
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Karin Klooster

Applying a Security Testing Methodology: a

Case Study

Bachelor's Thesis (9 ECTS)

Supervisor: Meelis Roos, MSc

Supervisor: Margus Freudenthal, PhD

Tartu 2016

Applying a security testing methodology: a case study

Abstract: Security testing is a software testing discipline that aims to verify that the
functionality of the software is resistant to attacks and data processed by the software
is protected. To establish common requirements that the software must ful�ll, software
security standards are published. This thesis aims to describe and apply a process
necessary to verify the security of a web application. A checklist of security requirements
was gathered combining OWASP ASVS web application security standard and OWASP
Top Ten project. Test cases were developed and web application UXP Portal was tested
to verify the security requirements in the checklist. Numerous security vulnerabilities
were identi�ed by security testing. The recommendations based on lessons learned
during the case study were presented.

Keywords: web application, security testing

CERCS code and name: P175 Informatics, systems theory

Turvatestimise metoodika rakendamine: juhtumiuuring

Lühikokkuvõte: Turvatestimine on tarkvara testimise haru, mille eesmärgiks on kon-
trollida, kas tarkvara on haavatav rünnete suhtes ning kas andmed, mida tarkvara
töötleb, on kaitstud. Tarkvara turvalisuse standardeid töötatakse välja selleks, et teki-
tada ühine arusaam turvanõuetest, mida turvaline tarkvara peab täitma. Selles bakalau-
reusetöös kirjeldatakse ja rakendatakse tegevused, mis on vajalikud veebirakenduse
turvalisuse kindlaks tegemiseks. Kombineerides OWASP ASVS veebirakenduste tur-
vastandardit ja OWASP Top 10 riskide nimekirja, töötati välja turvanõuete nimekiri.
Turvanõuete testimiseks töötati välja testjuhtumid ning testiti veebirakendust UXP
Portal. Turvatestimise tulemusena tuvastati arvukalt turvaprobleeme. Juhtumiuuringu
läbiviimise kogemuse põhjal vormistati õpitust lähtuvad soovitused.

Võtmesõnad: veebirakendus, turvatestimine

CERCS kood ja nimetus: P175 Informaatika, süsteemiteooria

2

Contents

1 Introduction 4

2 Security testing 6

2.1 The concept of web application security 6

2.2 Software security standards . 7

2.3 Security testing techniques . 10

2.4 Security testing case studies . 12

3 Description of the security testing process 14

3.1 Application under test . 14

3.1.1 Overview of UXP . 14

3.1.2 Overview of UXP Portal . 16

3.2 Security requirements analysis and testing process 18

3.3 Automatic security testing tools . 21

4 Results from security testing 23

4.1 UXP Portal security testing results . 23

4.2 Lessons learned from the security testing process 25

5 Conclusion 27

6 Appendix 31

6.1 OWASP ASVS 3.0 level 1 requirements mapped to OWASP Top Ten
2013 risks and UXP Portal requirements veri�cation results 31

6.2 Test cases and test report to verify OWASP ASVS 3.0 requirement 3.6 41

6.3 Glossary . 44

6.4 Licence . 46

3

1 Introduction

Software applications are integrated in almost all areas of life � business, medicine,
social media, transportation, energy supply, home appliances and warfare, to name a
few. Due to the fact that software plays a major role in maintaining critical infras-
tructure and processing sensitive data, software security is of paramount importance.
On the other hand, according to the Global State of Information Security Survey 38%
more cyber security incidents were detected in 2015 compared to 2014 and the theft of
intellectual property increased by 56% [1]. In software development industry the ability
to prove to clients that the developed software is secure, is a precondition for success.

Security testing is a software testing discipline that aims to verify that the functionality
of the software is resistant to attacks and data processed by the software is protected.
Similarly to other areas of software testing, a security tester can never test every possible
attack scenario. To establish common requirements that the software has to ful�ll,
software security specialists community and governmental institutions have published
security standards such as OWASP Application Security Veri�cation Standard, CMU
CERT secure coding standards, Penetration Testing Execution Standard, Common
Criteria and NIST standards. Security requirements that make up a security standard
give security tester a rough overview what has to be tested, but the tester still has to
analyze what the requirements mean in the context of a speci�c software and develop
a set of test cases to verify the requirements.

The starting point for a problem that this thesis aims to solve is the one of a software
company that has developed a new web application and faces two challenges � �rstly,
how to verify that the software is secure and secondly, how to reassure clients that
the software is secure. This thesis aims to describe and apply a process necessary to
verify the security of a web application. The subject of testing is Uni�ed eXchange
Platform (UXP) Portal � a web application developed by Cybernetica AS [2]. The
UXP Portal is a web application that allows users to make web service requests through
their browser. UXP Portal can be used to quickly deploy end-user access points to UXP
infrastructure supporting role-based user access control.

There are two types of software security standards � the standards developed by a com-
munity of software security specialists and the standards developed by governmental or
international institutions. To achieve the aim, di�erent software security standards are
reviewed and compared to �nd the security standard most suitable for the application
under test. After that, the security requirements of the chosen standard are analyzed

4

in context of the UXP Portal to make sure which requirements are applicable to the
application under test. Then the test cases to verify the security requirements are de-
veloped and UXP Portal is tested. Lastly the results of testing and recommendations to
anyone facing a similar problem based on lessons learned during the process are given.

The �rst chapter aims to describe what web application security means, which software
security standards exist, which security testing techniques can be applied to verify soft-
ware security and gives an overview about related work. The second chapter describes
the application under test and the security testing process: security requirements anal-
ysis, the development of test cases and automatic security testing tools used. The third
chapter presents the results from the security testing and recommendations based on
lessons learned during the process.

5

2 Security testing

2.1 The concept of web application security

Secure software is usually de�ned by uncompromisable integrity, con�dentiality and
availability of application's data and services [3]. Software security means that software
is developed in a way that it remains secure even under a malicious attack [4]. Software
security depends on four factors: the data stored in the application and the functionality
being o�ered by the application, the motivation of potential attackers and the cost of
ensuring security [5]. Ensuring software security has an important role in software risk
management.

Risk analysis is typically utilized in software design phase to identify security threats
and their impact [5]. After potential risks have been identi�ed and classi�ed according
to probability and impact, these can be used to steer security testing. Risk analysis
provides a base for deciding which test cases must be created and executed [6]. Security
testing should aim to test the areas of the system that contain the biggest risks. Risk
analysis results can be used for repairing security faults as well as communicating risks
that are not yet addressed to stakeholders to create trust [6]. Having described how risk
analysis can be useful, Dukes et al. also bring out three major problems with software
risk analysis.

1. Risk analysis is a complicated and expensive task because it needs to be carried
out by experts of the �eld.

2. Risk assessment is subjective and therefore unreliable.

3. Methodologies for integrating risk analysis in security testing are still in develop-
mental phase.

In case the functionality supplied by the application is not critical and application
does not collect any data that would be of interest to potential attackers, it is not
reasonable to spend vast resources on protecting the application. Of course one must
take into account that many attackers do not behave rationally and may target random
web applications, so a basic level of security is necessary in any case. Potter and
McGraw accentuate that understanding attacker's way of thinking is important for
anyone measuring or testing software security [4].

6

Potter and McGraw suggest that there are two types of problems that can obstruct
software functions and cause security vulnerabilities: bugs in implementation and faults
in software design. The faults in software design are harder to discover and more
widespread than implementation bugs [4]. Hence software security testing should begin
already in the software design phase.

OWASP Testing Guide [3] also emphasizes that software security cannot be achieved
by only one measure, but rather various security assurance methods should be applied
in all phases of software development life cycle (SDLC) from requirements engineering
and code reviews to penetration testing. There exist situations where this approach is
not applicable, for example when the application has already been developed. In this
case it is not possible to go back in time and apply all security assurance methods that
should have been applied during requirements engineering and development. In worst
case security testers don't even have access to source code, but penetration testing is
still a useful technique [3].

In real life software development world there are usually time and (human) resource
boundaries that limit the amount of security assurance measures that can be applied
during software development process. Security is not a priority for all software de-
velopers. In many cases software developers may also have a mindset that it is most
important to develop the functionality of the software �rst and security features can be
added later. According to Potter and McGraw the main problem with perception of
software security is that many security measures are reactive instead of being proactive
and security is perceived as a product that protects software while the real problem is
the design and implementation of the software itself [4].

In conclusion, software security is a compromise on which risks are dangerous enough
to be worth �ghting against and how much resources can be allocated for ensuring
security. There is no one measure that ensures software security, di�erent security
measures should be applied during the whole software development life cycle.

2.2 Software security standards

To establish mutual criteria a secure application must comply with, software security
standards have been developed. In software development industry software security
standards are used as a selling point. Veri�ed compliance with a software security stan-
dard creates trust among potential clients and gives a competitive edge when software

7

is compared to similar software systems. Compliance to software security standards is
often used as a default requirement during software development procurement or as a
precondition for using the system in certain sectors (for example electronic banking).
Next an overview of various software security standards is given.

Open Web Application Security Project (OWASP)1 is a non-pro�t organization aiming
to improve software security. OWASP has organized a worldwide community of software
security professionals to publish free materials on software security. The OWASP Ap-
plication Security Veri�cation Standard (ASVS) is a checklist of security requirements
that application designers, developers and testers can use to verify software security.
The main objectives of OWASP ASVS are providing a metric to base contracts on and
assess software security as well as providing direction for software developers.

ASVS security veri�cation requirements are classi�ed as three security levels: to pass
level 3 veri�cation, 179 requirements have to be veri�ed, 146 for level 2 and 86 for level 1.
Level 1 is suitable for all web applications and contains a minimum set of requirements,
level 2 grants protection against most typical security risks for applications that contain
sensitive data and level 3 provides solid protection for critical applications [7].

A positive side of OWASP ASVS is that in addition to the standard, OWASP also
provides other materials to help apply the standard. OWASP Testing Guide [3] provides
detailed instructions on how to test many of the requirements found in OWASP ASVS.
Another OWASP project that has received a lot of attention is OWASP Top Ten that
aims to order the 10 most critical software vulnerabilities [8].

OWASP wiki pages also contain much useful material for users of OWASP ASVS like
OWASP Cheat Sheets Series that gather detailed information about speci�c software
security matters [9]. OWASP materials on software security are of high value because
these are constantly renewed by the community of software security specialists. Software
security is a subject �eld that develops very rapidly and obsolete information may prove
to be hazardous while maintaining software security.

CERT division of Carnegie Mellon University's Software Engineering Institute organizes
community e�ort to develop secure coding standards for C, C++, Java, Perl, and the
Android platform. The standards are published as free wiki pages [10].

Penetration Testing Execution Standard (PTES) is a penetration testing standard pub-
lished as a website that aims to establish a common understanding about which ac-
tivities quality penetration testing consists of. This standard also aims to standardize

1https://www.owasp.org/

8

penetration testing reporting. PTES technical guidelines describe detailed exploits to
try and apply during penetration testing [11].

Besides community e�orts to establish software security standards, there are also gov-
ernmental and international organizations that are actively developing software security
standards. US National Institute of Standard and Technology (NIST) produces numer-
ous standards and guidelines in the �eld of software security that are mandatory for
federal information systems and government contractors. Besides standards NIST also
has a Special Publications (SP) 1800 subseries of NIST Cybersecurity Practice Guides
that consists of practical guides on how to apply cybersecurity standards [12].

Common Criteria (CC) is an international agreement that provides a framework for
assuring that software products have been speci�ed, implemented and tested in a way
that ensures security. CC uses licensed laboratories to evaluate software product's cor-
respondence to the criteria [13]. CC has been typically used to evaluate components like
�rewalls, routers, switches and smart cards rather than web applications [14]. Accord-
ing to Jackson [15], CC is generic and does not provide concrete security requirements.
Due to the fact that validation is only provided by licensed laboratories, it is very
expensive. What's more, the evaluation depends more on the software speci�cation
documents written rather than the security of the software product itself [15].

The software security standard to be used as a source of security requirements for UXP
Portal should ful�ll the following requirements:

1. Using the standard is free of charge.

2. The standard is web application speci�c.

3. The standard is accompanied by materials that provide guidance on how to verify
compliance with the standard.

4. The standard is up to date.

When comparing the software security standards developed by a community of soft-
ware security specialists and the standards developed by governmental or international
institutions it is clear that the negative side of software security standards that are de-
veloped by community e�ort is that these may contain errors or be incomplete. CMU
CERT secure coding standards and PTES technical guidelines contain many incomplete
pages. Complete standards are preferred and these standards are not used in this case

9

study. Contrarily, OWASP Application Security Veri�cation Standard and OWASP
Testing Guide do not contain any incomplete sections.

NIST standards from SP 1800 subseries of practice guides contain very detailed rec-
ommendations about one speci�c software security aspect (for example �Securing Elec-
tronic Health Records on Mobile Devices� or �Identity and Access Management for
Electric Utilities�), but there is no practice guide that would cover all aspects of web
application security yet [12]. For these reasons, NIST is not used as a basis for secu-
rity testing in this thesis as it is not web application speci�c. CC is also not suitable
as a base for deriving security test cases as CC is not speci�cally developed for web
applications and validation is not free of charge.

It can be concluded that OWASP ASVS (most recent version is 3.0) is the most suit-
able software security standard to be used as a source for security requirements for
UXP Portal, as it is speci�cally developed to be used with web applications, using the
standard is free of charge and besides the standard there are various other resources
like OWASP Testing Guide and OWASP Cheat Sheet series that provide guidance on
how to verify compliance with the standard. What is more, OWASP ASVS 3.0 was
published in October 2015 and therefore one can be certain that it contains up-to-date
security requirements.

2.3 Security testing techniques

Security testing techniques can be classi�ed as black box testing and white box testing.
Black-box security testing techniques involve trying to analyze and �nd vulnerabilities
in running software by manipulating the input without having any knowledge about
the source code. White-box security testing techniques aim to analyze the source code
and application architecture from security assurance viewpoint. Next a more detailed
overview of the following security testing techniques is given: manual inspection, threat
modeling, code review and penetration testing.

According to OWASP Testing Guide manual inspection is a white box security testing
technique that involves analyzing documentation and interviewing software designers to
inspect the decisions made in the software design process from the security viewpoint.
The purpose of manual inspections is to test the software development process rather
than test the application itself. Usually manual inspection is used early in the SDLC and
during such reviews the documents reviewed include architectural documents, security

10

requirements and secure coding policies [3]. Manual inspection assumes that there are
various documents to inspect � in case of small-scale software development projects
the volume of documents produced before starting development might be scarce.

Threat modeling is another white box security testing technique that is used early
in the SDLC. According to Steven [16] threat modeling is a process that starts with
acknowledging possible threats to the web application. Next, risk probabilities and
their possible impacts on the system are assessed [16]. After probable risks have been
found the strategies for risk mitigation can be developed. Threat modeling is a software
risk assessment method that can provide necessary input in penetration testing � it
must be veri�ed that the threats detected are successfully avoided.

Source code review is a white box security testing technique that involves reviewing
the application source code for possible security vulnerabilities. According to OWASP
Testing Guide code review can often reveal critical security problems that would not be
discovered by using black-box security testing techniques. In order to be e�ective and
fast, security code review requires very competent security oriented code reviewers [3].

Penetration testing is a security testing technique that is applied in the latest phase of
SDLC and in many cases used as a synonym to security testing. Penetration testing
means that tester is trying to penetrate the system by �ngerprinting it and probing it
with invalid input. A penetration tester acts like a hacker with a purpose of attacking
the system, causing the system to stop working, viewing the data contained in the
system or performing other activities bene�cial to the attacker and unwanted for system
owner. According to OWASP Testing Guide penetration testing historically originates
from network security testing [3].

There are areas of penetration testing that can be automated and there has been a rapid
development in the �eld of applications performing automated penetration testing.
OWASP Testing Guide cautions testers about using automatic tools, insisting that
although an automatic scanner can �nd many vulnerabilities, it cannot be considered
the one and only necessary testing tool and manual testing cannot be skipped. OWASP
emphasizes that �security is a process and not a product� [3]. Dukes et al. [6] also
conclude from the web application security testing case study conducted that as there
are vulnerabilities that can only be discovered by manual testing, it is paramount to
test manually in addition to using scanners and automatic tools.

In conclusion, the white box security testing techniques used early in the SDLC include
manual inspection and threat modeling. Security oriented code review and penetration

11

testing are used later in the SDLC. Penetration testing can be performed manually as
well as by using automated tools.

2.4 Security testing case studies

This section gives an overview about similar works and their results. Numerous re-
searchers have conducted software security testing case studies. Potter and McGraw
[4] emphasize that security testing case studies are very useful tools for novice security
testers for understanding how security testing should be approached.

Potter and McGraw [4] conducted a case study on Java card security testing where risk
analysis is used as a base for deriving test cases. Similarly, Apvrille and Pourzandi [17]
present a case study on instant messenger security testing where security requirements
are derived from a threat model developed. Authors come to the conclusion that code
review, despite being very labour-intensive and dependent on the reviewer, proved to be
the best technique for security testing. On the other hand, the amount of vulnerabilities
found by automatic scanner was limited [17]. Contrarily, Tóth et al. [18] conclude their
security testing case study with a certainty that it is not feasible to test complex software
systems manually and automated tools are the only option for testing complex systems
e�ciently.

Wang et al. [19] describe a threat model driven security testing case study that sug-
gests that modeling threat scenarios with UML sequence diagrams would make security
testing more comprehensible for IT industry as UML diagrams are widely used in the
software development process. Similarly, Jürjens [20] uses a threat model for deriving
security testing test cases and uses UMLsec, an UML extension, to model threats and
generate test sequences for testing the Common Electronic Purse Speci�cations. It is
concluded that the systematic approach of UMLsec modeling prevents security �aws
arising from poor implementation.

Dukes et al. [6] describe a case study about web application security testing. The
authors conclude that manual testing is important because it can discover the vul-
nerabilities that automatic tools cannot �nd. OWASP Top Ten is used as the list of
potential web application security issues that should be tested. Vibhandik and Bose [21]
also use OWASP Top Ten as a reference to decide what should be tested in their web
application security testing case study. It is concluded that automatic tools are useful,
but a few di�erent automatic tools should be used to discover more vulnerabilities as
di�erent automatic tools are capable of discovering di�erent vulnerabilities.

12

Similarly, Acharya et al. [22] utilize OWASP Top Ten Mobile Risks to develop a check-
list of risks that should be tested when verifying the security of mobile healthcare
applications tested in the case study. It is decided that OWASP Top Ten Mobile Risks
framework proves to be very useful when used by mobile app developers. Knorr and
Aspinall [23] also conduct a case study about mobile health apps security testing, but
use a custom classi�cation of attacker kinds as a basis for deriving test cases. The main
conclusion of the case study is that security testing is very expensive because of the
vast amount of manual testing required [23].

From previous work in the �eld of security testing case studies it can be concluded that
there are two groups of web application security testing case studies. The �rst group
of case studies uses threat modeling or risk analysis to derive security requirements to
test. The other approach is using OWASP Top Ten (Mobile Risks) as a reference to
what should be tested.

The case studies reviewed present very di�erent views on which security testing tech-
niques are the most useful. UML modeling, manual testing, code reviews and automatic
scanning are all described as useful techniques. Negative sides of manual testing, code
reviews and automatic scanning are also discussed. It can be concluded that the choice
of security testing methods to be used for getting the best results depends heavily on
the application under test and the resource limits imposed on the security testing.

OWASP ASVS and OWASP Top Ten were chosen to be used to develop a checklist of
security requirements to be tested in this case study. Carrying out a risk analysis to
�nd the security requirements that should be tested would have required more resources
than were available for this case study.

13

3 Description of the security testing process

3.1 Application under test

3.1.1 Overview of UXP

The Uni�ed eXchange Platform (UXP) is a technology developed by Cybernetica AS
that is used by organizations to provide services to each other [2]. UXP o�ers a stan-
dardized communication channel that provides con�dentiality, strong authentication
and long-term proof value of the relayed messages. In order to ensure consistently
high quality and high degree of interoperability, all the UXP members use standardized
security components, called security servers.

In the UXP system, members communicate directly without intermediaries. As the ex-
changes usually contain personal information and are subject to regulation (for example,
transmitting medical information is highly regulated), the security requirements for this
kind of communication are high. All the messages are signed and time-stamped and
sent over encrypted and mutually authenticated channel. Figure 1 gives an overview of
the system components in UXP installation.

An UXP installation consists of the following components.

� UXP Central Server maintains information about approved certi�cate authorities,
approved trust services, UXP members and security servers. This information is
distributed to the security servers.

� UXP Central Monitoring Server receives monitoring information from the security
servers and makes it available to central system administrators.

� UXP Management Security Server receives management requests from the secu-
rity servers and forwards them to the UXP central server.

� UXP Security Server acts as a gateway between the organization's information
system and the UXP infrastructure. Security server relays request and response
messages while adding a protective layer. All the messages are passed through
cryptographically secure channel. Additionally, the messages are digitally signed
and time-stamped to ensure long-term proof value of the transactions.

14

UXP Central Components

UXP Central
Server

UXP Management
Security Server

UXP Central
Monitoring

CA with Trust Services as Service

Certificate
Authority

OCSP Service

Time Stamping
Service

Member 1

Information System

UXP Security Server

UXP portal

Member N

Database

UXP Connector

UXP Security Server

UXP portal

UXP messages
Peer-to-peer

OCSP requests
Time stamping requests

Global configuration download
Central monitoring data
Management requests

Figure 1: System components of an UXP installation

� UXP Connector can be installed at an organization to implement UXP services
based on SQL databases.

15

� UXP Portal is a web-based application which allows UXP service discovery through
UXP platform and creates dynamic query/input forms for service consuming.

� Certi�cate Authority (CA) creates certi�cates that prove ownership of public keys.

� Online Certi�cate Status Protocol service distributes certi�cate validity informa-
tion to security servers.

� Time-stamping service issues time stamps that ensure long-term validity of the
digital signatures created in the UXP system.

UXP members communicate directly with approved trust service providers. When
joining the communication infrastructure, each member must acquire a certi�cate for
signing the messages and another certi�cate for transport security. The member must
also select a time-stamping service provider that will be used to provide long-term
security to the exchanged messages. During communication, the member interacts with
service providers to acquire certi�cate validity information and to time-stamp signed
messages. In UXP, the service provider maintains and enforces access control list for
each service.

Before using a service, the service client and service provider enter into an agreement
that speci�es liabilities of both parties. From one side, the service provider agrees to
provide service with given Service Level Agreement. From the other side, the service
client agrees to use the service and process the received data according to conditions
de�ned by the service provider.

3.1.2 Overview of UXP Portal

UXP Portal is a web application that allows users to make UXP web service requests
through their browser. The UXP Portal is a part of the UXP platform that is connected
to the service consumer's security server and uses this security server to retrieve infor-
mation about the UXP instance it is part of. This information includes registered UXP
members, lists of services provided by speci�c UXP members and service descriptions
for services that are being registered. UXP Portal can be used to quickly deploy end-
user access points to UXP infrastructure supporting role-based user access control and
several authentication methods. UXP portal supports role-based user authorization,
there are three roles that can use di�erent functionality.

16

Portal administrator can add organizations that can use the UXP Portal. Orga-
nizations can be chosen from a list of UXP members registered at the security server
that the UXP Portal is connected to. Organization management component is acces-
sible only to portal administrator. All users, roles and permissions (except for portal
administrator) are always related to some organization and are available only in the
context of that organization. Organizations are used by portal administrator to sep-
arate responsibilities for management of organization employees and available services
to organization administrators.

User administrators can use the user and group management functionality:

� Create and remove user accounts.

� Add users to groups. User groups are used to assign groups of users to services
these users are allowed to use.

� Assign roles (service administrator and user administrator) to the users. Limited
functionality (registration of user administrators and service administrators) is
available also to portal administrator.

Service administrators can use the service management functionality:

� Register and remove service providers for the organization. A service provider is
a UXP member that o�ers services to other UXP members via UXP platform.

� Update the list of available services. The available services are services that the
service provider has made available to the organization using the UXP Portal.
The list of services is retrieved from the Security Server that the UXP Portal
instance is connected to.

� Register, edit and remove registered services. Services can be chosen from the
available services pool of the registered service providers.

� Classify services into service categories to group related services together.

Portal users can submit UXP service requests to the services they have been given
access to.

17

3.2 Security requirements analysis and testing process

To determine a checklist of security requirements to be veri�ed for UXP Portal, it had
to be decided which level of OWASP ASVS standard should be used. As UXP Portal
is not a critical application, but contains sensitive data, level 2 would be suitable as
level 2 grants protection against all most typical security risks. Level 2 consists of
146 security requirements to be veri�ed. All 146 requirements were analyzed to �nd
out how many of these requirements are applicable to UXP Portal. It was concluded
that 113 requirements are applicable. It was estimated that in case veri�cation of one
requirement would take one day, it would take over 22 working weeks to verify 113
requirements.

This volume of work would be excessive in context of this thesis and so it was decided
that OWASP ASVS level 1 is used. Level 1 consists of 86 requirements of which 67
are applicable to UXP Portal. Level 1 contains a minimum set of requirements for
a web application. If veri�cation of one requirement would take one day, verifying
67 requirements would take over 13 working weeks which still exceeds the volume of
a thesis. To further reduce the number of requirements it was decided to combine
OWASP Top Ten with OWASP ASVS level 1 requirements and verify the requirements
that are part of level 1 as well as OWASP Top Ten.

OWASP does not provide a link between OWASP ASVS requirements and OWASP Top
Ten risks. The materials of OWASP Top Ten project were analyzed to determine which
level 1 requirements must be ful�lled to mitigate OWASP Top Ten risks. A mapping
between OWASP Top Ten 2013 risks and OWASP ASVS 3.0 level 1 requirements was
created (see appendix 6.1). It was concluded that there are 62 security requirements
that belong to OWASP ASVS level 1 as well as OWASP Top Ten according to the
mapping.

The next step after determining the list of security requirements to be veri�ed was
analyzing which requirements are applicable to UXP Portal and which requirements are
not. 6 security requirements were found not to be applicable in UXP Portal context.
These security requirements and the reasons why these are not applicable are shown in
table 1.

18

OWASP ASVS 3.0 security requirement
[7]

Reason

2.17 Verify that the forgotten password
function and other recovery paths do not
reveal the current password and that the new
password is not sent in clear text to the user

No password recovery functions

2.22 Verify that forgotten password and other
recovery paths use a soft token, mobile push,
or an o�ine recovery mechanism

No password recovery functions

2.24 Verify that if knowledge based questions
(also known as "secret questions") are
required, the questions should be strong
enough to protect the application

Knowledge based questions are
not used

5.11 Verify that the application is not
susceptible to LDAP Injection, or that security
controls prevent LDAP Injection.

LDAP is not used

5.22 Make sure untrusted HTML from
WYSIWYG editors or similar are properly
sanitized with an HTML sanitizer and handle
it appropriately according to the input
validation task and encoding task.

No WYSIWYG editor

18.7 Verify that the REST service is protected
from Cross-Site Request Forgery

REST web service is not
provided

Table 1: The security requirements that are not applicable to UXP Portal

The remaining list of 56 security requirements was analyzed to �nd the requirements
that are not satis�ed because the corresponding functionality has not been implemented
in UXP Portal. According to the analysis results there are 6 such OWASP ASVS
requirements [7]:

1. 2.20 Verify that request throttling is in place to prevent automated attacks against
common authentication attacks such as brute force attacks or denial of service
attacks.

2. 2.27 Verify that measures are in place to block the use of commonly chosen pass-
words and weak passphrases.

19

3. 3.16 Verify that the application limits the number of active concurrent sessions.

4. 3.17 Verify that an active session list is displayed in the account pro�le or similar
of each user. The user should be able to terminate any active session.

5. 3.18 Verify the user is prompted with the option to terminate all other active
sessions after a successful change password process.

6. 10.1 Verify that a path can be built from a trusted CA to each Transport Layer
Security (TLS) server certi�cate, and that each server certi�cate is valid.

The analysis of security requirements showed that when one wants to verify the OWASP
level 1 requirements that need to be veri�ed to mitigate OWASP Top Ten risks, 62 secu-
rity requirements have to be veri�ed. There are 6 requirements that are not applicable
to UXP Portal and 6 requirements that are certainly not satis�ed due to not being
implemented. There are 50 requirements that have to be veri�ed by security testing
techniques.

Before security testing, information about the architecture of UXP Portal that would
be useful during security testing was gathered. Information about system components
and interfaces, inputs and outputs, pages and access rights, the location of the logs was
gathered.

After establishing a list of security requirements that needed to be veri�ed by security
testing, each OWASP Top Ten risk was assigned an amount of time available for secu-
rity testing considering the number and contents of security requirements in each risk
category. After that the test cases were developed to test UXP Portal. Code review and
penetration testing techniques where used to test the UXP Portal. Manual penetration
testing as well as automated tools were used.

OWASP Testing Guide and OWASP Cheat Sheets were used as a primary reference
while choosing the testing techniques and developing the security testing test cases.
All security tests except the code reviews were carried out by the author of this thesis.
The author decided which requirements needed a code review but did not review the
code herself because the author does not have necessary competence and experience in
software development �eld.

After testing a test result was reported about every requirement tested. In case of failed
test cases, the risks threatening the UXP Portal due to a failed test were explained and
the recommendations to mitigate the vulnerability were proposed. Links to additional

20

information on the subject were also provided as it is very important for the developers
who are going to �x the security problems to acquire a clear understanding what and
why has to be �xed to mitigate the security risks. See appendix 6.2 for an example of
test cases and test results for verifying OWASP ASVS requirement 3.6.

3.3 Automatic security testing tools

This section gives an overview about automatic security testing tools that were used
for testing UXP Portal which are: OWASP Zed Attack Proxy, SSLScan and Firefox
browser add-ons.

OWASP Zed Attack Proxy

OWASP Zed Attack Proxy (ZAP) is a very popular security testing tool that can be used
to assist a tester in manual security testing as well as for automatic scanning. OWASP
ZAP is free and open-source software that is developed by volunteers. Due to being
open-source software OWASP ZAP has many add-ons that are developed separately
and allow more thorough testing of di�erent subjects. ZAP main functionality includes
intercepting proxy, spiders, various scanners, fuzzer, forced browsing, authentication
and session support and REST API [24]. What is more, as ZAP is a very popular
security testing tool, there is a very active big community of ZAP users that provides
support and discussion forums for ZAP users.

OWASP ZAP was used as an intercepting proxy server to intercept and modify HTTP
requests. OWASP ZAP scanning possibilities were used to test SQL injection, direc-
tory browsing, URL rewriting, session �xation, various HTTP response headers, cookie
attributes, cross-site request forgery and application error disclosure vulnerabilities.
Fuzzing was used to test potential re�ected cross site scripting vulnerabilities.

SSLScan

SSLScan is a scanner for testing TLS settings [25]. SSLScan was used to test supported
cipher suites, secure session renegotiation support, Heartbleed vulnerability and TLS
certi�cate attributes.

Browser add-ons

Firefox browser add-ons were used during security testing. Cookies Manager+ [26] was
used to view, edit and create cookies while testing session management. Firebug [27]

21

was used to inspect HTML and monitor network activity. Groundspeed [28] was used
to view the HTML form �elds.

22

4 Results from security testing

4.1 UXP Portal security testing results

Security testing of UXP Portal started with a checklist of 62 security requirements. 6 of
those requirements were not applicable to UXP Portal as the requirements targeted the
components UXP Portal does not contain. 26 requirements were found to be satis�ed,
27 requirements were not satis�ed and the veri�cation of 3 requirements was unclear at
the time of writing this thesis as the code review that was part of the veri�cation process
for these requirements was not completed yet (see table 2). The six requirements that
targeted the functionality that was not implemented in UXP Portal belong to �not
satis�ed� category. See appendix 6.1 for detailed results.

OWASP Top Ten 2013 risk [8] Number of
require-
ments

Satis�ed Not
satis-
�ed

Not ap-
plicable

Not
ready

A1-Injection 9 5 3 1
A2-Broken Authentication and
Session Management

27 11 11 3 2

A3-Cross-Site Scripting 4 3 1
A4-Insecure Direct Object
References

4 3 1

A5-Security Miscon�guration 3 3
A6-Sensitive Data Exposure 10 6 4
A7-Missing Function Level
Access Control

1 1

A8-Cross-Site Request Forgery 2 1 1
A9-Using Components with
Known Vulnerabilities

1 1

A10-Unvalidated Redirects and
Forwards

1 1

Total 62 26 27 6 3

Table 2: UXP Portal security testing results

Security vulnerabilities discovered by security testing are presented according to OWASP
Top Ten risk categories. A1-Injection risk is not fully mitigated in UXP Portal as it

23

is susceptible to XML external entity attack. What is more, HTTP responses do not
contain anti-sni�ng headers and some HTTP responses do not contain a type header
specifying a safe character set.

There are various unaddressed risks in the category A2-Broken Authentication and
Session Management. In addition to 5 security requirements that are not veri�ed due
to corresponding functionality not being implemented (see section 3.2), there are also
other unaddressed risks. Firstly, it is possible to view the directory listing and some
UXP Portal resources without authentication. Secondly, administration manuals are
accessible for non-administrative users. In addition, session ID is enclosed in URL,
session ID is not changed during logging in and session ID can be sent in HTTP request.
There are also shortcomings concerning cookie attributes � cookie paths are set too
loosely and cookie attributes �HttpOnly� and �secure� are not set. Lastly, the log out
button is not directly visible in UXP Portal pages.

The requirements necessary to protect against A3-Cross-Site Scripting risk were not
satis�ed. It is possible to execute stored arbitrary HTML code and upload a HTML
�le in place of a TLS key store. Furthermore, HTTP responses do not set Content-
Security-Policy headers and X-XSS-Protection headers. The risk A4-Insecure Direct
Object References is not fully mitigated due to possibility to view the directory listing.

There are unaddressed risks in the category A5-Security Miscon�guration in UXP Por-
tal. Firstly, UXP Portal outputs stack traces that reveal sensitive information about
application's structure and software used to develop it. Error pages and HTTP re-
sponses also contain running web server type and version information. UXP Portal
server also accepts other HTTP methods besides GET and POST.

The risk A6-Sensitive Data Exposure is not fully mitigated because autocomplete at-
tribute is not disabled on login pages and anti-caching HTTP response headers could
be stricter. UXP Portal is not protected from the risk A8-Cross-Site Request Forgery
as anti-CSRF tokens are not used in UXP Portal's HTML submission forms. There are
also vulnerabilities in the risk category A9-Using Components with Known Vulnerabil-
ities, as the security of nginx, Jetty and PostgreSQL con�guration could be improved.

In conclusion, almost half of the requirements in the security requirements checklist
that were tested were not satis�ed in case of UXP Portal. Among the vulnerabilities
discovered there are no critical vulnerabilities, but some medium risk and many low
risk vulnerabilities that should nevertheless be taken seriously as vulnerabilities can be
combined by a skilled attacker to craft an attack.

24

4.2 Lessons learned from the security testing process

In this section recommendations to anyone facing a challenge of verifying their software
is secure are presented. The recommendations are based on lessons learned from the
security testing case study.

In this case study a security testing methodology that combines OWASP ASVS and
OWASP Top Ten to determine a checklist of security requirements to be veri�ed is used.
After forming the checklist a time-box for testing the requirements in each OWASP Top
Ten risk category was allocated. It can be concluded that this methodology is suitable
for getting an initial overview of web application's security. It is also suitable for projects
where security of the web application must be veri�ed but the time resources available
for doing it are scarce.

The case study made clear that after determining the list of security requirements that
must be veri�ed it is a good idea to work closely with the application developers to
quickly determine which requirements are not applicable to the application under test
due to respective components missing in the application. Similarly, it can be determined
which requirements are surely not satis�ed because the functionality required is not
implemented. These steps can considerably lower the number of requirements that
must be veri�ed by testing.

It is also advisable to gather the information about application's components, inputs
and outputs, list of pages and which user roles should have access to which pages and
where are the logs written before starting security testing. This kind of information
about application's architecture will surely be necessary during security testing and it
saves time to have the information ready in one place.

Experience from the case study shows that when allocating time for testing the secu-
rity requirements in OWASP ASVS, it must be taken into account that the volume
of testing required to verify one requirement can vary considerably. While there are
requirements that can be veri�ed by just checking one attribute, there are also more
generic requirements that require multiple test cases and extensive manual testing.
What is more, when testers are not familiar with using automatic tools, a separate
time must be allocated for getting to know the automatic security testing tools as well.

Analysis of the security testing results shows that OWASP ZAP tool can be used to
obtain information about a wide variety of security vulnerabilities. Automatic scanner
is especially e�cient when the objective is to scan a large amount of input, for exam-
ple scanning all HTTP responses. On the other hand, �ndings of automatic scanner

25

can have false positives and should be manually veri�ed. For example OWASP ZAP
reported time-based SQL injection vulnerabilities that were not con�rmed in manual
testing.

Security testing results also accentuate the importance of manual penetration testing.
Manual testing revealed various security vulnerabilities that would not have been dis-
covered by using only automatic tools. A good example of such vulnerability is XML
external entity attack vulnerability.

26

5 Conclusion

The objective of this thesis was to describe and apply a process necessary to verify the
security of a web application. To achieve the aim, various software security standards
were compared to �nd the standard that �ts the requirements of this case study the
best. OWASP ASVS was chosen to be the source of security requirements. A mapping
between OWASP Top Ten 2013 risks and OWASP ASVS 3.0 level 1 requirements was
created. A checklist of security requirements was determined according to the mapping.

Test cases were developed and web application UXP Portal was tested to verify 62
security requirements in the checklist. Test results and the security risks threatening
UXP Portal were reported. Numerous security vulnerabilities were identi�ed by security
testing. It was concluded that in case of UXP Portal numerous injection, authentication
and session management, cross-site scripting, insecure direct object reference, security
miscon�guration, sensitive data exposure and cross-site request forgery risks are not
mitigated. Lastly, the recommendations based on lessons learned during the case study
were presented.

The work undertaken in this case study can be developed further. Future work on
UXP Portal should include verifying all OWASP ASVS level 1 security requirements.
Furthermore, after that it is possible to move on to verifying OWASP ASVS level 2
security requirements. It is also important to �x the security vulnerabilities discovered
in this case study.

27

References

[1] (2016, March) The Global State of Information Security® Survey 2016. Vis-
ited 13.03.2016. [Online]. Available: http://www.pwc.com/gx/en/issues/cyber-
security/information-security-survey.html

[2] (2016, April) UXP. Visited 24.04.2016. [Online]. Available: http://cyber.ee/en/e-
government/uxp/

[3] (2016, March) OWASP Testing Guide 4.0. Visited 13.03.2016. [Online]. Available:
https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf

[4] B. Potter and G. McGraw, �Software security testing�, IEEE Security & Privacy,
2(5), 81-85 (2004).

[5] D. Verndon and G. McGraw, �Risk Analysis in Software Design�, IEEE Security
& Privacy, 2(4), 79�84 (2004).

[6] L. Dukes, X. Yuan, F. Akowuah, �A case study on web application security testing
with tools and manual testing�, Southeastcon, 2013 Proceedings of IEEE, 1-6
(2013).

[7] (2016, March) OWASP Application Security Veri�cation Standard 3.0. Visited
13.03.2016. [Online]. Available: https://www.owasp.org/images/6/67/OWASP
ApplicationSecurityVeri�cationStandard3.0.pdf

[8] (2016, March) OWASP Top Ten Project. Visited 13.03.2016. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

[9] (2016, March) OWASP Cheat Sheet Series. Visited 13.03.2016. [Online]. Available:
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series

[10] (2016, March) SEI CERT Coding Standards. Visited 13.03.2016. [On-
line]. Available: https://www.securecoding.cert.org/con�uence/display/seccode/
SEI+CERT+Coding+Standards

[11] (2016, March) The Penetration Testing Execution Standard. Visited 13.03.2016.
[Online]. Available: http://www.pentest-standard.org/index.php/Main_Page

[12] (2016, March) NIST Computer Security Publications. Visited 13.03.2016. [Online].
Available: http://csrc.nist.gov/publications/PubsSPs.html

28

[13] (2016, March) About The Common Criteria. Visited 13.03.2016. [Online]. Avail-
able: https://www.commoncriteriaportal.org/ccra/

[14] (2016, March) Certi�ed Products. Visited 13.03.2016. [Online]. Available:
https://www.commoncriteriaportal.org/products/

[15] W. Jackson, �Under attack� (2007). Visited 13.03.2016. [Online]. Available:
https://gcn.com/articles/2007/08/10/under-attack.aspx

[16] J. Steven, �Threat Modeling-Perhaps It's Time�, Security & Privacy, IEEE, 8(3),
83-86 (2010).

[17] A. Apvrille and M. Pourzandi, �Secure software development by example�, IEEE
Security & Privacy, 1(4), 10-7 (2005).

[18] G. Tóth, G. K®szegi, Z. Hornák, �Case study: automated security testing on
the trusted computing platform�, Proceedings of the 1st European workshop on
system security, 35-39, (2008).

[19] L. Wang, E. Wong, D. Xu, �A threat model driven approach for security testing�,
Proceedings of the Third International Workshop on Software Engineering for
Secure Systems 2007, 10, (2007).

[20] J. Jürjens, �Model-based security testing using umlsec: A case study�, Electronic
Notes in Theoretical Computer Science, 220(1), 93-104 (2008).

[21] R. Vibhandik, A. K. Bose, �Vulnerability assessment of web applications-a testing
approach�, e-Technologies and Networks for Development (ICeND), 2015 Forth
International Conference, 1-6 (2005).

[22] S. Acharya, B. Ehrenreich, J. Marciniak, �OWASP inspired mobile security�, Bioin-
formatics and Biomedicine (BIBM), 2015 IEEE International Conference, 782-784,
(2015).

[23] K. Knorr and D. Aspinall, �Security testing for Android mHealth apps�, InSoft-
ware Testing, Veri�cation and Validation Workshops (ICSTW), 2015 IEEE Eighth
International Conference on 2015 Apr 13, 1-8 (2015).

[24] (2016, March) OWASP Zed Attack Proxy Project. Visited 29.03.2016. [Online].
Available: https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[25] (2016, April) SSLScan. Visited 24.04.2016. [Online]. Available:
https://github.com/rbsec/sslscan

29

[26] (2016, April) Cookies Manager+. Visited 24.04.2016. [Online]. Available:
https://addons.mozilla.org/en-US/�refox/addon/cookies-manager-plus/

[27] (2016, April) Firebug. Visited 24.04.2016. [Online]. Available:
http://get�rebug.com/

[28] (2016, April) Groundspeed. Visited 24.04.2016. [Online]. Available:
https://addons.mozilla.org/en-US/�refox/addon/groundspeed/

30

6 Appendix

6.1 OWASP ASVS 3.0 level 1 requirements mapped to OWASP

Top Ten 2013 risks and UXP Portal requirements veri�ca-

tion results

Number OWASP ASVS 3.0 requirement [7] OWASP Top 10 2013 risk
[8]

Satis�ed

1.1 Verify that all application components are
identi�ed and are known to be needed.

2.1 Verify all pages and resources by default
require authentication except those
speci�cally intended to be public (Principle
of complete mediation).

2013-A2-Broken
Authentication and Session
Management

no

2.2 Verify that all password �elds do not echo
the user's password when it is entered.

2013-A2-Broken
Authentication and Session
Management

yes

2.4 Verify all authentication controls are
enforced on the server side.

2013-A2-Broken
Authentication and Session
Management

not
ready

2.6 Verify all authentication controls fail
securely to ensure attackers cannot log in.

2013-A2-Broken
Authentication and Session
Management

not
ready

2.7 Verify password entry �elds allow, or
encourage, the use of passphrases, and do
not prevent long passphrases/highly
complex passwords being entered.

2013-A2-Broken
Authentication and Session
Management

yes

2.8 Verify all account identity authentication
functions (such as update pro�le, forgot
password, disabled / lost token, help desk
or IVR) that might regain access to the
account are at least as resistant to attack as
the primary authentication mechanism.

2013-A2-Broken
Authentication and Session
Management

yes

2.9 Verify that the changing password
functionality includes the old password, the
new password, and a password con�rmation.

2013-A2-Broken
Authentication and Session
Management

yes

31

2.16 Verify that credentials are transported using
a suitable encrypted link and that all
pages/functions that require a user to enter
credentials are done so using an encrypted
link.

2013-A2-Broken
Authentication and Session
Management

yes

2.17 Verify that the forgotten password function
and other recovery paths do not reveal the
current password and that the new
password is not sent in clear text to the
user.

2013-A2-Broken
Authentication and Session
Management

n/a

2.18 Verify that information enumeration is not
possible via login, password reset, or forgot
account functionality.

2013-A2-Broken
Authentication and Session
Management

yes

2.19 Verify there are no default passwords in use
for the application framework or any
components used by the application (such
as �admin/password�).

2013-A2-Broken
Authentication and Session
Management

yes

2.20 Verify that request throttling is in place to
prevent automated attacks against common
authentication attacks such as brute force
attacks or denial of service attacks.

2013-A2-Broken
Authentication and Session
Management

no

2.22 Verify that forgotten password and other
recovery paths use a soft token, mobile
push, or an o�ine recovery mechanism.

2013-A2-Broken
Authentication and Session
Management

n/a

2.24 Verify that if knowledge based questions
(also known as "secret questions") are
required, the questions should be strong
enough to protect the application.

2013-A2-Broken
Authentication and Session
Management

n/a

2.27 Verify that measures are in place to block
the use of commonly chosen passwords and
weak passphrases.

2013-A2-Broken
Authentication and Session
Management

no

2.30 Verify that if an application allows users to
authenticate, they use a proven secure
authentication mechanism.

2013-A2-Broken
Authentication and Session
Management

yes

2.32 Verify that administrative interfaces are not
accessible to untrusted parties.

2013-A2-Broken
Authentication and Session
Management

no

32

3.1 Verify that there is no custom session
manager, or that the custom session
manager is resistant against all common
session management attacks.

2013-A2-Broken
Authentication and Session
Management

yes

3.2 Verify that sessions are invalidated when
the user logs out.

2013-A2-Broken
Authentication and Session
Management

yes

3.3 Verify that sessions timeout after a speci�ed
period of inactivity.

2013-A2-Broken
Authentication and Session
Management

yes

3.5 Verify that all pages that require
authentication have easy and visible access
to logout functionality.

2013-A2-Broken
Authentication and Session
Management

no

3.6 Verify that the session id is never disclosed
in URLs, error messages, or logs. This
includes verifying that the application does
not support URL rewriting of session
cookies.

2013-A2-Broken
Authentication and Session
Management

no

3.7 Verify that all successful authentication and
re-authentication generates a new session
and session id.

2013-A2-Broken
Authentication and Session
Management

no

3.12 Verify that session ids stored in cookies
have their path set to an appropriately
restrictive value for the application, and
authentication session tokens additionally
set the �HttpOnly� and �secure� attributes

2013-A2-Broken
Authentication and Session
Management

no

3.16 Verify that the application limits the
number of active concurrent sessions.

2013-A2-Broken
Authentication and Session
Management

no

3.17 Verify that an active session list is displayed
in the account pro�le or similar of each
user. The user should be able to terminate
any active session.

2013-A2-Broken
Authentication and Session
Management

no

3.18 Verify the user is prompted with the option
to terminate all other active sessions after a
successful change password process.

2013-A2-Broken
Authentication and Session
Management

no

33

4.1 Verify that the principle of least privilege
exists - users should only be able to access
functions, data �les, URLs, controllers,
services, and other resources, for which they
possess speci�c authorization. This implies
protection against spoo�ng and elevation of
privilege.

2013-A4-Insecure Direct
Object References,
2013-A7-Missing Function
Level Access Control

yes

4.4 Verify that access to sensitive records is
protected, such that only authorized objects
or data is accessible to each user (for
example, protect against users tampering
with a parameter to see or alter another
user's account).

2013-A4-Insecure Direct
Object References,
2013-A7-Missing Function
Level Access Control

yes

4.5 Verify that directory browsing is disabled
unless deliberately desired. Additionally,
applications should not allow discovery or
disclosure of �le or directory metadata, such
as Thumbs.db, .DS_Store, .git or .svn
folders.

2013-A4-Insecure Direct
Object References,
2013-A5-Security
Miscon�guration

no

4.8 Verify that access controls fail securely.
4.9 Verify that the same access control rules

implied by the presentation layer are
enforced on the server side.

2013-A7-Missing Function
Level Access Control

not
ready

4.13 Verify that the application or framework
uses strong random anti-CSRF tokens or
has another transaction protection
mechanism.

2013-A8-Cross-Site
Request Forgery

no

4.16 Verify that the application correctly
enforces context-sensitive authorisation so
as to not allow unauthorised manipulation
by means of parameter tampering.

5.1 Verify that the runtime environment is not
susceptible to bu�er over�ows, or that
security controls prevent bu�er over�ows.

2013-A1-Injection yes

5.3 Verify that server side input validation
failures result in request rejection and are
logged.

2013-A1-Injection yes

34

5.5 Verify that input validation routines are
enforced on the server side.

2013-A1-Injection yes

5.10 Verify that all SQL queries, HQL, OSQL,
NOSQL and stored procedures, calling of
stored procedures are protected by the use
of prepared statements or query
parameterization, and thus not susceptible
to SQL injection

2013-A1-Injection yes

5.11 Verify that the application is not
susceptible to LDAP Injection, or that
security controls prevent LDAP Injection.

2013-A1-Injection n/a

5.12 Verify that the application is not susceptible
to OS Command Injection, or that security
controls prevent OS Command Injection.

2013-A1-Injection yes

5.13 Verify that the application is not
susceptible to Remote File Inclusion (RFI)
or Local File Inclusion (LFI) when content
is used that is a path to a �le.

2013-A4-Insecure Direct
Object References

yes

5.14 Verify that the application is not
susceptible to common XML attacks, such
as XPath query tampering, XML External
Entity attacks, and XML injection attacks.

2013-A1-Injection no

5.15 Ensure that all string variables placed into
HTML or other web client code is either
properly contextually encoded manually, or
utilize templates that automatically encode
contextually to ensure the application is not
susceptible to re�ected, stored and DOM
Cross-Site Scripting (XSS) attacks.

2013-A3-Cross-Site
Scripting

no

5.22 Make sure untrusted HTML from
WYSIWYG editors or similar are properly
sanitized with an HTML sanitizer and
handle it appropriately according to the
input validation task and encoding task.

2013-A3-Cross-Site
Scripting

n/a

7.2 Verify that all cryptographic modules fail
securely, and errors are handled in a way
that does not enable oracle padding.

35

7.7 Verify that cryptographic algorithms used
by the application have been validated
against FIPS 140-2 or an equivalent
standard.

2013-A6-Sensitive Data
Exposure

yes

8.1 Verify that the application does not output
error messages or stack traces containing
sensitive data that could assist an attacker,
including session id, software/framework
versions and personal information

2013-A5-Security
Miscon�guration

no

9.1 Verify that all forms containing sensitive
information have disabled client side
caching, including autocomplete features.

2013-A6-Sensitive Data
Exposure

no

9.3 Verify that all sensitive data is sent to the
server in the HTTP message body or
headers (i.e., URL parameters are never
used to send sensitive data).

2013-A6-Sensitive Data
Exposure

yes

9.4 Verify that the application sets appropriate
anti-caching headers as per the risk of the
application, such as the following:
Expires: Tue, 03 Jul 2001 06:00:00 GMT
Last-Modi�ed: {now} GMT
Cache-Control: no-store, no-cache,
must-revalidate, max-age=0 Cache-Control:
post-check=0, pre-check=0 Pragma:
no-cache

2013-A6-Sensitive Data
Exposure

no

9.9 Verify that data stored in client side storage
- such as HTML5 local storage, session
storage, IndexedDB, regular cookies or
Flash cookies - does not contain sensitive or
PII).

2013-A6-Sensitive Data
Exposure

yes

10.1 Verify that a path can be built from a
trusted CA to each Transport Layer
Security (TLS) server certi�cate, and that
each server certi�cate is valid.

2013-A6-Sensitive Data
Exposure

no

36

10.3 Verify that TLS is used for all connections
(including both external and backend
connections) that are authenticated or that
involve sensitive data or functions, and does
not fall back to insecure or unencrypted
protocols. Ensure the strongest alternative
is the preferred algorithm.

2013-A6-Sensitive Data
Exposure

yes

10.11 Verify that HTTP Strict Transport Security
headers are included on all requests and for
all subdomains, such as
Strict-Transport-Security:
max-age=15724800; includeSubdomains

2013-A6-Sensitive Data
Exposure

no

10.13 Ensure forward secrecy ciphers are in use to
mitigate passive attackers recording tra�c.

10.14 Verify that proper certi�cation revocation,
such as Online Certi�cate Status Protocol
(OSCP) Stapling, is enabled and con�gured.

10.15 Verify that only strong algorithms, ciphers,
and protocols are used, through all the
certi�cate hierarchy, including root and
intermediary certi�cates of your selected
certifying authority.

2013-A6-Sensitive Data
Exposure

yes

10.16 Verify that the TLS settings are in line with
current leading practice, particularly as
common con�gurations, ciphers, and
algorithms become insecure.

2013-A6-Sensitive Data
Exposure

yes

11.1 Verify that the application accepts only a
de�ned set of required HTTP request
methods, such as GET and POST are
accepted, and unused methods (e.g.
TRACE, PUT, and DELETE) are explicitly
blocked.

2013-A5-Security
Miscon�guration

no

11.2 Verify that every HTTP response contains a
content type header specifying a safe
character set (e.g., UTF-8, ISO 8859-1).

2013-A1-Injection no

37

11.5 Verify that the HTTP headers or any part
of the HTTP response do not expose
detailed version information of system
components.

2013-A5-Security
Miscon�guration

no

11.6 Verify that all API responses contain
X-Content-Type-Options: nosni� and
Content-Disposition: attachment;
�lename="api.json" (or other appropriate
�lename for the content type).

2013-A1-Injection no

11.7 Verify that the Content Security Policy V2
(CSP) is in use in a way that either disables
inline JavaScript or provides an integrity
check on inline JavaScript with CSP
noncing or hashing.

2013-A3-Cross-Site
Scripting

no

11.8 Verify that the X-XSS-Protection: 1;
mode=block header is in place.

2013-A3-Cross-Site
Scripting

no

16.1 Verify that URL redirects and forwards only
allow whitelisted destinations, or show a
warning when redirecting to potentially
untrusted content.

2013-A10-Unvalidated
Redirects and Forwards

yes

16.2 Verify that untrusted �le data submitted to
the application is not used directly with �le
I/O commands, particularly to protect
against path traversal, local �le include, �le
mime type, and OS command injection
vulnerabilities.

16.3 Verify that �les obtained from untrusted
sources are validated to be of expected type
and scanned by antivirus scanners to
prevent upload of known malicious content.

16.4 Verify that untrusted data is not used
within inclusion, class loader, or re�ection
capabilities to prevent remote/local �le
inclusion vulnerabilities.

38

16.5 Verify that untrusted data is not used
within cross-domain resource sharing
(CORS) to protect against arbitrary remote
content.

16.8 Verify the application code does not execute
uploaded data obtained from untrusted
sources.

16.9 Do not use Flash, Active-X, Silverlight,
NACL, client-side Java or other client side
technologies not supported natively via
W3C browser standards.

17.1 Verify that ID values stored on the device
and retrievable by other applications, such
as the UDID or IMEI number are not used
as authentication tokens.

17.2 Verify that the mobile app does not store
sensitive data onto potentially unencrypted
shared resources on the device (e.g. SD card
or shared folders).

17.3 Verify that sensitive data is not stored
unprotected on the device, even in system
protected areas such as key chains.

17.7 Verify that the application sensitive code is
laid out unpredictably in memory (For
example ASLR).

17.9 Verify that the app does not export
sensitive activities, intents, content
providers etc., for other mobile apps on the
same device to exploit.

17.11 Verify that the app's exposed activities,
intents, content providers etc. validate all
inputs.

18.1 Verify that the same encoding style is used
between the client and the server.

39

18.2 Verify that access to administration and
management functions within the Web
Service Application is limited to web service
administrators.

18.3 Verify that XML or JSON schema is in
place and veri�ed before accepting input.

18.4 Verify that all input is limited to an
appropriate size limit.

18.5 Verify that SOAP based web services are
compliant with Web
Services-Interoperability (WS-I) Basic
Pro�le at minimum.

18.6 Verify the use of session-based
authentication and authorization. Please
refer to sections 2, 3 and 4 for further
guidance. Avoid the use of static "API
keys" and similar.

18.7 Verify that the REST service is protected
from Cross-Site Request Forgery.

2013-A8-Cross-Site
Request Forgery

n/a

19.1 All components should be up to date with
proper security con�guration(s) and
version(s). This should include removal of
unneeded con�gurations and folders such as
sample applications, platform
documentation, and default or example
users.

2013-A5-Security
Miscon�guration,
2013-A9-Using
Components with Known
Vulnerabilities

no

40

6.2 Test cases and test report to verify OWASP ASVS 3.0 re-

quirement 3.6

OWASP ASVS 3.0 security requirement 3.6: �Verify that the session id is
never disclosed in URLs, error messages, or logs. This includes verifying
that the application does not support URL rewriting of session cookies� [7].

Test case 1

� Review the UXP Portal site tree composed by OWASP ZAP, make sure there are
no URLs that contain the value of JSESSIONID.

� Perform active scan with OWASP ZAP, see if medium priority alert "Session ID
in URL Rewrite" is in alerts list.

Test case 2

Make sure that UXP Portal does not support interchanging POST request for logging
in with GET request:

� Try to log in, using the following URLs (�rst insert valid portal address, organi-
zation index, username and password):

� https://<portal address>/login?loginForm1 _hf_0=&organization= <valid

index>&username=<username>&password=<pass>

� https://<portal address>/admin/login?loginForm1_hf_0=&username=<user-

name>&password=<pass>

� Make sure that you are not logged in.

Test case 3

Make sure that UXP Portal does not support URL rewriting of session cookies:

� Delete all UXP Portal cookies from browser.

41

� Use the browser to send a GET request to the following URL: https://<portal
address>/login;jsessionid=lcfjqjhad73crgm4l4moa7m

� Make sure that server does not accept the cookie in URL - server response contains
a Set-Cookie header to set a new JSESSIONID value.

Test case 4

Make sure that it is not possible to manipulate UXP Portal to send JSESSIONID
unencrypted by changing HTTP to HTTPS.

� Make a GET request to an authenticated page while logged in, but change HTTPS
to HTTP.

� View the request and response headers with OWASP ZAP, make sure that JSES-
SIONID is not sent via HTTP.

Test case 5

Review the logs:

� /var/log/nginx/access.log

� /var/log/nginx/error.log

� /var/log/uxp/portal/jetty/jetty.log

Make sure JSESSIONID is not enclosed in log entries.

Results

� In UXP Portal session IDs are by default sent over encrypted transport (HTTPS).
Session IDs are transferred in GET and POST request headers. POST request
for logging in cannot be successfully interchanged with GET request and URL
rewriting of session cookies is not possible.

42

� Session IDs are enclosed in URLs. In case the session cookie is deleted from the
browser (test case 3) and a GET request made to portal login page after that,
server reponds with code 302 and includes JSESSIONID in the Location header
and after that the URL in Location header is loaded in browser. An example of
a server response:

HTTP/1.1 302 Found

...

Set-Cookie: JSESSIONID=2tusft03upnf1kjoy9hw7i3eq;Path=/

...

Location: https://<portal address>:443/login;jsessionid=2tusft03upnf1kjoy9hw7i3eq?0

Due to session ID being enclosed in URL, in that case it is also logged in /var/log/nginx/
access.log.

� It is possible to manipulate client to send JSESSIONID unencrypted by chang-
ing HTTPS to HTTP. In case HTTPS is changed to HTTP in a GET request
(for example http://<portal address>/home), server answers with status code
301 Moved Permanently and redirects to https://<portal address>/home. One
HTTP request is sent that contains a session ID as well as orgLoginPath:

GET http://<portal address>/home HTTP/1.1

...

Cookie: JSESSIONID=16d6o140qag07j6i5et0ejva9;

orgLoginPath=d6cf8ffb-c841-451f-9c5c-678bb5655846

...

Server responds with:

HTTP/1.1 301 Moved Permanently

Server: nginx/1.8.1

Date: Mon, 29 Feb 2016 16:57:32 GMT

43

...

Location: https://<portal address>/home

Risks:

� Enclosing session ID in URL might disclose the session ID to attackers as the
URL containing the session ID can end up in logs, web browser history, browser
bookmarks and the HTTP header referer �eld.

� HTTP to HTTPS redirection produces a single unprotected HTTP request/response
exchange that can be used by a malicious attacker to sni� a valid session ID. If a
user is logged in to portal and attacker is able to convince a portal user to click
on a HTTP link to an authenticated portal page, valid JSESSIONID is sent by
HTTP request and in case attacker is able to sni� the network, attacker obtains
a valid session ID.

Recommendations:

� Session ID should never be enclosed in the Location header sent by the server.

� UXP Portal should avoid HTTP to HTTPS redirection. Instead HTTP Strict
Transport Security (HSTS) should be enforced to HTTPS connections, for exam-
ple: Strict-Transport-Security: max-age=15724800; includeSubdomains.

Additional information:

� https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

� https://www.owasp.org/index.php/HTTP_Strict_Transport_Security

6.3 Glossary

ASVS Application Security Veri�cation Standard

CA Certi�cate Authority

44

CC Common Criteria

CERT Computer Emergency Response Team

CMU Carnegie Mellon University

CSRF Cross-Site Request Forgery

HSTS HTTP Strict Transport Security

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

LDAP Lightweight Directory Access Protocol

NIST US National Institute of Standard and Technology

OWASP Open Web Application Security Project

PTES Penetration Testing Execution Standard

REST Representational State Transfer

SDLC software development life cycle

SP Special Publications

SQL Structured Query Language

TLS Transport Layer Security

UML uni�ed modeling language

URL Uniform Resource Locator

UXP Uni�ed eXchange Platform

WYSIWYG what you see is what you get

XSS Cross-site scripting

XML EXtensible Markup Language

ZAP OWASP Zed Attack Proxy

45

6.4 Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Karin Klooster (date of birth: 12th of May 1985),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Applying a Security Testing Methodology: a Case Study

supervised by Meelis Roos and Margus Freudenthal

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2016

46

