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Introduction

Let Nn
s (c) be a space form of constant curvature c. If s = 0 (or s = n) it is Rieman-

nian and if 0 < s < n, it is pseudo-Riemannian [1]. A submanifold Mm in Nn
s (c) is

called semiparallel if R(X,Y )h = 0 (this is the integrability condition of the system
∇h = 0 which characterizes a parallel submanifold). Here R is the curvature opera-
tor of the van der Waerden-Bortolotti connection ∇ = ∇⊕∇⊥ and h is the second
fundamental form.

Parallel submanifolds in the case s = 0, c = 0 are classified by Ferus [2]. His
results have been extended to the case s = 0, c 6= 0 by Takeuchi [3], Backes and
Reckziegel [4], and to the case of pseudo-Riemannian space form Nn

s (c), s > 0 by
Blomstrom [5] and Naitoh [6]. Some special classes of parallel submanifolds in En

1

and En
2 are described by Magid [7].

Semiparallel submanifolds Mm in Nn
s (c) by s = 0 have been classified and de-

scribed in the following cases: surfaces (m = 2) if c = 0 by Deprez [8]; surfaces
(m = 2) if c > 0 by Mercuri and Asperti [9], [10]); three-dimensional submanifolds,
two-codimensional submanifolds (i.e. m = n − 2) and hypersurfaces (m = n − 1)
if c = 0 by Lumiste [11], [13], Lumiste and Riives [12], Deprez [14], respectively;
submanifolds Mm with flat normal connection ∇⊥ if c = 0 by Lumiste [15] and if
c > 0 by Dillen and Nölker [16]. It is shown (Lumiste, [17]) that every semiparallel
submanifold is a second order envelope of corresponding parallel submanifolds. A
survey on parallel and semiparallel submanifolds with their generalizations in a
Euclidean space is given by Lumiste in [18] and [19]. His results on semiparallel
time-like surfaces in a Lorentzian spacetime form are published in [20].

Käesoleva väitekirja uurimisobjektideks on paralleelsed ja semiparalleelsed
ruumisarnased madalamõõtmelised (M1,M2 ja M3) alammuutkonnad pseudoeuk-
leidilises ruumis En

s . Using the Cartan moving frame method and the Cartan exterior
differentiation. Alammuutkondade geomeetriliste omaduste kirjeldamiseks .

In Chapter 1 of the thesis the classification of the subspaces of a pseudo-Euclidean
space En

s depending on the Euclidean metric is obtained. The definitions of the in-
dex and the defect of a semi-pseudo-Euclidean subspace Ek

l,d are given. The normal
vector space of the submanifolds Mm at a point x ∈ Mm is introduced in Section

8



1.1 The moving frame adapted to the space-like submanifold Mm ⊂ En
s , which have

a positive definite inner metric is presented. The curvature 2-forms of Levi-Civita
connection, the normal connection and van der Waerden-Bortolotti connection are
constructed. In Section 1.2 the form of the structure of a space-like submanifold
Mm in pseudo-Euclidean space En

s is determined. The equation of the isotropic
cone Cx of this space is obtained. The definitions of the timelike and the spacelike
directions belonging to the different domains of intersection the normal vector space
with the cone Cx are given. In the last part of this Section the example of the
submanifold M2 in pseudo-Euclidean space E4

1 with three different possible mutual
locations of the cone Cx and the normal space is considered. The definition of the
principal normal subspace of submanifolds Mm at a point x ∈ Mm is introduced
in Section 1.3, where the cases of regular, singular non-vanishing and completely
vanishing metrics are defined in more details.

The Chapter 2 is devoted to the general aspects of parallel and semiparallel space-
like submanifolds. In Section 2.1 it is proved that a parallel space-like submanifold
Mm in a pseudo-Euclidean space En

s with a principal normal subspace of completely
vanishing metric is a submanifold with m families of parabola generators, some of
them can degenerate into a straight line. The equation which represents the parallel
space-like submanifold Mm is constructed. In addition, here it is proved that every
space-like submanifold Mm in the pseudo-Euclidean space En

s having the principal
normal subspace of completely vanishing metric is semiparallel. At the end of Sec-
tion 2.2 it is obtained that semiparallel space-like submanifold Mm in space Em+2n1

0,n1

with the principal normal space of dimension n1 and completely vanishing metric
has a flat normal connection. Section 2.3 deals with some definitions of terms, which
are connected with the second order of enveloping. The criterion of semiparallelism
for submanifold Mm in the space Nn

s (c) is derived. The concept of Veronese sub-
manifolds and the results of research work on the question of the existence of second
order envelopes of Veronese submanifolds (see also Lumiste [18], [21], [22], [23] and
Riives [24]) are introduced in Section 2.4. Segre submanifolds and their second or-
der envelopes are presented and characterized in Section 2.5 by using the results of
Lumiste [25], [26] and [27].

The Chapter 3 deals with the classification and description of the semiparallel
space-like curves and surfaces in pseudo-Euclidean spaces En

s . These results are
published by the author in [31]. At the beginning of this Chapter the concepts of
the reducible and irreducible submanifolds are introduced. All parallel surfaces are
determined. Their 2nd order envelopes are found in the main part of this Chapter.
The classification of semiparallel space-like surfaces is given in Section 3.1. It is
proved that there exists an open and dense part U of M2 such that the connected
components of U are of the following types:
(i) open parts of totally umbilical M2 (in particular, of totally geodesic M2) in the
space En

s ;

9



(ii) surfaces with flat ∇;
(iii) isotropic surfaces with nonflat ∇⊥ satisfying ‖ H ‖= 3K, where K is the
Gaussian curvature and H is the mean curvature vector (Theorem 3.1).
The classification of the parallel lines and surfaces with flat Waerden-Bortolotti con-
nection ∇ is derived in Section 3.2. It is proved that a parallel space-like M1 in the
space En

s is either a straight line, or a circle (it can be a either real, or imaginary
radius), or a parabola (Proposition 3.1). The parallel space-like surfaces M2 with
flat ∇ in the space En

s are classified by Proposition 3.2 and Theorem 3.2. The prob-
lem of the existence of a nontrivial 2nd order envelope of parallel surfaces M2 is
raised in Section 3.3. It is proved that there exists a nontrivial 2nd order envelope
with some arbitrariness (Proposition 3.3). The concept of maximal submanifold is
introduced in Section 3.4. It is established that non-trivial maximal semiparallel
space-like surfaces exist in the space En

s with s > 0 and their geometrical descrip-
tion is given. The classification of the maximal semiparallel space-like surface M2

in the space En
s (with s > 0), which is not totally geodesic, is investigated.

The Chapter 4 is devoted to the normally flat semiparallel space-like submanidols
M3. In this case the curvature 2-forms of the normal connection ∇⊥ is zero. The
concept of a flat normal connection of a space-like submanifold Mm in a pseudo-
Euclidean space En

s is introduced. The result of Proposition 2.2 are applied for
normally flat parallel space-like submanifolds M3. It is proved that a normally flat
parallel space-like Mm in a space En

s with principal normal subspace of completely
vanishing metric is a submanifold in space E3+n1

0,n1
with three families of parabola gen-

erators (Proposition 4.1). The Section 4.1 deals with the principal curvature vectors.
The regular, singular non-vanishing and completely vanishing metric is derived for
case of the 3-dimensional principal normal subspace. The case of one-dimensional
principal normal subspace is discussed in Section 4.2. A normally flat semiparallel
space-like submanifold M3 in a space En

s with NxM
3 of dimension 1 and regular

metric are investigated in Proposition 4.3. The case of the completely vanishing
metric is examined in Proposition 4.4. The two-dimensional principal normal sub-
space and its metric (regular, singular non-vanishing and completely vanishing) are
derived in Section 4.3 (Proposition 4.5, Proposition 4.6). In Section 4.4 the case
with the 3-dimensional principal normal subspace of a either regular, or singular
non-vanishing, or completely vanishing metric is considered (Proposition 4.7).

The aim of the Chapter 5 is to investigate all possibilities for the principal nor-
mal subspace of normally non-flat semiparallel space-like submanifolds M3 and to
classify the normally non-flat parallel space-like M3. The geometrical structure of
semiparallel submanifolds as a second envelopes of the corresponding parallel sub-
manifolds needs complementary investigations. The case of six-dimensional principal
normal subspace is discussed in Section 5.1. It is proved that a normally non-flat
semiparallel space-like M3 in a space En

s with dimNxM
3 = 6 is either a Veronese

submanifold, or a submanifold with three families of parabola generators, or a sec-
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ond order envelope of the such submanifolds. In [11] Lumiste has shown that in
Euclidean space En (i.e. for the case s = 0) there exists no semiparallel submanifold
M3 with dimNxM

3 = 5. In the case of the space En
s with s > 0 the situation is

different (Section 5.2). If the considered space-like M3 is a semiparallel space-like
submanifold in a pseudo-Euclidean space En

s with dimNxM
3 = 5, then the metric

of the principal normal subspace NxM
3 vanishes completely (Proposition 5.2). A

normally non-flat semiparallel space-like M3 in En
s with dimNxM

3 = 5 is either
a submanifold with 3 families of parabola generators, which can be represented by
reduced equation (Proposition 5.3), or a second order envelope of submanifolds from
this Proposition. In Section 5.3 the subcases for case of four-dimensional principal
normal subspace are considered. It is proved that in different cases the metric of the
principal normal subspace can be either regular, or singular non-vanishing, or com-
pletely vanishing (Proposition 5.4, Proposition 5.5). The case of three-dimensional
principal normal subspace is discussed in Section 5.4. The metric of the principal
normal subspace generated by pseudo-Euclidean space can be either regular, or sin-
gular non-vanishing (with non–isotropic mean curvature vector H, Proposition 5.8),
or completely vanishing. The case of two-dimensional principal normal subspace
is investigated in Section 5.5. As distinct from Euclidean space the semiparallel
submanifolds M3 in a space En

s with dimNxM
3 = 2 can have not only a flat normal

connection but also a non-flat normal connection. In particular, if the submanifold
M3 is a semiparallel space-like submanifold in En

s with dimNxM
3 = 2, then the

normal connection is non-flat only in case of completely vanishing metric of the
principal normal subspace (Proposition 5.11).

The results, presented this thesis, have been published in [31] and [32]. The au-
thor has introduced these results at the following international conferences: ”VIII
International Conference devoted to the memory of academician M. Kravchuk (1892-
1942)” (Kyiv, 2000), ”IX Oporto meeting on geometry, topology and physics”
(Porto, 2000), ”Differential geometry Valencia 2001, An International meeting on the
occasion of the 60th birthday of prof. A. M. Naveira” (Valencia, 2001), ”Ukrainian
Mathematical Congress - UMC2001” (Kyiv, 2001), ”8th International Conference
on Differential Geometry and Its Applications” (Opava, 2001), ”International Con-
ference on Geometry and Topology” (Cherkassy, 2002), ”XVII International Fall
Workshop on Geometry and Physics” (Castro Urdiales, 2008), ”Algebra, Geometry
and Mathematical Physics: 4th Baltic-Nordic Workshop” (Tartu, 2008).
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Chapter 1

Preliminaries

Let En
s be a n−dimensional pseudo-Euclidean space of index s with coordinate

(x1, . . . , xn) and a metric
∑n−s

r=1 x2
r −

∑n
q=n−s+1 x2

q. Subspaces of pseudo-Euclidean
space En

s can carry various metrics: a positive- or negative-definite Euclidean met-
ric, a pseudo-Euclidean (occasionally also called a semi-Euclidean, see [33]) or a
degenerate metric. Depending on the metric a subspace of En

s is either a pseudo-
Euclidean Ek

s subspace, k < n (Euclidean if s = 0), or a semi-pseudo-Euclidean Ek
l,d

subspace which has an orthogonal frame consisting of l vectors of imaginary length,
d vectors of zero length, and k− l− d vectors of real length. Here the integers l and
d are called the index and the defect of subspace Ek

l,d, accordingly. If l = 0 then a

semi-pseudo-Euclidean subspace Ek
l,d is a semi-Euclidean Ek

0,d.

1.1 Moving frame adapted to the space-like sub-

manifolds

Let {x, eI}, (I = 1, 2, ..., n) be the moving frame in En
s , i.e. a free element of the

frame bundle in En
s .

At a point x ∈ Mm the tangent vector space TxM
m is a vector subspace of Tx[E

n
s ] and

has an orthogonal compliment T⊥
x Mm in the latter, which is a (n−m)−dimensional

vector space, called the normal vector space of the submanifolds Mm at x.

The moving frame is said to be adapted to a space–like submanifold Mm ∈ En
s ,

if to take , ei ∈ TxM
m, eα ∈ T⊥

x Mm, where i, j = 1, . . . , m; α, β = m + 1, ..., n.
Denoting scalar product of the frame vectors eI and eJ , as usually, 〈eI , eJ〉 = gIJ ,
one has giα = 0 and it can be taken gij = δij; moreover let denote 〈eα, eα〉 = εα and
〈eα, eβ〉 = gαβ, α 6= β. In the formulae

dx = eIω
I , deI = eJωJ

I , (1.1)

dωI = ωJ ∧ ωI
J , dωI

J = ωK
J ∧ ωI

K (1.2)

12



(where the point x is identified with its radius–vector) there hold ωα = 0 and

ωj
i = −ωi

j, (1.3)

gαβωβ
i + ωi

α = 0, (1.4)

dgαβ = gγβωγ
α + gαγω

γ
β . (1.5)

The equations ωα = 0 lead to

ωα
i = hα

ijω
j, hα

ij = hα
ij. (1.6)

Let hα
ijk denote the covariant derivative of hα

ij defined by

∇hα
ij(≡ dhα

ij − hα
kjω

k
i − hα

ikω
k
j + hβ

ijω
α
β ) = hα

ijkω
k, hα

ijk = hα
ikj. (1.7)

The relation
∇hα

ijk ∧ ωk = Ω ◦ hα
ij, (1.8)

where
Ω ◦ hα

ij = −hα
kjΩ

k
i − hα

ikΩ
k
j + hβ

ijΩ
α
β , (1.9)

can be obtained from the previous by exterior differentiation. In formulae (1.9)

Ωj
i = dωj

i − ωk
i ∧ ωj

k = −gαβωα
i ∧ ωβ

j , (1.10)

Ωα
β = dωα

β − ωγ
β ∧ ωα

γ = −
∑

i

gαγω
γ
i ∧ ωβ

i (1.11)

are the curvature 2-forms of the Levi-Civita connection ∇ and the normal connec-
tion ∇⊥, respectively. Together they represent the curvature 2-forms of the van der
Waerden-Bortolotti connection ∇.

Remark here, that Ωj
i = −Ωi

j and that exterior differentiation leads from (1.5)
to the following relations gγβΩγ

α + gαγΩ
γ
β = 0.

1.2 The isotropic cones of pseudo-Euclidean space

The structure of a space-like submanifold Mm in pseudo-Euclidean space En
s is

determined by the form

g = gijω
iωj, i, j = 1, . . . ,m, (1.12)

and the isotropic cones Cx of this space are defined by the equation

g = grqω
rωq = 0, r, q = 1, . . . , n, (1.13)

whose left-hand side is a nondegenerate quadratic form. Thus the normal vector
space T⊥

x Mm can have a real intersection with the cone Cx and is divided by it into

13



two domains – internal and external. Directions belonging to the first domain are
called timelike, and directions belonging to the second domain are called spacelike
(see Figure 1).

Figure 1
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Therefore, the normal space T⊥
x Mm can have different signatures that depend on

the numbers p and s, and on the mutual location of this normal space T⊥
x Mm and

isotropic cone Cx.

Let us consider, for example, the pseudo-Euclidean space E4
1 . Three different possi-

ble mutual locations of the cone Cx and the normal space T⊥
x M2 to the submanifold

M2 ⊂ E4
1 are presented in Figure 2, 3, and 4.

Figure 2
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Figure 3
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Figure 4
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In the first case (see Figure 2) the normal space T⊥
x M2 to a spacelike M2 contains

only spacelike directions, which located outside of the cone Cx. In the second case
(see Figure 3) the normal space T⊥

x M2 to a spacelike M2 contains both spacelike
and timelike directions. Finally, in the third case (see Figure 4), where the normal
space T⊥

x M2 is tangent to the isotropic cone Cx, the directions are spacelike and
isotropic (or lightlike).
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1.3 The principal (first) normal subspace

For investigation of semiparallel submanifolds Mm the vector subspace NxM
m =

span{hij} at an arbitrary fixed point x ∈ Mm, where hij = hα
ijeα i, j = 1, . . . ,m are

components of h, is important, called the principal normal subspace of submanifolds
Mm at x. As a subspace of a pseudo-Euclidean space it can have either regular, or
singular non-vanishing, or completely vanishing metric.

Let us consider such metric possibilities in more details, denoting dimension of the
principal vector subspace as n1. The frame vectors belonging to the normal space
T⊥

x Mm = NxM
m ⊕N⊥

x Mm can be taken so that

ea ∈ NxM
m, eξ ∈ N⊥

x Mm, (1.14)

where a ∈ {m + 1, . . . , m + n1}, ξ ∈ {m + n1 + 1, . . . , n}.

The case of regular metric. Here, in general, metric is indefinite because there are k
frame vectors with real length, 2l with zero length and n1 − k − 2l with imaginary
length, i.e.

gab =




‖ E ‖ 0 0

0

∣∣∣∣
∣∣∣∣

0 E
E 0

∣∣∣∣
∣∣∣∣ 0

0 0 ‖ −E ‖




}
k}
2l

}
n1 − k − 2l,

(1.15)

where E is a unit matrix. If l = 0 and k = n1, then metric is positively definite, if
l = k = 0, then it is negatively definite.

The case of singular non-vanishing metric. Here one has n1 frame vectors where p
vectors have real length, q vectors have imaginary length and r vectors have zero
length (here r = n1 − p− q). The next r frame vectors can be taken so that

ga′b′ =




‖ E ‖ 0 0
0 ‖ −E ‖ 0

0 0

∣∣∣∣
∣∣∣∣

0 E
E 0

∣∣∣∣
∣∣∣∣




}
p}
q}
2r,

(1.16)

where a′, b′ = m + 1, . . . ,m + n1 + r.

The case of completely vanishing metric. In this case all n1 frame vectors ea belong-
ing to NxM

m have zero scalar squares and their pairwise scalar products are zero,
too. Now the next n1 frame vectors ea (a = a + n1) can be taken as in the previous
case (1.16) supposing p = q = 0 and r = n1, i.e.

ga′b′ =

(
0 E
E 0

) }
n1}
n1.

(1.17)
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Chapter 2

General aspects on parallel and
semiparallel submanifolds

2.1 The parallelity condition

Due to definition a parallel submanifolds Mm have parallel second fundamental
form, i.e. ∇h = 0. Thus from (1.7) parallel condition is (see [18])

dhα
ij − hα

kjω
k
i − hα

ikω
k
j + hβ

ijω
α
β = 0. (2.1)

The result of [18] can be extended to parallel space-like submanifolds Mm in En
s .

Proposition 2.1. A parallel space-like Mm in En
s with constant dimension of the

principal normal space lies in either Em+n1
s 0 ≤ s ≤ n1, or Em+n1

r,k+1 , 0 ≤ r ≤ n1−k−1,

0 ≤ k ≤ n1 − 1, or Em+n1
0,n1

.

Proof. In this case one has

hij = eah
a
ij, hξ

ij = 0 (2.2)

and the parallelity condition (2.1) now leads to ha
ijω

ξ
a = 0, i.e. ωξ

a = 0, because the
matrix of the coefficients has the rank n1. Now in (1.1) one has

dx = eiω
i,

dei = ejω
j
i + eah

a
ijω

j,

dea = −gab

m∑
i=1

eih
b
ijω

i + ebω
b
a.

It means that span{x, ei, ea} is invariant along space-like Mm. With respect to the
metric of NxM

m there are the following possibilities.
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can be concluded that parallel space-like submanifolds lie in Em+n1
s , 0 ≤ s ≤ n1.

The space-like parallel submanifold with principal normal subspace of singular
non-vanishing metric (1.16) lies in semi-pseudo-Euclidean space Em+n1

r,k+1 , 0 ≤ r ≤
n1 − k − 1, 0 ≤ k ≤ n1 − 1.

At last, if the metric of the principal normal subspace is completely vanishing, then
the considered space-like parallel Mm lies in semi-Euclidean space Em+n1

0,n1
and trans-

formation
√

2
2

e′a = ea + ea,
√

2
2

e′a = ea − ea gives the frame for the pseudo-Euclidean
space En

s with s ≥ n1, n ≥ 2n1 + m.

Corollary 2.1. Let Mm be a space-like submanifold in pseudo-Euclidean space
En

s and its normal space has completely vanishing metric. Then denoting dimNxM
m =

n1 one has n ≥ 2n1 + m, s ≥ n1.

Proof. In general case one has dimTxM
m + dimT⊥

x Mm = n. The dimension of the
tangent space is m. Thus

dimT⊥
x Mm = n−m. (2.3)

On the other hand the normal space is pseudo-Euclidean and there exists isotropic
cone with n1-dimensional flat generators. In [34] it was shown that such cone lies in
pseudo-Euclidean space with s ≥ n1 and dimT⊥

x Mm ≥ 2n1. Together with (2.3) it
leads to n ≥ 2n1 + m.

Proposition 2.2. A parallel space-like Mm in pseudo-Euclidean space En
s with

principal normal subspace of completely vanishing metric is either a submanifold
in Em+n1

0,n1
with m families of parabola generators (some of them can degenerate into

a straight line) and can be represented by the equation

x =
1

2
hii(u

i)2 + hiju
iuj + h0iu

i, (2.4)

(i, j = 1, . . . , m; i 6= j) all coefficients here are some constant vectors, or an open
part of such a submanifold. In case where n1 < 1

2 m(m + 1) there are some linear
relations between vectors in (2.4).

Proof. Due to [18] for parallel Mm one has

∇hij = −
m∑

k=1

ek〈hij, hkl〉ωl

and so ∇hij = 0, if NxM
m has completely vanishing metric. Due to (1.10) then

Ωj
i = 0, i.e. Mm is locally Euclidean. Thus every point x ∈ Mm has a neighborhood

U , on which there is a parallel field of tangent orthogonal frames. For this field
dei = 0, so ωj

i = 0 and ∇hij = 0 reduces to dhij = 0, but dωi = ωj ∧ ωi
j reduces to

17
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dωi = 0. Hence on this U it can be made ωi = dui, hij =const. Now the derivation
formulae are

dx = eiω
i, dei = hijω

j, dhij = 0 (2.5)

and for the principal and the second derivatives of x one has

xui = ei, xuiui = hii, xuiuj = hij

whereas all third derivatives are zero. Thus the geodesic lines are parabolas and the
considered parallel space-like submanifold Mm can be represented by the equation
(2.4).

2.2 The semiparallelity condition

The semiparallelity condition ∇hijk ∧ ωk = 0 with the help of the Cartan’s lemma
leads to

∇hijk(≡ dhα
ijk − hα

ljkω
l
i − hα

iklω
l
j − hijlω

l
k + hβ

ijkω
α
β ) = hα

ijklω
l, (2.6)

where
hα

ijkl = hα
ijlk (2.7)

Using (1.9) the semiparallelity condition can be represented in the following way

hα
kjΩ

k
i + hα

ikΩ
k
j − hβ

ijΩ
α
β = 0 . (2.8)

Denoting Hij,kl = gαβhα
ijh

β
kl and using (2.2), one concludes that the semiparallelity

condition (2.8) is equivalent to

∑

k

(hkjHi[p,q]k + hikHj[p,q]k −Hij,k[phq]k) = 0. (2.9)

Proposition 2.3. Every space-like submanifold Mm in pseudo-Euclidean space En
s ,

with the principal normal subspace of completely vanishing metric is semiparallel.

Proof. Taking ea ∈ NxM
m, ea, eξ ∈ N⊥

x Mm one has ha
ij = hξ

ij = 0 (ξ = m + 2n1 +
1, ...., n), i.e.

ωa
i = ωξ

i = 0. (2.10)

Due to the completely vanishing metric together with (1.5) one has in (1.10) and
(1.11) that Ωj

i = Ωb
a = 0. Thus the semparallelity condition (2.8) transforms into

zero identity.

Denoting Ω̃a
b = dωa

b − ωc
b ∧ ωa

c and NMm = ∪x∈MmNxM
m, one has the normal

vector bundle NMm → Mm with fibre NxM
m at every x ∈ Mm. The fact that

2-forms Ω̃a
b are semi-basic, shows that there is connection in this bundle with con-

nection forms ωa
b (Evtushik, [35], Ch. II, par.1). This connection will be denoted

by ∇N and called the first normal connection.
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Proposition 2.4. Semiparallel space-like submanifold Mm in Em+2n1
0,n1

with the nor-
mal space of completely vanishing metric has flat normal connection ∇N .

Proof. In general 2-forms Ω̃a
b can be written in the following way

Ω̃a
b = ωi

b ∧ ωa
i + ωc

b ∧ ωa
c + ωξ

b ∧ ωa
ξ .

If submanifold Mm lies in Em+2n1
0,n1

, then all 1-forms with indexes ξ are absent. Using
frame from previous Proposition one has that 1-forms ωi

b are zero due to (1.4) and
(2.10). It remains to show that all 1-forms ωa

b = 0.

Since the dimension of the principal normal space is n1, then among vectors hij

there are n1 linearly independent. Let denote them hksls , s = 1, . . . , n1. Thus the
frame vectors em+1, . . . , em+n1 can be taken so that

em+1 = hk1l1 , em+2 = hk2l2 , . . . , em+n1 = hkn1 ln1
, (2.11)

and all others vectors of the second fundamental form can be written

hpq = χ1em+1 + χ2em+2 + · · ·+ χn1em+n1 =

n1∑
s=1

χshksls .

Now for semiparallel not parallel submanifolds one has ωa
b = ha

kb−mlb−mp ωp. In
[18] (Theorem 19.1) it is obtained 〈hijk, hkl〉 = 0. In our case it gives for linearly
independent vectors hksls that

〈hka−mla−m , hkb−mlb−mp〉 = 0, (2.12)

where hkb−mlb−mp = ha
kb−mlb−mpea + ha

kb−mlb−mpea + hξ
kb−mlb−mpeξ. Due to the frame

choosing (2.12) can be rewritten in the following way

〈ea, hb
kb−mlb−mpeb〉 = 0,

i.e. ha
kb−mlb−mp = 0 and ωa

b = 0. Thus 2-forms Ω̃a
b are zero and the considered

semiparallel submanifold has flat normal connection ∇N .

2.3 Semiparallel submanifolds as a second order

envelope of parallel ones

Let us start with some definitions of terms, which are connected with the second
order of enveloping.

Two paths λ and λ̃ in En
s are said to have the first order tangency at their common

point x0, corresponding to t = 0, if their tangent vectors X at x0 coincide. They
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are said to have the second order tangency at x0, if in addition, their curvature
vectors h(X0, X0) at x0 coincide; here λ and λ̃ are considered as an 1-dimensional
submanifolds, and X0 is their common unit tangent vector at x0.

Two submanifolds Mm and M̃m with a common point x0 in En
s are said to have

the v order tangency at x0, if for every path λ through x0 in Mm there is a path λ̃
through the same x0 in M̃m, which has the v order tangency with λ at x0.

It is obvious that first order tangency means that the tangent m-planes of these
submanifolds at x0 coincide. In case of second order tangency of two (pseudo-

)Riemannian submanifolds Mm and M̃m in Nn
s (c) at their common point x0 it is

necessary that their fundamental triplets at x0 coincide.

Let a submanifold Mm in Nn
s (c) have for its every point x a submanifold M̃m

in Nn
s (c), which has the second order tangency with Mm at x. Then Mm is said to

be the second order envelope of the family of such submanifolds M̃m.

Theorem.[Lumiste, [17]] A submanifold Mm in Nn
s (c) is semiparallel if and only if

it is a second order envelope of parallel submanifolds.

2.4 Veronese submanifolds and their second order

envelopes

In [18] for parallel submanifolds Mm in a connected complete Riemannian manifold
with constant curvature Nn(c) with maximal possible dimension of the principal
normal subspace n1 = 1

2 m(m+1) it is obtained that it is intrinsically a Riemannian
manifold of constant curvature K > 0, immersed into an (n−1)-dimensional sphere
Sn−1(2K(m + 1)m−1), n = 1

2
m(m + 3), as a minimal submanifold. If this Mm is

connected and complete then all its inner motions are induced by the isometries of
this sphere.

A such submanifolds Mm is called the Veronese submanifold and denoted as V m; it

lies, at least locally, in E
1
2
m(m+3)

s , where s = 0, or s = 1
2
m(m + 1).

A semiparallel submanifolds Mm with m ≥ 3 in Nn(c) with n = 1
2
m(m + 3), whose

principal normal subspace at arbitrary point has the maximal possible dimension
1
2
m(m + 1) is parallel (see [18]).

Existence of semiparallel submanifolds Mm as a 2nd order envelopes of a such
parallel submanifolds in Nn(c), n > 1

2
m(m + 3) is affirmatively shown by Lumiste

in [22] and in [23]. In case of V 2 ⊂ E6 is shown (Riives, [24]) that there are exist
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semiparallel, but not parallel 2nd order envelope of a family V 2. The question on
existence of 2nd order envelopes of two-dimensional Veronese submanifolds in E6

s ,
(s is either 0, or 3, or 4) and in E7

s , (s is either 0, or 3, or 4, or 5) with some
arbitrariness is solved by Lumiste in [21].

2.5 Segre submanifolds and their second order en-

velopes

Among parallel submanifolds Mm in En (see [18]) there exists a class of submani-
folds Mp1+p2 in a sphere Sp1p2+p1+p2(a2), generated by p1- and p2-dimensional great
spheres of the latter, totally orthogonal at each point of Mp1+p2 . A submanifolds of
a such class is called the Segre submanifolds.

Taking the moving orthogonal frame with origin x so that the basic vectors eπ,
π ∈ {0, 1, . . . , p1} are tangent to the generating great p1-sphere, eπ, π ∈ {0, 1, . . . , p2}
are tangent to the generating great p2-sphere, em+1 is opposite to the normal-
ized radius-vector x of the point x and eξ are the remaining normal vectors, ξ ∈
{m+2, . . . , m+p1p2} one has the system, which determines the Segre submanifolds
in the following way:

dx = eπωπ + eπωπ,

deπ = eσω
σ
π + aem+1ω

π + aeππωπ,

deπ = eσω
σ
π + aem+1ω

π + aeππωπ,

dem+1 = −a(eπωπ + eπωπ),

deππ = −a(eπωπ + eπωπ) + eσπωσ
π + eπσω

σ
π ,

where σ ∈ {0, 1, . . . , p1}, σ ∈ {0, 1, . . . , p2} and the point c with radius-vector

x = a−1em+1,

is a center of the Segre submanifold.

The second order envelope of the Segre submanifolds Mp1+p2 in En with a given
dimension m = p1 + p2, p1 ≥ p2, and arbitrary centers and radii r = a−1 is

1) by p1 = p2 = 1 a surface M2 with flat ∇, the two principal curvature vec-
tors of which have at every point the same length

√
2a,

2) by p1 > 1, p2 = 1 a submanifold Mm in E2m ⊂ En, generated by an 1-parametric
family of the concentric p1-dimensional spheres, the orthogonal trajectories of which
are the congruent logarithmic spirals (or circles in the limit case) with the common
pole in the center of the family of spheres,
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3) by p1 > 1, p2 > 1 a single Mp1+p2 .

More information can be found in Lumiste articles [25] and [26].

22



Chapter 3

Semiparallel and parallel
space-like surfaces

A submanifold Mm in Ek
s is said to be a product of submanifolds Mmq in E

kq
sq

(q = 1, . . . , r) if (i) Mm = Mm1 × · · · ×Mmr , (ii) Ek
s = Ek1

s1
× · · · × Ekr

sr
, where in

the right hand side every two different components are totally orthogonal.

By relaxing the last requirement in (ii) (i.e. every two components E
kq
sq are not

necessary to be mutually orthogonal) one obtains a translation submanifold Mm of

submanifolds Mmq in E
kq
sq .

If a submanifold Mm in En
s is decomposable into a translation submanifold then

such a Mm is said to be reducible, otherwise irreducible.

To classify a translation submanifolds one needs to study corresponding irreducible
submanifolds. Therefore the classification of the latter is important to describe all
such submanifolds. Here is natural to start with the low-dimensional cases.

3.1 Classification of semiparallel space-like sur-

faces

For the dimension m = 1 there is easy to see that every curve is semiparallel, namely
has flat ∇. To obtain the classification result of m = 2 one needs some preparations.

If m = 2 then the tangent part {e1, e2} of the adapted frame can be transformed
according to

e
′
1 = e1 cos φ + e2 sin φ, e

′
2 = −e1 sin φ + e2 cos φ. (3.1)

Then

ω2′
1′ = ω2

1 + dφ, ω1 = ω1′ cos φ− ω2′ sin φ , ω2 = ω1′ sin φ + ω2′ cos φ (3.2)
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and for h = hijω
iωj one obtains

h
′
11 =

1

2
(h11 + h22) +

1

2
(h11 − h22) cos 2φ + h12 sin 2φ ,

h
′
12 =

1

2
(h22 − h11) sin 2φ + h12 cos 2φ ,

h
′
22 =

1

2
(h11 + h22) +

1

2
(h22 − h11) cos 2φ− h12 sin 2φ .

Therefore span{h11, h22, h12} is an invariant vector subspace of T⊥
x M2 at an arbitrary

fixed point x ∈ M2. Is is the principal normal subspace of M2 at x, denoted by
NxM

2. Let us denote 1
2 (h11 − h22) = A , h12 = B, and 1

2 (h11 + h22) = H; then
A′ = A cos 2φ + B sin 2φ , B′ = −A sin 2φ + B cos 2φ , H ′ = H. It is seen that H
is an invariant vector, called the mean curvature vector, and that span{A,B} is an
invariant vector subspace at x, denoted by IxM

2; the latter is the plane of the normal
curvature indicatrix determined as {y : y − x = hijX

iXj, X ∈ TxM
2, ‖ X ‖= 1}.

Since
〈A′, B′〉 = 〈A, B〉 cos 4φ +

1

2
(B2 − A2) sin 4φ,

there exists φ0 such that 〈A′, B′〉 = 0. So it can be made 〈A,B〉 = 0. If now to take
φ = π

4
, then A′ = B , B′ = −A, and 〈A′, B′〉 = 0, so that the roles of A and B can

be interchanged, if this is not obstructed by the metric.

Theorem 3.1. Let M2 be a semiparallel space-like surface in En
s . There exists an

open and dense part U of M2 such that the connected components of U are of the
following types:

(i) open parts of totally umbilical M2 (in particular, of totally geodesic M2) in
En

s ;
(ii) surfaces with flat ∇;
(iii) isotropic surfaces with nonflat ∇⊥ satisfying ‖ H ‖2 = 3K, where K is the

Gaussian curvature and H is the mean curvature vector.

Proof. The indicatrix of normal curvature is generally an ellipse whose plane has
direction span{A,B} and goes through the endpoint of the vector H, with initial
point placed at x; it could also be a degenerate form of such an ellipse (a line seg-
ment or a point).

Let us start proof with the case where dimIxM
2 = 0, i.e. the indicatrix of normal

curvature degenerates into a point and one has A = B = 0. If here dimNxM
2 = 1,

then H 6= 0 and e3 can be taken so that H = δe3 and the components of the second
fundamental form hij can be written as follows: h11 = h22 = δe3, h12 = 0. Thus M2

is totally umbilic. For the case dimNxM
2 = 0 one has δ = 0 and the considered

surface is totally geodesic. This leads to case (i) of the Theorem 3.1.

In case dimIxM
2 = 1 one has that the indicatrix of normal curvature degener-

ates into a line segment. In this case the vectors A and B are collinear and at least
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one of them is nonzero. Since A and B can be interchangeable, it is always assumed
that A 6= 0. Then the frame vector e3 can be taken so that

A = ae3, a > 0, B = be3.

Let dimNxM
2 = 2. The next frame vector e4 can be taken so that H = δe3 + σe4.

If dimNxM
2 = 1, one has σ = 0. The Pfaff system (1.6) can be written as

ω3
1 = (δ + a)ω1 + bω2, ω4

1 = σω1, ωξ
1 = 0, (3.3)

ω3
2 = bω1 + (δ − a)ω2, ω4

2 = σω2, ωξ
2 = 0, (3.4)

(3.5)

where ξ = 5, ..., n. Hence

Ω2
1 = −Ω1

2 = [ε3a
2 + ε3b

2 −H2]ω1 ∧ ω2, (3.6)

where H2 = ε3δ
2 + ε4σ

2 + 2g34δσ, and all Ωβ
α are zero.

With respect to the metric in subspaces IxM
2 and NxM

2 there are the follow-
ing possibilities.

If the metric of IxM
2 is regular, then ε3 = ±1, and b = 0. Thus the vector e4

can be taken so that either
ε4 6= 0, g34 = 0, (3.7)

or
ε4 = 0, g34 = 0, (3.8)

and, moreover, in the last case the vector e5 can be taken so that ε5 = 0, g45 = 1. So
(3.7) and (3.8) mean that the metric of NxM

2 is regular or singular non-vanishing,
respectively.

If the metric of IxM
2 is vanishing, then ε3 = 0 and semiparallelity condition leads to

b 6= 0 or b = 0). Now the metric of NxM
2 is either regular, or singular non-vanishing,

or vanishing. This means that the vector e4 can be taken so that either

ε4 = 0, g34 = 1, (3.9)

or
ε4 6= 0, g34 = 0, (3.10)

and, moreover, in (3.10) the vector e5 can be taken so that ε5 = 0, g35 = 1, or

ε4 = 0, g34 = 0. (3.11)

In the last case the frame vectors e5, e6 can be chosen so that ε5 = ε6 = 0,
g35 = g46 = 1, g36 = g45 = g56 = 0, n ≥ 6.
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For all these cases the semiparallelity condition (2.8) reduces to

bΩ2
1 = 0, aΩ2

1 = 0.

Since a > 0, one has Ω2
1 = 0. This result together with Ωβ

α = 0 gives that ∇ is flat,
i.e. leads to case (ii) of the Theorem.

At last, the non-degenerate indicatrix {y : y − x = H + Acos2ψ + Bsin2ψ} is
an ellipse. In this case the mutually orthogonal vectors A and B are noncollinear.
The orthogonal frame vectors e3 and e4 (i.e. with g34 = 0) in IxM

2 can be taken so
that

A = ae3, B = be4, a ≥ b > 0.

The dimension of the subspace NxM
2 is either 3 or 2.

Let dimNxM
2 = 3, thus the next frame vector e5 can be taken so that H =

δe3 + σe4 + τe5. Here the components hij can be written as follows:

h11 = (δ + a)e3 + σe4, h22 = (δ − a)e3 + σe4, h12 = be4.

Thus M2 is determined by the Pfaff system

ω3
1 = (δ + a)ω1, ω4

1 = σω1 + bω2, ω5
1 = τω1, ωξ

1 = 0,

ω3
2 = (δ − a)ω2, ω4

2 = bω1 + σω2, ω5
2 = τω2, ωξ

2 = 0,

where ξ = 6, ..., n. Hence the curvature 2-forms in (1.10) are

Ω1
1 = Ω2

2 = 0, Ω2
1 = −Ω1

2 = (ε3a
2 + ε4b

2 −H2)ω1 ∧ ω2, (3.12)

where
H2 = ε3δ

2 + ε4σ
2 + ε5τ

2 + 2g35δτ + 2g45στ,

and in (1.11)

Ω4
3 = −2ε3abω1 ∧ ω2, Ω3

4 = 2ε4abω1 ∧ ω2, (3.13)

Ω3
5 = 2g54abω1 ∧ ω2, Ω4

5 = −2g35ω
1 ∧ ω2, (3.14)

all others Ωβ
α are zero. Thus the semiparallelity condition (2.8) transforms into

ab(ε4σ + g45τ) = 0, b(2ε3a
2 + ε4b

2 −H2 + ε3aδ + g35aτ) = 0,
a(ε3a

2 + 2ε4b
2 −H2) = 0, b(2ε3a

2 + ε4b
2 −H2 − ε3aδ − g35aτ) = 0.

The consideration of this system gives, due to abτ 6= 0, that ε3 = ε4 = ε5, having
the values 1, −1 or 0.
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In the last case the metric of NxM
2 vanishes completely and the frame vectors

can be taken so that

ε3 = ε4 = ε5 = 0, ε6 = ε7 = ε8 = 0, g36 = g47 = g58 = 1, n ≥ 8. (3.15)

It can be obtained by the appropriate choice of remaining frame vectors so that all
others gαβ, α 6= β, are zero.

If dimNxM
2 = 2, then τ = 0 and the semiparallelity condition leads to ε3 = ε4 = 0.

Here the vectors e5, e6 can be taken so that

ε5 = ε6 = 0, g35 = g46 = 1, g56 = 0, n ≥ 6. (3.16)

Note that in the cases of this section the choice of all others eα depends on the value
of s in En

s .

Let us consider the cases (3.15), (3.16) in more detail, denoting dimNxM
2 =

n1, (n1 = 3, 2) and a, b = {3, ..., n1 + 2}, a, b = {n1 + 3, ..., 2n1 + 2}, in (1.3)–
(1.5) one has

ωa+n1
i + ωi

a = 0, ωa−n1
i + ωi

a = 0, (3.17)

ωa
a + ωa

a = 0, ωa
a = ωa

a = 0, (3.18)

ωb
a + ωa

b = 0, ωb
a + ωa

b
= 0, ωb

a + ωa
b

= 0. (3.19)

The substitution from (3.17)–(3.19) into (1.10), (1.11) gives that Ωj
i = Ωβ

α = 0, i.e.
∇ is flat. This leads to case (ii) of the Theorem 3.1.

In the case where the first normal subspace has a regular metric (i.e. ε3 = ε4 = ε5,
equalling to 1 or −1), the semiparallelity condition leads to δ = σ = 0, a = b,
τ = a

√
3. It follows that the normal curvature vector has a constant scalar square

at every point x ∈ M2, i.e. the considered surface is an isotropic surface and
H2 = 3K. It gives case (iii) of the Theorem 3.1.

3.2 Classification of the parallel lines and surfaces

Proposition 3.1. A parallel space-like M1 in En
s is either a straight line, or a circle

(it can be either real, or imaginary radius), or a parabola.

Proof. For the principal normal of the curve M1 in pseudo-Euclidean spaces there
are three possibilities: it can be space-like, time-like, or light-like. In the first two
cases one has ε2 = ±1. The parallel curve can be treated like in [18]. It is a straight
line or a circle; the latter can be of either real, or imaginary radius. If the principal
normal is light-like, then ε2 = 0 and the next frame vector e3 can be taken so that
ε3 = 0, g23 = 1. Thus the Bartels-Frenet formulae can be written as

dx = e1ds, de1 = k1e2ds, de2 = −dlnk1e2ds.
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The parallelity condition leads to k1 =const, thus de2 = 0. After integration it gives
x = 1

2 cs
2 +c1s+c2, where all coefficients are constant vectors. Therefore the parallel

curve of this case is a parabola.

As it is noted in Introduction, for the geometric description of the surfaces of
Theorem 3.1 more detailed classification and characterization of the surfaces of type
(ii) are needed. First, the same must be done for the corresponding parallel surfaces.

Proposition 3.2. Let M2 be a space-like parallel surface in En
s with flat ∇, which

lies essentially in an affine subspace of the En
s . Such an M2 is either

(ii1) a translation surface of two parallel curves, or
(ii2) a surface in E4

1 on its isotropic cone C3, with a fixed vertex; the mean
curvature vector of this surface is isotropic and T⊥

x M2 goes through the generator of
the cone, or

(ii3) a surface in E3
0,1, E4

0,2 or E5
0,3 with two families of parabola generators

(one of them can degenerate into a family of straight lines). This surface can be
represented by the equation x = 1

2 h11(u)2 + 1
2 h22(v)2 + h12uv + c1u + c2v, where all

coefficients are some constant vectors and the first three of them are isotropic (no
matter whether this degeneration occurs or not).

Proof. For the full classification of parallel surfaces (ii) with flat ∇ there must be
considered the frame possibilities (3.7)–(3.11), (3.15), (3.16).

Let, at first, the frame vectors be taken as shown in (3.7). If here σ 6= 0, then
from the parallelity condition one has ω4

3 = ω2
1 = ωξ

3 = ωξ
4 = da = dσ = dδ = 0.

Thus the derivation formulae are

dx = e1ω
1 + e2ω

2,

de1 = [(δ + a)e3 + σe4]ω
1,

de2 = [(δ − a)e3 + σe4]ω
2,

de3 = −ε3[(δ + a)e1ω
1 + (δ − a)e2ω

2],

de4 = −ε4[σe1ω
1 + σe2ω

2].

If ε3 = ε4, then the considered parallel surface lies in E4
s , s is 0 or 2 (it depends

on the signature of the metric). Since dω1 = 0, dω2 = 0, at least locally ω1 = du,
ω2 = dv. The geodesic lines v =const and u =const are circles. Hence the parallel
surface is a translation surface of two circles on the totally orthogonal E2

s , s is 0 or
1. If ε3 6= ε4, the considered parallel surface is a translation surface of two lines; one
of them is a circle with real radius on E2 and the other is a circle with imaginary
radius on E2

1 . Because of assumption σ = 0, from (3.6) one has that a2 = δ2 and the
vector e3 can be directed so that a = δ, thus one of the geodesic lines degenerates
into a straight line.

In the case where NxM
2 has the metric (3.8), the equality (3.6) leads to a2 = δ2.
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Then the vector e3 can be taken so that a = δ and the parallelity condition gives
ω2

1 = ω3
4 = ω4

3 = ωξ
3 = ωξ

4 = 0, ω4
4 = −dσ

σ
, a =const and the derivation for-

mulae can be written as dx = e1ω
1 + e2ω

2, de1 = (2ae3 + σe4)ω
1, de2 = σe4ω

2,
de3 = −2ε3ae1ω

1, d(σe4) = 0. So the considered surface lies in E4
0,1 (or in E4

1,1) if
ε3 = 1 (or ε3 = −1, respectively), which is spanned by the point x and mutually
orthogonal vectors e1, e2, e3, σe4. Investigation of geodesic lines gives that parallel
M2 is a translation surface of circles and parabolas. On supposition σ = 0, it is
easy to see that geometry of the corresponding parallel surface is the same as in the
previous case on analogous supposition.

In the case where IxM
2 has a vanishing metric and the frame is described by the

equalities (3.9), one has Ω2
1 = 0; then dω2

1 = 0, i.e. ω2
1 = dψ. Thus the formulae

(3.1)–(3.2) lead to ω2′
1′ = 0 and hij can be written as

h′11 = (δ + a′)e3 + σe4, h′22 = (δ − a′)e3 + σe4, h′12 = b′e3,

where a′ = acos2ψ + bsin2ψ and b′ = −asin2ψ + bcos2ψ. Thus

A = a′e3, B = b′e3, H = δe3 + σe4.

The parallelity condition leads to ωξ
3 = ωξ

4 = 0, ω3
3 = −da′

a′ = −db′
b′ = −dδ

δ
= dσ

σ
, i.e.

b′ = k1a
′, δ = k2a

′, σ = k3

a′ , where k1, k2, k3 are some constants. Moreover, from
(3.6) and the semiparallelity condition one has δσ = 0 and either

1) δ = 0, σ 6= 0, (k2 = 0), or

2) δ 6= 0, σ = 0, (k3 = 0), or

3) δ = σ = 0, (k2 = k3 = 0).

Since dω1′ = 0, dω2′ = 0, at least locally ω1′ = du, ω2′ = dv, and the derivation
formulae in subcase 1) by b′ 6= 0 can be written so that

dx = e′1du + e′2dv,

de′1 = (a′e3 +
k3

a′
e4)du + k1a

′e3dv,

de′2 = k1a
′e3du + (−a′e3 +

k3

a′
e4)dv,

d(a′e3) = −k3dx,

d(
k3

a′
e4) = −k3[(e

′
1 + k1e

′
2)du + (k1e

′
1 − e′2)dv].

The considered surface M2 lies in E4
1 , spanned by the point x and vectors e′1, e′2, a′e3,

k3

a′ e4.
The point z ∈ E4

1 with the radius vector z = x + 1
k3

a′e3 is fixed for the surface since

dz = 0, thus there is an isotropic cone C3 with a vertex at point z. The surface
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(collinear to e3) and the mean curvature vector is isotropic (noncollinear to e3).

On supposition b′ = 0, the derivation formulae for the considered parallel M2 from
subcase 1) can be written as

dx = e′1du + e′2dv,

de′1 = (a′e3 +
k3

a′
e4)du,

de′2 = (−a′e3 +
k3

a′
e4)dv,

d(a′e3 +
k3

a′
e4) = −2k3e

′
1du,

d(−a′e3 +
k3

a′
e4) = 2k3e

′
2dv.

Since (a′e3+
k3

a′ e4)
2 = 2k3 and (−a′e3+

k3

a′ e4)
2 = −2k3, this surface lies in E4

1 , spanned

by the point x and mutually orthogonal vectors e′1, e′2, a′e3 + k3

a′ e4, −a′e3 + k3

a′ e4.
Investigation of its geodesics gives that the considered parallel surface is a transla-
tion surface of two plane lines of constant curvature.

In subcase 2), when k3 = 0 on supposition k1 6= 0 (i.e. b′ 6= 0), in the deriva-
tion formulae one has

dx = e′1du + e′2dv,

de′1 = [(k2 + 1)du + k1dv]a′e3,

de′2 = [k1du + (k2 − 1)dv]a′e3,

d(a′e3) = 0.

The considered surface lies in E3
0,1 ⊂ E4

1 , spanned by the point x and mutually
orthogonal vectors e′1, e′2, a′e3. Denoting the partial derivatives of x by xu, xv, etc.,
one has

xu = e1, xv = e2,

xuu = (k2 + 1)a′e3, xuv = k1a
′e3, xvv = (k2 − 1)a′e3,

xuuu = xuuv = xvvu = xvvv = 0.

Since for this case (k2 + 1)a′e3 = h11, (k2 − 1)a′e3 = h22, k1a
′e3 = h12, then parallel

M2 can be represented by the equation x = 1
2 h11(u)2 + 1

2 h22(v)2 +h12uv + c1u+ c2v,
where all coefficients are some constant vectors; the absolute term can be made zero,
if to exchange the initial point. It is seen that the geodesic lines on this parallel
surface are parabolas (one of them can degenerate into a straight line).

On supposition k1 = 0, the considered surface lies in E3
0,1 ⊂ E4

1 and is a trans-
lation surface of either two parabolas, or of a parabola and a straight line.
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In subcase 3) with δ = σ = 0 the derivation formulae can be written so that

dx = e′1du + e′2dv,

de′1 = a′e3du + k1a
′e3dv,

de′2 = k1a
′e3du− a′e3dv,

d(a′e3) = 0.

Thus M2 lies in E3
0,1 and due to h22 = −h11 either is determined by the equation

x = 1
2 h11((u)2−(v)2)+h12uv+c1u+c2v, where all coefficients are some constant vec-

tors, and thus has two families of parabola generators, or is a hyperbolic paraboloid.

If the frame vectors are taken as shown in (3.10), then geometry of the correspond-
ing parallel surface is the same as in the previous case, subcase 2).

At last, if (3.11) holds, then the parallelity condition implies ω3
3 = −db′

b′ = −da′
a′ =

−dδ
δ

(i.e. b′ = k1a
′, δ = k2a

′, where k1, k2 are some constants), ω4
4 = −dσ

σ
and

ω4
3 = ω3

4 = ωξ
3 = ωξ

4 = 0.

Since dω1 = dω2 = 0, then at least locally ω1 = du, ω2 = dv and the derivation
formulae can be written so that

dx = e′1du + e′2dv,

de′1 = [(k2 + 1)a′e3 + σe4]du + k1a
′e3dv,

de′2 = k1a
′e3du + [(k2 − 1)a′e3 + σe4]dv,

d(a′e3) = 0, d(σe4) = 0.

On supposition σ = 0, the considered surface lies in E3
0,1 spanned by the point x

and mutually orthogonal vectors e′1, e′2, a′e3 and geometry of this M2 coincides with
geometry in the case with (3.10), subcase 2).

If σ 6= 0 and b′ 6= 0, then M2 lies in E4
0,2 spanned by the point x and mutu-

ally orthogonal vectors e′1, e′2, a′e3, σe4 and is determined by the equation x =
1
2 h11(u)2 + 1

2 h22(v)2 + h12uv + c1u + c2v, where h11 = (k2 + 1)a′e3 + σe4, h12 =
k1a

′e3, h22 = (k2 − 1)a′e3 + σe4 (all coefficients are constant vectors), and has two
families of parabola generators. At last, if σ 6= 0, but b′ = 0, then the considered
parallel surface lies in E4

0,2 and is a translation surface of two geodesic lines, each of
which is a parabola.

It remains to consider surfaces for which the metric in NxM
2 vanishes completely

and is described either by (3.15) or (3.16).
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can be adapted to the considered surface so that A = e3, B = e4, H = e5, i.e.
a = b = τ = 1 and δ = σ = 0. Thus the Pfaff system can be written as follows:

ω3
1 = ω1, ω4

1 = ω2, ω5
1 = ω1, ωa

1 = ωξ
1 = 0, (3.20)

ω3
2 = ω2, ω4

2 = ω1, ω5
2 = ω2, ωa

2 = ωξ
2 = 0. (3.21)

Here a = 6, 7, 8; ξ = 9, ..., n, and substitution into the parallelity condition leads
to ω3

3 = ω4
4 = ω5

5 = ω5
3 = ω5

4 = ω3
5 = ω4

5 = 0, 2ω2
1 = ω4

3 = −ω4
3. Due to e3 + e5 =

h11, e4 = h12, e5 − e3 = h22, the derivation formulae can be written as

dx = e1ω
1 + e2ω

2,

de1 = ω2
1e2 + h11ω

1 + h12ω
2,

de2 = −ω2
1e1 + h12ω

1 + h22ω
2,

dh11 = ω2
1h12,

dh22 = −ω2
1h12,

dh12 = −ω2
1(h11 − h22).

Since Ω2
1 = 0, due to (1.10) here dω2

1 = 0, i.e. ω2
1 = dψ. Using transformation

formulae (3.1)–(3.2), one has ω2′
1′ = 0, dω1′ = 0, dω2′ = 0. The last two equalities

imply, at least locally, that ω1′ = du, ω2′ = dv, thus

dx = e′1du + e′2dv,

de′1 = h′11du + h′12dv,

de′2 = h′12du + h′22dv,

dh′11 = dh′12 = dh′22 = 0.

So the considered parallel space-like M2 lies in E5
0,3 spanned by the point x and

mutually orthogonal vectors e1, e2, h′11, h′22, h′12, the last three of which are light-
like, two others space-like. This surface can be represented by the equation x =
1
2 h

′
11(u)2 + 1

2 h
′
22(v)2 + h′12uv + h′01u + h′02v, where all coefficients are some constant

vectors. It is seen that the geodesic lines u =const and v =const on this parallel
surface are parabolas.

For the parallel space-like surface M2, with dimNxM
2 = 2, i.e. when the frame

vectors are taken as (3.16) and the frame can be adapted to M2 so that A = e3,
B = e4, i.e. a = b = 1. Moreover, if the mean curvature vector H is nonzero, then
A and B can be taken so that A ‖ H and thus H = δe3. Now the Pfaff system can
be written as

ω3
1 = (δ + 1)ω1, ω4

1 = ω2, ωa
1 = ωξ

1 = 0, (3.22)

ω3
2 = (δ − 1)ω2, ω4

2 = ω1, ωa
2 = ωξ

2 = 0. (3.23)
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Here a = 5, 6; ξ = 7, ..., n and from the parallelity condition (2.1) one has ω3
3 =

ω4
4 = ω5

4 = ω6
3 = ω2

1 = ω4
3 = ω3

4 = dδ = 0. Thus the derivation formulae

dx = e1ω
1 + e2ω

2,

de1 = (δ + 1)e3ω
1 + e4ω

2,

de2 = e4ω
1 + (δ − 1)e3ω

2,

de3 = de4 = 0 (3.24)

give that the considered surface lies in E4
0,2 spanned by the point x and mutually

orthogonal vectors e1, e2, e3, e4.

Since h11 = (δ + 1)e3, h22 = (δ − 1)e3, h12 = e4, the considered surface can be
represented by the equation x = 1

2 h11(u)2 + 1
2 h22(v)2 + h12uv + c1u + c2v. Here

ω1 = du, ω2 = dv; the u- and v-lines are geodesics of this surface and if δ2 − 1 6= 0,
then they are parabolas, but if δ2 − 1 = 0, then one of them degenerates into a
straight line.

The surfaces (i) are already parallel. For the surface (iii) the parallelity condition
implies a =const, ω2

1 − ω4
3 = ωξ

3 = ωξ
4 = 0, where ξ = 5, . . . , n. Therefore for such a

surface

dx = e1ω
1 + e2ω

2,

de1 = e2ω
2
1 + a(e3ω

1 + e4ω
2 +

√
3e5ω

1),

de2 = −e1ω
2
1 + a(e4ω

1 − e3ω
2 +

√
3e5ω

2),

de3 = −ε3a(e1ω
1 − e2ω

2) + 2e4ω
2
1,

de4 = −ε4a(e1ω
2 + e2ω

1)− 2e3ω
2
1,

de5 = −ε5a
√

3dx.

Hence the considered surfaces M2 lies in a space E5
s (s = 0 or s = 3) spanned by the

point x and the vectors e1, e2, e3, e4 and e5. Moreover, since d(x + (a
√

3)−1e5) = 0,
the point with radius vector z = x + (a

√
3)−1e5 is a fixed point. A such M2 is a

Veronese surface V 2 from Section 2.4. Thus the parallel space-like surfaces M2 in
En

s are classified by the following

Theorem 3.2. Let M2 be a space-like parallel surface in En
s . Then it is either

(i′) a totally geodesic or totally umbilic surface, or
(ii′) a surface with flat ∇ from Proposition 3.2, or
(iii′) a Veronese surface V 2, or its open part.

3.3 Existence of semiparallel surfaces

Now there arises the problem of the existence of a nontrivial 2nd order envelope of
parallel surfaces from (i)–(iii) of the Theorem 3.1.
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It is known that parallel surfaces of (i) of the Theorem have only trivial 2nd or-
der envelopes (i.e. they are umbilic-like in the sense of [18]).

For case (iii) it is established in [21] that in E6
s , (s is 0, 3, or 4) there exists the

most general semiparallel surface M2 with some arbitrariness and it is the 2nd order
envelope of a 2-parameter family of mutually non-congruent Veronese orbits. More-
over, these results can be used in E6

s by s = 1, if to take eα so that ε3 = ε4 = ε5 = 1,
ε6 = −1, ε7 = ... = εn = 1. Thus the difference from [21] will be in (1.4), where
ω6

K = −ε6ω
K
6 , K = 1, ..., 5 but it does not influence the final result.

In case (ii) Proposition 3.2 can be used. In the latter for subcase (ii1), when the
parallel surface M2 is a translation surface, the existence of the nontrivial 2nd order
envelope of these surfaces is obvious. Thus it remains to consider subcases (ii2) and
(ii3) of Proposition 3.2.

Proposition 3.3. Let M2 be a parallel surface of subcase (ii2) or (ii3). They possess
nontrivial 2nd order envelopes with some arbitrariness.

Proof. Without a loss of generality only the frame possibilities (3.9) with b 6= 0,
(3.15) and (3.16) can be considered.

In the first of them, taking into account that ω4
3 = ω3

4 = 0 and ω3
3 = −ω4

4, the
Pfaff system (3.3), (3.4) after exterior differentiation gives

(
d(δ + a) + (δ + a)ω3

3 − 2bω2
1

) ∧ ω1 + (db + bω3
3 + 2aω2

1) ∧ ω2 = 0,

(db + bω3
3 + 2aω2

1) ∧ ω1 +
(
d(δ − a) + (δ − a)ω3

3 + 2bω2
1

) ∧ ω2 = 0,(
dσ − σω3

3

) ∧ ω1 = 0,
(
(δ + a)ωξ

3 + σωξ
4

) ∧ ω1 + bωξ
3 ∧ ω2 = 0,(

dσ − σω3
3

) ∧ ω2 = 0, bωξ
3 ∧ ω1 +

(
(δ − a)ωξ

3 + σωξ
4

) ∧ ω2 = 0.

Now let 1) σ 6= 0, δ = 0. It is easy to see that then dσ = σω3
3. Since b 6= 0, the basis

of secondary forms consists of da, db, 2ω2
1, ω3

3, ωξ
3, ωξ

4 and the ranks of the polar
systems s1 = 2+2(n−4) and s2 = 2. Thus the Cartan’s number is Q = 6+2(n−4).
On the other hand, due to the Cartan’s lemma the number of the independent coef-
ficients is 6 + 2(n− 4). Thus the Cartan’s criterion is satisfied and this Pfaff system
is compatible and determines the considered M2 for subcase (ii2) with arbitrariness
of two real holomorphic functions of two variables.

Let 2) δ 6= 0, σ = 0. If here δ2 − a2 6= 0, then due to the Cartan’s lemma for
the first two equalities one has 8 independent coefficients. Consideration of the two
lasts equalities gives ωξ

3 = rξ
1ω

1 + rξ
2ω

2, whereas r1 = rξ
1eξ and r2 = rξ

2eξ are either
both zero or linearly dependent vectors. The common number of independent coef-
ficients is either 8 or 8 + (n− 4), respectively. In both cases Q = N and s2 = 3.
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If δ2 − a2 = 0 (for example δ = a), then rξ
1 = rξ

2 = 0, N = Q = 6, where s1 = 2,
s2 = 2.

Thus the semiparallel surface of subcase (ii3) in E3
0,1 exists either with arbitrari-

ness of three real holomorphic functions of two variables (it has two families of
parabola generators), or with arbitrariness of two real holomorphic functions of two
variables (this occurs when parabola degenerates into a straight line).

At last, 3) δ = σ = 0, then due to the Cartan’s lemma one has ωξ
3 = 0 and the

number of independent coefficients is 2; since the basis of secondary forms consists
of da + aω3

3 − 2bω2
1, db + bω3

3 + 2aω2
1 and it is easy to see that s1 = 2, s2 = 0; here

Q = N = 2 and the considered surface for this case exists with arbitrariness of two
real functions of one variable.

In the case (3.15) the Pfaff system (3.20), (3.21) gives by exterior differentiation

(ω3
3 + ω3

5) ∧ ω1 + (2ω2
1 + ω3

4) ∧ ω2 = 0, ω6
5 ∧ ω1 + ω6

4 ∧ ω2 = 0,

(2ω2
1 + ω3

4) ∧ ω1 + (ω3
5 − ω3

3) ∧ ω2 = 0, ω6
4 ∧ ω1 + ω6

5 ∧ ω2 = 0,

(2ω2
1 − ω4

3 − ω4
5) ∧ ω1 − ω4

4 ∧ ω2 = 0, (ω7
3 + ω7

5) ∧ ω1 = 0,

ω4
4 ∧ ω1 + (2ω2

1 − ω4
3 + ω4

5) ∧ ω2 = 0, (ω7
5 − ω7

3) ∧ ω2 = 0,

(ω5
3 + ω5

5) ∧ ω1 + ω5
4 ∧ ω2 = 0, ω8

3 ∧ ω1 + ω8
4 ∧ ω2 = 0,

ω5
4 ∧ ω1 + (ω5

5 − ω5
3) ∧ ω2 = 0, ω8

4 ∧ ω1 − ω8
3 ∧ ω2 = 0,

and (ωξ
3 + ωξ

5) ∧ ω1 + ωξ
4 ∧ ω2 = 0, ωξ

4 ∧ ω1 + (ωξ
5 − ωξ

3) ∧ ω2 = 0, where ξ = 9, ..., n.
Using here the Cartan’s lemma and also the relations (3.17)–(3.19) one has ω8

3 =
ω7

3 = ω8
4 = ω6

4 = ω7
5 = ω6

5 = 0. The common number of coefficients in the right
sides is N = 14 + 4(n − 8) = 4n − 18. On the other hand, first, the basis of the
secondary forms consists of ω3

3, 2ω2
1 + ω3

4, ω3
5, 2ω2

1 − ω4
3, ω4

4, ω4
5, ω5

3, ω5
4, ω5

5, ωξ
3, ωξ

4,
ωξ

5; second, the ranks of the polar systems are: s1 = 6 + 2(n− 8) and s1 + s2, where
s2 = n− 4, thus the Cartan’s number Q = s1 + 2s2 = 4n− 18. Hence the Cartan’s
criterion is satisfied and the semiparallel surface of subcase (ii3) in E5

0,3 exists with
arbitrariness of n− 4 real holomorphic functions of two variables.

For the case (3.16) the first eight equations of the Pfaff system (3.22), (3.23) lead
by the exterior differentiation to

(
dδ + (δ + 1)ω3

3 + σω3
4

)
∧ ω1 +

(
2ω2

1 + ω3
4

)
∧ ω2 = 0, ω5

4 ∧ (σω1 + ω2) = 0,
(
2ω2

1 + ω4
4

)
∧ ω1 +

(
dδ + (δ − 1)ω3

3 + σω3
4

)
∧ ω2 = 0, ω5

4 ∧ (ω1 + σω2) = 0,
(
dσ − 2ω2

1 + (δ + 1)ω4
3 + σω4

4

)
∧ ω1 + ω4

4 ∧ ω2 = 0, (δ + 1)ω6
3 ∧ ω1 = 0,

ω4
4 ∧ ω1 +

(
dσ + 2ω2

1 + (δ − 1)ω4
3 + σω4

4

)
∧ ω2 = 0, (δ − 1)ω6

3 ∧ ω2 = 0.
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This system together with (3.17)–(3.19) gives ω5
4 = ω6

3 = 0. After exterior differen-
tiation the equations ωξ

i = 0, ξ = 7, ..., n, give

[(δ + 1)ωξ
3 + σωξ

4] ∧ ω1 + ωξ
4 ∧ ω2 = 0, ωξ

4 ∧ ω1 + [(δ − 1)ωξ
3 + σωξ

4] ∧ ω2 = 0.

Now the basis of secondary forms consists of 2ω2
1, ω3

3, dδ, ω3
4, ω4

3, ω4
4, ωξ

3, ωξ
4.

Let δ2−1 6= 0; then s1 = 4+2(n−6) and s2 = 6+2(n−6)−4−2(n−6) = 2, the Car-
tan’s number is 8+2(n−6) and it is equal to the number of independent coefficients.

In the case δ2 − 1 = 0 (for example, δ = 1) there are s1 = 4 + 2(n− 6), s2 = 1 and
Q = N = 6 + 2(n− 6).

The Cartan’s criterion is satisfied and the semiparallel surface of subcase (ii3) in E4
0,2

exists either with arbitrariness of two real holomorphic functions of two variables,
or with arbitrariness of one real holomorphic function of two variables (depending
on the occurrence of degeneration).

3.4 Maximal semiparallel space-like sufaces

The space-like submanifold Mm in En
s is said to be maximal submanifold (or just

maximal), if the mean curvature vector H is identically zero. In fact, according to
the theory of minimal submanifolds in En, it is known that every minimal semi-
parallel submanifold is totally geodesic (see [8] and [18]). Hence the class of all
such submanifolds are very small. In En

1 there exist minimal semiparallel time-like
surfaces (strings), which are not totally geodesic (see [20]). It can be shown that
among surfaces of type (ii) in En

s with s > 0 there do exist maximal semiparallel
space-like surfaces not totally geodesic.

Proposition 3.4. In En
s with s > 0 a maximal semiparallel space-like surface M2,

which is not totally geodesic, has flat ∇ and is either
1) a surface in E3

0,1 or in E4
0,2, which has two families of parabola generators

and can be represented by the equation x = 1
2 h11((u)2 − (v)2) + h12uv + c1u + c2v,

where all coefficients are some constant vectors, moreover, the first two of them are
isotropic, or

2) a hyperbolic paraboloid in E3
0,1, or

3) a 2nd order envelope of a family, consisting of the surfaces of one of the
previous classes in En

s .

Proof. Due to Proposition 3.2 here the cases when dimIxM
2 is either 1 (subcases

(3.8)–(3.11)) or 2 (subcase (3.16)) are to be considered with the additional condition
H = 0 (i.e. δ = σ = 0).
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space-like surface exists with arbitrariness of two real functions of one variable.

Geometrically a such M2 lies in E3
0,1 and either is determined by the equation

x = 1
2 h11((u)2 − (v)2) + h12uv + c1u + c2v, where all coefficients are some con-

stant vectors, and thus has two families of parabola generators, or is a hyperbolic
paraboloid.

For the case dimIxM
2 = 2, the maximal M2 occurs in (3.16). The Pfaff system

now transforms into

ω3
1 = ω4

2 = ω1, ω3
2 = −ω4

1 = −ω2, ωξ
1 = ωξ

2 = 0, ξ = 5, ..., n.

After exterior differentiation it gives

ω3
3 ∧ ω1 +

(
2ω2

1 + ω3
4

) ∧ ω2 = 0,
(
2ω2

1 + ω3
4

) ∧ ω1 − ω3
3 ∧ ω2 = 0,

−(
2ω2

1 − ω4
3

) ∧ ω1 + ω4
4 ∧ ω2 = 0, ω4

4 ∧ ω1 +
(
2ω2

1 − ω4
3

) ∧ ω2 = 0,

ωξ
3 ∧ ω1 = 0, ωξ

3 ∧ ω2 = 0.

Due to the Cartan’s lemma all ωξ
3 are zero; the others equalities give that N =

4 + 2 = 6; the basis in the left sides consists of 2ω2
1, ω3

3, ω3
4, ω4

3, ω4
4 and the ranks

of the polar systems s1 = 4, s2 = 1. So the Cartan’s number is equal to the number
of independent coefficients and the Cartan’s criterion is satisfied. The extended
Pfaff system determines M2 with arbitrariness of one real holomorphic function
of two variables. For this surface dx = e1ω

1 + e2ω
2, de1 = e3ω

1 + e4ω
2, de2 =

e4ω
1 − e3ω

2, de3 = de4 = 0, thus the considered maximal M2 lies in E4
0,2 and

can be represented by the equation x = 1
2 h11((u)2 − (v)2) + h12uv + c1u + c2v,

where all coefficients are constant vectors. This M2 has two families of parabola
generators.
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Chapter 4

Normally flat semiparallel
space-like submanifolds M3

The normal connection ∇⊥ of a space-like submanifold Mm in En
s is said to be flat

if Ωβ
α = 0. Then the matrices ‖ hα

ij ‖ and ‖ hβ
ij ‖ commute due to (1.11), and are

diagonalizable simultaneously by choosing a suitable orthonormal frame in TxM
m.

In this frame which is called the principal frame, one has

hij = kiδij; (4.1)

its basic directions are called the principal directions and the normal vectors ki =
κα

i eα are called the principal curvature vectors of the Mm with flat ∇⊥ in En
s . The

several principal curvature vectors ki1 and ki2 corresponding to the same vector eα,
i.e. ki1 = κi1eα, ki2 = κi2eα, is called non-simple principal curvature vectors.

Now parallelity condition (2.1) for normally flat submanifolds transforms into

dκi + κiω
α
α = 0, (κi − κj)ω

j
i = 0, ωβ

α = ωξ
α = 0, (α 6= β). (4.2)

The result of Proposition 2.2 can be used for normally flat parallel space-like sub-
manifolds M3. It gives

Proposition 4.1. A normally flat parallel space-like Mm in a space En
s with prin-

cipal normal subspace of completely vanishing metric is either
1) a submanifold in E3+n1

0,n1
with three families of parabola generators (one or two

of them can degenerate into a straight line) and can be represented by the equation

x =
1

2

(
k1(u

1)2 + k2(u
2)2 + k3(u

3)2
)

+ k01u
1 + k02u

2 + k03u
3, (4.3)

where ki are the principal curvature vectors and k0i are some constant vectors, or
2) an open part of such a submanifold.

In case where n1 < 1
2 m(m + 1) there are some linear relations between vectors ki in

(4.3).
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Due to principal frame (4.1) for curvature 2-forms of the Levi-Civita connection ∇
in (1.10) one has

Ωj
i = −〈ki, kj〉ωi ∧ ωj (4.4)

and semiparallelity condition (2.8) is equivalent with

(ki − kj)〈ki, kj〉 = 0, (see [18]). (4.5)

4.1 The principal curvature vectors

In case with dimNxM
3 = 0 the semiparallel M3 is a 3-plane E3 in En

s , so in the fu-
ture work will be considered M3 with dimNxM

3 ≥ 1, i.e. the following possibilities
for the principal curvature vectors.

The case dimNxM
3 = 1. Here the principal curvature vectors can be taken so

that
k1 = κ1e4, k2 = κ2e4, k3 = κ3e4.

With respect to the metric one has either regular metric where all vectors ki have
non-zero scalar square, i.e. for the frame vector e4 one has that ε4 is either 1 or −1
and

εα = 0, g4α = gαβ = 0, α, β = 5, . . . , n, (4.6)

or a completely vanishing metric, where all curvature vectors ki are isotropic, i.e.
for the frame vector e4 one has that ε4 = 0; thus the next frame vector e5 can be
taken so that

ε5 = 0, g45 = 1, and gαβ = 0, α, β = 6, . . . , n. (4.7)

The case dimNxM
3 = 2. Now, without the loss of generality, the principal curvature

vectors can be taken so that

k1 = κ1e4, k2 = κ2e5, k3 = κ3e5.

In this case the metric of NxM
3 is either regular, or singular non-vanishing, or

completely vanishing. If the metric of NxM
3 is regular, then the both principal

curvature vectors k1 and k2 have non-zero scalar square. Thus the frame vectors e4,
e5 can be taken so that their scalar squares ε4, ε5 either

have values 1, or −1 and all others gαβ = 0, α, β = 6, . . . , n. (4.8)

If the metric is singular non-vanishing, then one from mutually orthogonal vectors
k1, k2 have zero square. Let, at first, k2 is isotropic. Then one obtains

ε5 = 0 and ε4 6= 0 (4.9)
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and the next vector e6 can be taken so that ε6 = 0, moreover g56 = 1, and it is
orthogonal to e1, . . . , e5.

In case where k1 is isotropic for the frame vectors e4, e5 one has

ε4 = 0 and ε5 6= 0 (4.10)

and the next vector e6 can be taken so that ε6 = 0, moreover g46 = 1, and it is
orthogonal to e1, . . . , e5.

At last, in case of completely vanishing metric one has that the both vectors k1,
k2 are isotropic. Thus the frame vectors e4, e5 have zero scalar squares and their
scalar product is zero, too, i.e. ε4 = ε5 = g45 = 0. Now the next vectors e6, e7 can
be taken so that

ε6 = ε7 = 0, g46 = g57 = 1, gαβ = 0, α, β = 8, . . . , n. (4.11)

The case dimNxM
3 = 3. In this case

k1 = κ1e4, k2 = κ2e5, k3 = κ3e6.

and the principal normal subspace has either regular, or singular non-vanishing, or
completely vanishing metric.

If metric is regular, then it is sufficient to consider the case where all linearly inde-
pendent ki have non-zero scalar square, i.e. for the frame vectors e4, e5, e6 one has
that

ε4, ε5, ε6 have values 1 or −1 and all gαβ = 0, α, β = 6, . . . , n. (4.12)

In case of singular non-vanishing metric one or two of mutually orthogonal vectors
k1, k2, k3 have zero square. Let us assume that one of them is isotropic. Without
loss of generality it can be taken that (k1)

2 = 0, then orthogonal to k1 vectors in En
s

are in a n− 1-dimensional subspace which contains also k1 (the tangent subspace of
the isotropic cone). If in this subspace there are two non-zero mutually orthogonal
non-isotropic vectors k2 and k3, then the dimension of this subspace must be ≥ 3,
therefore n− 3 ≥ 4, s ≥ 1 and one obtains

ε4 = 0, and there can be madden for ε5, ε6, values 1 or−1. (4.13)

The next frame vectors e7 can be taken so that ε7 = 0, moreover g47 = 1 and it is
orthogonal to e1, . . . , e6.

The similar reasoning in case of singular non-vanishing metric with two isotropic
vectors leads to (k1)

2 = (k2)
2 = 0. In the tangent subspace of the isotropic cone

there is one non-zero and non-isotropic vector k3, i.e.

ε4 = ε5 = 0, and there can be madden for ε6, values 1 or−1. (4.14)
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The next frame vectors e7, e8 can be taken so that ε7 = ε8 = 0, moreover g47 =
g58 = 1 and it is orthogonal to e1, . . . , e6.

At last, in case of completely vanishing metric all mutually orthogonal vectors ki

are isotropic. Thus for the frame vectors ea (a = 4, 5, 6) and the next frame vectors
ea (a = a + 3) one has

εa = 0, εa = 0, and gaa = 1. (4.15)

Remark. In description of regular metric for 2- and 3-dimensional NxM
3 the follow-

ing result is used

Proposition 4.2. Let Mm be a normally flat semiparallel space-like submanifold in
En

s , whose principal normal subspace NxM
m has regular metric. Thus in (1.15) one

has l = 0.

Proof. Let us suppose that the principal normal subspace NxM
m is r- dimensional,

1 ≤ r ≤ m and linearly independent vectors em+1, . . . , em+r, are such as it is de-
scribed in (1.15), i.e. at least 2l of them are such that

〈eq, eq〉 = 〈eq̃, eq̃〉 = 0, 〈eq, eq̃〉 = 1

for every value q ∈ {m + k + 1, . . .m + k + l} and q̃ = q + l. Now one has

Ω
jq̃

iq
= −κiqκjq̃

ωiq ∧ ωjq̃ ,

the other curvature 2-forms are zero. The semiparallelity condition transforms into

κ2
iqκjq̃

= 0, κiqκ
2
jq̃

= 0, ∀q,

it means that among vectors k(1), . . . , k(r) at least l vectors must be zero, which
contradict with their linear independence.

4.2 The case of one-dimensional principal normal

subspace

In this case the Pfaff system is following

ω4
1 = κ1ω

1, ω4
2 = κ2ω

2, ω4
3 = κ3ω

3, ωξ
i = 0, ξ = 5, . . . , n (4.16)

where either

κ1κ2κ3 6= 0, or (4.17)

κ1κ2 6= 0, κ3 = 0, or (4.18)

κ1 6= 0, κ2 = κ3 = 0. (4.19)
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Proposition 4.3. A normally flat semiparallel space-like submanifold M3 in En
s

with NxM
3 of dimension 1 and regular metric is a part of either

1) a sphere S3
τ in E4

τ ⊂ En
s , (τ ∈ {0, 1}), or

2) a product S3
τ × E1 in E4

τ ⊂ En
s , (τ ∈ {0, 1}), or

3) a product S1
τ × E2 in E4

τ ⊂ En, (τ ∈ {0, 1}), or
4) a second order envelope of submanifolds with (4.18)-(4.19).

Proof. Let start with (4.17), then the exterior differentiation of the Pfaff system
(4.16) leads to d ln κq ∧ ωq = 0, ωξ

4 ∧ ωq = 0, q = 1, 2, 3 and due to the Cartan’s

lemma one obtains d ln κq = Aqω
q and ωξ

4 = 0. The semiparallel condition (4.5) leads
to k1 = k2 = k3 = k = κe4. It means that coefficients Aq = 0 and the considered
semiparallel submanifold is a parallel one with

dx = e1ω
1 + e2ω

2 + e3ω
3,

de1 = ω3
1e2 + ω3

1e3 + kω1,

de2 = −ω2
1e1 + ω3

2e3 + kω2,

de3 = −ω3
1e1 − ω3

2e2 + kω3,

dk = −ε4κ
2dx.

Geometrically it is either a sphere S3 (in case of a positively definite metric), or a
sphere S3

1 (in case of a negatively definite metric).

In case (4.18) the exterior differentiation of (4.16) with κ3 = 0 leads to

d ln κq ∧ ωq + ω3
q ∧ ω3 = 0, ω3

1 ∧ ω1 + ω3
2 ∧ ω2 = 0, ωξ

4 ∧ ωq = 0, q = 1, 2.

The semiparallelity condition gives κ1 = κ2 = κ. The latter together with the
Cartan’s lemma leads to

d ln κ = Aω3, ω3
1 = Aω1, ω3

2 = Aω2, ωξ
4 = 0. (4.20)

Applying here the same procedure one obtains

dA = A2ω3. (4.21)

The exterior differentiation of dω2
1 = −(A2 + ε4κ

2)ω1 ∧ ω2 together with obtained
formulae (4.20), (4.21) and structure formulae (1.4) leads to

A(A2 + ε4κ
2) = 0, (4.22)

i.e. in case of the positively definite metric (4.6) one has A = 0. Hence the considered
submanifold is a parallel one. The condition (4.5) gives that k1 = k2 = k = κe4 and
due to the parallelity condition (4.2) one has dκ = 0, ω3

1 = ω3
2 = 0, ωα

4 = ωξ
4 = 0.

There holds dx = eiω
i, and

de1 = e2ω
2
1 + kω1, de2 = −e1ω

2
1 + kω2, de3 = 0, dk = −ε4κ

2(e1ω
1 + e2ω

2).
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Thus geometrically it is a product of a straight line and a sphere S2(r). In case of
the regular negatively definite metric from (4.22) there are occur two possibilities:
either A = 0 or A = κ. In the first of them semiparallel submanifold is parallel one
and geometrically is a product of a straight line and a sphere S2

1(r). In the second
case (A = κ) the prolonged system is totally integrable. Thus semiparallel subman-
ifold exists and geometrically is 2nd order envelope of the corresponding parallel
submanifolds.

At last, for subcase (4.19) the exterior differentiation of the Pfaff system (4.16)
with κ2 = κ3 = 0 leads to

d ln κ1 ∧ ω1 + ω2
1 ∧ ω2 + ω3

1 ∧ ω3 = 0, ω2
1 ∧ ω1 = 0, ω3

1 ∧ ω1 = 0, ωξ
4 ∧ ω1 = 0.

Using the Cartan’s lemma one has

d ln κ1 = A1ω
1 + A2ω

2 + A3ω
3, ω2

1 = A2ω
1, ω3

1 = A3ω
1, ωξ

4 = Xξω1.

Here the basis of the secondary forms consists of d ln κ1, ω2
1, ω3

1, ωξ
4 and the rank of

the polar matrices are s1 = 3 + (n− 4) = n − 1 and s2 = 0. The Cartan’s number
is Q = n− 1. On the other hand the number of independent coefficients N is equal
to n− 1, so on N = Q and the Cartan’s criterion is satisfied. The considered semi-
parallel submanifold exists with arbitrariness of n− 1 holomorphic functions of one
real argument.

For the corresponding parallel submanifold one has dκ1 = 0, ω2
1 = ω3

1 = 0, ωα
4 =

ωξ
4 = 0 and there holds

dx = eiω
i, de1 = kω1, de2 = de3 = 0, dk = −ε4κ

2e1ω
1.

It means that the considered space-like M3 is a product of a circle S1
τ (τ = {0, 1}

on depending of the sign of a metric) and a plane E2.

Proposition 4.4. A normally flat semiparallel space-like submanifold M3 in En
s

with NxM
3 of dimension 1 and completely vanishing metric is either

1) a parallel submanifold M3 from Proposition 4.1, or
2) a second order envelope of such submanifolds with some arbitrariness.

Proof. In case (4.17) with the completely vanishing metric (4.7) the exterior dif-
ferentiation of the Pfaff system (4.16) gives (d ln κq + ω4

4) ∧ ωq = 0, ωξ
4 ∧ ωq = 0,

q = 1, 2, 3. Thus the basis of the secondary forms consists of d ln κq + ω4
4 and the

rank of the polar matrices are s1 = 3 and s2 = 0. The Cartan’s number is Q = 3.
On the other hand due to the Cartan’s lemma one obtains (d ln κq +ω4

4) = Aqω
q and

ωξ
4 = 0 and the number of independent coefficients N is equal to 3, so on N = Q

and the Cartan’s criterion is satisfied. The considered semiparallel submanifold is
either a translation submanifold of three families of parabola generators in E4

0,1 from
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Proposition 4.1, or a 2nd order envelope of such parallel submanifolds with arbitrari-
ness of 3 holomorphic functions of one real argument.

For the case (4.18) with κ3 = 0 the exterior differentiation of the Pfaff system
leads to

(d ln κq + ω4
4) ∧ ωq + ω3

q ∧ ω3 = 0, ω3
1 ∧ ω1 + ω3

2 ∧ ω2 = 0, ωξ
4 ∧ ωq = 0,

where q = 1, 2 and here applying the Cartan’s lemma one has

d ln κ1 + ω4
4 = Aω1 + Bω3, ω3

1 = Bω1,

d ln κ2 + ω4
4 = Cω2 + Dω3, ω3

2 = Dω2.

Now the basis of the secondary forms consists of d ln κ1 + ω4
4, d ln κ2 + ω4

4, ω3
1, ω3

2

and the rank of the polar matrices are s1 = 4 and s2 = 0. The Cartan’s number is
Q = 4. On the other hand the number of independent coefficients N is equal to 4,
so on N = Q and the Cartan’s criterion is satisfied. The considered semiparallel is
either a translation submanifold two parabolas and a straight line from Proposition
4.1, or a 2nd order envelope of a such parallel submanifolds with arbitrariness of 4
holomorphic functions of one real argument.

In the last case (4.19) with κ2 = κ3 = 0 the exterior differentiation leads to

(d ln κ1 + ω4
4) ∧ ω1 + ω2

1 ∧ ω2 + ω3
1 ∧ ω3 = 0,

ω2
1 ∧ ω1 = 0, ω3

1 ∧ ω1 = 0, ωξ
4 ∧ ω1 = 0.

Using the Cartan’s lemma one has

d ln κ + ω4
4 = A1ω

1 + A2ω
2 + A3ω

3, ω2
1 = A2ω

1, ω3
1 = A3ω

1, ωξ
4 = Xξω1.

Here the basis of the secondary forms consists of d ln κ1 + ω4
4, ω2

1, ω3
1, ωξ

4 and the
rank of the polar matrices are s1 = 3 + (n − 4) = n − 1 and s2 = 0. The Cartan’s
number is Q = n−1. On the other hand the number of independent coefficients N is
equal to n− 1, so on N = Q and the Cartan’s criterion is satisfied. The considered
semiparallel submanifold is either a translation submanifold of two straight lines
and a parabola from Proposition 4.1, or a 2nd order envelope of a such parallel
submanifolds with arbitrariness of n−1 holomorphic functions of one real argument.

4.3 The case of two-dimensional principal normal

subspace

Now the principal normal subspace is two-dimensional

k1 = κ1e4, k2 = κ2e5, k3 = κ3e5, where either

κ1κ2κ3 6= 0, or (4.23)

κ1κ2 6= 0, κ3 = 0. (4.24)
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and its metric is either regular (4.8), or singular non-vanishing (4.9) and (4.10), or
completely vanishing (4.11).

Proposition 4.5. A normally flat semiparallel space-like submanifold M3 in En
s

with NxM
3 of dimension 2 on supposition (4.23) is either

1) a product S2
τ × S1

σ, τ, σ ∈ {0, 1} in E5
τ+σ ⊂ En

s , or
2) a translation submanifold of a circle S1

σ and two parabolas in E5
σ,1 ⊂ En

s , or
3) a translation submanifold in E5

0,2 with three families of parabola generators
and can be represented by the equation

x =
1

2

(
k1(u

1)2 + k2(u
2)2 + k3(u

3)2
)

+ k01u
1 + k02u

2 + k03u
3,

here ki are the principal curvature vectors and h0i are some constant vectors, or
4) a second order envelope of a submanifolds above with some arbitrariness.

Proof. The Pfaff system for the case (4.23) is

ω4
1 = κ1ω

1, ω5
2 = κ2ω

2, ω5
3 = κ3ω

3, ω4
2 = ω4

3 = ω5
1 = ωξ

i = 0, (4.25)

where ξ = 6, . . . , n. Its exterior differentiation leads to

(d ln κ1 + ω4
4) ∧ ω1 + ω2

1 ∧ ω2 + ω3
1 ∧ ω3 = 0, κ1ω

2
1 ∧ ω1 + κ2ω

4
5 ∧ ω2 = 0,

κ1ω
5
4 ∧ ω1 − κ2ω

2
1 ∧ ω2 − κ3ω

3
1 ∧ ω3 = 0, κ1ω

3
1 ∧ ω1 + κ3ω

4
5 ∧ ω3 = 0,

κ2ω
2
1 ∧ ω1 − (dκ2 + κ2ω

5
5) ∧ ω2 − (κ2 − κ3)ω

3
2 ∧ ω3 = 0,

κ3ω
3
1 ∧ ω1 − (κ2 − κ3)ω

3
2 ∧ ω2 − (dκ3 + κ3ω

5
5) ∧ ω3 = 0,

κ1ω
ξ
4 ∧ ω1 = 0, κ2ω

ξ
5 ∧ ω2 = 0, κ3ω

ξ
5 ∧ ω3 = 0.

Using the Cartan’s lemma for the equations above one has

d ln κ1 + ω4
4 = Aω1 + Bω2 + Cω3,

dκ2 + κ2ω
5
5 = −κ2Dω1 + Lω2 + Mω3,

dκ3 + κ3ω
5
5 = − (κ3)2

κ2
Dω1 + Pω2 + Qω3,

κ1ω
5
4 = Rω1 − κ2Bω2 − κ3Cω3,

ωξ
4 = Xξω1, ωξ

5 = 0.

(κ2 − κ3)ω
3
2 = Mω2 + Pω3,

ω2
1 = Bω1 + Dω2,

ω3
1 = Cω1 + κ3

κ2
Dω3,

κ2ω
4
5 = κ1Dω1,

(4.26)

In case of the regular metric (4.8) one has ω4
4 = ω5

5 = 0 and −εω4
5 = ω5

4, (here ε = 1,
if ε4 = ε5 and ε = −1, if ε4 = −ε5). Moreover, the semiparallelity condition (4.5)
leads to κ2 = κ3. Thus in (4.26) one has

B = C = M = P = L = Q = 0, R = −ε
(κ1)

2

κ2

D,
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i.e. the system (4.26) transforms into

d ln κ1 = Aω1, d ln κ2 = −Dω1, ω2
1 = Dω2, ω3

1 = Dω3, κ2ω
4
5 = κ1Dω1.

Applying here exterior differentiation and Cartan’s lemma ones more one obtains
dD = −D2ω1. Using this result in differential prolongation of dω3

2 = −(ε5κ
2
2 +

D2)ω2 ∧ ω3 one obtains D(ε5(κ2)
2 + D2) = 0. The latter in case ε5 = 1 leads imme-

diately to D = 0, i.e. one has Q = N = 1 + (n − 5) = n − 4 and the semiparallel
space-like submanifolds exist with arbitrariness of n− 4 functions of one real argu-
ment. If ε5 has value −1, then either D = 0, or D = ±κ2. In both these cases the
prolonged system is totally integrable and the considered normally flat semiparallel
M3 is a 2nd order envelope of corresponding parallel submanifolds.

For the corresponding parallel submanifold M3 the condition (4.5) leads to κ2 = κ3

and in the derivation formulae one has

dx = eiω
i, de1 = k1ω

1 de2 = ω3
2e3 + k2ω

2, de3 = −ω3
2e2 + k2ω

3,

dk1 = −ε4(κ1)
2e1ω

1, dk2 = −ε5(κ2)
2(e2ω

2 + e3ω
3).

Thus the geodesic lines are a sphere S2
τ , τ ∈ {0, 1}, and a circle S1

σ, σ ∈ {0, 1} and,
in general, this parallel M3 lies in E5

τ+σ.

In case of the singular non-vanishing metric (4.9) due to (1.5) one has ω4
4 = ω6

5 = 0,
ω6

4 = −ω4
5 and together with (4.26) it leads to Q = N = 8 + (n − 6) = n + 2, i.e.

the considered semiparallel space-like submanifold exists with arbitrariness of n + 2
functions of one real argument.

For the corresponding parallel submanifolds one has

d ln κ1 = dκ2 + κ2ω
5
5 = ω4

5 = ω5
4 = ω2

1 = ω3
1 = ωξ

4 = ωξ
5 = 0.

The derivation formulae can be written as

dx = eiω
i, de1 = k1ω

1 de2 = k2ω
2, de3 = k3ω

3,

dk1 = −ε4(κ1)
2e1ω

1, dk2 = dk3 = 0.

and the considered parallel submanifold M3 is a translation submanifold of a circle
S1

σ and two parabolas in E5
σ,1.

The case of the singular non-vanishing metric (4.10) in (1.5) gives ω5
5 = ω6

4 = 0,
ω6

5 = −ω5
4 and the semiparallelity condition (2.8) gives κ2 = κ3. Thus (4.26) trans-

forms into

d ln κ1 + ω4
4 = Aω1, d ln κ2 = −Dω1, κ2ω

4
5 = κ1Dω1,

ω2
1 = Dω2, ω3

1 = Dω3, ωξ
4 = Xξω1, ωξ

5 = 0, ξ = 6, . . . , n.
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The same way as it is done in the present proof for the regular metric (4.8) one has
D(ε5(κ2)

2 + D2) = 0. The latter in case ε5 = 1 leads immediately to D = 0, i.e.
one has Q = N = 1 + (n − 6) = n − 5 and the considered semiparallel space-like
submanifold exists with arbitrariness of n− 5 functions of one real argument. If ε5

has value −1, then either D = 0, or D = ±κ2. In both these cases the prolonged
system is totally integrable and the considered normally flat semiparallel M3 is a
2nd order envelope of the corresponding parallel submanifolds.

For the corresponding parallel M3 the equations

d ln κ1 + ω4
4 = d ln κ2 = ω2

1 = ω3
1 = ω4

5 = ωξ
4 = ωξ

5 = 0

are to be added. The extended system is completely integrable and yields

dx = eiω
i, de1 = k1ω

1 de2 = ω3
2e3 + k2ω

2, de3 = −ω3
2e2 + k3ω

3,

dk1 = −ε4(κ1)
2e1ω

1, dk2 = dk3 = 0.

Thus, in general, this parallel submanifold lies in E5
σ,1 and geometrically is a trans-

lation submanifold of a sphere S2
τ and a parabola.

In case of the completely vanishing metric (4.11) the geometry of the normally flat
parallel space-like submanifold is known from Proposition 4.1, it is a translation sub-
manifold in E5

0,2 with three families of parabola generators and can be represented
by the equation

x =
1

2

(
k1(u

1)2 + k2(u
2)2 + k3(u

3)2
)

+ k01u
1 + k02u

2 + k03u
3.

It remains to investigate the existence of a second order envelope of such submani-
folds.

Now the frame can be adapted to the space-like submanifold M3 so that κ1 =
κ2 = κ3 = 1. Thus in (4.26) one has M = P = L = Q = 0. Moreover, taking there
in the two last equalities ξ = 6 and ξ = 7 due to the metric (4.11) and the structure
formulae (1.5) one has ω6

4 = ω6
5 = ω7

4 = ω7
5 = 0 and (4.26) transforms into

ω4
4 = Aω1 + Bω2 + Cω3, ω5

5 = −Dω1, ω5
4 = Rω1 −Bω2 − Cω3,

ω2
1 = Bω1 + Dω2, ω3

1 = Cω1 + Dω3, ωξ
4 = Xξω1, ωξ

5 = 0,

where ξ = 8, . . . , n. The basis of the secondary forms consists of ω4
4, ω5

5, ω2
1, ω3

1,
ω5

4, ωξ
4. Now the ranks of the polar matrices are s1 = 5 + (n − 7) and s2 = 0. The

Cartan’s number is Q = N = 5 + (n − 7) = n − 2 and the semiparallel space-like
submanifold exists with arbitrariness of n− 2 functions of one real argument.

Proposition 4.6. A normally flat semiparallel space-like submanifold M3 in En
s

with NxM
3 of dimension 2 on supposition (4.24) is either
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1) a product S1
τ × S1

σ × E1, τ, σ ∈ {0, 1} in E5
τ+σ ⊂ En

s , or
2) a translation submanifold of S1

τ × E1 and a parabola in E5
τ,1 ⊂ En

s , or
3) a translation submanifold in E5

0,2 with two families of parabola generators and
a straight line; it can be represented by the equation

x =
1

2

(
k1(u

1)2 + k2(u
2)2

)
+ k01u

1 + k02u
2 + k03u

3,

here ki are the principal curvature vectors and k0i are some constant vectors, or
4) a second order envelope of a submanifolds above with some arbitrariness.

Proof. The exterior differentiation of the Pfaff system (4.25) on supposition κ3 = 0
gives

(d ln κ1 + ω4
4) ∧ ω1 + ω2

1 ∧ ω2 + ω3
1 ∧ ω3 = 0,

ω2
1 ∧ ω1 − (d ln κ2 + ω5

5) ∧ ω2 − ω3
2 ∧ ω3 = 0,

κ1ω
5
4 ∧ ω1 − κ2ω

2
1 ∧ ω2 = 0, κ2ω

3
2 ∧ ω2 = 0, (4.27)

κ1ω
2
1 ∧ ω1 + κ2ω

4
5 ∧ ω2 = 0, κ1ω

3
1 ∧ ω1 = 0,

κ1ω
ξ
4 ∧ ω1 = 0, κ2ω

ξ
5 ∧ ω2 = 0.

Using the Cartan’s lemma one has

d ln κ1 + ω4
4 = Aω1 + Bω2 + Cω3, κ2ω

4
5 = κ1Dω1 + Sω2,

d ln κ2 + ω5
5 = −Dω1 + Lω2 + Mω3, κ1ω

5
4 = Rω1 − κ2Bω2, (4.28)

ω2
1 = Bω1 + Dω2, ω3

1 = Cω1, ω3
2 = Mω2,

and ωξ
4 = Xξω1, ωξ

5 = Y ξω2, where ξ = 6, . . . , n.
In case of regular metric (4.8) from the structure formulae (1.5) one has ω5

4 = −ω4
5.

Thus the rank of the polar system s1 = 6+2(n−6) = 2n−6. On the other hand re-
lations betweens D and R, S and B give that the number of independent coefficients
is the same N = 6 + 2(n − 6) = 2n − 6 and the considered semiparallel space-like
submanifold exists with arbitrariness of 2n− 5 functions of one real argument.

For the corresponding parallel submanifold one has dx = e1ω
1 + e2ω

2 + e3ω
3,

de1 = k1ω
1, de2 = k2ω

2, de3 = 0,

dk1 = −ε4(κ1)
2e1ω

1, dk2 = −ε5(κ2)
2e2ω

2,

i.e. parallel submanifold M3 is a product S1
τ × S1

σ,×E1 in E5
τ+σ.

The same way as in previous Proposition 4.5 the singular non-vanishing metric
(4.9) give ω4

4 = ω6
5 = 0, ω6

4 = −ω4
5, thus in (4.28) one has S = 0. It means that the

Cartan’s criterion is satisfied with Q = N = 7 + 2(n − 6) = 2n − 5 and semipar-
allel space-like submanifold exists with arbitrariness of 2n− 5 functions of one real
argument and is a 2nd order envelope of parallel M3 with dx = e1ω

1 + e2ω
2 + e3ω

3,

de1 = k1ω
1, de2 = k2ω

2, de3 = 0, dk1 = −ε4(κ1)
2e1ω

1, dk2 = 0,
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i.e. a translation submanifold of S1
τ × E1 and a parabola in E5

τ,1.

The singular non-vanishing metric (4.10) together with (1.5) gives ω5
5 = ω6

4 = 0,
ω6

5 = −ω5
4 and in (4.28) one has R = 0. It means that the Cartan’s criterion is

satisfied with Q = N = 7 + 2(n− 6) = 2n− 5 and semiparallel space-like subman-
ifold exists with arbitrariness of 2n − 5 functions of one real argument. Here the
geometry of the corresponding parallel submanifold is the same as in previous case
with (4.9).

In case of the completely vanishing metric (4.11) the formulae for ξ = 6, 7 and
leads to ω6

4 = ω6
5 = ω7

4 = ω7
5 = 0. Thus the basis of the secondary forms consists

of d ln κ1 + ω4
4, d ln κ2 + ω5

5, ω2
1, ω3

1, ω3
2, ω4

5, ω5
4, ωξ

4, ωξ
5, where ξ = 8, . . . , n and the

ranks of the polar systems are s1 = 6 + 2(n − 8) = 2(n − 5) and s2 = 1, i.e. the
Cartan’s number is Q = 2(n − 4) and the number of independent coefficients N
is the same. Thus the considered semiparallel space-like submanifold exists with
arbitrariness of one holomorphic function of two real arguments. The description of
the corresponding parallel submanfold is done in Proposition 4.1. Remark, that one
of the geodesic lines in this case degenerate into a straight line.

4.4 The case of three-dimensional principal nor-

mal subspace

In this last Section the 3-dimensional principal normal subspace has the either reg-
ular (4.12), or singular non-vanishing (4.13) and (4.14), or completely vanishing
metric (4.15).

Proposition 4.7. A normally flat semiparallel space-like submanifold M3 in En
s

with NxM
3 of dimension 3 is either

1) a product S1
τ × S1

σ × S1
% , τ, σ, % ∈ {0, 1} in E6

τ+σ+% ⊂ En
s , or

2) a translation submanifold of S1
τ × S1

σ, τ, σ ∈ {0, 1} and a parabola in E6
τ+σ ⊂

En
s , or

3) a translation submanifold of two parabolas and a circle S1
τ in E6

τ,2, or
4) a translation submanifold in E6

0,3 with three families of parabola generators; it
can be represented by the equation

x =
1

2

(
k1(u

1)2 + k2(u
2)2 + k3(u

3)2
)

+ k01u
1 + k02u

2 + k03u
3,

here ki are the principal curvature vectors and k0i are some constant vectors, or
5) a second order envelope of a submanifolds above with some arbitrariness.

Proof. In this case the Pfaff system is

ω4
1 = κ1ω

1, ω5
2 = κ2ω

2, ω6
3 = κ3ω

3, ω4
2 = ω4

3 = ω5
1 = ω5

3 = ω6
1 = ω6

2 = 0,
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and ωξ
i = 0, where ξ = 7, . . . , n and its exterior differentiation leads to

(d ln κ1 + ω4
4) ∧ ω1 + ω2

1 ∧ ω2 + ω3
1 ∧ ω3 = 0, ωξ

4 ∧ ω1 = 0,

ω2
1 ∧ ω1 + (d ln κ2 + ω5

5) ∧ ω2 + ω3
2 ∧ ω3 = 0, ωξ

5 ∧ ω2 = 0,

ω3
1 ∧ ω1 + ω3

2 ∧ ω2 + (d ln κ3 + ω6
6) ∧ ω3 = 0, ωξ

6 ∧ ω3 = 0,

κ1ω
2
1 ∧ ω1 + κ2ω

4
5 ∧ ω2 = 0, κ1ω

5
4 ∧ ω1 − κ2ω

2
1 ∧ ω2 = 0,

κ1ω
3
1 ∧ ω1 + κ3ω

4
6 ∧ ω3 = 0, κ1ω

6
4 ∧ ω1 − κ3ω

3
1 ∧ ω3 = 0,

κ2ω
3
2 ∧ ω2 + κ3ω

5
6 ∧ ω3 = 0, κ2ω

6
5 ∧ ω2 − κ3ω

3
2 ∧ ω3 = 0.

(4.29)

Due to the Cartan’s lemma one has

d ln κ1 + ω4
4 = Aω1 + Bω2 + Cω3, ω2

1 = Bω1 + Dω2,
d ln κ2 + ω5

5 = Dω1 + Kω2 + Lω3, ω3
1 = Cω1 + Fω3,

d ln κ3 + ω6
6 = Fω1 + Mω2 + Pω3, ω3

2 = Lω2 + Mω3,

κ2ω
4
5 = κ1Dω1 + Rω2 κ1ω

5
4 = Uω1 − κ2Bω2, ωξ

4 = Xξω1,

κ3ω
4
6 = κ1Fω1 + Sω3 κ1ω

6
4 = V ω1 − κ3Cω3, ωξ

5 = Y ξω2,

κ3ω
5
6 = κ2Mω2 + Tω3 κ2ω

6
5 = Wω2 − κ3Lω3, ωξ

6 = Zξω3.

(4.30)

In case of the regular metric (4.12) one has ω4
4 = ω5

5 = ω6
6 = 0, ε5ω

5
4 = −ε4ω

4
5,

ε6ω
6
4 = −ε4ω

4
6, ε6ω

6
5 = −ε5ω

5
6. Thus the basis of the secondary forms consists of

ln κ1, ln κ2, ln κ3, ω2
1, ω3

1, ω3
2, ω4

5, ω4
6, ω6

5, ωξ
4, ωξ

5, ωξ
6, the rank of the polar matrices

are s1 = 9 + 3(n− 6) = 3n− 9 and s2 = 0, i.e. the Cartan’s number is Q = 3n− 9.
On the other hand in (4.30) one has six independent relations, thus the number of
all independent coefficients is the same N = 3n− 9 and the considering semiparallel
submanifold M3 in this case is a 2nd order envelope of the corresponding parallel
submanifolds with arbitrariness of 3n−9 holomorphic functions of one real argument.

For the corresponding parallel submanifold one has that the coefficients on the right
side (4.30), as components of hijk, are zero. The extended system consisting from
the previous equations and

d ln κ1 = d ln κ2 = d ln κ3 = ωj
i = ω4

5 = ω4
6 = ω5

6 = ωξ
4 = ωξ

5 = ωξ
6 = 0

is completely integrable and there holds

dx = eiω
i, dei = kiω

i, dki = ε3+i(κi)
2ei

ω,

where κi =const, i.e parallel submanifold is a product S1
τ × S1

σ × S1
% , τ, σ, % ∈ {0, 1}

in E6
τ+σ+%.

Let us continue with the singular non-vanishing metric of one isotropic vector
(4.13). Here ω5

5 = ω6
6 = 0, ε6ω

6
5 = −ε5ω

5
6, ω5

4 = −ω7
5, ω6

4 = −ω7
6, ω7

4 = 0 and
the basis of the secondary forms consists of d ln κ1 + ω4

4, d ln κ2, d ln κ3, ω2
1, ω3

1,
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ω3
2, ω5

4, ω6
4, ω4

5, ω4
6, ω5

6, ωξ
4, ωξ

5, ωξ
6, ξ = 8, . . . , n. Now the ranks of the polar sys-

tem is s1 = 11 + 3(n − 7) = 3n − 10. The number of independent coefficient is
11 + 3(n − 7) = 3n − 10. The Cartan’s criterion is satisfied and the considered
semiparallel M3 exists with arbitrariness of 3n − 10 holomorphic functions of one
real argument.

For the corresponding parallel submanifold the equations

d ln κ1 + ω4
4 =d ln κ2 =d ln κ3 =ω2

1 =ω3
1 =ω3

2 =ω5
4 =ω6

4 =ω4
5 =ω4

6 =ω5
6 =0

and ωξ
4 = ωξ

5 = ωξ
6 = 0 are to be added. The extended system is completely

integrable and yields

dx = eiω
i, dei = kiω

i,

dk1 = 0, dk2 = −ε5(κ2)
2e2ω

2, dk3 = −ε5(κ3)
2e3ω

3.

Thus the considered parallel M3 is a translation submanifold of S1
τ × S1

σ and a
parabola, which lies in E6

τ+σ.

The next step is a singular non-vanishing metric with two isotropic vectors (4.14).
In this case the system (4.29) for ξ = 7, 8 together with (1.5) and the Cartan’s
lemma leads to ω7

4 = ω7
5 = ω8

4 = ω8
5 = 0. Since due to the metric ω6

6 = 0, ω7
6 = −ω6

4,
ω8

6 = −ω6
5, then the basis of the secondary forms consists of d ln κ1 +ω4

4, d ln κ2 +ω5
5,

d ln κ3, ωj
i , ω4

5, ω4
6, ω5

4, ω5
6, ω6

4, ω6
5, ωξ

4, ωξ
5, ωξ

6, ξ = 9, . . . , n and the ranks of the polar
matrices are s1 = 11+3(n−8) and s2 = 1. The Cartan’s number Q = 13+3(n−8).
The relations (4.30) give 13 + 3(n − 8) independent coefficients. So the considered
M3 exists with arbitrariness of one holomorphic function of two real arguments.

Here for the corresponding parallel submanifold one has that the extended system
is completely integrable and yields

dx = eiω
i, dei = kiω

i, dk1 = dk2 = 0, dk3 = −ε6(κ3)
2e3ω

3,

i.e. geometrically a such parallel M3 is a translation submanifold of two parabolas
and a circle S1

τ in E6
τ,2.

In case of the completely vanishing metrics (4.15) the system (4.29) for ξ = 7, 8, 9
together with (1.5) and the Cartan’s lemma leads to ω7

4 = ω7
5 = ω7

6 = ω8
4 = ω8

5 =
ω8

6 = ω9
4 = ω9

5 = ω9
6 = 0. Since the frame was adapted to the submanifold so that

κi = 1, then the basis of the secondary forms consists of ω3+i
3+i, ωj

i , ω4
5, ω4

6, ω5
4, ω5

6,

ω6
4, ω6

5, ωξ
3+i, ξ = 10, . . . , n and the Cartan’s number Q is equal s1 + 2s2, where

si, (i = 1, 2) are ranks of polar matrices and s1 = 9 + 3(n − 9), s2 = 3. It gives
N = 15 + 3(n − 9) independent coefficients and the Cartan’s criterion is satisfied;
considered semiparallel submanifold exists as a 2nd order envelope of corresponding
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parallel submanifolds with arbitrariness of 3 holomorphic functions of two argu-
ments.

The corresponding parallel submanifold due to Proposition 4.1 is a translation sub-
manifold in E6

0,3 with three families of parabola generators; it can be represented by
the equation

x =
1

2

(
k1(u

1)2 + k2(u
2)2 + k3(u

3)2
)

+ k01u
1 + k02u

2 + k03u
3,

here ki are the principal curvature vectors and k0i are some constant vectors.
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Chapter 5

Normally non-flat semiparallel
space-like submanifolds M3

In this part all possibilities for the principal normal subspace of normally non-flat
semiparallel space-like submanifolds M3 are investigated and the normally non-
flat parallel space-like submanifolds M3 are classified. The geometrical structure
of semiparallel submanifolds as a second envelopes of the corresponding parallel
submanifolds needs further investigation.

5.1 The case of six-dimensional principal normal

subspace

Let us start with dimNxM
3 = 6, then all six vectors h11, h22, h33, h12, h13 and h23

are linearly independent and (2.9) leads to

H11,22 = H11,33 = H22,33 = 2K, H12,12 = H13,13 = H23,23 = K,

H11,11 = H22,22 = H33,33 = 4K, Haa,ab = Haa,bc = Hab,2ac = 0,

for every three distinct value a, b and c (a, b, c = 1, 2, 3). The matrix




4K 2K 2K 0 0 0
2K 4K 2K 0 0 0
2K 2K 4K 0 0 0
0 0 0 K 0 0
0 0 0 0 K 0
0 0 0 0 0 K




with main minors 4K, 12K2, 32K3, 32K4, 32K5, 32K6 gives that if K > 0 then the
metric of the principal normal subspace is regular positively definite; if K < 0, then
the metric of NxM

3 is regular negatively definite; at last, if K = 0, then the metric
is completely vanishing.
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Proposition 5.1. A normally non-flat parallel space-like M3 in En
s with dimNxM

3 =
6 in E9

0,6 is either
1) a Veronese submanifold V 3 ⊂ E9

s , (s = 0 or s = 6), or
2) a submanifold in E9

0,6 with three families of parabola generators; it can be
represented by the equation

x =
1

2

(
h11(u

1)2 + h22(u
2)2 + h33(u

3)2
)
+

+h12u
1u2 + h13u

1u3 + h23u
2u3 + h01u

1 + h02u
2 + h03u

3,

where h0i are some constant vectors.

Proof. It is known that if the metric of the principal normal subspace has the max-
imal dimension and is regular (K > 0 and K < 0), then the corresponding semi-
parallel M3 is either a Veronese submanifold V 3 in a 8−sphere, i.e. an orbit of a
6−parametric Lie subgroup of rotation of E9

s , (s = 0 or s = 6) around the center of
this 8−sphere or a second order envelope of a family of congruent Veronese V 3 (see
Section 2.4). The second assertion follows from Proposition 2.2.

A normally non-flat semiparallel space-like M3 with dimNxM
3 = 6 in En

s is a
second order envelope of submanifolds from this Proposition.

5.2 The case of five-dimensional principal normal

subspace

In [11] it is shown that in Euclidean space En (i.e. for the case s = 0) there no exist
semiparallel submanifold M3 with dimNxM

3 = 5. In the case of En
s with s > 0 the

situation is different. There holds

Proposition 5.2. Let M3be a semiparallel space-like submanifold in pseudo-Euclidean
space En

s with dimNxM
3 = 5. Then the metric of the principal normal subspace

NxM
3 vanishes completely.

Proof. If the dimension of NxM
3 is 5, then one has at the point x ∈ M3 a linear

dependence between vectors hij, and there exist six coefficients ϑij so that

hijϑ
ij = 0,

∑
(ϑij)2 6= 0.

Here hij are components of a vector valued symmetric tensor field, hence ϑij are
components of a symmetric tensor field to a multiplier. Now the vectors e1, e2 and
e3 can be taken at the point x ∈ M3 so that this dependency transforms into

h11ϑ
11 + h22ϑ

22 + h33ϑ
33 = 0,
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which leads (after renumbering, if needed) to

h33 = τ1h11 + τ2h22. (5.1)

The five vectors h11, h22, h12, h13 and h23 must be here linearly independent. Let us
now investigate the semiparallelity condition (2.9) denoting it by [i,j;k,l] and using
(5.1). All coefficients by linearly independent vectors in (2.9) must be equal to zero.
If to take [1,1;1,2] and [2,2;2,1] the coefficients by h12 give as a result all Hi,j;k,l are
zero.

Using Proposition 2.2 and (5.1) can be formulated

Proposition 5.3. A normally non-flat parallel space-like M3 in E8
0,5 with

dimNxM
3 = 5 is a submanifold with 3 families of parabola generators, which can be

represented by the equation

x =
1

2

(
h11

(
(u1)2 + τ1(u

3)2
)

+ h22

(
(u2)2 + τ2(u

3)2
))

+

+h12u
1u2 + h13u

1u3 + h23u
2u3 + h01u

1 + h02u
2 + h03u

3,

where h0i are some constant vectors.

A normally non-flat semiparallel space-like M3 with dimNxM
3 = 5 in En

s is a
second order envelope of submanifolds from this Proposition.

5.3 The case of four-dimensional principal nor-

mal subspace

In this case the same way as in [11] can be obtained the following possibilities for
linear dependence between vectors hij:

(A) h33 = µh11, h23 = ν1h11 + ν2h22 + ν3h12 + ν4h13, (5.2)

h11, h22, h12, h13 are linearly independent,

(B) h33 = µh11, h22 = νh11, (5.3)

h11, h12, h13, h23 are linearly independent,

(C) h33 = µh11, h13 = ν1h11 + ν2h22, (5.4)

h11, h22, h12, h23 are linearly independent,

(D) h33 = 0, h12 = ν1h11 + ν2h22, (5.5)

h11, h22, h13, h23 are linearly independent,

(E) h33 = h11 = 0, (5.6)

h22, h12, h13, h23 are linearly independent.

Remark, that the first two cases must be considered with their limit cases when
µ = 0.

55



Proposition 5.4. Let M3 be a semiparallel space-like submanifold in En
s with dimNxM

3 =
4. In the case (A) the metric of the first normal subspace can be either regular, or
singular non-vanishing, or completely vanishing.

Proof. From (2.9) on supposition (5.2) one has the following relations:

[1, 1; 1, 2] by h11 : H11,12 − ν1H11,13 = 0,

by h22 : H11,12 + ν2H11,13 = 0,

[2, 2; 1, 2] by h11 : H22,12 + ν1

(
2H12,23 − 3H22,13

)
= 0,

by h22 : H22,12 − ν2

(
2H12,23 − 3H22,13

)
= 0,

[1, 2; 1, 2] by h11 : 2H12,12 −H11,22 + ν1

(
H11,23 − 2H12,13

)
= 0, (5.7)

by h22 : 2H12,12 −H11,22 − ν2

(
H11,23 − 2H12,13

)
= 0,

[3, 3; 1, 2] by h11 : µH11,12 + ν1

(
2H22,13 − 2H12,23 − µH11,13

)
= 0,

by h22 : µH11,12 − ν2

(
2H22,13 − 2H12,23 − µH11,13

)
= 0.

The analysis of this system on supposition ν1 + ν2 6= 0 leads to

H11,12 = H22,12 = H11,13 = H22,13 = H12,23 = 0,

2H12,12 −H11,22 = H11,23 − 2H12,13 = 0.
(5.8)

These results together with

[1, 1; 1, 2] by h13 : 3H11,23 − 2H12,13 − ν4H11,13 = 0,

[2, 2; 1, 2] by h13 : H22,23 − ν4

(
2H12,23 − 3H22,13

)
= 0,

show that H12,13 = 0 and H11,23 = H22,23 = 0. The latter with (5.2) leads to

ν1H11,11 + ν2H11,22 = 0, ν1H11,22 + ν2H22,22 = 0. (5.9)

Moreover,

[1, 1; 1, 2] by h12 : H22,12 + ν1

(
2H12,23 − 3H22,13

)
= 0,

[2, 2; 1, 2] by h12 : 2H12,12 −H11,22 + ν1

(
H11,23 − 2H12,13

)
= 0,

[1, 3; 1, 2] by h11 : H12,13 + (1− µ)
(
H12,13 −H11,23) +

+ν1(H11,22 −H12,12 −H13,13) = 0,

give
H12,12 = H13,13 = K, H11,22 = 2K, H11,11 = H22,22 = 4K. (5.10)

Thus (5.9) together with supposed above ν1 + ν2 6= 0 give K = 0 and the metric of
the first normal subspace is completely vanishing.
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Let now ν1 = −ν2 = ν 6= 0. Then the system (5.7) transforms into

H11,12 − νH11,13 = 0, H22,12 + ν
(
2H12,23 − 3H22,13

)
= 0,

2H12,12 −H11,22 + ν
(
H11,23 − 2H12,13

)
= 0,

µH11,12 + ν
(
2H22,13 − 2H12,23 − µH11,13

)
= 0,

and together with equalities

[1, 1; 1, 3] by h11 : (1− µ)H11,13 −H11,12 = 0,

by h22 : νH11,12

)
= 0,

[2, 2; 1, 3] by h11 : (1− µ)H22,13 + ν
(
2µH11,12 − 2H13,23 −H22,12

)
= 0,

by h22 : ν
(
2µH11,12 − 2H13,23 −H22,12

)
= 0,

[1, 2; 1, 3] by h11 : (2− µ)H12,13−H11,23+ ν
(
µH11,11−H12,12−H13,13

)
= 0,

by h22 : H11,23 −H12,13 − ν
(
µH11,11 −H12,12 −H13,13

)
= 0,

[2, 3; 1, 3] by h11 : H13,23 + µ
(
µH11,12 − 2H13,23

)− νH12,23 = 0,

by h22 : H13,23 − µH11,12 + νH12,23 = 0,

[1, 3; 1, 2] by h11 : H12,13 + (1− µ)
(
H12,13 −H11,23

)
+

+ν
(
H11,22 −H12,12 −H13,13

)
= 0,

by h22 : H12,13 + ν
(
H11,22 −H12,12 −H13,13

)
= 0,

[2, 3; 1, 2] by h11 : H12,23 + µ
(
H12,23 −H22,13

)−H13,23 = 0,

by h22 : H22,13 − 2H12,23 − νH13,23 = 0.

on supposition µ 6= 1 gives

H11,12 = H11,13 = H22,12 = H22,13 = H12,13 = H11,23 = H13,23 = 0.

Remark, that the relations (5.10) act here and supposition K 6= 0 contradicts to the
assumption µ 6= 0. If K = 0, then the straightford computation gives a completely
vanishing metric.

The next step is µ = 1 and K 6= 0. Now ν 6= 0 leads to a contradiction, thus
ν = 0. Further, ν4 = 0 and ν2

3 − 1 = 0. Here the case ν3 = 1 can be reduced to the
case ν3 = −1, taking −e1 instead of e1, and so the basic linear dependencies become:
h33 = h11, h23 = h12. But the latter can be simplified by frame transformation

e∗1 = e2, e∗2 =
1√
2
(−e1 + e3), e∗3 =

1√
2
(e1 + e3)

to h∗13 = h∗23 = 0.
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Let ∗ be omitted further, so that h13 = h23 = 0 and h11, h22, h33, h12 are lin-
early independent. Now the consequences from the semiparallelity condition (2.9)
reduce to

H11,12 = H22,12 = H33,12 = H11,33 = H22,33 = 0,

H11,11 = H22,22 = 2H11,22 = 4H12,12 = K.

Due to the arbitrariness of H33,33 the metric of the first normal subspace can be
either regular (H33,33 6= 0), or singular non-vanishing (H33,33 = 0).

Proposition 5.5. Let M3 be a semiparallel space-like submanifold in En
s with

dimNxM
3 = 4. In the cases (B)-(E) the metric of the first normal subspace can be

completely vanishing, only.

Proof. Let start with the case (B). Here the equation [1, 1; 1, 2] and [2, 2; 1, 2] give
by h12:

3H11,22 − 2H12,12 −H11,11 = 0, 3H11,22 − 2H12,12 −H22,22 = 0, (5.11)

thus H11,11 = H22,22. If H11,11 6= 0, then due to (5.3) and [1, 1; 2, 3] by h23:
H11,22 −H11,33 = 0 one has ν2 = 1 and µ = ν.

Let ν = µ = 1. Thus [1, 3; 1, 2] by h23: H11,22 − H12,12 − H13,13 = 0 together
with H11,22 = H12,12 shows that H13,13 = 0. The latter due to [1, 1; 1, 3] by h13:
3H11,33 − 2H13,13 −H11,11 = 0 contradicts with H11,11 6= 0.

Supposing ν = µ = −1 from (5.11) one has H12,12 + 2H11,11 = 0, on the other
hand [1, 2; 1, 2] by h11 leads to 2H12,12 −H11,22 = 0, i.e. here H11,11 6= 0 is impossi-
ble, too.

Now obtained that H11,11 = 0. Thus H13,13 = H12,12 = H22,22 = 0. Moreover,
[1, 1; 1, 2] and [1, 1; 1, 3] by h23 lead to H11,13 = H11,12 = 0 and the equations

[1, 1; 2, 3] by h12 : 2H12,23 − 2H22,13 + H11,13 = 0,

by h13 : 2H12,33 − 2H13,23 −H11,12 = 0,

[2, 3; 1, 3] by h12 : H13,13 −H11,33 + H23,23 = 0,

[1, 1; 1, 3] by h12 : 3H11,23 − 2H12,13 = 0,

[1, 2; 1, 2] by h23 : H11,23 − 2H12,13 = 0

lead to H12,23 = H13,23 = H23,23 = H11,23 = H12,13 = 0. So the metric of the first
normal subspace NxM

3 in the case (B) vanishes completely. The same result will
be obtained supposing µ = 0.
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H11,11 = H22,22. If H11,11 6= 0, then [3, 3; 1, 2] by h12: H22,33 −H11,33 = 0 on suppo-
sition µ 6= 0 leads to H11,11 = H11,22, which contradicts with linear independence of
h11 and h22.

So one has H11,11 = H22,22 = 0, where from

[1, 2; 1, 2] by h23 : H11,23 − 2H12,13 = 0,

[1, 1; 1, 3] by h12 : 3H11,23 − 2H12,13 = 0,

[1, 2; 1, 3] by h23 : H11,23 −H12,13 −H12,12 = 0,

i.e. H11,23 = H12,13 = H12,12 = 0. The latter together with (5.11) leads to
H11,22 = 0.Now equations [1, 2; 1, 3] and [1, 1; 1, 3] by h12 give H112, 23 = H11,12 = 0.
Substitution into [1, 2; 1, 2] by h12: H11,12 + H22,12 = 0 gives H22,12 = 0. At last,
equation [1, 3; 2, 3] by h12: H22,23 − H13,13 − H23,23 = 0 together with (5.4) leads
to H23,23 = 0. One has that all Hij,kl are zero, i.e. the metric of the first normal
subspace in this case is completely vanishing.

The consideration of the case (D) in a system of relations

[1, 1; 2, 3] by h23 : H11,22 −H11,33 = 0,

[1, 3; 1, 3] by h13 : H11,13 −H13,33 = 0,

[2, 3; 2, 3] by h23 : H22,23 −H22,33 = 0,

[3, 3; 1, 3] by h13 : 2H13,13 − 3H11,33 + H33,33 = 0

[3, 3; 1, 3] by h23 : 2H13,23 − 3H12,33 = 0,

[3, 3; 2, 3] by h23 : 2H23,23 − 3H22,33 + H33,33 = 0

due to (5.5) leads to H11,22 = H11,13 = H22,23 = H13,13 = H13,23 = H23,23 = 0. In the
equalities

[1, 1; 1, 3] by h13 : 3H11,33 − 2H13,13 + H11,11 = 0,

[2, 2; 2, 3] by h23 : 3H22,33 − 2H23,23 + H22,22 = 0

it gives that H11,11 = H22,22 = 0. Now from

[1, 1; 1, 3] by h13 : 3H11,33 − 2H13,13 + H11,11 = 0,

[2, 2; 2, 3] by h23 : 3H22,33 − 2H23,23 + H22,22 = 0

one has H11,23 = H12,13 = 0. At last, [2, 2; 1, 2] by h23 and [3, 3; 1, 2] by h23 lead to
H22,13 = H22,12 = 0. As a result, the metric of the first normal subspace is com-
pletely vanishing.
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one has that H12,12 = H22,22 = 0. On the same way as it is done in the previous case
one obtains

H13,13 = H23,23 = H22,12 = H22,13 = H22,23 = H12,13 = H12,23 = H13,23 = 0.

It means that the metric of the first normal subspace in this last case vanishes
completely, too.

Proposition 5.6. A normally non-flat parallel space-like M3 in E8
0,5 with

dimNxM
3 = 4 is either

1) a product V 2 ×M1 in E7
τ ⊂ En

s τ ∈ {0, 3}, or
2) a submanifold in E7

0,1 with two families of generators; one of them is V 2 ∈ E5
τ

and another is a parabola, or
3) a submanifold in E7

0,4 with three families of parabola generators (some of them
can degenerate into a straight line) and can be represented by the equation (2.4), or

4) a second order envelope of submanifolds above with some arbitrariness.

Proof. Let us start with case (A). If to take e4 ‖ h11 + h22, e5 ‖ h11 − h22, e6 ‖ h12

and e7 ‖ h33. Thus

h11 = αe4 + βe5, h22 = αe4 − βe5, h12 = γe6, h33 = λe7

and Pfaff system is

ω14 = αω1, ω5
1 = βω1, ω6

1 = γω2, ω7
1 = 0, ωξ

1 = 0,

ω24 = αω2, ω5
2 = βω2, ω6

2 = γω1, ω7
2 = 0, ωξ

2 = 0,

ω34 = 0, ω5
3 = 0, ω6

3 = 0, ω7
3 = λω3, ωξ

3 = 0,

In case of the regular metric from the semiparallelity condition one has α = γ
√

3
and β = γ. The existence of a such submanifold and the description of the cor-
responding parallel submanifolds in [11] are done; it gives a product V 2 × M1 in
E7

τ ⊂ En
s . τ ∈ {0, 3}. In case of the singular non-vanishing metric the generators

are not necessary to be orthogonal and the second component is a parabola.

In cases (B)–(E) one has submanifolds from Proposition 2.2.

5.4 The case of three-dimensional principal nor-

mal subspace

If to take the vector e4 so that e4 ‖ H and the vectors e5, e6 in NxM
3 so that h11

contains to the span of H and e5, then

H4 6= 0, H5 = H6 = Hξ = 0, hξ
ij = h6

11 = 0, (ξ = 7, ..., n).
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It remains to consider the case (E). The equalities (5.11) act here and due to (5.6)



If in the semiparallellity condition (2.8) to take i = j and summarize by i = 1, 2, 3,
one has

HβΩα
β = 0, (5.12)

which leads now to
Ωα

4 = 0. (5.13)

The metric of the principal normal space generated by pseudo-Euclidean space can
be either regular, or singular non-vanishing, or completely vanishing.

Proposition 5.7. Let M3 be a normally non-flat semiparallel space-like submani-
folds with dimNxM

3 = 3 and regular metric of the principal normal space in pseudo-
Euclidean space En

s . Thus for hα
ij one has either

(A) h6
13 = h6

23 = 0, h5
22 6= 0, or (B) h5

22 = h6
13 = 0, h6

23 6= 0, (5.14)

and the frame vectors e4, e5, e5 are such that their scalar square are 1, or −1 and
pairwise scalar products are zero.

Proof. The mean curvature vector H 6= 0 can be either non-isotropic or isotropic
(i.e. H2 = 0). It turns out that the second case is impossible for the considered
M3. In this case the frame vectors e4, e5, e6 are such that ε4 = εa = 0, εb 6= 0,
g4a = 1, a, b = 5, 6 and have distinct values, all others gαβ = 0, (α 6= β). Without
loss of generality can be taken a = 6, b = 5, thus Ω5

4 = −g46ω
6
i ∧ ω5

i = 0 and
matrices ‖ h6

ij ‖, ‖ h5
ij ‖ commute, the same way as it was done above can be

madden h6
ij = h5

ij = 0 if i 6= j. Now 2-forms Ω5
6 = −ε5Ω

4
5, where

Ω4
5 = −ε5

[
(h5

22 − h5
11)h

4
12ω

1 ∧ ω2 + (h5
22 − h5

11)h
4
13ω

1 ∧ ω3 + (h5
33 − h5

22)h
4
23ω

2 ∧ ω3
]

must be non-zero only. On the other hand the semiparallelity condition by i = j,
α = 6 gives h6

iiΩ
5
6 = 0, i.e. all h6

22 = h6
33 = 0 and the dimension of NxM

3 is smaller
than 3.

Therefore it remains to consider the case with H2 6= 0, only. Here the frame vectors
e4, e5, e6 are such that their scalar square are either 1 or −1 and all gαβ = 0 (α 6= β).
Since here ε4 6= 0 and together with (5.13) it leads to Ω4

α = 0. In particular, Ω4
5 = 0,

thus due to (1.6) and (1.11) the matrices ‖ h4
ij ‖ and ‖ h5

ij ‖ are commutative.
Therefore the vectors e1, e2, e3 can be taken so that h4

ij = h5
ij = 0 if i 6= j. Since ∇⊥

is supposed to be non-flat, at least, one from the 2-forms

Ω6
5 = ε5

[
(h5

22 − h5
11)h

6
12ω

1 ∧ ω2 + (h5
33 − h5

11)h
6
13ω

1 ∧ ω3 + (h5
33 − h5

22)h
6
23ω

2 ∧ ω3
]
,

and

Ω5
6 = −ε6

[
(h5

11 − h5
22)h

6
12ω

1 ∧ ω2 + (h5
11 − h5

33)h
6
13ω

1 ∧ ω3 + (h5
22 − h5

33)h
6
23ω

2 ∧ ω3
]
.
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must be non-zero. Without loss of generality it can be supposed that

h5
11 6= h5

22, h6
12 6= 0. (5.15)

The semiparallelity condition by i = j and α = 5 gives h6
iiΩ

5
6 = 0, which leads to

h6
22 = h6

33 = 0. Moreover, equation by i = 1, j = 2, α = 5 can be written as

(h5
22 − h5

11)Ω
2
1 = h6

12Ω
5
6 6= 0, (5.16)

it is easy to see that here Ω2
1 6= 0. Moreover, from this equation and from equations

by i = 1, 2 j = 3, α = 6

h6
12Ω

3
2 − h6

23Ω
2
1 = 0, h6

12Ω
3
1 + h6

13Ω
2
1 = 0, (5.17)

one can get that Ω3
1, Ω3

2, Ω6
5 are proportional to Ω2

1. Substitution of these 2-forms
into (h5

jj − h5
ii)Ω

j
i − h6

ijΩ
5
6 = 0, where i = 1, 2, j = 3, α = 5 together with

H5 =
1

3
(h5

11 + h5
22 + h5

33) = 0

gives h5
11h

6
13 = 0, h5

22h
6
23 = 0. This leads to the cases (A) and (B) in (5.14).

The similar result was obtained in [11] for Euclidean spaces En.

Proposition 5.8. There exists no normally non-flat semiparallel space-like M3 with
a three-dimensional principal normal space of the singular non-vanishing metric and
the isotropic mean curvature vector H.

Proof. On supposition H2 = 0 one has ε4 = 0 and the frame vector e7 can be taken
so that ε7 = 0, g47 = 1. Now the vector e4 can be canonized so that h4

ij = 0, i 6= j
and for the vectors e5, e6 one has the following possibilities:

(i) ε5, ε6 are either 1 or −1, and all others gαβ = 0;

(ii) εa = 0, εb 6= 0, (a, b = 5, 6) and the frame vector e8 can be
taken so that ε8 = 0, ga8 = 1 all others gαβ = 0.

Let us start with the case (i). Thus among 2-forms Ωβ
α can be non-zero the three

following

Ω6
5 = −εΩ5

6, Ω4
5 = −ε5Ω

5
7, Ω4

6 = −ε6Ω
6
7,

only. Here ε = 1, if ε5 = ε6 and ε = −1, if ε5 = −ε6. Supposing that at least
Ω4

5 6= 0 in the semiparallelity condition (2.8) by i = j = 1, α = 4 one has h5
11 = 0.

Moreover, without loss of generality can be taken

h4
11 6= h4

22, h5
12 6= 0 (5.18)
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The semiparallelity condition by i = 1, j = 2, α = 4: (h4
22−h4

11)Ω
2
1+h5

12Ω
4
5−h6

12Ω
4
6 =

0, gives for the coefficient of ω1 ∧ ω2

(h4
22 − h4

11)
[
ε5(h

5
12)

2 + ε6(h
6
12)

2
]

= 0, (5.19)

i.e. the version ε5 = ε6 leads to the contradiction with (5.18). It remains to consider
the case where ε5 = −ε6, thus from (5.19) one has

h5
12 = h6

12 = a, a 6= 0. (5.20)

(case h5
12 = −h6

12 = a can be obtained from the previous if to take the vector −e6

instead of e6). Now from equations by i = 1, 2, j = 3, α = 4

(h4
33 − h4

11)Ω
3
1 − h5

13Ω
4
5 − h6

13Ω
4
6 = 0,

(h4
33 − h4

22)Ω
3
2 − h5

23Ω
4
5 − h6

23Ω
4
6 = 0,

as a coefficients of ω2 ∧ ω3 and ω1 ∧ ω3, accordingly, one has

(h4
33 − h4

11)
[
h5

12h
5
33 − h6

12h
6
33

]
+ (h4

11 + h4
22 − 2h4

33)
[
h5

13h
5
23 − h6

13h
6
23

]
= 0,

(h4
33 − h4

22)
[
h5

12h
5
33 − h6

12h
6
33

]
+ (h4

11 + h4
22 − 2h4

33)
[
h5

13h
5
23 − h6

13h
6
23

]
= 0,

where from on supposition (5.20) can be obtained h5
33 = h6

33. Due to H5 = H6 = 0
it leads to h5

22 = h6
22 = −h5

33 = −h6
33 = µ.

Denoting h5
13 = b, h6

13 = β, h5
23 = c, h6

23 = γ in i = j = 1, α = 5, 6 as a coef-
ficients of ω1 ∧ ω2 one has a(b2 − bβ) = 0, a(bβ − β2) = 0, accordingly, i.e.

b(b− β) = 0, β(b− β) = 0.

Here b 6= β is impossible because it leads to b = β = 0, so one has β = b.

Now let us investigate a relation between γ and c. From the equations by i =
j = 2, α = 5 and i = j = 3, α = 6 as a coefficients for ω1 ∧ ω3 one has

(c− γ)(aµ− 2bc) = 0, (c− γ)(aµ− 2bγ) = 0,

accordingly. If here γ 6= c then b(c − γ) = 0 and b = 0. Thus µ = 0 and from
i = j = 2, α = 6 as a coefficient of ω1 ∧ ω2 : (c− γ)(2aγ − bµ) = 0, one has γ = 0.
The substitution into i = j = 2, α = 5, ω2 ∧ ω3 : (c − γ)(a2 − µ2 + cγ + c2) = 0,
gives a2 + c2 = 0, which leads to contradiction with a 6= 0. Now γ = c and the
vectors hij are following

h11 = h4
11e4, h12 = a(e5 + e6), h13 = b(e5 + e6),

h22 = h4
22e4 + µ(e5 + e6), h23 = c(e5 + e6), h33 = h4

33e4 − µ(e5 + e6).
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It means that not more then two vectors hij can be linearly independent, i.e. the
dimension of the principal normal space is smaller then 3.

The next step is to consider possibility Ω4
5 = 0. It means that at least one from

2-forms

Ω6
5 = ε5

3∑
i,j=1

(h5
jj − h5

ii)h
6
ijω

i ∧ ωj, Ω4
6 = −ε6

3∑
i,j=1

(h4
jj − h4

ii)h
6
ijω

i ∧ ωj,

(i > j) is non-zero. Due to the semiparallelity condition by i = j = 2, 3, α = 4, 5,
where h6

22Ω
4,5
6 = 0, h6

33Ω
4,5
6 = 0 leads to h6

22 = h6
33 = 0. Now the equation

i = 1, 2 j = 3, α = 6 h6
12Ω

3
2 − h6

23Ω
2
1 = 0, h6

12Ω
3
1 + h6

13Ω
2
1 = 0,

as a coefficients for ω1 ∧ ω2 give h6
13(h

6
12)

2 = 0, h6
23(h

6
12)

2 = 0.

Here the relation h6
12 = h6

13 = h6
23 = 0 is impossible due to supposition that at

least one of Ω5
6, Ω4

6 is non-zero. The possibility h6
13 = h6

23 = 0, h6
12 6= 0 is impossible

due to the same reason. Because the equations

i = 1, j = 3, α = 6, ω2 ∧ ω3 h6
12

[
ε5l(k + l) + 2ε6(h

6
23)

2
]

= 0,

i = 2, j = 3, α = 6, ω1 ∧ ω3 h6
12

[
ε5k(k + l) + 2ε6(h

6
13)

2
]

= 0,

i = 1, j = 2, α = 5, ω1 ∧ ω2 (l − k)(h6
12)

2 = 0

i = 1, j = 2, α = 4, ω1 ∧ ω2 (h6
12)

2(h4
22 − h4

11) = 0,

lead to Ω5
6 = Ω4

6 = 0.

It remains to consider the possibility h6
12 = 0. The case with h6

13h
6
23 6= 0, (i.e.

where h6
13, h6

23 are non-zero simultaneously) is impossible due to the system

i = 1, j = 3, α = 5, ω2 ∧ ω3 h6
13h

6
23(2k + l) = 0,

i = 2, j = 3, α = 5, ω1 ∧ ω3 h6
13h

6
23(2l + k) = 0,

i = 1, j = 2, α = 6, ω2 ∧ ω3 h6
13

[
ε5l(k + l) + 2ε6(h

6
23)

2
]

= 0, (5.21)

where from h6
13h

6
23 = 0. Now without loss of generality can be considered h6

23 = 0,
h6

13 6= 0. The such supposition give in (5.21) that h6
13l(k + l) = 0 and the system

i = 2, j = 2, α = 6, ω1 ∧ ω3 h6
13l(2k + l) = 0,

i = 1, j = 3, α = 4, ω1 ∧ ω3 (h4
33 − h4

11)
[
ε5k(k + l) + 2ε6(h

6
13)

2
]

= 0,

where from both 2-forms Ω4
6 and Ω5

6 are zero, i.e. it is obtained a contradiction with
condition of normally non-flat connection.
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It remains to consider the case (ii), where one from vectors e5, e6 is isotropic.
Without loss of generality here can be supposed ε5 = 0, ε6 6= 0 and the vector e8

is such that ε8 = 0, g58 = 1. For the such type of metric one has three 2-forms
Ω4

6 = −ε6Ω
6
7, Ω5

6 = −ε6Ω
6
8, Ω5

7 = −Ω4
8, which can be non-zero.

Let suppose at first, that all these forms Ω4
6, Ω5

6, Ω5
7 are non-zero, simultaneously. If

Ω2
1 = 0, then due to

Ω2
1 = −ε6[−(h6

12)
2ω1 ∧ ω2 − h6

12h
6
13ω

1 ∧ ω3 + (h6
12h

6
23 − h6

22h
6
13)ω

2 ∧ ω3],

one has h6
12 = 0, h6

22h
6
13 = 0. Together with h6

22 = −h6
33 = µ (from H6 = 0), it gives

in semiparallity condition (2.8) by i = 2, j = 3, α = 6

(h6
33 − h6

22)Ω
3
2 − h6

12Ω
3
1 − h6

13Ω
2
1 = 0,

i.e. µΩ3
2 = 0, where Ω3

2 = ε6h
6
13h

6
23ω

1 ∧ ω3 + ε6(µ
2 + (h6

23)
2)ω2 ∧ ω3. The lat-

ter leads to µ(µ2 + (h6
23)

2) = 0, i.e.µ = 0. Now the semiparallelity condition by
i = j = 1, 2, α = 6 transforms into h6

13Ω
3
1 = 0, h6

23Ω
3
2 = 0, i.e. h6

13 = h6
23 = 0. But it

gives a contradiction with non-zero forms Ω4,5
6 . As a result one has Ω2

1 6= 0.

Denoting h6
12 = a, h6

13 = b in i = j = 1, α = 6 : aΩ2
1 + bΩ3

1 = 0 as coefficients
by ω1 ∧ ω2 and ω1 ∧ ω3 one has

a(a2 + b2) = 0, b(a2 + b2) = 0. (5.22)

It leads to a = b = 0, which is impossible due to Ω2
1 6= 0. One obtained that at least

one among 2-forms Ω4
6, Ω5

6, Ω5
7 must be zero.

Let at first, Ω5
7 = 0, then h4

ij = h5
ij = 0, i 6= j. Since at least one of Ω4

6, Ω5
6 is

non-zero from i = j = 2, 3, α = 4, 5 one has h6
22 = h6

33 = 0 and

Ω4,5
6 = −ε6[(h

4,5
22 − h4,5

11 )h6
12ω

1 ∧ ω2 + (h4,5
33 − h4,5

11 )h6
13ω

1 ∧ ω3 +

(h4,5
33 − h4,5

22 )h6
23ω

2 ∧ ω3].

Without loss of generality, it is enough to consider Ω5
6 6= 0, only. If suppose here

h5
11 6= h5

22, h6
12 6= 0, then the same way as it was done in previous Proposition 5.7

can be obtained a contradiction with a such supposition.

Let us suppose now that Ω4
6 = 0. Then one has h6

ij = h4
ij = 0, i 6= j. Due to

the metric one has Ω2
1 = Ω3

1 = 0 and Ω3
2 = −ε6h

6
22h

6
33ω

2 ∧ ω3 = ε6µ
2ω2 ∧ ω3. The

substitution into

i = 2, j = 3, α = 6 : (h6
33 − h6

22)Ω
3
2 = 0

leads to µ = 0, i.e. h6
ij = 0 for every i,j and dimNxM

3 ≤ 2.
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Proposition 5.9. Let M3 be a normally non-flat semiparallel space-like submanifold
with three-dimensional principal normal space of singular non-vanishing metric in
pseudo-Euclidean space En

s . Then the frame vectors e4, e5, e6 are such that ε4 6= 0,
ε5 = ε6 = 0 and the Pfaff system is

ω4
1 = 0, ω5

1 = kω1, ω6
1 = αω2,

ω4
2 = 0, ω5

2 = lω2, ω6
2 = αω1 + µω2,

ω4
3 = ρω3, ω5

3 = −(k + l)ω3, ω6
3 = −µω3,

(5.23)

all others ωa
i , ωξ

i , a = 7, 8; ξ = 9, ..., n are zero.

Proof. It is enough to consider the case where the mean curvature vector is non-
isotropic. On this assumption and due to H ‖ e4 one has that ε4 6= 0. Moreover,
the 2-form Ω5

4 = −ε4ω
4
i ∧ ω5

i is zero due to (5.13) and the matrices ‖ h4
ij ‖, ‖ h5

ij ‖
commute and it can be made h4

ij = h5
ij = 0 (i 6= j). Now by the frame vectors e5,

e6 there are two possibilities: only one of them is isotropic, or the both vectors are
isotropic, i.e.

(i) εa is either 1 or −1, εb = 0, (a, b = 5, 6); the next frame vector e7

can be taken so that ε7 = 0 and gb7 = 1, all others gαβ = 0;

(ii) ε5 = ε6 = 0; the two next frame vectors e7, e8 can be taken so
that ε7 = ε8 = 0 and g57 = g68 = 1, all others gαβ = 0.

Let us start with the case (i), where only one from vectors e5, e6 is isotropic. Without
loss of generality here can be taken ε6 6= 0, ε5 = ε7 = 0 and g57 = 1, all others
gαβ = 0. Now 2-form

Ω5
6 = −ε6[(h

5
22 − h5

11)h
6
12ω

1 ∧ ω2 + (h5
33 − h5

11)h
6
13ω

1 ∧ ω3 + (h5
33 − h5

22)h
6
23ω

2 ∧ ω3]

can be non-zero, only. The same way as done in Proposition 5.7 (the case H2 6= 0)
one can suppose (5.15) and obtain that h5

11h
6
13 = 0, h5

22h
6
23 = 0. On the other hand

the equations by i = j = 1, 2, α = 6 for the present case

h6
12Ω

2
1 + h6

13Ω
3
1 = 0, h6

12Ω
2
1 − h6

23Ω
3
2 = 0,

show that h6
13 and h6

23 are non-zero, i.e. h5
11 = h5

22 = 0, which leads to contradiction
with (5.15).

It remains to consider the case (ii), where ε4 6= 0, ε5 = ε6 = 0 and the vectors
e7, e8 are such that ε7 = ε8 = 0, g57 = g68 = 1. Among 2-forms Ωβ

α can be non-zero

Ω5
8 =−(h5

22 − h5
11)h

6
12ω

1 ∧ ω2 − (h5
33 − h5

11)h
6
13ω

1 ∧ ω3 − (h5
33 − h5

22)h
6
23ω

2 ∧ ω3 =−Ω6
7,
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only. Supposing here h5
11 6= h5

22 and h6
12 6= 0, from the semiparallelity condition by

i = 1 j = 2, α = 5: (h5
22 − h5

11)Ω
2
1 = 0 one has Ω2

1 = 0. The latter gives

h4
11h

4
22 = 0. (5.24)

On the other hand, since Ω6
4 = 0 one has h6

ij(h
4
jj − h4

ii) = 0, which on supposition
h6

12 6= 0 together with (5.24) leads to h4
11 = h4

22 = 0 and as a corollary

h4
33h

6
13 = 0, h4

33h
6
23 = 0.

But in case h4
33 = 0 the dimension of NxM

3 is smaller than 3, which means that
h4

33 6= 0 and h6
13 = h6

23 = 0. Denoting

h5
11 = k, h5

22 = l, h6
22 = µ, h4

33 = ρ, h6
12 = α,

due to H5 = H6 = 0 one has h5
33 = −(k + l), h6

33 = −µ. Thus the Pfaff system
(5.23) is obtained.

Proposition 5.10. Let M3 be a normally non-flat space-like semiparallel subman-
ifold in En

s with three-dimensional principal normal subspace. Then it is either
1) a product V 2×E1 ∈ E6

s , s = 0, 3, where V 2 is a Veronese surface in S4
τ ∈ E5

τ ,
τ ∈ {0, 2}0, 2, or

2) a second order envelope of a family of V 2 × E1 ∈ En
s , n > 6, or

3) a 3−dimensional Segre submanifold M3 with orthogonal net of great 2-spheres
and great circles in a sphere S5

s ∈ E6
s , (s is 0 or 3), or

4) a submanifold M3 in E6
s generated by an 1−parametric family of concentric

2−spheres, the orthogonal trajectories of which are the congruent logarithmic spirals
(specially circles) with the common pole in the center of family spheres, or

5) a translation submanifold of S1
τ τ ∈ {0, 1} and parallel M2 with two families of

parabola generators, which can be represented by equation x = 1
2 h11(u)2 + 1

2 h22(v)2 +
h12uv + h01u + h02v, where coefficients h0i are some constant vectors, or

6) a 2nd order envelope of a family of submanifolds 5) with some arbitrariness.

Proof. The consideration of submanifolds 1)–4) is done in [11] and [18]. It remains to
consider submanifolds from Proposition 5.9 with the singular non-vanishing metric
and the Pfaff system (5.23). Here Ωj

i = 0 and the same way as in Proposition 2.2

can be obtained ωj′
i′ = 0. The exterior differentiation of ω7

i = ω8
i = 0 together with

ω7
5 = ω8

6 = 0 and ω8
5 = −ω7

6 leads to

kω7
6 ∧ ω1 = 0, αω7

6 ∧ ω2 = 0, ω7
6 ∧ (αω1 + µω2) = 0,

(ρω7
4 − µω7

6) ∧ ω3 = 0, (ρω8
4 + (k + l)ω7

6) ∧ ω3 = 0,

i.e. applying the Cartan’s lemma one has ω7
6 = 0, ω7

4 = Xω3, ω8
4 = Y ω3. On the

other hands ω7
4 = −ε4ω

4
5, ω8

4 = −ε4ω
4
6 and together with the exterior differentia-

tion of the first column from (5.23)

kω4
5 ∧ ω1 + αω4

6 ∧ ω2 = 0
αω4

6 ∧ ω1 + (µω4
6 + lω4

5) ∧ ω2 = 0
(dρ− (k + l)ω4

5 − µω4
6) ∧ ω3 = 0
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it gives ω4
5 = ω4

6 = ω7
4 = ω8

4 = 0, dρ = Aω3. Now the exterior differentiation of two
others columns from (5.23) and ωξ

i = 0 gives

(dk + kω5
5) ∧ ω1 + αω5

6 ∧ ω2 = 0,
αω5

6 ∧ ω1 + (dl + lω5
5 + µω5

6) ∧ ω2 = 0,
(d(k + l)− ρω5

4 + (k + l)ω5
5 + µω5

6) ∧ ω3 = 0,

kω6
5 ∧ ω1 + (dα + αω6

6) ∧ ω2 = 0,
(dα + αω6

6) ∧ ω1 + (dµ + lω6
5 + µω6

6) ∧ ω2 = 0,
(dµ− ρω6

4 + (k + l)ω6
5 + µω6

6) ∧ ω3 = 0,

kωξ
5 ∧ ω1 + αωξ

6 ∧ ω2 = 0,

αωξ
6 ∧ ω1 + (lωξ

5 + µωξ
6) ∧ ω2 = 0,

(ρωξ
4 − (k + l)ωξ

5 − µωξ
6) ∧ ω3 = 0.

Due to the Cartan’s lemma

dρ = Aω3, αω5
6 = Bω1 + Cω2, dl + lω5

5 + µω5
6 = Cω1 + Dω2

dk + kω5
5 = Eω1 + Bω2, d(k + l)− ρω5

4 + (k + l)ω5
5 + µω5

6 = Fω3,

kω6
5 = Kω1 + Lω2, dα + αω6

6 = Lω1 + Mω2,

dµ + lω6
5 + µω6

6 = Mω1 + Nω2, dµ− ρω6
4 + (k + l)ω6

5 + µ6
6 = Rω3,

kωξ
5 = Xξω1 + Y ξω2, αωξ

6 = Y ξω1 + (
l

k
Xξ +

µ

α
Y ξ)ω2,

ρωξ
4 − (k + l)ωξ

5 − µωξ
6 = W ξω3.

The basis of the left sides consists of dρ, ω5
4, ω5

6, dl+ lω5
5, dk+kω5

5, ω6
4, ω6

5, dα+αω6
6,

dµ + µω6
6, ωξ

4, ωξ
5, ωξ

6. The ranks s1, s2 of the polar systems are s1 = 7 + 3(n − 9),
s2 = 2. The Cartan’s criterion is satisfied, the Pfaff system (5.23) is compatible and
determines considered space-like M3 with arbitrariness of two real function of two
variables.

For the corresponding parallel submanifolds the equations

dρ = ω4
5 = ω4

6 = ω5
4 = ω6

4 = 0, ωξ
4 = ωξ

5 = ωξ
6 = 0,

ω5
5 = −dk

k
= −dl

l
, ω6

6 = −dα

α
= −dµ

µ
,

can be added. In particular, it gives that l = c1k, µ = c2α, c1 6= 1, c2 are some
constants. Now one has

dx = e1ω
1 + e2du2 + e3ω

3,

de1 = ke5ω
1 + αe6ω

2,

de2 = αe6ω
1 + (c1ke5 + c2αe6)ω

2,

de3 = (ρe4 − k(1 + c1)e5 − c2αe6)ω
3,

de4 = −ε4ρe3ω
3, d(ke5) = 0, d(αe6) = 0.
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The considered parallel M3 lies in a E6
0,2 spanned by the point x and vectors e1, e2,

e3, e4, ke5, αe6. The lines ω1 = ω2 = 0 on the parallel M3 are a S1
τ τ ∈ {0, 1} in E2

τ .
The surfaces ω3 = 0 are parallel M2 in E4

0,2 with two families of parabola generators
(see Proposition 3.2).

5.5 The case of two-dimensional principal normal

space

Unlike the Euclidean space the semiparallel submanifolds M3 in En
s with

dimNxM
3 = 2 can have a flat normal connection or non-flat normal connection.

Proposition 5.11. Let M3 be a semiparallel space-like submanifold in En
s with

dimNxM
3 = 2. Then the normal connection is non–flat only in case of completely

vanishing metric by the principal normal space.

Proof. The frame vectors e4, e5 are in NxM
3. Moreover, the mean curvature vector

can be taken so that H = H4e4, (i.e. H4 6= 0). Let show that the normally non–flat
connection is possible in case of the completely vanishing metric of NxM

3.

In case of the regular metric among 2-forms Ωβ
α can be non-zero Ω5

4 = εΩ4
5

(ε = −1, if ε4 = ε5 and ε = −1 if ε4 = −ε5), only. But due to (5.12) a such 2-form
is zero, i.e. normal connection is flat.

If the metric of the principal normal space is singular non-vanishing, then

εa 6= 0, εb = 0 (a, b are 4, 5 and a 6= b),

the next frame vector e6 can be taken so that ε6 = 0 and gb6 = 1. Due to (1.11)
among Ωβ

α only Ωa
b (= −Ωa

6) can be non-zero. If a = 4, b = 5, then system (5.12)
shows that a such 2-form is zero, i.e. normal connection in this case is flat only. On
supposition a = 5, b = 4 the investigation is more complicated. Here only 2-form
Ω4

5 can be non-zero. After a rotation of the tangent part e1, e2, e3 we can achieve
h4

ij = 0, i 6= j. Now the semiparallelity condition gives

i = j, α = 4 : h5
11Ω

4
5 = 0, h5

22Ω
4
5 = 0, h5

33Ω
4
5 = 0, (5.25)

i = 1, j = 2, α = 4 : (h4
22 − h4

11)Ω
2
1 − h5

12Ω
4
5 = 0, (5.26)

i = 1, j = 3, α = 4 : (h4
33 − h4

11)Ω
3
1 − h5

13Ω
4
5 = 0,

i = 2, j = 3, α = 4 : (h4
33 − h4

22)Ω
3
2 − h5

23Ω
4
5 = 0, (5.27)

i = j = 2, α = 5 : h5
12Ω

2
1 − h5

23Ω
3
2 = 0, (5.28)

i = j = 1, α = 5 : h5
12Ω

2
1 + h5

13Ω
3
1 = 0, (5.29)

i = j = 3, α = 5 : h5
13Ω

3
1 + h5

23Ω
3
2 = 0,

i 6= j, α = 5 : (h5
jj − h5

ii)Ω
j
i = 0, h5

23[h
4
11 − h4

33] = 0
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The equalities (5.25) leads to h5
11 = h5

22 = h5
33 = 0. Thus one has

Ω4
5 = −ε5(h

4
ii − h4

jj)h
5
ijω

i ∧ ωj 6= 0, (5.30)

and without loss of generality can be supposed h4
11 6= h4

22 and h5
12 6= 0. Now the

substitution of

Ω2
1 = ε5

[
(h5

12)
2ω1 ∧ ω2 + h5

12h
5
13ω

1 ∧ ω3 − h5
12h

5
23ω

2 ∧ ω3
]

(5.31)

and (5.30) into (5.26) as coefficients by ω1 ∧ ω3 and ω2 ∧ ω3 gives

h5
13[h

4
22 − h4

33] = 0, h5
23[h

4
11 − h4

33] = 0.

If here h5
13 6= 0, then h4

22 − h4
33 = 0 and together with (5.27) it gives h5

23 = 0. The
latter due to (5.28) leads to Ω2

1 = 0, from (5.31) it is easy to see that h5
12 = 0, i.e.

one has a contradiction. In case h5
13 = 0 then due to (5.29) one has Ω2

1 = 0, which
leads to the contradiction with h5

12 6= 0, too.

It remains to consider the case when the metric of the principal normal space is
completely vanishing. Here the frame vectors e4, e5 and the next two vectors e6, e7

can be taken so that

ε4 = ε5 = ε6 = ε7 = 0 and g46 = g57 = 1, all others gαβ = 0. (5.32)

Taking, without loss of generality h11 = e4 and h12 = e5 for others hij one has

h22 = a1h11 + a2h12, h33 = b1h11 + b2h12,

h13 = c1h11 + c2h12, h23 = f1h11 + f2h12

Thus the Pfaff system

ω4
1 = ω1 + c1ω

3, ω4
2 = a1ω

2 + f1ω
3, ω4

3 = c1ω
1 + f1ω

2 + b1ω
3

ω5
1 = ω2 + c2ω

3, ω5
2 = ω1 + a2ω

2 + f2ω
3, ω5

3 = c2ω
1 + f2ω

2 + b2ω
3,

(5.33)

and ωa
i = ωξ

i = 0, where a = 6, 7, ξ = 8, . . . , n, gives that among 2-forms Ωβ
α only

Ω5
6 = −Ω4

7 =
(
a1 − 1 + c2f1 − c1f2

)
ω1 ∧ ω2 +

+
(
f1 − c2 + b1c2 − c1b2

)
ω1 ∧ ω3 + (5.34)

+
(
c1 − a1f2 + f1a2 − f1b2 + b1f2

)
ω2 ∧ ω3

can be non-zero.

Now can be considered a normally non-flat semiparallel space-like M3 in a limit
case with aq = bq = cq = fq = 0, i.e. h22 = h33 = h13 = h23 = 0. From (5.34) follows
that Ω5

6 = −Ω4
7 is non-zero.
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Proposition 5.12. A normally non-flat semiparallel space-like M3 with dimNxM
3 =

2 is either
1) a submanifold in E5

0,2 with three families of generators (straight line and two
parabolas); it can be represented by the equation

x =
1

2
h11(u

1)2 + h12u
1u2 + h01u

1 + h02u
2 + h03u

3, (5.35)

where coefficients h0i are some constant vectors, or
2) a second order envelope of such submanifolds.

Proof. The Pfaff system (5.33) by exterior differentiation together with equalities

ωb
a = 0 leads to

ω4,5,ξ
4 ∧ ω1 + ω4,5,ξ

5 ∧ ω2 = 0, ω4,5,ξ
5 ∧ ω1 = 0, (5.36)

Thus the basis of the secondary forms consists of ω4
4, ω4

5, ω5
4, ω5

5, ωξ
4, ωξ

5 and the rank
of polar matrices are s1 = 4+2(n−8), s2 = 0, i.e the Cartan’s number Q is 2n−12.
On the other hand applying the Cartan’s lemma to (5.36) one has 4 + 2(n − 8)
independent coefficients. It means that the Cartan’s criterion is satisfied and the
considered submanifold exists with arbitrariness of 2n − 12 real functions of one
variable.

The corresponding parallel space-like M3 is a submanifold from Proposition 2.2
with three families of parabola generators; it lies in E5

0,2 and can be represented by
the equation (5.35).
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[19] Lumiste, Ü. Semiparallel Submanifolds in Space Forms, Springer-Verlag, New
York 2009.
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Paralleelsed ja semiparalleelsed ruumisarnased

madalamõõtmelised alammuutkonnad
pseudoeukleidilises ruumis

Tähistame konstantse kõverusega ruumi vormi Nn
s (c), kui tema kõverus on c.

See on Riemanni ruum, kui s = 0 või s = n, ja pseudo-Riemanni ruum,
kui 0 < s < n. Riemanni ruumi ruumisarnast alammuutkonda Mm nimetatakse
semiparalleelseks, kui suvaliste puutujavektorite X, Y korral kehtib R(X, Y )h = 0,
kus R on van der Waerdeni-Bortolotti seostuse ∇ = ∇⊕∇⊥ kõverusoperaator ja h
on teine fundamentaalvorm.

Semiparalleelsete alammuutkondade klassis võib välja eraldada paralleelsete
alammuutkondade alamklassi, kuhu kuuluvad paralleelse teise fundamentaalvormi-
ga alammuutkonnad.

Eukleidilises ruumis, mille puhul s = 0 ja c = 0, on paralleelsed alammuutkon-
nad klassifitseeritud Feruse artiklis [2]. Takeuchi [3] ning Backesi ja Reickziegeli
[4] artiklites on need tulemused laiendatud juhule s = 0, c 6= 0 ja Blomstromi [5]
ja Naitoh′i [6] töödes pseudo-Riemanni ruumi vormi Nn

s (c), s > 0 juhule. Mõned
paralleelsete alammuutkondade klassid ruumides En

1 ja En
2 on kirjeldatud Magidi

töös [7].
Semiparalleelsed alammuutkonnad ruumi vormis Nn

s (c), kus s = 0, on
klassifitseeritud ja kirjeldatud järgmistel juhtudel: pinnad (m = 2), kus c = 0
Deprez′i töös [8]; pinnad (m = 2), kus c > 0, Mercuri ja Asperti töödes [9] ja [10].
Kolmemõõtmelisi alammuutkondi juhul m = n−2 ning hüperpindu (m = n−1), kui
c = 0, on põhjalikult uuritud Lumiste [11], [13], Lumiste ja Riivese [12] ning Deprez′i
[14] artiklites. Alammuutkondi, kus normaalseostuse kõverus on võrdne nulliga, on
käsitlenud Lumiste poolt [15], kui c = 0 ning Dilleni ja Nölkeri poolt [16], kui c > 0
töödes. Töös [17] on Lumiste poolt näidatud, et iga semiparalleelne alammuutkond
on paralleelsete alammuutkondade teist järku mähismuutkond. Tema on esitanud
üldise paralleelsete ja semiparalleelsete alammuutkondade teooria eukleidilises
ruumis artiklites [18] ja [19]. Semiparalleelsed ajasarnased pinnad Lorentzi ruumis
on kirjeldatud Lumiste artiklis [20].
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Käesoleva väitekirja uurimisobjektideks on paralleelsed ja semiparalleelsed
ruumisarnased madalamõõtmelised (M1,M2 ja M3) alammuutkonnad pseudoeuk-
leidilises ruumis En

s . Alammuutkondade geomeetriliste omaduste kirjeldamiseks
kasutatakse Cartani liikuva reeperi meetodit ja Cartani välisdiferentsiaalarvutust.

Väitekirja esimeses peatükis tutvustatakse lugejale semiparalleelsete alam-
muutkondade teooria aluseid. On ära toodud põhimõisted, alates semipseudoeuklei-
dilise alamruumi Ek

l,d indeksi l ja defekti d definitsioonidest. Peatüki esimeses para-
grahvis on konstrueeritud adapteeritud liikuv reeper ruumisarnasele alammuutkon-
nale Mm ⊂ En

s ning Levi-Civita, normaal- ja van der Waerdeni-Bortolotti seostuste
2-vormid. Peale selle tuuakse sisse alammuutkonna Mm punktis x ∈ Mm määratud
normaalvektorruumi mõiste. Teises paragrahvis on esitatud ruumisarnase alam-
muutkonna Mm struktuurivormid pseudoeukleidilises ruumis En

s . Näidatakse,
kuidas tekib isotroopne koonus Cx ja milline on selle võrrand. Näidatakse, et
tasandeid, mis läbivad punkti x, saab liigitada selle järgi, kuidas nad asetsevad
isotroopse koonuse suhtes, kui koonuse tipp asub punktis x. Kolmandas paragrahvis
tegeldakse alammuutkonna Mm punktis x ∈ Mm määratud peanormaalalamruumi
NxM

m mõistega ja uuritakse, milliste tingimuste korral peanormaalalamruum on
regulaarse, singulaarse või kidunud meetrikaga.

Teises peatükis keskendutakse paralleelsete ja semiparalleelsete ruumisarnaste
alammuutkondade teooria üldistele aspektidele. Eelkõige on siin toodud tulemused,
mis on tõestatud m-mõõtmeliste ruumisarnaste alammuutkondade jaoks. Esime-
ses paragrahvis tõestatakse, et kui peanormaalalamruum on kidunud meetrikaga,
siis paralleelne ruumisarnane alammuutkond Mm ⊂ En

s on m paraboolse moodus-
taja parv, kusjuures mõni neist moodustajatest võib kiduda sirgjooneks. On tule-
tatud ka selle paralleelse ruumisarnase alammuutkonna võrrand. Teises para-
grahvis on toodud semiparalleelseid alammuutkondi iseloomustavad tingimused ja
on tõestatud, et iga ruumisarnane alammuutkond Mm pseudoeukleidilises ruumis
En

s , mille peanormaalalamruum on kidunud meetrikaga, on semiparalleelne. Lisaks
tõestatakse, et ruumi Em+2n1

0,n1
semiparalleelse ruumisarnase alammuutkonna Mm

normaalseostuse kõverus on null, kui selle peanormaalalamruum on n1-mõõtmeline
ja kidunud meetrikaga. Peatüki lõpuosas on toodud mõned mõisted, mis on seotud
jooneparve teist järku mähispinna leidmisega ja esitatud Lumiste ja Riivese poolt
saadud tulemused vastavalt Veronese ([18], [21], [22], [23], [24]) ja Segre ([25], [26],
[27]) alammuutkondade teist järku mähismuutkondade kohta.

Kolmas peatükk on pühendatud semiparalleelsete ruumisarnaste joonte ja
pindade klassifikatsioonile pseudoeukleidilises ruumis En

s ning nende geomeetrilisele
kirjeldamisele. Need tulemused on publitseeritud autori poolt töös [?]. Esime-
ses paragrahvis on antud semiparalleelsete ruumisarnaste pindade klassifikatsiooni-
teoreem. On tõestatud, et ruumisarnane pind M2 on semiparalleelne siis ja ain-
ult siis, kui kas selle pinna iga punkt on ümaruspunkt (erijuhul on pind täielikult
geodeetiline) või pinna seostuse ∇ kõverus võrdub nulliga või see on isotroopne
pind, mille keskmine kõverus H rahuldab tingimust ||H||2 = 3K, kusjuures K on
pinna Gaussi kõverus. Lisaks sellele on teises paragrahvis antud kahemõõtmeliste
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pindade M2 detailsem klassifikatsioon juhul, kui seostus ∇ on tasane, kasu-
tades asjaolu, et igaüks neist on paralleelsete pindade teist järku mähispind, ning
on tõestatud, et iga paralleelne ruumisarnane joon M1 pseudoeukleidilises ruumis
En

s on kas sirgjoon või ringjoon, mille raadius võib olla nii reaalne kui imaginaarne,
või parabool. Peatüki kolmas paragrahv annab ülevaate paralleelsete ruumisarnaste
pindade teist järku mähispindade olemasolust ning suvast. Viimases paragrahvis
on tõestatud, et eksisteerivad sellised maksimaalsed pinnad, mis pole täielikult
geodeetilised.

Neljas peatükk on pühendatud tasase normaalseostusega semiparalleelsetele
ruumisarnastele alammuutkondadele M3. Peatüki alguses tuuakse sisse peasihtide
ja peakõveruste mõisted ning kirjeldatakse peakõveruste vektoreid juhul, kui peanor-
maalalamruum on regulaarse, singulaarse või kidunud meetrikaga. On näidatud, et
kui normaalseostus on tasane, siis peanormaalalamruum on ühe-, kahe- või kolme-
mõõtmeline. Järgmises kolmes paragrahvis antakse uuritavate alammuutkondade
klassifikatsiooni.

Väitekirja viimase peatüki eesmärgiks on semiparalleelsete ruumisarnaste 3-
mõõtmeliste mittetasase normaalseostusega alammuutkondade uurimine. Esimeses
paragrahvis on antud vaadeldavate alammuutkondade M3 geomeetriline kirjeldus
juhul, kui peanormaalalamruum on 6-mõõtmeline. Erandlik olukord peatükis on seo-
tud juhtumiga, kui dimNxM

3 = 5. Artiklis [11] on Lumiste näidanud, et eukleidilises
ruumis En sellised semiparalleelsed alammuutkonnad M3 puuduvad. Peatüki teises
paragrahvis on tõestatud, et pseudoeukleidilises ruumis En

s (s > 0) semiparalleelsed
ruumisarnased alammuutkonnad M3 leiduvad, ja on antud nende geomeetriline kir-
jeldus. Järgmised kaks paragrahvi käsitlevad tulemusi, mis on saadud juhul, kui
NxM

3 mõõde on vastavalt 4 või 3. Viimases paragrahvis uuritakse 2-mõõtmelise
peanormaalalamruumi juhtumit. Selles olukorras tehakse kindlaks, et vaadeldavatel
semiparalleelsetel alammuutkondadel M3 on olemas kas parv kolmest moodustajast,
täpsemalt sirgjoon ja kaks parabooli ruumis E5

0,2, või niisugusteste alammuutkon-
dade teist järku mähismuutkond. Sellised alammuutkonnad puuduvad eukleidilises
ruumis En.
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