
UNIVERSITY OF TARTU

FACULTY OF SCIENCE AND TECHNOLOGY

Institute of Computer Science
Computer Science Curriculum

Dmitri Tsumak

Large-Scale Provisioning and
Configuration Management

Bachelor’s Thesis (9 ECTS)

Supervisor: Artjom Lind, MSc

Tartu 2016



Large-scale provisioning and configuration management

Abstract:
Nowadays, many companies involve provisioning large number of servers. Those
servers have different roles and respond for running multiple services, which should
be maintained in a company. As a result, system administrators should come up
with a solution to effectively manipulate those servers and services installed on
them. One popular approach is to use configuration management tools.
In this research we will describe problems that system administrators face during
large-scale provisioning. Furthermore, we will review and compare most popular
configuration management tools to see how they solve these problems. In ad-
dition, we will describe the process of implementing and testing several Ansible
configuration management scripts.

Keywords: large-scale provisioning, configuration management, system adminis-
tration, Ansible in practice, configuration management scripts testing.

CERCS: T120, Systems engineering, computer technology

Suurte süsteemide seadistamine ja konfiguratsiooni haldamine

Lühikokkuvõte:
Tänapäeval on paljudel ettevõttetel suur arv servereid. Igal serveril on oma roll
ning ülesanded, mida ta peab täitma. Nende ülesannete täitmise eest vastuta-
vad rakendused, mis on nende serverite peale installeeritud. Seega suure serveri-
te ja rakenduste arvu haldamiseks peab süsteemi administraatoritel olema kin-
del lähenemine. Nende ülesannete optimeerimisega tegeleb selline valdkond nagu
”Configuration Management”.
Selles teadustöös vaadeldakse probleeme, mida süsteemiadministraator peab la-
hendama suurte süsteemide korraldamisel. Lisaks analüüsitakse ja võrreldakse siin
erinevaid kõige sagedamini kasutatavaid ”Configuration Management”valdkonna
tööriistu ning seda, mis lahendusi need tööriistaad pakkuvad püstitatud prob-
leemide lahendamiseks. Lõpus kirjeldatakse kahe skripti implementeerimis- ja tes-
timisprotsesse kasutades Ansible tööriista.

Võtmesõnad: suurte süsteemide seadistamine, konfiguratsiooni haldamine,
süsteemide administreerumine, Ansible praktikas, konfiguratsiooni haldamise skrip-
tide testimine.

CERCS: T120, Süsteemi konstrueerimine, infotehnoloogia

2



Contents

Contents 3

List of Figures 5

Listings 6

List of Terms 7

1 Introduction 8

2 Related Work 10
2.1 Introduction to configuration management . . . . . . . . . . . . . . 10
2.2 SaltStack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Puppet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Chef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Ansible 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Ad-hocs and Playbooks . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Configuration management in practice 31
4.1 Zabbix playbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Playbook implementation . . . . . . . . . . . . . . . . . . . 32
4.2 WordPress playbook . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Playbook implementation . . . . . . . . . . . . . . . . . . . 36
4.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusion 42

References 43

Appendices 46

3



A Zabbix and WordPress playbooks 46
A.1 Ansible Zabbix repository tasks . . . . . . . . . . . . . . . . . . . . 46
A.2 Ansible MySQL server tasks . . . . . . . . . . . . . . . . . . . . . . 46
A.3 Ansible MySQL variables file . . . . . . . . . . . . . . . . . . . . . . 46
A.4 Ansible Zabbix server configuration file . . . . . . . . . . . . . . . . 46
A.5 Ansible Zabbix server configuration tasks . . . . . . . . . . . . . . . 46
A.6 Ansible Zabbix Web interface configuration tasks . . . . . . . . . . 47
A.7 Ansible Zabbix Agent configuration tasks . . . . . . . . . . . . . . . 47
A.8 Ansible Apache configuration tasks . . . . . . . . . . . . . . . . . . 47
A.9 Ansible Wordpress configuration tasks . . . . . . . . . . . . . . . . 47

4



List of Figures

1 Communication between salt master and minions . . . . . . . . . . 13
2 Communication between Puppet master and agent, (c) Lauren Mal-

hoit [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Communication between Chef elements, (c) Chef [13] . . . . . . . . 18
4 Communication between Ansible workstation and hosts . . . . . . . 23
5 Configuring Zabbix with Ansible playbook . . . . . . . . . . . . . . 31
6 Infrastructure for testing. . . . . . . . . . . . . . . . . . . . . . . . . 38

5



Listings

1 Ping salt minions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Salt command to get the state of Redis service . . . . . . . . . . . . 12
3 Response of salt state command for Redis service . . . . . . . . . . 13
4 Salt apache variable depending on the OS family . . . . . . . . . . . 13
5 Puppet installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Puppet resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Puppet class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Establish connection between Chef client and master nodes . . . . . 19
9 Chef managed node’s bootstrap verification commands . . . . . . . 19
10 Apply cookbook on client node . . . . . . . . . . . . . . . . . . . . 20
11 Generate Chef project skeleton . . . . . . . . . . . . . . . . . . . . 20
12 Chef project skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . 20
13 Chef Nginx service recipe . . . . . . . . . . . . . . . . . . . . . . . . 21
14 Ansible hosts grouped by services . . . . . . . . . . . . . . . . . . . 24
15 Ansible hosts grouped by environment . . . . . . . . . . . . . . . . 25
16 Ansible ping all the hosts from command line . . . . . . . . . . . . 25
17 Example of Ansible playbook . . . . . . . . . . . . . . . . . . . . . 26
18 Example of Ansible playbook with handlers . . . . . . . . . . . . . 27
19 Example of installing Nginx using Bash . . . . . . . . . . . . . . . . 27
20 Nginx site template example . . . . . . . . . . . . . . . . . . . . . . 28
21 Transfering Nginx site config to managed servers . . . . . . . . . . . 29
22 Zabbix repository manual installation . . . . . . . . . . . . . . . . . 32
23 MySQL database installation . . . . . . . . . . . . . . . . . . . . . 33
24 Zabbix server installation . . . . . . . . . . . . . . . . . . . . . . . . 33
25 Zabbix Web interface installation . . . . . . . . . . . . . . . . . . . 34
26 Zabbix agent installation . . . . . . . . . . . . . . . . . . . . . . . . 35
27 Zabbix agent setup for Zabbix server . . . . . . . . . . . . . . . . . 35
28 Apache server installation . . . . . . . . . . . . . . . . . . . . . . . 36
29 WordPress server manual installation . . . . . . . . . . . . . . . . . 37
30 Bridged network setup . . . . . . . . . . . . . . . . . . . . . . . . . 39
31 Testing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
32 Adding entries to /etc/hosts file . . . . . . . . . . . . . . . . . . . . 40
33 Checking hosts file . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
34 Running the playbooks . . . . . . . . . . . . . . . . . . . . . . . . . 41

6



List of Terms

availability is an amount of time a system is in a functioning condition [22]. 6

bash is a scripting language for Unix command lines. 6

bootstrapping is a process of initial setup and configuration of the system. 14

cloud is a large-scale infrastructure with shared resources. 6

devops ”is an enterprise software development phrase used to mean a type of
agile relationship between Development and IT Operations.” [10]. 6

git is one of the most popular source code management system. 14

immutable servers are machines, which run a particular service and can cre-
ate, destroy or replace any of these machines without causing this service
disruption. 23

kerberos is a network authentication protocol which uses ”tickets” for nodes
authentication[17]. 17

KVM is a kernel-based virtual machine [27]. 29

large-scale system is the system with large amount of hardware, number of
running services and involved users. 6

monitoring is the process of collecting and parsing various data to be aware of
systems and services states. 25

NFS is a network file system. Allows to store and access files on remote server.
30

scalability is an ability of the system to be expanded to better handle growing
amount of work [11]. 6

serialization is the process of converting data from one format to another. For
example, Java object can be converted into JSON data. Reverse process
is called deserialization. For example, converting JSON data back to Java
object. 8

workstation is a system, which is used for work. In configuration management
it also refers to the system, from which commands are executed. 13

7



1 Introduction

Nowadays provisioning of large systems is a crucial task, which requires an inti-
mate knowledge and a lot of experience in system administration area. Devops
teams should be ready to overcome difficulties during planning, construction as
well as maintenance of a large-scale systems such as clouds. After infrastructure
is carefully planned and hardware is ready for use, system administrators start
their work. Their task is to deploy and configure services and tools required for
proper work of the system. They should think over such topics as system avail-
ability, scalability, security and redundancy. In addition, they should setup tools
for monitoring, backup and logging system’s work as well as services requested by
customer.
It is a well known fact that configuration and maintenance of large-scale server
infrastructures introduce a challenge for system administrators [12]. One of the
objectives which they should be ready to overcome is continuous deployments of
identical services across largely identical servers. For example, most of the cloud
systems should have multiple database servers for better performance and load
balancing. Therefore, manual configuration of numerous almost equal setups offer
a chance for optimization and usually it is up to administrator’s experience how to
avoid the maintenance overhead. Common solutions rely on writing custom Bash
scripts which obviously requires advanced Unix administration skills. The result
scripts are hardly maintainable in team as there is no strictly defined coding con-
ventions in many Unix scripting languages and structure of custom written scripts
can vary according to the specialist’s preferences. In consequence, system adminis-
trators should prepare instructions for other team members and users about aims
of the scripts and how exactly they should be executed. Moreover, there is no
version control system for configuration files in Unix by default. Therefore, ad-
ministrators do not have enough information concerning the system’s state. For
example, it is impossible to check whether configuration files in server were up-
dated without explicitly checking them. Furthermore, there is often a necessity
in creating multiple environments, e.g. developing, staging and production dur-
ing the development process of the large system. As a result, there should be an
established workflow for tracking, updating and rolling back the configuration of
every environment.
The systems engineering process which deals with described problems is called
configuration management. There were multiple open-source solutions developed
for managing configurations, which are widely in use. This research will focused
on tools that are the most acknowledged by system administrators. Using these
tools development teams spend less time on tracking, monitoring and backing up
already deployed services and can easily deploy another service by using already
defined installation instructions. In addition, it will be demonstrated how these

8



tools simplify the work of system administrator when dealing with large-scale cloud
setups.
This thesis consists of five chapters. In second chapter configuration management
field will be introduced and most popular open-source tools will be described and
compared. In third chapter an overview of Ansible features in details will be made.
In fourth chapter will be demonstrated Ansible usage in real life scenarios with
some practical advises. In last chapter a conclusion and suggestions about further
research will be given.

9



2 Related Work

In this chapter most important points of different configuration management tools
will be introduced.

2.1 Introduction to configuration management

Configuration management (CM) is a system engineering process of tracking and
consistent development of the product. It is also used in such fields as military,
civil and industrial engineering [33]. In computer science two types of CM exist:
software and system.
Software configuration management is used in software projects to handle and
track application changes [33]. It allows developers to ensure that finally delivered
software satisfies all requirements. System configuration management allows user
to deploy, track and maintain services and applications on a server. There are
even tools that allow to create snapshots of system’s configuration states and roll
back to them if needed. However, there are plenty of CM tools available nowadays
and their features may vary. This research will be focused on system configuration
management tools.

Good configuration management tool should have following features:

F-1 deploy, update, remove configuration files and services

• Basic operations that every configuration management tool should sup-
port.

F-2 version control capabilities

• It should be possible to track changes in configuration files. In case
user wants to revert changes, it should be possible to roll back to the
system’s previous state.

F-3 execute single command remotely

• In case user wants to make a hot fix on the server, it should be possible
to do this without executing the whole project. For example, it should
be possible to update repositories cache on all managed nodes without
creating separate project for that.

F-4 system scalability

10



• It should be possible to add additional services, configurations without
a large effort. As a result, tool must be suitable not only for small, but
also for large-scale setups.

F-5 OS independency

• Configuration management tool should allow to deploy services on most
popular Unix-type systems without making huge changes in the project.

F-6 agent-less

• If it is not required to install any dependencies on the managed node,
it would be an advantage of the tool.

F-7 code readability

• Due to the fact that large-scale systems are mostly set up by teams,
great configuration management tool should have strictly structured
and human-readable code and configuration files.

F-8 support

• It will be much easer for new users to get familiar with a tool, when it
has large community and nice documentation.

F-9 free and open-source

• Tool should have at least limited free version with open-source code.
For large-scale setups and better support it can be commercial.

In the next sections an overview of several configuration management tools will
be made. For every tool it will be checked what features from the list described
above it includes.

2.2 SaltStack

SaltStack features:

� deploy, update, remove configuration files and services (Refer to F-1)

� version control capabilities (Refer to F-2)

� execute single command remotely (Refer to F-3)

� system scalability (Refer to F-4)

11



� OS independency (Refer to F-5)

� agent-less (Refer to F-6)

� code readability (Refer to F-7)

� support (Refer to F-8)

� free and open-source (Refer to F-9)

SaltStack is an open-source configuration management tool and engine which
can execute commands remotely. It is quite popular among cloud infrastructure
developers due to its scalability and resiliency [20]. Project was started by Tomas
Hatch in 2011 and was written in Python[37]. SaltStack is a modular service
which allows user to connect or disconnect different modules. It allows not only to
configure servers, but also to execute commands remotely and monitor system’s
work. Most of the SaltStack configuration files are written in YAML, which is
very human-readable serialization language. In order to implement more specific
configuration files, Jinja2 language is used, which has more flexible syntax than
YAML, but is less readable. SaltStack is based on the master-client model and
consists of following components [36]:

• Salt Master - system that is responsible for sending commands and config-
urations to the salt minions. Similar to the master node in clusters termi-
nology.

• Salt Minions - systems that receive commands and configurations from salt
master. Similar to the slave nodes in clusters terminology.

• Execution Modules - commands that are executed from the salt master on
the salt minions. Mostly used for the configuration hot fixes and real-time
monitoring. For example, executing

$ salt -ping ’*’

Listing 1: Ping salt minions

will try to ping all the minions (* means all) connected to salt master from
which command was executed (refer to Figure 1).

• Formulas (States) - shows the state of a system’s configuration. For ex-
ample, following command

$ salt ’*’ state.sls redis

Listing 2: Salt command to get the state of Redis service

12



Figure 1: Communication between salt master and minions

will return the state of the Redis service on all salt minions:

redis -server:

pkg.installed:

- name: redis -server

service:

- running

Listing 3: Response of salt state command for Redis service

• Grains - system variables, which hold information about operation system,
memory and other properties of managed system.

• Pillars - user-defined variables, which store information about ports, file
paths, configuration parameters and passwords. They are securely defined
on the Salt master and are connected to one or more minions. For example,
it is possible to define variables according to the minion’s operation system
using pillars:

1 {% if grains[’os’] == ’RedHat ’ %}

2 apache: httpd

3 {% elif grains[’os’] == ’Debian ’ %}

4 apache: apache2

5 {% endif %}

Listing 4: Salt apache variable depending on the OS family

13



If the command is executed on RedHat-type system (Fedora, CentOS, etc.),
apache variable will be httpd. If it is executed on Debian-type system (De-
bian, Ubuntu, etc.), apache variable will be apache2.

• Runners - modules that run on the Salt master to perform different opera-
tions on the minions.

• Returners - modules that can be used on the Salt minions to send data to
third party services such as databases.

• Reactros - triggers that execute functions when some event occurred.

• Salt cloud - makes possible to provision systems on different cloud providers,
such as OpenStack and bring those under salt management.

As a result, SaltStack has a large number of components and each of them
has its own function. It is also worth noticing that compared to many others CM
tools Salt master communicates with minions using two-way authentication and
encrypts all the traffic between them. In addition, it supports agent-less com-
munication. It means that it is possible to execute commands from Salt master
without installing minion agent on the system. The huge advantage of SaltStack is
also platform independency, which allows to execute same commands on Windows
and Unix operation systems. For those, who do not feel comfortable with shell
commands, it is possible to use SaltStack Web GUI.

However, SaltStack is not recommended for newcomers, because its setup is
challenging (there should be quite many components configured) and documenta-
tion is quite demanding to the reader in terms of system administration knowledge
[20]. In spite of the fact that it is multi-platform tool, there are some problems
introduced in operating with non-Linux operation systems. For example, minions
installed on Windows systems send response to the master much slower [26]. In
addition, SaltStack Web GUI is not fully optimized and not intuitive for many
users.

2.3 Puppet

Puppet features:

� deploy, update, remove configuration files and services (Refer to F-1)

� version control capabilities (Refer to F-2)

� execute single command remotely (Refer to F-3)

14



� system scalability (Refer to F-4)

� OS independency (Refer to F-5)

� agent-less (Refer to F-6)

� code readability (Refer to F-7)

� support (Refer to F-8)

� free and open-source (Refer to F-9)

Puppet is another popular open-source configuration management tool. Compared
to SaltStack it has been developing for 11 years and has great community behind
it. Puppet is developed by Puppet Labs, which was founded by Luke Kanies in
2005 [34]. The project is written in Ruby and has commercial, as well as enter-
prise editions. Puppet is based on master-client model and is used for tracking,
testing and deploying configuration files on managed servers. Furthermore, with
Puppet it is possible to scale the infrastructure and deploy required services with
one command.

Puppet installation process is very simple[23]:

$ apt -get install puppet # On clients (nodes)

$ apt -get install puppetmaster # On server (master)

Listing 5: Puppet installation

Puppet uses declarative domain specific language (DSL) similar to JSON to
define system’s states in files called manifests. In those files users should define
so called resources. They are used to describe what files, packages, services, etc.
should be installed and how they should be configured on managed servers [23].
Example of resource declaration[29], which changes attributes of /etc/passwd file:

1 file { ’/etc/passwd ’:

2 ensure => file ,

3 owner => ’root’,

4 group => ’root’,

5 mode => ’0600’,

6 }

Listing 6: Puppet resource

Resources are grouped into classes with parameters, which can change their be-
havior during runtime. For example, here class is defined for configuring attributes
of /etc/passwd and /etc/shadow files. It can be noticed that this class consists

15



of two resources and can take optional user variable, which defines owner and
group for these two files [28]:

1 class linux (String $user = ’root’) {

2 file { ’/etc/passwd ’:

3 owner => $user ,

4 group => $user ,

5 mode => ’0644’,

6 }

7 file { ’/etc/shadow ’:

8 owner => $user ,

9 group => $user ,

10 mode => ’0440’,

11 }

12 }

Listing 7: Puppet class

There are also modules, which can help to split Puppet code into multiple
manifest files. There are plenty of modules already available in Puppet community
called Puppet Forge, which are free to download [35].

The process of applying configuration changes can be described with following
figure:

It consists of following steps:

1. Agent sends gathered facts and variables about managed node to the master
node.

2. Master verifies received facts and variables, determines what host is it and
what should be installed on it.

3. Master prepares manifests for the execution, compiles them and sends them
to the agent.

4. Agent receives compiled manifests as catalogs, applies them and sends
report about results to the master node.

Overall, Puppet is a good choice if stability and maturity are important aspects
of deployments [20]. It is more suitable for larger-scale systems and has dozens of
configuration modules available in Puppet Forge. In addition, Puppet’s interface
is recognized as one of the most advanced and user-friendly in this field. Similarly
to SaltStack, it is a multi-platform tool. However, it has much easier setup than

16



Figure 2: Communication between Puppet master and agent, (c) Lauren Malhoit
[32]

SaltStack and is more suitable for those, who are new in configuration manage-
ment area. It has a great documentation and community.

Nonetheless, there are some disadvantages that mostly occur during large-
scale systems provisioning. Namely, completion of more complicated tasks requires
Puppet command-line interface knowledge, which is written in Ruby. It means that
in some situations it is required to understand Ruby syntax. In addition, large
number of manifest files can decrease their maintainability and become a problem
for new team members to understand the code.

17



2.4 Chef

Chef features:

� deploy, update, remove configuration files and services (Refer to F-1)

� version control capabilities (Refer to F-2)

� execute single command remotely (Refer to F-3)

� system scalability (Refer to F-4)

� OS independency (Refer to F-5)

� agent-less (Refer to F-6)

� code readability (Refer to F-7)

� support (Refer to F-8)

� free and open-source (Refer to F-9)

Chef is another open-source configuration management tool written in Ruby by
Chef company. However, it is designed more for developers than system adminis-
trators, because the way configuration files, services and software will be deployed
on servers should be described in Ruby programming language. As a result, knowl-
edge of Ruby is one of the prerequisites for using this tool.
Chef uses master-client communication approach, but with one difference: nodes
can be managed not only from the master node, instead it is possible to manage
them from the workstation (Refer to Figure 3).

Figure 3: Communication between Chef elements, (c) Chef [13]

In fact, this approach is very similar to the development process of software project.
It consists of following steps:

18



1. Writing the code on the workstation.

• The code is organized into recipes, which are grouped into cookbooks
(more on that later). In brief, cookbooks describe how the nodes are
going to be configured. In order to communicate with master node, Chef
development kit should be installed and knife.rb [16] configuration file
should be created, which contains information about the master node
and private keys locations.

2. Pushing the code to the master node.

• It is analogous to the remote source code repository where all the cook-
books reside. Similarly to the Git, it is possible to configure own master
node or use one provided by Chef. It is worth noticing, that second ap-
proach is chargeable. In most setups master node is the one which
communicates with client nodes and administrator’s workstation. In
order to make communication between workstation and master node
possible, workstation’s public key should be added to the master node.

3. Bootstrapping or applying cookbooks on the client nodes from the worksta-
tion or the master node.

• In order to bootstrap the node, it is required to have an SSH access to
it from the workstation. Afterwards it is possible to apply the cook-
book and establish connection between client and master nodes with
the following command[14]:

$ knife bootstrap ADDRESS --ssh -user USER --sudo

--identity -file PRIV_KEY --node -name node1 --

run -list ’recipe[apache2]’

Listing 8: Establish connection between Chef client and master nodes

During the bootstrap process chef-client is installed on the target
node, then it is associated with the master node and cookbooks specified
after --run-list flag will be applied[14]. In order to verify whether the
node was successfully bootstrapped, it is possible to use master node
management console or execute one of the following commands from
the workstation:

$ knife node list

$ knife node show

Listing 9: Chef managed node’s bootstrap verification commands

19



• Next time the cookbook will be pushed to the Master node, it is not
needed to bootstrap the client node again. Updated cookbook can be
applied by running chef-client command on the client node. It can
be done from the workstation with the following command [15]:

$ knife ssh ADDRESS ’sudo chef -client ’ --manual -

list --ssh -user USER --identity -file PRIV_KEY

Listing 10: Apply cookbook on client node

Similarly to Puppet, Chef has its own structure of scripts, which describe how
nodes should be configured. Chef project which is called cookbook can be created
with a following command:

$ chef generate cookbook nginx

Listing 11: Generate Chef project skeleton

As a result, cookbook called nginx will be created with the following structure:

nginx

|---- Berksfile

|---- chefignore

|---- metadata.rb

|---- README.md

|---- recipes

| +---- default.rb

|---- spec

| |---- spec_helper.rb

| +---- unit

| +---- recipes

| +---- default_spec.rb

+---- test

+---- integration

|---- default

| +---- serverspec

| +---- default_spec.rb

+---- helpers

+---- serverspec

+---- spec_helper.rb

Listing 12: Chef project skeleton

The important directory in cookbook is called recipes. Here are located files,
which contain Chef resources. Those are snippets of Ruby code, which describe

20



how the system should be configured. For instance, if it is required to define
recipe for Nginx server configuration, file called nginx.rb should be created in
nginx/recipes directory with the following content:

1 # install nginx package

2 package ’nginx ’

3

4 # ensure that it is enabled and started

5 service ’nginx ’ do

6 supports :status => true

7 action [:enable , :start]

8 end

Listing 13: Chef Nginx service recipe

After that created cookbook can be uploaded to the master node and applied
on the desired client nodes (Refer to Listing 10).

On one hand, Chef is a good choice for DevOps teams, due to its code-driven
approach. Especially if the team has experience in Ruby programming [20]. Chef
has a strong version control capabilities [20]. As a result, it is a good choice for
enterprise companies, whixh quite often make changes in their managed infras-
tructures. In addition, Chef community has a rich collection of cookbooks, which
can be downloaded from their official website. Furthermore, Chef follows ”Write
once, use anywhere” approach. Namely, previously implemented cookbooks can
be reused in different infrastructures. It also has a well structured documentation
with tons of examples.

On the other hand, there are some aspects which can discourage from using
this tool. One of them is requirement of Ruby knowledge for writing cookbooks
[20]. In addition, using Chef in large teams can lead to the disorganization in
cookbooks, when some of the team members will try to modify those cookbooks
simultaneously. It is analogous to resolving conflicts in Git. In addition, this tool
is not recommended for the beginners, due to its code-driven approach.

2.5 Conclusion

In this chapter such configuration management tools as SaltStack, Puppet and
Chef were reviewed. Although, they have quite similar features, the way these
features are implemented is different. According to the list of features F-1 they
have 6 - 7 out of 9 in their functionality. Due to the fact that Ansible tool has 8
out of 9 features in its functionality, it will be reviewed in a separate chapter.

21



3 Ansible

In this chapter Ansible configuration management tool will be introduced in de-
tails. Firstly, the introduction will be made. Secondly, most important components
will be examined in details. Lastly, advantages and disadvantages of Ansible usage
will be reviewed.
The reason why Ansible is analyzed in more details than other configuration man-
agement tools is that the author of the research paper has more practical experience
in using Ansible, compared to other tools. Furthermore, Ansible has the most op-
timal combination of features. This is also the reason why practical part of the
research was built using Ansible. More details are available in the fourth chapter.

3.1 Introduction

Ansible features:

� deploy, update, remove configuration files and services (Refer to F-1)

� version control capabilities (Refer to F-2)

� execute single command remotely (Refer to F-3)

� system scalability (Refer to F-4)

� OS independency (Refer to F-5)

� agent-less (Refer to F-6)

� code readability (Refer to F-7)

� support (Refer to F-8)

� free and open-source (Refer to F-9)

Ansible is an open-source IT automation tool. It allows to deploy applications,
manage configurations and orchestrate complicated sequences of events not only
for servers, but also for other components such as routers. The original author
of the Ansible project is Michael DeHaan and it was initially released in 2012 [6].
However, in December 2015 Red Hat Inc. acquired Ansible Inc. In brief, Red Hat
substantiated this decision with following sentence:

We see in Ansible a perfect alignment with the core principles that
shape Red Hat’s management, both at the product level and at the
portfolio level. [24]

22



It is quite easy to understand the way Ansible works (Refer to Figure 4):

Figure 4: Communication between Ansible workstation and hosts

It is not needed to install any agent on the managed nodes i.e. it uses agent-less
architecture. Although, OpenSSH server and Python should be presented on the
machines, which are by default on Unix-type servers. Communication between
workstation and managed nodes is over SSH [9]:

1. Ansible connects over SSH to the node. The user can be authenticated with
password or key.

2. Ansible pushes programs called ”Ansible modules” to the node. These pro-
grams define how the system should be configured.

3. Ansible executes those programs using Python and transmits their output
to workstation’s terminal.

4. Ansible removes those programs from managed node.

As a result, system administrators who used bash scripts to configure servers
could easily replace them with Ansible scripts, because Ansible uses the same

23



principle for applying those scripts on the servers. It is also possible to establish
communication between workstation and managed nodes using Kerberos.

3.2 Inventory

Inventory is an important file in Ansible project, which is responsible for holding
information about managed nodes. It is an INI-type file, where hostnames, IP
addresses, usernames, passwords, connection ports, etc. of managed nodes should
be specified [3]. Moreover, inventory file allows to group hosts. For example, it is
possible to group hosts by types of services that should be installed on them:

1 [mysql_servers]

2 host1

3 host2

4

5 [apache_servers]

6 host3

7 host4

Listing 14: Ansible hosts grouped by services

In addition, large-scale setups often have multiple environments. For instance,
during cloud development there are usually three types of environments con-
structed. This approach is very similar to the one, which is used in software project
development, where three main stages are developing, testing and production:

1. TST - testing environment. It is used for testing purposes. In this environ-
ment developers test new features of applications and system administrators
monitor and configure services that soon will be in production environment.

2. STG - staging environment. This environment should be identical to the
production environment in terms of configured services and applications. It
is used after testing new features on TST environment to be sure that these
features will not break anything on PRD.

3. PRD - production environment. This environment is used by end users and
should be as stable as possible. Here testing must not be allowed.

Ansible inventory file can be used to group hosts according to the environment.
It is also possible to specify IP addresses of the hosts [3]:

24



1 [tst_servers]

2 host1 ip_addr =10.10.7.7

3 host2 ip_addr =10.10.7.8

4

5 [stg_servers]

6 host3 ip_addr =10.10.8.7

7 host4 ip_addr =10.10.8.8

8

9 [prd_servers]

10 host5 ip_addr =10.10.9.7

11 host6 ip_addr =10.10.9.8

Listing 15: Ansible hosts grouped by environment

As a result, it will be much easier to provision large-scale systems with large
number of nodes in different environments. After, these groups can be referred in
Ansible playbooks and ad-hocs.

3.3 Ad-hocs and Playbooks

The are two ways of running commands on remote systems using Ansible. One of
them is ad-hoc method, which is interactive [1]. This method allows to execute
small Ansible commands remotely and see the result in a moment. For instance,
if it is needed to ping all the managed hosts, Ansible ping module can be used for
that:

$ ansible -m ping -u deployer tst_servers

host1 | success >> {

"changed": false ,

"ping": "pong"

}

host2 | success >> {

"changed": false ,

"ping": "pong"

}

Listing 16: Ansible ping all the hosts from command line

During execution of this command Ansible will use ping module to verify the
ability to login over SSH as deployer user to every host specified in inventory file
under tst_servers group. As a result, this method can be used for testing or for
applying quick fixes on multiple servers at once. Currently, there are about 520

25



modules available for different purposes and their number grows with every release.

Another approach to define the way systems will be configured uses Ansible
Playbooks [4]. Those are the scripts written in YAML [21]:

1 ---

2 - name: Install and configure Nginx server

3 hosts: tst_servers

4 remote_user: dmitri

5 sudo: yes

6

7 tasks:

8

9 - name: (os=Ubuntu) Install Nginx

10 apt: name=nginx state=present update_cache=yes

11 sudo: yes

12 when: ansible_os_family == ’Debian ’ and

ansible_distribution_release == ’trusty ’

Listing 17: Example of Ansible playbook

During execution of the playbook (refer to Listing 17) Ansible will establish SSH
connection with every host in tst_servers group as a dmitri user. Next it will
gather facts about the system, which can later be used in playbooks, and runs tasks
as sudo user [2]. In this example, it will try to install Nginx server on machines
with Ubuntu 14.04 operating system. It will also check whether Nginx was already
installed on these machines. If it is not, then it will update repositories and install
Nginx. By changing state to latest Ansible will be forced to check whether the
latest version of Nginx is installed on every playbook run.
In order to restart Nginx after its configuration is updated, handlers can be used
[2]. They are responsible for checking states of services and move them from one
state to another. Handler can be connected to the task with notify field. They
are only triggered in the case when the task, which is connected to the handler has
applied some changes. Handlers are applied only in the end of the playbook run.
For example, in Listing 18 every time Nginx package will be installed or updated,
restart_nginx trigger will be executed in the end of the playbook run. Handlers
are executed in the end of the playbook run, because there is no necessity to move
service from one state to another multiple times during execution of the playbook.

26



---

- name: Install and configure Nginx server

hosts: tst_servers

remote_user: dmitri

sudo: yes

tasks:

- name: (os=Ubuntu) Install Nginx

apt: name=nginx state=latest update_cache=yes

sudo: yes

when: ansible_os_family == ’Debian ’ and

ansible_distribution_release == ’trusty ’

notify:

- restart_nginx

handlers:

- name: restart_nginx

service: name=nginx state=restarted

Listing 18: Example of Ansible playbook with handlers

Furthermore, it is also possible to spread all the tasks and handlers in different
files and just import them by including into the playbook. In addition, it is possi-
ble to run Ansible playbook in testing mode and it will be clear what configuration
files will be changed, services installed, etc. when the playbook will be executed
in real mode.

In contrast, equal to the Ansible playbook (refer to Listing 18) Nginx installa-
tion script written in Bash would look like this:

#!/bin/bash

if [[ "$OSTYPE" == "linux -gnu" ]]; then

command -v nginx >/dev/null 2>&1 && { echo "[+] Nginx

already installed"; exit 0; }

echo "Installing Nginx ..."

sudo apt -get update && sudo apt -get -y install nginx

fi

Listing 19: Example of installing Nginx using Bash

27



It can be seen that code written in YAML is more human readable than code
written in Bash. In addition, due to the strict structure of YAML files, it is hard
to distinguish which parts of the code were written by different system administra-
tors. However, Bash scripts do not have strictly defined code writing conventions
and code styles can vary according to the system administrator. It is also a chal-
lenge to get familiar with configuration scripts written in Bash for the new team
members.

One of the greatest advantages of Ansible is that it is possible to group its
playbooks by roles and use these roles in different projects [5]. For example, it is
possible to define role for Nginx HTTP server installation and use it in Django
application deployment playbook or anywhere else. Furthermore, it is possible to
download roles from the Ansible community website [8] for free and use them in
other playbooks.

3.4 Template

Template is an Ansible module, which allows to define dynamic configuration files
[7]. These files are called templates and they are written in Jinja2 templating
language [25].

1 # {{ ansible_managed }}

2

3 server {

4 listen 80;

5 server_name {{ server_name }};

6 location /static/ {

7 alias {{ static_path }};

8 }

9 location /media/ {

10 alias {{ media_path }};

11 }

12 location / {

13 include uwsgi_params;

14 uwsgi_pass unix:/home /{{ username }}/{{

project_name }}/{{ project_name }}. sock;

15 }

16 }

Listing 20: Nginx site template example

28



For example, Nginx site template for hosting Django applications can be defined
21. As a result, this template can be used for multiple HTTP servers to run
different Django applications. Variables, which are in curly brackets are injected
into the template during playbook run [25]. They can be defined in explicit file or
directly in the playbook. The first line of the template # {{ ansible_managed }}

is used by Ansible to distinguish between regular files and templates. When the
template is defined, it can be put on managed servers with the following task:

- name: Add site configs

template: src=files{{ item }}/ default dest ={{ item

}}/{{ project_name }} mode =0644

sudo: yes

with_items:

- /etc/nginx/sites -available

notify:

- nginx_check_config

- nginx_restart

Listing 21: Transfering Nginx site config to managed servers

This is very frequently used task, which will transfer template from the work-
station located in files/etc/nginx/sites-available/default to the managed
nodes to /etc/nginx/sites-available/my_app, where my_app is the value of
project_name variable. It will also give 644 permissions to the file. If the tem-
plate is already on the managed server and it is equal to the one defined on the
workstation, then task will not be executed. However, if these files differ, the
one on the managed server will be overwritten by the one on the workstation. In
addition, nginx_check_config and nginx_restart handlers will be executed.

3.5 Conclusion

Ansible is a great configuration management tool for infrastructures, which consist
of immutable servers, because it has a separate inventory file described above,
where servers can be easily added, removed or replaced. In addition, Ansible is a
multi-platform tool, because it is possible to use different modules to define play-
books for multiple operating systems. The operating system of the server can be
determined by using facts, which are gathered by Ansible. Furthermore, playbooks
are very readable and even users, who do not have much experience in Ansible can
understand the purpose of the particular playbook. As a result, it is a good tool
to get familiar with configuration management principles. Due to the fact that
playbooks written before can be easily used in future, it is not needed to write
playbooks for similar configurations. Moreover, it is possible to run playbooks in

29



testing mode, which is a great advantage when testing new playbooks or checking
what configuration changes were applied on the servers manually.

However, Ansible does not have a version control system (VCS), which makes
it hard to track changes made by different team members in the playbooks. In
addition, playbooks in workstations can differ, which will result into conflict when
applying those playbooks on the same managed servers. To overcome this dis-
advantage, in large companies it is a good practice to upload Ansible projects to
the version control repository and add every configuration change through the pull
requests. As a result, secret variables (usernames, passwords, keys, etc.) should be
defined in separate file and not uploaded to the VCS. To use this approach, system
administrators should know how to use version control systems. As a result, using
Ansible with VCS makes the difference between programming and system admin-
istration much smaller, because the actions that should be performed to develop
a software project and Ansible project are getting more similar.

30



4 Configuration management in practice

In this section will be described the implementation of Ansible playbooks for Zab-
bix and WordPress services.

4.1 Zabbix playbook

Due to the fact that large-scale systems and clouds have a lot of servers and each
server has several services, monitoring becomes a crucial part. In most setups it
is required to gather data about server’s performance, services and send alerts to
system administrators to warn about critical situations. Zabbix is an open-source
monitoring platform mostly used by enterprise companies [30]. It allows to monitor
different components inside a network. For example, it is possible to use Zabbix
for monitoring Web applications, databases, network equipment, performance and
availability of servers and other components of the infrastructure [31].

Zabbix monitoring tool consists of following components:

• Server, which holds and parses collected data regarding the infrastructure.

• Agents, which should be installed on the managed servers and configured
to monitor several elements.

• Web interface, which allows to check graphs, read monitored information,
etc.

Figure 5: Configuring Zabbix with Ansible playbook

As a result, Zabbix is a good tool to show how quickly and easily it is possible
to scale monitored servers. Namely, with running several Ansible playbooks it is

31



possible to deploy Zabbix server and multiple agents on the nodes. In addition,
when new node is introduced Ansible playbook can be used to make it monitorable.

4.1.1 Playbook implementation

Ansible implementation for Zabbix monitoring tool was divided into two play-
books. One of them is responsible for deploying and configuring Zabbix server and
Web interface, another for deploying and configuring Zabbix agent [40]. This al-
lows to configure monitoring on managed nodes separately from monitoring server.

Zabbix server deployment was divided into four steps:

1. Zabbix repository configuration [40]. In this step it should be checked
whether repository is already configured. If it is not, then Zabbix release
package should be downloaded and installed, then repositories should be up-
dated and to clean up the system release package can be removed. When the
repository is configured, it should be possible to download Zabbix packages.

In order to do this step manually following shell script should be executed
[40]:

1 #!/bin/bash

2

3 if [ ! -f /etc/apt/sources.list.d/zabbix.list ];

then

4 wget http :// repo.zabbix.com/zabbix /3.0/ ubuntu/

pool/main/z/zabbix -release/zabbix -release_3

.0-1+ trusty_all.deb

5 dpkg -i zabbix -release_3 .0-1+ trusty_all.deb

6 apt -get -y update

7 rm zabbix -release_3 .0-1+ trusty_all.deb

8 fi

Listing 22: Zabbix repository manual installation

This script will be barely readable for users who are not familiar with Bash
scripting. However, Ansible tasks that produce the same result are more
human-readable (refer to Appendix A.1).

2. MySQL database configuration. First it should be checked whether MySQL
database is installed. After MySQL service should be started and enabled.
In order to do this step manually following shell script could be executed
[40]:

32



1 #!/bin/bash

2

3 if [[ "$OSTYPE" == "linux -gnu" ]]; then

4 command -v mysql >/dev/null 2>&1 && { echo "[+]

MySQL database already installed"; exit 0; }

5 echo "Installing MySQL database ..."

6 apt -get update && apt -get -y install mysql -server

7 service mysql start

8 fi

Listing 23: MySQL database installation

Again users, who are not familiar with Bash scripting will not understand
this script completely. However, Ansible tasks, which produce the same
result are more human-readable (refer to Appendix A.2).

3. Zabbix server installation [40]. In this step Zabbix server packages should be
downloaded and installed from Zabbix repository. Next its database should
be initialized and database user created. Lastly, configuration file should be
updated with database parameters and Zabbix server should be restarted.
After completing this part of installation, Zabbix will be able to collect and
parse monitored data.
Unfortunately, automation of this step with Bash script is hardly achievable
due to the fact that there must be configuration file modified. In addition, it
is also a challenge to configure MySQL server parameters such as database
name, username, password. In order to do this step manually following
commands should be executed from command prompt[40] [39]:

# apt -get install zabbix -server -mysql

# mysql -uroot

mysql > create database zabbix character set utf8;

mysql > create user ’<username >’@’<hostname >’

identified by ’<password >’;

mysql > grant all privileges on zabbix .* to <username

>@<hostname > identified by ’<password >’;

mysql > quit;

# cd /usr/share/doc/zabbix -server -mysql

# zcat create.sql.gz | mysql -uroot zabbix

# nano /etc/zabbix/zabbix_server.conf

# service zabbix -server restart

Listing 24: Zabbix server installation

33



However, Ansible tasks allow user to automate this process (refer to Ap-
pendix A.5). Such variables as database user username, password and database
name, hostname will be taken from separate variables file located in
group_vars/zabbix_servers on the workstation. After that Zabbix server
configuration file will be transfered from files/etc/zabbix/zabbix_server.conf

(refer to Appendix A.4) to /etc/zabbix/zabbix_server.conf on the man-
aged host and Zabbix server will be restarted. Note, that variables specified
in group_vars/zabbix_servers will be injected into configuration file.

4. Zabbix Web interface installation [40]. Similarly to the previous step Zab-
bix Web interface package should be downloaded and installed from Zabbix
repository, if it is not presented on managed server. Next Apache configu-
ration file for Zabbix Web interface should be modified and Apache server
should be restarted. Web interface final configuration is done in interface
itself.
Due to the fact that configuration file for Zabbix Web interface should be
modified, it will be difficult to automate this step by using Bash scripts.
However, following commands can be executed from the command prompt:

# apt -get -y install zabbix -frontend -php

# nano /etc/zabbix/apache.conf

# service apache2 restart

Listing 25: Zabbix Web interface installation

Same results can be achieved by using Ansible tasks (refer to Appendix
A.6). In addition, it is possible to automate /etc/zabbix/apache.conf file
configuration by transferring it from files/etc/zabbix/apache.conf on
the workstation. Furthermore, it is also possible to skip the final step of
installation in interface by transferring additional file from
files/etc/zabbix/web/zabbix.conf.php on the workstation to
etc/zabbix/web/zabbix.conf.php on the managed node.

Zabbix agent deployment playbook was separated into two steps:

1. Zabbix repository configuration [40]. This step is identical to the one de-
scribed for the Zabbix server installation.

2. Zabbix agent installation [40]. Here Zabbix Agent should be installed from
Zabbix repository, if it is not installed yet. Next Zabbix agent configuration
file should be updated. Lastly, Zabbix agent service should be restarted.

Due to the fact that configuration file modification is needed, it is difficult
to automate this step using Bash scripting.

34



# apt -get -y install zabbix -agent

# nano /etc/zabbix/zabbix_agentd.conf

# service zabbix -agent restart

Listing 26: Zabbix agent installation

However, Ansible tasks will be able to do that (refer to Appendix A.7). Zab-
bix agent configuration template will be transferred from
files/etc/zabbix/zabbix_agentd.conf on the workstation to
/etc/zabbix/zabbix_agentd.conf on the managed node. Template vari-
ables will be taken from group_vars/zabbix_agents file. After Zabbix
agent will be started and enabled. Due to the fact that host, where Zabbix
server is installed can also be an agent, following if-clause was added to the
agent’s configuration template:

1 {% if inventory_hostname in groups[’zabbix_servers ’]

%}

2 ServerActive =127.0.0.1

3 {% else %}

4 ServerActive ={{ zabbix_server }}

5 {% endif %}

Listing 27: Zabbix agent setup for Zabbix server

As a result, during variables injection Ansible will check whether managed
node is Zabbix server or agent. If it is a server, then ServerActive variable
value will be server’s localhost IP. If it is an agent, then ServerActive

value will be zabbix_server variable value, which should be specified in
group_vars/zabbix_agents file.

4.2 WordPress playbook

WordPress is a powerful tool, which can be used to quickly create a website, a blog
or a small Web application [38]. It is a perfect solution for regular users, who do
not have experience in programming and creating Web applications using different
frameworks. In addition, it is a free and open-source software [38]. However, it
could be a challenge for regular users to deploy WordPress to their own server,
because it requires command line knowledge and system administration experi-
ence. As a result, it could be nice to automate WordPress installation process
using Ansible playbooks. In consequence, it is possible to develop GUI, which will
execute Ansible playbook on background to deploy and configure WordPress on
user’s server.

35



4.2.1 Playbook implementation

WordPress deployment and configuration was divided into three steps:

1. MySQL database configuration. This step is identical to the one described
in Zabbix server playbook description. It is worth noticeable, that properly
written Ansible tasks can be reused in other playbooks. MySQL database is
used by WordPress to store website data.

2. Apache server configuration. Due to the fact that WordPress does not have
OS specific packages such as deb or rpm, which automate Apache installation,
it should be installed manually. First Apache package should be installed, if
it is not installed yet, then it should be started and enabled. Apache serves
WordPress Web application.

Minimal Apache installation is simple and it is possible to do with Bash
script:

1 #!/bin/bash

2

3 if [[ "$OSTYPE" == "linux -gnu" ]]; then

4 command -v apache2 >/dev/null 2>&1 && { echo "[+]

Apache server already installed"; exit 0; }

5 echo "Installing Apache server ..."

6 apt -get update && apt -get -y install apache2

7 service apache2 restart

8 fi

Listing 28: Apache server installation

However, it will be not as readable as Ansible tasks (refer to Appendix A.8)
and its code will vary according to the system administrator.

3. WordPress installation [19]. Firstly, PHP dependencies should be installed
to be able to execute WordPress code. Due to the fact that running Word-
Press as a root user can cause security risks, there should be separate user
created, who will own all WordPress files. Next WordPress installer should
be downloaded and extracted to the /var/www/html/ directory with cor-
rect owner attribute. Lastly, MySQL user and database should be created,
WordPress configuration should be modified and Apache server should be
restarted.

In this installation several variables must be set by user such as usernames
and passwords. In addition, WordPress configuration file should be modified.

36



As a result, it will be a challenge to write Bash script, which will do these
things. However, it is still possible to execute all the commands manually as
a root:

apt -get -y install php5 -gd libssh2 -php php5 -mysql

php5 libapache2 -mod -php5 php5 -mcrypt

adduser <username1 >

wget http :// wordpress.org/latest.tar.gz

tar xvzf latest.tar.gz

rsync -avz wordpress /* /var/www/html/ && rm -rf

wordpress

chown -R <username1 >:<username1 > /var/www/html/*

mysql -uroot

mysql > create database <database_name > character set

utf8;

mysql > create user ’<username2 >’@’<hostname >’

identified by ’<password2 >’;

mysql > grant all privileges on <database_name >.* to

<username2 >@<hostname > identified by ’<password2

>’;

mysql > quit;

cp /var/www/html/wp -config -sample.php /var/www/html/

wp -config.php

nano /var/www/html/wp -config.php

Listing 29: WordPress server manual installation

All these commands can be transferred to the Ansible tasks to automate the
process of WordPress server installation (refer to Appendix A.9). User pa-
rameters will be taken from separate variables file group_vars/wordpress_servers,
where all WordPress server variables are stored. Next, latest WordPress con-
figuration file will be moved from files/var/www/html/wp-config.php on
workstation to the /var/www/html/wp-config.php on the managed server.
Apache server will be restarted using Ansible handlers.

4.3 Testing

In order to test created playbooks it was decided to set up a small infrastructure.
The University of Tartu distributed systems research group has a cluster with

six nodes inside a private network, which is separated from the Tartu University
Eduroam network with the MikroTik router. One of this nodes was decided to
use for testing the playbooks. The idea was to boot three virtual machines on

37



Figure 6: Infrastructure for testing.

this node using KVM hypervisor and use node’s bridged network [18] interface as
virtual machines’ interfaces. As a result there will be a cluster with four nodes in
the same network (10.9.8.0/24). In order to make the workstation to be in the same
network with virtual machines an additional xenbr0 virtual network interface was
created. This interface was configured to use eth0 interface of the workstation.

38



auto eth0

iface eth0 inet manual

if ifconfig eth0 up

down ifconfig eth0 down

auto xenbr0

iface xenbr0 inet dhcp

bridge_ports eth0

bridge_stp off

bridge_fd 0

Listing 30: Bridged network setup

As a result, all the virtual machines, which will be configured to use xenbr0

interface will be in the same bridged network as the workstation. In educational
purposes it was decided to use 8GB USB memory stick as a node storage with
installed Debian 8 on it. However, during node configuration revealed that each
virtual machine with Ubuntu 14.04 operating system reserves around 4 GB of stor-
age. As a result, there was not enough storage room on the node to boot 3 virtual
machines.

It was decided to do following steps:

1. Transfer system to the memory stick with 16GB storage room.

2. Move virtual machines storage files to the NFS server.

When node storage and KVM was successfully configured, three virtual ma-
chines were set up:

# virsh list --all

Id Name State

----------------------------------------------------

26 zabbix -server running

28 wordpress1 running

29 wordpress2 running

Listing 31: Testing machines

The process of testing the playbooks consisted of following stages:

1. Adding public keys to the virtual machines for SSH connections.

2. Modifying /etc/hosts file of the workstation by adding several entries for
virtual machines:

39



10.9.8.24 zabbix -server

10.9.8.25 wordpress1

10.9.8.26 wordpress2

Listing 32: Adding entries to /etc/hosts file

3. Checking hosts file:

[zabbix_servers]

zabbix -server

[zabbix_agents]

zabbix -server

wordpress1

wordpress2

[wordpress_servers]

wordpress1

wordpress2

Listing 33: Checking hosts file

4. Changing variables of the playbooks in group_vars directory.

40



5. Running the playbooks:

# ansible -playbook -i hosts zabbix_server.yml

# ansible -playbook -i hosts zabbix_agent.yml

# ansible -playbook -i hosts wordpress.yml

Listing 34: Running the playbooks

An additional -i flag will tell Ansible which inventory file to use. It is useful
to run playbooks with --diff flag to check what was changed in the files.
In addition, it is possible to make a test run by adding --check flag. As
result, nothing will be changed on the server, but system administrator will
be able to check what changes will be applied.

6. Checking in the browser whether all the services are up and running. The
result should be as show in Figure 6.

In conclusion, it is a good practice to use virtual machines for testing config-
uration management scripts, because it is possible to create snapshots, which can
be used to revert system to the previous state. It is a beneficial approach, because
during scripts development there is a necessity to run them against testing server
a lot of times.

4.4 Results

The goal of the research was to study the applicability of Ansible for fast de-
ployments and management of the infrastructure. Zabbix and WordPress were
selected for the case studies. During the experimentations Ansible playbooks for
these services were developed. The results showed clear advantages of using Ansi-
ble compared to manual setups or Bash scripts. In addition, developed playbooks
and their components, such as Apache HTTP server and MySQL database, can
be used in future projects. For example, it is possible to easily make all the infras-
tructures monitorable or quickly deploy WordPress to make a Web application.
Furthermore, those playbooks can be uploaded to the GitHub or Ansible Galaxy.
In consequence, other researchers will be able to use those scripts in their projects.
Furthermore, established processes of implementing playbooks can be used in Dis-
tributed Systems Group to automate configuration of multiple clusters.
However, there are some restrictions to the operating system where those play-
books could be run. Namely, playbooks are written for Ubuntu 14.04 operating
system and tested only on it. In order to make them executable on other Unix type
operating systems, several tasks can be added, which will be executed differently
depending on the server’s operating system.

41



5 Conclusion

In this research it was demonstrated how different configuration management tools
can simplify the work of system administrator. Furthermore, it was overviewed
what solutions to the described problems these tools provide when dealing with
large-scale systems. In addition, advantages and disadvantages of popular con-
figuration management tools were described such as SaltStack, Puppet, Chef and
Ansible. There was also overviewed the process of creating Ansible playbooks for
such services as Zabbix and WordPress. Lastly, there was an example and practi-
cal recommendations provided on how the configuration management scripts can
be tested.
In future, Distributed Systems Group could use this knowledge to automate de-
ployment of several clusters. Moreover, there could be multiple Ansible playbooks
defined to test students homework in ”System Administration” course lab by log-
ging into their virtual machines and comparing their configuration files with correct
ones. Lastly, this research can be included to the ”System Administration” course
additional materials, therefore students would be able to get familiar with those
tools.

42



References

[1] Ansible. Ansible Adhoc. http://docs.ansible.com/ansible/intro_

adhoc.html. Last Accessed: 09.05.2016.

[2] Ansible. Ansible Introduction Video. https://fast.wistia.net/embed/

iframe/qrqfj371b6?popover=true. Last Accessed: 09.05.2016.

[3] Ansible. Ansible Inventory. http://docs.ansible.com/ansible/intro_

inventory.html. Last Accessed: 09.05.2016.

[4] Ansible. Ansible Playbook. http://docs.ansible.com/ansible/

playbooks_intro.html. Last Accessed: 09.05.2016.

[5] Ansible. Ansible role. http://docs.ansible.com/ansible/playbooks_

roles.html. Last Accessed: 09.05.2016.

[6] Ansible. Ansible software. http://cdn2.hubspot.net/hub/330046/

file-479069823-pdf/pdf_content/Achieving_Rolling_Updates_and_

Continuous_Deployment_with_Zero_Downtime.pdf. Last Accessed:
09.05.2016.

[7] Ansible. Ansible template. http://docs.ansible.com/ansible/template_
module.html. Last Accessed: 09.05.2016.

[8] Ansible. Galaxy. https://galaxy.ansible.com/. Last Accessed:
09.05.2016.

[9] Ansible. Work Principle. https://www.ansible.com/how-ansible-works.
Last Accessed: 09.05.2016.

[10] Vangie Beal. Devops definition. http://www.webopedia.com/TERM/D/

devops_development_operations.html. Last Accessed: 09.05.2016.

[11] André B. Bondi. (Characteristics of scalability and their impact on perfor-
mance. Proceedings of the second international workshop on Software and
performance. 2000.

[12] Carlos Casanova. Configuration Management, Why bother? http://

allthingsitsm.com/configuration-management-why-bother/. Last Ac-
cessed: 10.05.2016.

[13] Chef. Chef communication figure. https://learn.chef.io/

manage-a-node/ubuntu/. Last Accessed: 09.05.2016.

43

http://docs.ansible.com/ansible/intro_adhoc.html
http://docs.ansible.com/ansible/intro_adhoc.html
https://fast.wistia.net/embed/iframe/qrqfj371b6?popover=true
https://fast.wistia.net/embed/iframe/qrqfj371b6?popover=true
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://cdn2.hubspot.net/hub/330046/file-479069823-pdf/pdf_content/Achieving_Rolling_Updates_and_Continuous_Deployment_with_Zero_Downtime.pdf
http://cdn2.hubspot.net/hub/330046/file-479069823-pdf/pdf_content/Achieving_Rolling_Updates_and_Continuous_Deployment_with_Zero_Downtime.pdf
http://cdn2.hubspot.net/hub/330046/file-479069823-pdf/pdf_content/Achieving_Rolling_Updates_and_Continuous_Deployment_with_Zero_Downtime.pdf
http://docs.ansible.com/ansible/template_module.html
http://docs.ansible.com/ansible/template_module.html
https://galaxy.ansible.com/
https://www.ansible.com/how-ansible-works
http://www.webopedia.com/TERM/D/devops_development_operations.html
http://www.webopedia.com/TERM/D/devops_development_operations.html
http://allthingsitsm.com/configuration-management-why-bother/
http://allthingsitsm.com/configuration-management-why-bother/
https://learn.chef.io/manage-a-node/ubuntu/
https://learn.chef.io/manage-a-node/ubuntu/


[14] Chef. Chef node bootstrap. https://learn.chef.io/manage-a-node/

ubuntu/bootstrap-your-node/. Last Accessed: 09.05.2016.

[15] Chef. Chef node update. https://learn.chef.io/manage-a-node/ubuntu/
update-your-nodes-configuration/. Last Accessed: 09.05.2016.

[16] Chef. Chef server setup. https://learn.chef.io/manage-a-node/ubuntu/
set-up-your-chef-server/. Last Accessed: 09.05.2016.

[17] Microsoft Corporation. Kerberos protocol. https://tools.ietf.org/html/
rfc4556. Last Accessed: 09.05.2016.

[18] Decker, Langille, Rijsinghani, McCloghrie. Bridged Network. https://

tools.ietf.org/html/rfc1286. Last Accessed: 11.05.2016.

[19] DigitalOcean. WordPress installation. https://www.digitalocean.com/

community/tutorials/how-to-install-wordpress-on-ubuntu-14-04.
Last Accessed: 09.05.2016.

[20] Josh Dreyfuss. CM tools comparison. http://blog.takipi.com/

deployment-management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-fabric/.
Last Accessed: 09.05.2016.

[21] Clark C. Evans. YAML. http://yaml.org/. Last Accessed: 11.05.2016.

[22] EventHelix. Availability term. http://www.eventhelix.com/

RealtimeMantra/FaultHandling/reliability_availability_basics.

htm#.VzHJnkF948o. Last Accessed: 10.05.2016.

[23] Alessandro Franceschi. Puppet. http://www.example42.com/tutorials/

PuppetTutorial. Last Accessed: 09.05.2016.

[24] Red Hat. Red Hat acquired Ansible. https://www.redhat.com/en/about/

blog/why-red-hat-acquired-ansible. Last Accessed: 09.05.2016.

[25] Jinja. Jinja template. http://jinja.pocoo.org/docs/dev/templates/.
Last Accessed: 09.05.2016.

[26] johnccfm. Windows minions response. https://github.com/saltstack/

salt/issues/27866. Last Accessed: 09.05.2016.

[27] Linux KVM. KVM. http://www.linux-kvm.org/page/Main_Page. Last
Accessed: 09.05.2016.

[28] Puppet Labs. Puppet classes. https://docs.puppetlabs.com/puppet/

latest/reference/lang_classes.html. Last Accessed: 09.05.2016.

44

https://learn.chef.io/manage-a-node/ubuntu/bootstrap-your-node/
https://learn.chef.io/manage-a-node/ubuntu/bootstrap-your-node/
https://learn.chef.io/manage-a-node/ubuntu/update-your-nodes-configuration/
https://learn.chef.io/manage-a-node/ubuntu/update-your-nodes-configuration/
https://learn.chef.io/manage-a-node/ubuntu/set-up-your-chef-server/
https://learn.chef.io/manage-a-node/ubuntu/set-up-your-chef-server/
https://tools.ietf.org/html/rfc4556
https://tools.ietf.org/html/rfc4556
https://tools.ietf.org/html/rfc1286
https://tools.ietf.org/html/rfc1286
https://www.digitalocean.com/community/tutorials/how-to-install-wordpress-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-wordpress-on-ubuntu-14-04
http://blog.takipi.com/deployment-management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-fabric/
http://blog.takipi.com/deployment-management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-fabric/
http://yaml.org/
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm#.VzHJnkF948o
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm#.VzHJnkF948o
http://www.eventhelix.com/RealtimeMantra/FaultHandling/reliability_availability_basics.htm#.VzHJnkF948o
http://www.example42.com/tutorials/PuppetTutorial
http://www.example42.com/tutorials/PuppetTutorial
https://www.redhat.com/en/about/blog/why-red-hat-acquired-ansible
https://www.redhat.com/en/about/blog/why-red-hat-acquired-ansible
http://jinja.pocoo.org/docs/dev/templates/
https://github.com/saltstack/salt/issues/27866
https://github.com/saltstack/salt/issues/27866
http://www.linux-kvm.org/page/Main_Page
https://docs.puppetlabs.com/puppet/latest/reference/lang_classes.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_classes.html


[29] Puppet Labs. Puppet resources. https://docs.puppetlabs.com/puppet/

latest/reference/lang_resources.html. Last Accessed: 09.05.2016.

[30] Zabbix LLC. Zabbix. http://www.zabbix.com/. Last Accessed: 09.05.2016.

[31] Zabbix LLC. Zabbix features. http://www.zabbix.com/features.php. Last
Accessed: 09.05.2016.

[32] Lauren Malhoit. Puppet communication figure. http://tr1.cbsistatic.

com/hub/i/2015/05/07/13ecf8b9-f499-11e4-940f-14feb5cc3d2a/

puppet-agentmaster.png. Last Accessed: 09.05.2016.

[33] Department of Defense USA. Configuration Management. http://www.

pica.army.mil/PROD_TECHDATA/Files/MIL-HDBK-61A.pdf. Last Accessed:
09.05.2016.

[34] Puppet. Puppet. https://docs.puppet.com/guides/faq.html. Last Ac-
cessed: 09.05.2016.

[35] Puppet. Puppet Forge. https://forge.puppet.com/. Last Accessed:
11.05.2016.

[36] SaltStack. Documentation. https://docs.saltstack.com/en/getstarted/
overview.html. Last Accessed: 09.05.2016.

[37] Paul Venezia. Salt software. http://

www.infoworld.com/article/2609482/data-center/

data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html. Last
Accessed: 09.05.2016.

[38] WordPress. WordPress. https://wordpress.org/. Last Accessed:
09.05.2016.

[39] Zabbix. MySQL server initial setup. https://www.zabbix.com/

documentation/3.0/manual/installation/install_from_packages. Last
Accessed: 11.05.2016.

[40] Zabbix. Zabbix installation. https://www.zabbix.com/documentation/

3.0/manual/installation/install#from_distribution_packages. Last
Accessed: 09.05.2016.

45

https://docs.puppetlabs.com/puppet/latest/reference/lang_resources.html
https://docs.puppetlabs.com/puppet/latest/reference/lang_resources.html
http://www.zabbix.com/
http://www.zabbix.com/features.php
http://tr1.cbsistatic.com/hub/i/2015/05/07/13ecf8b9-f499-11e4-940f-14feb5cc3d2a/puppet-agentmaster.png
http://tr1.cbsistatic.com/hub/i/2015/05/07/13ecf8b9-f499-11e4-940f-14feb5cc3d2a/puppet-agentmaster.png
http://tr1.cbsistatic.com/hub/i/2015/05/07/13ecf8b9-f499-11e4-940f-14feb5cc3d2a/puppet-agentmaster.png
http://www.pica.army.mil/PROD_TECHDATA/Files/MIL-HDBK-61A.pdf
http://www.pica.army.mil/PROD_TECHDATA/Files/MIL-HDBK-61A.pdf
https://docs.puppet.com/guides/faq.html
https://forge.puppet.com/
https://docs.saltstack.com/en/getstarted/overview.html
https://docs.saltstack.com/en/getstarted/overview.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
https://wordpress.org/
https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages
https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages
https://www.zabbix.com/documentation/3.0/manual/installation/install#from_distribution_packages
https://www.zabbix.com/documentation/3.0/manual/installation/install#from_distribution_packages


Appendices

A Zabbix and WordPress playbooks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible
Last Accessed: 12.05.2016

A.1 Ansible Zabbix repository tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/zabbix_repo.yml

Last Accessed: 12.05.2016

A.2 Ansible MySQL server tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/mysql_server.yml

Last Accessed: 12.05.2016

A.3 Ansible MySQL variables file

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

group_vars/zabbix_servers

Last Accessed: 12.05.2016

A.4 Ansible Zabbix server configuration file

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

files/etc/zabbix/zabbix_server.conf

Last Accessed: 12.05.2016

A.5 Ansible Zabbix server configuration tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/zabbix_server.yml

Last Accessed: 12.05.2016

46

https://github.com/tsudmi/thesis-ansible
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_repo.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_repo.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/mysql_server.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/mysql_server.yml
https://github.com/tsudmi/thesis-ansible/blob/master/group_vars/zabbix_servers
https://github.com/tsudmi/thesis-ansible/blob/master/group_vars/zabbix_servers
https://github.com/tsudmi/thesis-ansible/blob/master/files/etc/zabbix/zabbix_server.conf
https://github.com/tsudmi/thesis-ansible/blob/master/files/etc/zabbix/zabbix_server.conf
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_server.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_server.yml


A.6 Ansible Zabbix Web interface configuration tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/zabbix_web.yml

Last Accessed: 12.05.2016

A.7 Ansible Zabbix Agent configuration tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/zabbix_agent.yml

Last Accessed: 12.05.2016

A.8 Ansible Apache configuration tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/apache_server.yml

Last Accessed: 12.05.2016

A.9 Ansible Wordpress configuration tasks

Dmitri Tsumak. https://github.com/tsudmi/thesis-ansible/blob/master/

tasks/wordpress_server.yml

Last Accessed: 12.05.2016

47

https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_web.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_web.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_agent.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/zabbix_agent.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/apache_server.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/apache_server.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/wordpress_server.yml
https://github.com/tsudmi/thesis-ansible/blob/master/tasks/wordpress_server.yml


Non-exclusive licence to reproduce thesis and make thesis public

I, Dmitri Tsumak (date of birth: 18th of March 1994),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Large-Scale Provisioning and Configuration Management

supervised by Artjom Lind

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 09.05.2016

48


	Contents
	List of Figures
	Listings
	List of Terms
	Introduction
	Related Work
	Introduction to configuration management
	SaltStack
	Puppet
	Chef
	Conclusion

	Ansible
	Introduction
	Inventory
	Ad-hocs and Playbooks
	Template
	Conclusion

	Configuration management in practice
	Zabbix playbook
	Playbook implementation

	WordPress playbook
	Playbook implementation

	Testing
	Results

	Conclusion
	References
	Appendices
	Zabbix and WordPress playbooks
	Ansible Zabbix repository tasks
	Ansible MySQL server tasks
	Ansible MySQL variables file
	Ansible Zabbix server configuration file
	Ansible Zabbix server configuration tasks
	Ansible Zabbix Web interface configuration tasks
	Ansible Zabbix Agent configuration tasks
	Ansible Apache configuration tasks
	Ansible Wordpress configuration tasks


