sign(Ka, (B,C, aP, bP, cP ))),
enc(Kabc, sign(Kb, (A,C, aP, bP, cP )))

• B → A : enc(Kabc, sign(Kb, (A,C, aP, bP, cP )))

The new key will be e(P, P )abc.
ProVerif needed some time to analyze the protocol because each party

sends something into the net several times. In the end, it turned out to be
secure.

TEST 5 TAK 2' variation protocol [1]

This protocol turned out to be a big problem for our solution. It uses
the pairing function three times in the key. Although the analysis process is
convergent, it takes too much time for ProVerif to analyze it. We had to test
its security for each party separately. This should not a�ect the result since
this is a one-round protocol.
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• A→ B,C : aP,CertA

• A→ B,C : bP, CertB

• A→ B,C : cP, CertC

• A gets H(e(bP, zP )a, e(cP, yP )a, e(bP, cP )x).

• B gets H(e(aP, zP )b, e(aP, cP )y, e(cP, xP )b).

• C gets H(e(aP, bP )z, e(aP, yP )c, e(bP, xP )c).

The new key is H(e(P, P )abz, e(P, P )acy, e(P, P )bcx). ProVerif has discov-
ered a vulnerability in this protocol, that was described in [8]. Although
the parties are using certi�cates, they may only check if xP , yP , and zP
are the proper values. If nothing is done to the authentication of the values
aP , bP , and cP , the intruder may substitute them with something else. In
TAK1, the intruder was unable to construct the key since it contained the
element e(yP, zP )x, where both arguments are some public keys that require
certi�cation.

TEST 6 A simple ID-based pairing protocol

This protocol allows a quick and simple generation of symmetric keys
between two parties. Here we use de�nitions diferent from the protocols
above.

Let h(A) be the public key of party A, and h(B) the public key of the
party B. Moreover, the values h(B) and h(A) are the points on some elliptic
curve. Let s be the master secret that is known only to a trusted third party,
the CA server. A party may apply for a secret key, and CA returns h(A) ? s
without telling the value s. The distribution of secret keys is not a part of
the protocol.
If two parties, A and B, decide to communicate, they do not need to exchange
anything in the net. Each party may calculate the corresponding key:

• A generates a key e(h(A) ? s, h(B)).

• B generates a key e(h(B) ? s, h(A)).

The attacker cannot do anything since the parties generate the keys them-
selves, and the identities are included in the key. This protocol was proved
to be secure.
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4.2 Implementation of the Protocols Partially Supported
by the Theory

Unfortunately, for many protocols it is not su�cient to use only products in
exponents. There are some protocols that are using addition of the expo-
nents. We need to de�ne additional equations in our theory. Let + denote
addition in G1, and · multiplication in GT .

We need to introduce the identity elements in the groups. Let 0 be the
identity element in G1, and 1 the identity element in GT .

1. x+ (y + z) = (x+ y) + z for all x, y, z ∈ G1;

2. x · (y · z) = (x · y) · z for all x, y, z ∈ GT ;

3. e(x, y + z) = e(x, y) · e(x, z) for all x, y, z ∈ G1;

4. x+ x−1 = 0 for each x ∈ G1;

5. x · x−1 = 1 for each x ∈ GT ;

6. e(x, 0) = 1 for each x ∈ G1.

The problem of the �rst two rules is that we need to de�ne associativity,
and ProVerif is not good at it. We cannot also de�ne a �nite set of rules
like in the case of exponentiation, since the elements of G1 and GT may be
non-ground variables.

One thing that we may do is to limit the number of terms in the sum
(product). We can implement it in the case when a protocol does not use
more terms in the additions.

We de�ne additional rules that may be used by the intruder (this theory is
not yet proved). It would be better to use a special notation for the identity
elements and write I(0) and x + x−1 = 0 instead of I(x + x−1), but these
kinds of equations are not suitable for ProVerif.

1. I(x), I(y)→ I(x+ y);

2. I(x), I(y)→ I(x · y);

3. I(x), I(x+ y)→ I(y);

4. I(x), I(x · y)→ I(y);

5. I(x+ x−1);

6. I(y · y−1);
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7. I(e(x, y + y−1)).

When describing rules for encoded terms, we need the rule I(x)→ I(x−1)
that we have eliminated in the previous de�nition of theory TC . We introduce
it back since now we use inverses not only of exponent-ground integers.

First, we need a function for inverses in groups. Let these functions be
invG1 for G1 elements, and invGT for GT elements. Then we de�ne the
functions for the group operations(as we did it for exponentiation and mul-
tiplication). Let these functions be addG1 for addition in G1 and multGT

for multiplication in GT . Without associativity, we may implement only
functions of arity 2. The additional rules in theory TC would then be:

1. I(x), I(y)→ I(addG1(x, y));

2. I(x), I(y)→ I(multGT (x, y));

3. I(x), I(addG1(x, y))→ I(y);

4. I(x), I(multGT (x, y))→ I(y);

5. I(x)→ I(invG1(x));

6. I(x)→ I(invGT (x));

7. I(invG1(x))→ I(x);

8. I(invGT (x))→ I(x).

The facts below hold for any x ∈ G1, since the terms are actually equiv-
alent to some identity elements.

1. I(addG1(x, invG1(x)));

2. I(multGT (x, invGT (x)));

3. I(e(x, addG1(y, invG1(y)))).

Additionally, we have to add some rules for associativity of group opera-
tions. The equation like

addG1(x, addG1(y, z)) = addG1(addG1(x, y), z)

does not work in ProVerif. If we have limited number of exponents, then it
will be easier. If the protocol adds only two terms, we may de�ne commuta-
tivity instead of associativity:

addG1(x, y) = addG1(y, x) .
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These rules do not fully describe the actual theory for addition in expo-
nents, but they are better than nothing, and this theory will be developed in
future research.

There is no automatic protocol transformer for this theory, so that the
tested protocols have been written directly in ProVerif Horn clauses, without
being preprocessed. The only thing that was generated automatically is the
set of TC rules for the intruder using the same number of grounded exponents.

TEST 7 Smart's ID-based AK Protocol [9]

This is a protocol that uses two terms in the addition, and therefore can
be tested with our unproved theory. The main idea of this protocol is based
on the identi�ers of parties.

The pairing is performed in a group G1 = 〈P 〉. Let IDA be the identi�er
string of party A, and IDB the identi�er of party B. Let some hash function
H : ID → G1 be applied to the values

Qa = H(IDA) ,

Qb = H(IDB) .

There is some key distribution centre that generates a public/private key
pair. It has generated some master secret key s. Each party gets its private
secret key, such that nobody except the key distribution centre knows the
value of s: Sa = s ∗Qa, and Sb = s ∗Qb. Everybody knows the values P and
Ps = s ∗ P .

When starting to communicate, the party A generates a random number
a, and party B generates a random number b. Then, A and B compute
Ta = aP and Tb = bP , and send these values into the net. Both parties may
then calculate a new shared key:

• A gets e(Sa, Tb)·e(aQb, Ps) = e(bQa, sP )·e(aQb, sP ) = e(aQb+bQa, sP ).

• B gets e(Sb, Ta)·e(bQa, Ps) = e(aQb, sP )·e(bQa, sP ) = e(aQb+bQa, sP ).

The current realization of this protocol in ProVerif that uses only two
terms in addition did not �nd any vulnerabilities.

TEST 8 A More E�cient Identity Based Authenticated Key Agreement Pro-
tocol [3]

This protocol is very similar to Smart's ID-based AK Protocol, but its
computation is more e�cient. Instead of exchanging aP and bP , the parties
exchange the valuesWa = aQa andWb = bQb. The parties may then compute
the shared key:
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• A gets e(Sa,Wb + aQb) = e(Qa, Qb)
s(a+b).

• B gets e(Sb,Wa + bQa) = e(Qa, Qb)
s(a+b).

This protocol has also been tested, and ProVerif found the vulnerability
in one particular case when Wb = aQ−1b (W−1

b = aQb) or Wa = bQ−1a (W−1
a =

bQa). This, however, may happen with a negligible probability, since the
attacker cannot compute the inverse of either aQb or bQa. No more problems
were found yet.
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4.3 E�ciency of the Analyzer

It has been tested, how much time it takes for ProVerif to analyze the follow-
ing protocols. The tests were performed at 2.21 GHz AMD Athlon 64X2 Dual
Core Processor 4400+ with 2.00 GB of RAM. The protocols were translated
by the version of protocol transformer that does not use types. Afterwards,
they were tested by ProVerif 1.84. The time would be longer with ProVerif
1.85.

It was also necessary to translate the theory T into theory TC , but this
time is too small if compared to the time that was spent by ProVerif on
protocol analysis. This time is not presented in this table since it is not so
important.
Protocol name Nr.of tests Average

time (sec)
A simple ID-based pairing protocol 1000 0.0149
A More E�cient Identity Based Authenticated
Key Agreement Protocol [3] 1000 0.0310
Smart's ID-based AK Protocol [9] 1000 0.0508
Joux's protocol [5] 100 0.273
TAK 1 [1] 10 254
Shim's protocol variation [4] 10 836
A Six Pass Pairing Based AKC Protocol [1] 10 1330
TAK 2' variation protocol [1] 1 > 43200
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5 Conclusions and Future Work

As the result of this research, it was shown that it is possible to implement
bilinear mappings in protocol analyzers that are based on predicate logic.
Several cryptographic protocols were proven to be secure in the range of C-
exponent-ground theory for bilinear mappings with products in exponents.

The analysis of cryptographic protocols in ProVerif using given theory is
very slow. It takes too much time to check, for example, the protocol that
uses three pairings in one message, or the protocol that uses ten di�erent
grounded exponents. This is primarily caused by complexity of addition of
integers. Also, there are too many rules that allow to get elements from GT :
the intruder may derive them not only by multiplication and division in GT ,
but also by pairing, that in turn uses several di�erent rules. This solution is
ine�cient and allows to test only the simplest protocols, but it is still useful
since too complex protocols are computationally ine�cient themselves, and
for the simpler protocols the current version is su�cient.

If a protocol is being analyzed using type constraints (multiplication al-
lowed only in G1, exponentiation only in GT ), it somehow works even slower.
It could mean that ProVerif does not apply group operations to wrong ele-
ments even if the types are not de�ned.

This work de�nitely requires future research. It is necessary to compose
an appropriate theory for addition of exponents and formally prove it. Some-
thing could be done with associativity: although these kinds of equations are
non-convergent in ProVerif, it is probably possible to do something with a
�nite number of multipliers (like it was in case of grounded exponentiation).
It is necessary to write an automatic transformation for protocols using addi-
tion in exponents. It would be nice to write a single transformer that would
work at once with and without types, and could �nd all the possible errors in
the description of the protocol (the current version of protocol transformer
that uses types does not have special syntax error control).
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Bilineaarsed kujutused formaalses krüptograa�as

Bakalaureusetöö(6 EAP)
Alisa Pankova
Lühikokkuvõte

Krüptograa�liste protokollide turvalisuse testimiseks on loodud erinevad
analüsaatorid. Osa neist põhineb predikaatloogika valemitel. Formaalses
mudelis pole aga mugav realiseerida aritmeetilisi funktsioone. On kerge arvu-
tada ga, kui on teada nii g kui a väärtused, kuid protokollides on muutujad
üldjuhul väärtustamata. Algebraliste struktuuride omadusi on vaja kirjel-
dada loogika valemite abil. Mõnede sellist liiki probleemidega on juba tegel-
dud. Näiteks on realiseeritud Di�e-Hellmani astendamine Horni valemitel
põhineva analüsaatoriga ProVerif [2] [6]. Kahjuks see töötab vaid erinevate
astendajate lõpliku arvu korral.

Peale astendamist pakuvad aga krüptograa�a valdkonnale huvi ka muud
algebralised struktuurid, nende hulgas ka bilineaarsed kujutused [7]. An-
tud uurimistöö eesmärk oli realiseerida bilineaarsete kujutuste arvutamist
analüsaatoriga ProVerif ning analüüsida moodustatud protokolliteisendaja
abil mõningaid bilineaarseid kujutusi kasutavaid protokolle.

Artiklis [6] toodud teooria on selles töös laiendatud bilineaarsetele kuju-
tustele. On kirjeldatud teooria, mis sisaldab reegleid bilineaarsuse omaduse
jaoks, et analüsaator saaks aru, et näiteks e(aR, bS) = e(abR, S). Lahenduse
põhiidee on kanda üle kõik kordajad rühmast G1 rühma GT . Siis saame
näiteks, et e(aR, bS) = e(R, S)ab ja e(abR, S) = e(R, S)ab, nende avaldiste
paremad pooled on süntaktiliselt võrdsed.

Bilineaarsete kujutuste realiseerimine predikaatloogika abil ei ole aga efek-
tiivne. Kui erinevate astendajate arv ligineb kümnele, siis on vaja päris
kaua oodata, et analüsaator oma töö lõpetaks. Analüüsi aeglus on põhjen-
datud suure hulga variantidega. Näiteks e(R, S)a on tuletatav mitte ainult
valemitest e(aR, S) ja e(R, aS), vaid lõpmata paljudest teistest valemitest:
e(abR, ab−1S), e(aaa−1R, S) jne. Sama probleem on ka lihtsalt Di�e-Hellmani
astendamisega, kuid bilineaarsete kujutuste korral lisab igale variandile keeru-
kust ka astendajate liitmine.

Üldiselt on aga saavutatud eesmärk, et bilineaarsete kujutuste omaduste
realiseerimine on võimalik ning mõned protokollid on ka testitud. On kir-
jutatud automaatne protokolliteisendaja nii tüüpidega kui ilma tüüpideta
variantide jaoks. Selle abil on testitud mõnede bilineaarseid funktsioone ka-
sutatavate protokollide turvalisus.
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Appendix � CD containing the sources of the

transformer

The attached CD contains the modi�ed transformer and the speci�cations
of the tested protocols. It also contains a README-�le explaining how to
build and run the transformer and the analyzer.

The batch �le "timer.bat" was used to run e�ciency tests on Windows
platform. The �le "timer.txt" contains the results of the test.
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