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ABSTRACT 

The light-harvesting antenna complexes from purple photosynthetic bacteria are 
convenient model systems to examine the poorly understood role of hydrogen-
bonds as stabilizing factors in membrane protein complexes. The non-
covalently bound arrays of bacteriochlorophyll chromophores within native and 
genetically modified variants of light-harvesting complexes were used to 
monitor local changes in the chromophore binding sites induced by externally 
applied hydrostatic pressure. A unique combination of optical spectroscopy 
with genetic and noninvasive physical (high-pressure) engineering applied in 
this work provides the first demonstration and quantification of the rupture of 
multiple hydrogen bonds in the bacteriochlorophyll binding pockets of the LH1 
and LH2 membrane chromoproteins with the individual bond-type (α and β) 
selectivity. While the membrane-bound complexes demonstrated very high 
resilience to pressures reaching 3 GPa, characteristic discontinuous shifts and 
broadenings of the absorption spectra were observed around 1.1 GPa for wild 
type LH1 and 0.5 GPa for wild type LH2 detergent-solubilized chromoproteins. 
These pressure effects, mostly reversible upon decompression, allowed 
estimating the rupture energies of the hydrogen bonds between the chromo-
phores and the surrounding protein in the LH1 and LH2 complexes. Quasi-
independent, additive role of H-bonds in the α- and β-sub-lattices in reinforce-
ment of the wild type LH1 complex was established. The protein stabilizing 
effects of glycerol, a co-solvent, of high protein concentration, as well as of the 
presence of native carotenoids and reaction centers are also demonstrated. This 
study thereby provides important insights into design principles of natural 
photosynthetic complexes. 
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1. INTRODUCTION (REVIEW OF LITERATURE) 

1.1. Photosynthesis 

Photosynthesis is a fundamental process that accumulates the Sun’s light energy 
into chemical energy. Photosynthesis can be performed by higher plants, algae, 
and bacteria. In plants and algae the light energy fixation is taking place in oxy-
genic conditions and the harvested light energy is transferred to split water 
molecule to produce hydrocarbons and O2, and to reduce CO2 into biomass. The 
bacterial photosynthesis is very variable because the diverse environments they 
adapt to live. In early condition of life on Earth, when the first living organisms 
appeared, the anaerobic environment was prevailing. The anoxygenic photo-
trophic bacteria, among them the purple anoxygenic photosynthetic bacteria, are 
suggested to be one of the earliest photosynthesis performing life-forms on the 
Earth [1,2]. The word “phototrophic” refers to a metabolic mode in which orga-
nisms convert light energy into chemical energy for growth. To grow and mul-
tiply, these organisms were expected to use light energy, and instead of splitting 
water like more modern plants and algae, they were consuming sulfur and nitro-
gen compounds as the source of electrons. 

The photosynthetic purple bacteria are model organisms for research of 
photosynthesis. Their name is connected to their coloration demonstrated in 
Figure 1 – the spring bottom where among the green algae lay areas of purple 
phototrophic bacteria showing intensive pink color. 

 
 

 
 

Figure 1. Purple photosynthetic bacteria mixed with green algae at the bottom of the 
spring [3]. 

 
 

Like most other photosynthetic bacteria, purple bacteria do not produce oxygen, 
because the reducing agent (electron donor) involved in photosynthesis is not 
water. In some bacteria called purple sulfur bacteria, it is either sulfide or ele-
mental sulfur. At one point these were considered families, but RNA trees show 
that the purple bacteria make up a variety of separate groups, each closer related 
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to the non-photosynthetic proteobacteria than one another [4]. Purple bacteria 
belong to the phylum Proteobacteria that produce bacteriochlorophyll a or b 
under oxic or anoxic conditions. Their RC-s contain heterodimeric cores with 
quinines as terminal electron acceptors and membrane-intrinsic caroteno-BChl 
antennae; many oxidize sulfide, thiosulfate, or H2 and fix carbon by the reduc-
tive pentose-phosphate (Calvin–Benson–Bassham) cycle. The trans-membrane 
light harvesting complexes investigated in this work mainly come from the 
purple non-sulfur bacterium Rba. sphaeroides, which is one of the most often 
exploited photosynthetic species for model studies of photosynthesis mecha-
nisms and structures of photosynthesis apparatus. 

 
 

1.2. Elements of photosynthesis apparatus  
of purple bacteria 

In bacteria the photosynthesis apparatus is arranged into continuous system of 
IC membranes [2]. The bacterial IC membranes may be organized into vesicles, 
tubules, thylacoid – like membranes sacs or highly organized membrane stacks. 
Schematic structure of a vesicle-like membrane that is characteristic to Rba. 
sphaeroides, the bacterial species studied in the present work, is shown in 
Figure 2. The spherical membrane is mainly populated by two types of light-
harvesting pigment-protein complexes, LH2 and LH1.  
 
 

 
 

Figure 2. Schematic view of the vesicle-like cytoplasmic photosynthetic membrane 
from Rba. sphaeroides [5]. Indicated with different colors are the LH2 (green), LH1 
(red), RC (blue), cytochrome bc1 (yellow) complexes, and the ATP synthase (orange). 
Notice the 10-nm scale bar at the left bottom corner of the figure. 



17 
 

The LH1 complex is directly encircling the RC complex forming a core RC-
LH1 complex, while the LH2 complexes are found in the periphery. The ratio of 
peripheral and core antennas are known to vary, depending on the light irradi-
ance during the growth of the bacterium [6]. Together, the core complex and the 
surrounding peripheral complexes, being in functional contact with the core 
complex, shape a functional entity called PSU [7] (see also [8] for a review).  

The sequence of processes taking place in photosynthetic apparatus of pho-
totrophic purple bacteria is schematically shown in Figure 3. Photosynthesis is 
triggered by the absorption of solar energy quanta, photons (wavy black arrow), 
by the light collecting system comprising multiple LH2 and LH1 complexes. 
The absorbed energy is subsequently donated to the RC by energy transfer 
mechanisms briefly explained below. In RC the excitation energy is trans-
formed into potential chemical energy by sequential electron transfer processes, 
whereby the primary electron donor of RC called special pair is oxidized and 
the electron transfer cofactors (see below) are reduced. At the last stage the qui-
none Q in RC is reduced to hydroquinone QH2. The QH2 then moves away from 
RC to the cytochrome bc1 complex reducing it. The reduced cytochrome bc1 
complex pumps protons across the membrane. The cytochrome c2 (blue) trans-
ports electrons back to the RC from the ubiquinone–cytochrome bc1 complex 
(yellow). The electron flow across the membrane, shown by blue arrows, in-
cludes a simultaneous proton movement producing the proton gradient. The 
generated this way proton gradient drives the synthesis of ATP from ADP by 
ATPase, as a result of the flow of protons through ATPase. 

 
 

 
Figure 3. Schematic representation of the working stages of the photosynthetic appa-
ratus in the intracytoplasmic membrane of purple bacteria. [9]. 

 
 

Energy transfer in PSU of photosynthetic bacteria is a well-studied area (see for 
reviews [9,10]). Figure 4 demonstrates the localization of photosynthetic chro-
mophores (BChls and carotenoids) in photosynthetic membranes (the protein 
components are discarded and the specific numbers indicated may vary, de-
pending on the literature source). The chromophores are packed inside the 
hydrophobic core of the proteins and are located in a way to grant the migration 
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of the absorbed photon energy to RCs along the energy lowering order 
Car>B800>B850>B875>RC, established by overlapping absorption regions. 
The excitation energy flow between peripheral LH2 and core LH1 antenna 
complexes with the closest approach of the chromophores from different comp-
lexes of 2–3 nm can be explained by the classical Fröster mechanism [11]. The 
neighboring BChl within the LH1 and LH2 ring structures are in much closer 
arrangement (see below). Strong resonant interactions between the transition 
dipole moments of the chromophores in these structures readily distribute the 
excited states over the full ring, forming so-called excitons. Excitons thus 
mainly transfer the solar excitation energy inside the peripheral and core an-
tenna complexes. 

It has been established by previous workers that energy transfers in Rba. 
sphaeroides membranes from Car to BChls in LH1 and LH2 complexes takes 
about 200 fs [12,13]. The efficiency of this transfer varies, being in LH2 be-
tween 70 % (when transferred directly to B850) and 30 % (when transferred 
through B800 to B850) [13–15]. The energy transfer from B800 to B850 mole-
cules within LH2 occurs in 1–2 ps [16–19]. The energy transfer time from LH2 
to LH1 is heterogeneous; it is measured to be less than 10 ps for 70% of exci-
tations and about 50 ps for the remaining part of excitations [16,17,20]. The 
energy transfer from LH1 to RC takes 35–50 ps and back transfer, 8–12 ps [21–23]. 

 
 

 
 
Figure 4. Schematic pathways of energy transfer in PSUs of purple bacteria. The 
strongly excitonically coupled BChl rings are shown in red (B875 in LH1) and green 
(B850 in LH2), respectively; the largely monomeric B800 BChls in LH2 and Car are 
correspondingly shown in violet and yellow colors. The periplasmic side is down and 
cytoplasmic side up. The energy flows towards RC are shown by black and backwards 
by red arrows. Shown also are the respective experimental and calculation (in brackets) 
excitation transfer times. Figure adapted from [24]. 
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1.2.1. Peripheral antennas 

The LH2 peripheral antenna pigment-protein complex of purple photosynthetic 
bacteria is one of the best characterized membrane proteins, apart from the RC 
pigment-protein complex (see below). The crystal structure of isolated LH2 
from Rps. acidophila strain 10050 [25] and Rhodospirillum molichianum [26] 
solved at 2.0 Å and 2.4 Å, respectively, reveal highly symmetric rings of 9 or 8 
dimeric pigment-protein subunits αβ-BChl2, each containing two (α and β) heli-
cal membrane-spanning polypeptides, three non-covalently bound BChl mole-
cules, and a Car pigment. The 25 residues of the α- and β-polypeptide chains 
form transmembrane α-helix, while the N- and C-terminus parts have a random 
coil structure. The α- and β-polypeptides form two concentric cylinders pro-
viding, respectively, inside and outside support to the cofactor rings between 
them, as shown in Figure 5. 

A most striking feature of the organization of the 27 BChl molecules in LH2 
from Rps. acidophila is their partition into two concentric rings, with the closest 
distance between the BChls in different rings being 18.4 Å. A ring of 18 tightly 
coupled (intermolecular separation <1 nm) BChl cofactors in a waterwheel-like 
arrangement are seen in the lumenal part of the photosynthetic membrane (bot-
tom side of figure 5B). It is responsible for the intense near infrared exciton ab-
sorption of the LH2 complex at about 850 nm (see part 1.3 for the optical pro-
perties of the bacterial LH complexes). The position of the B850 cofactors 
relative to each other is determined by the H-bonds to the surrounding protein 
as well as by the coordinating bonds between the central magnesium ion of the 
BChls and the highly conserved His residues of the apoproteins [27]. As 
demonstrated in Figure 5C, participating in H-bonding is only the α-polypep-
tide, which forms a short bent α-helical structure in C-terminal side carrying 
two H-bonding amino acids, αTyr44 and αTrp45 It also supports α Tyr41, rele-
vant for H-bonding in LH3, another bacterial antenna complex, briefly dis-
cussed below. Remarkably, the αTyr44 and αTrp45 residues from the α-poly-
peptide chain form H-bonds with the BChls belonging to two neighboring 
protomers, thus firmly tying the dimeric αβ-BChl2 protomers to each other. 
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Tyr44
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α-chain

Dimeric 
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Figure 5.Structure of the LH2 complex from Rps. acidophila, based on the X-ray 
crystallographic data of [25]: top view (A), side view (B, lumenal part down, cytoplas-
mic part up), and the blown up view of a subunit of the B850 ring containing 4 BChls 
that belong to two neighboring protameric subunits of the protein ring (C). Shown in 
blue are the α- and β- trans-membrane polypeptides; in green, the B800 BChls; in red, 
the B850 BChls; in black, the carotenoids. Panel C demonstrates that H-bonds (tur-
quoise dashed lines) to the two B850 BChls from the neighboring dimeric subunits (di-
mers I and II) are provided by two different amino acids of the same α-polypeptide: Tyr 
44 forms the bond with the α-side BChl and Trp45, with the β-side BChl. Notice that in 
the amino acid sequence of Rba. sphaeroides instead of Trp45 stands Tyr. The structure 
was created using the pdb data and Swiss-PdbViewer3.7.  

 
 

This might be the main reason why the multimeric LH2 protein withstands dis-
sociation into its dimeric sub-units under even very high detergent concen-
tration, differently from the LH1 complex (see the last part of this work). The 
B850 BChl molecules have their bacteriochlorin planes parallel to the symmetry 
axis of the complex. They are well protected from the outside medium by very 
tight hydrophobic parts of the α- and β-polypeptide walls. The core of the LH2 
complex is highly hydrophobic; in detergent-isolated complexes, it is filled with 
detergent [28]. Another ring of 9 BChl molecules (intermolecular distance ≥2 
nm) is located towards the polar cytoplasmic part of the membrane (top side of 
figure 5A); these chromophores are in charge of the absorption band peaking at 
800 nm. The central Mg2+ ions of B800 BChls are suggested to have ligation 
with COO-α-Met1; its C3-acetyl group is coordinated with βArg20 [25]. The 
B800 molecules have little support from outside, while there is a rigid α-poly-
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peptide wall from inside (see Figure 5B). The B800 and B850 spectral bands 
both are related to the lowest Qy singlet electronic transition observed in indi-
vidual BChl molecules, as will be in some detail explained below. Although the 
atomic-resolution crystallographic data for the LH2 complexes from Rba. 
sphaeroides – the major samples of the present study – are not available, low-
resolution projection data suggest their very similar organization to the com-
plexes from Rps. acidophila [29]. 

Variant peripheral antenna complexes called LH3 and LH4 develop under 
stressed (low light and/or low temperature) growth conditions of photosynthetic 
bacteria. Although highly homologous with the LH2 protein in terms of amino-
acid sequences, the LH3 complex from Rps. acidophila (strain 7750) [29] ap-
pears spectrally very different. Specifically, the main exciton absorption band in 
the LH3 complex peaks at ~820 nm, being several tens of nanometers up-shif-
ted relative to its position in regular LH2 (strain 10050). A couple of well-de-
fined differences in the H-bonding patterns of the 850 nm- and 820 nm-ab-
sorbing BChls have been identified [25,29] that might be responsible for the 
observed spectral differences. Firstly, the H-bond coordinating the β-BChls in 
LH2 with the surrounding protein is missing in LH3. There are thus 18 H-bonds 
in LH2 and only 9 H-bonds in LH3 coordinating the 18 Bchl molecules in the 
B850 or B820 rings, respectively, to the surrounding protein scaffold. Secondly, 
the α-BChls that in LH2 are H-bonded with αTyr44 is in LH3 tied to another 
protein residue, αTyr41. As a result, the C3-acetyl chain, which in LH2 com-
plexes is almost parallel to the BChl macrocycle plane, tilts in LH3 significantly 
out from that plane. Based on theoretical calculations [30], it was suggested 
[29] that the altered torsional angle of the C3-acetyl group dominates in the blue 
shifting of the B820 band in LH3. By analyses of the antenna absorption and 
polarized fluorescence excitation spectra measured at 5 K, significant modi-
fications of antenna exciton properties were also revealed [31]. It was hence 
confirmed that in LH3 complexes almost the entire red shift of the absorption 
band (relative to the absorption of individual BChls) has exciton origin, whereas 
in regular LH2 complexes the exciton mechanism is responsible for just slightly 
over half of the absorption band shift. 

 
 

1.2.2. Core antennas 

In phototrophic bacteria such as Rba. sphaeroides, peripheral LH2 complexes 
donate energy to the LH1 complexes, which encircle the RCs, forming a core 
RC-LH1 complex. Low-resolution structural models of core complexes have 
been obtained for a number of species [32–35]. Like in LH2 complexes, the 
basic building block for in vivo assembly of the LH1 complex is a αβ-BChl2 
heterodimer of membrane-spanning α-helical α- and β-polypeptide, with each 
apoprotein noncovalently binding one BChl molecule [36] (see Figure 6). The 
organization of bacterial core complexes can vary, and consists of 15 [33], 16 
[37], or 28 [34] such dimeric structural elements. In WT Rba. sphaeroides, open 
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C- or S-shaped antenna structures encircling one or two RCs in planar or non-
planar geometry are known to coexist in photosynthetically grown cells [6] as 
shown in Figure 7. 

Due to the multimeric nature of these complexes, where each WT αβ-BChl2 
subunit has two H-bonds, one to α- and another to β-polypeptide, the total num-
ber of H-bonds per LH1 complex is large: 32 in the LH1-only and RC-LH1 mu-
tant complexes, 56 in the RC-LH1-PufX dimer complex, and 28 in the RC-
LH1-PufX monomer complex. Two point mutations of the RC-LH1-PufX 
complexes that eliminate the H-bonds to specific BChls at positions αTrp+11 and 
βTrp+9 have been constructed [38]. These αTrp+11 or βTrp+9 mutants will have 
half the number of H-bonds of the equivalent WT complex. 

 
 

 
 

Figure 6. Diagrammatic representation of the core LH complexes. Each red square 
represents the αβ-BChl2 heterodimer ‘building block’ of the LH1 complex. Below are 
two views of the αβ-BChl2 subunit based upon the atomic structure of the LH2 complex 
from Phaeospirillum molischianum, together with mutagenesis, atomic force micro-
scopy, and cryo-electron microscopy data [34,35,39,40]. The two residues that have 
been altered from Trp to Phe in the αTrp+11 and βTrp+9 mutants are in stick represen-
tation, whilst the rest of the transmembrane polypeptides are depicted as a ribbon. The 
BChls and the H-bond partners are also shown. 
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Figure 7. (a, b) Models of the Rba. sphaeroides RC-LH1-PufX core complexes pro-
posed in [41–44]. The α- and β-transmembrane helixes are shown in orange and blue, 
respectively, RC complexes in green, PufX complexes in red, BChls in purple. Top: 
side view along the membrane plane; bottom: a view from above. (c) A perspective 
view of a segment of the tubular photosynthetic membrane composed solely from the 
RC-LH1-PufX core complexes. 

 
 

1.2.3. Reaction centers 

In the RCs, the excitation energy is transformed into potential chemical energy 
by a sequence of ultrafast charge separating electron transfer processes in a 
membrane. The best characterised RC systems are found in purple nonsulfur 
bacteria. The X-ray crystal structure of the bacterial RC has been determined 
with nearly atomic resolution [45], giving us a detailed picture of the positions 
and orientations of the redox active pigments as well as a structural basis for 
understanding the important protein-pigment interactions. In Rba. sphaeroides 
the electron transfer system consists of a dimer of BChl molecules – the primary 
donor of electrons (customarily denoted as P), two accessory BChl molecules 
(BA and BB), two molecules of bacteriopheophytin (HA and HB), and two 
quinones (QA and QB). As shown in Figure 8, these electron transfer cofactors 
are arranged in two approximately symmetric branches, termed L and M, that 
span the membrane, but only the L branch, involving BA, HA, and QA, is photo-
chemically active under normal conditions.  
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Figure 8. A side view of the RC from the photosynthetic bacterium Rba. sphaeroides. 
The quasi-two fold symmetry axis, which runs vertically and is perpendicular to the 
membrane plane, creates pairs of identical cofactors, yet with very different properties. 
http://mcb.illinois.edu/faculty/profile/cwraight 

 
 

The overall sequence and kinetics of the electron transfer process is well known 
[46] (Figure 9). Photoexcitation of P results in the transfer of an electron from 
P* (an excited state of P) to HL in a few picoseconds. The recombination yield 
is less than 1 % and the energy stored within the relaxed charge separated state 
P+ HA

–, is 84 % of the excitation energy of P*. No artificial donor-acceptor 
system can match these values. The subsequent stabilizing reaction, involving 
electron transfer from HA to QA occurs in approximately 200 ps. Further elec-
tron transfer from QA to QB is already much slower and takes about 200 s. The 
doubly reduced QB is protonated from the external medium [46]. 

 
 

 
 

Figure 9. Schematics of light-induced electron transfer processes in bacterial RCs. Pic-
ture credit: N.Woodbury. 
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1.3. Excitons in cyclic bacterial light-harvesting complexes 

The spectroscopic properties of LH1 and LH2 chromoproteins have been exten-
sively studied [9,47–49]. While free in organic solvents, the lowest singlet (Qy) 
electronic transition of BChl is located in the near infrared region at ~775 nm 
[50,51]. Significant red shifts of this transition are observed in the antenna 
systems. Major absorption bands in LH2 and LH1 complexes from Rba. sphae-
roides peak at 850 and 875 nm. That is why they are called the B850 and B875 
bands, respectively. The spectroscopic equivalent of the αβ-BChl2 dimeric 
subunit of LH1 is called B820, showing a maximum at 820 nm [52]. The large 
shifts of the spectra of the BChl oligomers with respect to the spectra of mono-
meric BChl molecules in normal solvents are primarily related to unique arran-
gement of the BChl chromophores imposed by the surrounding protein scaffold, 
which promotes strong inter-pigment (exciton) interactions. 

Availability of the high-resolution structural data of the LH2 complexes has 
made it possible to study exciton interactions within the B850 system tho-
roughly (see [48,53–57] for reviews). The 18 strongly coupled BChl molecules 
are arranged into two interspaced C9 symmetrical rings. Interactions between 
the Qy transition dipole moments of these molecules split the resulting 18 exci-
ton states energetically into a broad exciton band schematically shown in Figure 
10. The general circular geometry of the BChl aggregate determines that majo-
rity of the transition dipole moment is concentrated into the k=±1 states at the 
low-energy exciton band edge, which shape the characteristic B850 absorption 
band of LH2. The origin of the B875 spectra of the cyclic core complexes is 
similar. The only major difference is that the exciton band contains more states 
(being in the lowest order of approximation equal to the number of the BChl 
molecules in the specific aggregate, 56 in the RC-LH1-PufX complex, for 
example) and their energy density is higher [44]. 

The 9 BChls in the B800 ring on the cytroplasmic side of the complex are 
widely separated (~2 nm); therefore these chromophores are commonly con-
sidered to be monomeric. The B800 band shift from the molecular 775-nm 
absorption is mainly determined by interactions between the chromophores and 
the surrounding protein. Universal dispersion interactions aside, the factors that 
contribute most to the solvent/protein shifts are H-bonds to the C3-acetyl 
carbonyl of the B800 BChls [58,59] and various conformational interactions 
[30,60]. 
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Figure 10. Idealized exciton level structure (bars) for the 18 BChls in the cyclic B850 
LH complex shown on the left hand side. The two k=±1 exciton states, which possess 
nearly all the oscillator strength for the transitions from the ground state are highlighted 
with red. Dashed arrow designates weak absorption from the ground state g to the lo-
west-energy k=0 exciton state, which is optically (nearly) forbidden. 

 
 

1.4. Pressure as a thermodynamic variable 

Pressure governs the equilibrium of physicochemical processes according to the 
Eq. 1: 
 

 

ln K V

P RT

 
 


, (1) 

 
where K is the equilibrium constant, P is the pressure , ΔV is the partial molar 
volume change, R is the universal gas constant and T is the absolute (thermo-
dynamic) temperature. Pressure shifts the equilibrium towards the state with the 
lowest volume – the rule called Le Chatelier principle. 

The pressure also affects reaction rates. The dependence of the rate constant, 
k, on pressure is determined by the activation volume Va of the reaction: 
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Pressure as a physical (thermodynamic) variable is different from temperature. 
By changing temperature one simultaneously affects both the internal energy 
and the volume (via thermal expansion) of the system, whereas pressure acts 
only to the volume of the system. 

 
 

1.5. Proteins under pressure 

The first report about action of high pressure on a protein was by Bridgman 
almost exactly a hundred years ago. He also showed that the egg white protein 
denatures irreversibly under the applied pressure of several 100 MPa [61]. 
Second half of the last century marks the advent of high-pressure studies of 
proteins. To date many water-soluble globular proteins have been investigated 
under high pressures, with the result that functional protein structures cover just 
a narrow region in the phase diagram around physiological temperatures [61–
64]. Relatively little is still known about pressure effects on integral membrane 
proteins, which is the main tasks of the present study. 

Apart from purely scientific curiosity, there are two practical motivations 
behind high pressure studies of proteins. One is the evolutionary ability of li-
ving organisms to adjust to harsh environmental conditions like high pressures 
[65]. The highest pressure in the biosphere is at the bottom of the Mariana 
Trench in the Pacific Ocean reaching about 110 MPa (1.1 kbar), and some life 
forms have been discovered there. The second practical motivation is pasca-
lization, i.e., preserving and sterilizing foods through high pressure processing, 
where pressures in the range of 100–800 MPa are routinely used [66]. 

Proteins are complex assemblies of polypeptides that possess secondary, 
tertiary, and quaternary structure. Protein functional folds (conformations) are 
mainly determined by relatively weak (compared with the firm covalent bonds 
that govern the protein primary structure) interactions like H-bonding, hydro-
phobic interactions and certain ionic interactions. Proteins may also contain co-
factors bonded by covalent or non-covalent bonds (H-bonds, coordination 
bonds, and hydrophobic interactions). All structurally important protein inter-
actions are in principle influenced by external pressure, the pressure effects 
being reversible (elastic) or non-reversible (plastic). It is common practice in 
case of the soft protein matter, justified at not too high pressures, that pressure 
modifies only weak intra- and intermolecular interactions, leaving the covalent 
bonds (and the respective structures) mostly unchanged. 

From the literature, it is known that most of the multi-chain (multi-domain) 
soluble proteins dissociate at room temperature already below 0.2 GPa [63], 
while small monomeric proteins easily survive pressures in the range of 0.4–0.8 
GPa [63,65]. Following Eq. 1, the high-pressure denaturation processes are dri-
ven by a decrease in volume, which results from both the release of intra-
molecular voids [67] or/and the exposure of the interior of the protein to a polar 
solvent [68,69]. The protein structure and folding is intimately connected to 
hydrophobic interactions. Molecular dynamic simulations together with experi-
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mental results show correlations in protein denaturation and changes in water 
structure [70]. The water as the main biological solvent has well-known 
anomalies, which are due to existence of the H-bond network. Under high pres-
sure the structure of water changes, and so do hydrophobic effects [70]. 

H-bond energies in simple model compounds and small peptides, generally 
found to be between 4 and 20 kJ/mol, have been investigated in great detail 
[71,72]. This is not the case for folded globular proteins, and especially for 
membrane proteins, where individual H-bonds are much more difficult to 
characterize [73,74]. As brought out by NMR spectroscopy, the H-bond net-
work in proteins is highly heterogeneous [75]. This is in agreement with variant 
H-bond strengths demonstrated in [76,77] for polypeptide chains. The previous 
publications have revealed that H-bonds in the secondary and tertiary structures 
of the proteins may be either widely insensitive to pressure [78] or promoted by 
it [79,80]. This seemingly contradictory information can be explained by the 
fact that each protein structure is unique. 

Scanning calorimetry and titration with chemical denaturants such as urea 
are commonly used to study H-bond energies of proteins; however, since they 
probe the unfolding of the whole protein, they do not usually yield any bond-
specific information. Moreover, scanning the temperature at constant pressure, 
as in calorimetry, causes simultaneous changes of the system’s energy and its 
volume/density that are difficult to separate. Denaturants are often chemically 
active and may also modify the solute properties. For these reasons, the usage in 
the present work of pressure, rather than temperature, has significant advan-
tages. 

 
 

1.6. Thermodynamic approach to protein  
stability against pressure 

In the simplest version of the thermodynamic modeling just two global protein 
states, native (N) and denatured (D), are assumed. In the present case, the N 
state corresponds to the protein at ambient pressure, while the D state, to its 
compressed state with broken H-bonds [63,64,81]. The thermodynamic stability 
of a protein is characterized by a change in Gibbs free energy upon the equi-
librium transition from the N state to the D state. The equilibrium constant of 
this two-state reaction is given by Eq. 3, where N and D indicate the con-
centrations of native and denatured protein, respectively, R is the universal gas 
constant, T is the thermodynamic temperature, and P is the pressure 

 

 
       / exp /K P D N G P RT     . (3) 

 
In the linear approximation, the pressure dependence of the free energy  
change associated with the protein denaturation can be represented as 
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  0 0G P G V P     , where 0 0 0
D NG G G    is the standard Gibbs free 

energy difference between the denatured and the native states, and 
0

D NV V V    is the standard partial molar volume change between the 

states. ΔG0, has to be positive in order for the protein to be stable. If the volume 
of the denatured state is smaller than the volume of the native state, i.e., ΔV0 is 
negative, the free energy change decreases with increasing pressure. Past the 
transition midpoint pressure, P1/2, the denatured state has lower free energy and 
is thus stabilized against the native state. 

A connection of this minimalistic model with the spectroscopic experiment 
is established by calculating the pressure-dependent equilibrium constant as 

 

 
     /i fK P P P               , (4) 

 
where Δν(P) is the relative peak shift at pressure P (as plotted in Fig.18A), and 
Δνi and Δνf are the shifts measured at initial (i) and saturating final (f) pressures, 
respectively. Taking logarithm from both sides of Eq. 3 results in linear 
equation with respect to pressure  

 

 
  0 0lnRT K P G V P    

.  (5) 
 

Solution of Eq. 5 with Eq. 4 in place of K(P) provides the prime model 
parameters, ΔV0 and ΔG0, as the slope and initial (P=0) value, respectively; 
additionally, P1/2 can be found from the phase boundary condition: 

0 0
1/2 0G V P    . This way the valuable thermodynamic parameters char-

acterizing protein stability against high pressure are evaluated from spectro-
scopic data. Graphical presentation of of Eq. 5 is shown in Figure 11. 
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Figure 11. Graphical presentation of Eq. 5 to find the model parameters ΔG0, ΔV0, and 
P1/2. 
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2. AIMS AND OBJECTIVES OF THE STUDY, AND 
THE MAIN EXPERIMENTAL APPROACH 

As it was noted in previous paragraphs, there is a lack of general understanding 
of the mechanisms, which contribute into structural and functional stability of 
proteins, especially of integral membrane proteins. The current work is a step 
forward toward this goal, concentrating on H-bonds, the major stabilizing factor 
in any protein. The challenge is that there are generally too many different  
H-bonds in proteins as well as too little atomic-level structural data available 
about the proteins to obtain meaningful information about particular H-bonds. 
Therefore, for the present study, we were looking for the membrane proteins for 
which high- or at least medium-resolution structural data existed. The cyclic 
LH1, LH2, and LH3 LH pigment-protein complexes found in photosynthetic 
membranes of purple bacteria meet this requirement. It has been shown [25,82–
84] that in bacterial pigment-protein complexes the intrinsic BChl chromo-
phores participate in the well-defined H-bonds to the surrounding protein. It has 
also been established [85] that integrity of the protein complexes can be moni-
tored with sub-nanometer spatial resolution by the so-called molecular probe 
method, using absorption (or fluorescence) spectra of the chromophores as 
spatially local and sensitive optical probes. This is the experimental approach 
used in the present work to study, identify, and quantify the energetics of 
individual H-bonds that undergo major changes under externally applied hydro-
static high pressure. 

The objectives of this work are: 
(i) To develop the non-invasive high-pressure methodology for studying the 

energetics of the H-bonds in membrane chromoproteins. 
(ii) To apply this method for investigation of the stability of native and gene-

tically engineered variants of LH membrane chromoproteins from Rb. 
sphaeroides and other species against hydrostatic high pressures reaching  
3 GPa. 

(iii) To compare high-pressure stability of detergent-isolated and the native 
membrane-embedded LH complexes. 

(iv) To quantify H-bond energies, which structurally stabilize the BChl chro-
mophores in bacterial LH complexes. 

(v) To examine the roles of RC, carotenoids, protein/detergent ratio, and co-
solvents such as glycerol in stabilizing the LH chromoproteins against 
pressure. 
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3. MATERIALS AND METHODS 

3.1. Materials 

The samples studied in this work are membrane chromoproteins from the photo-
synthetic purple bacterium Rba. sphaeroides. They were kindly provided to us 
through collaborations with the biochemists from the Sheffield University 
(group lead by Prof. N. Hunter). 

The Rba. sphaeroides DD13 deletion strain [86], manipulated to remove the 
genes encoding the LH2, LH1 and RC complexes, was complemented with 
plasmid-borne copies of the puf BALMX genes to produce photosystems 
containing only the LH2, LH1, monomeric RC-LH1, or dimeric RC-LH1-PufX 
complexes. 

The same strain was used to produce different H-bond mutants and caro-
tenoid mutants of LH2 and LH1 complexes. The point mutations were intro-
duced into either the pufA or pufB gene encoding α- and β-apoproteins, re-
spectively, in LH1 or LH2. In the LH1 complex, one of these mutations 
(αTrp+11Phe) alters the tryptophan that H-bonds to the C3-acetyl carbonyl group 
(IUPAC numbering) of one of the BChls in the αβ-BChl2 structural unit [38,40], 
the other, βTrp+9Phe, disrupts the H-bond to the C3-acetyl carbonyl group of the 
other BChl [38]. The LH2 α-mutant has a mutation in the αTyr44 site to Phe 
that disconnects the H-bond to the BChl close to the α-apoprotein chain. In the 
αβ-mutant of LH2 both BChl molecules in the αβ-BChl2 unit have lost their H-
bonds to the protein due to the mutations of αTyr44 to Phe and αTyr45 to Leu 
[25,87,88] (see Figures 5 and 6). 

The carotenoid mutant strain DD13/G1, further indicated as CrtC-, has mu-
tation in the crtC gene, which changes the native mixture of spheroidene and 
spheroidenone (those carotenoids determine the purple color of the WT sample) 
to neurosporene and its derivatives. This results in green coloration of the mu-
tant sample [86]. The B800-deficient mutant of the same strain with destabi-
lized B800 binding site (B800- for short) was produced as described in [56]. 

Unfortunately, not all kinds of mutants are available to from a “full set”, 
mostly because they proved not to be sufficiently stable even under normal 
conditions. For this reason, for instance, our list of samples misses isolated αβ-
mutant LH2 complexes or the Trp+11Phe + Trp+9Phe double mutant. 

 
 

3.2. Sample preparation 

As follows we will describe procedure of preparation protein samples for high-
pressure spectroscopy measurements. Since the technology is different for na-
tive membrane-bound complexes and detergent-isolated complexes, they will be 
evaluated separately. Common to all samples, is that they are stored at liquid 
nitrogen temperature and thawed prior the experiments. The samples are diluted 
with TEN or HEPES buffer to obtain a reasonable optical density of about 0.3–
0.4 at the B850 or B875 absorption band maximum in the assembled sample 
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cell (about 10 per 1 cm optical path). Buffering ability of the TEN and HEPES 
buffers is preserved over a broad pressure and temperature range [89,90]. 

For overview, the buffers and detergents used for preparing the studied 
samples are gathered into Table 1. 

 
 

Table 1. Buffers and detergents used for preparing the samples from Rba. sphaeroides. 

Sample Buffer Detergent 

WT IC membrane vesicles TEN  NA 

CrtC- IC membrane vesicles 20 mM HEPES pH 7.5, 1mM 
EDTA 

NA 

iLH2 TEN  44 mM LDAO 

mLH2 TEN  NA 

iLH2 (CrtC-) 20 mM HEPES pH 7.8 3–131 mM LDAO 

mLH2 (CrtC-) 20 mM HEPES pH 7.8 NA 

iLH2 (B800-) 20 mM HEPES pH 7.8 44 mM LDAO 

mLH2 (B800-) 20 mM HEPES pH 7.8 NA 

iLH2 (B800- + CrtC-) 20 mM HEPES pH 7.8 44 mM LDAO 

mLH2 (B800- + CrtC-) 20 mM HEPES pH 7.8 NA 

mLH2 (α-mutant) 10 mM TRIS-HCl, pH 7.9, 1mM 
EDTA 

NA 

mLH2 (αβ-mutant) 10 mM TRIS-HCl, pH 7.9, 1mM 
EDTA 

NA 

iLH1 10 mM TRIS-HCl, pH 7.9, 1mM 
EDTA 

3 mM DHPC 

mLH1 10 mM TRIS-HCl, pH 7.9, 1mM 
EDTA 

NA 

iRC-LH1 10 mM TRIS-HCl, pH 7.9, 1mM 
EDTA 

3 mM DHPC 

mRC-LH1 10 mM TRIS-HCl, pH 7.9, 1mM 
EDTA 

NA 

iRC-LH1-PufX 20 mM HEPES pH 7.8 6 mM β-DDM 

mRC-LH1-PufX 20 mM HEPES pH 7.8 NA 

iRC-LH1-PufX (Trp+9Phe) 20 mM HEPES pH 7.8 6 mM β-DDM 

mRC-LH1-PufX (Trp+9Phe) 20 mM HEPES pH 7.8 NA 

iRC-LH1-PufX (Trp+11Phe) 20 mM HEPES pH 7.8 6 mM β-DDM 

mRC-LH1-PufX (Trp+11Phe) 20 mM HEPES pH 7.8 NA 



33 
 

3.2.1. Native and mutant membrane-bound complexes 

WT and CrtC- mutant chromatophores were diluted with buffers containing 20 
mM TRIS-HCl (pH 8.0), 1 mM EDTA, 0.1 M NaCl and 20 mM HEPES (pH 
7.5), 1 mM EDTA, respectively. 
The LH2-only membranes were diluted with a buffer of 20 mM TRIS-HCl (pH 
8.0), 0.1 M NaCl, 1mM EDTA or 20 mM HEPES (pH 7.8). 
The LH2 H-bond mutant membranes were diluted in 10 mM TRIS-HCl (pH 
7.9), 1 mM EDTA. 
The 20 mM HEPES (pH 7.8) buffer was used for dilution the B800 deficient 
LH2 membranes. 
The LH1 samples of membrane origin were diluted with 20 mM HEPES (pH 
7.8) buffer or with 10 mM TRIS-HCl (pH 7.9), 1 mM EDTA. 

 
 

3.2.2. Detergent-isolated complexes 

It is widely believed that detergents above the critical micelle concentration 
closely mimic the embedding of the proteins in native membranes [91]. The 
critical micelle concentration for the detergents used in this work is as follows: 
0.17 mM for β-DDM [92], 1.2 mM for LDAO [93], and 1.4–1.8 mM for DHPC 
[94,95]. 

The isolated LH2 complexes from Rba. sphaeroides were diluted with a 20 
mM HEPES pH 7.5 buffer containing varying concentration of LDAO in order 
to tune the LH2 protein concentration in sample cell. The protein concentration 
was estimated based on the optical density of the sample and the known molar 
extinction coefficient of the LH2 chromoproteins (170 mM-1BChl-1 cm-1 [96]). 
The LH2 protein concentrations in different samples between 2 and 7 μM were 
this way determined. According to [96], to ensure well-isolated LH2 complexes 
in detergent micelles, the ratio of LDAO and protein molecules (D/P for short) 
should be in the order of 103 or more. This conclusion is supported by the mea-
surements in this work (see paragraph 4.3.1.1). Commonly, LDAO concent-
rations exceeding 44 mM (or 1% in w/w units) were used in our measurements. 

The 20 mM HEPES, pH 7.8 buffer for isolated core (LH1, RC-LH1, RC-
LH1-PufX and RC-LH1-PufX mutants) complexes additionally contained 
detergent DHPC or β-DDM. The concentrations of used detergents (3 mM 
DHPC and 6 mM β-DDM) maintained the integrity of the core complexes at 
ambient pressure; the DHPC-solubilized complexes remained stable under ele-
vated pressures for at least 20 hours at ambient temperature, which was more 
than sufficient for our present trials. 
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3.3. High-pressure spectroscopy 

3.3.1. Diamond anvil high pressure cell 

A commercial diamond anvil cell (DAC, D-02, Diacell Products Ltd.) shown in 
Figures 12 and 13 was used to create high pressures. The sample solution is 
injected into a 0.3 mm-diameter hole in about 0.35-mm thick stainless steel 
gasket, preindented between the anvils under small pressure. The gasket loaded 
with probe is squeezed between two diamonds. Pressure is achieved by tighten-
ing screws one by one to push the diamond, which is glued to the moving piston. 

 
 

3.3.2. Pressure detection 

A ruby-microbead pressure sensor (RSA Le Rubis SA) mounted directly into 
the sample volume was used to determine the pressure inside DAC. The sensor 
luminescence at 694.2 nm (R2 line) was excited with a Nd:YAG laser at 532 nm 
and was recorded in transmitted light mode by means of a 1.5 m focal length 
Jobin-Yvon TH150 spectrograph equipped with a CCD (charge coupled device) 
camera. The accuracy of the pressure measurements (defined as the pressure 
needed to shift the emission line at the output of the spectrograph by one CCD 
camera pixel) with this apparatus is 20 MPa. In some measurements a Sm2+-
doped SrFCl micro-crystalline pressure sensor emitting at 690.3 nm was used. 
The pressure sensitivity equal to –23.05 cm-1/GPa [97] of the Sm2+-sensor is 
much greater than it is for the ruby sensor: –0.77 cm-1/GPa [98,99]. Pressure 
dependencies for both sensors are perfectly linear over a broad pressure range. 

 
 

 
 

Figure 12. The diamond anvil cell (DAC D-02) on the stand in the pressure measure-
ment setup. The cell is in the middle, aside a AAA battery for size comparison. 
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We have verified on two samples (isolated WT LH1 complexes and isolated 
CrtC- mutant LH2 complexes) that there is very little alteration in the spectra 
when temperature was deliberately varied between 15 and 25ºC. However, 
owing to high sensitivity of the R-lines of ruby on temperature (1 degree in 
temperature converts to ~19 MPa change in pressure [98,99]), stabilization of 
temperature when conducting DAC experiments is critical. In our trials DAC 
was tightened to the thermoelectrically stabilized base, thereby securing the 
sample temperature within 22 ± 0.5ºC, consequently the pressure uncertainty 
within ± 10 MPa. 
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Figure 13. (A) Schematic cross-section of the DAC and (B) a photo of the gasket hole 
area filled with a probe and the ruby micro-bead pressure sensors (two shades on the 
right). 

 
3.3.3. Spectral measurements 

Mostly absorption spectra have been measured in this work. Fluorescence 
spectra were measured only occasionally to check integrity of the samples. By 
falling apart the proteins BChl molecules in the solvent phase give rise to a 
characteristic fluorescence emission at 780–790 nm. The absorption/transmis-
sion spectra of the samples (consisting of isolated LH complexes, membrane 
bound LH complexes and chromatophores at ambient pressure and temperature) 
were recorded using a 0.3 m spectrograph (Shamrock SR-303i, Andor Techno-
logy), equipped with a 150 lines/mm grating (blaze at 800 nm) and a thermo-
electrically cooled CCD camera (iDUS DV420A-OE, Andor Technology). The 
light of an optical feedback-controlled 5 V tungsten incandescent lamp was 
passed through the sample in DAC and focused by a set of lenses on the en-
trance slit of the spectrograph. Spectral resolution of this apparatus with the 25 
μm wide input slit is 0.56 nm/pixel. The pressure was changed stepwise with an 
average rate of 25–30 MPa per minute. The spectra, recorded with ~1 min 
acquisition time, were measured with increasing as well as with decreasing 
pressure. Slow residual red shift of the absorption band up to several nano-
meters was observed in the pressure region of protein denaturation, which 
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kinetics changed with pressure and temperature. We evaluated this potential 
source of experimental error on a control sample by prolongation of the data 
acquisition time up to 100 min. The variations of the so-deduced energetic para-
meters remained within the uncertainty limits determined by other experimental 
factors. Therefore, to avoid long-time protein deterioration, we stayed with the 
1-min acquisition time. The same setup was used for fluorescence measure-
ments, with the exception that fluorescence was excited at 594 nm. Occasio-
nally, absorption spectra were also taken using a commercial V-570 spectro-
photometer (Jasco) with a spectral resolution of 0.2 nm. 

 
 

3.4. Data analysis and estimations  
of the experimental error 

The sample spectra at each pressure were first corrected by subtracting a refe-
rence spectrum that was measured in DAC filled with a pure buffer (or buffer-
detergent) solvent. This procedure, commonly adequate for simple solutions, 
gives setbacks in case of strongly scattering colloidal solutions and solidified 
solutions. Therefore, in most cases the background was formally approximated 
with a power function of wavelength, λ, in the form of A + Bλ-1+ Cλ-2 + Dλ-3, 
where A, B, C, and D were adjustable parameters.  

The thus corrected optical spectra were then analyzed in terms of the spectral 
band positions and widths using curve fitting programs available in Origin 6.0 
(Microcal Software, Inc.). In most measurements the estimated accuracy (stan-
dard deviation within 95% confidence level) of band positions and widths was 
4–5 cm-1 (0.3–0.4 nm). 2 to 5 repeat measurements have been usually carried 
out to check reproducibility of the measurements. Reasonable reproducibility of 
the data in the lower pressure region below ~1000 MPa was observed. In 
contrast, the data obtained at pressures above 1000 MPa usually demonstrate 
rather poor reproducibility. This is mostly because of non-hydrostatic pressure 
distribution in highly viscous (such as the buffer-glycerol mixture) or solid 
protein solutions. In these cases the given errors of the parameters represent 
standard deviations of the mean that is associated with regression analysis of the 
data points for individual measurements. 

If not indicated otherwise, experimental uncertainties (standard deviation of 
the mean) for the midpoint pressures (P1/2) are ± 10 MPa, ± 5 kJ/mol for the free 
energy changes (ΔG), and ± 5 ml/mol for the partial molar volume effects (ΔV). 
Those estimated errors count possible uncertainties due to sample preparation 
(uncontrolled variations in the sample properties, in protein detergent ratio, and 
sample handling during DAC loading etc.) as well as due to temperature varia-
tions as explained above. 
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4. RESULTS AND DISCUSSION 

4.1. Overview of the optical absorption spectra of the 
samples under ambient conditions 

4.1.1. Peripheral antenna complexes 

Figure 14 presents the overview optical absorption spectra of a representative 
set of the studied LH2 complexes from Rba. sphaeroides. The spectra recorded 
at ambient temperature and pressure of the detergent-isolated and native mem-
brane-bound complexes are very similar. As can be seen in Table 2, the relative 
shifts of the key absorption bands for the membrane-embedded (m) and LDAO-
isolated (i) LH2 complexes remain within the experimental uncertainty. A 
comparison with the spectrum of BChl in diethyl ether implies that the bands of 
the BChl chromophores in protein surrounding peaking around 800 and 850 nm 
are related to the Qy molecular electronic transition, while those peaking around 
590 nm are associated with the Qx

 transition. The broad absorbance toward 
shorter wavelengths from Qx is due to Car cofactors within the LH2 protein 
closely associated with the BChl cofactors (see Figure 14). The Car content in 
WT LH2 is a still ill-defined mixture of spheroidene and spheroidenone [100]. 

Origin of the absorption spectra of LH complexes was discussed in Intro-
duction. The B850 band is strongly red-shifted (toward longer wavelengths) 
compared with the B800 band of loosely packed BChls in the B800 ring (as 
well as the Qy band in monomeric BChl) because of strong exciton coupling 
[101]. The stronger B850 exciton coupling compared with B800 clarifies not 
only the splitting between these bands but also the larger width of the B850 
band. The Qx transitions of the BChl molecules belonging to the B800 and B850 
arrangements apparently overlap. This can be interpreted as arising from the 
relatively weak oscillator strength of the Qx transitions, leaving the transitions in 
all participating molecules almost localized. More details about exciton spectra 
of LH2 complexes and their temperature dependencies can be found in [57]. 

Mutations introduced into the WT LH2 complexes generally lead to modi-
fications of their optical spectra. In the CrtC- mutant LH2 complexes the native 
carotenoids are replaced by neurosporene. Compared with the structure-less 
spectrum of the native mixture, the neurosporene spectrum is clear-cut as well 
as blue shifted, showing three sharp peaks between 430 and 490 nm (see Figure 
14 below). Replacement of the WT carotenoids with neurosporene does not 
significantly influence the electronic transitions of the BChl cofactors. Yet it 
essentially compromises the structural integrity of the LH complexes, as will be 
shown subsequently. 

A slight red shift of the B850 band in the B850-only (B800-) mutant as com-
pared with the WT complex has been noted [102]. It was explained by some-
what enhanced exciton coupling in this complex, presumably because the mis-
sing B800 molecules allow tighter packing of the protein around the B850 array 
of chromophores. A weak shoulder around 795 nm in the spectrum of the B800 
deficient mutant is most probably due to overlapping transitions of the B850 
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excitons, residual B800 molecules, and trace amounts of the “free” BChl mole-
cules [103]. 

 

 
Figure 14. Absorption spectra of WT and mutant LH2 complexes from Rba. sphae-
roides. The spectra recorded at ambient temperature and pressure are normalized with 
respect to the strongest absorption band peak. B800- designates the mutant peripheral 
antenna complex with missing B800 molecules. B800 and B850 designate the absorp-
tion bands related to B800 and B850/B820 BChl molecules in the structure of LH2/αβ-
mutant complexes (see Figure 5 for structural details); Car shows the absorption range 
of carotenoid cofactors. Vertical lines in the bottom three spectra highlight the shift of 
the B850 exciton band due to rupture of single (α-mutant) or double (αβ-mutant) H-
bonds in the dimeric sub-unit. The reference spectrum of BChl in diethyl ether is drawn 
in olive. It indicates that the B800 and B850 spectra are associated with the Qy transition 
in isolated BChl chromophores. 

 
 

Genetic manipulations leading to breakage of H-bonds to the B850 chromo-
phores understandably result in the greatest spectral effects. As demonstrated in 
Figure 14, the B850 absorption band is observed at 849.4, at 835.9, and at 823.8 
nm, respectively, in the WT, α-mutant, and αβ-mutant membrane bound 
complexes. The spectral shift between the WT and the single H-bond mutant 
thus amounts 13.5 nm (or 190 cm-1), and almost twice that much (25.6 nm or 
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366 cm-1) between the WT and the double H-bond mutant complex. Notably, 
the B800 and Qx bands are almost immune to the mutations. For example, the 
Qx band positions in the three samples are 587.5, 585.3, and 585.5 nm, res-
pectively. The is understandable because the specific site directed mutations 
have been constructed to target just the selected BChl rings (B850 in this case) 
as well as because of different physical essence of the studied spectral bands 
(largely localized Qx bands, in contrast to delocalized Qy bands) explained 
above. 

 
 

Table 2. Peak positions in nanometers (± 0.5 nm) in the absorption spectra of the mem-
brane-bound and LDAO-isolated LH2 complexes from Rba. sphaeroides recorded at 
ambient conditions. The bands are classified according to the related BChl transitions. 

Sample 
Qy 

Qx 
B850 B800 

BChl 770.8 574.3 

WT 
m 849.4 800.8 587.5 

i 847.8 800.8 588.4 

CrtC -  
m 851.1 801.1 591.3 

i 849.4 800.7 590.7 

B800-  
m 850.2 – 590.9 

i 849.6 – 591.8 

B800- + CrtC-  
m 852.4 – 594.7 

i 852.0 – 594.0 

α-mutant m 835.9 800.0 585.3 

αβ-mutant m 823.8 804.4 585.5 

 
 

4.1.2. Core complexes 

Absorption spectra of the studied core complexes from Rba. sphaeroides are 
shown in Figure 15. The spectra reveal multiple bands in the wavelength range 
from 400 to 950 nm. The broad band between 400 and 600 nm is primarily due 
to the carotenoids (spheroidene and spheroidenone) bound to the LH1 complex. 
The peaks at 590 and 875 nm are related to the Qx and Qy electronic transitions, 
respectively, in the BChl chromophores belonging to the B875 molecular arrays 
as shown in Figures 6 and 7. The weak spectral features seen around 760–770 
nm and 800 nm in the samples containing RC complexes belong, respectively, 
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to the bacteriopheophytin and monomeric BChl pigments in the RC complex 
(see Figures 8 and 9). 

Concentrating on the B875 absorption band, which peaks around 875 nm 
(see Table 3), one could once again notice that the spectral maxima of the mem-
brane-bound and isolated complexes almost coincide. Notable is also that the 
spectral positions of the three membrane samples (LH1, RC-LH1, and RC-LH1-
PufX) overlap within less than 2 nm, despite their considerable structural differ-
ences. The mutation of the Trp residues in the RC-LH1-PufX complex to the 
Phe residues in positions β+9 or α+11 results in a blue shift (and broadening) of 
the absorption band by 7.1/5.9 nm (93/78 cm-1) or 23.5/22.8 nm (317/ 
307 cm-1). The data separated by slash relate to the membrane bound/detergent-
isolated complexes. All these numbers are in reasonable agreement with the 
earlier published data [31,38–40,104]. 

 
 

 
 

Figure 15. Absorption spectra of WT and mutant LH1 complexes recorded at ambient 
temperature and pressure. The spectra of detergent-isolated complexes are normalized 
relative to the B875 absorption band peak. WT designates the dimeric RC-LH1-PufX 
complex containing native mixture of spheroidene and spheroidenone, Trp+9 and Trp+11 
indicate the same complexes with mutations in the amino-acid sequence at respective 
sites, RC-LH1 is the core complex mutant with missing PufX complex, and LH1 is the 
double mutant with missing RC and PufX complexes. Vertical lines in the bottom three 
spectra highlight the shift of the B875 exciton band due to rupture of H-bonds in the 
dimeric sub-unit. The band indicated by RC belongs to the RC protein. 
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Table 3. Peak positions in nanometers (± 0.5 nm) of the B875 band in the absorption 
spectra of the membrane-bound and detergent-isolated LH1 complexes at ambient con-
ditions. 

Sample Qy Qx 

LH1 
m 876.3 586.0 

i 876.7 NDa 

LH1-RC 
m 874.6 586.9 

i 874.6 NDa 

LH1-RC-PufX 
m 874.9 583.7 

i 873.2 588.0 

LH1-RC-PufX (Trp+9) 
m 867.8 NDa 

i 867.3 585.4 

LH1-RC-PufX (Trp+11) 
m 851.3 584.4 

i 850.4 585.1 

aND – not determined due to significant overlap with the Car band. 

 
 

Noteworthy is the large asymmetry of spectral shifts accompanying the break-
age of H-bonds in the α- and β-chromophore rings of LH1, suggesting widely 
different H-bond strengths to respective chromophores. In LH2 the shifts are 
rather evenly distributed. 
 

 
4.1.3. Full intracytoplasmic membranes 

Absorption spectra of full IC membranes of Rba. sphaeroides complete with 
peripheral LH2 and core antenna (LH1) complexes are shown on Figure 16. In 
general, the spectra can be very well represented by a sum of the component 
LH1, LH2, and RC spectra, allowing only the stoichiometric ratio of the core 
and peripheral complexes to vary. In the present work, we mainly focus on the 
B850 and B875 absorption bands, which are the lowest-energy optical ab-
sorption bands in the LH2 and LH1 antenna complexes, respectively. The parti-
cular interest toward these spectral features is explained by the central role the 
respective electronic transitions play in native photosynthesis by mediating the 
excitation energy funneling into the RC (see Introduction). 
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Figure 16. Absorption spectra of WT and mutant chromatophores recorded at ambient 
temperature and pressure. The spectra are normalized relative to the strongest absorp-
tion band peak. 

 
 

4.2. Pressure-induced modifications of the spectra 

Overview optical absorption spectra of the samples from Rba. sphaeroides, 
measured at different externally applied pressures between the ambient pressure 
of ~1 bar and 3 GPa, are shown in Figure 17. Represented in left column 
(panels A, B, C) of Figure 17 are the exciton spectra of the native membrane 
bound complexes, while in right column (panels D and E), the exciton spectra 
of detergent-isolated complexes. Panel F shows the data for the Car mutant IC 
membrane vesicles. We will shortly justify the positioning of this membrane 
sample in the right column of isolated complexes. 
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Figure 17. Area-normalized absorption spectra for different LH complexes from Rba. 
sphaeroides in the Qy transition region, measured at different externally applied pres-
sures indicated: (A) membrane-bound LH2; (B) membrane bound RC-LH1; (C) IC 
membrane vesicles; (D) detergent-solubilized CrtC- mutant LH2; (E) detergent-solubi-
lized RC-LH1 complex; (F) CrtC- mutant IC membrane vesicles. The arrowed bold 
lines follow successive absorption maxima. 

 
 

A few general trends of the spectra in Figure 17 are immediately evident: (i) 
The shift in spectral position is accompanied by spectral broadening; (ii) The 
B850 and B875 bands in membrane spectra behave differently from them in the 
spectra of detergent-isolated complexes. While the membrane spectra gradually 
red shift and broaden with pressure all the way from low pressures to high 
pressures, the spectra of isolated complexes show a back-turn at intermediate 
pressures, where the spectra move to the blue instead of red with increasing 
pressure. This positional back-turn is followed with accelerated broadening of 
the spectra; (iii) The spectral shift rate of excitons in core complexes is greater 
than it is in peripheral complexes, best seen in Figure 17C. As follows, a de-
tailed analysis of these spectral behaviors is provided. 
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4.2.1. Exciton absorption band positions and  
widths as a function of pressure 

Figure 18 displays typical responses to externally applied high pressures of the 
B850 (in LH2 complexes) and B875 (LH1) exciton absorption band positions 
(A) and widths (B). The width is defined as the full width at half maximum 
(FWHM). The detergent-isolated complexes were dissolved in buffer-detergent 
mixture, while the membrane-embedded samples were kept in neat buffer (see 
Table 1). 

 

 
Figure 18. Pressure dependence of the B850 (triangles) or B875 (squares) absorption 
band position (A) and width (B) for detergent-isolated (open symbols) and membrane-
embedded (filled symbols) iLH2 (black symbols) and iRC-LH1-PufX (red symbols) 
complexes from Rba. sphaeroides. The FWHM scale for LH1 complexes is on right 
hand side. The data for the LH2 membranes are taken in glycerol-buffer mixture, while 
those for the LH1 membranes, in neat buffer. The prefixes i and m denote the data for 
isolated and membrane complexes, respectively. 

 
 

For the membrane-embedded complexes the main pressure effect seems to be a 
continuous red shift and similarly continuous broadening of the spectra. Similar 
effects have also be seen in case of free BChls in solution [105]. However, it 
should be stressed that the shift and broadening rates observed for the B850/ 
B875 exciton bands are very large compared with those for the free solubilized 
BChl. The initial band shift rate for LH2 is –0.60 ± 0.04 cm-1/MPa (minus 
designates the shift to lower energies) and –1.04 ± 0.05 cm-1/MPa for LH1. The 
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shift rate gradually diminishes with increasing pressure in all membrane samp-
les. The rate of the band broadening (0.51 ± 0.05 cm-1/MPa in LH2 and 0.24 ± 
0.01 cm-1/MPa in LH1) is similarly great. Those large numbers can be con-
veniently explained by the BChl excited states in antenna complexes having an 
exciton origin [106–108] (see also Introduction). The shift rate in LH1 comp-
lexes, being still larger than in LH2 complexes, is in agreement with the stron-
ger exciton coupling found for the core complexes [43,102,109,110]. 

As for the detergent-isolated complexes, they behave at low pressures in 
much the same way as the membrane-protected complexes. Toward higher pres-
sures, however, striking differences appear. Initially the red shift begins to de-
crease in magnitude and then, between 0.5 and 0.6 GPa in case of the B850 
band and between 0.7 and 1.2 GPa in case of the B875 band, it is reversed with 
a blue shift. Past these ranges the red shift is restored, albeit generally with a 
different rate (Figure 18A). In bulk samples such abrupt change in the pro-
perties of the system would correspond to phase transition. 

The widths of the spectra of probe molecules are sensitive to local static and 
dynamic disorders of the sample. Absorption bands of the isolated LH1 and 
LH2 complexes recorded at low pressures have almost the same width as the 
respective bands of membrane complexes. Toward higher pressures, however, 
the spectrum of isolated complexes grows significantly broader than the spect-
rum of membrane complexes. This difference remains up to the highest pres-
sures (see Figure 18B). The accelerated broadening occurs in the same pressure 
range where essential changes of spectral shift are observed, implying their 
common physical origin. We shall return to this issue in the following para-
graph. 

Native biological membranes as well as detergent phases are known to suffer 
phase transitions in the >0.1 GPa pressure range [111]. Such phase transitions 
can usually be readily spotted by abrupt changes in the resonant (Raleigh) light 
scattering efficiency as a function of pressure. To verify that the irregularities 
observed in Figure 18 are not induced by modifications in the surrounding 
buffer-detergent phase, the scattered light intensity should be presented along 
with the absorption data on proteins. Such parallel records are demonstrated in 
Figure 19 in the case of the LH2 CrtC- (A) and RC-LH1 (B) complexes using 
different detergents (LDAO and DHPC, respectively). The scattering was mea-
sured at 680 nm, where the sample absorption is minimal, see Figures 14 and 15. 
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Figure 19. Pressure dependences of the B850 (A) and B875 (B) absorption band posi-
tions in CrtC- complexes and RC-LH1 complexes (detergent DHPC) together with the 
scattered background light recorded at 680 nm. Empty and filled symbols correspond to 
data in liquid and solid phase, respectively. 

 
 

As seen, in the case of the LH2-buffer-LDAO system, there is no light scat-
tering abnormality in the solvent phase. A strong scattering is observed only 
past ~1.1 GPa, far away from the irregularity startup in absorption, which is 
apparently related to solidification of the sample. Upon solidification the 
pressure abruptly drops to ~0.8 GPa. Similar feature due to liquid-solid phase 
transition is observed in the RC-LH1-buffer-DHPC mixture (Figure 19B). Ob-
served in the latter sample, though, is another scattering rise occurring at lower 
pressures, around 0.2 GPa. Both these scattering features are clearly separated 
from the pressures where blue shifts (and accompanying broadenings) in the 
present samples set in. Other studied complexes expose similar results. There-
fore, it is safe to propose that the irregularities observed in the detergent-iso-
lated samples have fundamentally intramolecular cause, rather than being 
caused/slaved by phase transitions in the protein surroundings. 

 
 

4.2.2. Relative band shift and broadening 

Shown in Figure 18 were typical responses to externally applied high pressures 
of the exciton absorption band positions and widths both in the LH2 and LH1 
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complexes. Significant differences between the data for isolated and membrane-
embedded complexes were noted. To enhance the variations between isolated 
and membrane complexes, it is worthwhile to redraw the data in relative scale, 
treating the data of membrane complexes as a reference. 

As an example, plotted in Figure 20 are the relative peak shifts δν and band 
broadenings δΓ for the B850 and B875 absorption bands in CrtC- LH2 and RC-
LH1 complexes, respectively. The former measure was calculated as 

i m    , where νi/m are the experimental peak positions in isolated (i) and 

membrane-bound (m) samples. A blue shift of the spectrum of isolated 
complexes thus results in a positive-valued δν  and a red-shift, a negative-valued 
δν. The latter measure in Gaussian approximation of the lineshapes was 

evaluated as  1/22 2
i m    , where Γi/m are the corresponding FWHM of the 

B850/B875 absorption bands. 
As seen in Figure 20, the relative peak shifts and band broadenings reveal 

characteristic step-like pressure dependencies resembling titration curves. The 
step heights of the relative shifts (Figure 20A) in LH1 complexes are generally 
greater that they are in LH2 complexes. Moreover, the step heights for WT and 
different mutant complexes of the same sort vary quite a bit. Specifically, the 
variation in case of the three isolated LH2 complexes (WT, CrtC- mutant, and 
B800- mutant) is from 292 cm-1 to 410 cm-1 [112]. In case of LH1 complexes 
the biggest variations were observed between the so-called closed-ring (LH1 
and RC-LH1) and open-ring (all core forms that include PufX) structures. Thus, 
the height of the peak shift in the open-ring complexes generally reaches just 
~2/3 that in the closed-ring samples. 

Under normal pressure, the blue shifts and broadenings similar in magnitude 
to those in Figure 20 were previously observed for H-bond mutants of Rba. 
sphaeroides when compared with their WT counterparts. As was described in 
Introduction, in the B850 ring of LH2 complexes [87,88] the αTyr44 and 
αTyr45 residues normally form H-bonds to the C3-acetyl carbonyls of the BChls 
belonging to the inner (α) and outer (β) rings of chromophores, respectively (see 
Figure 5). The removal of H-bonds to the αTyr45 residues (9 in total) by re-
placing Tyr by the non-H-boding Phe residues correlates with the blue shift of 
the B850 absorption band by 190 cm-1. The total blue shift when all 18 H-bonds 
related to the αTyr44 and αTyr45 residues are crashed equals to 366 cm-1. The 
latter shift of the double H-bond mutant almost coincides with the relative shift 
observed by us for the WT samples, which strongly implies the high-pressure 
induced breakage of each and every C3-acetyl carbonyl H-bond in the B850 
ring. 

It was explained in Introduction that in LH1 complexes, the αTrp+11 and 
βTrp+9 protein residues normally bind BChls by forming H-bonds to the C3-
acetyl carbonyls of the α-and β-BChls, respectively [38–40,104]. The replace-
ment in WT RC-LH1-PufX the Trp residues by Phe residues, which cannot 
form H-bonds, results in a blue shift of the B875 absorption band of detergent-
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isolated complexes by 78 cm-1 (when all the H-bonds in the β half are broken 
and the bonds in the α half are all intact) or by 307 cm-1 (when the bonds in the 
α ring of chromophores are detached and in the β ring intact). Total sum of 
these shifts (385 cm-1) corresponding to rupture of all the B875 chromophore-
binding H-bonds once again remarkably well agrees with the height of the step 
for the relative shift in WT LH1 complexes, suggesting that high pressure bra-
kes the H-bonds in both the α and β compartments also in core complexes. 

 
 

 
Figure 20. Relative peak shifts δν (A) and band broadenings δΓ (B) for the B850 and 
B875 absorption bands in CrtC- LH2 (black symbols) and RC-LH1 (red symbols) com-
plexes from Rba. sphaeroides. Filled red symbols relate to the data in solid phase. 

 
 

The accompanying relative broadening of the spectra, as for example revealed 
in Figure 20B, validates this explanation. The abrupt spectral broadening in the 
pressure range where irregularities of the B850/B875 band shifts start is an 
indication of enhanced dynamics (increased freedom of movements) of the 
B850/B875 BChl probe molecules in their binding sites, compared with the 
equivalent situation within the membrane. Because the pressure-induced de-
naturation of proteins is driven by a decrease in volume and possible pene-
tration of the buffer (essentially of polar water molecules) into the protein inter-
ior [67,69,113,114], rather than swelling, the extra freedom of intra-protein 
movements can only be caused by breakage of the bonds that hold BChl mole-
cules in their protein pocket. Given that axial ligation has minimal effect on the 
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BChl Qy absorption band position [105], the loss of H-bonds in isolated 
complexes is the most likely explanation for the observed abrupt changes of the 
B850/B875 absorption spectra with pressure. This interpretation in the context 
of WT LH2 complexes was first proposed in [115]. 

 
 

4.2.3. The reference state/sample problem 

Proper reference state/sample is crucial for the present data analyses method. 
Implicitly assumed by this approach is that no structural changes, which might 
modify absorption spectra of the particular LH complex, occur over the entire 
pressure range in the reference sample; most importantly, all the relevant H-
bonds should remain intact in this sample. The smooth pressure-induced shifts 
and broadenings of absorption bands in reference samples, as observed in 
Figure 18, are due to physical mechanisms that may largely be considered sepa-
rate from the H-bonding. Amongst these mechanisms is the change of dielectric 
constant of the local environment of the probe molecules as well as of inter-
molecular exciton couplings upon material compression. 

There is no general way other than empirical to find the proper, the steadiest 
against high pressure, reference sample. In the resent work we choose to take 
merely spectroscopic measure of the protein stability. It is based on the position 
of the B850/B875 absorption band at high pressures: all other conditions equal, 
the redder shifted is absorption at particular high pressure value, the steadier the 
system. Following this criterion, we found that the conditions to produce refe-
rence LH1 and LH2 samples are different. In the former case, the satisfactory 
choice is membrane-embedded complexes in neat buffer. In the same environ-
ment the membrane bound LH2 complexes at high pressures tend to partially 
lose their H-bonds to B850 chromophores (see below). Yet they can be enhan-
ced (stabilized) by adding glycerol. LH2 membranes in buffer-glycerol (1:2 v/v) 
mixture thus form the reference sample in case of the LH2 complexes.  

The additional enhancement required in case of the LH2 membrane com-
plexes as compared to the LH1 complexes may be related to the extra B800 
pigment ring present in LH2 and not in LH1. The B800 pigments in the cyto-
plasmic side of the membrane directly face solvent phase. This may allow leak-
age of water molecules into the protein interior at high pressures. 

 
 

4.2.4. Reversibility of the high-pressure effects 

The above pressure effects are fast; following changes in applied pressure 
without noticeable delay in time scale of several minutes (see Materials and 
Methods). In this paragraph we report about the spectral effects that are ob-
served upon pressure release after the full cycle of experiments at elevated 
pressures, which typically take about 2 hours to complete. The respective data 
are shown in Figure 21. The left hand side of this figure concerns absorption 
spectra of membrane (A) and isolated (B) peripheral (LH2) antenna complexes, 
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while the right hand, the absorption spectra of membrane (C) and isolated (D) 
core (RC-LH1) antenna complexes. 

Beginning with LH2, as can be seen from the final-minus-initial difference 
spectrum, the main effect of the pressure treatment in the LH2 membranes is 
relative decrease of the B800 band. The loss of B800 chromophores (i.e., the 
pigments organized into the B800 ring) is known to cause a red shift (as well as 
some broadening) of the B850 absorption band [116]. This is exactly what is 
happening here, as evidenced by the dispersion-type shape of the difference 
spectrum around 860 nm. Figure 21B demonstrates much reduced robustness 
against pressure of the purified complexes when compared with the membrane 
samples. The absorption spectrum after pressure release shows strong decrease 
of both the B800 and B850 bands, accompanied by growing intensity around 
770–780 nm where solubilized BChls absorb. Similar band is not apparent in 
the membrane spectra of Figure 21A. The spectrum in Figure 21B thus appears 
to be a simple sum of two sub-spectra, one belonging to the LH2 complexes that 
have released most or all of their BChl content and the second, representing 
fully intact complexes. This conclusion relies on almost perfect recovery of the 
B850 band shape (without accounting for the contribution of solubilized 
BChls). One can estimate (using a simplifying assumption that the absorbance 
of BChls, either solubilized or organized into the LH2 complex, is the same) 
that majority (over 60%) of the LH2 complexes survived the present pressure 
treatment. This is indeed remarkable, given the harsh conditions applied. 

Similar studies on core complexes (Figures 21C and D) show that the RC-
LH1 complexes are generally still more robust against high pressures, as com-
pared with the LH2 complexes. The lost intensity from the main band after 
pressure treatment can be found to be rather evenly spread over a broad spectral 
area toward shorter wavelengths (especially well followed in case of isolated 
RC-LH1 complexes in Figure 21D). We have generally observed that the vari-
ant LH1 complexes, either membrane-bound or isolated are stable under pres-
sures between 0.1 and 1 GPa for at least 20 hours under the condition that not 
too high concentration of detergents is used. 
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Figure 21. Recovery of the area-normalized absorption spectra for the membrane-pro-
tected (A, C) and detergent-isolated (B, D) LH2 (A, B) and RC-LH1 (C, D) complexes 
from Rba. sphaeroides. 44 mM LDAO and 3 mM DHPC was used in case of detergent-
isolated LH2 and LH1 complexes, respectively. I is the initial spectrum, F is the final 
spectrum after pressure cycle and Δ(F–I) is the difference between the final and initial 
spectra. Insert shows the area-normalized absorption spectra of BChl in ether (black 
line) and in detergent environment (blue line). 

 
 

These examples tell that both the LH1 and LH2 integral membrane chromo-
proteins, either isolated into detergent micelles or protected by native mem-
branes, are rather robust against external high pressure. The full spectral reco-
very of the majority of isolated complexes implies that the pressure-induced H-
bond breakage is reversible, allowing application of the equilibrium thermo-
dynamic analysis to this process. Devoted to the latter issue is the subsequent 
part 4.3. 

 
 

4.3. Estimation of the chromophore-binding  
hydrogen bond energies 

According to the model described in paragraph 1.6 (note specifically Eq. 5), the 
logarithm of the equilibrium constant K for the H-bond rupture should show 
linear dependence on the applied pressure, from which the prime model para-
meters: ΔV0, ΔG0 and P1/2 can be evaluated as the slope, the free energy value at 
zero pressure, and the pressure corresponding to zero free energy, respectively. 
The correspondence between K and directly measured spectroscopic band 
positions is provided by Eq. 4. 
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4.3.1. Peripheral complexes 

4.3.1.1. Isolated complexes 

The plots of –RT lnK as a function of pressure for the B850 absorption band in 
three isolated LH2 complexes are shown in Figure 22. As seen, the experi-
mental data follow fairly linear dependences in the pressure regions where  
H-bonds in respective samples predominantly break, thus justifying the applied 
linear approximation model. The lines in all cases are descending, although with 
different slopes in different samples, meaning that the partial molar volume 
effects are negative. In other words, at elevated pressures the protein states with 
shattered H-bonds are stabilized against their respective native states. Numeri-
cal values of the parameters evaluated from the dependences in Figure 22 are 
presented in Table 4. 
 
 

 

Figure 22. Pressure dependences of –RT lnK(P) for the isolated LH2 complexes indi-
cated. Lines represent linear fits of the scattered experimental data. The plotted data 
points are calculated relative to glycerol-enhanced WT LH2-only membranes. 

 
 

The free energy change corresponding to breaking the H-bonds (the rupture 
energy) in isolated WT LH2 complexes is close to 40 kJ/mol. Mutations (remo-
val of the B800 ring and replacement of the native content of carotenoids (the 
CrtC- sample) has strong destabilizing effect on the LH2 complex, reducing the 
H-bond energy in the B850 ring almost twice. The isolated double mutant 
(CrtC- +B800-) complex is unstable with respect to pressure falling apart 
completely. Still, all the obtained ΔG0

 values are relatively large, if compared 
with the earlier reported single H-bond energies in globular proteins that span 
from 2 to 25 kJ/mol [71,72], depending on the H-bond donor and acceptor as 
well as their environment. 
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Table 4. Thermodynamic parameters characterizing breakage of H-bonds in membrane-
bound and detergent-isolated LH2 complexes.a 

Sample G0 
kJ/mol 

V0 
ml/mol 

P1/2 
MPa 

B850     

WT 
m 19 ± 3 –23 ± 10 811 ± 15 

i 39 ± 2 –71 ± 10 519 ± 10 

B800- 
m 12 ± 5 –16 ± 10 785 ± 10 

i 26 ± 4 –43 ± 10 622 ± 10 

CrtC- 

m 
mgb 

28 ± 5 
16 ± 2 

–39 ± 10 
–14 ± 10 

700 ± 10 
1010 ± 15 

i 24 ± 5 –51 ± 10 445 ± 10 

B800- + CrtC- 
m 23 ± 7 –30 ± 10 989 ± 10 

i N/Ac N/Ac N/Ac 

B800     

CrtC- i 18 ± 4 –17 ± 5 1020 ± 10 

aThe data are calculated relative to the glycerol-enhanced WT LH2-only membranes. 
bmg – CrtC- membranes in glycerol-buffer mixture 
cN/A – the sample is not available 

 
 

The replacement of Car in LH2 complexes not only undermines the B850 ring 
environment; it also strongly influences pigments in the B800 ring. As can be 
seen in Figure 23 the B800 band position in the iCrtC- mutant LH2 complex 
abruptly bends to the left (i.e. toward blue/shorter wavelengths) just below 1 
GPa. The amplitude of the relative shift reaches 185 cm-1, being comparable 
with the spectral shift observed when H-bonds between the C3-acetyl carbonyls 
of the B800 BChls and the βArg20 protein residues have been removed by 
genetic engineering techniques [58] Analogy with the B850 molecules, the 
observed blue shift of the B800 band is related to the pressure-induced breakage 
of the H-bonds in the binding pocket of the B800 molecules. 
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Figure 23. Pressure dependences of the B800 and B850 absorption band positions for 
the detergent-isolated and membrane-bound CrtC- mutant LH2 complexes along with 
the glycerol-enhanced WT membrane complex (mgWT). Upper part shows absorption 
spectrum of the WT complex. 

 
 

Since the start of the blue bending in the B850 and B800 systems appears at 
widely different pressures (at ~0.3 GPa for B850 vs. ~0.6 GPa for B800), one 
might assume that these processes take place independent from each other. It is, 
therefore, possible to estimate the strength of H-bonds stabilizing the B800 
molecules in their binding pockets. The respective energy is as large as 18±4 
kJ/mol (see Table 4). 

 
 

4.3.1.2. Effect of detergent on the LH2 protein stability 

Detergents are known to destabilize and, at excess concentrations, irreversibly 
denature membrane proteins [117]. To be sure that the thermodynamic para-
meters in Table 4 that characterize the breakage of H-bonds in the LH2 complex 
are not determined by the selected “standard” detergent concentration (see 
Table 1), the dependence of the parameters on the ratio of detergent and protein 
molecules (the D/P ratio for short) was studied in case of the WT and CrtC- 
mutant species. See Materials and Methods section for estimating the protein 
concentration. 
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Presented in Figure 24 are pressure dependences for the B850 band peak 
shift in isolated complexes with different D/P ratios between 1*103 and 48*103. 
They can be compared with the data for the CrtC- mutant membranes as a 
limiting case of no detergent. All the data are recorded relative to the spectra of 
WT LH2-only membranes enhanced by adding glycerol into the buffer. The 
respective thermodynamic analyses data are displayed in Table 5. 

 
 

 

Figure 24. Relative peak shifts of the B850 band in the spectra of isolated and mem-
brane CrtC- mutant LH2 complexes in dependence on the LDAO-protein ratio. The data 
are recorded relative to the spectra of glycerol-enhanced WT LH2-only membranes. 
Solid lines are for guiding the eye. 

 
 

As can be seen in Figure 24, there is a systematic shift of the dependences to-
ward lower pressures with increasing number of LDAO molecules per LH2 
protein. The midpoint pressure (P1/2) decreases from ~700 MPa in case of intact 
membrane with no detergent all the way to ~425 MPa for the complexes with 
D/P = 48*103. In parallel the partial molar volume effect (ΔV0) increases from  
–39 ml/mol to –56 ml/mol. Both these observations are in agreement with com-
mon perception of detergents as the protein destabilizing factor. Most impor-
tantly from the point of view of the present work, yet somewhat surprisingly, 
the value of the free energy change (ΔG0) that characterizes the breakage of H-
bonds remains well conserved over the whole range of the used detergent con-
centration (see Table 5). 

Formally, given that 0 0
1/2G V P    (see part 1.6), this insensitivity is 

derived from the compensating effect of volume and pressure. However, its 
deeper physical meaning remains to be understood. Further studies are required 
to prove generality of this conjecture in case of other detergents as well as for 
broader classes of membrane proteins. For time being, we just assume that the 
H-bond energies in integral membrane proteins as determined by high-pressure 
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spectroscopy do not significantly depend on the used detergent concentration 
over a broad D/P range beyond critical micelle concentration.  

It should be noticed that majority of the measurements on isolated com-
plexes reported in the present work are performed on the samples with the D/P 
ratio between 9*103 and 22*103. This is done for consistency as well as for 
comparability of the data obtained on different samples. Also, in this detergent 
concentration range the retrieved experimental parameters appeared to be most 
stable.  

The number of detergent molecules directly attached to the hydrophobic 
parts of membrane proteins depends on the nature of both detergent and protein. 
According to [118], at 6 μM protein concentration and using LDAO as a 
detergent, the LH2 complexes are well isolated from each other at D/P = 
>1.6*103. The existing data about the area of hydrophobic parts in case of the 
LH2 complex [28,119] allow estimating that only 200–500 detergent molecules 
form the detergent micelle around the LH2 protein. The rest of the detergent 
molecules remain in the solvent phase [118]. 

 
 

Table 5.Thermodynamic parameters characterizing rupture of H-bonds in the B850 ring 
of isolated neurosporene mutant LH2 complexes as a function of the LDAO-protein 
ratio.a 

D/P 
 

G0 
kJ/mol 

V0 
ml/mol 

P1/2 
MPa 

mCrtC- 28 ± 5 –39 ± 10 700 ± 10 
1*103 34 ± 6 –65 ± 10 528 ± 10 
5*103 35 ± 11 –75 ± 25 461 ± 10 
9*103 24 ± 4 –54 ± 10 445 ± 10 

22*103 24 ± 5 –51 ± 10 445 ± 10 
48*103 24 ± 4 –56 ± 10 425 ± 10 

aThe data are calculated relative to the glycerol-enhanced WT LH2-only membranes. 

 
 

4.3.1.3. Native membrane bound complexes 

It was noted earlier that the WT membrane-protected LH2 complexes are rather 
resilient to damage by high-pressure compression compared with isolated 
complexes. It was also remarked that the WT complexes can be further stabi-
lized by adding co-solvents such as glycerol. Figure 25 shows obvious stabi-
lizing effects of glycerol on all the studied LH2 membranes. Very clear de-
monstration of the same phenomenon in case of mutant complexes with exchan-
ged carotenoids is seen also in Figure 25. To the best of our knowledge, such 
reinforcement of native membrane-embedded protein complexes by glycerol 
has not been revealed before. Possible origin of this result was discussed at the 
end of part 4.2.3. 
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Assuming that in glycerol-buffer environment all the H-bonds coordinating 
BChls in WT LH2 complexes remain intact, and that in neat buffer and/or in 
mutant membranes they may be partially shattered, even in glycerol-enhanced 
environment, we set to study energetic effects related to these situations. Like 
previously in case of isolated complexes, the membrane data were plotted 
against the data of glycerol-enhanced WT LH2-only membranes. The con-
cluding results that reveal significant differences between isolated and mem-
brane complexes are shown in Figure 26 and in Table 4 (rows marked by m). 

The points of immediate notice are: 
(i) The midpoint pressures, P1/2, obtained at crossing points of the linear 

fitting curves with the y-axis zero, are generally larger for the membrane 
bound complexes (where they reach almost 1 GPa in case of the mgCrtC- 
mutant) than in isolated complexes (with pressure as low as ~0.45 GPa in 
case of the iCrtC- mutant); 

(ii) The ΔV0 values, which broadly follow the published volume changes of 
protein unfolding [64] are generally greater for isolated complexes 
(reaching –71 ml/mol in case of iWT complex) than for membrane samples 
(where it may be as low as –14 ml/mol in case of the glycerol-enhanced 
mgCrtC- mutant); 

(iii) ΔG0 values for isolated complexes are about twice greater than they are for 
membrane complexes. 

 
These findings quite naturally point to better (denser and/or more orderly) 
packing in membrane environment compared with the more random sur-
rounding of artificial surfactant. Due to the revealed correlation between the H-
bond rupture energies in isolated and membrane complexes and since there are 
two H-bonds per every dimeric αβ-BChl2 structural unit in the LH2 complex 
(see Introduction), it is only natural to think that in isolated complexes all the H-
bonds in the B850 ring can be broken down by high pressure, while in the com-
plexes protected by native membranes only half of the bonds appear to be bro-
ken. If so, the two H-bonds in the αβ-BChl2 unit play additive role in rein-
forcement of the whole LH complex. This assumption also suggests cooperative 
(“all-or-nothing” type) rather than sequential H-bond breakage mechanism of 
H-bonds. This given, the single H-bond energies in the B850 ring of WT LH2 
complexes can be estimated to be equal to ~20 kJ/mol. In agreement with data 
on isolated complexes, these single-bond energies in mutant complexes are 
much less, ~12 kJ/mol in B800- and ~14 kJ/mol in CrtC- membrane complexes. 
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Figure 25. Pressure dependence of the B850 absorption peak energy for the membrane-
bound LH2 complexes. Solid lines are for guiding the eye; dashed line represents linear 
extrapolation of the low-pressure data to higher pressures. 

 
 

The behavior of neurosporene mutant (CrtC-) LH2 complexes under hydrostatic 
pressure is rather unique (see Figures 21, 23, and 24, and Table 4). Only in this 
case the energetic (as well as the volume) effects that characterize phase transi-
tions in isolated and membrane complexes dissolved in neat buffer solution 
closely match each other. However, when the membrane complexes are stabi-
lized by glycerol (the mgCrtC- sample), their behavior becomes similar to other 
membrane samples, i.e., the midpoint pressure increases, the volume effect de-
creases, and the energetic effect becomes approximately equal to half of that for 
isolated complexes (see Table 4). Since the stability of proteins against exter-
nally applied pressure correlates with the extent of water molecules penetrating 
into the hydrophobic interior [69,113,114], it appears plausible that the change 
of the native contents of carotenoids by neurosporene leads to less compact 
protein conformation, which is more accessible to water than the native fold. 
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Figure 26. Pressure dependences of –RT lnK(P) for the membrane bound LH2 samples 
indicated. The plotted data points are calculated relative to glycerol-enhanced WT LH2-
only membranes. Lines represent linear fits of the scattered experimental data.  

 
 

The similar (or rather coinciding within the experimental error margins) free 
energy changes characterizing breakage of H-bonds in detergent-isolated (24 ± 
5 kJ/mol) and membrane-bound (28 ± 5 kJ/mol) CrtC- LH2 complexes is of 
fundamental significance. This is the proof that data obtained on isolated 
membrane proteins have relevance to the state of matter in the native mem-
brane. 

 
 

4.3.2. Core complexes 

The experimental pressure dependencies of –RTlnK for the isolated core com-
plexes are shown in Figure 27. To validate the proposed pressure-induced H-
bond breakage mechanism, here we studied, apart from the LH1, RC-LH1, and 
RC-LH1-PufX (WT) core complex, the two WT mutant complexes that have H-
bond Trp to Phe mutations in either the α+11 or β+9 positions. Notice once 
again that the data for all core complexes have been evaluated relative to the 
WT membrane sample in neat buffer. In the αTrp+11Phe mutant, the H-bonds 
between the α-polypeptides and its BChls are removed, thus it has half the intact 
H-bonds found in the WT. In the βTrp+9Phe mutant, the situation is exactly re-
versed: the H-bonds to β-polypeptides are broken and the other H-bonds to 
polypeptides are intact. The ambient-pressure spectra of these mutant samples 
shown in Figure 15 are blue-shifted and broader than the reference spectra of 
WT complexes. 
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The plots in Figure 27, which were built around the respective phase tran-
sition regions, are linear like in case of LH2 complexes. With respect to the 
transition midpoint pressure, P1/2, the complexes clearly divide into two groups 
with either one or two intact H-bonds in the basic unit. The three members of 
the latter group (LH1, RC-LH1, and WT) with midpoint pressures ≥1000 MPa 
expectedly demonstrate much greater pressure resistance than the two H-bond 
mutants with the midpoint pressures around 700 MPa. The slopes representing 
ΔV0 do not separate that clearly. 

 
 

 

Figure 27. Pressure dependences of –RT lnK(P) for the LH1 samples indicated. The 
plotted data points are calculated relative to WT LH1-only membranes in neat buffer. 
Lines represent linear fits of the scattered experimental data. 

 
 

The obtained parameters that characterize the pressure-induced rupture of  
H-bonds in detergent-isolated LH1 complexes are listed in Table 6. Also in-
cluded in Table 6 are the data (line 5) for the membrane-bound β+9 mutant RC-
LH1-PufX complexes. It can be seen that comparable H-bond energies were 
found for purified and membrane-embedded β+9 mutant complexes (lines 4 and 
5, respectively), once again indicating that these integral membrane proteins 
largely retain their structural properties upon solubilization and purification in 
mild detergents. 

The parameters for the LH1, RC-LH1, and WT core complexes with all the 
H-bonds intact at ambient pressure appear similar, whereas they are rather 
different from those obtained for the mutant complexes with half of these bonds 
removed. Most remarkably, the energy corresponding to the H-bond rupture in 
the WT complex (25  2 kJ/mol) equals within the estimated uncertainty the 
sum of the rupture energies in the α+11 and β+9 mutants (10  2 and 14  2 
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kJ/mol, respectively). This greatly supports the earlier made conjecture in the 
context of LH2 complexes that the α- and β-types of H-bonds have quasi-
independent and additive roles in reinforcement the dimeric building blocks of 
cyclic bacterial LH complexes. The data in Table 6 further suggest that there is 
practically no difference between the strength of H-bonds in open-ring (RC-
LH1-PufX) and closed-ring (RC-LH1) core antennas. In every sense these 
complexes respond to high pressure remarkably similar. This is somewhat 
surprising, taken into account their rather different molecular structure, which is 
nearly planar in case of the monomeric RC-LH1 complex and significantly bent 
in case of the dimeric RC-LH1-PufX complex (see Figures 4 and 7, 
respectively). 

 
 

Table 6. Thermodynamic parameters characterizing the breakage of H-bonds in core 
complexes.a 

Sample ΔG0 
kJ/mol 

V0 
ml/mol 

P1/2 
MPa 

iLH1 21  3 –18  2 1160  30 
iRC-LH1 25  5 –25  5 1000  20 
iRC-LH1-PufX (WT) 25  2 –23  2 1090  20 
iRC-LH1-PufX 
(Trp+9Phe) 

14  2 –20  1 720  20 

mRC-LH1-PufX 
(Trp+9Phe) 

14  2 –15  1 940  20 

iRC-LH1-PufX 
(Trp+11Phe) 

10  2 –14  1 700  30 

aEvaluated relative to the WT membrane. 

 
 

The couplings existing between the RC and LH1 proteins are expected to re-
inforce core complexes. This indeed appears to be the case (compare lines 1 and 
2–3 in Table 6). Yet according to our estimates, the strengthening of H-bonds is 
so weak that it is nearly hidden by the present experimental uncertainty. 

The smaller H-bond rupture energies in WT LH1 complexes (~25 kJ/mol for 
two bonds and 10–14 kJ/mol for single bond in the αβ-BChl2 elementary unit) 
in comparison with WT LH2 complexes (~39 kJ/mol for two bonds and  
~19 kJ/mol for single bond) are worth noticing. The volume effects in these 
complexes deviate even more, being up to 3 times smaller in LH1. These 
variances are most probably related to different structures of LH1 and LH2 
complexes, already emphasized in Introduction. While in the LH1 complex the 
two H-bonds in each and every elementary αβ-BChl2 dimer remain within this 
sub-unit, in the LH2 complex one H-bond reaches out a neighboring sub-unit, 
tying them strongly together. Breaking these inter-dimer H-bonds will almost 
certainly result in larger lattice reorganization (volume change) than breaking a 
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bond within the same protein sub-unit. According to this logic, it is plausible 
that the single H-bond that is broken in membrane bound LH2 complexes 
corresponds to the intra-dimer H-bond (i.e., the one involving αTyr45), because 
of a relatively small accompanying volume effect (see Table 4, first row). 

 
 

4.3.3. Characterization the hidden high-energy  
conformational states revealed by high pressure 

Throughout the present work we have maintained that (i) the spectral pecu-
liarities induced by external high hydrostatic pressure are due to breakage of H-
bonds, and that (ii) either all or half of the H-bonds in the B850 and B875 BChl 
rings of peripheral (LH2) and core (LH1) complexes, respectively, may be shat-
tered by external pressure. The prime argument supporting these notions has 
been the quantitative similarity between the relative spectral blue shifts achie-
ved upon removal of the specific H-bonds by genetic manipulations and the 
magnitude of the pressure-induced relative spectral blue shifts.  

There is also another, perhaps, simpler and more direct possibility to prove 
this interpretation by comparing the spectral pressure dependence for the WT 
complex with the dependence for the mutant complex where all the H-bonds to 
antenna chromophores have been removed by genetic engineering. The latter 
spectra, as shown in Figures 14 and 15, are from the outset blue shifted with 
respect to the spectra of WT complexes. The notion is that in such H-bond mu-
tants none of the irregularities related to rupture of H-bonds exist. The depen-
dences obtained on such mutant complexes can then be used as reference with 
respect to the dependences measured on the complexes, where H-bonds are 
presumably intact at normal pressure. If at certain pressure total rupture of H-
bonds occurs, for example, in WT samples, the pressure dependencies for WT 
samples and for mutants should coincide past that pressure. This is exactly what 
our experiment shows, see Figure 28. 
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Figure 28. Pressure dependences of the B800 and B850 (shown in black and green), 
and B875 (red) absorption band maxima in WT LH2 and LH1 complexes, respectively. 
Open data points designate the detergent-isolated complexes, while filled ones, the 
membrane-bound complexes. Blue and grey points belong to the LH2 αβ-mutant mem-
brane and the LH1 Trp+11-mutant membrane, respectively. Upper part of the figure 
shows absorption spectra of the complexes and the spectrum of full chromatophores. 
Blue and grey arrows, respectively, point to the absorbance maximum for the LH2 αβ-
mutant membrane and the anticipated maximum for the RC-LH1-Puf X membrane with 
all the H-bonds to BChls broken. 
 
 
As expected, the dependence for the αβ-mutant membrane (with no H-bonds to 
the B850 chromophores) is smooth; all the way from low to high pressures it 
goes fairly parallel with the dependence for the glycerol-enhanced WT LH2 
membrane, albeit at higher energy. The dependence that designates isolated 
complexes and at low pressures follows the path of WT membrane complexes 
suddenly changes its course and starts trailing the αβ-mutant membranes. This 
unique experimental fact strongly favors our interpretation. We believe that in 
combination with other proof this notion is proved at least in the case of LH2 
complexes. In the case of WT core complexes the evidence is less complete. 
This is because the double H-bond mutant core complexes have not been pro-
duced in stable form so far. Still, as demonstrated in Figure 28 for the LH1 
single H-bond mutant membranes, similar outcome as with LH2 is plausible. 

The data in this work imply that the high energy (blue shifted) states with 
broken H-bonds in LH complexes can be and in fact are stabilized by high 
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pressure. These states do not exist for WT complexes as stable thermodynamic 
entities at normal conditions, but are present in mutant complexes. To study the 
properties of these states, one thus has to rely on genetic engineering, which is 
frequently both costly and unpredictable. Given the great overlap between the 
data for WT and mutant complexes observed in Figure 28, one could get the 
most basic information about these states corresponding to normal conditions 
by simply extrapolating the high-pressure data to low pressures. Similar ap-
proach has earlier been used in the context of NMR studies [120]. In the optical 
energy range, this advance is original. 
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5. CONCLUSIONS AND THE MAIN RESULTS 

According to the Le Chatelier principle, pressure shifts the thermodynamic 
equilibrium towards the states with lower volume. We have found using local-
probe spectroscopic method that the lower-volume states stabilized by high 
hydrostatic pressure in the LH1 and LH2 light-harvesting chromoproteins are 
the states with shattered intramolecular H-bonds between the probe chromo-
phore and the protein surroundings. Counter-intuitive as it might appear from 
the first sight that isotropic compression leads to breaking molecular bonds, this 
is not unusual. The best-known example is bulk solid water – ice , which melts 
under pressure. In the ice – water phase transition the multiple H-bonds formed 
in solid phase between the water molecules are broken simultaneously, resulting 
in the molar volume decrease. Cooperative rapture of H-bonds, followed by 
decrease in volume, is also observed in the present experiments. By analogy, 
one can introduce a pressure-induced phase transition in LH1 and LH2 protein 
complexes that, differently from the bulk ice, takes place on just a single mole-
cule level. The single-molecule phase transition is a whole new concept that 
certainly awaits thorough future study. 

In line with the objectives stated in chapter 2, the main results of this work 
are: 
(i) A non-invasive high-pressure spectroscopy method to reversibly control 

tertiary and quaternary structures of membrane proteins and to investigate 
the energetics of H-bonds was developed. The technique that might be 
called “physical engineering” is complementary to genetic engineering, the 
latter being an invasive method, in contrast to noninvasive pressure tech-
nique. 

(ii) By using this novel approach, remarkable stability against high hydrostatic 
pressures reaching 1.1 GPa was observed in case of the WT LH membrane 
chromoproteins from photosynthetic bacteria when they were protected by 
native membrane.  

(iii) Detergent-isolation and genetic manipulations (leading to exchange of 
native carotenoids, partial loss of chromophores, and/or H-bonds that bind 
the chromophores to the surrounding protein scaffold) were found to signi-
ficantly destabilize the membrane chromoproteins under high pressure. Co-
solvents such as glycerol as well as high protein concentration, on the other 
hand, were able to stabilize not only detergent-isolated, which was known 
previously, but also the membrane-embedded chromoproteins. 

(iv) Most notably, first evidence was obtained for reversible high-pressure-in-
duced rupture of H-bonds in an integral membrane protein. The breakage 
of the H-bonds is most probably cooperative process, possibly triggered by 
significant weakening and final disruption of the so-called weak-link 
bonds. Based on the literature analyses, it is hypothesized that the principal 
reason of the pressure-induced denaturation of the proteins is penetration of 
the surrounding polar solvent molecules into the hydrophobic protein 
interior. Shear deformation of the chromophores binding pockets due to 
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mechanical anisotropy of the protein scaffold might also play role in this 
process. 

(v) The energy required to break the H-bonds in WT LH1 and LH2 complexes 
are 10–20 times greater compared with the average thermal energy, RT, at 
ambient temperatures, which secures their great stability. A quasi-inde-
pendent, additive role of H-bonds belonging to the - and -sublattices in 
reinforcement of the WT complexes was established, providing important 
insights into the design principles of natural photosynthetic complexes. The 
H-bond energies determined for the mutant complexes with just one set (- 
or -) of H-bonds intact appear only 4–6-fold greater than thermal energy 
at ambient temperature. This may not be enough for robust functioning of 
these proteins under harsh physiological conditions, explaining the evolu-
tionary design of the LH complexes with double H-bonds in the basic unit. 
The reality that H-bonds are only one of the factors that play role in 
strengthening the proteins is further evidenced by the extra stabilizing 
effect of the RC when comparing the LH1-only complex with either RC-
LH1 or RC-LH1-PufX complexes: the LH1-only sample requires, on aver-
age, less energy to break the H-bonds. Recalling finally the harvesting light 
role of the LH1 and LH2 complexes in photosynthesis, the H-bonds are not 
only essential for the structural stabilization of these complexes, bat are 
also important for tuning their light absorbing properties. 
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SUMMARY IN ESTONIAN 

Kõrgrõhu-spektroskoopiline uurimus fotosünteetiliste bakterite valgust 
koguvate valkude kromofooride vesiniksidemetest 

Käes olevas töös on uuritud fotosünteetilise bakteri, Rhodobacter sphaeroides, 
valgust püüdvate antennide käitumist kõrge hüdrostaatilise rõhu tingimustes, 
kus rõhutundliku nano-sondina kasutatakse valgus olevaid bakterklorofülle 
(BChl). Uuritud on nii membraansete kui detergent-isoleeritud valgust koguvate 
antennide (LH2 ja LH1) ja nende H-sideme, karotenoidi ja B800- mutantide 
käitumist rõhu all. Süsteemis toimuvad muutused rõhu all alluvad Le Chatelier 
printsiibile, kus rõhk toimib süsteemi termodünaamilisele tasakaalule ja rõhu 
kasvamine nihutab tasakaalu väiksema ruumalaga seisu suunas ja kahanemisel 
vastupidiselt. Mõõtmiste läbiviimiseks on rakendatud valdavalt kõrgrõhu ab-
sorptsioon-spektroskoopiat ning välja on töötatud meetodika andmete ana-
lüüsiks. Töö tulemused baseeruvad valgus olevate BChl-dele iseloomulike Qy ja 
Qx neelumisribade maksimumi asukoha nihkumisel ja laiuste muutustel, mis 
otseselt annavad informatsiooni BChl-de ja valgu vaheliste interaktsioonide 
muutuste kohta. Sininihke esinemine neelumisribade maksimumi tavapärases 
punanihkes ja samaaegse spektririba laienemine rõhu all on märk BChl-i ümb-
ruses toimuvatest muutustest, mis viitavad BChl-ide ja valgu vahelise H-side-
mete katkemisele. Saadud tulemus on kooskõlas kirjanduses esitatud vastavate 
H-sidemete mutantide neelumisribade maksimumi nihkumisega normaal-
tingimustel. Lisaks näitab spektririba laienemine BChl suurenenud liikumis-
vabadusest seostumistaskutes, mis samuti viitab H-sidemete katkemisele. 

 
Olulisemateks tulemusteks on: 
1. Kõrge rõhu spektroskoopia baasil on välja on töötatud metoodika, mis või-

maldab uurida H-sidemete katkemist valgu tertsiaar- ja kvaternaar-struk-
tuuride füüsilist terviklikkust säilitavates tingimustes. Seda tehnikat võiks 
nimetada ka valgu modifitseerimise “füüsikaliseks inseneeringu” meeto-
diks. 

2. Tuvastatud on membraanis olevate valgust koguvate antennide erakordne 
stabiilsus (kuni 1.1 GPa). 

3. Rõhu suhtes omavad uuritud valkudele destabiliseerivat mõju nende iso-
leerimine detergendi keskkonda ja geneetiline modifitseermine (natiivse 
karotenoidi asendamine neurosporeeniga, osaline kromofooride puudumine 
ning bakterklorofülle siduvate H-sidemete katkestamine). Kinnitust leidsid 
teadaolevad faktid, et ko-solvent (glütserool) ja kõrge valgu kontsent-
ratsioon stabiliseerivad detergent-isoleeritud ja ka membraanis olevaid 
kromoproteiine.  

4. Esimest korda on näidatud võimalik integraalse membraanse valgu H-side-
mete katkemine, mis suure tõenäosusega on kooperatiivne. Kirjanduse and-
metel võib H-sidemete katkemise põhjuseks olla kõrge rõhu tingimustes 
valgu sissemusse tunginud polaarse solvendi molekulidest või välistatud 



68 
 

pole ka võimalik H-sidemete katkemine valgus rõhu all toimuvate nihke-
deformatsioonide tulemusena. 

5. H-sidemete katkemiseks vaja minev energia valgust koguvates antennides 
on 10–20 korda suurem keskmisest termilisest energiast, RT, ümbritsevas 
keskkonnas, mis tagab nende valkude märkimisväärse stabiilsuse. Uuritud 
valkudes esineb üksteisega tugevalt assotsieerunud bakterklorofüllide 
stabiliseerimisel kahte tüüpi H-sidemeid, mille roll valgu stabiliseerimisel 
on individuaalne. H-sidemete mutantide H-sidemete energia on 4–6 korda 
suurem ümbritseva keskkonna termilisest energiast, mis tõenäoliselt ei ole 
piisav nende funktsioneerimiseks loomulikus looduslikus keskkonnas. 
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APPENDIX: DIRECTIONS OF THE FUTURE 
RESEARCH 

Directions of the future research 
Although many useful experimental data to understand the H-bonds in mem-
brane proteins, specifically in LH complexes of photosynthetic bacteria, have 
been obtained, the present work has also left several interesting question un-
answered and/or raised new problems that await solutions in future research. As 
follows we give a brief outlook of some of these issues. 

Additional proof for the high pressure-induced H-bond rupture. The 
experimental evidence gathered in this work in support the breakage of H-bonds 
is based on the analogy of optical spectral responses of physically (by external 
hydrostatic pressure) or genetically modified LH complexes. In certain sense 
this evidence is devious; it thus would be desirable to obtain additional experi-
mental proof for the high pressure-induced H-bond rupture. There are in 
principle several experimental techniques able to provide this kind of structural 
information, incuding vibrational (Raman), NMR spectroscopy, and X-ray scat-
tering. Unfortunately, applicability of most of these methods for the present 
purpose is questionable. For example, the high-pressure X-ray scattering 
[69,121,122] is not practical because it requires high-quality crystals, which 
most probably are not enough compressible to observed the H-bond breakage. 
The two other techniques require rather high density of the protein in the 
sample. Yet it was observed by us [115] that the WT LH proteins are stabilized 
against high pressure by high concentrations. This explains why the earlier 
attempts from this laboratory ([123,124]) with Raman spectroscopy did not 
succeed in demonstrating the rupture of H-bonds under high pressure. One of 
the interesting byproducts of the present work is that the CrtC- mutant LH2 
complexes show rupture of H-bonds even at high local concentrations present in 
native membrane. Therefore, it will be one of our future priorities to study this 
sample by Raman spectroscopy. 

Slow dissociation of LH chromoproteins under high pressure and esti-
mation of the inter-subunit binding energy. The LH samples studied in this 
work demonstrated high resistivity to high-pressure denaturation, even when 
isolated out from the protective environment of the native membrane, using 
relatively low-concentrated detergents. However, under increased detergent 
concentration, the sample degradation becomes more and more evident when 
observed over a long period of time. For example, the data in Figure 29 show 
slow dissociation of isolated LH1 complexes at the elevated pressure of 0.3 
GPa. To boost the dissociation process the detergent (DHPC) concentration was 
enhanced to 13 mM, instead of standard 3 mM. The dissociation is obvious 
from the decreasing of the B875 absorption band and from the simultaneous 
increasing of the B820 band, the known dimeric building block of the B875 
antenna array. The dissociation is very slow, achieving the equilibrium state 
only in about 40 hours. 
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As can be seen from Figure 29A, the transition is characterized by isobestic 
point, meaning that under the chosen conditions there is only one dissociation 
product with a spectral maximum at 820 nm. The change of the absorbance at 
different spectral ranges corresponding to the reactant (B875) and product 
(B820) states can be used to monitor the kinetics and the equilibrium of the 
dissociation reaction. As can be concluded from the linear dependence in the 
half-logarithmic scale of the insert of Figure 29B, the decay of the B875 com-
plex follows a pseudo-first order kinetics with a half lifetime of t1/2= 9 h 
(dissociation constant Kd= 10-37 M). Further studies are under way to measure 
the time constants and dissociation equilibriums at different pressures, as well 
as to obtain the activation energy and volume of the dissociation reaction. 

 
 

 
Figure 29. (A) Time dependence of the area-normalized absorption spectrum of iso-
lated LH1 complexes from Rba. sphaeroides at 13 mM detergent (DHPC) concentration 
and at constant 0.3 GPa pressure. Arrows indicate the direction of the changing band 
intensity. (B) Decay kinetics of the relative (integral) intensity of the B875 band, corres-
ponding to dissociation of the LH1 complexes. Insert demonstrates the respective 
pseudo first order reaction kinetics. 

 
 

Systematic study of carotenoids in reinforcement the stability of light har-
vesting complexes by high-pressure spectroscopy. We have shown that re-
placement of native contents of carotenoids in Rba. sphaeroides (a mixture of 
spheroidene and spheroidenone with neurosporene), leads to destabilization of 
the structure of LH2 complexes. As a result, as demonstrated in Figure 23, the 
chromophores-binding H-bonds break under pressure, even when the protein 
complexes are protected by the native membrane. In the subsequent phase of the 
high-pressure studies, we are going to systematically study the role of caro-
tenoids in reinforcement the stability of LH complexes. 
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