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How sex influences the effect of genetic variants on gene expression? 

Abstract: 

Complex human traits and disease prevalence and risks vary between women and men. 

It is important to understand and interpret the effect genetic variants have on cells to manage 

disease and differences in phenotypes. As most genetic variants involved in regulation, the 

effect of these variants (eQTLs) influences gene expression. Most previous research showed 

a small amount of sex-biased eQTLs. However, the majority of studies use whole blood 

samples, which are more likely to produce false positives than purified blood samples, 

because some blood cells are more abundant in one sex than the other. This work analysed 

1187 eQTLs for the present sex-specific effect on gene expression using interaction tests. 

This approach shows reliability confirmed by the uniform distribution of P-values. 

Keywords:  

Bioinformatics, eQTLs analysis, interaction test 

CERCS: B110 Bioinformatics, medical informatics, biomathematics, biometrics 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Kuidas mõjutab sugu geenivariatsioonide efekti geeniekspressioonile? 

Lühikokkuvõte: 

Inimeste komplekssed tunnused, haiguste levimus ning nendega seotud riskid on 

meeste ja naiste vahel erinevad. Selleks et haiguseid ja nende erisusi fenotüüpides uurida, 

on oluline aru saada ning kaardistada erinevate geenide avaldumist rakkudes. 

Geeniekspressiooni mõjutavad varieeruvused geneetilistes markerites, nagu ekspressiooni 

kvantitatiivsete tunnuste lookused (eQTL). Varasemad teadustööd pole näidanud suurel 

hulgal inimese soost mõjutatud eQTLe, kuid enamik töödest on kasutanud täisvere proove. 

Need annavad suurema tõenäosusega valepositiivseid tulemusi kui rakutüübi kaupa 

eraldatud proovid, sest mõndasid vererakke esineb ühel sool rohkem kui teisel. Käesolev töö 

uuris 1187 eQTLi soost sõltuvate efektide esinemisest geeniekspressioonile kasutades 

interaktsiooniteste. Selle lähenemise usaldusväärsust kinnitab p-väärtuste ühtlane jaotus. 

Võtmesõnad: 

interaktsiooni test, eQTL-ide analüüs, interaktsioonitest 

CERCS: B110 Bioinformaatika, meditsiiniinformaatika, biomatemaatika, 

biomeetrika 
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1 LITERATURE REVIEW 

 

1.1 Introduction 

The human genome is the complete genetic material containing coding and non-coding 

genes, accounting for about 2% and 98% of the genome respectively, it consists of 3.1 billion 

nucleotides and two copies of each chromosome which are called homologous 

chromosomes. The coding genes are the DNA or RNA fragments that provide a protein 

blueprint. The non-coding portion of genetic material functions as regulation tools for 

transcription and translation, attachment regions, DNA replication origins, telomeres and 

centromeres. Genetically speaking, humans are identical and non-unique, as 99.9% of the 

genome is absolutely the same for every individual, however, the remaining 0.1% gives us 

our uniqueness and individuality. The difference between our genomes is described by a 

genetic variation which is the difference in nucleic acids among the population. It manifests 

mutations of various types: single-nucleotide polymorphisms, (SNPs), insertion-deletion 

mutation (indels) and large genetic recombination (Ginsburg 2013). The variability is 

relevant to the differential disease risk among individuals. It is fundamental to understand 

and interpret the effects genome variants have inside the cells to handle the biology of 

diseases and phenotypes of an organism. The variants likely to be involved in gene regulation 

are found in non-coding regions, to analyse such variants the studying of gene expressions 

in cells was implemented. These studies rely on Expression Quantitative Trait Loci (eQTLs) 

(Nica and Dermitzakis 2013). 

1.2 Expression Quantitative Trait Locus 

Expression Quantitative Trait Locus (eQTL) is a chromosomal region affecting the level 

of gene transcription, in other words, it can affect one or more gene expressions. These loci 

can be classified by their location (local or distant) and action mode (cis- or trans-).  Local 

eQTLs reside near the genes that they impact, while distant ones are located further away. 

There is no exact physical or genetic distance that instructs an eQTL to be defined as distant; 

different studies determine it in different manners, ranging from 2Mb to regions on other 

chromosomes from the gene of interest. Local eQTLs can act in two modes. In cis, the allele 

is changed only on the copy of the same chromosome and its expression is affected, but the 

other copy stays intact on the homologous chromosome. The comparison of expression 
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levels of the two alleles in heterozygous individuals can display the presence or absence of 

expression level balance, giving a clue about the effect of a cis-eQTL. The imbalance 

presence in expression levels between these two alleles hints that the gene is under the effect 

of cis-eQTL. However, the local eQTLs can also operate in trans mode, in which they alter 

the structure, function or expression of a diffusible intermediate resulting in altered gene 

expression levels. The presence of a diffusible factor means that both target gene alleles are 

affected, thus heterozygous individuals do not present allele-biased expressions, as 

evidenced in Figure 1. Due to the factor, trans-eQTLs are not restricted to be located close 

to the regulated gene and can be present anywhere in the genome. In the close proximity to 

the gene, they are described as local but not cis-acting.(Albert and Kruglyak 2015) A recent 

study of about 1000 individuals suggests that local eQTLs affect about 80% of expressed 

genes in whole blood(Battle et al. 2014). 

 

Figure 1 eQTLs are categorised by their location (local and distant) and action mode 
(cis- and trans-). The figure is obtained from Albert and Kruglyak, 2015 

 

1.3 Sex differences in humans at the molecular level 

GWAS Data 

The genetic effects at chromosomal loci can be identified by using data from ge-

nome-wide association studies (GWAS). Statistical interaction tests are implemented to in-

vestigate if sex correlated variables change the genotype effect on phenotype; the tests show 

if the genetic variant effect on phenotype has a difference between sexes, it also reveals if 

an effect of one variable relies on another variable value. In a gene-by-sex interaction test, 

there is a high chance for a false negative finding so that an incorrect null hypothesis fails to 
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be rejected; these types of errors are called type II errors and they occur as large size samples 

are necessary to detect differences between two variables. 

 

Sex difference in the regulation of the genome 

 There is a common characteristic shared among many species, which is that sex-

biased gene expression is affected by the number of present copies and alleles as well as the 

quality of the expression. The sex-biased expression is present within and between tissues, 

cells and cell lines (Khramtsova, Davis, and Stranger 2019). There are several important 

subject matters that are shown in the work: genes with sex-biased gene expression located 

on both the sex chromosomes and autosomes, ChrX stands out for genes in which mRNA 

levels are different between two sexes; expression levels between males and females are 

likely to have a small fold-change for sex differentially expressed (sex-DE) genes; tissues, 

development stages and environment lead to various gene expression of the sex-biased 

genes. For example, a study of >5000 individuals looked at whole blood samples for sex-

biased gene expression and identified that 51, 16 and 572 genes on chromosome X, Y and 

autosomes accordingly (Jansen et al. 2014). Male-biased genes were linked to renal cancer, 

while female ones - rheumatoid arthritis; that indicates a contribution of sex-biased gene 

expression leading to differences in diseases between males and females. Several recent re-

ported studies, which assessed the distinct gene expression in various tissues and cell lines, 

showed that sex-biased gene expression is exhibited by 10-60% of autosomal genes depend-

ing on the tissues. (Khramtsova, Davis, and Stranger 2019)  

 

Sex difference in regulation, the eQTLs effect 

The variation in gene expression is partially heritable, this means gene expression 

variation can affect sex-differentiated traits. The indicator of genetic variation influenced on 

complex traits by way of regulation is that expression quantitative trait loci (eQTLs) are high 

among disease risks and complex traits loci. Some eQTLs are sex-biased and may affect 

transcriptional levels of genes in females, but not in males, for instance, or they could be 

present in both sexes but have a unique effect on each of them, therefore resulting in differ-

ences between sexes in mean expression levels or expression deviation. Figure 2 illustrates 

the way given genotype variants have various gene expression differences between females 

and males. The single-sex effect is present if there is a distinct mean expression difference 
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in one sex but not in the other; the differential effect is shown when the genetic variants 

produce distinctive gene expression in each sex and there is no correlation between the two; 

the opposite effect exists when the same genotype variants induce reverse gene expression 

levels in females and males. 

 

Figure 2 shows gene expression difference varies based on the genotype effect 

between males and females. The figure is obtained from Khramtsova, Davis, and Stranger 

2019. 

 

Cell type composition effect on eQTL analysis  

A GWAS of sex-specific eQTLs in whole blood found 4 sex-specific eQTLs on auto-

somes and 2 eQTLs on chromosome X (Kukurba et al. 2016). Two of these sex-specific 

eQTLs were found in other individuals, there were eQTLs for BSCL2 and NOD2. The latter 

NOD2 sex-biased eQTL was identified in the whole blood analysis. However, purified blood 

cell analysis showed no sex-biased eQTL for NOD2. The reason for these findings is a sex-

biased disbalance of some cell type numbers, for instance, neutrophils are present in larger 

numbers in females than in males, then resulting eQTLs will appear to be more female-

specific, however, purified neutrophils samples show non-specific sex effect (Khramtsova, 

Davis, and Stranger 2019). The cell-type composition differences between males and fe-

males could lead to false positives. Thus, my thesis objective is to perform this analysis in 

purified cell types. As an example, I chose B-cell data from the CEDAR (Momozawa et al. 

2018) from the eQTL Catalogue (Kerimov et al. 2020). 
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1.4 Sex-specific genetic effects on gene expression  

A study investigated the influence of sex-biased eQTLs on the genetic variants of 

disease-associated traits (Yao et al. 2014a). As the way genetic variants influencing gene 

expression are unknown, the method to identify this type of interactions involving gene 

regulation is to examine the expression of genes being a quantitative trait and find genetic 

variants which correspond with the gene expression levels. The whole blood sample evalu-

ation of 11 672 SNPs from 5254 individuals that may function as sex-biased eQTLs found 

13 meaningful cis-eQTLs on autosomes and 1 on ChrX show genotype by sex interactions 

on gene expression, and there were no allele frequency differences between eQTLs. How-

ever, out of these 14 genes, only 7 demonstrated differences in the mean expression be-

tween females and males. The rest of the genes are regulated by eQTLs which either have 

an allele associated with higher expression in one of the sexes or have opposite-sex differ-

ence effect on the mean expression. The evidence demonstrates eQTLs interactions in Ta-

ble 1, including an SNP (rs2605100 with P = 0.0009) at the LYPLALI locus to represent 

sex interaction towards obesity traits, and SNPs (rs4343 and rs4329 with P = 0.0015 for 

both) at the ACE locus to correspond with blood pressure, as well as two SNPs 

(rs10401969 and rs17750998 with P = 0.02 and P = 0.0021 respectively) to correlate with 

diversity of lipid traits between males and females. 

 

eQTL Chr:Position Trait Expected gene P-value  
(interaction) 

rs2605100 1 : 219 644 224 Adiposity BPNT1 0.0009 
rs4343 17 : 61 566 031 Angiotensin-

converting enzyme 
inhibitors 

PECAM1 0.0015 

rs4329 17 : 61 563 458 Metabolism PECAM1 0.0015 
rs10401969 19 : 19 407 718 Cholesterol; 

triglycerides; 
cholesterol, LDL 

ELL 0.02 

rs17750998 19 : 19 388 446 Iron MAU2 0.0021 
Table1. Sex-interaction eQTLs in sex-dependent loci. The table is obtained from Yao 

et al. 2014b. 

The study (Yao et al. 2014) indicates a failure to reproduce results of sex interaction 

of rs167769 and rs2872507 tested in the study, which looked at genotype-sex interactions in 
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1240 peripheral mononuclear cells and 379 lymphoblastoid cell lines, by Dimas et al. 2012. 

There are two main reasons explaining that: there is tissue specificity in eQTLs and a 10-

fold increase in sample size is required to facilitate the interaction detection. However, as 

more than 5000 individuals are the sample size of the given study, the data shows the 

presence of sex interactions of eQTL genetic variants with gene expression. 

Differences between the two sexes are also evident by the presence of a molecule, 

gene or characteristic which identify a particular physiological process or disease, these are 

called biomarkers; yet the degree of genetic influence to this is unknown. A study done by 

Flynn et al. 2019 aimed to investigate sex-biased heritability and genetic correlation over 33 

quantitative biomarker traits in about 340 000 individuals, out of which approximately 180 

000 were females and 160 000 were males. The method was to estimate the extent of genetic 

influence on both sexes and determine which genetic effects were common between women 

and men and which were shared to each. The UK Biobank data investigation of blood and 

urine biomarkers analysed sex-specific genetic effects of testosterone level and thus used the 

results to provide an explanation of involved biological mechanisms; selectively expressed 

genes in tissues and protein-altering variants, testosterone and other traits relationship and 

testosterone risk prediction models. 

For the estimation of sex-biased contribution towards genetic variants, they build two 

models: one to analyse if variants influence the trait and another to determine genetic vari-

ants that have different effects between sexes. The latter resulted in the identification of 

genetic variants with shared (variants producing the same effect in males and females) and 

different (variants producing distinct effects in sexes) effects in males and females. 26 487 

variants were found to have effects on the traits; the large portion of these variants had shared 

effects on sexes, only 463 and 146 genetic variants were identified to be with sex-biased 

effects in men and women accordingly, the majority of these variants influence sex-biased 

effects on testosterone levels. Figure 3 represents the effect sizes of the variants; both female-

specific variants and males-specific variants have strong positive and negative effects on 

testosterone production. Further, the impact of sex-specific variants related to testosterone 

levels is investigated to regards to local gene expression of a specific tissue. In females, there 

was no significant enrichment in the tested genes, but in males, the enrichment was found 

with liver-specific genes, thus, it is suggested that liver diseases may have a different set of 

causes in males and females due to this enrichment effect.   
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The significance of these results is that testosterone is the only biomarker that has sex-

biased effects, because the hormone is produced in different tissues in males and females, 

while other biomarkers show very little difference, leading that we should not find much for 

the sex-specific gene expression. 

Figure 3. Sex-biased effects on genetic variants influencing testosterone levels. The 

figure shows an effect sizes estimation for variants on testosterone . The x-axis is an 

estimated effect size in females; the y-axis is an estimated effect size in males. Blue dots 

are variants with the male-specific effect; red are the female-specific effect; and gray dots 

are variants with shared effect. The figure is obtained from Flynn et al. 2019. 
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2 THE AIMS OF THE THESIS 

• Analyse purified cell type samples for sex-biased genetic effect on gene expression 

  



13 

 

EXPERIMENTAL PART  

2.1 METHODS 

2.1.1 Dataset description  

This work’s dataset uses publicly available microarray data (CEDAR by Momozawa 

et al. 2018) from the eQTL Catalogue (Kerimov et al. 2020), a collaboration between 

University of Tartu and the European Bioinformatics Institute. The dataset consists of eQTL 

summary statistics and processed raw data. The raw data is passed through eQTL mapping 

and quality control. The dataset has 2388 samples from 322 donors. The data has various 

cell types or tissue, normalised gene expression data, genotype data and metadata. The 

available cell types or tissues are CD4 and CD8 T cells, monocytes, neutrophils, platelets, 

B-cells, ileum, rectum, transverse colon. 

For this work, only 1187 eQTLs were used. The cell type data is obtained from eQTL 

lead variants (i.e. the genetic variant in the +/-1 Mb window around the promoter of each 

gene that had the smallest eQTL association p-value for that gene, when analysing males 

and females together) and their corresponding permutation P-values for B cells of CEDAR 

dataset taken from eQTL Catalogue (Kerimov et al. 2020). In order to identify eQTL, all 

SNPs in a 2 Mb window of the gene are scanned and the lead eQTL variants exhibit the 

strongest association with the corresponding the position of the gene, as characterised by P-

values (Joehanes et al. 2017).  

P-values are permuted that allowed to have all of the possible alternative assignments 

that could have been from a larger study with more samples. These are P-values obtained 

with the help of permutation tests (also called randomisation tests), which are non-paramet-

ric methods to determine statistical significance built on label rearrangement of a dataset. 

The significance of this ‘reshuffling’ of data is presented as its P-value. Thus, P-value rep-

resents the probability of acquiring a lead eQTL at least as extreme as the test statistic pro-

vided the null hypothesis is passed, which is that labels are interchangeable. Hence, the low 

P-values highlight labels which are not interchangeable, and permutation is relevant with 

respect to the original data(Knijnenburg et al. 2009). 

Normalised gene expression data is a compressed text format file (tsv.gz). It provides 

a matched gene expression between phenotype id on the first column and sample id presented 

as column names starting from the second column in Table 2. The gene expression is 
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normalised, increasing the quality of data; that is essential as low-quality samples can 

produce extreme outliers thus reducing the statistical power of the analysis. Low-quality 

samples occur due to contamination or minor human errors in the laboratories. 

Table 2. Normalised gene expression data from CEDAR dataset. 

Genotype data is stored as a compressed variant call format (VCF) file, which also 

has an index file allowing access to a specific genetic variant by its ID. That returns all 

genotype values with genotype IDs for this particular variant. The genotypes are imputed 

from a larger reference population. Raw genotype data has only three variants: 0, 1, 2. As 

the genotypes were subjected to imputation, they converted from discrete values to continu-

ous ones from 0 to 2. 

Metadata is a text file that has sample ID, genotype ID, sex, cell type, quality control 

test information and additional information about the participants. All these files were 

internally available from the eQTL Catalogue (Kerimov et al. 2020). 
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2.1.2 Languages and libraries 

R packages (‘R: The R Project for Statistical Computing’) and Python language (py-

thon.org) were employed for the work on this thesis. R is a software environment for statis-

tical analysis, computations and graphics. It was accessed with the help of Rstudio, an open-

source tool for R, running on Windows 10 and later Ubuntu 18.04. R was used for the large 

portion computation for this thesis, with Python being an aid tool for accessing relevant 

genotype variant data. 

In R the following libraries were imported ggplot2, dplyr, purrr, SNPRelate, GDSAr-

ray: 

• ggplot2 creates graphs from the two identified gene-variant pairs (Wickham, Chang, 

et al. 2020); 

• dplyr is highly exploited for generation and preparation of input data (Wickham, 

François, et al. 2020); 

• purrr is used to combine two lists of data frames (Henry, Wickham, and RStudio 

2020); 

• SNPRelate (Zheng, 2013) and GDSArray are libraries from an open-source bioinfor-

matics tool Bioconductor. They are initially used to import and extract genotype data 

(github.com/kauralasoo/MTAT.03.239_Bioinformatics/). 

• To import genotypes, a script from (github.com/kauralasoo/MTAT.03.239_Bioin-

formatics/) provided by the supervisor, Kaur Alasso PhD. 

     

Python script used gzip, tabix and csv library: 

• gzip is a module used to uncompress genotype data in text format; 

• pytabix allows fast random access to an indexed file, therefore, extracts genotype 

values for a particular SNP ID (Li, 2011); 

• csv is an exportation tool for the extracted genotype values to be written into a file 

and then imported to R for further data manipulation. 

 

https://www.zotero.org/google-docs/?JRoJkN
https://www.zotero.org/google-docs/?akntjh
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2.1.3 Generating input data 

The dataset contains 4 files: cell type data, normalised gene expression data, genotype 

data and metadata. In order to proceed to eQTL analysis of the data, the required data from 

these files have to be coupled through specific parameters. 

As cell type data has permuted P-values, the low P-values will signify that permutation 

data is relevant to the original one and high P-values provide false positives. To avoid false 

positives and improve statistical power of the analysis, P-values from cell type data are 

adjusted by the False Discovery Rate (FDR) method. All the FDR-corrected P-values that 

are larger than 0.05 are rejected that reduces the number of eQTL from almost 20 000 to 

about 1 187 and leaves only genes that are relevant with respect to original data in Table 3. 

Table 3. B cell data with adjusted P-values; only genes with small P-value are left, 

signifying their relevance to the original data. B cell data for 4 genes provides gene, chro-

mosome number, phenotype ID, SNP ID, the position of SNP on the chromosome and P-

value. 

 

The metadata is used for quality control (QC) and select data for B cells only. QC is 

used to remove low-quality data and potential outliers, therefore samples, which do not pass 

both RNA QC and Genotype QC, are filtered out. This QC procedure leaves 2337 samples 
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out of 2967. However, 2337 samples have data for all of the available cell types and filtering 

out all the cell types other than B cells leaves only 262 samples. 

 

 

Table 4. Metadata for B cells and passed quality control, containing sample ID, genotype 

ID, sex, cell type (qtl_group) and two quality control results. 

 

After importing normalised gene expression data into the R environment as a matrix 

with about 33 000 phenotype IDs by 2 337 samples, only preselected phenotypes with ad-

justed false discovery rate are selected creating a list of 1187 data frames (df). Each one df 

is joint with metadata containing gene expression information for 262 genotype ID with 

known sex in Table 5. 
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Table 5. An example for one of the data frames of “ILMN_2043918” phenotype that 

has gene expression data joint with genotype ID. 

To import with the genotype data into R on Windows 10, a compressed 6GB VCF file 

is converted into a binary GDS format from which variant names and coordinates (SNP ID) 

become easily accessible as well as genotypes for a specific variant or a matrix for all vari-

ants in a given region on the chromosome can be extracted. A list of 1187 data frames gen-

otype and SNP ID for a specific variant is generated. As the two lists join, it generates a 

prepared input data, a list that contains 1187 gene-variant pairs that have gene expression, 

genotype value and sex in Table 6, which are required to perform an interaction test. 

Table 6. Prepared input data example for gene-variant pair “ENSG00000176124-

chr13_50101429_T_TTA” that gene expression and genotype value for the interaction test. 
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However, I encountered challenges while extracting genotypes for a specific variant 

and a matrix for all variants. As initially all data manipulation in R were performed using 

Rstudio on Windows 10, the extraction of genotypes for a variant raised a problem as instead 

of finding the genotypes for the variant by index, it scanned from the whole file that took an 

enormous amount of time for about 20 to 30 minutes for each variant. Considering the 1187 

variants, this approach was not viable. The extraction of a matrix for all variants per 

chromosome was memory extensive taking up to 6-7 GB of memory for each matrix. There 

are 22 chromosomes, thus 22 matrices were required to perform the interaction test, and 

taking into account that R does not remove unnecessary data from memory, this approach 

was not reasonable too. 

To overcome this issue, the genotype VCF file was converted into a simple tab-

separated genotype dosage file and indexed using tabix. I. To ease the memory load, a python 

script was created; it took an input text file with SNP IDs from B cells data frame after FDR 

correction and pulled all the genotypes into a dictionary using tabix module. The output of 

the python script in Table 7 was a text file (comma-separated values, CSV) that had all 

genotypes corresponding to SNP IDs from B cells data frame. This approach took a minimal 

amount of time of about 3 minutes. 

From this genotype matrix, a list of 1187 data frames of genotype IDs and genotype 

values for each gene (or SNP ID). 

Table 7. Genotype matrix as an output from the python script. It contains only 

relevant genotypes 
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2.1.4 Interaction test 

The interaction test goal was to test a null hypothesis that gene expression of the gene 

was only effected by its genetic variant and by sex. An input data for the test was 1187 gene-

variant pairs, where each gene-variant pair was tested for interaction between genetic variant 

(genotype value) and sex. 

Applying linear regression, two models were created in Figure 4. Model 0 represents 

the null hypothesis. Model 1 is a modified model 0 version that besides genetic variant and 

sex, it is also affected by an interaction term between the genetic variant and sex. The 

interaction test is performed by analysis of variance (ANOVA) to test if model 1 with the 

interaction term fits the data significantly better than model 0, which only contains genotype 

and sex main effects. 

# Linear regression models 
model0 = lm(gene_expression ~ genotype_value + sex, gene_vari-

ant_df) 
model1 = lm(gene_expression ~ genotype_value + sex + genotype_value*sex, 
gene_variant_df) 

 
#interaction test 
test <- anova(model0, model1, test="LRT") 
 

Figure 4 two linear models and interaction test written in R 
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2.2 RESULTS  

2.2.1 Interaction test 

The interaction test produces a P-value that demonstrates with null hypothesis passed 

or rejected. As the interaction test is applied to all the gene-variant pairs, P-values of those 

tests are collected in a vector. The vector of these P-values is illustrated on Figure 5 as a 

histogram, which has a uniform distribution meaning that for the majority of pairs the null 

hypothesis fails to be rejected. This type of P-values distributions is expected as previous 

studies (Yao et al. 2014; Jansen et al. 2014; Khramtsova, Davis, and Stranger 2019) there 

are few autosomal eQTLs that show sex-biased effects. However, to check if they are all 

null, FDR correction is applied and only values lower than 0.05 are passed. 

 

 

Figure 5 The Histogram of P-values for all interaction tests for every gene-variant 

pair. 
 

The FDR correction reveals that two gene-variant pairs, which reject the null 

hypothesis meaning the alternative hypothesis (model 1) fits better for these two pairs: 

ENSG00000273802-chr6_26216356_C_T and ENSG00000188000-chr19_9163848_A_G 
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2.2.2 Identified gene-variant pairs: H2B clustered histone 8 

The gene under ID, ENSG00000273802, is H2B clustered histone 8. Histones are 

nuclear proteins, their main role is to provide a nucleosome structure of the chromosomal 

fiber. The protein bears antifungal and antimicrobial activity. Figure 6 presents the first gene-

variant pair (ENSG00000273802-chr6_26216356_C_T). The genotype distribution is 

almost discrete with values about 0 and about 1, but there is no genotype value 2. 

There is also one outlier with genotype 1 in males, and thus it is likely to be a false 

positive. Due to this one outlier sample in males, the interaction test P-value could be 

inflated, that is the P-value is too small and thus it can be a false positive. However, there 

still seems to be a small difference in gradient between males and females. 

 

 

Figure 6. ENSG00000273802-chr6_26216356_C_T gene-variant pair. Gene 

expression on y axis and variant (genotype value) on x axis. 
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2.2.3 Identified gene-variant pairs: olfactory receptor 

The gene under ID, ENSG00000188000, is olfactory receptor family 7 subfamily D 

member 2. Olfactory receptors initiate a neuronal response triggering the perception of a 

smell. The second gene-variant pair is for ENSG00000188000-chr19_9163848_A_G and 

shows more of the continuous nature in Figure 7, but still genotype value 2 is not presented 

only one outlier in females by x axis, that is likely to occur due to small sample size, and a 

larger dataset would contain all genotype values. The trend that for gradients in males is 

marginally larger for this pair is more clear, however there are still a few possible outliers in 

males. 

Figure 7. ENSG00000188000-chr19_9163848_A_G gene-variant pair. Gene 

expression on y axis and variant (genotype value) on x axis. 
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2.3 DISCUSSION 

The method for discovery of sex-specific genentic effect on genotype should be 

considered as principally reliable due to the uniform distribution of P-values, since the null 

hypothesis fails to be rejected, meaning that for most pairs the gene expression in only 

influenced by the genetic variant and the sex but not a statistical interaction between the two, 

which is confirmed by the previous studies (Yao et al. 2014; Jansen et al. 2014; Khramtsova, 

Davis, and Stranger 2019). However, this method can find only single effect and differential 

genetic effects on gene expression (see Figure 1.2) since the analysis of variance is restrained 

to investigating gene-variant pairs that have a significant mean genetic effect between sexes. 

The two gene-variant pairs that I identified should not be considered as reliable results 

and there are several reasons for that: mainly they may be considered to be false positives as 

the sample size is small (only 262 individuals). In addition, both gene-variant pairs have a 

few outliers as well as not fully represented range of genotype values. Moreover, taking into 

account the functions of one of the identified genes, H2B clustered histone 

(8ENSG00000273802), it is likely to be false positive as it has a basic structural function in 

eukaryotes. 

The next steps of this work would be to increase the sample size that would increase the 

statistical power of the analysis by reducing the number of false positives and outliers. 

Further, eQTL analysis as well as other investigations involving quantitative traits in GWAS 

tend to have traits non normally distributed. Hence, by establishing the tests according to 

linear regression, they are conditioned to have reduced statistical power and inflated type I 

error, which is the presence of false positives in the results or rejecting a correct null 

hypothesis. The implementation of inverse normal transformation (INT) to traits with non-

normal distribution leads to protection from the type I error and provides a better-powered 

association test for this type of data (McCaw et al., 2019.). 
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SUMMARY 

The thesis aim was achived as 1187 gene-variant pairs were analysed using linear regration 

to model the null and alternative hypothesis and interaction tests to if alternative model fits 

significantly better than the null hypothesis. The null hypothesis is gene expression is only 

effected by genotype and sex. The alternative hypothesis is in addition to genotype and 

sex, it is affected by interaction term between sex and variant. The tests produced a 

uniform distribution of P-values that was expected and characterizes the method as 

reliable, as the null hypothesis, that sex-baised eQTLs are a rare, is supported by the recent 

studies (Yao et al. 2014; Jansen et al. 2014; Khramtsova, Davis, and Stranger 2019)  as 

discussed in literature review. 

False discovery rate indentified two sex-biased gene-variant pairs, however due to 

small sample size and few outliers on the data, it is likely that they are false positives, thus 

more investigations on larger datasets are neccassery to determine the correctness of these 

two hits. 
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