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1. INTRODUCTION 
 

Cerebral palsy (CP) is the most common physical disability in childhood which 
results from a non-progressive injury to the developing central nervous system. 
Children with CP have many neurological disorders of which motor dysfunction 
is the most remarkable. This impairment includes: (1) increased muscle tone, (2) 
impaired muscle control and (3) decreased muscle strength. The primary culprit 
of motor dysfunction has been debatable for a long time. Muscle strength is a 
reflection of motor control and evidence now strongly supports that increased 
muscle strength results in better performance. Muscle function in children with 
CP has been intensively studied during the last decade. The available data 
reveals muscle weakness in this population in comparison with children without 
disabilities. It is evident that muscle weakness has an impact on motor 
performance and that an increase in muscle strength could improve motor 
performance. Consequently, understanding the causes of muscle weakness is 
important for prescribing an appropriate rehabilitation programme. 

Many investigators have reported a reduction in isometric maximal 
voluntary contraction (MCV) force induced by a simultaneous bilateral contrac-
tion as compared to the sum of MVC force of separately performed unilateral 
contractions. This phenomenon is designated as bilateral strength deficit (BLD). 
There is not enough information available about BLD in children with spastic 
diplegic CP. The degree of voluntary activation (VA) is rarely taken into 
consideration when assessing maximal isometric force in children with CP. VA 
refers to the level of neural drive to muscle during MVC. 

In children with CP, little attention has been paid to the capacity for rapid 
voluntary force production and relaxation, which is an important indicator of 
neuromuscular performance and movement control. 

Motor disabilities in CP are not only caused by primary impairment of the 
central nervous system, but also by secondary deterioration in muscle cont-
ractile properties resulting from muscle fibre atrophy. Electrical stimulation 
techniques have been used to assess contractile properties of skeletal muscles in 
healthy humans and in patients with different neuromuscular dysfunctions. Very 
few studies have examined muscle contractile properties in children with spastic 
CP. However, the assessment of muscle contractile properties in the resting 
position and the postactivation potentiation (PAP) condition can provide 
additional information about the pathophysiological process in skeletal muscles 
in CP and about the adaptability of neuromuscular function to reduced muscle 
activity. The PAP, defined as an increase in twitch contraction force after a brief 
conditioning isometric MVC, has been well documented in humans. To the best 
of our knowledge, no prior studies of the capacity for twitch PAP in skeletal 
muscles have been conducted in children with CP. Understanding muscle 
contractile properties and the capacity for PAP in children with CP may also 
have clinical rehabilitation significance for designing programmes based on 
neuromuscular electrical stimulation. 
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The main goal of the present study was to identify the peculiarities of the 
electrically and voluntary evoked force-generation capacity and of the 
relaxation characteristics of the extensor muscles of lower extremities in 
children with spastic diplegic CP.  
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2. REVIEW OF LITERATURE 
 

2.1. Definition, epidemiology and causes of cerebral palsy 
 
The exact definition of the term “cerebral palsy” has been a topic of debate for 
more than 150 years and discussions about how different manifestations of CP 
can be best definied continue to the present day. According to the International 
Workshop on Definition and Classification of Cerebral Palsy, CP is defined in 
terms of motor features and effects on the function as follows: CP describes a 
group of disorders of the development of movement and posture, causing 
activity limitation, that are attributed to non-progressive disturbances that 
occurred in the developing fetal or infant brain (Bax et al., 2005). 

In the Baltic countries, the following definition is used: CP is an impairment 
of movement and posture resulting from a non-progressive defect or lesion (of 
mainly hypoxic-ischemic origin) of the brain during the ante- or intranatal 
period. The motor impairment is expressed by spastic syndromes, disorders of 
coordination and balance, dyskinetic or dystonic movements or their combi-
nations, and is often accompanied by speech and cognitive disorders, and/or 
epilepsy (Talvik et al., 1987). This definition refers to the main pathogenetical 
pathways, leading to the formation of a brain injury, underlying CP, and aims to 
narrow the criteria for the term “immature brain”; it also attempts to concretize 
the time of the stroke and includes associated neurodevelopmental and other 
problems of co-morbidity. 

CP is not an etiologic diagnosis but a clinical descriptive term. Ideally, the 
diagnosis should be comprised of the etiology (often unknown), a central 
nervous system lesion (if suitable neuroimaging is available), identification of 
associated impairments (often occurring at a later age), description of the 
movement disorder, and the functional status (Jarvis et al., 2003; Blair and 
Watson, 2005; Johnston et al., 2002). In conclusion, according to the current 
international consensus, CP has remained a description defined by clinical 
observation rather than a diagnosis informative about etiology, pathology or 
prognosis (Carlsson et al., 2003; Ashwal et al., 2004; Bax et al., 2005). 

As a diagnosis, the term “cerebral palsy” itself does not address the broader 
issues of neurodevelopmental dysfunction (Carr, 2005). However, the most 
striking dysfunction is motor impairment and it is included as the main compo-
nent in any definition of CP. CP is a complex neurodevelopmental condition 
(Blair and Love, 2005). Its co-morbidities include sensory, perceptual and 
cognitive impairment, communication disorders, behavioural challenges and 
epilepsy, all being less important than motor disabilities in terms of the quality 
of life (Rosenbaum, 2003).– 

CP is the most common physical disability in childhood (Stanley et al., 2000; 
Rosenbaum, 2003). CP results from a non-progressive injury to the developing 
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central nervous system and is the most common cause of physical disability in 
children with an incidence of 1.5 to 2.5 cases per 1000 live births (Ingram, 1984; 
Lenski et al., 2001; Mutch et al., 1992; Granata et al., 2000; Tammassen and 
Curzon, 2003). Many forms of CP have been defined, of which, spastic diplegia 
and hemiplegia are the most prevalent (Krägeloch-Mann et al., 1993; Hagberg 
and Hagberg 1994; Aicardi and Bax, 1998; Bache et al., 2003). The term 
“diplegia” refers to weakness and movement incordination involving the lower 
limbs more than the arms. People with spastic diplegia typically walk slowly 
and have difficulty in perfoming activities such as walking up and down steps 
or running (Dodd et al., 2003) 

The frequency of CP increases with a decreasing gestational age (Albertsson 
and Karlberg, 1994), affecting approximately 7.0–7.3% of survivors with a birth 
weight lower than 1500 g (Volpe, 1994; Krägeloh-Mann, 2004; Platt et al., 
2007). It has been documented that the rate of CP is more than 70 times higher 
in the very low birth weight infants compared with those weighing 2500 g or 
more at birth (Cummins et al., 1993). Half of CP cases arise in neonates with a 
normal birth weight, for which the best available predictor for CP is neonatal 
encephalopathy (Nelson, 2002).  

The overall rate of prevalence of CP in the representative sample of the child 
population of Tartu City and county area was 5.9 per 1000 live births, including 
mild cases. The prevalence of moderate to severe cases was 2.3 per 1000 live 
births, thus being comparable with the data from developed countries (Stelmach, 
2006). 

A recent analysis of, explained that the incidence of CP was 30% higher in 
males than in females (Olsen et al., 1998; Jarvis et al., 2005, Tioseco et al., 
2006; Zhu et al., 2006). Studies have also showed that the likelihood of more 
severe CP was greater at the extremes of birth weight (O’Shea, 2002; Badawi et 
al., 2005), with the risk of severe CP increased almost fourfold for male infants 
with birth weights at the 97th centile and 16 times higher for male infants at the 
3rd centile. The male to female ratio of the child population of Tartu City and 
county was 1.4:1 (Stelmach, 2006). 

The cause of CP in the majority of affected individuals is unclear (Ferriero, 
1999). Research on the pathogenesis of CP continues to yield new information 
about the mechanisms through which factors such as extreme prematurity, 
infection, sex and hypoxia-ischemia damage the developing brain (Barkovich 
and Truwit, 1990; Dammon and Leviton, 1997; Badawi et al., 1998; Johnston et 
al., 2001; Stanley et al., 2001; Blair and Stanley, 2002; Penneth et al., 2003; 
Shevell et al., 2003; Nelson and Lynch, 2004). The vulnerability of different 
brain structures and types of disability associated with CP are strongly 
influenced by the gestational age at which development is disturbed 
(Albertsson-Wikland and Karlberg, 1994; Ferreiro, 2004; Johnson et al., 2001, 
2002; Krägeloch-Mann, 2004). Better insight into these mechanisms could lead 
to strategies to protect the brain and reduce the incidence of CP and related 
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disorders (Mutch et al., 1992). It has been found that the main risk factors that 
could cause CP are prematurity, intrauterine growth restriction, intrauterine or 
postpartum infection, multiple pregnancy, low apgar score, hypoxic-ischemic 
encephalopathy and aborning or postpartum trauma (Badawi et al., 1989, 2005; 
Thornberg et al., 1995; Levene et al., 1986; Johnston et al., 2001; Moster et al., 
2001; Milsom et al., 2002; Cowan et al., 2003; Cans et al., 2004; Topp et al., 
2004). 

CP is a chronic central nervous system disorder for which neither cure exists, 
nor is one seen in near future (Nelson, 2003). Therefore all current treatments, 
i.e. surgery, therapy, or medications, aim to alleviate such peripheral effects on 
the musculoskeletal system as muscle tightness, spasticity and weakness 
(Reimers, 1990; Abel et al., 1999; Ross and Park, 1999; Boyd and Hays, 2001; 
Willy, 2006). Training programmes and continuous therapy can help to live a 
productive life in persons with CP (Hutton et al., 1994; Furlong et al., 2005; 
Morris et al., 2005; Varni et al., 2005). 
 
 

2.2. Motor dysfunction in cerebral palsy 
 
Children with CP have many neurological deficits leading to dysfunction and 
difficulties in daily activities (Belanger et al., 1985; Evans and Alberman, 1985; 
Diez and Berger, 1995; Dabney et al., 1997; Palisano et al., 1997; Ketelaar et 
al., 1998; Himmelmann, 2006; Grage, 2004, Shevell and Bodensteiner, 2004). 
These impairments include neuromuscular and musculo-skeletal problems such 
as: (1) increased muscle tone or a velocity-dependent resistance to passive 
muscle stretch in synergistic muscle groups; (2) a selective loss of motor control; 
(3) deficient postural reactions; (4) a relative imbalance of muscle forces across 
the joints (Bleck, 1975; Ohtsuki, 1983; Vandervoort et al., 1984; Schmidt, 1988; 
Schantz et al., 1989; Ferbert et al., 1992; Kramer and MacPhail, 1994; Damiano 
et al., 1995; Palisano et al., 1997; Engsberg et al., 1999, 2000; Ross et al., 2001; 
Bartlett and Palisano, 2002; Abel et al., 2003; Elder et al., 2003; Grahm and 
Selber, 2003; Stackhouse et al., 2005; Himmelmann, 2006; Vooreman et al., 
2007).  

Spasticity and decreased muscle strength (weakness) are two major 
impairments associated with individuals with CP (Knutsson, 1985; Peacock and 
Staud, 1991; Engsberg et al., 1996; Nordmark et al., 2001; Goh et al., 2006; 
Engsberg et al,. 2007; Ross, Engsberg, 2007). The relation between these 
impairments is a question that has remained unanswered and is controversial 
among clinicians and researchers (Palisano et al., 2000; Beckung and Hagberg 
2002; Rosenbaum, 2002). A major reason for the controversy is that until 
resently, measurements of spasticity and muscle strength were not typically 
quantified in individuals with CP (Rab, 1992; Delp, 2003). 
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An equally important motor symptom of CP is deficient sensomotor control 
(Nashner et al., 1983; Forssberg, 1999, 2003). It has been shown that children 
with CP more frequently first activated a muscle other than the intended prime 
mover as compared to children without disabilities, especially when the prime 
mover was a distal muscle (Ikeda et al., 1998). For a long time neuromuscular 
activation in CP has been assessed to clarify the mechanisms underling the 
motor deficit and identify the factors that contribute to movement and gait 
disorders (Krägeloh-Mann et al., 1995; Ross and Engberg, 2000). Weakness 
and imbalance of muscle strength have been identified in children with CP 
(Bohannon, 1989; Ayalon et al., 2000), but these findings have not been 
quantified precisely and the etiologies of weakness and imbalance of muscle 
strength are still poorly understood (Forssberg, 2003). 

For decades, rehabilitation of persons with an upper motor neurone lesion 
was dominated by the assumption that spasticity was the primary culprit in 
producing the observed motor dysfunction (Castle et al., 1979; Damiano et al., 
1995). A collary to this assumption was that the emergence and development of 
voluntary motor coordination was suppressed by the spasticity and would 
improve if this factor was eliminated or reduced. Muscle weakness, although 
clinically recognized, was likewise considered a consequence of the spastic 
restraint and was not thought to play a primary role in producing the motor 
deficit (Damiano et al., 2000). 

Muscle strength, which is an essential component of normal motor control, 
has been shown repeatedly to be deficient in CP (Damiano and Abel, 1998; 
Engsberg et al., 1998; Wiley and Damiano, 1999; Damiano et al., 2000; 
Beckung and Hagberg 2002). Muscle strength is directly related to functional 
performance (Kramer and Mac Pheil, 1994). It has been shown that ambulatory 
children who were stronger tended to walk faster, required less ambulatory 
assistance, and had a higher capacity to increase their walking speed and also 
had higher scores of the Gross Motor Function Measure (Johnson et al., 1997; 
Damiano and Abel, 1998; Dodd et al., 2003; Johnston et al., 2004; Rodda et al., 
2004; Chen and Woollacott, 2007; Stackhouse et al., 2007). 

Conventional clinical wisdom in physical therapy argued against the use of 
muscle strength testing and training in children with CP for a long time 
(Rosenbaum et al., 2002). It was suggested that a strong, near maximal effort, 
would exacerbate spasticity and that the impaired selective control in CP 
essentially prohibited performance of strengthening activities (Palisano et al., 
2000). However, this conception is still debateable despite the lack of evidence 
to suggest that strengthening is determinal in the presence of spasticity. There is 
evidence that strength training but not ordinary motor practice can markedly 
increase the measured muscle strength and motor performance (Lee et al., 2007). 
This points to weakness as a major factor in CP and argues for validity of 
muscle strength testing in CP (McCubbin and Shashy, 1985; Bohannon, 1989; 
Tweedy, 1995; Ayalon et al., 2000). Leg muscle strength has been shown to be 



 14

significantly related to a freely selected walking velocity and to Gross Motor 
Function Measure scores (Damiano et al., 1995; Damiano and Abel, 1996, 1998; 
Tervo et al., 2002). Darrah and colleagues (1997) found that muscle 
strengthening programmes not only improved muscle strength but also 
significantly enhanced the perceived physical appearance in children with CP. 

While the clinicians feared that exerting the maximal effort could exacerbate 
spasticity, this has not been verified empirically (Ross and Engsberg, 2002). In 
a single case study, Horvat (1987) found the increased range of motion in a 
spastic muscle after strengthening its antagonists, which did not support the 
suspicion of the increasing muscle tightness resulting from strengthening. 
Another study showed that the quadriceps femoris muscle strength increased 
more than 50% with no significant change in the hamstring muscle strength 
after the strengthening programme in children with CP (Damiano et al., 1995). 

In fact, research findings are accumulating which indicate that children with 
CP are indeed weak (Slominski, 1984; Wiley and Damiano 1999), that muscle 
strength is directly related to motor function (Tweedy, 1995; Abel 1998) and 
that strengthening programmes can result in functional improvements (Styer-
Acevedo, 1999). Documented positive outcomes from increasing muscle 
strength include the increasing stride length and decreased crouch during the 
gait, greater energy efficiency when walking and higher Gross Motor Function 
Measurement scores (Horvat, 1987; Holland, 1990; Gage, 1991).  

  
 

2.3. Muscle weakness in children with cerebral palsy 
 

Numerous previous studies have demonstrated that muscle weakness is a sole 
culprit in producing motor dysfunction in CP (Van der Berg-Emons, 1986; 
Peacock and Staudt, 1991; Damiano and Abel, 1998). In addition, trans-
formation of the muscle fibres and abnormal dynamic muscle activation patterns, 
such as excessive co-contraction and diminished agonist force, may play an 
important role in the development of muscle weakness in children with CP 
(Dietz and Berger, 1995; Ito et al., 1996; Cowan et al., 1998; Ikeda and Abel, 
1998; Wiley and Damiano, 1999; Martini et al., 2002). 

Muscle co-contraction can be defined as the simultaneous activation of 
agonist and antagonist muscle groups crossing the same joint and acting in the 
same plane (Olney, 1985). Co-contraction, another aspect of motor behaviour, is 
recognized as a common motor control strategy when stability or improved 
motor accuracy is needed (Van Roon et al., 2005). However, knowledge is 
lacking about the distinction between normal and excessive co-contraction, such 
as might hamper a variety of movements and/or tension generation in children 
with CP (Damiano, 1993). 

Co-activation has been described in the antagonistic muscles in children with 
CP and a suggestion has been made that muscle strength is reduced as a 
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function of coactivation (Zimmermann and Bilaniuk, 2006). Ikeda et al. (1998) 
studied proximal leg extensor (LE) muscles and found that children with CP 
had knee extensor (KE) muscle weakness due to antagonist muscle activity. 
Elder et al. (2003) found that ankle dorsiflexion isometric torque was reduced 
per unit of the muscle cross-sectional area secondary to the dorsiflexor/plantar-
flexor coactivity. An increased co-contraction has been shown qualitatively 
during the gait in children with CP (Berger et al., 1982). Recently, Unnithan 
and colleagues (1995) showed a direct relationship between greater co-
contraction magnitudes, scaled to individual electromyography (EMG) maximal 
values of the muscles of lower extremities during either gait or during testing of 
the isometric MVC force in children with CP. Quantification of the contraction 
during knee flexion and extension isometric MVCs revealed that the children 
with CP had significantly higher co-contraction ratio than normal children 
during knee extension but not during knee flexion (Ikeda et al., 1998). 

It has been suggested, that the increased agonist restraint (co-contraction) 
may also possibly explain the pervasive weakness documented in spastic CP 
(Wiley and Damiano, 1999). Leonard et al. (1991) have suggested that the 
reciprocal inhibition of antagonistic motor neurons via the corticospinal control 
of the Ia inhibitory interneuron is not properly functioning in children with CP. 
Part of the increased coactivation in the above-mentioned studies may also be 
due to the impaired cortical control of the spinal interneurons involved in 
segmental reflex control.  

It is shown that the neuromuscular activation and motor unit (MU) firing 
characteristics, such as firing rate, recruitment and short term synchronisation 
could cause weakness and loss of dexterity typically seen in children with CP 
(Belanger and McComas 1989; Kernell, 1990; Rose et al., 1994; Frontera et al., 
1997; Gerrits et al., 2001). 

Muscle force is highly dependent on the degree of MU activation, which is 
influenced by the development of the central nervous system (Gamperline et al., 
1995; Pääsuke et al., 2000, 2003). A lowered force production in CP has been 
attributed to incomplete MU recruitment (Macefield et al., 1996). The force 
generated by a muscle contraction is determined by the MUs firing rates, which 
is decreased in CP (Harrisson, 1971). The reduced force-generation capacity of 
skeletal muscles in CP could be partly attributable to a reduced ability to recruit 
higher threshold (fast) MUs or to drive lower threshold (slow) MUs to the 
higher firing rates (Rose and McGill, 1998). The inability to produce high firing 
rates could be responsible for the structural abnormalities including type I 
(slow-twitch) muscle fibre predominance and fibre size variability (Rose et al., 
1994). Gibbs et al. (1999) found that children with CP also exhibited a reduced 
short-term synchronization of the MUs in the anterior tibial muscle. The 
reduction of synchronization is thought to reflect a disorder of a direct cortico-
motoneural connection, which would be consistent with a reduction in strength. 
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Another source of CP related weakness may lie within the morphology of 
single muscle fibres or a whole muscle (Rose et al., 1994; Harridge et al., 1996; 
Ito et al., 1996). The most common findings are the increased incidence of 
muscle fibre atrophy, increased intramuscular fat and connective tissue in the 
most involved muscle groups (Rose et al., 1994; Ito et al., 1996; Booth et al., 
2001; Marbini et al., 2002). An increased percent of type I muscle fibres 
(Jacobsson et al., 1992; Rose et al., 1994; Dietz and Berger 1995; Ito et al., 
1996) has been demonstrated in CP. Histological and histochemical studies 
have also shown some mild myopathic changes in muscles and atrophy of type I 
and type II (fast twitch) muscle fibres in children with CP (Rose, 1994). Ito et al. 
(1996) reported a selective atrophy of type II muscle fibres during development 
in CP. Moreover, during growth there is a progressive fibrosis and the number 
of sarcomeres does not increase as rapidly as in children without CP. An 
abnormal variation in the size of muscle fibres and in myosin heavy chain 
expression (Rose, 1994) and an abnormal distribution of acetylcholine receptors 
relative to acetylcholinesterase at the neuromuscular junction (Wiley and 
Damiano, 1999) have been found in children with spastic CP.  

It has been suggested that muscle cells in patients with spastisity are shorter 
and stiffer than normal muscle cells (Friden and Lieber, 2003). Elder et al. 
(2003) demonsterated that muscle weakness in PF muscles in subjects with CP 
is based partly on the reduced muscle cross-section area and an inability to 
produce muscle torque levels commensurate with the cross-sectional area. Also 
we could conclude that these peripheral factors can reduce muscle force-
generation capacity in children with CP. 

In conclusion, the analysis of literature reveals that although CP is defined as 
a non-progressive disorder, muscle function often becomes progressively more 
compromised in CP due to spasticity and often positive features of the upper 
motor neuron syndrome as well as muscle weakness, loss of selective motor 
control and balance deficits as negative features. These impairments lead to 
reduced mobility and difficulties in perfoming everiday functional activities and 
cause diminished quality of life. There is much research which showes that 
muscle weakness in CP is caused by primary impairment but it could depend on 
secondary deterioration too. However, little attention has been paid to the 
evaluation of the capacity of rapid voluntary force production and relaxation, 
and the VA of the skeletal muscles of lower extremities in children with spastic 
diplegic CP. Only few studies have examined twitch contractile properties of 
the skeletal muscles in children with spastic CP. We believe that the knowledge 
about these neuromuscular function characteristics have significance in 
understanding the mechanisms underlying muscle weakness in children with 
spastic diplegic CP. 
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3. OBJECTIVES OF THE STUDY 
 

The main purpose of the present study was to identify the peculiarities of the 
electrically and voluntarily evoked force-generation capacity and the relaxation 
characteristics of the extensor muscles of lower extremities in children with 
spastic diplegic CP. 
 
The specific objectives were: 

 
(1)  To evaluate the isometric MVC force of the KE and plantarflexor (PF) 

muscles, and LE muscles in association with BLD (Papers I–III). 
 
(2)  To assess the electrically evoked isometric twitch contractile characteristics 

of the PF muscles (Paper II). 
 
(3)  To investigate the voluntary activation of the KE muscles (Paper III).    
 
(4) To assess the capacity for rapid isometric voluntary force production and 

relaxation of the KE muscles (Paper III).  
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4. MATERIALS AND METHODS 
 

4.1. Subjects 
 
Twenty-five children with spastic diplegic CP aged 6–12 years and 25 age- and 
gender-matched children without disabilities as controls participated in this 
study. Table 1 demonstrates the division of the subjects and their mean age 
anthropometric characteristics in different studies. 

  
Table 1. Anthropometric characteristics of the subjects (mean±SE). 

 
CP = cerebral palsy;  
BM = body mass;  
BMI = body mass index.  

 
The study was carried out in part of Easten and Southern Estonia and this region 
belongs to the catchment area of the Children’s Clinic of Tartu University 
Hospital. The criteria for contingent selection were: (1) diagnosis of spastic 
diplegia; (2) presence of spasticity with a rating of 2 or 3 on the Modified 
Ashworth Scale (Bohannon and Smith, 1987); (3) no fixed contractures of the 
lower extremities; (4) severity of disorders corresponding mainly to level II on 
the Gross Motor Function Classification System (Palisano et al., 1997), (5) 
ability to ambulate at least 10 m without stopping; (6) no impairment of a visual, 
somatosensory, hearing or vestibular function – ability to follow instructions; (7) 
prepubertal stages of children assessed by Tanner scale (1962) – to eliminate the 
influence of changes that accompany puberty and may affect the outcome of 
parameters. All children (CP and controls) and parents and guardians were 
informed of the purpose and experimental methods and gave a written and 
verbal consent to be participants. The study was approved by the University 
Ethics Committee.  
 

Papers n Age 
(yrs) 

Height 
(cm) 

BM 
(kg) 

BMI 
(kg·m–2) 

 Paper I   
Children with spastic diplegic CP 13 6.4±0.2 119.0±1.8 21.4±0.5 15.4±0.3 
Children without disabilities 13 6.3±0.3 121.1±1.2 23.6±1.1 16.0±0.6 
 Paper II   
Children with spastic diplegic CP 12 11.2±0.2 136.8±2.2 33.0±3.3 17.4±1.2 
Children without disabilities 12 11.2±0.2 138.9±2.2 33.7±2.9 17.3±1.0 
 Paper III   
Children with spastic diplegic CP 12 11.2±0.2 136.8±2.2 33.0±3.3 17.4±1.2 
Children without disabilities 12 11.2±0.2 138.9±2.2 33.7±2.9 17.3±1.0 
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4.2. Study design 
 
The present study was carried out from 1999 to 2004. All measurements were 
performed at the Laboratory of Kinesiology and Biomechanics, University of 
Tartu. 

Recordings were made from the LE, PF and KE muscles that are important 
in posture and movement and are involved in many everyday activities. 

Subjects were given instructions 24 to 48 hours before data collection, and 
the testing of isometric muscle force production and electrical stimulation 
procedures were demonstrated. This was followed by practice sessions to fami-
liarize the subjects with the procedures. The subject's dominant leg was 
determined based on a kicking preference. 

On reporting to the laboratory, the subject sat resting for about 25 min before 
commencing the experiment. The rest period minimized any potentiation effect 
from walking to the laboratory. 

In Paper I, the differences in the isometric MVC force of the LE muscles 
during unilateral and bilateral contractions, and BLD were compared between 
groups of 6-years-old children with spastic diplegic CP (8 girls and 5 boys) and 
age- and gender-matched children without disabilities (8 girls and 5 boys). 

In Paper II, isometric MVC force and electrically evoked isometric twitch 
contraction characteristics, and the capacity for PAP of the PF muscles were 
compared in 11–12-years-old children with spastic diplegic CP (6 girls and 6 
boys) and age- and gender-matched children without disabilities (6 girls and 6 
boys). 

In Paper III, the difference in rapid voluntary force production and relaxation 
capacity of the KE muscles was compared in 11–12-years-old children with 
spastic diplegic CP (6 girls and 6 boys) and age- and gender-matched children 
without disabilities (6 girls and 6 boys). 
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4.3. Methods 
 

4.3.1. Measurement of the leg extensor muscles  
 
Apparatus  
The subjects were seated on a specially designed dynamometric chair in a 
horizontal frame with knee and hip angles equal to 110° and 120°, respectively 
(Raudsepp and Pääsuke, 1995) (Fig. 1). The body position of the subjects was 
secured by two Velcro belts placed over the chest and hip. The feet were placed 
on a footplate mounted on a steel bar held in ball-bearings on the frame. The 
isometric force production of the LE muscles was recorded by a standard strain-
gauge transducer (1778 DST-2, Russia) connected with a footplate. Signals 
from the strain-gauge transducer were linear from 0 to 15000 N. The force 
signals were sampled at a frequency of 1 kHz and stored in a hard disk of a 
computer using software WsportLab (Urania, Estonia). Acceptable reliability of 
the isometric MVC force of the LE muscles during bilateral and unilateral 
contractions in children using this dynamometer was demonstrated (Tammik  
et al., 2004). Test-retest correlations with a 1-week interval between measure-
ments in this study was r=0.86–0.92 in 6-year-old boys and r=0.82–0.89 in age-
matched girls.  
 
Experimental protocol 
Isometric MVC force of the LE muscles was measured during unilateral and 
bilateral contractions (leg press exercise). During testing the subjects were 
instructed to push the footplate as forcefully as possible for approximately 3 s in 
three cases: (1) unilateral contraction of the right leg; (2) unilateral contraction 
of the left leg and (3) bilateral contraction. Three maximal attempts were 
recorded for each case and the best result was taken for further analysis. Strong 
verbal encouragement and visual online feedback were used to motivate the 
subjects. A rest period of 2 min was allowed between the trials. During 
unilateral exertions, the contralateral leg was allowed to rest. The BI was 
calculated by the formula (Howard and Enoka, 1991): 

BI (%) = 100 [BL /(ULR + ULL)] – 100, 

where BL is isometric MVC force during bilateral contraction, ULR and ULL 
are isometric MVC forces during right and left leg unilateral contractions, 
respectively. A negative BI indicated a BLD, while a positive BI indicated a 
bilateral facilitation. 

Twenty-four to fourty-eight hours before data collection the subjects were 
given instructions and the strength testing procedures were demonstrated. This 
was followed by a practice session to familiarize the subjects with the proce-
dures. Durin testing, subjects began with the bilateral contractions, followed by 
the unilateral contractions presented randomly. The same researcher with long-



 

 
 
 
 
 
 
 

 
 

Figure 1. Experimental setup for the measurement of isometric MVC force of the leg 
extensor muscles. 
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term experience in this kind of testing procedure tested all subjects between 11 
am and 3 pm.  

 
 

4.3.2. Measurement of the plantarflexor muscles  
 
 Apparatus 
During the experiment, the subjects were seated in a custom-made dynamo-
meter with the dominant leg (usually the right leg) flexed 90° at the knee and 
ankle angles, and mounted inside a metal frame (Pääsuke et al., 2000) (Fig. 2). 
The foot was strapped to an aluminium footplate. The inclination of the foot 
could be altered by rotating the footplate about an axis that corresponded to that 
of the ankle joint, i.e. the medial malleolus. The knee cap and front side of the 
thigh were held down by an adjustable pad. Torques acting on the footplate was 
sensed by a standard strain-gauge transducer connected with the foot plate by a 
rigid bar. The electrical signals from the strain-gauge transducers were 
amplified and displayed with a special amplifier. The system was linear from 10 
to 1600 N. The point of application of force to the footplate was located on the 
articulation regions between the metatarsus and ossa digitorum pedis. The force 
signals were sampled at a frequency of 1 kHz and stored on a hard disk for 
further analysis.  
 
Electrical stimulation  
To determine the twitch contraction characteristics of the PF muscles, the 
posterior tibial nerve was stimulated through a pair of 2 mm-thick self-adhesive 
surface electrodes (Medicompex SA, Ecublens, Switzerland). Prior to attaching 
the stimulating electrodes, electrode gel was applied to the contact surface, and 
the underlying skin was prepared by shaving, sanding and rubbing with 
isopropyl alcohol. The cathode (5 × 5 cm) was placed over the tibial nerve in 
popliteal fossa and an anode (5 × 10 cm) was placed 2–3 cm proximally to the 
patella (Fig. 2). Supramaximal square wave pulses of 1-ms duration were 
delivered from an isolated voltage stimulator Medicor MG-440 (Budapest, 
Hungary). The evoked compound action potential (M-wave) of the soleus 
muscle was recorded using bipolar (20 mm interelectrode distance) EMG 
electrodes (Beckman miniature skin electrodes). The electrodes were placed 
longitudinally on the belly of the soleus muscle after the skin was cleaned using 
alcohol swabs and abraded lightly with fine sand paper. As a reference electrode, 
self-adhesive surface electrodes (Medicompex SA, 5 × 10 cm) was placed over 
the proximal part of the triceps surae muscle between the stimulating and 
recording electrodes. The EMG signals were amplified and displayed using a 
standard Medicor MG – 440 (Budapest, Hungary) preamplifier with frequency 
band ranging from 1 Hz to 1 kHz. These signals were sampled at 1 kHz. 
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Experimental protocol 
The subjects were given instructions 24 to 48 hours before data collection, and 
the testing of the isometric MVC force of the PF muscles and electrical 
stimulation procedures were demonstrated. This was followed by practice 
sessions to familiarize the subjects with the procedures. The subject’s dominant 
leg was determined based on a kicking preference. 

On reporting to the laboratory, the subject sat resting for about 25 min before 
the dominant leg was placed in the apparatus. The rest period minimized any 
potentiation effect from walking to the laboratory. A maximal isometric twitch 
contraction at rest was elicited by delivering a series of single stimuli of 
increasing intensity until a plateau of M-wave amplitude was obtained. During 
the twitch contraction recording the stimulus intensity varied from 
approximately 25 V to supramaximal in increments of 30–50% (130–150 V). 
Firstly, three maximal isometric twitches of the PF muscles were elicited. Two 
minutes after the last resting twitch was recorded, the subjects were instructed 
to make a 5-s conditioning MVC and then to relax. The postactivation twitch 
contraction was elicited within 2 s after the onset of relaxation. Two minutes 
after the postactivation twitch contraction was recorded, the subjects performed 
three isometric MVCs of the PF muscles. The joint position was the same as for 
the previous twitch contraction measurements. The subjects were instructed to 
push the foot plate as forcefully as possible for 2–3 s. Strong verbal encoura-
gement and visual feedback were used to motivate the subjects. The greatest 
force of the three maximal efforts was taken as the isometric MVC force. Two-
minute rest periods were allowed between trials. The skin temperature of the 
tested muscle group was continuously monitored and maintained at 35ºC with 
an infrared lamp. 

The following characteristics of the resting isometric twitch contraction were 
calculated (Fig. 3): peak force (Pf) – the highest value of isometric force 
production; contraction time (CT) – the time to twitch maximal force; half-
relaxation time (HRT) – the time of half of the decline in twitch maximal force, 
maximal rate of force development (RFD) – the first derivate of the 
development of force (dF/dt) and maximal rate of relaxation (RR) as the first 
derivate of the decline of force (-dF/dt). The percentage increase in the post-
activation twitch Pf in relation to the resting twitch was taken as an indicator of 
the capacity for PAP. The resting twitch Pf was expressed as a ratio to the MVC 
force (Pf:MVC). The MVC force was calculated in relation to BM of the 
subjects (MVC:BM). 
 

 



 

 
 
 
 
 
 

 
 
Figure 2. Experimental setup for the measurement of isometric MVC force and 
electrically evoked twitch contraction characteristics of the plantarflexor muscles. 
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Figure 3. Isometric twitch force-time curve (A) and first derivate (B). Pf – peak force; 
CT – contraction time; HRT – half-relaxation time; RFD – maximal rate of force deve-
lopment (dF/dt); RR – maximal rate of relaxation (-dF/dt). 
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4.3.3. Measurement of the knee extensor muscles  
 
Apparatus  
During measurement the subjects sat in a custom-made dynamometric chair 
with the knee and hip angles equal to 90° and 110°, respectively (Fig. 4). The 
body position of the subjects was secured by three Velcro belts placed over the 
chest, hip and thigh. The unilateral knee extension force was recorded by a 
chair-fixed standard strain-gauge transducer (DST 1778 (Russia) connected 
with the plate by a rigid bar. The strain-gauge transducer pad was placed 
approximately 3 cm above the apex of the lateral malleolus on the anterior side 
of the leg. Signals from the strain gauge transducer were linear from 0 to 2500 
N. The force signals were sampled at the frequency of 1 kHz and stored on a 
hard disk of computer using software WSportLab (Urania, Estonia). 
  
Experimental protocol  
During the testing of isometric MVC force of the KE muscles, the subject was 
asked to exert knee extension against the pad of the strain-gauge system as 
forcefully as possible. The maximal contraction effort was held for approxi-
mately 3 s. Three maximal trials were recorded and the best result was taken for 
further analysis. Strong verbal encouragement and visual online feedback were 
used to motivate the subject. A rest period of 2 min was allowed between the 
trials. The isometric MVC force relative to the BM (MVC:BM) was calculated. 

During testing the isometric force–time and relaxation-time characteristics of 
the KE muscles the subject was instructed to react to the visual stimuli (lighting 
of the signal lamp, placed 1.5 m from the subject) as quickly and forcefully as 
possible by extending the leg against a cuff fixed to a strain gauge system, to 
maintain the maximal effort as long as the signal was on (2 s) and to relax the 
muscles quickly after the disappearance of the signal. Three trials were carried 
out and the trial with higher isometric MVC force was used for further analysis. 
A rest period of 2 min was allowed between the attempts. The following 
characteristics were calculated: latency of contraction (LATC) – the time delay 
between the visual signal and the onset of muscle force production; rate of 
isometric force development at the level of 50% of MVC (RFD50) – the first 
derivate of force development (dF/dt) at the level of 50% of MVC; latency of 
relaxation (LATR) – the time delay between the visual signal stopping and the 
onset of a quick decline in force production during relaxation; and HRT – the 
time of half of the decline in force during relaxation.  

During the testing of the VA of the KE muscles, the transcutaneous electrical 
stimulation with supramaximal square wave pulses of 1 ms duration was 
applied using an isolated voltage stimulator (Medicor MG-440, Hungary) and 
two self-adhesive surface electrodes (5 × 10 cm, Medicompex SA, Ecublens, 
Switzerland) were placed transversely on the proximal (cathode) and distal 
(anode) third of the anterior thigh (Fig. 4). Skin preparation for each electrode 
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included shaving and light abrasion of the skin followed by cleaning with 
isopropyl alcohol. The VA of the KE muscles was estimated by the twitch 
interpolated technique (Knight and Kamen, 2001). Subjects were asked to reach 
their maximal force level in approximately 3 s and to maintain it after the 
supramaximal stimulus was delivered until they were told to relax. The total 
duration of this contraction was approximately 5 s. Visual feedback was 
provided by the display of strain a gauge amplifier. In fully activated KE 
muscles no additional force is generated by the muscles as a result of super-
imposed electrical twitches. If the VA of the KE muscles is reduced, additional 
force can be generated by superimposed twitches (Norregaard et al., 1997). This 
indicates additional activity from MUs not fully activated at the time of 
stimulus. The intensity for supramaximal stimuli was assessed during familiari-
zation session and corresponded to 10% of the above level required to evoke a 
resting maximal twitch contraction (Morton et al., 2005). Three trials were 
performed with the interval of 2 min and the trial with the greatest pre-stimulus 
voluntary force was taken for further analysis. The VA of the KE muscles was 
calculated from force-time curve by the formula:  

VA = (FV : FES) · 100[%], 

where FV is the voluntary isometric force produced immediately prior to the 
electrical stimulus and FES is the peak force produced by the electrical stimulus 
superimposed on the voluntary effort. VA ≥ 95% was used as an operational 
definition of full activation of the KE muscles (Norregaad et al., 1997; Morton 
et al., 2005).  

Subjects were given instructions 24 to 48 hours before data collection, and 
the testing of isometric MVC force, force-time and relaxation-time 
characteristics of the KE muscles and electrical stimulation procedures were 
demonstrated. This was followed by a practice session to familiarize the 
subjects with the procedures. The subject's dominant leg was determined based 
on a kicking preference. During testing, the recording of isometric MVC force 
of the KE muscles followed with the assessment of the isometric force-time and 
relaxation-time characteristics. After a 5 minutes resting period the VA of the 
KE muscles was recorded. The same researcher with long-term experience in 
this kind of testing procedure tested all subjects between 11 am and 3 pm.  

 
 

4.4. Statistical evaluation of the data 
 
Standard statistical methods were used to calculate the means and standard 
errors of the mean (±SE). One-way analysis of variance (ANOVA) followed by 
Tukey (Paper I) and Scheffe (Paper II and III) post hoc comparisons were used 
to test for differences between groups of children, whereas Tukey (Paper I) post 
hoc comparisons were used to test for differences between the legs. In Paper I, 



 

 
 
 
 
 

 
 
Figure 4. Experimental setup for the measurement of isometric MVC force–time and 
relaxation-time characteristics, and voluntary activation of the knee extensor muscles.  

 



 25

Pearson’s linear correlations were calculated to observe the relationship 
between the measured characteristics. In Paper III, main differences in three 
primary measures (MVC force, RFD50 and VA) between two measured groups 
of children were tested for statistical signification (alpha=0.05).  
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5. RESULTS 
 

5.1. Isometric MVC force of the leg muscles 
 
 Isometric MVC force during unilateral contraction of the KE, PF and LE 
muscles was significantly lower in children with spastic diplegic CP compared 
with controls (Table 2 and Fig. 5, see Papers I–III). Children with spastic 
diplegic CP had a significantly lower MVC:BM ratio of the KE and PF muscles 
of the dominant leg (Fig. 6, see Papers II and III) compared with controls. The 
Isometric MVC force of the LE muscles during bilateral contraction was 
significantly lower in children with spastic diplegic CP compared with controls 
(Table 2, see Paper I). As shown in Table 2, the marked negative BI, i.e. BLD 
of the LE muscles was observed in children with spastic diplegic CP and 
controls. However, the BI did not differ significantly (p>0.05) between the 
groups. 

 
Table 2. Isometric MVC force of the leg extensor muscles during UL and BL 
contractions (mean±SE). 
 

Variables Children with spastic 
diplegic CP (n=13) 

Children without 
disabilities (n=13) 

MVC force during BL  
contraction (N) 

394.2±31.0*** 620.2±36.5 

MVC force during UL 
contraction of right leg (N) 
 

287.5±26.7** 409.6±26.1 

MVC force during UL  
contraction of left leg (N) 

250.4±16.3*** 396.7±23.9 

BI (%)  –25.4±5.5 –22.0±3.5  

 
CP = cerebral palsy;  
BL = bilateral;  
UL = unilateral;  
BI = bilateral index 
** p<0.01, *** p<0.001 compared with children without disabilities. 
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Figure 5. Mean (±SE) isometric maximal voluntary contraction (MVC) force of the 
knee extensor (KE) and plantarflexor (PF) muscles of the dominant leg in children with 
spastic diplegic cerebral palsy (CP) and controls. *** p<0.001. 
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Figure 6. Mean (±SE) isometric maximal voluntary contraction (MVC) force relative to 
the body mass (BM) of the knee extensor (KE) and plantarflexor (PF) muscles of the 
dominant leg in children with spastic diplegic cerebral palsy (CP) and controls.  
*** p<0.001. 
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5.2. Force-generation characteristics of electrically evoked 
isometric twitch of the plantarflexor muscles  

 
5.2.1. Twitch peak force 

 
As shown in Fig. 7A (see Paper II), the children with spastic diplegic CP 
produced a significatly lower electrically evoked twitch Pf of the PF muscles in 
resting state as compared with control group. They had also significatly greater 
resting twitch Pf expressed as a ratio to the MVC force (Pf:MVC) (Fig. 7B). 
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Figure 7. Mean (±SE) twitch contraction peak force (Pf) (A) and twitch contraction  
Pf relative to maximal voluntary contraction force (Pf:MVC) (B) of the plantarflexor 
muscles in children with spastic diplegic cerebral palsy (CP) and controls.  
*** p<0.001. 
 

 
5.2.2. Postactivation potentation 

 
The PAP of electrically evoked twitch contraction force of the PF muscles after 
a 5-s conditioning MVC was significantly lower in children with spastic 
diplegic CP compared with control group (Fig. 8, see Paper II). 
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Figure 8. Mean (±SE) post-activation potentiation (PAP) of twitch contraction force of 
the plantarflexor muscles in children with spastic diplegic cerebral palsy (CP) and 
controls. ** p<0.01. 

 
 

5.2.3. Twitch maximal rates of force development and 
relaxation 

 
Electrically evoked twitch maximal RFD and RR of the PF muscles in the resting 
state were significantly lower in children with spastic diplegic CP compared with 
the control group (Table 3, see Paper II). 
 
Table 3. Twitch maximal rates of force development (RFD) and relaxation (RR) of the 
plantarflexor muscles in children with spastic diplegic CP and healthy controls 
(mean±SE).  
 

Study Subject group n RFD 
(N ⋅ s–1) 

RR 
(N ⋅ s–1) 

II Children with spastic 
diplegic CP 12 452.6±40.6*** 492.1±54.6*** 

Controls 12 928.1±110.5 734.4±46.9 

 
CP = cerebral palsy;  
*** p<0.001 compared with controls. 
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5.3. Time-course characteristics of the electrically evoked 
isometric twitch of the plantarflexor muscles  

 
No significant differences (p>0.05) in resting twitch CT and HRT were 
observed between children with spastic diplegic CP and healthy controls (Table 
4, see Paper II). 
 
Table 4. Twitch contraction (CT) and half- relaxation (HRT) times of the plantarflexor 
muscles in children with spastic diplegic CP and healthy controls (means±SE). 
 

Study Subject group n CT 
(ms) 

HRT 
(ms) 

II Children with spastic 
diplegic CP 12 83.4±5.2 87.2±2.1 

Controls 12 83.6±3.8 79.1±6.3 

 
CP = cerebral palsy 

 
5.4. Voluntary isometric force-generation characteristics  

of the knee extensor muscles 
 

5.4.1. Voluntary activation 
 
As shown in Fig. 9 (see Paper III), VA of the KE muscles in children with 
spastic diplegic CP was significantly lower compared with healthy controls. 
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Figure 9. Mean (±SE) voluntary activation (VA) of the knee extensor muscles in 
children with spastic diplegic cerebral palsy (CP) and controls. *** p<0.001. 
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5.4.2. Capacity force rapid voluntary isometric force production  
and relaxation 

 
Isometric RFD50 of the KE muscles was significantly lower in children with 
spastic diplegic CP than in children without disabilities (Fig. 10, see Paper III). 
There were no significant differences (p>0.05) in LATC between the measured 
groups of children in the present study (Fig. 11). However, children with spastic 
diplegic CP had a significantly longer LATR compared with controls (Fig. 11). 
As shown in Fig. 12, HRT after isometric MVC in children with spastic diplegic 
CP was also significantly longer than in children without disabilities.   
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Figure 10. Mean (±SE) rate of isometric force development at level of 50% of maximal 
voluntary contraction (RFD50) of the knee extensor muscles in children with spastic 
diplegic cerebral palsy (CP) and controls. *** p<0.001. 
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Figure 11. Mean (±SE) latency of contraction (LATC) and relaxation (LATR) of the 
knee extensor muscles in children with spastic diplegic cerebral palsy (CP) and controls. 
*** p<0.001.  
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Figure 12. Mean (±SE) half-relaxation time (HRT) after isometric maximal voluntary 
contraction of the knee extensor muscles in children with spastic diplegic cerebral palsy 
(CP) and controls. *** p<0.001. 
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6. DISCUSSION 
 

6.1. Isometric maximal voluntary force-generation  
capacity of the leg muscles 

 
The present data reveals a markedly reduced isometric voluntary force-gene-
ration capacity of the LE muscles during bilateral and unilateral contractions 
(leg press exercise) in 6-year-old children with spastic diplegic CP compared 
with age- and gender-matched healthy children (Paper I). On average, the 
children with spastic diplegic CP produced 36% less isometric MVC force of 
the LE muscles during bilateral contraction than the children without disabilities. 
The difference between the two groups of children was somewhat smaller (31%) 
if force was expressed relative to the BM. On average, isometric MVC of the 
LE muscles of the right and left leg during unilateral contractions in children 
with spastic diplegic CP was 30% and 37% lower, respectively, compared with 
healthy controls.  

In children with spastic diplegic CP aged 11–12 years a marked isometric 
voluntary force deficit in the KE muscles of the dominant leg is evident (Paper 
III). On average, they produced 38% less isometric MVC force of the KE 
muscles and 37% less MVC force relative to the BM, respectively, during 
unilateral contraction than the age- and gender-matched healthy controls. These 
findings are in agreement with the data reported by Damiano et al. (1995), who 
observed an isometric voluntary force deficit of 31% in KE muscles of children 
with spastic diplegic CP. Moreover, Damiano et al. (1995) and Stackhouse et al. 
(2005) have demonstrated an even more pronounced isometric force deficit (46–
56%) in the KE muscles of children with spastic diplegic CP. A marked deficit 
in voluntary force production in the knee extensor muscles in children with 
spastic diplegia may explain the reduced ability to stretch the knees while 
standing and walking (Radtka et al., 2005).  

Similarly to many previous studies (Wiley and Damiano, 1999; Damiano  
et al., 2001; Buckon et al., 2002; Elder et al., 2003; Rose and McGill, 2005; 
Stackhous et al., 2005), the present results reveal a markedly reduced voluntary 
isometric force-generation capacity of the PF muscles in children with CP 
(Paper II). On average, they produced 76% less isometric MVC force and also 
less MVC force relative to the BM in the dominant leg in comparison with the 
control group. This finding is in accordance with that of Stackhouse et al. 
(2005), who demonstrated 73% less isometric MVC force of the PF muscles in 
boys with CP (mean age 10.5 years) compared with the healthy boys. Several 
studies, which have investigated the pathological gait pattern in children with 
spastic diplegic CP, have concluded that spasticity of posterior calf muscles is 
the main reason for toewalking and the inability to push off in the late stance 
phase during walking. On the other hand, if spasticity is reduced, the gait 
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pattern does not improve in many children with the above mentioned gait 
abnormalities, which would let us suggest that plantarflexor muscle weakness 
could also contribute to poor walking ability (Damiano and Abel, 1998; Wiley 
and Damiano, 1999; Engsberg and Ross, 2007). 

This study reveals a negative BI, i.e. BLD of the LE muscles in 6-year-old 
children with spastic diplegic CP and in children without disabilities (Paper I). 
The mean values of BI in children with spastic diplegic CP and their age- and 
gender-matched controls were similar: –25.4% and –22.0%, respectively. 
However, there were 4 children with spastic diplegic CP and 2 healthy children 
who had a positive BI, i.e. bilateral strength facilitation. One possible expla-
nation for this phenomenon is that some children, especially with spastic 
diplegia, have difficulties performing a reciprocal movement, and their ability to 
produce bilateral force may develop to a greater degree. Limited information is 
available on lower extremity BLD in subjects with CP. Tihanyi and Horvath 
(2000) reported that in patients with spastic CP aged 15–20 years BI of the KE 
muscles was –32%. However, several investigators have observed BLD in the 
muscles of lower extremities in healthy adult subjects. Taniguchi (1997) 
observed that BI ranged from –19% to –7% in male students. Secher et al. 
(1988) reported BI of –20% in untrained persons, –14% in weightlifters and  
–24% in cyclists. The BI observed by Schantz et al. (1989) was –14% in the 
untrained male group and –8% in the heavy-resistance trained male group. 

Neural mechanisms seem to be the cause of the BLD in humans. The nature 
of the neural mechanisms must ultimately involve altered MU discharge 
frequency and/or recruitment during maximal voluntary bilateral contraction 
(Secher et al., 1978; Vandervoort et al., 1984; Oda and Moritani, 1995, 1996; 
Ikeda et al., 1998; Rose and McGill, 1998, 2005). The BLD may be caused by 
reduced activation of higher threshold (fast) MUs (Owings and Grabiner, 1998). 
The unilateral muscle contraction is mainly controlled by the contralateral 
cerebral hemisphere. The bilateral muscle contraction is considered to be 
generated by a simultaneous activation of both hemispheres. Although the exact 
mechanisms of BLD are still unclear, the neural interaction between the two 
hemispheres connected by commissural nerve fibres may by involved (Koh and 
Grabiner, 1993; Oda, 1997; Jakobi and Cafarelli, 1998; Janzen et al., 2006). It 
has been shown that BLD was associated with reduced movement-related corti-
cal potentials caused by a mechanism of interhemispheric inhibition (Oda, 
1997). It has also been reported that BLD may be related to inhibitory spinal 
reflexes (Ohtsuki, 1983) and that it may be a consequence of a disproportionate 
increase in the coactivation of antagonist muscles (Bax, 1964; Howard and 
Enoka, 1991; Kuban and Leviton, 1994; Oda and Mortiani, 1996; Burtner et al., 
1998; Ikeda et al., 1998; Damiano et al., 2000). 

Isometric MVC force of the LE muscles during bilateral contractions, ex-
pressed in absolute values as well as relative to the BM, correlated (p<0.05) 
negatively with the BI (r= –0.75 and r= –0.78, respectively) in 6-years-old 
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children with spastic diplegic CP (Paper I). This finding suggests that BLD is 
most obvious in children with spastic diplegic CP with a considerably decreased 
maximal and body mass related voluntary isometric force-generating capacity 
of the LE muscles during bilateral contraction. No significant correlation was 
observed between BI and maximal force during isometric bilateral or unilateral 
contractions of the LE muscles in healthy controls. Therefore, in children 
without cerebral palsy the leg extensor muscle BLD is obviously not necessarily 
related to a reduction in isometric force-generating capacity during bilateral 
contraction. 
 
 

6.2. Electrically evoked isometric twitch characteristics  
of the plantarflexor muscles 

 
This study (Paper II) was designed to develop a better understanding of the 
contractile properties of the skeletal muscles in prepubertal children with and 
without spastic diplegic CP. The results indicate that the electrically evoked 
isometric twitch Pf is 40% lower in children with spastic diplegic CP aged 11-
12 years compared with healthy children. The decrease in the twitch Pf may be 
associated with a loss of the muscle cross-sectional area and a decrease in the 
number of type II muscle fibres (Rose et al., 1994; Ito et al., 1996., Marbini et 
al., 2002). One indicator of voluntary activation capacity of a muscle is the 
twitch force:MVC force ratio. In this study, the children with spastic diplegic 
CP had a 60% greater Pf:MVC force ratio compared with the control group. 
This finding indicates a significantly reduced VA capacity of the PF muscles in 
children with spastic diplegic CP. Hence, in children with CP, the isometric 
voluntary force generation capacity of the PF muscles is relatively more 
reduced than the electrically evoked twitch force generation capacity. 

The present study revealed no differences in time-course characteristics (CT 
and HRT) of the resting twitch of the PF muscles in children with spastic 
diplegic CP in comparison with the control group. However, a reduction in 
twitch maximal RFD and RR in PF muscles in children with spastic diplegic CP 
in comparison with healthy children, is evident. In children with spastic diplegic 
CP, the twitch maximal RFD and RR were lower, by 51% and 42% (p<0.001), 
respectively. The time course characteristics (CT and HRT) as well as RFD and 
RR are considered to be highly related to intracellular Ca2+ movement (Klug et 
al., 1988; Westerblad et al., 1997; Theroux et al., 2002; Hamada et al., 2003). 
Hence, similar values of CT and HRT in children with spastic diplegic CP and 
healthy children together with decreased RFD and RR values in children with 
spastic diplegic CP suggest that other mechanisms besides differences in 
intracellular Ca2+ kinetics might be responsible for a reduction in RFD and RR. 
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The force of an electrically evoked twitch is greater after a brief MVC 
compared with the corresponding value at rest. This enhancement has been 
termed PAP (Vandervort et al., 1984; Hamada et al., 2003). The major finding 
of our study is that children with spastic diplegic CP have significantly reduced 
PAP of twitch contraction force in the PF muscles after a brief conditioning 
isometric MVC than the age- and gender-matched control children. The mean 
values of PAP of twitch force were 111% and 136% (p<0.01) for children with 
spastic diplegic CP and the control group, respectively. Previous studies 
indicated that PAP of twitch force in the PF muscles in healthy 9–10-year-old 
girls and boys was 123% and 138%, respectively (Pääsuke et al., 2003), and 
144% for 11-year-old boys (Pääsuke et al., 2000). The mechanism responsible 
for twitch PAP is considered to be phosphorylation of myosin regulatory light 
chains during a conditioning MVC, which renders actin-myosin more sensitive 
to Ca2+ in a subsequent twitch (Grange et al., 1993; Sweeney et al., 1993). A 
potential explanation for the reduced capacity of twitch PAP in children with 
spastic diplegic CP may lie in morphological changes in the skeletal muscles 
occurring in CP. Such factors, as myopathic changes and type I muscle fibre 
predominance (Marbini et al., 2002), and selective atrophy of type II muscle 
fibres (Ito et al., 1996) can reduce twitch potentiation capacity in skeletal 
muscles of children with spastic diplegic CP. An alternative potential expla-
nation for reduced capacity for twitch PAP in children with spastic diplegic CP 
compared with children without CP might be the differences in MU activation 
during a conditioning isometric MVC. The greater MVC force of the PF 
muscles in the control group observed in the present study could be partly 
attributable to a greater activation of the higher threshold fast MUs composed of 
type II muscle fibres. It was observed that type II muscle fibres exhibit the 
greater twitch PAP (Hamada et al., 2003). Thus, the decreased capacity for 
twitch PAP in children with spastic diplegic CP may be partly explained by a 
decreased ability to activate the higher threshold MUs during conditioning 
activity. 
 
 

6.3. Voluntary activation and capacity  
for rapid voluntary force production and relaxation  

of the knee extensor muscles 
 
The degree of VA is rarely taken into consideration when assessing maximal 
isometric force in a clinical samples. VA refers to the level of neural drive to a 
muscle during MVC. A majority of VA studies using the twitch interpolation 
technique during isometric MVC have concluded that healthy young adult 
subjects can completely or nearly completely (VA > 95%) activate the KE 
muscles (Norregaard et al., 1997; Knight and Kramer, 2001; Morton et al., 2005; 
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Miller et al., 2006). The present study showed a markedly reduced VA of the 
KE muscles in children with spastic diplegic CP aged 11-12 years compared 
with healthy children. The mean VA for control children and children with 
spastic diplegic CP was 94% and 74%, respectively. Our results indicate that 
normal prepubertal children have near to complete activation of the KE muscles, 
whereas children with CP demonstrate incomplete activation during MVC. 
However, Ramsay et al. (1990) demonstrated incomplete activation of the KE 
muscles in healthy prepubertal boys aged 9–11 years using the twitch 
interpolation technique. This incomplete activation may represent differences in 
the recruitment of MUs between children and adults. To our knowledge, only 
Stackhouse et al. (2005) have measured the VA of the KE muscles in children 
with spastic diplegic CP. They found a 33% VA deficit in boys with CP (mean 
age 10.5 years) compared with age-matched healthy boys. We observed a 20% 
lower VA in children with spastic diplegic CP in comparison with healthy 
children of a similar age. The differences between the two studies could partly 
be attributed to the different methods of measurement of VA. In our study, the 
twitch interpolation technique was used, however, Stackhouse et al. (2005) used 
the burst superimposition technique with 13-pulse train at 100 Hz. Hence, the 
VA of the KE muscles is reduced in children with spastic diplegic CP in 
comparison with healthy children of the same age.   

The RDF50 of the KE muscles during fast MVC was 64% lower in children 
with spastic diplegic CP compared with healthy children (Paper III). The 
difference in isometric MVC between these two groups of children was 37%. 
Hence the capacity for rapid voluntary force production in children with CP is 
reduced to a greater extent than isometric MVC force. 

The MVC force and RFD of KE muscles are dependent upon the degree of 
MU activation (Willy and Damiano, 1998; Morton et al., 2005), antagonist 
coactivation (Damiano et al., 1995; Elder et al., 2003), and peripheral factors 
(Rose et al., 1994).  

The reduction in voluntary isometric force-generation capacity of the 
skeletal muscles in children with CP could be partly attributable to a reduced 
ability to recruit higher threshold (fast) MUs or to drive lower threshold (slow) 
MUs to higher firing rates (Rose, 2005). We found that children with spastic 
diplegic CP were more deficient in RFD than MVC. This finding supports the 
notion of an inability to adequately recruit fast MUs.  

Increased antagonist co-activation could also contribute to measured deficits 
in voluntary muscle force production in CP (Damiano et al., 1995; Elder et al., 
2003). Specifically, it has been observed that children with spastic CP had a 
significantly higher co-contraction ratio of KE and hamstrings muscles than 
normal children during knee extension (Ikeda and Abel 1998). Co-contraction 
increases joint stiffness, which makes movement more laborious. Damiano et al. 
(1995) suggested that the co-contraction ratio of KE and hamstrings muscles 
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occurred during testing the isometric knee extension MVC was well as during 
gait. 

In addition, several peripheral factors have an impact on voluntary force 
production capacity and therefore may explain differences between children 
with CP and healthy children. For example, an increased incidence of muscle 
fibre atrophy, increased intramuscular fat and connective tissue in the most 
involved muscle groups and an increased percent of type I muscle fibres have 
been demonstrated in CP. Histological and histochemical studies have shown 
mild myopathic changes in muscles and atrophy of type I and type II muscle 
fibres in children with CP (Rose et al., 1994). Ito et al. (1996) reported a 
selective atrophy of type II muscle fibres in CP. Moreover, during growth there 
is a progressive fibrosis and the number of sarcomeres does not increase as 
rapidly as in children without CP. An abnormal variation in the size of muscle 
fibres and myosin heavy chain expression (Lewis et al., 1986; Rose et al., 1994) 
has been found in children with spastic CP. It has been suggested that muscle 
cells in patients with spasticity are shorter and stiffer than normal muscle cells 
(Friden and Lieber, 2003).    

The central and peripheral processes in the human motor system can be 
assessed by reaction time to visual or auditory stimuli. In the present study a 
visual signal was used for this purpose. There was no difference in the LATC 
between the groups of children studied in the conditions of unilateral MVC of 
the KE muscles. Consequently, the process of movement preparation of children 
with CP is not impaired in comparison with healthy children. 

The novel aspect of the present study was to compare the capacity for rapid 
voluntary relaxation of the KE muscles following maximal unilateral effort in 
children with and without CP. The measured time-course characteristics of the 
voluntary muscle relaxation, LATR and HRT, were both 69% longer in children 
with CP.  

Voluntary muscle relaxation, i.e. the termination of an ongoing muscle 
contraction has an important role in the execution of complex movements in 
humans. This is particularly relevant during a rapid sequence of movements 
when activation must switch between different sets of contracting muscles 
(Buccolier et al., 2004). The neurophysiological mechanisms underlying volun-
tary muscle relaxation in humans are not well understood. A reduction of the 
cortical motor output can be achieved by the activation of inhibitory cortical 
areas (Lyders et al., 1995). Both primary and supplementary motor areas may 
be activated during voluntary muscle relaxation (Toma et al., 1999). Heinonen 
et al. (1999) used transcranial magnetic stimulation for investigating the 
paradigm of transcallosal inhibition. They observed a lack of this inhibitory 
mechanism in adolescent children with spastic diplegic CP. Inhibitory mecha-
nisms could be activated at the spinal level by a pathway descending to the 
spinal cord. A neuronal population within the motor cortex can cause spinal 
presynaptic inhibition by activating inhibitory interneurons in the spinal cord 
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(Schmidt and McIntosh, 1990). A defect of the mechanisms mentioned above 
may contribute to the impairment of voluntary relaxation of the KE muscles in 
children with spastic diplegic CP.  

In addition to that, increased antagonist coactivation, may contribute to the 
measured deficits in voluntary muscle relaxation in CP (Ikeda et al., 1998; Elder 
et al., 2003).  

Moreover, it has been suggested that abnormal reflexes can restrict the 
execution of voluntary movement in patients with spasticity (Mizrahi and Angel, 
1979).  

After all, the prolongation of rapid voluntary relaxation observed in the 
present study may be influenced also by peripheral factors. It has been observed 
that the duration and rate of muscle relaxation depend on the sarcoplasmic 
reticulum Ca2+ uptake and the rate of cross-bridge kinetics (Westerblad et al., 
1997). These intracellular processes may be affected by muscle fibre atrophy 
and myopathic changes in muscles in children with CP. 
 
 

6.4. Summary 
 
This study examined the peculiarities of force generation and relaxation 
capacity of the extensor muscles of lower extremities in children with spastic 
diplegic CP. Weakness in all LE, PF and KE muscles appears to partly result 
from the inability of the damaged motor pathways to provide sufficient 
excitatory drive to the motoneuron pool to fully activate all available MUs. 
High-intensity strength training at levels close to maximal contraction, may be 
effective for reducing the movement deficit and improving gait by increasing 
voluntary excitatory drive and muscle activation. Peripheral factors, including 
changes in muscle contractile properties, also contribute to muscle weakness. 
Hence, electrical stimulation may facilitate preservation of muscle structure in 
combination with high-intensity voluntary contraction. PAP increases muscle 
force-generation capacity. This phenomenon could be used for increasing the 
efficiency of rehabilitation programmes, particularly for counteracting muscle 
fibre atrophy and myopathic changes in the muscles of children with spastic 
diplegic CP. Moreover, hindering muscle fibre atrophy and myopathic changes 
could improve the capacity of voluntary relaxation of the muscles.  
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CONCLUSIONS 
 
1. The maximal isometric voluntary force-generating capacity of the leg 

extensor, knee extensor and plantarflexor muscles is lower in children with 
spastic diplegic CP compared with age- and gender-matched children 
without disabilities. 

 
2. The bilateral strength deficit of the leg extensor muscles does not differ in 

children with spastic diplegic CP in comparison with children without 
disabilities. 

 
3. Electrically evoked isometric twitch force-generation and relaxation, and 

postactivation potentiation capacity in plantarflexor muscles is lower in 
children with spastic diplegic CP compared children without disabilities. 

 
4. The voluntary activation of the knee extensor muscles is lower in children 

with spastic diplegic CP compared with children without disabilities. 
 
5. The impaired capacity for rapid voluntary relaxation of the knee extensor 

muscles in children with spastic diplegic CP is dependent on both, the 
delayed reaction and slowing of the muscle relaxation process.  
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SUMMARY IN ESTONIAN 
 

NÄRVI-LIHASSÜSTEEMI FUNKTSIONAALNE VÕIMEKUS 
SPASTILISE DIPLEEGILISE SÜNDROOMIGA LASTEL 

 
Sissejuhatus 

Laste tserebraalparalüüs (paralysis cerebralis infantilis, lüh. PCI) on mitte-
progresseeruv kompleksne neuroloogiline arengupuue, kus kesksel kohal on 
motoorikahäire. Tuginedes kirjanduse andmetele võib väita, et motoorne 
düsfunktsioon tuleneb nii lihaste spastilisusest kui ka nende nõrkusest. Viimasel 
ajal on jõutud seisukohale, et lihasjõu oluline vähenemine PCI korral tuleneb 
suurel määral motoorse kontrolli häiretest. Lihasjõudu on PCI korral uuritud nii 
unilateraalse kui ka bilateraalse tahtelise aktivatsiooni tingimustes, samas on 
aga puudulikud teadmised bilateraalse jõudefitsiidi osas. Lihasjõu genereerimise 
võimet on uuritud eelkõige selle tekkemehhanismide osas, kuid puuduvad 
andmed tahtelise lõõgastuse iseärasuste kohta PCI-ga lastel. 

Siiski PCI korral ei ole lihasnõrkus ainult tsentraalse päritoluga, vaid see 
võib tuleneda ka perifeersetest muutustest lihases eneses. Seoses sellega on 
aktuaalne uurida lihaste kontraktiilseid omadusi PCI-ga lastel. Lihaste 
kontraktiilsete omaduste määramine põhineb elektrostimulatsiooni meetodil, 
mis võimaldab närvi-lihassüsteemi funktsioonide uurimisel eristada lihastes 
toimuvaid nihkeid muutustest lihaseid juhtivates motoorsetes keskustes.  

Käesoleva töö eesmärgiks oli välja selgitada alajäsemete sirutajalihaste jõu-
genereerimis- ja lõõgastusvõime iseärasused spastilise dipleegilise sündroomiga 
lastel tahtelise lihasaktivatsiooni ja elektrostimulatsiooni tingimustes, võrreldes 
neid samas vanuses tervete lastega (kontrollrühmaga).  

 

Uurimistöö ülesanded 
 
Töös püstitati järgmised ülesanded: 
1.  Hinnata alajäsemete sirutajalihaste (reienelipealihase, sääremarja-kolm-

pealihase ja alajäsemete sirutajalihaste summaarset) tahtelist isomeetrilist 
maksimaaljõudu, samuti bilateraalset jõudefitsiiti. 

2.  Hinnata sääremarja-kolmpealihase supramaksimaalse elektrostimulatsioo-
niga esile kutsutud isomeetrilise üksikkontraktsiooni karakteristikuid, sh. 
aktiivsusjärgset potentseerumist. 

3.  Hinnata reienelipealihase tahtelist aktivatsiooni. 
4.  Hinnata reienelipealihase kiire tahtelise isomeetrilise pingutuse ja lõõgastuse 

võimet. 
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Vaatlusalused ja metoodika 
 

Uuringus osales kokku 28 tütarlast ja 22 poeglast vanuses 6–12 aastat. Nendest 
esimese grupi moodustasid spastilise dipleegilise sündroomiga lapsed (n=25) ja 
teise (kontroll-) grupi moodustasid samas vanuses terved lapsed (n=25). Kõik 
lapsed suutsid järgida instruktsioone, sh. uuringusse kaasatud PCI-ga lapsed 
suutsid kõndida iseseisvalt vähemalt 10 m. 

Nii alajäsemete sirutajalihaste tervikuna kui ka üksikute lihasrühmade (reie 
nelipealihase ja sääremarja-kolmpealihase) funktsionaalse võimekuse hinda-
miseks kasutati spetsiaalseid elektromehaanilisi dünamomeetrilisi seadmeid, 
mis võimaldavad lihasjõudu määrata isomeetrilise kontraktsiooni tingimustes. 
Alajäsemete sirutajalihaste summaarset tahtelist maksimaaljõudu hinnati nii 
uni- kui ka bilateraalse isomeetrilise pingutuse tingimustes, arvutades bila-
teraalse jõudefitsiidi. Üksikute lihasrühmade (reienelipealihase ja sääremarja-
kolmpealihase) tahtelist maksimaaljõudu hinnati unilateraalse isomeetrilise 
pingutuse tingimustes. Sääremarja-kolmpealihase isomeetrilise üksikkontrakt-
siooni karakteristikute määramisel kasutati supramaksimaalset indirektset (n. 
tibialis aktivatsiooni kaudu esile kutsutud) elektrostimulatsiooni, kasutades 
ristkülikimpulssi kestusega 1 ms. Isomeetriline üksikontraktsioon kutsuti esile 
nii puhkeolekus kui ka vahetult pärast 5 s kestnud tahtelist maksimaalset 
isomeetrilist pingutust (aktiivsusjärgse potentseerumise tingimustes). Määrati 
kontraktsioonijõud, kiirus ning kestus, samuti lõõgastusfaasi kiirust ja kestust 
iseloomustavad karakteristikud. Reienelipealihase tahtelise aktivatsiooni 
hindamisel sooritas vaatlusalune maksimaalse isomeetrilise pingutuse kestusega 
4–5 s, mille käigus kutsuti 1 ms kestusega supramaksimaalse ristkülikukujulise 
elektriimpulsiga esile antud lihasrühma isomeetriline üksikkontraktsioon. 
Üksikkontraktsiooni ekstrapolarisatsiooni meetodil arvutati dünamogrammilt 
tahtelise aktivatsiooni protsent. Reienelipealihase tahtelise isomeetrilise pingu-
tuse ja lõõgastuse kiiruse hindamisel tuli vaatlusalusel reageerida valgus-
signaalile maksimaalselt kiire ja tugeva lihaspingutusega, hoida maksimaalset 
lihaspinget signaali vältel (2 s) ning signaali väljalülitamisel lihased kiirelt 
lõõgastada. Arvutati lihaspingutuse ja lõõgastuse latentsiajad, jõugradient ja 
lihaste lõõgastuseks kulunud aeg.  

 
 

Uurimistöö põhitulemused 
 

Töö tulemused näitavad, et spastilise dipleegilise sündroomiga lastel on ala-
jäsemete sirutajalihaste isomeetriline jõud märgatavalt väiksem kui samas 
vanuses tervetel lastel. Seejuures alajäsemete sirutajalihaste bilateraalne jõu-
defitsiit spastilise dipleegilise sündroomiga ja tervetel lastel oluliselt ei erine. 
Elektrostimulatsiooniga esile kutsutud sääremarja-kolmpealihase isomeetrilise 
üksikkontraktsiooni jõu ja kiiruse ning aktiivsusjärgse potentseerumise näitajad 
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on spastilise dipleegilise sündroomiga lastel väiksemad kui tervetel lastel. 
Spastilise dipleegilise sündroomiga lastel on reienelipealihase tahtelise aktivat-
siooni näitaja märgatavalt väiksem kui tervetel lastel. Samuti on neil märga-
tavalt vähenenud reienelipealihase kiire tahtelise lõõgastuse võime maksimaalse 
isomeetrilise pingutuse tingimustes, mis väljendub nii lõõgastuse latentsiaja 
pikenemises (pidurdusprotsesside tekke hilinemises) kui ka lihaste lõõgastumise 
aeglustumises. Seejuures pingutuse latentsiaeg (liigutustegevuse ettevalmistus-
faasi kestus) spastilise dipleegilise sündroomiga ja tervetel lastel oluliselt ei 
erine. 
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ABSTRACT 
 
Isometric voluntary force production and relaxation capacity of the quadriceps 
femoris (QF) muscle was compared between 12 children with spastic diplegic 
cerebral palsy (CP) and healthy controls, aged 11–12-years. Children with CP 
had less (p<.05) maximal voluntary contraction force, voluntary activation and 
rate of force development than controls. Visual reaction to contraction did not 
differ significantly in measured groups, whereas the reaction time to relaxation 
and half-relaxation time were longer (p<.05) in children with CP. We concluded 
that in children with CP, the capacity for rapid voluntary force production and 
relaxation is reduced to a greater extent than isometric maximal force. 
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INTRODUCTION 
 
Cerebral palsy (CP) is an umbrella term for a group of frequent disorders of 
motor function due to a nonprogressive lesion of the developing brain. Many 
subtypes of CP have been defined, with spastic diplegia and hemiplegia being 
the most prevalent. A significant weakness of the muscles of lower limbs has 
been suggested in children with spastic diplegic CP (8, 22 26, 30), which can be 
associated with difficulties performing everyday functional activities. The 
majority of studies assessing muscle weakness in children with spastic CP have 
indicated a markedly reduced isometric maximal voluntary contraction (MVC) 
force (3, 8, 26, 30) or isokinetic peak torque (5, 9) of different muscle groups as 
compared to age- and gender-matched healthy children. Reduced force 
production in children with CP has been attributed to either incomplete 
recruitment or decreased motor unit discharge rates during MVC (5, 30). An 
increased muscle cocontraction as the simultaneous activation of agonist and 
antagonist muscle groups is an important factor of neuromuscular impairment 
during CP (4, 8, 12). Knowledge of mechanisms underlying muscle weakness in 
lower extremities in children with spastic diplegic CP is necessary to develop 
more effective interventions for increasing force production in such children.   

A significantly reduced isometric MVC force of the quadriceps femoris 
muscle (QF) has been observed in children with spastic diplegic CP as 
compared to age- and gender-matched healthy children (3, 6, 26). A reduced 
force production of the knee extensor muscles has been shown to be related to 
diminished functional capacity in children with CP, as evidenced by lower 
scores on the Gross Motor Function Measure and increased energy expenditure 
during gait in the weaker children (15). The weakness of the QF muscles in 
children with spastic diplegic CP can in part be attributed to a central activation 
failure, i.e., the inability of the central nervous system to fully recruit and 
optimally activate available motor units. The ability to achieve complete 
activation of the QF muscle in healthy and clinical population is commonly 
assessed by twitch interpolation (14, 20) and the burst superimposition (17, 26) 
techniques, both with superimposing the supramaximal electrical stimulus while 
a subject performs an isometric MVC. Any increment in force from the stimulus 
suggests incomplete activation of the muscle. It is assumed that the 
superimposed stimulation will recruit muscle fibres that are not activated by 
voluntary effort and thereby will produce an extra force that is superimposed on 
the voluntary force. However, only one previous study (26) has compared 
voluntary activation (VA) of the QF muscle in children with and without spastic 
diplegic CP, indicating a significantly lowered VA in children with CP. Little 
attention has been paid to investigating the capacity for rapid voluntary force 
production and relaxation of the QF muscle in children with spastic diplegic CP, 
which is an important indicator of neuromuscular performance and movement 
control. 
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The purpose of this study therefore was to compare voluntary force 
production and relaxation capacity of the QF muscle in prepubertal children 
with spastic diplegic CP and age- and gender-matched healthy controls. The QF 
muscle plays an important role in many movement activities, including gait. 
This muscle group has a great importance in the function and stability of the 
knee joint as well as prevention of knee injuries. We hypothesized that the 
children with spastic diplegic CP would exhibit a reduced isometric MVC force 
and VA, and impaired capacity for rapid voluntary isometric force production 
and relaxation of the QF muscle, whereas the capacity for rapid isometric force 
production and relaxation in children with CP is reduced to a greater extent than 
isometric MVC force. 
 
 
MATERIAL AND METHODS 
 
Subjects 
Twelve prepubertal children aged 11–12 years (6 girls and 6 boys) with spastic 
diplegic CP and 12 age- and gender-matched children without disabilities (also 
6 girls and 6 boys) as controls participated in this study (Table 1). Inclusion 
criteria for children with CP included: diagnosis of spastic diplegia; presence of 
spasticity with a rating of 2 or 3 on the Modified Ashworth Scale (1); ability to 
ambulate at least 10 meters without stopping and no fixed contractures or 
previous surgery on the lower limb. The children with spastic diplegic CP were 
also classified according to the Gross Motor Function Classification System 
(21). Accordingly, two were on Level I, eight on Level II and two on Level III. 
All children were able to follow instructions. None of the children had an 
impairment of visual, somatosensory, hearing or vestibular function. Pubertal 
stages were determined according to the criteria of Tanner (27) by a pediatrician 
of the same gender as the subject. The children were classified as prepubertal if 
pubic hair and genital development for boys and breast development and pubic 
hair for girls were both scored as stage 1. All children (CP and controls) and 
parents and guardians were informed of the purpose and experimental methods 
and gave written and verbal consent to be participants. The study carried the 
approval of the University Ethics Committee.  
 
Apparatus and Experimental Protocol 
During measurement the subjects sat in a custom-made dynamometric chair 
with the knee and hip angles equal to 90° and 110°, respectively. The body 
position of the subjects was secured by three Velcro belts placed over the chest, 
hip and thigh. The unilateral knee extension force was recorded by a chair-fixed 
standard strain-gauge transducer (DST 1778, Russia) connected with the plate 
by rigid bar. The strain-gauge transducer pad was placed approximately 3 cm 
above the apex of the lateral malleolus on the anterior aspect of the leg. Signals 
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from the strain gauge transducer were linear from 0 to 2500 N. The force 
signals were sampled at the frequency of 1 kHz and stored on a hard disk of a 
computer using software WSportLab (Urania, Estonia).  

During the testing of isometric MVC force of the QF muscle, the subject was 
asked to exert knee extension against the pad of the strain-gauge system as 
forcefully as possible. The maximal contraction effort was held for 
approximately 3 s. Three maximal attempts were recorded and the best result 
was taken for further analysis. Strong verbal encouragement and visual online 
feedback were used to motivate the subject. A rest period of 2 min was allowed 
between the attempts. Isometric MVC force relative to body mass (MVC:BM) 
was calculated. 

During testing isometric force–time and relaxation-time characteristics of the 
QF muscle the subject was instructed to react to the visual stimuli (lighting of 
the signal lamp, placed 1.5 m from the subject) as quickly and forcefully as 
possible by extending the leg against a cuff fixed to a strain gauge system, to 
maintain the maximal effort as long as the signal was on (2 s) and to relax the 
muscles suddenly after the disappearance of the signal. Three attempts were 
carried out and the trial with higher isometric MVC force was used for further 
analysis. A rest period of 2 min was allowed between the attempts. The 
following characteristics were calculated were calculated: latency of contraction 
(LATC) – the time delay between the visual signal and the onset of force 
production; rate of isometric force development (RFD50) – the first derivate of 
force development (dF/dt) at the level of 50% of MVC; latency of relaxation 
(LATR) – the time delay between the visual signal stopping and onset of quick 
decline in force production during relaxation; and half-relaxation time (HRT) – 
the time of half of the decline in force during relaxation.  

During the testing of VA of the QF muscle the transcutaneous electrical 
stimulation with supramaximal square wave pulses of 1 ms duration was 
applied using an isolated voltage stimulator (Medicor MG-440, Hungary) and 
two self-adhesive surface electrodes (5 × 10 cm, Medicompex SA, Ecublens, 
Switzerland) placed transversely on the proximal (cathode) and distal (anode) 
third of the anterior thigh. Skin preparation for each electrode included shaving 
and light abrasion of the skin followed by cleaning with isopropyl alcohol. 
Voluntary activation of the QF muscle was estimated by twitch interpolated 
technique (14). Subjects were asked to reach their maximal force level in 
approximately 3 s and to maintain it after the supramaximal stimulus was 
delivered and until they were told to relax. The total duration of this contraction 
was approximately 5 s. Visual feedback was provided by the display of strain 
gauge amplifier. In fully activated QF muscle no additional force is generated 
by the muscle as a result of superimposed electrical twitches. If VA of the QF 
muscle is reduced, additional force can be generated by superimposed twitches 
(20). This indicates additional activity from motor units not fully activated at 
the time of stimulus. The intensity for supramaximal stimuli was assessed 
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during familiarization session and corresponded to 10% of the above level 
required to evoke a resting maximal twitch contraction (19). Three trials were 
performed with the interval of 2 min and the trial with the greatest pre-stimulus 
voluntary force was taken for further analysis. The VA of the QF muscle was 
calculated from force-time curve by the formula:  

VA = (FV : FES) · 100 [%], 

where FV is the voluntary isometric force produced immediately prior to the 
electrical stimulus and FES is the peak force produced by the electrical stimulus 
superimposed on the voluntary effort. VA ≥ 95% was used as operational 
definition of full activation of the QF (19, 20).  

Subjects were given instructions 24 to 48 hours before data collection, and 
the testing of isometric MVC force, force-time and relaxation-time characte-
ristics of the QF muscle and electrical stimulation procedures were demonst-
rated. This was followed by a practice session to familiarize the subjects with 
the procedures. The subject's dominant leg was determined based on a kicking 
preference. During the testing, the recording of isometric MVC force of the QF 
muscle followed with the assessment of isometric force-time and relaxation-
time characteristics. After 5 min rest period VA of the QF muscle was recorded. 
The same researcher with long-term experience in this kind of testing procedure 
tested all subjects between 11 am and 3 pm.  
 
Statistics  
Data are means and standard errors of mean (±SE). One-way analysis of 
variance (ANOVA) followed by Scheffe post hoc comparisons were used to test 
for differences between groups. A level of p<0.05 was selected to indicate 
statistical significance. Main differences in three primary measures in the 
present study (MVC force, RFD50 and VA) between children with CP and 
controls were tested for statistical significance (alpha = 0.05). Statistical power 
analysis demonstrated that 12 children in each group is a sufficient number to 
detect a significant difference (β < 0.080) in MVC force (β = 0.99), RFD50  
(β = 0.98) and VA (β = 0.99). 
 
 
RESULTS 
 
As shown in Figure 1, prepubertal children with spastic diplegic CP had a 
significantly lower (p<0.05) isometric MVC force, isometric MVC force:BM 
ratio and isometric RFD50 of the QF muscle compared to the age- and gender-
matched healthy controls. In children with spastic diplegic CP, HRT was 
significantly longer (p<0.05) than in controls (Fig. 2A). When compared to 
controls, VA of the QF muscle in children with spastic diplegic CP was 
significantly lower (p<0.05) (Fig. 2B). There were no significant differences 
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(p>0.05) in LATC between the measured groups of children in the present study 
(Fig. 3A). However, children with spastic diplegic CP had a significantly longer 
(p<0.05) LATR compared to controls (Fig. 3B).  
 
 
DISCUSSION 
 
The present study indicated a marked isometric voluntary force deficit in the QF 
muscle in prepubertal children with spastic diplegic CP. Children with CP 
produced 38% less isometric MVC force and 37% less MVC force relative to 
body mass than the age- and gender-matched healthy controls. Damiano et al. (4) 
reported isometric voluntary force deficit of 31% in the QF muscle for children 
with spastic diplegic CP at the same knee joint angle (90°) during testing as in 
the present study, whereas Stackhouse et al. (26) demonstrated isometric force 
deficit of 56% in the QF muscle for these children at the knee joint angle of 60°. 
In the present study, children with CP had 64% less isometric RFD50 of the QF 
muscle during fast MVC compared to controls. This fact supports our hypo-
thesis of a relatively greater deficiency in the capacity for rapid voluntary force 
production than in isometric MVC force of the QF muscle in children with 
spastic diplegic CP. Routine measurements of isometric MVC force include 
many potential sources of error, the most important of which is a possible lack 
of central drive to the muscles (19). The degree of VA is rarely taken into 
consideration when assessing maximal isometric force in clinical contingent. 
VA refers to the level of neural drive to muscle during MVC. A majority of VA 
studies using twitch interpolation technique during isometric MVC have 
concluded that adult young healthy subjects can completely or nearly 
completely (VA > 95%) activate the QF muscle (19, 20). In the present study, 
the mean VA percentage of the QF muscles for control children and children 
with spastic diplegic CP was 94% and 74%, respectively. Our results indicated 
that normal prepubertal children had near by complete activation of the QF 
muscle, whereas children with CP demonstrated incomplete activation. Ho-
wever, Ramsay et al. (22) demonstrated incomplete activation of the QF muscle 
also in healthy prepubertal boys aged 9–11 years using twitch interpolation 
technique. This incomplete activation may represent maturational differences in 
the recruitment of motor units between children and adults. Only Stackhouse et 
al. (26) measured previously VA of the QF muscles in children with spastic 
diplegic CP by burst superimposition technique, suggesting 33% VA deficit in 
boys with CP (with mean age of 10.5 years) compared to age-matched healthy 
boys. The present study indicated 21% VA deficit in children with spastic 
diplegic CP of similar age, whereas differences between two studies can in part 
be attributed to the different methods of measurement of VA.  



 7

The reduced voluntary isometric force-generation capacity of the skeletal 
muscles in children with CP could be partly attributable to a reduced ability to 
recruit higher threshold (fast) motor units or to drive lower threshold (slow) 
motor units to higher firing rates (23). The present results indicated that children 
with spastic diplegic CP were more deficient in the capacity for rapid isometric 
force production than in maximal isometric force during slower voluntary effort, 
supporting the notion of an inability to adequately recruit fast motor units. 
Increased antagonist coactivation could also contribute to measured deficits in 
voluntary muscle force production in CP (4, 8, 12). It has been observed that 
children with spastic CP had significantly higher cocontraction ratio of QF and 
hamstrings muscles than normal children during knee extension (12). Cocont-
raction increases joint stiffness, which makes movement more laborious. Da-
miano et al. (4) suggested that cocontraction ratio of QF and hamstrings 
muscles during testing isometric knee extension maximal isometric force corre-
lated directly with those during gait. A reduced isometric MVC force and rate of 
force development of the QF muscle in children with CP can in part be also 
attributed to peripheral factors. An increased incidence of muscle fibre atrophy, 
increased intramuscular fat and connective tissue in the most involved muscle 
groups and increased percent of slow-twitch (type I) muscle fibres (13, 24) have 
been demonstrated in CP. Histological and histochemical studies also have 
shown mild myopathic changes in muscles and atrophy of type I and type II 
muscle fibres in children with CP (24). Ito et al. (13) reported a selective atrophy 
of type II muscle fibres during the development in CP. An abnormal variation in 
the size of muscle fibres and myosin heavy chain expression (24) has been 
found in children with spastic CP. It has been suggested that muscle cells in 
patients with spasticity are shorter and stiffer than normal muscle cells (10).  

The movement preparation process can be assessed by reaction time to 
visual or auditory stimuli. Our data indicated no significant differences in the 
indicator of visual reaction (LATC) when performing unilateral MVC of the QF 
muscle between the groups of children with and without spastic diplegic CP. 
These results indicated that the reaction time of isometric muscle contraction 
was not significantly prolonged in children with CP, suggesting that movement 
preparation was not affected.  

The novel aspect of the present study was to compare the capacity for rapid 
voluntary relaxation of the QF muscle following maximal unilateral effort in 
children with and without CP. The measured time-course characteristics of the 
voluntary muscle relaxation, LATR and HRT, were both 69% longer in children 
with CP as compared to controls. The voluntary muscle relaxation, i.e. 
termination of an ongoing muscle contraction has an important role in the 
execution of complex movement in humans, particularly during rapid sequence 
of movements when activation must switch between different sets of contracting 
muscles (2). The neurophysiological mechanisms underlying voluntary muscle 
relaxation in humans are not well understood (2). A reduction of cortical motor 
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output can be achieved by the activation of inhibitory cortical areas, and both 
primary and supplementary motor areas may be activated during voluntary 
muscle relaxation (28). Using transcranial magnetic stimulation to investigate 
the paradigm of transcallosal inhibition, Heinen et al. (11) indicated a lack of 
inhibitory control of the motor cortex by this inhibitory mechanism in 
adolescent children with diplegic CP. Inhibitory mechanisms can be activated at 
the spinal level by pathway descending to the spinal cord. A neuronal 
population within the motor cortex can cause spinal presynaptic inhibition by 
activating inhibitory interneurons in the spinal cord (25). A defect of the above 
mechanisms may contribute to the impairment of voluntary relaxation of the QF 
muscle in children with spastic diplegic CP. Increased antagonist coactivation, 
typically observed in CP (4, 8, 12), increases joint stiffness and could contribute 
to the measured deficits in voluntary muscle relaxation. It has been suggested 
that abnormal reflexes can restrict the execution of voluntary movement in 
patients with spasticity (18). The prolongation of HRT observed in the present 
study can be influenced also by peripheral factors. It has been observed that the 
duration and rate of muscle relaxation depend on sarcoplasmic reticulum Ca2+ 
uptake and rate of cross-bridge kinetics (29). These intramuscular processes can 
be affected by muscle fibre atrophy and myopathic changes in muscles in CP. 

It has been indicated that maximal voluntary muscle force production capa-
city of the QF muscle (4, 7) and some aspects of movement function (gait, sit-
to-stand, jumping performance) (16) in children with mild-to-moderate CP can 
be improved by strength training programs. Results of our study suggest that 
improvement of capacity for rapid voluntary contraction and relaxation of the 
QF muscle should be considered when designing strengthening exercise 
protocols for children with spastic diplegic CP. A limitation of this study was a 
relatively small number of children (6 girls and 6 boys) in both groups and, 
therefore, the gender differences were not analyzed. More research is needed on 
the pathophysiologic basis of impaired capacity for rapid voluntary muscle 
force production and relaxation in spastic diplegic CP, the effect of therapeutic 
intervention and the functional benefit of reducing this impairment in subjects 
with CP.  

In conclusion, the present study indicated a markedly reduced isometric 
MVC force and voluntary activation, impaired capacity for rapid voluntary 
isometric force production and relaxation of the QF muscle in children with 
spastic diplegic CP. The rate of isometric force development in children with 
spastic diplegic CP was reduced to a greater extent than isometric MVC force, 
supporting the notion of a reduced ability to adequately recruit higher threshold 
motor units. The impaired capacity for rapid voluntary relaxation of the QF 
muscle following a short-time maximal effort is dependent both on delayed 
reaction and slowing of muscle force-relaxation process. No significant 
impairment in movement preparation during rapid MVC of the QF muscle were 
observed in children with spastic diplegic CP, assessed by visual reaction time.  
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Table 1. Anthropometric Parameters of the Subject Groups 
________________________________________________________________ 
 Groups 
Variable Children with CP (n = 12) Controls (n = 12) 
Age (years) 11.2±0.7 11.2±0.7 
Height (cm) 136.8±7.6 138.9±7.6 
Body mass (kg) 33.0±11.4 33.7±10.0 
Body mass index (kg⋅m–2) 17.4±4.2 17.3±3.5 

 
Note. CP = cerebral palsy. Variables are expressed as mean ± standard deviation. No 
significant differences (p>0.05) were noted among groups.  
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Figure 1. Mean (±SE) isometric maximal voluntary contraction (MVC) force (A), 
MVC force relative to body mass (MVC:BM) (B) and rate of isometric force 
development at level of 50% of MVC (RFD50) (C) of the quadriceps femoris muscle in 
children with cerebral palsy (CP) and controls. *** p<0.001.  
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Figure 2. Mean (±SE) half-relaxation time (HRT) (A) and voluntary activation (VA) (B) 
of the quadriceps femoris muscle in children with cerebral palsy (CP) and controls.  
** p<0.01; *** p<0.001.  
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Figure 3.  Mean (±SE) latency of contraction (LATC) (A) and relaxation (LATR) (B) of 
the quadriceps femoris muscle in children with cerebral palsy (CP) and controls. 
*** p<0.001.  
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