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ABSTRACT

Accurate information about protein content in the organism is instrumental for a
better understanding of human biology and disease mechanisms. While the pres-
ence of certain types of proteins can be life-threatening, the abundance of others is
an essential condition for an individual’s overall well-being. Protein microarray is
a technology that enables the quantification of thousands of proteins in hundreds
of human samples in a parallel manner. In a series of studies involving protein
microarrays, we have explored and implemented various data science methods
for all-around analysing of these data. This analysis has enabled the identification
and characterisation of proteins targeted by the autoimmune reaction in patients
with the APS1 condition. We have also assessed the utility of applying machine
learning methods alongside statistical tests in a study based on protein expression
data to evaluate potential biomarkers for endometriosis. The keystone of this work
is a web-tool PAWER. PAWER implements relevant computational methods, and
provides a semi-automatic way to run the analysis of protein microarray data on-
line in a drag-and-drop and click-and-play style. The source code of the tool is
publicly available. The work that laid the foundation of this thesis has been in-
strumental for a number of subsequent studies of human disease and also inspired
a contribution to refining standards for validation of machine learning methods in
biology.
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1. INTRODUCTION

Proteins are essential elements of all living organisms. A great number of life-
critical functions depend on these complex molecules. The amount of proteins in
an organism’s cells is strictly regulated, as an excessive amount or sudden short-
age can cause unwanted consequences. Abnormal protein levels can be a sign of a
serious malfunction. For example, in the presence of certain types of immune pro-
teins, the immunoglobulins may attack the body’s own cells and tissues causing
various autoimmune conditions, such as diabetes or multiple sclerosis. Therefore,
an ability to accurately assess protein concentrations in the body can be the key
to the understanding of various important biological processes including disease
mechanisms.

Protein microarray is a popular approach for quantifying protein concentra-
tions in a sample. Hundreds or even thousands of protein concentrations can be
measured in parallel. Depending on what is captured on the slide, it is possible
to measure either the full proteome of the cell or more specifically autoantibodies
present in the sample. Hence, term “protein profiling” in the title of the thesis
refers to the computational analysis of such protein targets, mostly autoantibod-
ies, derived from protein microarray experiments. Although protein microarrays
do not always provide precise information about the number of proteins participat-
ing in the process in a particular sample, their readings help to steer the analysis
towards the most promising targets.

Despite protein microarrays having a lot in common with DNA microarrays,
due to different biological assumptions, not all computational methods developed
for the latter translate well to the former. Therefore, methods tailored specifically
to protein microarrays are absolutely necessary to efficiently use the full capabil-
ities of the platform.

The classical protein data analysis pipeline is complex and consists of a series
of computational methods applied sequentially. Methods for reducing technical
noise, detecting and removing outlier observations, and normalising resulting sig-
nal values are all necessary to ensure the validity of the analysis. Statistical tests,
as well as machine learning methods, are used to identify individual proteins as
well as their combinations with sufficiently contrasting concentration levels be-
tween experimental conditions. Finally, enrichment analysis tools help to put such
proteins into the perspective of the most prevalent biological functions. In this the-
sis, we explored computational methods and optimised the data analysis pipeline
applicable to data acquired from protein microarray experiments. As a result, we
developed and released a web-tool that helps to perform the entire analysis in a
semi-automatic fashion. Methods described in this work were put into practice
and validated in several protein microarray-related publications.

The work towards this thesis started with an analysis of protein microarray
data from a study that explored the autoimmune content of the blood from patients
with autoimmune polyendocrine syndrome type 1 (APS1) [1]. In order to define
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an initial list of proteins targeted by the autoimmune reaction in APS1 patients,
we implemented a protein microarray-specific pre-processing pipeline as well as
performed differential analysis.

We aimed at a more profound understanding of the mechanisms behind APS1
condition and autoimmunity in general. Therefore, protein targets identified in
the previous publication were studied further [2]. We analysed multiple open
databases and public protein datasets to determine common biological factors be-
hind selected protein targets. We used a web server for the functional enrichment
analysis to validate our results.

A focal point of this PhD work is the protein microarray web-explorer (PAWER)
– an R-based web-tool, developed to enable semi-automatic protein microarray
analysis [3]. PAWER incorporates all the relevant computational methods im-
plemented in the previous papers. Its intuitive user interface and step-by-step
workflow are designed to help perform protein microarray analysis with ease.

Finally, in the fourth publication included in this thesis, we have explored the
value of applying machine learning models along with classical statistical meth-
ods discussed in the previous publications. Here we analysed a case-control study
of endometriosis [4]. Prior statistical analysis had shown that no individual pro-
teins are capable of distinguishing endometriosis patients from controls based on
proteins found in the blood. We used several powerful machine learning metods to
evaluate the predictive performance of combinations of proteins. In line with sta-
tistical test results, neither model achieved performance significantly better than
the random chance. Therefore, machine learning results supported the hypothe-
sis that neither measuring individual proteins nor in combination with others can
predict endometriosis and thus help to diagnose the disease in the given samples.

1.1. Main contributions of the thesis

1. Enabling a series of biological findings with a help of a custom all-around
protein microarray data analysis pipeline, from protein microarray specific
pre-processing and signal normalisation to differential and enrichment anal-
ysis.

2. Development of the protein array web-explorer – intuitive web-tool that in-
corporates computational methods relevant to protein microarrays and en-
ables semi-automatic analysis of protein microarray data.

3. Exploring the application of machine learning methods to protein concen-
tration data, adding a new dimension to classical biomarker discovery prac-
tice.
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2. INTRODUCTION TO PROTEINS

Life is beautiful in its complexity, and proteins are some of the most fundamental
biological elements that enable this complexity. Often referred to as “workhorses”
of the cell, proteins are responsible for almost every imaginable item on organ-
isms’ to-do list [5]. Proteins carry out tasks ranging from building tissue and
replicating deoxyribonucleic acid (DNA) to enabling timely immune response
and facilitating oxygen delivery, albeit different types of proteins are at work. The
number of proteins present at any given moment is strictly regulated by cells [6],
as any significant deviation from the norm may cause malfunction and even dis-
ease. Therefore, information about protein abundance can offer valuable insight
into the mechanisms of various diseases. In this work, we focused on quantify-
ing protein abundance in a human body via protein microarray technology. The
current chapter will present the biological context relevant to this thesis.

2.1. From DNA to proteins and back

One of the key principles behind the scientific approach is being open to new
evidence that contradicts established doctrines. However, there is one scientific
dogma that remained present in the discourse over the years – the central dogma
of molecular biology. Coined by Francis Crick in 1957 and published in 1958
[7], it states that DNA in the cell nucleus gets transcribed into ribonucleic acid
(RNA), which in its turn is used to produce proteins. Although being proven
wrong on a number of occasions, e.g., transcription factor proteins that regulate
RNA production, the central dogma remains a useful approximation for the most
important biological interactions in a cell.

DNA is a long double-stranded molecule that consists of four nucleotides: ade-
nine (A), thymine (T), guanine (G), and cytosine (C). Nucleotides form pair-wise
bonds (A with T and C with G), helping to hold two strands of DNA together. Hu-
man DNA is made up of approximately 3.6 billion nucleotide pairs forming our
complete genetic blueprint. Albeit an impressive number, only a fraction of DNA
has been associated with relevant biological functions in the organism. These
functional regions are called genes. The role of the majority of DNA remains
largely unestablished. Because DNA is a static molecule that never leaves the cell
nucleus, to execute biological functions, genes need to send instructions to the
rest of the organism. They do it via the process of transcription, which transfers
information stored in genes into a molecule called RNA. RNA travels to structures
called ribosomes, where both take part in synthesising proteins.

Proteins are complex molecules made up of 20 amino acids, each with its
unique chemical properties [8]. Proteins vastly vary in length from about 200
to almost 27,000 amino acids [9]. Such variability naturally implies rich struc-
tural and functional diversity of resulting molecules. The total number of proteins
in humans remains a subject of scientific debate, with estimates ranging from
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modest 20,000 proteins, if assumed that one gene is responsible for one protein
(i.e., canonical proteins) to hundreds of thousands if the combinatorial nature of
gene expression and alternative splicing is taken into account [10]. While some
proteins leave the native cell to operate elsewhere (e.g., pancreas produces in-
sulin to help regulate blood sugar level), others remain to help facilitate domestic
processes, including regulating the gene expression. Transcription factor proteins
bind to DNA and either suppress or enhance RNA production of nearby genes, di-
rectly violating the basic premise of the central dogma of molecular biology. This
creates a cycle of regulation, where genes create RNA that initiates the production
of proteins, which in their turn regulates the gene expression.

Proteins do most of the work in cells and tissues and are required for many
critical processes in the body [8]. For example, the immune system employs
special types of proteins – antibodies to recognise foreign substances and fight
infections. Most of the work presented in this thesis is focused on antibodies
and their role in immune response, therefore the following section will dive into
immunity.

2.2. The immune system

Despite continuous advances in the understanding of the immune system, the sub-
ject of the matter remains so vast and complex that we consider an in-depth dis-
cussion of immunity to be well beyond the scope of this thesis. The section below
is meant to introduce readers to the most central concepts that are essential for
the autoimmunity discussion that will follow.

The term immunity comes from Latin immūnitās, which referred to legal pro-
tection offered to Roman senators during their time in the office [11]. In biology,
immunity is defined as the defense system of an organism from infections and
other intruders. The immune system is a large network of cells, tissues, and or-
gans that tirelessly work together to protect the organism from anything that is
recognised as an ‘invader’ or ‘foreign’, for example, bacteria, virus, parasite, can-
cer cell, or toxin [12]. While not all invaders are necessarily harmful, those foreign
substances that have disease-causing potential are called pathogens.

The immune system can be broadly divided into two main subsystems: in-
nate and adaptive immunity [12] (Figure 1). Innate immunity is the first line of
any organism’s defence, it employes a wide set of strategies that are not directed
against anyone pathogen in particular, but rather designed to protect against all
possible threats. Skin is a prominent example and a key component of the innate
immune system. Skin acts as a primary physical barrier between pathogens and
the organism. The adaptive or acquired immunity supports innate immunity in de-
fending against intruders. The adaptive immune system interacts with molecules
(most often proteins), known as antigens. Antigens are present on the surface
of the pathogens and can guide the immune response [13]. Unlike innate immu-
nity, which has evolved to be antigen-independent, adaptive immunity is highly
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Figure 1. Immune system can be broadly divided into two subsystems: innate and adap-
tive immunity. Two systems supporting each other in their own ways to fight intruders.
With the latter being slower and more specific, while the former is faster and more gen-
eral.

specific to antigens in its response.
The two main types of cells involved in the adaptive immune system are B

and T cells. While the T cells target intracellular pathogens by directly trigger-
ing cell death mechanisms in the pathogen-infected cells, the B cells are mainly
involved in targeting extracellular pathogens. After recognising foreign antigens
on the surface of the pathogen, B cells differentiate into plasma B cells that pro-
duce antibodies. An antibody is a large Y-shaped protein that binds to a specific
antigen. The structure of a typical antibody is presented in Figure 2. Produced
antibodies bind to the cognate antigen which results in neutralization of this par-
ticular pathogen. Remaining antibodies are then circulating in the bloodstream
where they can initiate the immune response.

Normally, the adaptive immune system produces T cells, B cells, and antibod-
ies that are capable of living harmoniously together with the body’s own cells,
which are usually referred to as self [14]. Albeit, sometimes, due to various en-
vironmental and genetic factors, the immune system produces cells and proteins
that can harm its own host, in a process called an autoimmune reaction or autoim-
munity. Such cells are then called self-reactive or auto-reactive, as they attack
domestic cells. These attacks may have a negligible effect if they occur rarely
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Figure 2. Structure of a typical antibody. Antibodies use their variable regions (coloured
in red) as arms to bind to potential intruders. By binding to a molecule, antibodies send a
signal to other immune cells to take action against the intruder.

or are mild [15]. However, more systematic failures accumulate and may lead
to serious damage, causing various pathologies or even, in some circumstances –
premature death, and more so among women [16].

Typically, self-reactive B cells and T cells are safely removed or silenced by
the immune system prior to any serious harm [17]. Two mechanisms are mainly
responsible for eliminating malfunctioned immune cells: central and peripheral
tolerance [15]. Central tolerance normally occurs inside primary lymphoid or-
gans: thymus and bone marrow and it targets self-reactive T cells and B cells
in their infancy. Peripheral tolerance acts as a backup filter as it selects out self-
reactive immune cells which central tolerance has failed to identify and neutralize.

As part of the central tolerance, T cells undergo a two-stage selection proce-
dure in the thymus [15]. In the first stage (positive selection), immature T cells
are tested for their ability to interact with special antigen-presenting cells in the
thymus. T cells-to-be that show a lack of interest in such targets at this stage is
eliminated. Later, in the second stage (negative selection), T cells are tested for
the binding capacity to self. For this, a set of self-antigens (i.e. antigens that
belong to the body’s own cells) is assembled with help of the autoimmune reg-
ulator gene (AIRE) and displayed to prospective T cells that successfully passed
the first stage [18]. Only cells that ignore self-antigens are subject to further de-
velopment [19]. B cells are also subjects to central tolerance, although the exact
details remain poorly understood [1]. Nevertheless, the tolerance in B cells is

20



partly T cell-dependent, with defective T cells contributing to the production of
autoreactive B cells [20, 21]. In healthy situations, B cells produce antibodies for
our protection against pathogens but in case of bypassing defensive mechanisms
of the immune system, self-reactive B cells produce antibodies that tag the organ-
ism’s own cells and may trigger autoimmunity. Such self-reactive antibodies are
called autoantibodies. Thus, failure to recognise and mitigate self-reactive T and
B cells may potentially lead to the accumulation of autoantibodies and result in
autoimmune disorders [22].

2.2.1. Autoimmune disorders

Autoimmune diseases affect about 5% to 7% of the world population, with the ma-
jority of patients being women [23]. The most famous examples of autoimmune
diseases are type 1 diabetes (T1D), celiac disease and multiple sclerosis [24].
For instance, the onset of type 1 diabetes is caused by an autoimmune reaction
against insulin-producing β cells in the pancreas [25], exogenous gluten proteins
are linked to the autoimmune reaction in celiac disease [26, 27] while patients
with multiple sclerosis harbor autoantibodies against myelin i.e. fatty tissue in the
brain and spinal cord that facilitates neurotransmission [28].

One of the autoimmune disorders – autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED) or autoimmune polyendocrine syn-
drome type 1, is of particular importance for the researchers and doctors who
study autoimmunity. APECED is a rare disorder caused by a small modification
in genetic code. Mutations in the AIRE gene alter negative selection mechanisms
that normally prevent the body from producing harmful autoantibodies. As a re-
sult, a wide range of autoantibodies is released into the bloodstream, causing var-
ious types of damage to the organism’s own cells and tissues. Many of these au-
toantibodies that are produced in APECED are shared with other diseases such as
autoantibodies against β cells in T1D [2]. Precisely due to such high diversity of
self-reactive antibodies, APECED is considered an important disease model that
helps to understand the processes that drive autoimmunity in general [29]. The
study of APECED is central for two publications included in this thesis, which
we will examine in later chapters.

Autoantibodies have been shown to play an important role in many other dis-
eases: various cancers, neurodegenerative diseases, cardiovascular and infectious
disorders. However, the direction of the association between autoantibodies and
disease onset is not always clear – do autoantibodies cause disease or whether au-
toimmunity is merely a side effect [30]? Nevertheless, it has been demonstrated
that the presence of autoantibodies in blood, may suggest the development of
a disease and provide information about its nature and intensity [31]. Studies
show that the information about the quantity of disease-specific autoantibodies
may provide decisive diagnostic information [24,25,32–35]. Therefore, detecting
and characterising autoantibodies present in the organism may shed light on the
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disease development.
One of the earliest attempts to experimentally detect the presence of an anti-

body engaged in a reaction against a patient’s own tissue was successfully carried
out in 1955 by Dr. Henry Kunkel [36]. Dr. Kunkel used antibodies tagged with a
fluorescent marker (also known as secondary antibodies) to detect autoantibodies
in lupus erythematosus cells extracted from the serum of patients with systemic
lupus erythematosus disease [37]. Later, a number of simpler and more accurate
methods have been developed: radiobinding assay, western blot, and enzyme-
linked immunosorbent assays (ELISA). These methods allowed for the detection
of antibodies associated with a pre-defined antigen [38]. A need for an a pri-
ori hypothesis about the antigen was a significant limiting factor, preventing the
discovery of autoantibodies against new previously deemed unrelated antigens.
Therefore, in order to discover novel autoantibodies, researchers needed a way to
screen a much wider range of potential candidate molecules in a high-throughput
manner [24].

2.3. DNA microarrays

DNA microarray technology was developed in the 1990s by the American re-
searcher Patric O. Brown and has revolutionised the analysis of biological sys-
tems [38, 39]. DNA microarray is a collection of microscopic DNA fragments,
short sections of genes printed on a solid surface [38]. A biological sample con-
taining fluorescently labeled complementary DNA or RNA molecules can be then
applied to each array enabling researchers to quantify the expression of each gene
i.e. gene productivity. DNA microarrays were the first high-throughput technol-
ogy enabling quantification of gene expression in a parallel fashion using minimal
sample input requirements [38]. Soon after the first DNA microarrays appeared
it was demonstrated that similar technology involving protein binding molecules
can be used to estimate the number of proteins, including autoantibodies from pa-
tients’ blood [38]. Therefore DNA microarrays have played a pivotal role in the
emergence and the development of protein microarrays.

2.4. Protein microarrays

Similar to DNA microarrays, protein microarrays (or protein chips) contain a large
collection of individually isolated (purified) molecules, densely printed on the
solid glass-based surface [34]. Based on the type of molecule incubated on the
slide, protein microarrays can be categorised into three broad groups: functional,
analytical, and reverse-phase [40, 41]. Functional protein microarrays are pro-
duced by printing full-length proteins on the glass surface. Printing the entire
protein helps to preserve its original structure and as a result, also function. Func-
tional protein microarrays detect autoantibodies that bind to the proteins on the
slide. This type of arrays gained a lot of popularity in the last decade, with the
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number of clinical applications steadily growing [42]. In contrast to functional
microarrays, analytical or capture arrays utilize panels of antibodies attached to
the slide to detect and measure proteins from the sample [41]. Instead of print-
ing an arbitrary set of antibodies or proteins on the slide, in reverse-phase protein
microarrays (RPPA or also known as lysate arrays), all proteins from a specific
cell interior (lysate) are printed and the antibody binding from the sample is de-
tected [41, 43]. In this thesis, we are going to focus solely on functional protein
microarrays that are used to detect and measure the abundance of autoantibodies
in the blood [38].

2.4.1. Functional protein microarrays

In order to use functional protein microarrays to accurately quantify the amounts
of autoantibodies, at first, a sample in the form of plasma, serum or other solu-
tion from a human subject is applied to protein microarray slides. Autoantibodies
from human sample bind to proteins immobilized on microarray surface in spots
or tiny cavities in the glass. Array slides are then washed and dried to get rid
of all molecules that failed to bind and remained on the surface. Later, autoan-
tibodies that have genuinely bound to spotted proteins are detected by applying
fluorescently labeled secondary antibodies. Microarrays are then again washed
and dried. Fluorescent signals coming from each well are acquired with a mi-
croarray scanner and later analysed using computer software [34]. The amount of
light coming from each well is associated with the levels of autoantibody binding
to the specific protein (from this well). Schema of a typical protein microarray is
presented in Figure 3.

Fabrication and further handling of functional protein microarrays is a complex
process. It involves multiple consecutive steps including printing and immobiliza-
tion of proteins on the slide surface, incubation with a sample, repeated washing,
and drying and scanning of arrays. Hence, a substantial number of technical fac-
tors influence the quality of the resulting autoantibody binding signal [44]. Uncal-
ibrated printing machinery may result in uneven distribution of proteins in spots or
in proteins being carried over to neighbouring sites by the printing pin. Irregular
washing and drying of the slides can also cause the variation of the actual pro-
tein content [45]. Several studies have reported a cross-talk between neighbour-
ing spots that resulted in unlikely highly correlated signals between neighbouring
spots [2, 46]. Technical variability introduced by mechanical liabilities can mask
the true underlying biological signal [47]. Therefore, sufficient care must be taken
in design, fabrication, and subsequent analysis to account for possible technical
biases.

ProtoArray human protein microarray. One of the most popular examples of
wide coverage commercial protein microarrays is ProtoArray R©. Originally de-
signed and manufactured by Invitrogen company, ProtoArray R© became a part of
the Life Technologies brand in 2008 that was later acquired by Thermo Fisher
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Figure 3. Schema of the exemplary protein microarray. In functional protein microarrays,
proteins and protein fragments are printed inside spots (blue circles) arranged in rows,
columns and blocks.

Scientific in 2014. ProtoArray R© includes more than 9,000 full-length human pro-
teins as well as several thousand control proteins. All proteins are spotted twice
on the array to enable quality control. More than 6,100 proteins that are included
on the chip are potential drug targets and thus, relevant to disease processes. Data
from ProtoArray R© experiments can be analysed by a number of publicly available
tools including the manufacturer’s own – ProtoArray Prospector. ProtoArray R©

has a broad spectrum of potential applications, including discovering novel dis-
ease biomarkers via analysing autoimmune reactions, discovery, validation, and
development of novel drug targets [44]. Nevertheless, the majority of studies that
used the technology have focused on discovering and characterizing autoimmune
targets from the blood in a specific disease [1, 2, 24, 33, 34, 48].

Experimental data produced via ProtoArray R© platform has been shown to suf-
fer from a multitude of technical errors [44]. Printing and contamination artifacts,
non-specific protein binding, and high background signal all were shown to con-
tribute to the distortion of biological findings, and reduced reproducibility of the
experiments [44]. In later chapters, we discuss some methodological ways to
tackle these challenges. Perhaps in part due to the aforementioned technical bi-
ases in 2018, Thermo Fisher Scientific has discontinued all the services related to
ProtoArray R©. Despite this, a large number of experiments involving ProtoArray R©

had been performed, and much of this data was made available through data repos-
itories like Gene Expression Omnibus [49] and ArrayExpress [50]. This publicly
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available data remains valuable for many researchers who plan to either reproduce
old results or make their own analysis of protein microarray data.

HuProt human protein microarray. HuProt is an actively maintained alterna-
tive platform to ProtoArray R©. Initially developed by CDI laboratory at John Hop-
kins University in 2012 [44, 51], HuProt contained 16,368 full-length functional
proteins, representing 12,586 protein-coding genes [44, 52]. At the time of writ-
ing, the most recent Human Protein Microarray v4.0 in total contains more than
21,000 unique human proteins and protein variants, covering more than 81% of
the canonical human proteome. Similar to ProtoArray R©, HuProt has mostly been
used for detecting and evaluating autoimmune reaction in patients across vari-
ous disorders, including: primary biliary cirrhosis [51], ovarian [53] and gas-
tric cancers [54], neuropsychiatric lupus [55] and Behcet’s syndrome [56]. As a
data generation platform, HuProt was shown to be susceptible to similar biases as
ProtoArray R©, including non-specific binding and printing contamination [44].

Custom protein microarrays. Both equipment and constituents necessary for
creating custom protein microarrays are commercially available from private and
public vendors. Also, fully assembled protein microarrays are available on the
market. Coverage of commercial microarray products ranges from arrays with
few dozens of carefully selected proteins to vast collections that include almost
the entire known proteome [38].

In preparation for this thesis, mostly data from ProtoArray R© and HuProt pro-
tein microarrays were used.
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3. PROTEIN MICROARRAY DATA ANALYSIS

Protein microarray chips are high-throughput platforms capable of measuring
thousands of protein interactions in parallel across multiple samples [57]. Compu-
tational analysis of a typical protein microarray study starts with acquiring high-
resolution images of stained protein arrays, using the special microarray scanner
(e.g. GenePix Microarray scanner). Signal information about each spot on the
array is then extracted into a file by segmentation and registration software (e.g.
GenePix Pro 7). Each array usually results in one file. Data from such files is then
used to assemble a data matrix, which serves as an input to the analysis pipeline.
Each column in such a matrix represents an individual sample while a row is as-
sociated with a protein. This initial matrix is called raw data, as it has not been
“purified” by pre-processing methods. Techniques such as background correc-
tion, signal transformation, outlier detection, and normalisation are essential for
further statistical analysis as they help to remove or at least minimise the effects of
technical noise and thus, enable a fair comparison between samples. Normalised
and pre-processed data can be visualised and explored further. If a study follows
a case-control design [58] (including Publications I, II, and IV in this thesis), it
is possible to compare protein signals in patients with those in healthy individu-
als. This enables researchers to pinpoint proteins in which concentration levels
can reliably differentiate patients from controls. Such differential proteins can
both be used as clinical biomarkers as well as reveal important insights about the
mechanisms of the disease.

Protein microarray analysis has notably benefited from the set of analytical
methods developed for DNA microarrays, as both technologies enable measure-
ment of numerous molecules immobilised on the slide surface, e.g. the array
scanning approach [47]. But as it soon turned out, not all statistical methods
designed for the DNA microarrays may directly be applied to the protein microar-
rays, as the latter is grounded on different biological assumptions. Namely, DNA
microarrays assume comparable levels of gene expression across individuals re-
gardless of their clinical condition. While this may be true for genes, the number
of autoantibodies present in the blood of a healthy person and a patient is vastly
different [44, 47, 57]. Such discrepancy between assumptions has motivated the
use of a different normalisation strategy from the one used in DNA microarrays,
which will be discussed in the sections below.

In this thesis, we describe a set of computational methods used to analyse
functional protein microarray experiments. These techniques are bundled together
into a general data analysis pipeline (Figure 4), which treats raw GPR files as
an input while providing normalised data, a list of differential proteins, and the
results of the enrichment analysis as an output. The pipeline was first designed
as means to analyse data in Publication I, it was later expanded for Publication
II, and finally packaged and released to the public as a web-tool (PAWER) in
Publication III. Finally, in Publication IV we have explored the utility of using
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Figure 4. A rough outline of data analysis methods used for protein microarray experi-
ments. Raw data after the acquisition is assembled into a large matrix. This matrix passes
through a number of steps, including background correction, signal transformation, out-
lier detection, and normalisation before being used as an input for statistical analysis and
machine learning. Next, results of statistical analysis and machine learning modelling are
interpreted in the context of the existing body of knowledge.

machine learning methods alongside classical statistical algorithms described in
previous publications with a goal to increase the choice of methods available for
analysis. Below, we describe each essential part of our pipeline in detail.

3.1. Raw data acquisition

The process of data acquisition starts with scanning incubated arrays with a spe-
cial microarray scanner that produces high-resolution 16-bit images. These im-
ages are saved in Tag Image File Format (TIFF) data format and later processed
by the image segmentation and registration software (e.g. GenePix Pro 7). This
software accurately detects each spot and quantifies its signal intensity with re-
spect to the local background. Then the software uses information about each
spot’s location and contents to link estimated intensity values with corresponding
proteins that were printed on the microarray. Data about array design and spatial
location of each protein is stored in an auxiliary GenePix Array List (GAL) file
and can be added separately to the analysis. Finally, estimated intensities from an
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individual array are saved into GenePix Result (GPR) file – a de facto standard
format for storing protein microarray data [24]. Each collected sample normally
corresponds to one GPR file. Typical protein microarray studies collect dozens or
even hundreds of samples, resulting in a corresponding number of GPR files.

GPR files are text files in disguise, hence, they are tab-delimited text files that
can be read by most popular spreadsheet programs such as Microsoft Excel. GPR
files contain a header with relevant meta-information about the experiment and
the data matrix, which contains raw fluorescent intensity values of each spot on
the chip. If several fluorescent molecules with different wavelengths were used in
the experiment, foreground and background signals are measured and reported for
each. Different types of arrays may have vastly different contents of both meta-
information and intensity matrix. In this thesis, mostly GPR files from ProtoArray
and HuProt platforms were analysed, thus we will focus on them.

3.2. Data pre-processing

At the beginning of the protein microarray analysis, researchers extract individual
raw signal values from GPR files and combine them into a large matrix of raw
data. Multiple studies have shown that raw protein microarray data should not be
used directly in the computational analysis [24, 44, 47]. Various technical issues
discussed previously can introduce a significant amount of noise into the output
signal [24, 44, 47]. This noise can hinder the analysis by masking the true signal,
rendering the final results indecisive. Therefore, raw data must be carefully pre-
processed prior to any further analysis. Pre-processing helps to identify and get rid
of technical noise at the same time preserving valuable biological signal. Below
we discuss a set of common pre-processing strategies, which can be applied in
various orders depending on the experimental setup.

3.2.1. Background correction and signal transformation

In functional protein microarrays, proteins of interest are immobilized in rows and
columns on the glass surface forming a grid of spots [59]. After a slide is incu-
bated with a sample solution (usually blood), autoantibodies bind to immobilized
proteins. One of the technical challenges related to correctly quantifying the fluo-
rescent signal emitted by the labeling antibody is to discriminate signal produced
by the genuine biological reaction and local residuary background light [44, 59].
The true signal is usually derived by subtracting the median background intensity
of the spot, i.e. background signal, from the amount of fluorescent signal reg-
istered within the spot, i.e. foreground signal (Figure 5) [24]. However, several
other more elaborate background corrections methods have been proposed in the
past [45,60,61]. For example, it has been suggested that instead of using an imme-
diate local background intensity it is beneficial to consider a wider neighbourhood
of the spot when calculating the median background signal [45].
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Figure 5. Foreground signal, background signal and wider neighbourhood of the spot.
The fluorescent signal of the protein is determined by subtracting the median of the im-
mediate background of the spot from the median of its foreground signal. Alternatively,
background value can be calculated taking a wider neighbourhood of the spot into con-
sideration.
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Another commonplace practice in biomedical research is to apply one of the
data transform techniques. For example, log-transformation is known to make
fold changes symmetric around zero, reduce the skew in the data, and provide
a good approximation for the normal distribution – desirable property for many
methods [24,62], including protein microarray specific normalisation strategy that
we are going to discuss in a later section. In spite of some researchers revealing
negative effects of logarithm-based data transformation [62], it remains popular
and was used in a number of recently published works related to protein microar-
ray analysis [46,48], including Publications I and II included into this thesis [1,2].

3.2.2. Outlier detection

In order to satisfy assumptions imposed by most of the statistical methods, protein
expression levels registered by a panel of protein microarrays should follow a
normal distribution: most of the values being close to the average signal with few
very low and high values in the tails. However, in practice, due to a multitude
of technical factors e.g. inattentive handling of microarray slides, sample quality,
or manufacturing errors, proteins can exhibit expression levels vastly inconsistent
with the rest of the data. Such proteins are known as outliers or “anomalous data
points”. In protein microarray experiments, both individual proteins and entire
microarray slides may exhibit abnormal expression levels and thus considered
anomalous. The presence of outliers can be unfavourable for the downstream
analysis and resulting conclusions [63]. Hence, once detected, such values usually
are either removed completely or substituted with a reasonable approximation e.g.
average or median of the corresponding protein.

Several methods exist to automatically detect outliers. One of the most popular
and suitable for data that follows normal distribution is to label as outliers all data
points that fall outside three standard deviations from the corresponding mean (i.e.
three-sigma rule or empirical rule). The common assumption is that such extreme
values are unlikely to be generated by the same biological process as the rest of
the data. This reasoning is based on the definition of the normal distribution, for
which 95.45% of its data lie within two standard deviations from its mean, while
99.73% within three standard deviations. If the value is either larger or smaller
than the aforementioned threshold of three standard deviations, it has only 0.27%
of the chance to come from the same distribution as other values. This line of
thought is valid only in case data follows the normal distribution. In other cir-
cumstances, the above calculations may not apply. In practice, it has been shown
that protein expression profiles vary a lot between individuals rarely resulting in
signal values that follow the normal distribution [1,2,64,65]. Therefore data from
protein microarray experiments must be transformed (e.g. using log-transform) if
the three-sigma rule is to be applied.

Another popular approach for identifying outliers is using boxplots [66]. Box-
plots are graphical structures, that show how the data points are spread out. Box-
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plots have at least two relevant merits. Firstly, they offer a natural way to visualise
the data, and secondly, they can be used to detect outliers in a way that is indiffer-
ent to the underlying data distribution. Boxplot summarises data using five quan-
titative measures: minimum, three quartiles, and maximum. While the second
quartile (Q2) corresponds to a median (middle value), the first (Q1), and the third
(Q3) quartiles enclose the first 25% and 75% of data distribution respectively. The
distance between the first and third quartiles is called the interquartile range (IQR)
and given by Q3−Q1. Genuine data points must be larger than Q1−1,5∗IQR and
smaller than Q3 + 1,5 ∗ IQR. Data points outside this range are considered to be
outliers. Boxplots are usually rendered as rectangles (hence the name “boxplot”)
with a fixed width, and length equal to IQR, with outliers, visualised as circles
outside of the box either at the top or bottom of the figure. Although boxplots can
be plotted side by side to compare distributions of multiple features, they are not
suitable for identifying outliers from multivariate data (i.e. data points character-
ized by more than one feature).

Clustering techniques in combination with various visualisation strategies can
be used to recognise outliers in multivariate data, such as protein microarray read-
outs. Hierarchical clustering is an algorithm that recursively groups data into
clusters based on a predefined distance metric e.g. Euclidean distance [67]. The
result of hierarchical clustering is a dendrogram. Dendrogram visually shows the
arrangement of clusters produced by the algorithm. Anomalous samples or pro-
teins will stand out far from the rest of the clusters on the dendrogram, making
them easy to spot and remove. Dendrograms are often coupled with another visu-
alisation approach named heatmaps (Figure 6). Heatmaps use colour to represent
the magnitude of individual signals. Heatmaps supplement dendrograms with an
additional context about single expression values. Despite enabling rich visual-
isations, hierarchical clustering does not label samples as outliers automatically.
One of several metrics can be used on top of hierarchical clustering results to
detect clusters and therefore identify outliers (e.g. elbow method and silhouette
score). Density-based spatial clustering of applications with noise (DBSCAN) is
another clustering method that uses the spatial density of points as a factor for cre-
ating clusters [68]. Data points from the low-density regions, far from established
clusters are considered to be outliers or noise. Therefore, unlike hierarchical clus-
tering, DBSCAN can detect outliers without human intervention. However, DB-
SCAN requires several key parameters to be fixed to work. Although DBSCAN
is the only technique mentioned in this section that was not explicitly applied in
publications included in this thesis, we consider it to be an important addition,
potentially valuable for the readers that may decide to use it in their work.

3.2.3. Signal normalisation

One of the primary goals of protein microarrays is to compare the amount of bind-
ing between individual samples or groups of samples (e.g. healthy and controls).
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Figure 6. An example of a heatmap obtained from a protein microarray experiment using
ClustVis tool. Each cell of the heatmap is coloured based on the signal level of the corre-
sponding protein (in rows) across all samples (in columns). Additional meta-information
available about samples and proteins is visualised using extra colour legends. Hierarchi-
cal clustering results are presented in the form of dendrograms at the top and on the left
of the heatmap.
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For this process to yield realistic results, the protein binding signal measured from
multiple arrays must be comparable. This can be problematic due to the poten-
tial difference in the number of proteins printed on the slides and other techni-
cal factors that can introduce systematic biases [45]. Such biases may signifi-
cantly distort or shift signal distribution for some or all proteins on one or several
protein microarrays. Therefore, unlike the above-mentioned data pre-processing
approaches, signal normalisation acts globally combining information about sig-
nal variation from all arrays and proteins to successfully eliminate non-biological
differences. The most commonly used approaches for protein signal normalisa-
tion were adopted from the DNA microarray context. These techniques, make
strong assumptions about underlying signal distribution, which are not always in
line with biological mechanisms at work in protein microarrays [24, 47, 60]. Pro-
tein microarray-specific normalisation strategy based on robust linear model [47]
makes use of control proteins printed on each array and block. Control proteins
can be positive or negative, but in either case, they are assumed to exhibit constant
signal levels across all samples. Any differences in signal values of these proteins
are considered to be technogenic and thus, corrected for. Below we present some
of the most popular approaches for signal normalisation implemented in the com-
putational tools used for protein microarray analysis [3, 44, 69].

Global scaling. One of the standard methods for most DNA microarrays (e.g.
Affymetrix platform) that was also applied in protein microarrays is the global
scaling approach [47, 70, 71]. In short, the signal levels of each array are divided
by the median signal of the corresponding array. Namely, for each array S, nor-
malised signal Sn would be calculated as

Sn = S/median(S)

[47, 71]. This ensures that the median signal is the same across all arrays. The
global scaling method assumes that the total amount of signal is the same in all
arrays. Although this assumption may hold for DNA microarrays, where approxi-
mately the same number of genes is expressed regardless of the phenotype, it may
not be true for protein microarrays [44]. For example blood from patients with
an autoimmune disease is expected to contain more autoantibodies and therefore
produce a higher total signal comparing to serum from healthy individuals.

Quantile normalisation. Quantile normalisation substitutes the largest value
in each array with a median (or mean) of the largest values across arrays, all
second largest values with a median of the second-largest values, etc. [47, 70].
This algorithm assumes that signal distribution for all arrays is nearly the same
while major differences between samples are mainly of technical, not the bio-
logical origin, which can be the case for DNA microarrays [44]. However, as
discussed previously, the autoimmune profile has been shown to be very hetero-
geneous [1,2,64,65] with a subset of protein features demonstrating a signal very
different from the rest of the platform. Therefore, samples can produce distinct
distributions due to genuine biological differences. Quantile normalisation thus
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eliminates such biologically legible differences, by equalising the underlying dis-
tributions.

Cyclic loess. Cyclic loess normalization is performed for a pair of microarrays,
and its main intuition is usually described using the so-called M versus A plot (MA
plot) [72]. Here M is the difference of log2 expression values, and A is the average
of log2 values. More formally, for a pair of arrays i and j and protein p,

Mp = log2(xpi)− log2(xp j) = log2(xpi/xp j)

and
Ap =

1
2
(log2(xpi)+ log2(xp j)) =

1
2

log2(xpi ∗ xp j)

[70]. Thus, the MA plot for any pair of microarrays can be illustrated as a scat-
ter plot with Mp on the y-axis and Ap on the x-axis. Similar to quantile, cyclic
loess normalization assumes that the expression of the vast majority of genes (in
the case of DNA microarrays) does not change between the conditions, therefore
two perfectly normalized arrays would result in a MA plot in which points are
scattered around M = 0 line [72]. Locally estimated scatterplot smoothing curve,
which is also referred to as loess is computed for the given MA plot to estimate
the deviation from the ideal M = 0 line [73]. A correction factor is then applied
to individual signals of both arrays to achieve convergence of the loess curve and
the ideal line. If there are multiple arrays in the experiment, the above procedure
is applied until all possible pairs have been compared and normalised. Typically,
several cycles of the algorithm are required for the final convergence [72]. How-
ever, if the number of arrays is large, a substantial amount of time is needed to
make sure all arrays are normalised.

Robust linear model. Robust linear model (RLM) [47] makes use of special
sets of proteins – controls that are often built into protein microarrays to enable
normalisation of the signal. Controls can be either positive, that are guaranteed
to have a high signal regardless of the blood content, or negative that should not
react with serum under any circumstances, for example on microarray slides it is
common to use empty spots as negative controls. Controls are present on every
array as well as in every block of proteins on each array. Any significant deviation
in the control signal may indicate the presence of unwanted noise or bias. Hence,
RLM is employing controls to quantify and control for potential biases associated
with arrays and blocks.

To estimate such biases, observed signal si jkr from the array i, block j, control
protein k and probe r is modelled as a linear combination of the following coef-
ficients: αi from an array, β j from a block, τk from a protein feature and random
noise εr using the following formula [47]:

si jkr = αi +β j + τk + εr (3.1)

The linear model presented by 3.1 is built iteratively via a re-weighted least-
squares algorithm that assigns weights to individual observations depending on
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their distance to the fitted curve. In order to make the algorithm more robust to
outliers, the median is used instead of the more conventional sum of least squares
to drive the optimization process [47]. Once the model is trained, the coefficients
associated with each array and block are calculated (α and β in 3.1). The values
of these coefficients describe how much signal of control proteins on a particular
array or block deviates from the average. These deviations are considered to be
of technogenic origin and thus, the normalised signal is calculated by subtracting
corresponding coefficients from the signal of each spot as follows:

s′i jkr = si jkr− (αi +β j)

for all possible i and j values. Figure 7 describes the normalisation process using
RLM. In publications presented in this thesis, RLM normalisation was imple-
mented in R, using functions from MASS [74] and limma [75] packages.

There is another, likely more familiar way to represent the linear model pre-
sented equation by 3.1 using matrix and vector notation:

y = Xw+ ε (3.2)

Here, we will discuss how the latter equation (3.2) can be translated into the
former (3.1) using an artificial example. Variable w from the latter equation is a
vector of all coefficients of the linear model, namely: {w0,w1, ...,wn}, where n is
the total number of coefficients included into the linear model. These coefficients
reflect contributions from arrays, blocks and protein features. If we decide to call
coefficients that represent contributions from arrays α , from blocks β and from
protein types τ , vector w will transform into
{α0,α1, ...,αna ,β0,β1, ...,βnb ,τ0,τ1, ...,τnt}, where na, nb and nt represent the to-
tal number of arrays, blocks and types of control proteins respectively, such that
na + nb + nt = n. Matrix X in equation 3.2 is of size S× n, where S is the total
number of control signals in the experiment, including all possible copies. For ex-
ample, the total number of control signals (S) in the experiment with two arrays,
two blocks on each array, and three types of controls is 12 (2× 2× 3), provided
that each control protein is present in each block and each array. At the same
time, the number of coefficients n in w for the same example is 7 (2 arrays +
2 blocks + 3 control types). Each row in X encodes the location of one control
signal. In the same imaginary protein microarray experiment with two arrays,
two blocks and three control proteins, the first row of matrix X might look as
follows: {1,0,0,1,0,1,0}. This control protein therefore comes from the first
array (first 1), second block (second 1 at fourth position) and happens to be the
second type of control proteins (third 1 at sixth position). The dot product be-
tween the first row of matrix X and vector w will produce the following result:
α0 ∗ 1+α1 ∗ 0+β0 ∗ 0+β1 ∗ 1+ τ0 ∗ 0+ τ1 ∗ 1+ τ2 ∗ 0. After a straightforward
simplification, we get α0 +β1 + τ1. Therefore, X0w = α0 +β1 + τ1. If we insert
this result into the linear model equation above, we get y0 = α0 + β1 + τ1 + ε ,
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Figure 7. Normalising protein microarray signal using the robust linear model and control
proteins. First, intensity values of the control proteins are modelled as a linear combina-
tion of the array (α), block (β ), type of control protein, and noise using a robust linear
model (purple line). The resulting coefficients for arrays and blocks are considered to
be associated with unwanted technical biases. Then the normalised signal is obtained by
subtracting the corresponding coefficients associated with a specific array and block.

where y0 is modelled signal of the corresponding control protein. Random noise
ε is sampled from the normal distribution for each control protein independently.
All in all, in a generic case we get yi jkr = αi +β j + τk + εr, where i, j, k and r are
indexes of corresponding array, block, protein type and protein signal. This final
equation is equivalent to 3.1.

RLM is considered a preferred normalization strategy for protein microarrays
as it exploits protein microarray specific control proteins and does not assume the
near equal signal distribution across arrays [47]. On the other hand, RLM assumes
a normal distribution of the underlying signal to work well. Logarithm transfor-
mation that was discussed earlier, can be applied to the raw protein microarray
data to approximate the normal distribution.

Unfortunately, a source code of the RLM method was not available at a time
when work that laid the foundation of this thesis was performed. RLM was imple-
mented as part of Prospector software – a standard analysis tool provided by the
manufacturer of ProtoArray. At the same time, Prospector had a prohibitive limit
on the number of input samples, rendering it futile for larger studies as ours [76].
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Later, RLM was introduced in a protein array analyser (PAA) – an R package
developed by Michael Turewicz [69]. However, for a significant stretch of time
RLM was nowhere to be found and thus, we had to create our own implementa-
tion of the RLM normalisation module for publications I, II, and later released it
to the research community as part of the web-tool (publication III of this thesis).
The absence of a source code, as well as a pseudo-code of the RLM method in the
original publication [47], made re-implementation of the RLM one of the most
challenging part of the protein microarray analysis pipeline built in this thesis.

3.3. Statistical analysis

After protein data was properly pre-processed, relevant statistical methods can be
applied. Statistical analysis is a vast field with a large number of techniques avail-
able at researchers’ disposal. Characteristics of data and the research question
determine the choice of the statistical method. For example, often researchers
are looking for proteins that are capable of reliably distinguishing between two
(or more) groups of samples, e.g. disease versus controls. Such protein features,
in which intensity levels are sufficiently different between studied conditions are
considered significantly differential and can be used as important biological mark-
ers suggesting the presence or absence of the condition in question often called
outcome variable. To assess the relationship between the intensity of a single
protein and the outcome variable, univariate analysis tools are used. If simple uni-
variate analysis yields no results or there is a good reason to believe that multiple
proteins in combination can be predictive of the sample’s outcome, multivariate
analysis can be performed. Finally, once influential proteins are identified with
either multivariate or univariate techniques, the enrichment analysis can be used
to discover their common properties. The following sections focus on statistical
methods used in this thesis, while adjacent methods are described only briefly.

Although statistical tests that we are going to talk about further, work slightly
differently, some basic notions remain universal. The common starting point in
hypothesis testing is defining a baseline or a null hypothesis (H0) – a general state-
ment about the absence of the assumed phenomenon. For example, H0 may be
formulated as observing no difference between means of protein intensity signals
of two groups of samples. Namely H0 : µ1 = µ2, where µ1 and µ2 are means of the
group 1 and group 2 respectively. An opposite to H0, alternative hypothesis (H1)
thus can be formulated as H1 : µ1 6= µ2. The statistical test usually results in either
rejecting the H0 and thus favouring the alternative hypothesis or failing to reject
the null hypothesis. In either case, employing statistical tests inevitably entails a
number of background assumptions, which are made either about the data or about
the ways how the data has been gathered. An example of a data-based assump-
tion could be that protein intensity signals follow a normal distribution. Invalid
assumptions may lead to invalid test results, therefore it is of utmost importance
to establish correct assumptions and choose an appropriate test.
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Statistical tests use a numeric quantity derived from data to perform the hy-
pothesis test. This quantity is commonly referred to as test statistic. The observed
value of the test statistic can be calculated from the data at hand and compared
with a known theoretical distribution of the test statistic under the null hypothesis
(null distribution). If the observed value of the test statistic is at the far ends of the
distribution i.e. either much larger or smaller than most of the values in the distri-
bution, it is considered to be sufficient evidence for rejecting the null hypothesis.
However, instead of relying on vague notions such as “far ends” or “much larger”,
researchers compute a probability of the observed value of the test statistic to be
sampled from the null distribution - a p-value. If the p-value is less than some
pre-defined threshold value, the corresponding H0 should be rejected. Common
threshold values are 5% and 1%, more about this in the following sections.

Finally, most of the statistical tests can generally be divided into two large
categories: one-sample and two-sample tests. A one-sample test explores the pos-
sibility of the mean of the sample being statistically different from the known
population mean. Two-sample tests are used to assess the significance of the dif-
ference between means of two groups (e.g. patients and controls). Two-sample
tests can be paired or unpaired (or independent). The unpaired two-sample test
assumes no overlap between tested groups (e.g. two independent groups of mice).
As it follows from the name, a two-sample test can compare only two groups.
If there is a need to estimate the significance of the difference between three or
more groups, an analysis of variance can be performed (also known as ANOVA).
The sizes of groups to be compared and corresponding variances also influence the
choice of the test. In this thesis, we make use of both one-sample and independent
two-sample tests, which are discussed further in more detail.

3.3.1. Differential analysis

Many studies involving protein microarrays follow case-control study design (in-
cluding Publications I and II in this thesis), where protein concentrations in pa-
tients can be compared to those in healthy individuals [58]. Proteins that can
reliably differentiate between patients and controls are referred to as differential
and process of identifying such proteins – differential analysis [24,57]. More for-
mally differential proteins are the proteins for which the probability to observe
the corresponding value of the test statistic to be sampled from the null distribu-
tion is below the acceptable significance threshold leading to rejection of the null
hypothesis.

Differential proteins can be used to explore the mechanisms of the disease
(such as in Publications I and II) or as a screening tool – measuring autoantibody
reaction to these proteins in the general population can ideally reveal individu-
als at risk (Publication IV). These individuals could be treated early and less ag-
gressively, increasing their chances for long-term well-being. Below we discuss
different statistical methods used in this thesis to detect differential proteins.
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Z-score analysis. A substantial number of protein microarray-based studies
(including Publications I and II in this thesis) have used an approach referred to
as Z-score analysis or Z-test to define differential proteins [1, 2, 46, 57, 59].

Classical Z-test is used to either evaluate the difference between two groups of
samples or a group and a known population. The null hypothesis for the latter case
can be formulated as H0 : µ = µ0 in two-sided version or as either H0 : µ >= µ0
and H0 : µ <= µ0 for one-sided version, where µ , µ0 are group and population
mean respectively. Z-test uses Z-scores (or standard scores) as a test statistic,
which can be defined as

z =
µ−µ0

σ
(3.3)

where z is the Z-score for a given group of samples with a mean µ , while µ0
and σ are population mean and standard deviation respectively. The distribution
of Z-scores under the null hypothesis is well-known and can be approximated
by a corresponding normal distribution. The group with unusually high or low
Z-score value is considered to have a mean value different from the one of null-
distribution. The relevant p-value can be estimated as the percentage of the null
distribution falling above or below the observed Z-score.

However, unlike the classical Z-test described above, in protein microarray
analysis it is common to use individual spot’s concentration values x in a place of
group mean µ in 3.3 [57], leading to:

z =
x−µ0

σ
(3.4)

This approach is similar to the three-sigma rule described in the outlier detec-
tion section, as protein concentrations with a Z-score of more than 3 or less than
-3 in one or more samples are considered to be significantly differential [1, 2, 57].
However, due to the potentially high number of tests, such a strategy may lead to
a substantial number of proteins deemed differential by mistake (see a section on
multiple testing correction). Such risk can still be justified in the case the goal
is not to identify proteins that are consistently differential across all patients, but
proteins that have abnormally higher concentration values only in a handful of
patients. This is the case for APECED patients, who develop heterogeneous sets
of autoantibodies that may differ from patient to patient and thus target vastly
different sets of proteins spotted on protein microarray slides.

Two main assumptions should be met in order for Z-test to be applicable: Z-
scores should follow a normal distribution and population parameters i.e. mean
and standard deviation should be known in advance, which is not always possible.
Often population mean and standard deviation can be estimated using the sample
mean and standard deviation, which transforms Z-test into a t-test.

Student’s t-test. The Student’s t-test (or a t-test) is one of the most popular
statistical approaches for hypothesis testing. The test was named after William
Sealy Gosset who published the method under the alias “Student”.
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In this thesis we have employed a two-sample version of the t-test, which ex-
plores the difference between two groups of protein microarray slides (patients
and controls), H0 for such test has the following familiar formulation H0 : µ1 = µ2,
where µ1 and µ2 are means of the group 1 and group 2 respectively. An alterna-
tive hypothesis (H1) is therefore H1 : µ1 6= µ2. Similar to Z-score analysis which is
relying on Z-scores, the t-test computes t-values (denoted as t), which are used to
decide the outcome of the test. T-value is a test statistic for the t-test and calculated
using the following formula:

t =
µ1−µ2

sp

√
1
n1
+ 1

n2

(3.5)

where

sp =

√
s2

1
2
+

s2
2
2

(3.6)

Above, sp is a pooled standard deviation (3.6), n1 and n2 represent the number
of samples in group 1 and group 2 respectively, while s1 and s2 are the standard
deviations of these two groups. The formula for t (3.5) is valid as long as there
is a good reason to believe that groups have similar sizes and are sampled from
the populations with equal variances. In other circumstances, slightly different
formulas for t and sp must be applied. From the definition, it follows that t is the
distance between group means in units of pooled standard deviation. If the null
hypothesis is true the value of t should be close to 0, suggesting no difference
between the two means. However, the larger the value of t, the less likely is H0.
Thus, using computed t-value it is possible to quantify the p-value by comparing
t to a null-distribution. If the p-value is less than a predefined threshold, the null
hypothesis is considered to be false and can be rejected. It is common to use 0.05
as a threshold imposed on p-values. Rejection of H0 under 0.05 threshold can
be interpreted as that there is less than 5% chance that the observed difference
between groups is due to random chance.

Multiple assumptions should be satisfied for the above equations and reason-
ing to work. The above-mentioned equality of group sizes and variances is one
of such assumptions. The other assumptions are described below. T-test should
be applied only to continuous data. Also, sample means from populations being
compared should follow the normal distribution, which makes the t-test a member
of parametric tests family, i.e. tests that rely on a specific probability distribu-
tion. Compared groups should be independent of each other (no overlap, unless
paired t-test is used). Lastly, samples i.e. patients and controls should be inde-
pendent of each other. The aforementioned assumptions are by default assumed
to be satisfied, therefore it is the responsibility of the researcher to make sure
that data is suitable, otherwise, results produced by the t-test may not be sensi-
ble. The normality assumption is especially hard to satisfy for the researchers
working with highly heterogeneous protein microarray data. In such cases, more
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powerful alternatives to classical t-test can be used, such as moderated t-test [77]
or Mann–Whitney U test [78] discussed in the next section.

The t-test can be expressed in terms of linear models discussed in the previ-
ous sections and can be formulated as y = Xw+ ε (3.2). Here we will pay no
attention to ε term as it is independent for each sample and cannot be accounted
for. In our case, X is an indicator of whether a sample was drawn from the first
or second group and thus can be written simply as xi. The above equation (3.2)
can be reformulated as follows: yi = xiw, where yi is predicted signal value of i-th
sample. This equation can be further simplified yi = w0+w1 ∗xi. If an i-th sample
is drawn from the first group, xi becomes 0 and the whole equation transforms into
yi = w0+w1 ∗0 or simply yi = w0. Hence, w0 is a predicted signal for the samples
in the first group. Since the best way to summarise a set of points is via their mean,
w0 represents a mean signal of the first group. When sample is from the second
group, the xi equals to 1 and thus the core equation changes to yi = w0 +w1. With
this, we model the second group by adding w1 to the mean of the first group w0,
and therefore w1 is the difference between the means of the two groups. The null
hypothesis can be formulated accordingly as H0 : w1 = 0. Not only the linear
model formulation of the t-test can help to understand the procedure better, but it
also facilitates the implementation using programming languages. Various statis-
tical software packages e.g. limma in R, uses linear model formulation as a basis
for t-test implementation. T-test-based expression analysis performed and pre-
sented in Publication II of this thesis was implemented in limma and formulated
in terms of the linear model.

Mann–Whitney U test. Mann-Whitney U test (also known as the Wilcoxon
rank-sum test) is an alternative to the two-sample equal variance t-test discussed
before [78]. Contrary to the t-test, the Mann-Whitney U test belongs to the family
of non-parametric tests that do not rely on any particular parameterized distri-
bution for hypothesis testing. Therefore, it is applicable to data that does not
necessarily follow the normal distribution as is often the case in biology. Under
null hypothesis H0 the two compared distributions should be considered equal.
More formally, the probability of an observation from the first group to be larger
(or smaller) than an observation from the second group is not consistently differ-
ent from the probability of the opposite, namely, that observation from the second
group being larger (or smaller) than an observation from the first group. Thus, the
Mann-Whitney U test assumes that observations are comparable, i.e. it is possible
to say if one is bigger than the other. In linear model formulation, Mann–Whitney
U test is very similar to the standard t-test, except the model is built on ranks of
x and y instead of actual values: rank(yi) = w0 +w1 ∗ rank(xi). In this thesis, the
Mann-Whitney U test has been used in an attempt to identify differential cytokines
(Publication IV).

Permutation test. Another way to compare two independent groups of samples
without assuming a particular distribution is called a permutation test (or random-
ization test) [79]. It starts with calculating a predefined test statistic on the original
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data. In the case of two independent groups, we may decide to calculate the dif-
ference between two means µ1 and µ2 of two groups with n1 and n2 samples
respectively. Hence, d fo = µ1− µ2 is considered an observed value of the test
statistic for the original data. In order to obtain a distribution of the test statistic
under a null hypothesis H0 : µ1 = µ2, the permutation test performs the following
steps. First, it randomly shuffles all the data and assigns n1 first observations to
the new first group. The remaining n2 samples are assigned to the second group.
Next, the difference between means of randomly created groups d fr is calculated.
If obtained value d fr is larger than d fo, the pre-initialized counter i is increased
by 1. Later, the data is reshuffled again and all the same, steps are repeated a large
number of times (e.g. 10,000), each time a new d fr is computed. To estimate the
corresponding p-value, the observed value of test statistic d fo should be compared
to the distribution of test statistic under the null hypothesis, thus the distribution
of d fr. This can be done by dividing the resulting value of the counter i by the
number of repetitions that were performed. For example, if after 10,000 repeti-
tions only on seven occasions d fr was larger than d fo, the probability to observe
d fr as extreme as d fo under the null hypothesis is 0.0007, which is less than a
classical significance threshold of 0.05, and therefore small enough to reject the
null hypothesis.

There is no need to calculate all possible permutations of the original data,
as this number can be extremely large (e.g. two groups with 30 observations in
each will result in 1.18∗1017 possible permutations) [80]. Instead, a large enough
random sample of all possible combinations would be sufficient. The larger the
sample, the more precise estimate it will generate. Such a sampling procedure
is usually referred to as the Monte Carlo approach. Modern software tools, as
well as processing hardware, enable researchers to shuffle their data enough times
to obtain sufficiently precise estimates in almost no time, making randomization
tests a practical solution to hypothesis testing.

In the research presented in this thesis (in Publication II) we used a permutation
test to test a hypothesis that proteins targeted by the autoantibodies in the blood
of APECED-positive patients originate from genetically more conservative (i.e.
those that accumulate fewer mutations over time) regions of the DNA.

3.3.2. Enrichment analysis

The identified set of significantly differential proteins (i.e. proteins with signal
levels significantly different between conditions) can be interpreted with respect
to the existing body of knowledge. Such interpretation can be the key to the
understanding of biological processes, e.g. mechanisms of the disease. Autoim-
mune disorders such as APS1, discussed in earlier chapters, are caused by the
genetic mutations that undermine the immune system’s native ability to prevent
self-targeting antibodies from entering the bloodstream. Hence, APS1 patients’
blood is filled with a large number of aggressive autoantibodies. Researchers an-
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alyze a pool of proteins that are targeted by released autoantibodies, trying to
identify properties and functions that are common among the targets. Pinpointing
these properties and functions might shed some light on autoantibodies and the
autoimmune process, for example, it may provide clues as to autoantibodies’ ori-
gin. In general, the process of determining properties that are over-represented in
a group of proteins or genes is usually referred to as enrichment analysis. Enrich-
ment analysis is often performed by quantifying the size of the overlap between
a group of proteins with a known biological property, e.g. proteins expressed in
lymphoid cells, and a group in question. A statistical test is then used, e.g. hyper-
geometric test, to estimate the probability that this overlap or larger was observed
by random chance. If such probability is deemed sufficiently low (< 5%), the
overlap between groups is considered significant and therefore, genuine. In this
case, the group in question is said to share the same biological property as a group
with which it was compared. A large number of public databases, such as Gene
Ontology [49], KEGG [81], Reactome [82], Human Phenotype Ontology [83]
and Human Protein Atlas [84] are available with protein and gene groups char-
acterized with various biological properties and functions. Hence, in practice,
enrichment analysis means comparing the obtained group of target proteins to
hundreds or even thousands of groups stored in public databases. A number of po-
tential databases and datasets that can be searched to find relevant terms has long
become prohibitively large for humans to manually work through. Thus many
software tools, e.g. g:Profiler [85] were developed to automate the enrichment
analysis, saving dozens of researchers’ work hours. In this thesis, specifically in
publication II, we have used g:Profiler as well as a hypergeometric test to identify
enriched terms in the group of targeted proteins.

Hypergeometric test. We can explain the idea of the hypergeometric test with
the following example: we are drawing balls from the urn which contains balls
of two colours: white and black. We took a fixed number of balls from this urn.
Some of the balls turned out to be black and some white. The hypergeometric test
attempts to answer the following question – what is the probability of observing
as many white balls as we have or more if the balls were drawn from this urn at
random. In the context of this thesis, it is possible to reformulate this example
as follows: the urn is a protein microarray platform (e.g. ProtoArray), the balls
drawn from the urn represent the list of differential proteins we extracted, white
balls are the proteins that represent a specific biological function and black balls
are all the remaining proteins. The null hypothesis here is that the overlap be-
tween the list of extracted proteins and proteins associated with some biological
process is of the same size as it would be expected if we drew the proteins from
the platform at random. Therefore, we ought to find a probability to observe as
many proteins that belong to a biological process as we do in our list if we drew
these proteins from the protein microarray platform at random. More formally,
the probability to draw k proteins that are associated with a biological process of
interest in our list by chance p(k) can be calculated as follows:
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p(k) =

(K
k

)(N−K
n−k

)(N
n

) (3.7)

where K is the number of such proteins in total on the platform. The number of
proteins in our list is n and N is the number of proteins overall on the platform.
By inserting all possible values of k (from 0 to n) into 3.7 it is possible to obtain
corresponding hypergeometric distribution. By accumulating parts of the distri-
bution that correspond to actual kactual observed from the data, it is possible to
estimate the probability to observe k as extreme as kactual or larger by chance. If
this probability is low enough (less than 0.05) we reject the null hypothesis and
assume that there are more proteins associated with a biological property among
extracted proteins than what we can expect at random. Although we have used
g:Profiler to determine biological processes common among targeted proteins, we
still applied the hypergeometric test in Publication II to be able to perform en-
richment analysis on datasets that were not part of the g:Profiler tool and also to
cross-check our findings.

3.3.3. Multiple testing correction

Let us recall that the p-value implies the probability to observe the current out-
come of the experiment or even more extreme under the null hypothesis. If this
probability is less than 5% it is commonly accepted that the null hypothesis is
unlikely to be true and therefore can be safely rejected. Here, “unlikely” does
not mean “impossible”, thus it is still imaginable to obtain a p-value less than 5%
under the null hypothesis by chance and the probability of this event is the same
5%. Although 5% does not seem to be a very high value, consider an example,
which involves 20 simultaneous tests with the same p-value threshold of 5% [86].
Let us calculate the probability of having at least one test out of 20 to generate a
p-value of 5% or less by pure luck. This is equivalent to asking for the probability
to obtain at least one head by tossing a biased coin (which has a 95% chance of
coming tails) 20 times. This probability can be calculated as follows:

p(at least 1 significant test) = 1− p(no significant tests)20

= 1− (1−0.05)20

= 1−0.36

= 0.64.

(3.8)

There is a 64% chance to obtain at least one falsely significant result out of 20
independent tests. Differential analysis for a protein microarray implies running
statistical tests described in the previous section for each of thousands of proteins
seeded on the platform. For example, analysing a typical HuProt protein microar-
ray experiment would mean performing about 20,000 tests simultaneously. For
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each test, a p-value will be produced, and the null hypothesis is rejected if the cor-
responding p-value is less than 0.05. If we assume the absence of true differential
proteins on the platform, 5%, namely 1000 (0.05*20,000) proteins will be consid-
ered significant simply by chance (because the number of tests is so large). For
example, for the ProtoArray study discussed in Publication II, this would mean
that half of the proteins in the positive group are false. Therefore, the number of
tests needs to be taken into account when performing statistical analysis. A num-
ber of methods have been proposed to adjust the classical statistical significance
threshold of 5%.

Bonferroni correction. The simplest multiple testing correction approach is
called the Bonferroni correction [87]. This method adjusts the p-value threshold
by dividing it by the number of experiments. In the above example of HuProt
array with ∼ 20000 proteins and threshold of 0.05, the new significance threshold
becomes 0.05/20000 = 2.5 ∗ 10−6. Applied to n tests with a p-value threshold
of α Bonferroni correction ensures that the probability of observing at least one
false significant result is α [88], while it is usually sufficient to optimize for some
acceptable proportion of false predictions. Thus this procedure was commonly
regarded as overly strict for most of the practical applications [86, 88].

Benjamini and Hochberg correction. The method by Benjamini and Hochberg
(also known as FDR correction) attempts to keep the number of falsely significant
results at a certain predefined level (e.g. 5%) [89]. The proportion of falsely
admitted associations (false positives) among all significant results is called a false
discovery rate. The method starts with ordering all m unadjusted p-values in a
descending order [86]. Then for the i-th p-value pi, the algorithm checks if this
value is less or equal to (i/m) ∗α , where α is acceptable level of FDR. As soon
as such pi was found consider it to be a significant threshold. We used the method
by Benjamini and Hochberg to correct unadjusted p-values for multiple testing in
publications II and IV.

3.4. Machine learning modelling

While classical statistical methods help to analyse the significance of each protein
feature separately [90], more sophisticated methods, such as machine learning
algorithms, are needed to assess the predictive performance of multiple proteins
combined. Machine learning (sometimes also can be referred to as artificial intel-
ligence) is a field of computer science that develops algorithms capable of learn-
ing valuable relationships from data without being explicitly programmed. Such
relationships can then be used further by the same machine learning models to
accurately predict the value of the outcome variable in new unseen data. Machine
learning models are frequently used in biology in an attempt to build diagnos-
tic tools for certain diseases (e.g. publication IV of this thesis). Depending on
outcome variable type (discrete or continuous) machine learning models can be
broadly divided into classification and regression algorithms. Myriads of machine
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Figure 8. Decision tree algorithm uses information about individual protein intensities
(PA and PB) in order to explain the outcome variable. For example, the decision tree algo-
rithm may assign a class ”control“ to a sample for which protein A (PA) has an intensity
value less than 4.5.

learning algorithms have been developed for each of these categories [91]. Some
of the most popular machine learning methods capable of working with both con-
tinuous and discrete outcome variables are decision trees [92], and random for-
est [93].

The decision tree algorithm. Decision tree algorithm [94] uses values of input
features (e.g. protein intensities) to infer the value of the outcome variable. A
decision tree has a recursive structure with a root at its origin and leaves at the
bottom. Each node can potentially have two children nodes. All nodes except
leaves encode conditions in a form of questions. For example one of the nodes
may inquire if the normalised intensity of protein A has a value of more than 4.5 in
order to decide on a value of the outcome variable (Figure 8). The tree starts with
checking if the input data satisfies the initial condition at the root and descends
down the tree depending on the outcome. Leaf nodes of the tree determine the
outcome of the algorithm: class in the case of classification or continuous value
for regression. To build the tree the decision tree algorithm uses values of all
available features.

The random forest algorithm. The random forest algorithm [93] can be con-
sidered an extension of the decision tree algorithm discussed above. Instead of
building one tree and inferring the predictions from that tree, the random forest
algorithm creates several trees, which are used to predict the value of the out-
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Figure 9. Random forest algorithm uses predictions produced by individual decision trees
in order to predict an outcome variable. Decision trees that are part of a random forest
ensemble are built by randomly discarding a pre-defined number of features and observa-
tions. For example, decision tree 1 has been built after discarding protein A intensity and
the first control sample.

come variable in parallel. Predictions from the individual trees are then combined
together to obtain the final joint prediction. Such approach is often called ensem-
ble learning or ensembling. The random forest algorithm has another important
difference from the decision tree algorithm. The individual trees are constructed
using a random subset of input features and input data points (e.g. proteins). For
example, it is common to use random 80% of samples for each tree in the forest
and when building a tree, nodes are optimized using only random 80% of the fea-
tures (Figure 9). This has been shown to make random forest models extremely
robust to noise and highly generalizable to unseen data.

Evaluating machine learning models. Creating a fully functional machine learn-
ing model (e.g. for diagnosis), starts with exposing it to data that closely resem-
bles the data on which it is expected to perform well in the future. This initial
dataset is called training data. Most machine learning algorithms (including ran-
dom forest algorithm) have various parameters that can be tweaked in the hope
to obtain a better working model. By tweaking such parameters, machine learn-
ing models can be made powerful enough to completely memorize all possible
aspects of the training data. Counterintuitively, this can be harmful to the model’s
performance on new data, if its distribution exhibits even the slightest deviation
from the distribution of the training set. Therefore, correctly estimating the perfor-
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mance when training machine learning algorithms and tweaking their parameters
is a very important step in creating a viable data analysis pipeline. The perfor-
mance of a model is usually evaluated using independent parts of data (referred
to as validation or test set). This approach implies detaching a substantial part of
data from the training set, which may not be used for model training. However, if
the number of samples is limited, which is usually the case in biological research,
creating a separate validation set can be prohibitively data-expensive. Another
way to evaluate the performance of the model is called the cross-validation (CV)
algorithm. It starts by randomly splitting the initial data set into a finite number of
chunks (folds). The total number of folds depends on the size of the data set, of-
ten ranging between 3 and 6. At every iteration of the CV algorithm, the machine
learning model is trained on all folds except one, the remaining fold is used as a
validation set, allowing to take a snapshot of the model’s performance. Part of the
data that serves as a validation set is changed at every iteration, allowing to obtain
several performance estimates using one data set. The cross-validation algorithm
provides a safe way to estimate the unbiased performance of the model under dif-
ferent sets of parameters without letting the model memorize training data. Once
the perfect combination of parameters was found and its performance estimated,
the model can be trained on the entire dataset. The cross-validation approach was
used in the publication IV of this thesis as well as in our previous work [95] to
efficiently evaluate machine learning models.

At present, it is impossible to imagine a section on machine learning that
would ignore a connection between machine learning and deep learning tech-
niques. Deep learning algorithms are machine learning methods that use a popular
type of machine learning models – neural networks to tackle the most challeng-
ing problems, often previously unsolvable by humans. Since the success of the
AlexNet neural network in 2010 [96] these methods have been considered to be
the most advanced form of machine learning. Although deep learning approaches
are considered to be state-of-the-art in many areas, including biology [97,98], due
to several substantial limitations of neural networks (e.g. low transparency and
data-intensive nature of training), here we have focused on less complex, yet still
powerful machine learning methods that have been used in publication IV of this
thesis.
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4. PROTEIN MICROARRAY ANALYSIS IN THE
SEARCH FOR HIGH-AFFINITY AMELIORATING

AUTOANTIBODIES (PUBLICATION I)

The AIRE gene has an important role in central tolerance as it is responsible for
assembling self-antigens used in T cell maturation [18, 99, 100]. These antigens
are presented to T cells during the so-called negative selection phase. Binding be-
tween prospective T cells and self-antigens indicates the potentially self-reactive
tendency of T cells. As a result, such T cells are deemed dangerous for the organ-
ism and normally are removed from the pool of potential immune cells.

Occasional genetic mutations can alter or even cease the function of AIRE,
jeopardising central T cell tolerance [100] and thus resulting in the accumulation
of self-reactive immune cells in the bloodstream. T cells have been linked with
activation of B cells [101] that produce autoantibodies. The theory emerged that
genetically deficient AIRE gene may distort not only the selection of T cells but
also may indirectly create autoimmune B cells and as a result – disease-causing
autoantibodies. Despite such an important role, precise molecular mechanisms of
AIRE have remained poorly understood [29]. Genetic alternations of AIRE cause
the APECED/APS1 autoimmune condition mentioned previously. This disease is
characterised by large numbers of autoantibodies against self-antigens expressed
in the peripheral organs present in the patients’ blood [102]. Although this condi-
tion is rather rare in the general population (depending on the country it can range
from 1 in 25,000 to 1 in 1,000,000), it is often considered as a model disease for
human autoimmunity. We, therefore, reasoned that studying autoantibodies from
a sufficiently large set of APS1/APECED patients may help to gain a better under-
standing of the interplay between AIRE and autoimmunity, for example, collect
evidence for the hypothesis that specific protein features may be an indirect cause
of B cell autoimmunity [1, 2, 29].

Overall, eighty-one APS1/APECED patients of five distinct geographical ori-
gins were recruited into the study that was published in 2016 [1]. Some of the
patients were sampled several times over the course of the study, resulting in a
total of ninety-seven patient samples. Control samples were extracted from nine
first-degree relatives and twelve healthy volunteers. In total, data from a hundred
eighteen samples were analysed. Protein microarray chips from Fisher Scientific
(ProtoArray) were used to quantitatively measure the presence of autoantibodies
in these samples.

According to a standard data acquisition pipeline, ProtoArray chips were scanned
with a GenePix scanner, resulting in hundred eighteen GPR files. Signal was ac-
quired from each GPR file using readMAimages function from limma package in
R. Data was pre-processed and normalised using robust linear model [47]. Later,
in order to identify proteins that showed higher levels of autoimmune reaction,
the signal from each spot was transformed into Z-score by subtracting the mean
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and dividing by the standard deviation of the combined healthy and first-degree
relatives group. We considered a protein to be a positive hit if the corresponding
Z-score had a value of 3 or larger in at least one sample. This resulted in a high
number of positive targets (3,731) jointly recognised by the group of patients and
406 proteins recognized by controls. This observation was in concordance with
a widely held view that APS1/APECED patients are very heterogeneous in the
nature of their autoimmune response with only a handful of proteins (such as type
I interferon family) being recognised by the majority of patients [64, 65], while
other constituting a private set.

To conclude, this paper had at least two major findings. Firstly, our statistical
analysis showed that APS1/APECED patients as a group develop a unique set of
autoantibodies that recognise approximately a hundred body’s own proteins. Al-
most all samples contained high concentrations of autoantibodies against a small
set of proteins (about 10), such as type I interferon or interleukin-22 (IL22). The
remaining proteins were collectively recognised by autoantibodies present only
in a handful of individuals. Thus, it was observed that blood from all 81 pa-
tients collectively contained autoantibodies against more than 3,700 human pro-
teins (which is about 14% of the canonical proteome). Secondly and perhaps even
more importantly, the presence of autoantibodies against type I interferons had a
surprising negative correlation with type I diabetes. In this publication, our main
contribution is of two folds: implementation of a protein microarray specific data
pre-processing pipeline, including re-implementation of the robust linear model
for normalisation and identification of positive hits using Z-scores. A more com-
prehensive analysis of autoimmune targets was performed in Publication II, which
will be discussed in the following chapter.

An important comment was brought to our attention several years after the
publication. A group of independent researchers pointed out that the mean and
standard deviation of combined control and healthy relatives group that we have
used to calculate Z-scores is inherently small. Thus, such a procedure is bound
to produce higher numbers of proteins with Z-scores above the aforementioned
threshold of 3 in patients [103]. Hence, they concluded that it is likely that a
large part of reported in the paper 3,731 positive proteins are false positives –
a side effect of employing an imperfect statistical method. The authors of the
comment suggested that using classical statistical methods for comparing two
distributions would alleviate the problem and produce more trustworthy results.
In our response, published along with the original criticism [104], we empha-
sized the goal of the study – broadly characterize the nature of auto-reactivity in
APS1/APECED patients. We showed that this goal implied maintaining a false-
negative rate as low as possible. Moreover, we stressed an important clinical as-
pect of APS1/APECED, namely that each patient is highly individual in the range
of symptoms, which manifests in diverse sets of autoantibodies present in the
blood of patients [104]. In this vein, classical statistical tests such as Fisher’s ex-
act test [105] or moderated t-test [75] may not have been applicable as they would
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filter out proteins recognised only by few individuals, as insignificant. While we
have not denied the fact this approach could have led to the higher number of false
positives, we nevertheless used it in our analysis, as true targets were to be veri-
fied by independent lab experiments and follow-up studies [1, 2, 106–108]. This
argument is relevant to the analysis performed for the second publication.

The comment published in eLife [103] and our subsequent response [104]
enabled us to appreciate the complexity involved in devising a precise rule for
identifying true-positive autoantibody targets in protein microarray experiments.
Where the classical statistical methods are deemed unsuitable for the task due to
the stochastic nature of the autoimmunogenesis, the ad hoc solutions may lack the
desirable precision. Arguably the most common way to respond to such a chal-
lenge is to employ several orthogonal assays to confirm the findings. Hence, there
seems to be a need for the non-parametric technique that would enable robust yet
non-restrictive analysis of inherently variable signal intensities often exhibited by
the protein microarrays.
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5. CHARACTERISING AUTOIMMUNE TARGETS
FURTHER (PUBLICATION II)

Autoantibodies have been shown to play an important role in the onset and pro-
gression of various autoimmune diseases [109,110]. Yet, while recently a lot more
has been discovered about cellular and genetic factors that contribute to the emer-
gence of autoimmunity, our understanding of properties of involved autoantibod-
ies remains limited [2]. We made an initial attempt to characterise autoantibodies
and their targets in Publication I [1], where we showed that patients’ blood con-
tains high concentrations of autoantibodies against a set of well-known proteins.
Some of these proteins such as type I interferons (especially IFN-α), became di-
agnostic markers for APECED [18]. Autoantibodies against other proteins, like
IL17A, IL17F and IL22 were shown to contribute to the onset of chronic muco-
cutaneous candidiasis – another distinctive feature of APECED [2,111]. Previous
studies suggested that there are autoantibodies that are shared between APECED
and other complex autoimmune diseases, such as Addison’s disease [109] and
T1D [110]. But the number of such commonly targeted and widely known pro-
teins, is small, comparing to the total number of proteins collectively targeted by
autoantibodies in all patients (3,731 in total). Hence, in Publication II we focused
on an in-depth analysis of autoimmune targets identified in Publication I.

Protein data from the same samples as in Publication I was pre-processed us-
ing an earlier developed pipeline with few minor modifications. As before, the
background-subtracted signal (we used basic median local background subtrac-
tion) was log-transformed before being normalised using RLM. The resulting
values were standardized using the mean and standard deviation of control sam-
ples. After several studies that have employed ProtoArrays highlighted a danger
of cross-contamination between neighbouring protein spots [46] we decided to
add another quality control step into our pipeline. Thus, unlike the workflow of
the first publication, here, we removed 31 proteins with unexpectedly highly cor-
related signals (with Pearson’s coefficient of 0.6 or higher) with the expression
of nearby proteins or well-known protein targets (e.g. IFN-α). The remaining
proteins with a standardized score of 3 or higher in three or more patients were
considered to be true positive targets [2]. Additional filtering criteria of three
patients were introduced in this work to reduce the number of possible false pos-
itives that could distort the analysis. This requirement narrowed down the list of
positive proteins from an initial 3,731 to 963, which we later referred to simply
as the “positive group”. Although the positive group was significantly decreased
in size, it remained big enough to include proteins recognised “privately” i.e. by
fewer patients, and therefore capable of providing details on the mechanisms of
the autoimmunity.

Most of the further analysis was centered around characterisation of the posi-
tive group, by matching our protein list with various public databases and analysing
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available meta-information about samples. In the course of this research, we
looked for biological processes that are over-represented in the positive group. We
quantified the number of single nucleotide polymorphisms (SNPs) and APECED
related mutations as well as the level of evolutionary conservation of relevant gene
regions. We also performed differential and clustering analysis with respect to as-
sociated clinical conditions, which however revealed few notable results. Finally,
we ran a longitudinal analysis of protein expression patterns in the positive group.
Performing all these experiments involved a number of technical challenges, so-
lutions to which, are our main contributions to this publication.

First and foremost, in order to be able to use public databases in our analysis
we needed a way to unambiguously compare entities stored in these databases
(usually proteins or genes) with our positive group. Most of the tools and datasets,
employed in this work, operated with Ensembl gene IDs (ENSG). While for a few
others, symbolic gene names must have been used. Analysing overlaps with these
databases meant converting all native Protoarray names used by the manufacturer
(approximately nine thousand Reference Sequence IDs), into ENSGs and gene
names. We used g:Covert web-tool [85] available at https://biit.cs.ut.ee/
gprofiler/convert to obtain initial results. But a substantial number of missing
and duplicated gene ids in the results presented themselves as a serious problem
for further analysis. On one hand, due to factors such as alternative splicing, when
a gene can be associated with multiple proteins, some number of duplicated IDs
was expected. However, a lot of protein IDs were not converted by g:Convert into
ENSGs at all. To impute as many missing gene IDs as possible, we parsed the
official ProtoArray content file, applied g:Convert tool, and manually searched
NCBI [112] and Ensembl databases [113]. Eventually, the number of proteins
that could not have been translated was reduced to 324, which is below 4% of all
proteins on the platform.

Next, data from all relevant databases must have been acquired and unified
prior to further analysis. Often datasets that we required for the analysis were
redistributed over multiple files and stored in different formats, using conflicting
or inconsistent notations. Sometimes, we had to prepare a custom dataset based
on public records. For example, to compare the mutation rate of the positive
group with the overall platform, we extracted information about all mutations in
the human genome and then programmatically searched for SNPs associated with
relevant genes and gene regions (introns, exons, etc.).

Finally, we proceeded to analyse the autoimmune targets by comparing them
to data from public databases [81–84]. Some databases contained only gene lists
associated with a certain biological class (e.g. genes expressed only in some tis-
sue), while others supplemented genes with quantitative measures (e.g. level of
evolutionary conservation). Therefore, the third major technical challenge we
faced in this work can be broadly described as building a multi-headed statisti-
cal pipeline to characterise various biological properties of our positive group.
We used a number of statistical tests to accomplish this, each in a specific con-
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text. The hypergeometric test was used to assess the significance of the overlap
between the positive group and various biological processes, permutation test to
compare quantitative characteristics, various univariate tests to check for statisti-
cal differences between distributions. The resulting p-values were adjusted using
the Benjamini-Hochberg method [89] to account for a large number of tests exe-
cuted in parallel. Finally, we applied a classical significance threshold of 0.05 to
adjusted p-values to find statistically relevant properties of the positive group. To
cross-check the results of our statistical pipeline, we submitted the list of positive
targets to g:Profiler web-tool [85]. We used an unordered query with all ProtoAr-
ray proteins as a statistical background [2].

Described contributions helped us to discover a number of features shared by
the autoimmune targets. For example, we have shown that our positive group
was on average significantly more evolutionary conservative (i.e. had fewer muta-
tions) comparing to other proteins from the platform (with an adjusted p-value of
0.0162). A significant proportion of the proteins from the positive group are found
in the cell nucleus or cytosol. We also reported a significant association between
the number of recognised proteins in each sample and the three most common
APS1 mutations. Lastly, based on our results we hypothesised that APECED
“autoimmunome” is comprised of two distinct groups of autoantibodies, one of
which is likely to be traced back to the AIRE gene discussed in the previous
chapter, while the other originates from lymphoid tissue [2]. These observations
expanded our understanding of the biological properties of autoimmune targets
in APECED. Protein microarray data used as a basis for Publications I and II
can be found online via the accession number “E-MTAB-5369” on ArrayExpress
website.

To summarise, in this publication, we performed an analysis of autoimmune
protein targets in APECED [2]. The main engineering and data analysis chal-
lenges include lossless conversion of ProtoArray protein IDs into ENSGs and
gene names, the transformation of the data from more than fifteen public databases
into a format usable for further analysis with a multitude of statistical approaches.
The substantial complexity of the performed analysis presented a need for a user-
friendly tool that would automate the most laborious parts of the protein microar-
ray analysis. We went on to build such a tool that will be presented separately in
the next chapter.
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6. AUTOMATING PROTEIN MICROARRAY ANALYSIS
WITH PROTEIN ARRAY WEB EXPLORER

(PUBLICATION III)

Building a complete protein microarray analysis pipeline presented in the previous
two sections proved to be time-consuming as well as required skills in statistics
and programming. People with such background are not always available in bi-
ological labs – primary sources of protein microarray data. At the same time,
the existing analysis tools are either outdated (e.g. manufacturer’s own tool –
Prospector) or require familiarity with programming to work with [69] or hard to
use. As the resulting protein microarray analysis became a real challenge for the
practitioners. Therefore, we decided to develop a user-friendly web-tool – Pro-
tein Array Web ExploreR that enables biologists, who produce data, to carry out
protein microarray analysis independently using publicly available web service.
PAWER is based on paweR – the R package that was first developed as part of
this work.

6.1. PAWER pipeline

To start the analysis, PAWER expects fluorescent signal array readings – GenePix
Results files as an input. Files are read in and assembled into a single data matrix
using limma package in R [75]. Then the protein signal is estimated by sub-
tracting the background signals from foreground intensities. Depending on the
platform background subtraction is done using either default values (for ProtoAr-
ray or HuProt) or user-defined feature names. The resulting values are first log-
transformed and then normalised via the robust linear model algorithm [47]. RLM
models signal of control proteins that by default should exhibit no variation be-
tween conditions, using protein location (array and block) and the protein type.
Later non-zero coefficients related to individual arrays and blocks are subtracted
from the corresponding signal intensities to correct for existing biases. Control
proteins that are used as a basis for the linear model can also be chosen manually
by the user, through a convenient search interface. Otherwise, several reason-
able default options are provided. The obtained normalised data matrix can be
downloaded as a separate file. This file can then be used as an input to other
tools to obtain additional insights. To enable principal component and clustering
analysis of the normalised protein microarray data, PAWER is explicitly linked to
ClustVis tool [114]. The user only needs to click a button and upload the file with
normalised data to run the additional analysis.

Next, the user can provide meta-information about samples in order to identify
proteins in which intensity levels significantly differ between conditions. Meta-
data can be either uploaded as a separate file or entered manually by clicking on a
corresponding radio button for each GPR file in the input. Once the metadata has
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been successfully uploaded, PAWER performs differential protein analysis. In this
work, we used a moderated t-test, implemented in limma package [75]. In order
to perform a moderated t-test, the number of samples must be larger than the num-
ber of conditions (at least by one). Therefore, since currently, PAWER supports
only binary conditions, it requires at least three samples (in total) to perform the
differential analysis. As in publication II, the Benjamini-Hochberg method [89]
has been used to adjust computed p-values for multiple tests and thus, greatly re-
duce the number of false-positive proteins. Proteins with adjusted p-values of less
than 0.05 are displayed in the results table along with boxplots that illustrate the
distribution of the signal of each protein in the table. The content of the table
can be changed by selecting only a subset of proteins. Both the table and boxplot
visualization can be downloaded separately.

Proteins that exhibit differential levels of the signal across studied conditions
are then characterised using gprofiler2 R package, which is an interface to g:Profiler
web service [85]. g:Profiler runs the enrichment analysis using differential pro-
teins as a query. The top six most significant enrichment terms are visualised in
a form of a bar plot that can also be downloaded. More visualisations and the re-
maining list of relevant enrichment terms can be accessed directly via g:Profiler by
pressing “Open in g:Profiler” button in PAWER. The overall pipeline is presented
in Figure 10.

One of our focuses for PAWER was designing a user-friendly interface, which
would enable people with no special computer science background to carry out
independent protein microarray analysis. To fulfill this vision, we added a com-
prehensive help page that helps new users to get started with PAWER. We recog-
nised that preparing the data in the right format can be a problem for adapting
bioinformatics tools as PAWER. Therefore, a sample data set with a correspond-
ing metadata file is available for download from the main page as an example of
the file format that PAWER expects. Also, demo results are linked from the home
page. Initially, we developed PAWER for GPR files generated from ProtoArray
and HuProt [115] platforms. Later, through additional customisation, PAWER has
been made in principle compatible with any protein microarray system as long as
it produces text files with consistent headers and a few key parameters (e.g. names
of foreground and background intensity features) are specified.

6.2. Implementation

PAWER consists of two major parts: R package paweR at its computational
core and the web interface. The heart of PAWER – paweR was written in R
version 3.4.2 and uses functions from the following packages: limma [75], re-
shape2 [116], MASS [74] and gprofiler2 [85]. The web interface was implemented
as a single-page application using React.js and Redux architecture on the client-
side and node.js on the server-side. The figures are created and rendered with a
help of D3.js [117] and DataTables libraries. Both the R package and the web-

56



Figure 10. PAWER pipeline. Raw GPR files are uploaded to PAWER (1), then the
system proceeds to identify foreground and background intensities and a panel of control
proteins that can be used for normalisation (2). The robust linear model is then used to
estimate and remove the technical artifacts associated with each array and array block
(3). Normalised data is then combined with sample metadata (4) to produce a list of
differentially expressed proteins (5). PAWER is linked with two other tools (g:Profiler and
ClustVis) to enable additional analysis, namely: protein enrichment analysis and cluster
analysis of normalised expression values.
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server code are freely available under the GNU GPL v2. license.

6.3. Comparison to other tools

To the best of our knowledge there are four major tools available for protein mi-
croarray analysis (besides PAWER): Prospector, ProtoArray Analyser (PAA) [69],
protein microarray analyser (PMA) [60] and an online tool available as part of the
protein microarray database (PMD) [118]. When we started working on the first
publication, the only option to analyse ProtoArray data was through Prospector
software. Prospector was software developed and distributed by the manufac-
turer of the ProtoArray platform – Invitrogen, which later has been acquired by
Thermo Fisher Scientific. The initial version of the Prospector did not allow us to
analyse more than 65 samples at the same time [76], rendering it impractical for
larger studies (e.g. publications I and II of this thesis). Although in later versions
this limitation has been removed, the software still remained closed sourced and
compatible only with outdated operating systems – Windows XP and Windows 7.
Later, ProtoArray analyser – open-source R package was introduced [69]. PAA
has become a standard tool for a lot of bioinformaticians that worked with protein
microarray data. Most of the data analysis pipeline described in the previous sec-
tions (except enrichment analysis) has been implemented and thus accessible via
PAA. Although, being very powerful, PAA still required substantial programming
skills in order to be used efficiently. Another tool for analyzing protein microar-
ray data – PMA, was developed and publicly published in 2018 [60]. PMA is
a multiplatform Java application, that can be used by anyone through the point
and click interface. Notably, PMA has implemented a lot of state-of-the-art com-
putational methods for protein microarray analysis [60]. However, the lack of
supporting documentation and maintenance, a large number of confusing param-
eters, and unclear input format, make this application hard to use. Also, PMA is
not a stand-alone tool, after the signal normalisation is performed with PMA it
requires other resources to be employed for the downstream analysis. Lastly, a
tool that resides on the PMD website is the only web-based solution developed
prior to current work [118]. According to the original publication, PMD offers an
all-encompassing analysis of protein microarrays, including enrichment and dif-
ferential analysis. However, when thoroughly tested using existing GPR files, the
tool failed to produce results. Error messages displayed to the user, come straight
from R and generally are not easy to understand to non-specialists. Moreover,
no documentation file linked from the PMD tool page was accessible at the time
of writing. Details of the implemented algorithms could be found in neither the
original publication nor on the website. In response to the above-mentioned chal-
lenges, we developed PAWER – a freely available web-tool as a user-friendly way
to analyse protein microarray data. PAWER attempts to combine the key features
of the above-listed tools: it has an online interface like PMD, there is a rigid R
core and separate R package (similar to PAA), it provides all-around analysis us-
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ing state-of-the-art computational methods like PMA. The comparison between
PAWER and other tools is presented in Table 1.

Table 1. Comparison between currently available protein microarray analysis tools:
Prospector, PAA, PMA, PMD, and PAWER. The presence or absence of relevant fea-
tures (in columns) are shown as pluses highlighted in green (present features) or minuses
in red (absent features). We were not able to obtain results using the PMD tool, thus all the
relevant entries are based on the claims made in the original publication and highlighted
in gray.

Tool name License
Last

updated
Platform GUI Normalisation

Biomarker
identification

Functional
annotation

Downloadable
visuals

Prospector No license
specified

2015
Windows 7

desktop application
+ + + - -

PAA BSD 3 2019 R package - + + - +

PMA No license
specified

2018
Java

desktop application
+ + - - -

PMD No license
specified

2020
Web server

R code
+ + + + +

PAWER GNU GPL V2. 2020
Web server,
R package

+ + + + +

6.4. Summary

PAWER is the only web-based solution solely focusing on providing state-of-the-
art analysis methods for protein microarray experiments data. All the data and
visualisations are freely downloadable from the website. User-friendly interface,
comprehensive help page, pre-loaded results page, and sample data set – all make
PAWER very easy to get started with and execute one’s own analysis. Code for
both: R package and web interface is publicly available.
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7. VALIDATING RESULTS OF STATISTICAL TESTS
USING MACHINE LEARNING MODELS ON PROTEIN

EXPRESSION DATA (PUBLICATION IV)

In this final publication, a research group from the Faculty of Medicine at the
University of Ljubljana (Slovenia) in collaboration with Medical University Vi-
enna (Austria) measured the protein expression from patients’ blood in an attempt
to identify early signs of the common gynecological condition – endometriosis.
Endometriosis is a benign gynecological disease that results in endometriotic le-
sions found outside the uterine cavity [4]. Endometriosis is an inflammatory
disease, which often manifests itself in pelvic pain and results in infertility. As
many inflammatory processes are regulated by a set of secreted proteins called
cytokines [119], researchers hypothesised that levels of cytokines in patient blood
can be predictive of disease status and can potentially be used as biomarkers in
clinic.

The aforementioned problem definition presented itself as a suitable scenario
for the case-control study. Such a study would normally employ univariate sta-
tistical tests to identify a handful of cytokines with concentration levels suffi-
ciently different between endometriosis positive (cases) and negative (controls)
subjects. While we would expect complex interactions between molecules to be
the most decisive in biology, univariate tests will only spot protein features that
can sufficiently explain the output variable in isolation from other inputs [120].
Hence, in order to discover more relevant biomarkers, more sophisticated analy-
sis, capable of exploring multivariate associations between protein features must
be performed. Additionally, case-control studies have been shown to be prone
to various biases [121, 122]. It has been suggested that any evidence obtained
from case-control studies must be carefully scrutinised and reviewed from multi-
ple angles [122]. In this publication, we employed machine learning methods as a
means to explore multivariate relationships between protein features and confirm
observations made by the univariate tests with respect to single variables. We have
already applied such a strategy in our own work on modelling severity score of
Psoriasis [95].

In this publication, unlike previous papers, presented in this thesis, quantifi-
cation of protein expression was performed using the xMAP Luminex platform,
not protein microarrays. xMAP Luminex technology is a flow cytometric method
based on colour-coded microspheres (also known as beads) [123]. Microspheres
coupled with target-specific antibodies are used to capture target molecules from
the sample. Colour coding enables the system to unambiguously identify each
type of beads, hence, accurately recognise the presence of target molecules. [124].
According to the manufacturer’s website, up to 500 different microspheres can be
designed targeting as many molecules. Unlike protein microarrays, where thou-
sands of proteins are incubated on the glass surface, and one sample essentially
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corresponds to one array, the xMAP platform allows to measure one sample per
well, making this approach much more affordable if the narrower set of proteins
of interest is known in advance. In this work, xMAP Luminex platform was used
to measure the concentration levels of 40 cytokines, mostly chemokines that have
not been previously studied in the context of diagnosing endometriosis [4].

After samples were collected (210 samples in total), the expression of target
proteins was measured using xMAP Luminex technology in accordance with rel-
evant guidelines and protocols. Initial pre-processing of the raw data was done
by the proprietary software tool – Bio-PlexTMManager Software. Clinical and
demographic data about subjects were included in the analysis.

We have first analysed individual protein features using a two-sided Wilcoxon
rank-sum test (Mann-Whitney U test). The resulting p-values were corrected us-
ing the Bonferroni method to account for multiple tests (as many as there are
protein features) being performed at the same time. The protein feature was con-
sidered to have significantly different expression levels between conditions if the
corresponding corrected p-value was less than 0.05. In this work, none of the
analysed cytokines and cytokine ratios showed statistically significant differences.
Hence, univariate statistics suggested an absence of a meaningful association be-
tween cytokine levels in the blood and endometriosis. Next, we hypothesized that
a more complex multivariate relationship can be present. To validate this hypoth-
esis, we employed machine learning.

In terms of machine learning, we were dealing with a supervised learning prob-
lem as the outcome variable (diagnosis) was collected and available in advance.
The binary nature of the outcome variable (endometriosis positive or negative)
suggested a need to employ classification algorithms. A lot of classification mod-
els have been created and made readily available for researchers as part of soft-
ware libraries (e.g. caret in R or scikit-learn in Python). These models differ
in many aspects. As the goal of our research was to build a diagnostic model
that could be used in clinical practice, the model’s explainability was an impor-
tant factor. Hence, we decided to use the decision tree algorithm (implemented
in rpart package [125]). To validate the results of the decision tree algorithm, we
also trained three other classification algorithms: random forest [93], generalised
linear model [126] and weighted k-nearest neighbour algorithm [127]. Selected
models (all but decision tree and random forest) represented intrinsically different
families of machine learning methods, at the same being powerful enough to cap-
ture complex non-linear relationships between input features and the outcome [4].
Therefore, all four models were further trained on cytokines’ concentrations in an
attempt to predict the diagnosis.

Powerful machine learning models (such as the ones we have selected), trained
on a fairly small set of observations, are fully capable of memorizing the signal
distribution [128]. Evaluated on familiar examples, such models eagerly report
highly optimistic performance that does not necessarily reflect a true differentiat-
ing power. This problem is known in the machine learning community as overfit-
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ting. In order to obtain realistic results, it is a common practice to divide the data
into a few independent non-overlapping parts. These usually referred to as train-
ing, validation, and test (or hold out) sets. Models are then trained on the training
set, higher-order parameters are optimised using validation data and the final per-
formance is assessed using the test set. For small datasets this approach can result
in poorly performing models, as a sizeable part of data is not used for training.
To utilise data more effectively, we applied repeated 4-fold cross-validation (CV)
algorithm. This algorithm shuffles and then divides data into four equal parts,
three-quarters of which are used for training while the last set is treated as a nom-
inal validation set. This was done to generate unbiased performance estimates for
each selected model without the need for a separate test set. The median of ob-
tained estimates was thus considered an approximation of the final performance.
In this work, none of the models showed performance sufficiently different from
what can be expected at random, thus, confirming results obtained by univariate
tests.

To summarise, in this collaborative work, we looked for an association be-
tween cytokines expression in blood with the presence or absence of endometrio-
sis. Neither univariate tests nor machine learning algorithms found protein fea-
tures that could alone or in combination accurately explain the value of the out-
come variable. Our main contribution in this publication is two-fold: firstly, we
used four different machine learning algorithms to support and validate the re-
sults of the univariate statistics, and secondly, we employed repeated 4-fold cross-
validation instead of explicit validation and test sets to estimate the performance
of selected machine learning models. The first contribution improved the trust-
worthiness of reported results, while the second enabled us to train models effi-
ciently without fear of overfitting to available data. Although this work is based
on data generated by other than the protein microarray platform, we feel that it fits
nicely into the overall narrative of analysing protein expression data using means
of modern data science.

This work has become pivotal for the contribution that the authors of this thesis
have made to the DOME recommendations for supervised machine learning val-
idation in biology which was accepted for publication in Nature Methods [128].
DOME presents a set of community-wide recommendations aiming at establish-
ing standards for describing key aspects of machine learning pipelines: data, opti-
mization strategies, models, and evaluation. These recommendations should im-
prove the quality as well as increase the reproducibility of biological papers that
employ machine learning models.
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8. CONCLUSIONS

Accurate information about protein levels in the organism has shown to be a valu-
able asset in the understanding of human biology. The presence of certain types
of proteins is associated with a threat to health and well-being, while the abun-
dance of others can be life-saving. One of the ways to estimate protein quantities
is through protein microarrays. Although, in many ways similar to DNA microar-
rays, protein microarrays are subject to distinct biological assumptions, rendering
computational methods designed for DNA microarrays inadequate. An overarch-
ing theme of this thesis is exploring computational methods needed for all-around
analysis of protein microarrays. To fulfill this vision, we have employed various
approaches from statistics, data science, and machine learning.

In Publication I, we performed extensive data pre-processing including data
normalisation and filtering in order to explore the protein profile of the autoim-
mune disorder APS1. We expanded this analysis further in Publication II as we
discovered a group of proteins that were more likely to exhibit high-intensity lev-
els in patients comparing to controls. We thoroughly characterised this group
of positive proteins, using a vast number of publicly available datasets and tools
for the enrichment analysis. Having recognised the amount of work and com-
plexity such thorough analysis demands, we decided to develop an intuitive web-
based tool for protein microarray analysis. Protein microarray web explorer has
been developed and presented in Publication III. PAWER was built for researchers
without a programming background. In publication IV we have explored the use-
fulness of machine learning methods for the analysis of protein concentrations.
In collaboration with clinical partners from Slovenia and Austria, we have em-
ployed statistical tests as well as more sophisticated machine learning methods
to differentiate between endometrium cases and controls, based on protein data.
Here, we used a more data-efficient cross-validation approach to estimate the per-
formance of the machine learning models. Both machine learning and classical
statistical analysis have failed to tell the difference between samples, suggesting
an absence of reliable biomarkers among cytokines measured in the study. Al-
though data for this publication, unlike other papers was obtained using xMAP
Luminex technology, we believe that similar methods can be applied to protein
microarray experiments.

The capstone and the most important contribution of this thesis is the web-
tool PAWER. PAWER encompasses all the important parts of the protein microar-
ray analysis implemented in other publications, namely: the entire pre-processing
pipeline including the normalisation strategy using robust linear model, differen-
tial, and enrichment analysis. The source code of the tool is available online.

To conclude, the work included in this thesis has explored a set of computa-
tional methods available for the protein microarray analysis as well as included
practical recommendations both of which could be useful for those who plan to
carry out their own analysis of protein expression data. The most essential meth-
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ods presented here were included in the web-tool PAWER, allowing researchers
to perform semi-automated analysis online in a drag-and-drop and point-and-click
manner. A number of research projects have also benefited from work presented
in the thesis, including BioEndoCar (https://bioendocar.eu/) – an interna-
tional consortium with an aim to combine protein microarray data with informa-
tion about blood metabolites to identify diagnostic and prognostic markers for en-
dometrial cancer. The first-hand experience of applying machine learning meth-
ods in a biological context has inspired a contribution to the first set of recom-
mendations for validating machine learning methods in biological studies [128].
These guidelines if adopted widely by the community may increase trust in ma-
chine learning research as well as improve the reproducibility of published find-
ings, accelerating the progress in the field.
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SISUKOKKUVÕTE

Andmeanalüüsi töövoo loomine valkude automaatseks
kirjeldamiseks immunoloogias

Valgud on kõigi elusorganismide olulised koostisosad. Nendest keerukatest mo-
lekulidest sõltub suur hulk eluliselt olulisi funktsioone. Valkude kogus organismi
rakkudes on rangelt reguleeritud, kuna liigne kogus või äge puudus võib põhjusta-
da soovimatuid tagajärgi. Ebanormaalne valkude tase võib olla tõsise talitlushäire
märk. Seetõttu võib võime täpselt hinnata valkude kontsentratsiooni kehas olla
haiguse mehhanismide mõistmise võti.

Valgu mikrokiibid on populaarne viis valkude kontsentratsiooni mõõtmiseks
vereproovist. Sel moel saab paralleelselt mõõta sadade või isegi tuhandete val-
kude kontsentratsioone. Ehkki valgukiipidel on palju ühist DNA-mikrokiipidega,
ei sobi kõik DNA-mikrokiipide jaoks välja töötatud arvutusmeetodid erinevate
bioloogiliste eelduste tõttu valgukiipidele. Seetõttu on valgukiipide kui andmete
tootmise platvormi kõigi võimaluste tõhusaks kasutamiseks hädavajalikud spet-
siaalselt neile kohandatud meetodid.

Klassikaline valguandmete analüüs on keeruline ja koosneb järjestikku raken-
datud arvutusmeetodite seeriast. Analüüsi paikapidavuse tagamiseks on vajalikud
meetodid tehnilise müra vähendamiseks, võõrväärtuste tuvastamiseks ja eemalda-
miseks ning saadud signaali väärtuste normaliseerimiseks. Statistilisi teste ja ma-
sinõppe meetodeid kasutatakse nii individuaalsete valkude kui ka nende kombi-
natsioonide tuvastamiseks võttes arvesse valke, mille tasemed on katsetingimuste
vahel piisavalt erinevad. Lõpuks aitavad funktsionaalse rikastamise analüüsi töö-
riistad viia sellised valgud kõige levinumate bioloogiliste funktsioonide konteksti.
Käesolevas töös uurisime valgu mikrokiibi katsetest saadud andmete analüüsiks
kasutatavaid arvutuslikke meetodeid ja optimeerisime nende andmete analüüsi
töövoogu. Selle tulemusena töötasime välja veebitööriista, mis aitab kogu seda
analüüsi poolautomaatselt läbi viia. Doktoritöös kirjeldatud meetodeid rakendasi-
me praktikas mitmes valgu mikrokiipidega seotud teadustöös.

Käesolevas dissertatsioonis kirjeldame esmalt uuringut, kus valgu mikrokiipi-
dega mõõdeti 1. Tüüpi autoimmuunse polüendokrinopaatia sündroomiga (APS1)
patsientide vere autoantikehade sisaldust. APS1 patsientidel autoimmuunse reakt-
siooni sihtmärgiks olevate valkude esialgse loendi määratlemiseks viisime läbi
valgu mikrokiibi-spetsiifilise eeltöötluse analüüsi töövoo ja diferentsiaalanalüüsi.

Meie eesmärk oli APS1 seisundi ja autoimmuunsuse taga olevate mehhanismi-
de sügavam mõistmine. Seetõttu uurisime esimeses artiklis tuvastatud valgu siht-
märke edasi. Töö käigus analüüsisime mitmeid avalikke andmebaase ja valkude
funktsionaalse rikastamise andmekogusid, et teha kindlaks valgu sihtmärkide taga
olevad ühised bioloogilised tegurid. Tulemuste kinnitamiseks viisime läbi funkt-
sionaalse rikastamise analüüsi kasutades g:Profileri veebitööriista.

Saadud valgu mikrokiipide analüüsi kogemuse põhjal sidusime loodud and-
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meanalüüsi vahendid R-programmeerimiskeele põhiseks veebitööriistaks PAWER.
PAWER, mis on loodud valgu mikrokiibi andmete analüüsi poolautomaatseks lä-
biviimiseks, on käesoleva doktoritöö põhitulemuseks. Selle intuitiivne kasutajalii-
des ja järkjärguline töövoog on loodud valgu mikrokiibi analüüsi hõlpsaks teosta-
miseks nii bioloogide kui bioinformaatikute poolt.

Käesoleva doktoritöö neljandas artiklis uurisime masinõppe mudelite ja vara-
semates artiklites käsitletud klassikaliste statistiliste meetodite koos rakendamise
väärtust. Selles töös analüüsisime endometrioosi juhtkontrolluuringut. Eelnev sta-
tistiline analüüs näitas, et verest mõõdetud valgutasemete põhjal pole ükski ük-
sik valk võimeline eristama endometrioosi põdevaid patsiente tervetest. Valku-
de kombinatsioonide ennustusvõime hindamiseks kasutasime erinevaid masinõp-
pe meetodeid. Sarnaselt statistiliste testide tulemustega ei saavutanud masinõppe
mudelid juhuslikkusest oluliselt erinevat tulemust. Seetõttu kinnitasid masinõppe
tulemused hüpoteesi, et ei üksikute valkude mõõtmine ega ka valkude kombinat-
sioonid ei võimalda ennustada endometrioosi ja aidata haigust diagnoosida antud
valimi baasil.
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