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Introduction

Nowadays, demand on accurate statistics of population sub-groups or do-
mains increases. This statistics can be obtained from surveys, or, sometimes,
aggregated from registers. It may happen that even if the register contains
variables under interest, it does not contain identifies of the domains under
our particular interest. As follows, these domain totals can not be produced
from that register, they need to be estimated from a survey. The survey
has to collect information on the same study variable but together with do-
main identifiers. As a result, the consistency problem occurs, the domain
estimates from the survey do not sum up to the totals available from the reg-
isters. Analogical problem arises in the multi-survey situation, where some
study variables are common in two or more surveys. Domain estimates from
one survey do not sum up to the estimates of larger domains (or population
totals) from another survey. Yet, there is one more situation where the con-
sistency problem occurs. Domains themselves and the population total may
be estimated by conceptually different estimators in the same survey. As a
result, the domain totals do not sum up to the population total, or to the
relevant larger domains.

The described inconsistency is annoying from the statistics users viewpoint.
Statisticians know that the relationships between population parameters do
not necessarily hold for the estimates in a sample. They also know that any
auxiliary information incorporated into estimators may increase precision of
these estimators. In our situation known relationships between population
parameters is a kind of the auxiliary information. If one could use this infor-
mation in the estimators, one were able to make estimators more accurate
and force them to satisfy desired restrictions. Elaboration and study of con-
sistent domain estimators that are more accurate than the initial estimators
is general topic of the current thesis.
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The problem is not new, consistency of estimators has been considered for
some time. For example, if consistency is required between two surveys or
between a survey and a register, some authors (Zieschang 1990, Renssen and
Nieuwenbroek 1997, Traat and Särndal 2009, Dever and Valliant 2010) have
proposed classical calibration approach as a solution. In this approach, the
common variables are considered as additional auxiliary variables, and con-
sistency requirement is presented in terms of calibration constraints. Other
authors (Kroese and Renssen 1999, Knottnerus and Van Duin 2006) use
different calibration approach for this situation, called repeated weighting.
They re-calibrate the initially calibrated estimators to satisfy the consistency
constraints with outside information.

Yet another approach is proposed by Knottnerus (2003). His general re-
striction (GR) estimator is constructed upon unbiased initial estimators so
that the result satisfies desired linear restrictions. The GR estimator has
many good properties like unbiasedness and higher precision compared to
that of the initial estimator. Under certain assumptions the GR estimator
is optimal in a class of estimators satisfying given restrictions. The ideas of
the GR estimator were extended for consistent domain estimation by Sõstra
(2007) and further elaborated in Sõstra and Traat (2009).

The Knottnerus approach is able to obtain consistency in both situations:
1) consistency between estimators from different data sources, 2) consis-
tency between estimators in the same data source. In this thesis Knottnerus
approach is taken as a basis for consistent estimation. This choice was mo-
tivated by the optimality properties and by our focus on the situation 2) in
domain estimation.

In addition, a generalization had to be made. All earlier works have concen-
trated on the unbiased estimation. Similarly, Knottnerus (2003) and Sõstra
(2009) assume unbiased initial estimators. In domains case, however, also
biased estimators become useful. For example the model-based estimators
(Rao, 2003), the synthetic (or projection) estimator (Särndal et al., 1992, pp.
408-412, Yung and Rubin-Bleuer, 2007) are often used for small domains.
Though potentially biased, they are appealing due to their small variability.
However, it is not known so far, how the biased initial estimators will affect
the final GR estimator, after the consistency restrictions are put on. The
properties of these final estimators are unknown.

In this thesis we concentrate on the estimation of the domain and the popu-
lation totals under summation restriction. We allow biased as well unbiased
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initial estimators for domains. The classes of initial estimators for the GR
estimator were chosen to be the generalized regression (GREG) family, and
the family of synthetic (SYN) estimators.

The GREG estimator is well studied and widely used by statistical agencies.
By using auxiliary information this model-assisted estimator is more precise
than the estimator without auxiliary information. The GREG estimator is
nearly unbiased (Särndal et al., 1992, p. 237), but at the domain level, and
especially in small domains, it may have large variability, (Lehtonen and
Pahkinen, 2004, p. 196).

The synthetic estimator is much less studied than GREG, especially in gen-
eral level. The mutual relationships between the SYN and the GREG are
not systematically studied either. The SYN estimator is model-based. Study
variable values are predicted by auxiliary variables. Once having predictions,
it is very convenient to compute domain or population totals just by sum-
ming the predicted values in the respective domains or in the population.
The estimates can be produced even for the domains with no sampled units,
given the auxiliary variable values for each unit. Due to this convenience,
the synthetic estimator is often used in practice (Yung and Rubin-Bleuer,
2007). As an additional positive feature, it has small variability. Its negative
feature is potential bias, especially if the underlying model is misspecified.

We assume that both the GREG and the SYN estimators may be simulta-
neously used in the domains under study, and in the population. It is known
that both estimators the GREG and the SYN for domains can be constructed
under different model specifications (Lehtonen and Pahkinen 2004, pp. 187-
213) − under the P-model (population level model) and under the D-model
(domain level model). The estimators under D-models are called the direct
estimators, because they use the study variable values only from a given do-
main. The estimators under P-models uses values of the study variable also
from other domains and therefore are called indirect estimators. This thesis
concentrates on the properties of the SYN-D and the SYN-P estimators. We
are especially interested in the respective biases and in the the mean square
errors. Their expressions are needed in our restriction estimators.

The goals of the current thesis are:

– Construction of the new domain estimators (the GR estimators) that
satisfy summation restriction. As a generalization, the biased initial
estimators are allowed in this construction.
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– Working out properties of the proposed GR estimators; the bias, the
mean square error (MSE) matrix. Based on these properties, showing
superiority of the new GR estimators over initial estimators. Estab-
lishing the MSE-matrix ordering of the estimators (in Löwner sense).

– Studying properties of the GREG and the SYN domain estimators,
that were chosen as the building blocks for the GR estimator.

– Deriving their linearization-based biases and the MSE expressions, for
the population and for the domains case as well. In the domains case
considering both the D- and the P-models.

– Deriving cross-MSE’s for different estimators.

– Studying a sufficient condition for the equality of the GREG and the
SYN estimators, both in the population and in the domain level.

– Developing all properties of the estimators in general level, valid for
all sampling designs. Applying them for the simple random sampling
without replacement and for the multinomial designs.

– Illustrating and confirming results in a simulation study on real data.

Domain estimation is a multivariate problem, since ordinarily, there are
many domains under estimation. This multivariate feature calls for bringing
up matrix technique which is used throughout the thesis. The accuracy
of the estimators is also measured with multivariate tools − with the MSE
matrix. Similarly to the univariate notion, it allows to compare the accuracy
of both the unbiased and biased multivariate estimators.

We use the design based approach, i. e. the properties of the estimators
(such as expectation, variance/covariance and the MSE) are determined by
the sampling design and by the study variable values in the finite population.
Sampling design is considered as a multivariate distribution, and a sample
as an outcome from that distribution, a realization of the sampling vector.
We assume that sample sizes in domains are not too small, i. e. we do not
consider small area estimation methods.

Our study method is mathematical. The statements are formulated as
propositions, and proved with mathematical methods. Notions and results
from probability theory, mathematical statistics and survey sampling theory
are used.
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This thesis is organized in the following way.

Chapter 1 gives the necessary matrix tools and properties that are used in the
further chapters. Some of these tools (e. g. projectors, matrix differentiation
and some others) are not so common, especially in survey sampling field.
The basics of the design-based inference, with emphasis on the multivariate
notions, are presented. Among others, the covariance and the MSE matrices
of the estimators are defined, and their properties given.

In Chapter 2 we give the main results of this thesis on the domain estima-
tion under restrictions, where biased initial estimators are allowed. We first
introduce the Knottnerus (2003) GR estimator, and give an example where
this estimator, if applied to the biased initial estimators, becomes biased
itself, and is not better than the initial estimator. In Propositions 2.2 - 2.4
we propose three new GR estimators with the MSE smaller than that of the
initial estimators. In Proposition 2.5 we also order MSEs of the three GR
estimators and the initial estimator, and find out the best one.

The attention of Chapter 3 is turned to the classes of initial estimators. Two
classes are described thoroughly here: the GREG and the SYN estimators,
both for the population and for the domain estimation. We describe situa-
tions and the condition, when these two estimators are equal. The Taylor
expansions of these estimators are derived (up to the second order terms for
the GREG). Based on these, we give the approximate biases, covariances
and the MSEs of the estimators. The properties leading to the equality of
GREG and SYN estimators are also considered. In the domains case we con-
sider two underlying models for the GREG and SYN estimators, the P- and
the D-models. We study properties of these estimators and give general ex-
pressions for the approximate MSEs between the domain and the population
GREG and SYN estimators (they are needed in our GR estimators). Under
some conditions these MSEs simplify which is also shown in this chapter.

Chapter 4 presents simulation results. The real data of the healthcare per-
sonnel of Estonia is used. The aim is to illustrate the performance of the
three GR estimators in the practical situation. The population of about
22000 persons is divided into four domains of different sizes and the samples
of size 400 are drawn by the SI and the MN designs. Two study variables
are considered, the continuous and the binary variables. The inconsistency
problem of the initial domain estimators is illustrated by tables and figures.
It is also shown that all three GR estimators satisfy restrictions. The MSE
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matrices of the GR and the initial estimators are computed from the the-
oretical formulas, and found also empirically. It is demonstrated that the
MSEs of the GR estimators are smaller than that of the initial estimator. It
is also demonstrated that the MSE-inequalities of the GR estimators, proved
in the theoretical part, hold. The theoretical MSEs were linearization-based
approximate MSEs. Nevertheless, empirical MSEs were very close to them.
That holds both for the initial estimators and for the GR estimators.

Chapter 5 summarizes main results of the present thesis.

17



Chapter 1

Preliminaries

In this chapter we give basic definitions and results from matrix algebra that
are needed for the following chapters. The books by Harville (1997), Kollo
and von Rosen (2005), Puntanen and Styan (2004) are mostly used. We also
introduce the design-based inference of sampling theory that is basis for the
probabilistic properties of the estimators derived in this thesis (Särndal et
al., 1992, and in the language of sampling vectors, Traat, 2000). We add a
multivariate perspective to these notions.

1.1 Tools of matrix algebra

1.1.1 Basic notions and properties

Let A = (aij) : n×m be a real matrix with elements aij , where i = 1, 2, ..., n
and j = 1, 2, ...,m (A ∈ Rn×m). If n = m, the matrix is a square matrix.
The notation a = (ai) is used for a column vector with elements ai.

The n×m matrix with all elements equal to 1 is denoted by 1n×m. A vector
of n ones is written as 1n (or just 1). Analogically, 0n×m denotes a matrix
where all elements are zero.

Three different matrix products are used in this thesis. The ordinary product
of A and B : m× l is

AB = C = (cij) : n× l,

18



where cij =
∑m

k=1 aikbkl. The elementwise Hadamard or Schur product with
a matrix B = (bij) : n×m is

A ◦B = (aijbij) : n×m. (1.1)

The Kronecker product with a matrix B : k × l is a block matrix, where
(i, j)-block is aijB

A⊗B = (aijB) : nk ×ml. (1.2)

For any matrix A the Kroneckerian power is given by

A⊗k = A⊗ ...⊗A︸ ︷︷ ︸
k times

.

The transpose of A = (aij) is A′ = (aji) : m × n. A square matrix A is
symmetric, if A = A′. According to Harville (1997, p.52), it holds for any
A : n×m and B, C : m× p,

AB = AC if and only if A′AB = A′AC. (1.3)

For the matrix product the following properties hold:

(AB)′ = B′A′, (1.4)
(A ◦B)′ = A′ ◦B′, (1.5)
(A⊗B)′ = A′ ⊗B′, (1.6)
(A⊗B)(C⊗D) = AC⊗BD, (1.7)
(A + B)⊗ (C + D) = A⊗C + A⊗D + B⊗D + B⊗D, (1.8)

where A, B, C and D are of the appropriate dimensions.

For any two matrices A,B : n×m,

A = B if and only if Ax = Bx, (1.9)

for any vector x : m× 1 (Harville, 1997, Lemma 2.3.2).

The diagonalization of A : n×n produces a diagonal matrix diag(A): n×n,
with aii on the main diagonal. Similarly, diag(a): n×n denotes the diagonal
matrix having the vector a = (a1, a2, ..., an)′ on the main diagonal.

The n× n identity matrix is denoted by In. The identity matrix satisfies

InA = AIm = A.
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A square matrix A is idempotent if

A2 = AA = A.

Let |A| denote a determinant of A : n × n. If |A| 6= 0, then matrix A is
called non-singular and then a unique inverse of A exists (Harville, 1997,
p.178). The inverse of A is denoted by A−1 and it is defined by the equality:

A−1A = AA−1 = In.

Any matrix B : m× n that satisfies

A = ABA (1.10)

is called a generalized inverse of the matrix A and it is denoted by A− = B.

For a non-singular matrix A, it is clear that

AA−1A = A,

and if A− is the generalized inverse of A, then

A− = (A−1A)A−(AA−1) = A−1AA−1 = A−1.

A symmetric matrix is non-negative (positive) definite if x′Ax ≥ 0 (x′Ax >
0) for any vector x 6= 0. It appears that for any matrix A : n×m the product
AA′ is non-negative definite (Kollo and von Rosen, 2005, p.12).

A matrix A : n × n is a symmetric positive definite matrix if and only if
(Harville, 1997, p.219) there exists a non-singular matrix B such that

A = B′B. (1.11)

Any positive definite matrix is non-singular (Harville, 1997, p.213).

If for the square matrices A and B it holds,

x′(A−B)x > 0 for any x 6= 0, (1.12)

then A ≥ B in the sense of Löwner ordering (Rao and Rao, 1998, p.508). If
A ≥ B, then aii ≥ bii, ∀i.
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For any matrix A = (a1|a2|...|am) : n×m, where ai is a column vector of
A, its vectorized form is defined as

vec(A) =

 a1
...

am

 : nm× 1. (1.13)

Let us have A : n×m,B : m×k,C : k× l and D : n×m. Then the following
properties of the vec-operator hold (Lütkepohl,1996, pp.20-21):

vec(ABC) = (C′ ⊗A)vecB; (1.14)
vec(A ◦D) = diag(vecA)vecD = diag(vecD)vecA. (1.15)

For vectors a and b
vec(ab′) = b⊗ a. (1.16)

The pq × pq matrix Kp,q, consisting of q × p blocks is called commutation
matrix, if in the (i, j)-th block the (j, i)-th element equals to one, while all
other elements in that block are zeros (Kollo, van Rosen, 2005, p. 79-82).
Main properties of this matrix are

Kp,q = K′
q,p; (1.17)

Kp,qKq,p = Ipq; (1.18)
Kp,1 = K1,p = Ip; (1.19)
vecA′ = Kp,qvecA for any A : p× q, (1.20)
A⊗B = Kp,r(B⊗A)Ks,q for B : r × s. (1.21)

1.1.2 Linear spaces and projectors

The column space C(A) of an n×m matrix A is the set of all n-dimensional
vectors generated by the columns of A:

C(A) = {y : y = Ax,x ∈ Rm}. (1.22)

The null space N (A) (or nullity) of A is defined by

N (A) = {x ∈ Rm : Ax = 0}. (1.23)
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Many properties of column spaces are given in Kollo and von Rosen(2005,
pp. 48-49). Here we bring the necessary.

The relation C(A) ⊂ C(B) means that every vector in C(A) belongs to C(B)
but not vice versa.

Proposition 1.1 For any n×m matrix A and n×p matrix B, C(A) ⊂ C(B)
if and only if there exists an m× p matrix M such A = BM.

Definition 1.1 Let A be an n ×m matrix. A square matrix P : n × n is
called a projector matrix (or simply a projector) onto column space of A if
for an arbitrary vector v ∈ Rn,

Pv ∈ C(A), (1.24)

and for any vector u ∈ C(A),

Pu = u. (1.25)

A projector P, if a symmetric matrix, is called an orthogonal projector.

Harville (1997, p. 166) has shown that the matrix PA : n×n is an orthogonal
projector onto C(A) if and only if

PA = A(A′A)−A′. (1.26)

Definition 1.2 For any matrix A : n × m and for the positive definite
symmetric matrix V : n × n, the symbol PA;V is used for the following
n× n matrix:

PA;V = A(A′VA)−A′V. (1.27)

If V = I in (1.27) then we get the orthogonal projector PA in (1.26).

In some literature (e.g. Puntanen and Styan, 2004; Harville, 1997) the
matrix PA;V is called the orthogonal projector onto C(A) with respect to V
(or just onto CV(A)).

Many properties of the matrix PA;V are given in Harville (1997, pp. 261-
263). The most important of them are given below, they follow from the
definition of PA;V.
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Proposition 1.2 Let A be any n × m matrix, and V : n × n symmetric
positive definite matrix. Then,

PA;VA = A, imlying that VPA;VA = VA; (1.28)
VPA;V = (VPA;V)′, so VPA;V is symmetric; (1.29)

V(I−PA;V) =
(
V(I−PA;V)

)′ ; (1.30)

PA;VV−1 = (PA;VV−1)′; (1.31)
P′

A;VVA = VA; (1.32)

P′
A;VVPA;V = VPA;V; (1.33)

(I−PA;V)′V(I−PA;V) = V(I−PA;V); (1.34)

P2
A;V = PA;V, that is PA;V is idempotent; (1.35)

PA;VB = B for any B : n× l such that C(B) ⊂ C(A). (1.36)

1.1.3 Matrix differentiation and Taylor expansion

Assume, that the matrix X : p×q is mathematically independent and variable
(m.i.v.). It means that all elements of X are non-constant; no two or more
elements are functionally dependent.

Definition 1.3 (Kollo and von Rosen, 2005, p.127) Let the elements of
Y : r × s be functions of X : p× q. The matrix dY

dX : pq × rs is called
matrix derivative of Y by X in a set A, if the partial derivatives ∂ykl/∂xij

exist, are continuous in A, and their location in the matrix is specified by

dY
dX

=
∂

∂vecX
vec′Y, (1.37)

where

∂

∂vecX
=

(
∂

∂x11
, ...,

∂

∂xp1
,

∂

∂x12
, ...,

∂

∂xp2
, ...,

∂

∂x1q
, ...,

∂

∂xpq

)′
. (1.38)

Some basic properties of the matrix derivative, needed in this work, are listed
below (Kollo and von Rosen, 2005, p.149).
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Proposition 1.3 Let X : p× q, m.i.v., Y : r × s, Z : m× n and A, B be
the constant matrices of the proper size. Then

d(cX)
dX

= cIpq, where c is a constant; (1.39)

d(A′X)
dX

= Iq ⊗A; (1.40)

d(A′vecX)
dX

= A; (1.41)

d(Y + Z)
dX

=
dY
dX

+
dZ
dX

, where Z : r × s; (1.42)

d(AYB)
dX

=
dY
dX

(B⊗A′); (1.43)

dX−1

dX
= −X−1 ⊗ (X′)−1, if X is non-singular; (1.44)

if Z = Z(Y) and Y = Y(X), then
dZ
dX

=
dY
dX

dZ
dY

; (1.45)

if W = W(Y(X),Z(X)), then
dW
dX

=
dY
dX

dW
dY

∣∣∣∣
Z=const

+
dZ
dX

dW
dZ

∣∣∣∣
Y=const

(1.46)

d(X′)
dX

= Kq,p, (1.47)

d(Y⊗ Z)
dX

=
{

dY
dX

⊗ vec′Z + vec′Y⊗ dZ
dX

}
(Is ⊗Kr,n ⊗ Im), (1.48)

where Kq,p is the commutation matrix.

In this thesis we need the multivariate Taylor series expansion formulated
in the next proposition.

Proposition 1.4 (Kollo and von Rosen, 2005, p. 151) If the function f(x)
from Rp to Rq has continuous partial derivatives up to the order (n + 1) in
a neighborhood D of a point x0, then the function f(x) can be expanded
into the Taylor series at the point x0 in the following way:

f(x) = f(x0)+
n∑

k=1

1
k!

(
Iq ⊗ (x− x0)⊗(k−1)

)′ (dkf(x)
dxk

)′∣∣∣∣∣
x=x0

(x−x0)+rn,

(1.49)
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where

rn =
1

(n + 1)!

(
Iq ⊗ (x− x0)⊗(k−1)

)′ (dn+1f(x)
dxn+1

)′
∣∣∣∣∣
x=ξ

(x− x0), (1.50)

for some ξ ∈ D.

In the special case of n = 2 and q = 1, the Taylor expansion up to the second
order term follows from (1.49),

f(x) = f(x0) +
(

df(x)
dx

)′∣∣∣∣
x=x0

(x− x0)

+
1
2
(x− x0)′

(
d2f(x)

dx2

)′
∣∣∣∣∣
x=x0

(x− x0) + r2. (1.51)

1.2 Basics of the design based inference

In this thesis we consider the design-based approach, i.e. properties of the
estimators, such as expectation and variance/covariance, are determined by
the sampling design and by the study variable values in the finite population.

1.2.1 Sampling design

Consider a finite population U = (1, 2, ..., N) that consist of N units. A
probability sample is drawn from U according to some sampling design.
Sampling design is a probability distribution of a random sampling vector
I = (I1, I2, ..., IN )′:

I ∼ p(k) = Pr(I = k), (1.52)

where k = (k1, k2, ..., kN )′ is an outcome of I (Traat et al. 2004, Tillé, 2006).
The random variable Ii indicates the number of selections of unit i from U ,
with E(Ii) being the expected number of selections.

For without-replacement (WOR) designs Ii ∈ {0, 1} and for the with-replacement
(WR) designs Ii ∈ {0, 1, 2, ...}. Note that the sample size n can be expressed
as

n = I′1,
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where 1 is the N -dimensional vector of ones.

Depending on the sampling design, n can be random or fixed. A sampling
design with fixed n is called a fixed size sampling design.

Two sampling designs are used in this thesis, the simple random sampling
without replacement (SI) as the representative of the equal probability de-
signs, and the multinomial (MN) design as the representative of the unequal
probability designs.

For the SI design, the sampling vector has equal probabilities on all samples
of size n, whereas other samples have zero probability,

Pr(I = k) =
(

N

n

)−1

, if I′1 = n.

The important characteristics of the SI design, necessary for the design-
based inference, are the expectations and the variances/covariances of the
elements of I, (Särndal et al., 1991, p.66-72, Cochran, 1977, p.28-29). We
use them in matrix form,

E(I) = (f, f, ..., f)′, (1.53)
Cov(I) = ∆ = f(1− f)(I−C), (1.54)

where f = n/N is sampling fraction; C : N ×N is the matrix with zeros on
the main diagonal and (N − 1)−1 elsewhere, and I is the identity matrix.

For the MN design the distribution of the sampling vector I is the multino-
mial, I ∼ M(n, p1, p2, ..., pN ) which gives probabilities for all samples of size
n,

Pr(I = k) = n!
N∏

i=1

pki
i

ki!
, if I′1 = n.

The characteristics of this design (see Traat and Ilves, 2007) in matrix form
are:

E(I) = (np1, np2, ..., npN )′ = np; (1.55)

Cov(I) = ∆ =
1
n

(
diag(p)− pp′

)
, (1.56)

where p = (p1, p2, ..., pN )′ is the vector of selection probabilities.
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The traditional name for the MN design in the literature is − the unequal
probability with-replacement design. This name refers to the selection proce-
dure of a sample, selection of units with replacement and with fixed selection
probabilities at each selection step. The name multinomial design refers to
the probability law of this design − the multinomial distribution.

The equal probability designs have a favorable feature − estimation can
be perform without weighting. Thus, the sample mean and the sample
proportion estimate unbiasedly the respective population parameters.

The unequal probability designs have another favorable feature, by choosing
inclusion probabilities (or for our MN desin selection probabilities) propor-
tional to the study variable, one can make estimators more precise.

1.2.2 Characteristics of estimators

Under design-based approach an estimator θ̂ is a discrete random variable
taking values on a finite number of samples k.

The design-based expectation of the estimator θ̂ is the weighted average of
all possible values θ̂(k) with weight p(k) being the probability with which k
is chosen,

E(θ̂) =
∑
k

θ̂(k)p(k).

The summation goes over all possible samples k that can be obtained under
given sampling design p (·).

In this work we need to consider the vector of estimators. We study the
domain estimation, where the vector of estimators occurs naturally. For
example, θ̂ = (θ̂1, θ̂2, θ̂3)′ may present estimated numbers of unemployed
in the three different regions (domains). For this purpose we bring the
properties of the estimators in matrix form.

Let θ̂ = (θ̂1, θ̂2, ..., θ̂d)′ be random vector of estimators on the true parameter
vector θ = (θ1, θ2, ..., θd)′.

The expectation of θ̂ is defined as the expectation of its elements:

E(θ̂) = (E(θ̂1), E(θ̂2), ..., E(θ̂d))′.
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The following property holds:

E(Aθ̂ + a) = AE(θ̂) + a, (1.57)

where A : m× d is a constant matrix and a is a vector of m constants.

Let η̂ = (η̂1, η̂2, ..., η̂g)′ be some other vector of estimators on the true para-
meter vector η = (η1, η2, ..., ηg)′.

The covariance matrix between two random vectors θ̂ and η̂ is defined as

Cov(θ̂, η̂) = E
[(

θ̂ − E(θ̂)
)

(η̂ − E(η̂))′
]

: d× g. (1.58)

The variance of θ̂ is the d× d matrix

Cov(θ̂) = E
[(

θ̂ − E(θ̂)
) (

θ̂ − E(θ̂)
)′]

(1.59)

with one-dimensional variances V(θ̂i) on the main diagonal and covariances
Cov(θ̂i, θ̂j) outside of it.

Next we define the mean square error in a multivariate form. The form
is very general and includes in its special cases such well-known notions
like covariance matrix of estimators and classical mean square error of the
univariate estimator.

Definition 1.4 The mean square error matrix (MSE-matrix or shortly MSE)
between two random vectors θ̂ and η̂ is

MSE(θ̂, η̂) = E
[
(θ̂ − θ)(η̂ − η)′

]
: d× g. (1.60)

The elements of MSE(θ̂, η̂) are the cross mean square errors of θ̂i and η̂j ,
E(θ̂i − θi)(η̂j − ηj).

If θ = η and θ̂ = η̂, then a shorter notation is used, MSE(θ̂, θ̂) = MSE(θ̂),
where

MSE(θ̂) = E
[
(θ̂ − θ)(θ̂ − θ)′

]
. (1.61)

The diagonal elements of the matrix MSE(θ̂) are the traditional mean square
errors of one-dimensional estimator, E(θ̂i − θ)2.
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The bias of the estimator θ̂ is defined as vector of biases of elements θ̂i,
i = 1, 2, ..., d,

b(θ̂) = E(θ̂)− θ. (1.62)

Proposition 1.5 The operator of MSE(·) has the following properties.

MSE(θ̂, η̂) =
[
MSE(η̂, θ̂)

]′
, (1.63)

MSE(θ̂, η̂) = Cov(θ̂, η̂) + b(θ̂)b′(η̂), (1.64)
MSE(θ̂, η̂) = Cov(θ̂, η̂), if b(θ̂) = 0 or b(η̂) = 0. (1.65)

Proof. The property (1.63) follows from the Definition 1.4 and the property
(1.4), applied to the right side of the expression.

For the property (1.64) we note that E(θ̂ − Eθ̂) = 0. Then (1.64) can be
obtained in the following way:

MSE(θ̂, η̂) = E
[
(θ̂ − θ)(η̂ − η)′

]
= E

[(
θ̂ − (θ + b(θ̂)) + b(θ̂)

)
(η̂ − (η + b(η̂)) + b(η̂))′

]
= E

[(
(θ̂ − E(θ̂)) + b(θ̂)

)
((η̂ − E(η̂)) + b(η̂))′

]
= E

[(
θ̂ − E(θ̂)

)
(η̂ − E(η̂))′

]
+ b(θ̂)b′(η̂).

The property (1.65) follows directly from the property (1.64).
�

1.2.3 Estimation of the population and domain totals

The most frequent parameter of interest is the population total ty,

ty = y′1, (1.66)

where y = (y1, y2, ..., yN )′ is the vector of the study variable measured on
the population units.

The linear estimator of ty is

t̂y = y′Ĭ = y̆′I. (1.67)
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In these two forms of the estimator the vector Ĭ = (Ĭ1, Ĭ2, ...., ĬN )′ is the
expanded sampling vector, with elements

Ĭi =
Ii

E(Ii)
, (1.68)

the vector y̆ is the expanded study variable vector with elements
y̆i = yi/E(Ii).

Since E(Ĭ) = 1, the estimator (1.67) is design-unbiased, E(t̂y) = ty.

Estimate t̂y is computed by weighting up the sampled values,
t̂y = y′Ĭ =

∑
U

Ii
E(Ii)

yi, where the summation goes over the all elements

i ∈ U . From this prospective we may call the vector Ĭ the weight vector.

Under a WOR design (1.67) is the Horvitz-Thompson (HT) estimator and
under a WR designs it is the Hansen-Hurwitz estimator. The unified consid-
eration of WOR and WR designs is not the usual one in sampling literature.
It has been forcefully developed in Traat (2000), Traat et al. (2001, 2004),
Meister (2004), Tillé (2006). The WOR designs are prevalent in real surveys.
The Multinomial design is often used as an approximation to the complex
WOR designs, while deriving properties of the estimators, but sometimes,
the multinomial design or other WR designs are also used for drawing sam-
ples in real surveys (Traat, Ilves, 2007). We exemplify our results on SI
and MN designs, therefore this unified consideration suites very well for this
thesis.

The expanded sampling vector Ĭ has a crucial role in the estimation. For
the SI design its elements are Ĭi = Ii/f , where f = n/N , for the MN design
Ĭi = Ii/(npi). Later, in this thesis, also the covariance matrix of Ĭ is needed.
For the SI design

Cov(Ĭ) = ∆̆ =
(1− f)

f
(I−C), (1.69)

and for the MN design

Cov(Ĭ) = ∆̆ =
1
n

(
[diag(p)]−1 − 11′

)
. (1.70)

The elements of ∆̆ are V(Ii)/(EIi)2 on the main diagonal and Cov(Ii, Ij)/(EIiEIj)
outside.
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Estimation of the domain parameters has become an undividable part of the
estimation in a whole. As it is defined in Särndal et al. (1992, p. 386) we use
the term domain for the subpopulation for which separate point estimates
and confidence intervals are required. Domains can be for example, socio-
economic groups (age by sex), geographical areas (counties, municipalities)
or some other sub-populations (one-member, two-member, etc. households).

Estimation of domains can be requested before planning a survey (planned
domains) or after it (unplanned domains). Sample sizes in unplanned do-
mains are random and the respective samples may sometimes consist only
of a few units. In this thesis we deal with unplanned domains.

Many methods are developed to construct possibly good estimators for do-
mains with small sample sizes. These methods produce direct and undirect
estimators. The domain estimator is called direct if it uses the study variable
values only from the observed domain. The auxiliary information can be in-
corporated outside the domain. The linear estimator is the representative of
the direct estimators, while the generalized regression and the synthetic es-
timators, described in Section 3.6 can be both direct or indirect, depending
on the choice of a model behind them.

If different estimation methods are used in the domains, then the consistency
problem occurs - the estimators do not sum up to the estimators used for
the population total, or for the larger domains under interest.

Let U be divided into D non-overlapping domains Ud, d ∈ D = {1, 2, ..., D}
with Nd being the size of the domain Ud. We are interested in the domain
totals of study variable y:

td =
∑
i∈Ud

yi. (1.71)

We assume here that we can identify whether the object i ∈ U belongs to
the domain or not. Traditionally, the domain indicator-vector is defined,

δd = (δ1d, δ2d, ..., δNd)′, d ∈ D,

where δid = 1 if i ∈ Ud and 0 otherwise. It enables to carry over the estima-
tion results of the population total for the domain estimation. Accordingly,
a new study variable yd is defined, yd = y ◦ δd = diag(δ)y and the domain
total (1.71) can be rewritten as

td =
∑
i∈U

δidyi = y′d1. (1.72)
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Now (1.72) can be viewed as a population total of the new variable yd.

Many estimators are available for the population totals. Beside the linear es-
timator, there are estimators using auxiliary information. Auxiliary variable
is any variable about which information is available and complete at unit
level for all population units (this information may come from registers). For
some estimators it is enough to know the population totals of auxiliary vari-
ables, and only for the sample units information at the unit level. Properties
of the estimators using auxiliary information, the generalized regression and
the synthetic estimators, are studied in Section 3.6.
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Chapter 2

Estimation of domains under
restrictions

In this chapter three new estimators (GR1, GR2, GR3) are defined for do-
main estimation under restrictions. They are more general than the Knot-
tnerus (2003) GR estimator since they can handle biased initial estimators.
Their properties are studied, the expressions for bias and mean square errors
are derived. Their ordering with respect to the accuracy is established.

The users of official statistics often require that sample-based estimates sat-
isfy certain restrictions. In the domain’s case it is required that the estimates
of domain totals sum up to the population total or to its estimate. For exam-
ple, in time domains, quarterly estimates have to sum up to the yearly total.
The relationships holding for the true population parameters do not nec-
essarily hold for the respective estimates. This inconsistency of estimates
is annoying for statistics users. On the other hand, known relationships
between population parameters is a kind of auxiliary information. Involv-
ing this information into estimation process presumably improves estimates.
Our goal is to define consistent domain estimators that are more accurate
than the initial inconsistent domain estimators.

One solution to the problem of finding estimates under restrictions is the
general restriction estimator (GR) proposed by Knottnerus (2003). His es-
timator is based on the unbiased initial estimators and is unbiased itself.

33



The advantage of the GR estimator is the variance minimizing property in a
class of linear estimators. Sõstra (2007) has developed the GR estimator for
estimating domain totals under summation restriction. Optimality property
of the domain GR estimator is studied in Sõstra and Traat (2009). In all
these works, the unbiased or asymptotically unbiased initial estimators are
assumed.

It is well known that there are many useful estimators that are biased. For
example, the model-based small area estimators are design-biased. The syn-
thetic estimator can be biased on the domain level. Even the widely used
GREG estimator is only asymptotically unbiased. In this thesis we will allow
the initial estimators to be biased, and will construct three new restriction
estimators, based on the biased initial estimators.

2.1 The GR estimator

Let θ = (θ1, ..., θk)′ be the parameter vector under study that satisfies linear
restrictions:

Rθ = c, (2.1)

where R is an r × k matrix of rank r and c is the r-dimensional vector of
known constants.

For example, if D domain totals, say tdy, where tdy =
∑

Ud
yi, d = 1, 2, ..., D,

have to sum up to the population total ty =
∑

U yi, then the components of
the restriction equation (2.1) are:

R = (1, 1, ..., 1,−1) : 1× (D + 1), θ = (t1y, t
2
y, ..., t

D
y , ty)′ and c = 0. (2.2)

Alternatively, the same requirement is achieved by choosing in (2.1)

R = (1, 1, ..., 1) : 1×D, θ = (t1y, t
2
y, ..., t

D
y )′ and c = ty.

In the latter case, the population total must be known while developing
restriction estimators for domains. In many cases this is not so, and then
the estimated population total must be used. Respectively, the components
of the restriction equation (2.1) are of type (2.2).

Theorem 2.1 (Knottnerus, 2003, p. 328-329) Let θ̂ = (θ̂1, ..., θ̂k)′ be a
vector of unbiased estimators of the parameter vector θ with the variance
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V, such that RVR′ can be inverted. Then the general restriction estimator
θ̂GR that satisfies restrictions (2.1) for θ = θ̂GR, and the variance VGR of
this estimator are:

θ̂GR = θ̂ + K(c−Rθ̂), (2.3)
VGR = Cov(θ̂GR) = (I−KR)V, (2.4)

where I is the k × k identity matrix and

K = VR′(RVR′)−1. (2.5)

Since RK is the identity matrix, it is easy to check that θ̂GR satisfies re-
strictions (2.1):

Rθ̂GR = Rθ̂ + RK(c−Rθ̂) = c.

Knottnerus (2003, p. 332) shows that θ̂GR is optimal in a class of estimators
that are linear in θ̂ and satisfy restrictions (2.1). In this class, θ̂GR has
minimum variance (in Löwner ordering). For example, other estimators in
this class can be received by replacing V in the expression of K by any
arbitrary k × k matrix V∗, such that RV∗R can be inverted. But the
resulting estimators have bigger variance than θ̂GR. In Sõstra (2007, p. 45)
it is also shown that θ̂GR is never less efficient than the initial estimator θ̂,
VGR ≤ V in the sense of Löwner ordering.

Without loss of generality, we further consider linear restrictions in the form

Rθ = 0. (2.6)

In general, if c 6= 0 in (2.1), it is always possible to choose fixed θ0 so that

0 = Rθ − c = Rθ −Rθ0 = R(θ − θ0), (2.7)

and consider new parameter θ̃ = θ − θ0 instead of θ. For example, in the
case of 3 domain totals tdy, d = 1, 2, 3, the restriction

(1, 1, 1)(t1y, t
2
y, t

3
y)
′ = ty

can be rewritten as

(1, 1, 1)
[
(t1y, t

2
y, t

3
y)−

1
3
(ty, ty, ty)

]′
= 0,
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where θ0 = 1
3(ty, ty, ty)′. With c = 0, the Knottnerus’ GR estimator simpli-

fies to the form
θ̂GR = (I−KR)θ̂. (2.8)

In the following section we allow initial estimator to be biased, and we define
three different restriction estimators for this case.

2.2 Restriction estimators handling bias

Assume that estimator θ̂ is biased for θ,

E(θ̂) = θ + b, (2.9)

where b is a vector of biases.

For biased estimators the accuracy of the estimator is ordinarily measured by
its mean square error. The GR-estimator (2.8) with biased initial estimator
θ̂ is not optimal any more for θ in the sense of MSE. Although it still
satisfies restrictions (2.6), it may have bigger mean square error than that
of the initial estimator. We demonstrate this by the following example.

Example 2.1 Let θ = (θ1, θ2)′ be the vector of unknown parameters, R =
(1, 1) and c = 0.

The vector of estimators θ̂ = (θ̂1, θ̂2)′ has variance V =
(

2 1
1 3

)
and bias

b = (3,−1)′.

From (1.61) and (1.64), the mean square error of θ is

MSE(θ̂) = V + b b′ =
(

11 −2
−2 4

)
,

which means that MSE(θ̂1) = 11 and MSE(θ̂2) = 4. We will find now the
GR estimator defined in (2.8) and its mean square error.

The matrix K, needed for the θ̂GR, is K = VR′(RVR′)−1 ≈ (0.43, 0.57)′,
and

θ̂GR =
(

0.57θ̂1 − 0.43θ̂2

−0.57θ̂1 + 0.43θ̂2

)
.

36



The variance (2.4),

VGR = Cov(θ̂GR) =
(

0.71 −0.71
−0.71 0.71

)
,

is smaller than the initial V (in the sense of Löwner ordering), since

V−VGR =
(

1.29 1.71
1.71 2.29

)
is positive definite (eigenvalues 3.572, 0.008). However, the obtained θ̂GR

is biased now. The first element of the bias-vector b(θ̂GR) = E(θ̂GR) − θ.
b(θ̂GR) is

b(θ̂GR)(1) = E
(
θ̂

(1)

GR

)
− θ1 = 0.57 E(θ̂1)− 0.43 E(θ̂2)− θ1

= 0.57(θ1 + 3)− 0.43(θ2 − 1)− θ1

= −0.43(θ1 + θ2) + 2.14 = 2.14.

In the last row θ1 + θ2 vanishes due to the restriction (1, 1)θ = 0. Analo-
gously, b(θ̂GR)(2) = −2.14.

Finally, the mean square error matrix of the GR estimator is

MSE(θ̂GR) = Cov(θ̂GR) + b(θ̂GR) b(θ̂GR)′ =
(

5.31 −5.31
−5.31 5.31

)
,

from which we get MSE(θ̂
(1)

GR) = MSE(θ̂
(2)

GR) = 5.31. Comparing the first
components, the mean square error of the GR estimator is smaller than that
of θ̂, (MSE(θ̂1) = 11), but for the second component it is bigger (MSE(θ̂2) =
4). Consequently, for the biased initial estimators we can not expect bigger
accuracy from the Knottnerus GR estimator.

In the following sections we present three new restriction estimators for
biased initial estimators.

2.2.1 Restriction estimator GR1

The first restriction estimator with biased initial estimators is defined in the
following proposition, where also its properties are proved.
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Proposition 2.2 The estimator

θ̂GR1 = (I−KR)(θ̂ − b), (2.10)

with K = VR′(RVR′)−1 is unbiased for θ. Its variance is

Cov(θ̂GR1) = (I−KR)V, (2.11)

and it is the optimal estimator among all linear estimators in (θ̂ − b) that
satisfy restriction (2.6).

Proof. The unbiasedness follows from (2.9) and (2.6),

E(θ̂GR1) = (I−KR)(Eθ̂ − b) = (I−KR)θ = θ. (2.12)

Since RK = RVR′(RV′R′)−1 = Ir (dimensionality is r × r here), it is
obvious that θ̂GR1 satisfies the linear restriction (2.6),

Rθ̂GR1 = (RI−RKR)(θ̂ − b) = 0.

Denoting θ̂
∗

= θ̂ − b, we know from Knottnerus’ results that Rθ̂
∗
GR =

(I−KR)θ̂
∗

is optimal among linear estimators in θ̂
∗

that satisfy restrictions

(2.6) for K = Cov(θ̂
∗
)R′

[
RCov(θ̂

∗
)R′

]−1
.

But
Cov(θ̂

∗
) = Cov(θ̂ − b) = Cov(θ̂) = V,

meaning that our estimator in (2.10) is the optimal estimator.

The variance of θ̂
∗
GR follows from Knottnerus’ result (2.4),

Cov(θ̂
∗
GR) = (I−KR)Cov(θ̂

∗
) = (I−KR)V.

�

Similarly to Knottnerus GR estimator our θ̂GR1 requires quantities that are
usually unknown in practise, here the bias b and the variance V. If V and
b are replaced with consistent estimators, θ̂GR1 is consistent itself. In this
thesis, however, we concentrate on the GR estimators with known b, V and
later M.
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2.2.2 Restriction estimator GR2

Below we define an estimator that is free of the knowledge of b, satisfies
restrictions and is more accurate than the initial estimator θ̂, in MSE terms.

Proposition 2.3 The estimator, satisfying restrictions (2.6), but based on
the mean square error M of the initial estimator θ̂, is

θ̂GR2 = (I−K∗R)θ̂, (2.13)

where K∗ = MR′(RMR′)−1. The bias of the θ̂GR2 is

b(θ̂GR2) = (I−K∗R)b, (2.14)

and the mean square error matrix is

MSE(θ̂GR2) = (I−K∗R)M. (2.15)

Furthermore,
MSE(θ̂GR2) ≤ M (2.16)

in the sense of Löwner ordering.

Proof. Analogously to the Proposition 2.2, we see that Rθ̂GR2 = 0.

For the bias in (2.14) and the mean square error matrix in (2.15) we notice
first that due to Rθ = 0,

(I−K∗R)θ = θ −K∗Rθ = θ. (2.17)

Then, the bias expression follows from (2.9) and restrictions (2.6),

b(θ̂GR2) = E(θ̂GR2)− θ = (I−K∗R)E(θ̂)− θ

= (I−K∗R)(θ + b)− θ = (I−K∗R)θ − θ + (I−K∗R)b
= (I−K∗R)b.

From Definition 1.4 of the mean square error matrix and (2.17) we have

MSE(θ̂GR2) = E
(
(I−K∗R)θ̂ − (I−K∗R)θ

) (
(I−K∗R)θ̂ − (I−K∗R)θ

)′
= (I−K∗R) · E(θ̂ − θ)(θ̂ − θ)′ · (I−K∗R)′

= (I−K∗R)M(I−K∗R)′

= (I−K∗R)M− (I−K∗R)MR′(K∗)′. (2.18)
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We now show that the second term in (2.18) is equal to zero:

(I−K∗R)MR′(K∗)′ = MR′(K∗)′ −K∗RMR′(K∗)′

= MR′(K∗)′ −
(
MR′(RMR′)−1

)
RMR′(K∗)′ = 0.

Thus, the expression of the MSE in (2.18) is equal to (2.15).

Finally, we show that MSE(θ̂GR2) ≤ M in the sense of Löwner ordering.
This is equivalent to M−MSE(θ̂GR2) ≥ 0,

M−MSE(θ̂GR2) = M− (I−K∗R)M
= K∗RM = MR′(RMR′)−1RM ≥ 0, (2.19)

because it is of the shape AA′.
�

2.2.3 Restriction estimator GR3

In the following proposition properties of the estimator θ̂GR3 are proved.

Proposition 2.4 The restriction estimator

θ̂GR3 = (I−K∗R)(θ̂ − b) (2.20)

with K∗ = MR′(RMR′)−1 satisfies restrictions (2.6) and is unbiased for θ̂.
It’s MSE is the covariance of the estimator and is equal to

MSE(θ̂GR3) = (I−K∗R)V(I−K∗R)′. (2.21)

Furthermore,
MSE(θ̂GR3) ≤ M. (2.22)

Proof. The proof of unbiasedness is analogous to the proof of (2.12).

The covariance of θ̂GR3 follows directly from definition of the covariance in
matrix form (1.59) and the property (1.57) of the operator E(·),

Cov(θ̂GR3) = E
[(

θ̂GR3 − E(θ̂GR3))
) (

θ̂GR3 − E(θ̂GR3))
)′]

= E
[(

(I−K∗R)(θ̂ − b)− θ)
) (

(I−K∗R)(θ̂ − b)− θ)
)′]
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Replacing θ = (I−K∗R)θ we have,

Cov(θ̂GR3) = (I−K∗R) E
[(

θ̂ − (θ + b)
) (

θ̂ − (θ + b)
)′]

(I−K∗R)′

= (I−K∗R) E
[(

θ̂ − E(θ̂)
) (

θ̂ − E(θ̂)
)′]

(I−K∗R)′

= (I−K∗R) V (I−K∗R)′.

Finally, we show that M−MSE(θ̂GR3) ≥ 0, which is equivalent to (2.22):

M− (I−K∗R)V(I−K∗R)′ = M− (I−K∗R)(M− bb′)(I−K∗R)′

= M− (I−K∗R)M(I−K∗R)′

+(I−K∗R)bb′(I−K∗R). (2.23)

In (2.18) we showed that (I −K∗R)M(I −K∗R)′ = (I −K∗R)M, and in
(2.19) that M − (I − K∗R)M is nonnegative definite. The third term of
(2.23) is also nonnegative definite because of the shape AA′. The sum of
nonnegative definite matrices is also a nonnegative definite matrix, which
proves (2.22) and the proposition as a whole.

�

2.2.4 Comparison of the GR estimators

As we saw from Propositions 2.2-2.4, estimators θ̂GR1, θ̂GR2 and θ̂GR3 have
higher accuracy than the initial estimator θ̂. The next result compares the
accuracy of all four estimators.

Proposition 2.5 The mean square error matrices of the restriction estima-
tors θ̂GR1, θ̂GR2, θ̂GR3 and the initial estimator θ̂ can be ordered (in the
sense of Löwner ordering) as following:

MSE(θ̂GR1) ≤ MSE(θ̂GR3) ≤ MSE(θ̂GR2) ≤ MSE(θ̂). (2.24)

Proof. From unbiasedness of θ̂GR1 and θ̂GR3 we note that MSE(θ̂GR1) =
Cov(θ̂GR1) and MSE(θ̂GR3) = Cov(θ̂GR3). From Proposition 2.2 the es-
timator θ̂GR1 is optimal, i.e. it has the minimum variance (and also the
mean square error matrix) among all linear estimators in (θ̂− b). So, it has
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smaller variance than the estimator θ̂GR3, which is of the same structure.
This proves the first inequality.

The second inequality, MSE(θ̂GR3) ≤ MSE(θ̂GR2), comes from the expres-
sion (2.21) of the Proposition 2.4 and (2.18) from the proof of the Proposition
2.3,

MSE(θ̂GR2) = (I−K∗R)M(I−K∗R)′

= (I−K∗R)(V + bb′)(I−K∗R)′

= (I−K∗R)V(I−K∗R)′ + (I−K∗R)(bb′)(I−K∗R)′

= MSE(θ̂GR3) + (I−K∗R)b [(I−K∗R)b]′

≥ MSE(θ̂GR3),

because (I−K∗R)b [(I−K∗R)b]′ is non-negative definite.

The last inequality comes directly from (2.16) of Proposition 2.3.
�

Remark 2.1 As it is shown in Proposition 2.5, θ̂GR1 and θ̂GR3 produce
more accurate estimates than θ̂GR2. But they require knowledge of the initial
bias b. Estimator θ̂GR2 does not involve initial bias explicitly. Though this
estimator is not so accurate than θ̂GR1 and θ̂GR3, it may be preferable in
the situations where it is easier to estimate the MSE matrix M than the
bias b.

2.2.5 Searching optimality among GR2-type estimators

We consider one more restriction estimator similar to GR2. It does not
require bias b in its expression, and also, instead of the matrix M, any
matrix B is allowed. The estimator is,

θ̂GR4 = (I− LR)θ̂, (2.25)

where L = BR′(RBR′)−1 and B is an k × k unknown matrix.

We want to find such B that produces minimum MSE(θ̂GR4) among all
possible linear estimators of the structure (2.25).
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Proposition 2.6 The mean square error of the restriction estimator (2.25)
is

MSE(θ̂GR4) = (I− LR)M(I− LR)′, (2.26)

where L = BR′(RBR′)−1.

The proof of the Proposition 2.6 is similar to the proof of (2.17) and (2.18)
from the Proposition 2.3.

To find the matrix B that leads to the minimum of (2.26) we need to know
the derivative of this mean square error. Since we are interested in the
domain’s case, our R is the k-dimensional row-vector. Derivative is found
in the next proposition.

Proposition 2.7 Let R : 1 × k. Then the first order derivative of the
MSE(θ̂GR4) defined in (2.26) with respect to B is

d
[
MSE(θ̂GR4)

]
dB

=
[
R′(RBR′)−1RM(Ik − LR)′ ⊗

(Ik − LR)′
]
(Ik2 + Kk,k) , (2.27)

where Kk,k is the commutation matrix, Ik and Ik2 are two identity matrices
of the dimensions correspondingly k × k and k2 × k2.

Proof. Let denote Y = Ik−LR and Z = YMY′. Then, from the derivative
formula (1.45) we get

d
[
MSE(θ̂GR4)

]
dB

=
dY
dB

dZ
dY

=
d(Ik − LR)

dB
d

(
YMY′)
dY

. (2.28)

We will find two derivatives in (2.28) separately, noting that

d(Ik − LR)
dB

= −
d

(
BR′(RBR′)−1R

)
dB

. (2.29)

Now denoting by Y1 = BR′ and Z1 = (RBR′)−1R, we can apply formula
(1.46) to (2.29),

d(Ik − LR)
dB

=
dY1

dB
d(Y1Z1)

dY1

∣∣∣∣
Z1=const

+
dZ1

dB
d(Y1Z1)

dZ1

∣∣∣∣
Y1=const

. (2.30)
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The first and the second derivative in (2.30) come straightly from formula
(1.43),

dY1

dB
=

d(IkBR′)
dB

= R′ ⊗ Ik, (2.31)

dY1Z1

dY1

∣∣∣∣
Z1=const

=
d(IkY1Z1)

dY1
= Z1 ⊗ Ik = (RBR′)−1R⊗ Ik. (2.32)

The third derivative from (2.30) is found by applying formula (1.45) twice
and then using formula (1.44),

dZ1

dB
=

d
[
(RBR′)−1R

]
dB

=
d(RBR′)

dB
d

[
(RBR′)−1R

]
d(RBR′)

= (R′ ⊗R′)
d(RBR′)−1

d(RBR′)
d

[
(RBR′)−1R

]
d(RBR′)−1

= (R′ ⊗R′)
[
−(RBR′)−1 ⊗ (RB′R′)−1

]
(R⊗ 1). (2.33)

From the property (1.7) of Kronecker and matrix product, the expression
(2.33) can be simplified further,

dZ1

dB
=

[
−R′(RBR′)−1 ⊗R′(RB′R′)−1

]
(R⊗ 1)

= −R′(RBR′)−1R⊗R′(RB′R′)−1. (2.34)

The last derivative of (2.30) comes from (1.43),

d(Y1Z1)
dZ1

∣∣∣∣
Y1=const

= Ik ⊗Y′
1 = Ik ⊗RB′. (2.35)

In consideration of properties (1.7) and (1.8) of Kronecker product we have
finally for (2.30)

dY
dB

= (R′ ⊗ Ik)
[
(RBR′)−1R⊗ Ik

]
−[

R′(RBR′)−1R⊗R′(RB′R′)−1
]
(Ik ⊗RB′)

= R(RBR′)−1R⊗ Ik −R′(RBR′)−1R⊗R′(RB′R′)−1RB′

= R′(RBR′)−1R⊗ (Ik −R′(RB′R′)−1RB′)
= R′(RBR′)−1R⊗ (Ik − LR)′. (2.36)
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The first derivative of (2.28) is found. The second can be found by using
formula (1.46). Let denote Y2 = YM, Z2 = Y′ and W2 = Y2Z2. Then,

d(YMY′)
dY

=
dY2

dY
d(Y2Z2)

dY2

∣∣∣∣
Z2=const

+
dZ2

dY
d(Y2Z2)

dZ2

∣∣∣∣
Y2=const

. (2.37)

From (1.43) we have

dY2

dY
=

d(IkYM)
dY

= M⊗ Ik,

d(Y2Z2)
dY2

∣∣∣∣
Z2=const

= Z2 ⊗ Ik = Y′ ⊗ Ik = (Ik − LR)′ ⊗ Ik,

d(Y2Y2)
dZ2

∣∣∣∣
Y2=const

= Ik ⊗Y′
2 = Ik ⊗ (YM)′ = Ik ⊗M(Ik − LR)′.

For the third derivative of (2.37) the formula (1.47) can be applied,

dZ2

dY
=

dY′

dY
= Kk,k.

The derivative in (2.37) simplifies as following,

d(YMY′)
dY

= (M⊗ Ik)
[
(Ik − LR)′ ⊗ Ik

]
+ Kk,k

[
Ik ⊗M(Ik − LR)′

]
= M(Ik − LR)′ ⊗ Ik + Kk,k

[
Ik ⊗M(Ik − LR)′

]
,

where property (1.7) was used.

Considering properties (1.18) and (1.21) of the commutation matrix, we have

Kk,k

[
Ik ⊗M(Ik − LR)′

]
= Kk,k

[
Ik ⊗M(Ik − LR)′

]
Kk,kKk,k

=
[
M(Ik − LR)′ ⊗ Ik

]
Kk,k.

Finally, (2.37) can be simplified,

d(YMY′)
dY

=
[
M(Ik − LR)′ ⊗ Ik

]
(Ik2 + Kk,k). (2.38)

We have now both components needed for the (2.28), they are in (2.36) and
(2.38). Putting them together will lead to the corollary’s statement (2.27),

45



d
[
MSE(θ̂GR4)

]
dB

=
[
R′(RBR′)−1R⊗ (Ik − LR)′

]
×[

M(Ik − LR)′ ⊗ Ik

]
(Ik2 + Kk,k)

=
[
R′(RBR′)−1RM(Ik − LR)′ ⊗ (Ik − LR)′

]
×

(Ik2 + Kk,k).
�

Remark 2.2 If to take B = M in (2.25), then θ̂GR4 = θ̂GR2. The derivative
(2.27) in this case is equal to zero, because

R′(RMR′)−1RM
(
Ik −MR′(RMR′)−1R

)′ =
R′(RMR′)−1RM−R′(RMR′)−1RMR′(RMR′)−1RM = 0.

Thus, B = M is the one of the possible minimum points for (2.26).
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Chapter 3

Classes of initial estimators

In this chapter the generalized regression (GREG) and the synthetic (SYN)
estimators are considered. They are used as the initial estimators in the GR
estimator developed in Chapter 2. New results concern the SYN estima-
tor and the mutual relationships between the GREG and SYN estimators.
The general bias, variance and mean square error (MSE) expressions for
the SYN, and the cross-MSE expression between GREG and SYN are new.
They are given both on the population and on the domain levels, whereas for
domains, the two different underlying models (the population and the do-
main model) are assumed. Many interesting relationships are revealed from
the comparison of the GREG and SYN estimators. Though, the GREG is
known to be asymptotically unbiased, the bias may occur for small sample
sizes. Here its approximate bias expression is given from the second-order
Taylor expansion.

3.1 Linear estimator

The linear estimator for population total ty =
∑

U yi with one study variable
y = (y1, y2, ..., yN )′ is introduced in Section 1.2.3,

t̂y = y′Ĭ,

where Ĭ is the expanded sampling vector defined in (1.68). One-dimensional
set-up of the estimation problem is standard in the literature. Here we
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assume that the totals of many study variables need estimation, which is
the case in real surveys, and present the linear estimator and its properties
for this multivariate case.

Proposition 3.1 Let Y = (y1,y2, ...,yk) be the N × k study matrix with
ith study variable yi = (y1i, y2i, ..., yNi)′, i = 1, 2, ..., k. Then, the linear
estimator of the vector of population totals

tY = Y′1N = (ty1 , ty2 , ..., tyk
)′

is
t̂Y = Y′Ĭ = (t̂y1 , t̂y2 , ..., t̂yk

)′. (3.1)

The estimator (3.1) is design-unbiased, it’s variance is a k × k matrix

Cov(t̂Y) = Y′∆̆Y, (3.2)

where ∆̆ = Cov(Ĭ) = diag(EĬ)−1 Cov(I) diag(EĬ)−1.

Proof. The unbiasedness of the estimator (3.1) follows from EĬ = 1N , where
1N is the vector of ones.

The variance of the estimator (3.1) follows from (1.59) and (1.57),

Cov(t̂Y) = E
[(

t̂Y − E(t̂Y)
)
(t̂Y − E(t̂Y)′

]
= E

[(
Y′Ĭ−Y′1N

) (
Y′Ĭ−Y′1N

)′]
= Y′E

[(
Ĭ− 1N

) (
Ĭ− 1N

)′]
Y = Y′Cov(Ĭ)Y.

�

Example 3.1 For simple random sampling (SI) design the estimator and
its variance take the forms:

t̂Y = f−1Y′I, (3.3)

Cov(t̂Y) =
1− f

f
Y′(I−C)Y, (3.4)

where f = n/N is sampling fraction, and C : N×N is the matrix with zeros
on the main diagonal and (N − 1)−1 on other places.
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Example 3.2 For the MN design, described in Section 1.2.1, the estimator
of the total and its variance are

t̂Y = Y′Ĭ =
1
n

Y′(diag(p))−1 I; (3.5)

Cov(t̂Y) =
1
n

Y′ [(diag(p))−1 − 11′
]
Y, (3.6)

where p = (p1, p2, ..., pN )′ is the vector of selection probabilities, and 1 is
the N-dimensional vector of ones.

�

Assume now that the population U is divided into D non-overlapping and ex-
haustive domains Ud, and we are interested in the sum of one study variable
y = (y1, y2, ..., yN )′ separately in each domain, td =

∑
i∈Ud

yi, d = 1, 2, ..., D.
Estimation of the entire vector of domain totals is a multivariate problem.

We define the domain indicator-matrix as

δ = (δ1, δ2, ..., δD) =


δ11 δ12 ... δ1D

δ21 δ22 ... δ2D

... ... ... ...
δN1 δN2 ... δND

 , (3.7)

where δd = (δ1d, δ2d, ..., δNd)′ identifies the domain Ud, d = 1, 2, ..., D (i.e.
δid = 1, if i ∈ Ud and 0 otherwise).

The matrix of study variables by domains is

Y = diag(y) δ =


y1δ11 y1δ12 ... y1δ1D

y2δ21 y2δ22 ... y2δ2D

... ... ... ...
yNδN1 yNδN2 ... yNδND

 . (3.8)

With this matrix we can estimate all domain totals simultaneously.

Proposition 3.2 The linear estimator for the vector of domain totals, tD =
(t1, t2, ..., tD)′ = Y′1N , where td =

∑
i∈Ud

yi, is

t̂
D

= δ′diag(y)Ĭ = δ′diag(Ĭ)y, (3.9)
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where δ is the domain indicator-matrix (3.7) and y = (y1, y2, ..., yN )′ is the
study variable. The estimator t̂

D is unbiased, and its variance is the D×D
matrix

Cov
(
t̂
D

)
= δ′diag(y) ∆̆ diag(y)δ. (3.10)

These properties follow straightforwardly from the expression of t̂
D, or from

the Proposition 3.1, if to use the domain matrix Y (3.8) in it.

Due to high variability, the linear estimator can be used for considerably
large domains, for those having large sample sizes. For smaller domains
modelling and auxiliary information helps to construct better estimators.
There are model-dependent and model-assisted methods (Rao, 2003; Lehto-
nen et al., 2003, 2005). The model-dependent methods are very sensitive to
the model misspecification, whereas the model-assisted methods are usually
not.

In this thesis we consider the model-assisted GREG estimator and the model-
dependent SYN estimator. Both estimators use auxiliary information. The
estimators are introduced, first for the population, and then for the domain
total. We study their design-based properties. Without loss of generality,
and for better understanding, we concentrate on estimation of one study
variable and one domain at a time. Formulas for the GREG estimator and
its variance in multivariate form can be found in Rajaleid (2004).

3.2 Generalized regression estimator

The generalized regression estimator for the population total uses auxiliary
information, which allows to increase the precision of estimates. Auxiliary
information consists of auxiliary variables and their totals. It may come
from registers or for example, from a previous survey. The variables need
not be known at the unit level, i.e separately for each object in U . It is
enough to know only totals of the auxiliary variables.

We assume that the finite population is a realization of a superpopulation
linear model

y = Xβ + ε, (3.11)
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where X is N × p matrix of p auxiliary variables, β : p × 1 is an unknown
parameter vector and ε : N × 1 is an error term, a random vector with
uncorrelated components, Cov(ε) = diag(σ2

1, σ
2
2, ..., σ

2
N ) = Σ.

Fitting the model by minimizing weighted sum of squared residuals

(y −Xβ)′Σ−1(y −Xβ)

with respect to β gives the generalized least squares estimator β̂ for the
parameter β at the population level (Särndal et al., 1992, p. 227),

β̂ = B = (X′Σ−1X)−1X′Σ−1y. (3.12)

Computing B requires knowledge of all yi from the population U , and there-
fore can not be done in practice, where only sampled yi are known. For
estimating B from a sample we rewrite it as a product of two sums,

TXX = X′Σ−1X (3.13)

and
TXy = X′Σ−1y. (3.14)

The respective design-unbiased estimators can be written in matrix form as:

T̂XX = X′Σ−1 diag(Ĭ)X, (3.15)
T̂Xy = X′Σ−1 diag(Ĭ) y = X′Σ−1diag(y)Ĭ. (3.16)

Inserting (3.15) and (3.16) into (3.12) yields the design-consistent estimator
for B : p× 1,

B̂ = T̂
−1
XXT̂Xy. (3.17)

With B̂ one can compute fitted values of the study variable for all elements
i ∈ U ,

ŷ = XB̂. (3.18)

We rewrite the study variable-vector with fitted values,

y = ŷ + r̂, (3.19)

where
r̂ = y −XB̂ (3.20)

is the vector of residuals. From (3.19) we get the expression for the total,

y′1 = ŷ′1 + r̂′1.
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Here ŷ is known for all units, but r̂ can be calculated only for sampled units.
Estimating r̂′1 by r̂′Ĭ leads us to the GREG estimator,

t̂greg = ŷ′1 + r̂′Ĭ. (3.21)

The GREG estimator is described and studied widely in the literature, e.g.
Cassel et al. (1976), Särndal (1980, 1982), Isaki and Fuller (1982) and
Särndal et al. (1992).

The GREG estimator (3.21) depends on the sampling design through Ĭ and
on the model specification through ŷ.

According to (3.18), the GREG estimator can be written as

t̂greg = (XB̂)′1 + r̂′Ĭ. (3.22)

Rearranging terms,

t̂greg = (XB̂)′1 + (y −XB̂)′Ĭ

= y′Ĭ− B̂
′
(X′Ĭ−X′1),

gives

t̂greg = t̂y − B̂
′
(t̂X − tX), (3.23)

which is another version for the GREG formula widely used in literature.

As we see from (3.22), the GREG estimator consists of two sums. The sum

(XB̂)′1 =
∑
U

ŷi

is the population total of fitted values ŷi = x′iB̂, where x′i is the row-vector
of auxiliary matrix X corresponding to object i ∈ U . Note that only totals
of auxiliary variables are needed for this sum, since

(XB̂)′1 = B̂
′
(X′1).

The sum
r̂′Ĭ =

∑
s

Iir̂i

EIi

is an adjustment term, where r̂i is an element of the residual vector r̂. The
adjustment term is computed from the sample.
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Auxiliary information helps to reduce variance of the GREG estimator. In
Särndal et al. (1992, p. 239) is claimed, that the GREG estimator is more
precise than the linear estimator (1.67) in the variance sense. The GREG
estimator is also asymptotically unbiased, with the bias of order n−1 (Särndal
et al., 1992, p. 238). It is also known, that the bias ratio (the bias divided
by the standard error of the estimator) tends to zero as quickly as n−1/2

(Estevao and Särndal, 2004).

The variance and bias expressions of the GREG estimator cannot be ob-
tained exactly because of its complex nature. The linearization technique
is used in order to get the approximate variance and bias. We derive the
Taylor expansion of the GREG of form (3.23) up to the second order terms
since approximate bias becomes visible in these terms. Traditionally, only
first order Taylor expansion is used. The expression is given in the next
proposition. Its long derivation is put in the Appendix A.

Proposition 3.3 The Taylor expansion of the generalized regression esti-
mator (3.23) up to the second order terms is

t̂greg,sec = t̂y −B′(t̂X − tX)− (t̂X − tX)′T−1
XX(T̂Xy −TXy)

+ (t̂X − tX)′
(
B′ ⊗T−1

XX

)
vec(T̂XX −TXX). (3.24)

�

The approximate variance of the GREG estimator is obtained from the linear
part of (3.24),

t̂greg, lin = t̂y −B′(t̂X − tX),

that can be rewritten as

t̂greg, lin = (XB)′1 + r′Ĭ, (3.25)

where r = y − XB. This is an expression with the only random vector
Ĭ. The approximate variance can be easily obtained from (3.25) by using
property of the covariance matrix, Cov(r′Ĭ) = r′ Cov(Ĭ) r, and is formulated
in the next proposition.

Proposition 3.4 The approximate variance of the GREG estimator (3.23)
is

AV(t̂greg) = r′∆̆r, (3.26)

where ∆̆ = Cov(Ĭ) is the covariance matrix of the expanded sampling vector
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and r = y −XB is the residual vector of the population model.
�

The Taylor expansion allows to study also bias of the GREG estimator.
Although, it is known that GREG estimator is asymptotically unbiased,
for small samples the bias may exist. In special cases, the bias of GREG
estimator is studied by Lepik (2007). In the next proposition we derive the
general bias expression of the GREG estimator (3.23). Note that the linear
part of the Taylor expansion gives zero bias.

Proposition 3.5 The approximate bias of t̂greg, obtained from the Taylor
expansion (3.24), is:

Ab(t̂greg) = −vec′[Cov(t̂X, T̂Xy)]vec(T−1
XX)

+vec′
[
Cov

(
t̂X, vec(T̂XX)

)]
vec(B′ ⊗T−1

XX). (3.27)

Proof. From the definition of the bias and the Taylor expansion of GREG
(3.24) we find,

Ab(t̂greg) = E(t̂greg, sec)− ty

= −E
[
(t̂X − tX)′T−1

XX(T̂Xy −TXy)
]

+E
[
(t̂X − tX)′(B′ ⊗T−1

XX)vec(T̂XX −TXX)
]
. (3.28)

Both summands in (3.28) are scalars, so the operation of vectorization can be
applied for them. After that the property (1.14) of the vec-operator enables
to bring out the middle non-random matrix:

Ab(t̂greg) = −E
[
(T̂Xy −TXy)′ ⊗ (t̂X − tX)′

]
vec(T−1

XX)

+E
[
vec′(T̂XX −TXX)⊗ (t̂X − tX)′

]
vec(B′ ⊗T−1

XX).

The modified form of the property (1.16), b′ ⊗ a′ = vec′(ab′), gives for
vectors

Ab(t̂greg) = −E
[
vec′{(t̂X − tX)(T̂Xy −TXy)′}

]
vec(T−1

XX)

+E
[
vec′{(t̂X − tX)vec′(T̂XX −TXX)}

]
vec(B′ ⊗T−1

XX).

We may exchange the vec- and expectation operations. By definition (1.58)
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it will lead to the covariances between the vectors of estimators. This proves
the bias expression (3.27).

�

The magnitude of the bias (3.27) depends on many ingredients, such as the
study and auxiliary variables, the model relating them, and the sampling
design. Some special cases of (3.27) have been studied by many authors.
For example, Särndal et al. (1992, pp. 245-258), Deng and Chhikara (1990),
Cochran (1977, pp. 160-162) studied the bias in the case of SI and the ratio
model.

3.3 Synthetic estimator

Synthetic estimator (SYN) is defined as a sum of the fitted values under
superpopulation linear model (3.11) (Särndal et al., 1992, p. 399). It is
closely related to the GREG estimator, in fact it is the first sum in the
expression (3.22) of the GREG estimator,

t̂syn = (XB̂)′1 = B̂
′
tX, (3.29)

where B̂ = T̂
−1
XXT̂Xy. The estimator (3.29) is non-linear. To study its

properties we expand (3.29) into Taylor series. The derivation is given in
the Appendix B. Only linear terms are developed. The second order terms
would have resulted in too long expressions. Since they are not needed in
the present work, they were omitted.

Proposition 3.6 The linear term of the Taylor expansion of the synthetic
estimator (3.29) is

t̂syn, lin = (B′ −B′T̂XXT−1
XX + T̂

′
XyT

−1
XX)tX. (3.30)

�

The next proposition gives an alternative expression for t̂syn, lin which dis-
plays close relationship with t̂greg, lin in (3.25).
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Proposition 3.7 The alternative form of the Taylor expansion (3.30) is

t̂syn, lin = (XB)′1 + r′diag(S)Ĭ, (3.31)

where r = y −XB and
S = Σ−1XT−1

XXtX. (3.32)

Proof. We start from (3.30) in the form

t̂syn, lin =
[
B′ + (T̂Xy − T̂XXB)′T−1

XX

]
tX. (3.33)

Using formula (3.15) for T̂XX and the property (1.15), we may write

T̂XXB = X′Σ−1diag(XB)Ĭ.

Inserting this and T̂Xy from (3.16) into (3.33) the estimator t̂syn, lin can be
rewritten in the following way,

t̂syn, lin =
[
B′ +

(
X′Σ−1diag(y)Ĭ−X′Σ−1diag(XB)Ĭ

)′
T−1

XX

]
tX

=
[
B′ + Ĭ

′
diag(y −XB)Σ−1X ·T−1

XX

]
tX

=
[
B′ + Ĭ

′
diag(r)Σ−1XT−1

XX

]
tX.

Denoting S = Σ−1XT−1
XXtX, we have

t̂syn, lin = B′tX + Ĭ
′
diag(r)S.

According to the property (1.15) we have diag(r)S = diag(S)r. Now

t̂syn, lin = B′tX + Ĭ
′
diag(S)r.

Since tsyn, lin is a scalar, then it can be transposed, which completes the
proof.

�

Proposition 3.8 The second term of t̂syn, lin in the alternative expression
(3.31), r′diag(S)Ĭ, is the unbiased estimator of zero:

E
(
r′diag(S)Ĭ

)
= 0. (3.34)
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Proof. We have,

E
(
r′diag(S)Ĭ

)
= r′diag(S)E (Ĭ) = r′diag(S)1.

Here, both S and 1 are vectors, thus we may exchange the operation of
diagonalization, diag(S)1 = diag(1)S = S. Then from definitions of S and
r we have for the expectation

E
(
r′diag(S)Ĭ

)
= r′S = S′r =

(
Σ−1XT−1

XXX′1
)′ (y −XB)

= 1′XT−1
XX

(
X′Σ−1y

)
− 1′XT−1

XX

(
X′Σ−1X

)
B

= 1′XT−1
XXTXy − 1′XT−1

XXTXXB = 0,

due to B = T−1
XXTXy.

�

The above proposition explains small variance of the synthetic estimator;
the approximate variance comes from an estimator of zero.

In the following proposition we give the formulas for the approximate bias
and the variance of the synthetic estimator. They are obtained from the
Taylor expansion (3.30) and the alternative formula (3.31).

Proposition 3.9 The approximate bias and variance of t̂syn, obtained from
the Taylor expansion, are

Ab(t̂syn) = −r′1 (3.35)
AV(t̂syn) = r′ · diag(S) ∆̆ diag(S) · r, (3.36)

where S = Σ−1XT−1
XXtX, r = y −XB and ∆̆ = Cov(Ĭ).

Proof. Taking into account the unbiasedness of T̂XX and T̂Xy for the re-
spective totals, the approximate bias comes directly from (3.30) and from
the definition of bias,

Ab(t̂syn) = E(t̂syn, lin)− ty = E
(
(B′ −B′T̂XXT−1

XX + T̂
′
XyT

−1
XX)tX

)
− ty

= B′tX −B′tX + T′
XyT

−1
XXtX − ty

= B′tX − ty = B′X′1− y′1 = −(y −XB)′1 = −r′1.
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The approximate variance of t̂syn comes from the second term of the formula
(3.31):

AV(t̂syn,) = Cov(r′ diag(S) Ĭ)

= r′ diag(S) Cov(Ĭ) diag(S) r,

which is (3.36).
�

Bias of t̂syn can be also approximated by direct comparison of t̂greg and t̂syn:

t̂greg = t̂syn + r̂′Ĭ, (3.37)

where r̂ = y −XB̂. From the knowledge, E(t̂greg) ≈ ty, it follows that

ty ≈ E(t̂syn) + E(r̂′Ĭ).

From here the approximate bias is

E(t̂syn)− ty ≈ −E(r̂′Ĭ).

Further approximation of r̂ by r, gives the result (3.35).

Remark 3.1 It follows from (3.35) that approximate bias of t̂syn does not
depend on the sampling design, but only on the assisting model (through
the sum of residuals). However, the approximate variance (3.36) depends on
the sampling design (through ∆̆), and on the assisting model as well.

We end this section by an accuracy measure of the synthetic estimator, by
the mean square error.

Proposition 3.10 The approximate mean square error of the synthetic es-
timator t̂syn is

AMSE(t̂syn) = r′
(
diag(S)∆̆ diag(S) + 11′

)
r. (3.38)

Proof. The result (3.38) follows directly from the property (1.64) of the
MSE(·) operator and the Proposition 3.9,

AMSE(t̂syn) = AV(t̂syn) + Ab(t̂syn)
(
Ab(t̂syn)

)′
= r′diag(S)∆̆ diag(S)r + r′11′r

= r′
(
diag(S)∆̆ diag(S) + 11′

)
r. (3.39)

�
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3.4 A property relating GREG and SYN estima-
tors

The expression of the GREG estimator (3.22) tells us that t̂greg = t̂syn, if the
residual part is zero, r̂′Ĭ = 0. Below we deal with the respective condition.

According to Särndal et al. (1992, p.231), a sufficient condition for r̂′Ĭ = 0
is that there exists a constant (not depending on i) column vector λ such
that for all i ∈ U ,

σ2
i = x′iλ, (3.40)

where σ2
i is the error variance of the model (3.11), a diagonal element of the

matrix Σ. We present this sufficient condition in matrix form.

Proposition 3.11 A sufficient condition for r̂′Ĭ = 0 is that there exists a
vector λ such that

Σ = diag(Xλ). (3.41)

Proof. Assume that condition (3.41) holds. We want to show

r̂′Ĭ = (y′ − B̂
′
X′)Ĭ = 0.

First, let us see that X′Ĭ = T̂XXλ. Developing,

X′Ĭ = X′Σ−1ΣĬ = X′Σ−1diag(Xλ)Ĭ,

and noticing that both Xλ and Ĭ are N × 1 vectors, so that the property
(1.15) can be applied for them, we get

X′Σ−1diag(Xλ)Ĭ = X′Σ−1diag(Ĭ)Xλ = T̂XXλ.

Analogously, we can show that

y′Ĭ = y′Σ−1ΣĬ = y′Σ−1diag(Xλ)Ĭ
(1.15)
= T̂

′
Xyλ.

So we have:

r̂′Ĭ = T̂
′
Xyλ− B̂

′
T̂XXλ

(3.17)
= T̂

′
Xyλ− T̂

′
Xyλ = 0.

�
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Remark 3.2 The relationship (3.41) holds in many practical situations
(Särndal et al., 1992, p. 232, Särndal, 2007). Some situations are listed
below, and the validity of 3.41 is shown for them.

(1) Covariance matrix Σ has a simple structure, Σ = σ2I, where σ2 is a
constant, and regression model has an intercept, that is xi1 = 1 for all
i ∈ U . Then the relationship (3.41) holds with λ′ = (σ2, 0, ..., 0). Really,

Xλ =


1 x12 ... x1p

1 x22 ... x2p
...

...
...

...
1 xN2 ... xNP




σ2

0
...
0

 =


σ2

σ2

...
σ2

 = σ21.

(2) σ2
i is proportional to one out of the p-auxiliary variables, that is for some

auxiliary variable j, j = 1, 2, ..., p,

σ2
i ∝ xij , i ∈ U.

Then xij = c σ2
i for all i and for some constant c. A suitable λ for the

relationship (3.41) is λ′ = (0, ..., 0, 1/c, 0, ...0), where 1/c is the j-th element
of λ. For the product Xλ we have

Xλ =


x11 ... cσ2

1 ... x1p

x21 ... cσ2
2 ... x2p

...
...

...
...

...
xN1 ... cσ2

N ... xNp




0
...

1/c
...
0

 =


σ2

1

σ2
2
...

σ2
N

 .

(3) σ2
i is proportional to a linear combination of auxiliary variables,

σ2
i ∝

p∑
j=1

ajxij ,

for all i ∈ U and some constants a1, a2, ..., ap. Then
∑p

j=1 ajxij = c σ2
i for

some constant c. It is easy to see that (3.41) holds with λ′ = (a1/c, a2/c, ..., ap/c):

Xλ =


x11 x12 ... x1p

x21 x22 ... x2p
...

...
...

...
xN1 xN2 ... xNp




a1
c
a2
c
...

ap

c

 =
1
c


∑p

j=1 x1jaj∑p
j=1 x2jaj

...∑p
j=1 xNjaj

 =


σ2

1

σ2
2
...

σ2
N

 .
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(4) Auxiliary matrix X consists of classification variables that are used to
code membership in one of the p mutually exclusive and exhaustive groups.
Thus, the ith row of X is

x′i = γ ′i = (γi1, γi2, ..., γip),

where for j = 1, 2, ..., p, γij = 1 if i belongs to the group j, and γij = 0
if not. Here we assume that objects from the same group j have the same
variance σ2

j , implying that the N×N matrix Σ has σ2
1, σ

2
2, ..., σ

2
p with certain

repetitions on its diagonal. Then a suitable vector λ is λ′ = (σ2
1, σ

2
2, ..., σ

2
p).

Exemplifying, let N = 5 and the first, the second, the fourth object belong
to the first group with variance σ2

1; the third and the fifth object belong to
the second group with the variance σ2

2. Then

Xλ =


1 0
1 0
0 1
1 0
0 1


(

σ2
1

σ2
2

)
=


σ2

1

σ2
1

σ2
2

σ2
1

σ2
2

 .

(5) Combination of a continuous auxiliary variable xi and classification vari-
able described in (4), i. e. let the ith row of X be

x′i = (γi
′, xiγ

′
i), i ∈ U.

Let us assume like in the previous case that objects from the same group j
have the same variance σ2

j , j = 1, 2, ..., p. A suitable vector λ with dimension
2p is λ′ = (σ2

1, ..., σ
2
p, 0, ..., 0). Then Xλ, analogically to (4), is the diagonal

of Σ.

(6) The extensions of the above are available.

�

As an opposite example, we describe below a situation where (3.41) does
not hold, and, consequently, the GREG and the synthetic estimators differ
from each other. Assume, that Σ = σ2I, and auxiliary matrix X consists
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of only one variable, different from 1, or from any other constant vector.
Corresponding regression model has no intercept. Then, it is not possible to
find such λ (which is now a scalar) that the condition

Xλ =


x1

x2

· · ·
xn

 λ =


σ2

σ2

· · ·
σ2


holds. This implies that the residual term in t̂greg is different from zero.
Really, noting that with one auxiliary variable,

T̂XX = (x1, x2, · · · , xN )
1
σ2

diag(Ĭ)


x1

x2

· · ·
xN

 =
1
σ2

∑
U

x2
i Ĭi,

T̂Xy =
1
σ2

∑
U

xiyiĬi,

and respectively from (3.17)

B̂ =
∑

U xiyiĬi∑
U x2

i Ĭi

.

So, we have for the residual term

r̂′Ĭ =
(
y −XB̂

)′
Ĭ =

∑
U

yiĬi − B̂
∑
U

xiĬi = t̂y − B̂t̂x.

It follows that for X 6= constant, r̂′Ĭ 6= 0 in each sample, and correspond-
ingly t̂greg 6= t̂syn.

3.5 About equality of GREG and SYN estimators

We have seen several situations where r̂′Ĭ = 0, in which case t̂greg = t̂syn.
An additional situation is the perfect linear relationship in the population,

y = XB.
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Then the vector of residuals in the population,

r = y −XB (3.42)

is equal to zero. For the sample estimator of B we have in this case

B̂ = T̂
−1
XXT̂Xy = T̂

−1
XX

(
X′Σ−1 diag(Ĭ) y

)
= T̂

−1
XX

(
X′Σ−1 diag(Ĭ)X

)
B

= T̂
−1
XXT̂XXB = B.

Consequently, the estimated vector of residuals, r̂ = y − XB̂, is equal to
the vector of residuals in the population, r, and therefore zero. As a result,
t̂greg = (XB̂)′1 = (XB)′1 = y′1 = ty, which is an error-free estimate.

An interesting non-trivial condition was given in Proposition 3.11: t̂greg =
t̂syn, if for some constant vector λ, Σ = diag(Xλ). From the equality of
estimators follows the equality of their Taylor expansions. Consequently, the
condition Σ = diag(Xλ) for some λ, is also sufficient for t̂greg, lin = t̂syn, lin.
On the other hand, comparing expressions (3.25) and (3.31), we see directly
that a sufficient condition for their equality is S = 1. The next proposition
shows that these conditions are equivalent.

Proposition 3.12 The condition S = 1 holds if and only if there exists a
p-vector λ such that

Σ = diag(Xλ).

Proof. Suppose Σ = diag(Xλ). Then, according to the property (1.15)

Σ1 = diag(Xλ)1 = diag(1)Xλ = Xλ. (3.43)

It is easy to show now that S = 1. For this purpose we rewrite S =
Σ−1XT−1

XXtX in the following way,

S = Σ−1XT−1
XX

(
X′(Σ−1Σ)1

)
.

Then, due to (3.43) we have for S

S = Σ−1XT−1
XX

(
X′Σ−1Xλ

)
= Σ−1XT−1

XXTXXλ

= Σ−1Xλ

= Σ−1Σ1 = 1.
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Let us now assume that S = 1 and study conditions for Σ. For this purpose
we rewrite S as

S = Σ−1X · (X′Σ−1X)−1 ·X′1

= P′
X;Σ−11,

where a projector-matrix PX;Σ−1 is defined in (1.27). From the property of
the projector (1.29) and the symmetric matrix Σ−1, we note that

P′
X;Σ−1 = P′

X;Σ−1Σ−1Σ = (Σ−1PX;Σ−1)′Σ = Σ−1PX;Σ−1Σ.

Thus, the assumption S = 1 is equivalent to the condition

Σ−1PX;Σ−1Σ1 = 1. (3.44)

Premultiplying both parts of (3.44) by Σ gives

PX;Σ−1Σ1 = Σ1. (3.45)

Now the property (1.36) of the projector PX;Σ−1 can be applied to (3.45); it
gives the condition for column spaces, i.e. C(Σ1) ⊂ C(X). The last condition
means (Proposition 1.1) that there exists a matrix M : p× 1 such that

Σ1 = XM. (3.46)

Since Σ1 = σ2 = (σ2
1, σ

2
2, ..., σ

2
N )′, the expression (3.46) is equivalent to

σ2 = XM,

or
diag(σ2) = diag(XM).

Denoting M by λ completes the proof.
�

Remark 3.3 We note that the sufficient condition, S = 1, is not necessary
for the equality of Taylor expansions, t̂greg, lin = t̂syn, lin. The necessary
condition is

r′Ĭ = r′diag(S)Ĭ.

This condition does not imply that S = 1.
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As it shown in (3.35), the approximate bias of the SYN is −r′1. Generally,
r′1 6= 0. But in the cases where t̂greg = t̂syn, the approximate bias should
be zero. The next proposition shows this.

Proposition 3.13 If the auxiliary matrix X is such that Σ = diag(Xλ) for
some constant vector λ, then

r′1 = 0. (3.47)

Proof. We rewrite the sum of residuals r′1 in the following way:

r′1 = 1′r = 1ΣΣ−1r.

Using the assumption Σ = diag(Xλ) and property (1.15) we have for the
last expression,

r′1 = 1′diag(Xλ)Σ−1r = [diag(Xλ)1]′Σ−1r = [diag(1)Xλ]′Σ−1r.

Due to diag(1) = I, the last expression simplifies further,

r′1 = λ′X′Σ−1r. (3.48)

Now from the definition of residuals, r = y − XB, and formulas (3.13) -
(3.14) for TXX and TXy, we get from (3.48)

r′1 = λ′(X′Σ−1y −X′Σ−1XB) = λ′(TXy −TXXB) = 0,

because B = T−1
XXTXy.

�

Summarizing results found above we conclude.

1. From the condition Σ = diag(Xλ) follows the equality t̂greg = t̂syn.
But the opposite conclusion does not generally hold.

2. From the equality of estimators follows the equality of their Taylor
expansion. Thus if Σ = diag(Xλ), then also t̂greg,lin = t̂syn,lin (but
not necessarily in the opposite way).

3. The condition Σ = diag(Xλ) holds if and only if S = 1. Thus, if
S = 1, then t̂greg = t̂syn and t̂greg,lin = t̂syn,lin, moreover, the sum of
population residuals is zero, r′1 = 0.

4. Under the condition Σ = diag(Xλ), AMSE(t̂syn) = AV(t̂syn) = AV(t̂greg).
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3.6 GREG and SYN estimators for domains

In Sections 3.2 and 3.3 the GREG and the SYN estimators for the population
total were studied. In this section we describe different possibilities to use
the GREG and the SYN estimators for the domain total td =

∑
Ud

yi. We
recall from (1.72) that domain total can be expressed in terms of vectors as

td = y′d1,

where yd = diag(δd)y and δd is the domain indicator-vector.

The GREG and the SYN estimators for td are defined as (Särndal et al.,
1992, p. 399):

t̂dgreg =
∑
Ud

ŷi +
∑
sd

r̂iĬi,

t̂dsyn =
∑
Ud

ŷi,

which we present in matrix form as

t̂dgreg = [diag(δd) ŷ]′1 + [diag(δd) r̂]′ Ĭ, (3.49)

t̂dsyn = [diag(δd) ŷ]′1, (3.50)

where ŷ = (ŷi) : N × 1 is the vector of fitted values build on some linear
model, and r̂ = (r̂i) = y − ŷ : N × 1 is the vector of sample fit residuals.

Formulas (3.49) and (3.50) differ from the corresponding estimators (3.21)
and (3.29) of the population total by the involved vector δd, which forces
summation to go over domain Ud and over sample in this domain sd = s∩Ud.

3.6.1 Estimators under D- and P-models

The fitted values ŷ in the domain estimators (3.49) and (3.50) depend on
the model. In domains’ case the assisting model can be specified in several
ways. Fixed-effects and mixed linear model specifications for t̂dgreg and t̂dsyn

are described and thoroughly studied in Lehtonen and Pahkinen (2004, pp.
187-213).
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Here we consider two cases: the fixed-effects D-model and the fixed-effects P-
model (Lehtonen and Pahkinen, 2004, pp. 200). In the fixed-effects D-model
the vector βd is specified separately for each domain, so that

yi = x′iβd + εi (3.51)

for i ∈ Ud, d = 1, 2, ..., D. If the model could be fitted in the whole subpop-
ulation Ud, the generalized least squares estimator of βd would be

Bd =
(
Td

XX

)−1
Td

Xy, (3.52)

where
Td

XX = X′
dΣ

−1Xd, (3.53)

Td
Xy = X′

dΣ
−1yd, (3.54)

and Xd = diag(δd)X is the auxiliary matrix known in Ud and Σ = Cov(ε),
ε = (εi) : N × 1.

Design-consistent estimator for Bd based on the observed data in domain d
is

B̂d =
(
T̂

d
XX

)−1
T̂

d
Xy, (3.55)

with
T̂

d
XX = X′

dΣ
−1diag(Ĭ)Xd, (3.56)

T̂
d
Xy = X′

dΣ
−1diag(Ĭ) yd. (3.57)

The vector of fitted values for the domain Ud in the first part of (3.49) is

diag(δd)ŷ = diag(δd)XB̂d = XdB̂d,

and the vector of sample fit residuals in the second part of (3.49) is

diag(δd)r̂d = diag(δd)
(
y −XB̂d

)
= diag(δd)y−diag(δd)XB̂d = yd−XdB̂d.

Thus, the GREG and the SYN estimators (3.49)-(3.50) build on the assisting
D-model (3.51) are

t̂dgreg-D =
(
XdB̂d

)′
1 + r̂′d-D Ĭ, (3.58)

t̂dsyn-D =
(
XdB̂d

)′
1, (3.59)
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where
r̂d-D = yd −XdB̂d. (3.60)

We use subindices greg-D and syn-D respectively, in order to emphasize the
assisting D-model, standing behind the estimators.

The estimators t̂dgreg-D and t̂dsyn-D are called direct estimators, since they use
study variable values only from a given domain d (in B̂d and r̂d-D). But
these estimators require modeling in each domain separately, which may be
time consuming. Practicians prefer to use the same model for all domains,
especially if there are many domains. Then so called fixed-effects P-models
can be used for constructing the GREG and the synthetic estimators for a
domain total.

P-model uses an assisting model, defined at the population level,

yi = x′iβ + εi, (3.61)

for i ∈ U . This model was described in (3.11), and the corresponding sample-
based estimator for β is given in (3.17). Here, this estimator is given with
subindex P to stress its connection to the P-model,

B̂P = T̂
−1
XXT̂Xy. (3.62)

The estimators of td follow from the formulas (3.49) and (3.50). Thus, the
GREG and the SYN estimators build on the population model (3.61) are

t̂dgreg-P = (XdB̂P )′1 + r̂′d-P Ĭ (3.63)

t̂dsyn-P = (XdB̂P )′1, (3.64)

where
r̂d-P = yd −XdB̂P . (3.65)

Note that the estimators under P-model use values of y also from other
domains that d (in B̂P and r̂d-P ). It is said that they borrow strength from
other domains. For this reason, the estimators t̂dgreg-P and t̂dsyn-P are called
indirect estimators.

3.6.2 Linearized domain estimators

As we see from the definitions of t̂dgreg-D and t̂dgreg-P , these formulas differ
from each other only by the estimator of B (which is equal to B̂d for the
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assisting D-model and B̂P for the P-model). The same holds for the synthetic
estimators t̂dsyn-D and t̂dsyn-P . To shorten further developments we use the
unified form of domain estimators, covering both types of assisting models:

t̂dgreg =
(
XdB̂

)′
1 + r̂′dĬ, (3.66)

t̂dsyn =
(
XdB̂

)′
1, (3.67)

where
r̂d = yd −XdB̂, B̂ = B̂

−1
1 B̂2. (3.68)

For the D-model B̂1 = T̂
d
XX and B̂2 = T̂

d
Xy, as given in (3.56)-(3.57). For

the P-model B̂1 = T̂XX and B̂2 = T̂Xy, as given in (3.15) and (3.16).

In order to study properties of the estimators (3.66) and (3.67) we expand
them into Taylor series up to the linear term.

Proposition 3.14 The linear terms of the Taylor expansions of the domain
GREG and the SYN estimators are

t̂dgreg, lin = (XdB)′ 1 + r′dĬ, (3.69)

t̂dsyn, lin =
(
B′ −B′B̂1B−1

1 + B̂
′
2B

−1
1

)
td
X, (3.70)

where B = B−1
1 B2, rd = yd−XdB. The matrices B1 and B2 depend on the

model: for the D-model B1 = Td
XX and B2 = Td

Xy, given in (3.53)-(3.54);
for the P-model B1 = TXX and B2 = TXy, given in (3.13)-(3.14).

Proof. The formulas for t̂dgreg, lin and t̂dsyn, lin follow directly from the cor-
responding estimators of the population total. One simply needs to replace
the auxiliary matrix X by the matrix Xd in the linearized GREG (3.25) and
in the linearized SYN (3.30).

�

Below we give another expression for the linearized synthetic estimator that
shows its relationship with the GREG estimator. Contrary to Section 3.3,
the expression is now for the domains case.
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Proposition 3.15 The alternative form of the Taylor expansion (3.70) of
the synthetic estimator for the domain d is

t̂dsyn, lin = (XdB)′ 1 + r′d•diag(Sd)Ĭ, (3.71)

where Sd = Σ−1XB−1
1 td

X, B1 and B depend on the model as defined in
Proposition 3.14. The residual vector is rd• = yd −XdB for the assisting
D-model, and rd• = y −XB for the assisting P-model.

Proof. We rewrite the Taylor expansion (3.70) in the following way:

t̂dsyn, lin = B′td
X +

(
B̂2 − B̂1B

)′
B̂
−1
1 td

X. (3.72)

The first term of (3.72) is equal to that of (3.71), B′td
X = (XdB)′1. Elaborat-

ing the second term, let us consider the assisting D- and P-models separately.

In the case of the D-model we rewrite B̂1 = T̂XX in a following way:

B̂1 = X′
dΣ

−1diag(Ĭ)Xd = (diag(δd)X)′Σ−1diag(Ĭ)diag(δd)X
= X′diag(δd)Σ−1diag(Ĭ)diag(δd)X.

Three matrices, diag(δd), Σ−1, and diag(Ĭ), are diagonal, so their order can
be exchanged. Since also, diag(δd) · diag(δd) = diag(δd), we get for B̂1 with
the assisting D-model

B̂1 = X′Σ−1diag(Ĭ)Xd. (3.73)

Analogically, it can be shown that B̂2 = T̂Xy is equal to

B̂2 = X′Σ−1diag(Ĭ)yd. (3.74)

Consequently, in the case of D-model, we have for the second term in (3.72),(
B̂2 − B̂1B

)′
B̂
−1
1 td

X =
[
X′Σ−1diag(Ĭ) (yd −XdB)

]′
B−1

1 td
X

= r′d• · diag(Ĭ)Σ−1XB−1
1 td

X. (3.75)

Denoting Sd = Σ−1XB−1
1 td

X, and using diag(Ĭ)Sd = diag(Sd)Ĭ, we finally
get (

B̂2 − B̂1B
)′

B̂
−1
1 td

X = r′d•diag(Sd)Ĭ,

which is equal to the second term in (3.72) for the assisting D-model.
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In the case of the assisting P-model the second term of (3.72) is(
B̂2 − B̂1B

)′
B̂
−1
1 td

X =
(
T̂Xy −TXXB

)′
B−1

1 td
X

=
[
X′Σ−1diag(Ĭ)(y −XB)

]′
B−1

1 td
X

= rd• · diag(Ĭ)Σ−1XB−1
1 td

X.

Since Σ−1XB−1
1 td

X = Sd, we have shown that(
B̂2 − B̂1B

)′
B̂
−1
1 td

X = rd• · diag(Ĭ)Sd,

which is equal to the second term in (3.72) in the case of the assisting P-
model.

�

Remark 3.4 Comparing t̂dgreg, lin and t̂dsyn, lin, respectively in (3.69) and
(3.71), we see that their first terms coincide under both the D- and the
P-model, but the residual terms differ. The term r′d•diag(Sd)Ĭ differs for
the D- and P-models by the term Sd through the matrix B1 and also by
the residual vector rd•. Under the D-model rd• = rd, i. e. the estima-
tors t̂dgreg, lin and t̂dsyn, lin use the same residual vectors. Under the P-model
rd• = y −XB 6= rd, showing that the linearized GREG and SYN estima-
tors use different residual vectors. The last feature of the GREG and SYN
estimators occurs only with domain estimation; it was not present when
estimating population totals.

3.6.3 Properties of the domain estimators

The next proposition shows an interesting feature of the linearized synthetic
domain estimator. This feature affects both the variance and the bias of the
estimator.

Proposition 3.16 The second term of (3.71), r′d•diag(Sd)Ĭ, is zero on the
average,

E
(
r′d•diag(Sd)Ĭ

)
= 0. (3.76)

The equality (3.76) is valid for both the D- and the P-models.
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Proof. We have,

E
(
r′d•diag(Sd)Ĭ

)
= r′d•diag(Sd)1 = r′d•Sd = S′drd•.

Now, from definitions of Sd and rd• (Proposition 3.15) we get in the case of
the D-model

S′drd• =
[
Σ−1X(Td

XX)−1X′
d1

]′
(yd −XdB)

= 1′Xd(Td
XX)−1X′Σ−1yd − 1′Xd(Td

XX)−1X′Σ−1XdB.

Since diag(δd)yd = yd, therefore

X′Σ−1yd = X′Σ−1diag(δd)yd = X′diag(δd)Σ−1yd = X′
dΣ

−1yd = Td
Xy.

Analogically, it can be shown that X′Σ−1Xd = X′
dΣ

−1Xd = Td
XX. So, we

have

S′drd• = 1Xd(Td
XX)−1Td

Xy − 1Xd(Td
XX)−1Td

XXB = 1′XdB− 1′XdB = 0,

and, consequently, (3.76) is proved for the D-model.

In the case of the assisting P-model

S′drd• =
[
Σ−1XT−1

XXX′
d1

]′ (y −XB)
= 1′XdT−1

XXX′Σ−1y − 1′XdT−1
XXX′Σ−1XB

= 1′XdT−1
XXTXy − 1′XdT−1

XXTXXB.

Since, for the P-model B = T−1
XXTXy, we get S′drd• = 0, and the proof is

completed.
�

In the following proposition we give formulas for the approximate bias and
variance of domain estimators t̂dgreg and t̂dsyn. They are obtained from the
corresponding Taylor expansions.

Proposition 3.17 The approximate bias and variance of t̂dgreg and t̂dsyn are

Ab(t̂dgreg) = 0, (3.77)

AV(t̂dgreg) = r′d∆̆rd, (3.78)

Ab(t̂dsyn) = −r′d1, (3.79)

AV(t̂dsyn) = r′d•diag(Sd)∆̆diag(Sd)rd•, (3.80)

where ∆̆ = Cov(Ĭ), Sd and rd• are given in Proposition 3.15, rd = yd−XdB
with B depending on the model.
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Proof. The approximate bias of the t̂dgreg comes from the linearized domain
GREG estimator (3.69),

Ab(t̂dgreg) = E(t̂dgreg, lin)− tdy =
[
(XdB)′1 + r′dEĬ

]
− y′d1

= (XdB)′1 + (yd −XdB)′1− y′d1 = 0.

The approximate variance of t̂dgreg from (3.69) is,

AV(t̂dgreg) = V(t̂dgreg, lin) = V(r′dĬ) = r′dCov(Ĭ)rd.

The approximate bias of t̂dsyn is obtained from (3.70),

Ab(t̂dsyn) = E(t̂dsyn,lin)− tdy = B′td
X −B′B1B−1

1 td
X + B′

2B
−1
1 td

X − tdy

= B′td
X − tdy = B′X′

d1− y′d1 = −(yd −XdB)′1,

which is equal to (3.79).

The approximate variance of t̂dsyn comes from its alternative Taylor expansion
(3.71),

AV(t̂dsyn) = V(t̂dsyn, lin) = V(r′d•diag(Sd)Ĭ) = r′d•diag(Sd)Cov(Ĭ)diag(Sd)rd•.

�

3.6.4 On the equality of domain GREG and SYN estimators

In Sections 3.2 and 3.3 we showed that if there exists a vector λ such Σ =
diag(Xλ), then t̂greg = t̂syn. Moreover, then t̂greg, lin = t̂syn, lin and S =
Σ−1XT−1

XXtd
X = 1. Below we consider conditions for the equality of t̂dgreg

and t̂dsyn. The model plays an important role here.

Proposition 3.18 If there exists such a vector λ that the condition Σ =
diag(Xλ) holds, then in (3.58)-(3.60)

r̂′d-D Ĭ = 0, (3.81)

and
t̂dgreg-D = t̂dsyn-D, (3.82)
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where r̂d-D is given in (3.60). At the same time in (3.63)-(3.64), in general,

r̂′d-P Ĭ 6= 0,

t̂dgreg-P 6= t̂dsyn-P ,

where r̂d-P is given in (3.65).

Proof. We assume that there exists such λ that Σ = diag(Xλ) , and show
that (3.81) then holds. For D-model we have

r̂′d-D Ĭ = (yd −XdB̂d)′Ĭ.

Now, from equalities Xd = Xddiag(δd) and ΣĬ = diag(Xλ)Ĭ = diag(Ĭ)Xλ
we have for X′

dĬ

X′
dĬ = X′

ddiag(δd)Σ−1ΣĬ
= X′

ddiag(δd)Σ−1diag(Ĭ)Xλ

= X′
dΣ

−1diag(Ĭ)Xdλ

= T̂
d
XXλ.

Analogically, it can be shown that

y′dĬ = (T̂
d
Xy)

′λ.

Finally, we have for r̂′d-D Ĭ,

r̂′d-D Ĭ = y′dĬ− B̂
′
dX

′
dĬ = (T̂

d
Xy)

′λ− B̂′
dT̂

d
XXλ

=
[
(T̂

d
Xy)

′ − (T̂
d
Xy)

′(T̂
d
XX)−1T̂

d
XX

]
λ = 0. (3.83)

For the assisting P-model we express r̂′d-P Ĭ as

r̂′d-P Ĭ = (yd −XdB̂)′Ĭ = (diag(δd)y − diag(δd)XB̂)′Ĭ
= (y −XB̂)′diag(δd)Ĭ = r̂′diag(δd)Ĭ.

From Proposition 3.11 we know that if Σ = diag(Xλ) holds, then r̂′Ĭ = 0.
But it does not imply that r̂′diag(δd)Ĭ = 0, in general.

�

Remark 3.5 We see that r̂′diag(δd)Ĭ = 0, if no elements from domain d
belong to the sample. In this case for that particular sample, however, the
domain d total can be estimated by t̂dgreg-P = t̂dsyn-P = (XdB̂P )′1, since

B̂P = T̂
−1
XXT̂Xy is computed from the whole sample s, thus, available. On

the contrary, the empty domain can not be estimated under the D-model.
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3.6.5 On the bias of SYN-P estimator

Remark 3.6 As it follows from (3.82) and (3.77), the estimator t̂dsyn-D is
approximately unbiased for tdy, if the assumption Σ = diag(Xλ) holds. How-
ever, in the case of the assisting P-model, the estimator t̂dsyn-P has a bias,
even if Σ = diag(Xλ).

The following proposition gives an expression for this bias.

Proposition 3.19 If there exists such a constant vector λ, that Σ = diag(Xλ)
holds, then the approximate bias of t̂dsyn-P can be expressed as

Ab(t̂dsyn-P ) = −(Bd −B)′td
X, (3.84)

where Bd = (Td
XX)−1Td

Xy and B = (TXX)−1TXy.

Proof. As it follows from (3.79), the synthetic estimator for the domain d
has an approximate bias −r′d1. For the P-model this bias takes a form,

Ab(t̂dsyn-P ) = −(yd −XdB)′1.

We express it in the following way,

Ab(t̂dsyn-P ) = − [yd −XdBd + Xd(Bd −B)]′ 1 = − [rd-D + Xd(Bd −B)]′ 1.

Now, let us assume that Σ = diag(Xλ) holds for some λ. We show that in
this case r′d-D1 = 0:

r′d-D1 = 1′rd-D = 1′ΣΣ−1rd-D = 1′diag(Xλ)Σ−1rd-D
= [diag(1)(Xλ)]′Σ−1rd-D = λ′X′Σ−1rd-D
= λ′X′Σ−1(yd −XdBd).

Since X′Σ−1yd = X′
dΣ

−1yd and X′Σ−1Xd = X′
dΣ

−1Xd, it follows

r′d-D1 = λ′(X′
dΣ

−1yd −X′
dΣ

−1XdBd) = λ′(Td
Xy −Td

XXBd) = 0. (3.85)

Thus, the approximate bias of t̂dsyn-P is
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Ab(t̂dsyn-P ) = − [0 + Xd(Bd −B)]′ 1 = −(Bd −B)′X′
d1,

which is equal to (3.84).
�

We see from (3.84) that for a given domain, the bias is negligible if the
domain parameter-vector Bd is close to the population parameter B, i.e. as-
sisting model in the Ud is approximately the same as in the whole population.
If this condition does not hold, then a substantial bias can be encountered.
The same result for the P-model with one auxiliary variable and without
intercept can be found in Lehtonen and Pahkinen (2004), p. 204.

3.7 Dependence characteristics of estimators

The ultimate interest of this thesis is on the behavior of the general restric-
tion estimator, and on its properties. This estimator is built on the initial
estimators that can be e. g. the linear, the GREG and the SYN estimators.
In Chapter 2 three GR estimators were introduced that satisfy linear restric-
tions. All of them require knowledge of the matrix M, which is the mean
square error matrix of the vector of initial estimators. The main diagonal
of M consists of the one-dimensional mean square errors of the initial esti-
mators, they can be found in Sections 2.1-2.3. But elements outside of the
main diagonal are so called cross-mean square errors between the estima-
tors. Their expressions are given in this section. An one-dimensional study
variable y = (y1, y2, ..., yN )′ is considered.

3.7.1 Approximate cross-mean square errors of estimators

The following proposition gives approximate MSEs of three estimators of
the population total. They are obtained by using expressions of the lin-
ear estimator t̂y = y′Ĭ, and of the linearized GREG and SYN estimators
t̂greg,lin = (XB)′1 + r′Ĭ (3.25), t̂syn,lin = (XB)′1 + r′diag(S)Ĭ (3.31).
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Proposition 3.20 The approximate cross-mean square errors of the linear
estimator t̂y, the GREG estimator t̂greg and the SYN estimator t̂syn are

AMSE(t̂y, t̂greg) = y′∆̆r, (3.86)
AMSE(t̂y, t̂syn) = y′∆̆ diag(S)r, (3.87)
AMSE(t̂greg, t̂syn) = r′∆̆ diag(S)r, (3.88)

where ∆̆ = Cov(Ĭ), r = y−XB and S = Σ−1X(X′Σ−1X)−1X′1, as defined
in Proposition 3.7.

Proof. All three AMSEs of the proposition contain either unbiased t̂y or
asymptotically unbiased t̂greg estimator. In this case, according to (1.65),
MSE equals to the covariance. Approximate covariances of the estimators
follow straightforwardly from the expressions of linear estimator and lin-
earized GREG and SYN estimators.

�

Next we consider the domain’s case. We use sub-indexes d and g for two
different domains. With obvious changes between d and g, the formulas
expressed for domain d hold also for domain g. We skip the linear domain
estimator t̂dy = y′dĬ, and concentrate on the estimators that use auxiliary
information, the GREG and the SYN.

In the following proposition approximate cross-MSEs between different do-
main estimators are given. They are derived from the linearized forms of
estimators, t̂dgreg, lin = (XdB)′1 + r′dĬ from (3.69) and t̂dsyn, lin = (XdB)′1 +
r′d•diag(Sd)Ĭ from (3.71).

Proposition 3.21 The approximate cross-mean square errors of domain
estimators are the following:

AMSE(t̂dgreg, t̂ggreg) = r′d∆̆rg, (3.89)

AMSE(t̂dgreg, t̂gsyn) = r′d∆̆ diag(Sg)rg•, (3.90)

AMSE(t̂dsyn, t̂gsyn) = r′d•diag(Sd)∆̆ diag(Sg)rg• + 1′rdr
′
g1, (3.91)

with
rd = yd −XdB, B = B−1

1 B2,
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where in the case of the assisting D-model,

B1 = X′
dΣ

−1Xd, B2 = X′
dΣ

−1yd, rd• = rd, Sd = Σ−1XB−1
1 td

X;

and in the case of the assisting P-model,

B1 = X′Σ−1X, B2 = X′Σ−1y, rd• = rP = y −XB, Sd = Σ−1XB−1
1 td

X.

Proof. The estimator t̂dgreg is asymptotically unbiased. According to (1.65),
the approximate MSE in (3.89) and (3.90) is equal to the approximate co-
variance between the estimators. Therefore, these results come directly from
the linearized expressions of the domain GREG and the SYN estimators.

For the AMSE in (3.91) we use

AMSE(t̂dsyn, t̂gsyn) = ACov(t̂dsyn, t̂gsyn) +
[
Ab(t̂dsyn)

]′
Ab(t̂gsyn),

where the approximate covariance comes from (3.71) and the approximate
bias from (3.79).

�

The following proposition gives expressions for the approximate cross-MSEs
between domain estimators and estimators of the population total.

Proposition 3.22 The approximate cross-MSEs between domain SYN and
GREG estimators and population SYN and GREG estimators are the fol-
lowing:

AMSE(t̂dsyn, t̂syn) = r′d•diag(Sd)∆̆diag(S)rP + 1′rdr
′
P1, (3.92)

AMSE(t̂dsyn, t̂greg) = r′d•diag(Sd)∆̆rP , (3.93)

AMSE(t̂dgreg, t̂syn) = r′d∆̆ diag(S)rP , (3.94)

AMSE(t̂dgreg, t̂greg) = r′d∆̆ rP , (3.95)

where rP = y−XB, B = (X′Σ−1X)−1X′Σ−1y, S = Σ−1(X′Σ−1X)−1X′1.
The domain quantities rd•, rd and Sd depend on the model, which is ex-
plained in Proposition 3.21.
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Proof. In the approximate MSE (3.92) both estimators are biased, therefore

AMSE(t̂dsyn, t̂syn) = ACov(t̂dsyn, t̂syn) +
[
Ab(t̂dsyn)

]′
Ab(t̂syn).

Using linearized estimators, t̂dsyn, lin and t̂syn, lin defined in (3.71) and (3.31),
we see that Cov(t̂dsyn, lin, t̂syn, lin) corresponds to the first part of (3.92). The
second part comes from the corresponding approximate bias expressions in
(3.79) and (3.35).

In AMSEs (3.93)-(3.95) at least one estimator is approximately unbiased.
Therefore, the expressions (3.93)-(3.95) are obtained as covariances of the
linearized estimators.

�

3.7.2 Dependence characteristics in a particular case

Here we make further specifications on the estimators and sampling designs
to approach to the situation considered in our simulation study. Besides we
prove some interesting results.

We use three different domain estimators, i. e. we assume that some of the
domains are estimated by t̂dgreg-D and t̂dgreg-P , while the rest by t̂dsyn-P . We
use t̂greg for the population total. Since additive consistency between these
estimators does not hold, we want to construct a restriction estimator that
satisfies summation restriction. In fact, under the condition Σ = diag(Xλ),
t̂dgreg-D = t̂dsyn-D.

For the restriction estimator we need the following approximate cross-MSEs
in domains: AMSE(t̂dgreg-D, t̂ggreg-P ), AMSE(t̂dsyn-P , t̂gsyn-P ) and
AMSE(t̂dgreg-D, t̂gsyn-P ). Corresponding general formulas are given in Propo-
sition 3.21. Also we need the cross-AMSEs between domain estimators and
the estimator of population total. They are AMSE(t̂dgreg-D, t̂greg),
AMSE(t̂dgreg-P , t̂greg) and AMSE(t̂dsyn-P , t̂greg). Formulas for them are given
in Proposition 3.21.

All formulas in Propositions 3.20 - 3.22 require knowledge of the design
covariance matrix ∆̆. For some sampling designs this matrix has the form,

∆̆ = diag(∆̆0) + c11′ − cI, (3.96)
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where ∆̆0 = (∆̆11, ∆̆22, ..., ∆̆NN )′ with elements ∆̆ii = V(Ii)/(EIi)2 and c is
some constant. In other words, elements of the matrix ∆̆ outside the main
diagonal, ∆̆ij = Cov(Ii, Ij)/(EIi · EIj), are equal to some constant c.

In this thesis we consider the SI and the MN sampling designs. For the SI
design we get from (1.53) and (1.69):

c = − 1− f

f(N − 1)
. (3.97)

For the MN sampling design we get from (1.55) and (1.70):

c = − 1
n

. (3.98)

We note that for the equal probability designs (like simple random sampling
with and without replacement),

∆̆ii =
N

n
− 1 ≡ b, (3.99)

is also a constant. Then the matrix ∆̆ from (3.96) simplifies to

∆̆ = (b− c)I + c11′. (3.100)

For the sampling designs with ∆̆ of structure (3.96), the AMSE(t̂dgreg, t̂
g
greg)

is zero. We show this in the following proposition.

Proposition 3.23 If the design covariance matrix ∆̆ has the structure
(3.96), then

AMSE(t̂dgreg, t̂
g
greg) = 0. (3.101)

This statement is true independently on the model (D- or P-model) for the
domains d and g.

Proof. From (3.89) and (3.96) we have

AMSE(t̂dgreg, t̂
g
greg) = r′ddiag(∆̆0)rg

+ c r′d11′rg − cr′drg, (3.102)

where rd and rg are given in Proposition 3.21.
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For the first term in (3.102) we first note that rd and rg can be written as

rd = diag(δd)(y −XB), and rg = diag(δg)(y −XB),

where only B depends on the underlying model.

Since for d 6= g,
diag(δd)diag(δg) = 0, (3.103)

and also
diag(δd)diag(∆̆0)diag(δg) = 0,

then the first summand in (3.102) is zero.

The second summand in (3.102) is zero, since

r′d1 = (y −XB)′diag(δd)1 = (y −XB)′δd,

and then
r′d11′rg = (y −XB)′δdδ

′
g(y −XB) = 0,

for d 6= g.

The third summand in (3.102) is also zero, due to (3.103). This proves
(3.101).

�

Proposition 3.23 claims that under stated conditions the GREG estimators
for domains d and g are approximately uncorrelated.

The relationship (3.101) was shown in Sõstra (2007, p. 32) for the particular
t̂dgreg-D, namely for the domain ratio estimator.

Remark 3.7 Since under the conditions Σ = diag(Xλ), t̂dgreg-D = t̂dsyn-D,
then the respective SYN estimators for domains d and g are also approxi-
mately uncorrelated for ∆̆ in (3.96),

ACov(t̂dsyn-D, t̂gsyn-D) = 0. (3.104)

For the restriction estimator we also need the cross-MSEs between estimators
of a domain and of the population total. The general formulas were given
in Proposition 3.22. In some cases the formulas can be simplified.
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Proposition 3.24 Let Σ = σ2I and the assisting D-model has an intercept.
Then for the equal probability designs with the covariance matrix ∆̆ of
structure (3.100), the following property takes place:

AMSE(t̂dgreg-D, t̂greg) = AV(t̂dgreg-D). (3.105)

Proof. Note, that this statement holds for the domain estimator t̂dgreg under
the D-model, denoted t̂dgreg-D. The AMSE for t̂dgreg, depending on the model,
is given in Proposition 3.22. Using that and the matrix ∆̆, given in (3.96),
we have

AMSE(t̂dgreg, t̂greg) = (b− c)r′drP + c r′d11′rP , (3.106)

where rd = yd − XdBd with Bd = (X′
dXd)−1X′

dyd under Σ = σ2I, and
rP = y −XB with B = (X′X)−1X′y under the same Σ.

For Σ = σ2I and the model with intercept the condition Σ = diag(Xλ)
holds. Now, the second term in (3.106) is zero due to 1′rP = 0 (see Propo-
sition 3.13).

For the first term of (3.106) we use

rd = diag(δd)rd,

diag(δd)rP = yd −XdB,

and we get

(b− c)r′drP = (b− c)r′ddiag(δd)rP = (b− c)r′d(yd −XdB).

With adding the term ±XdBd we have:

(b− c)r′drP = (b− c)r′d ((yd −XdBd) + Xd(Bd −B))
= (b− c)r′drd + (b− c)r′dXd(Bd −B).

Now,

r′dXd = (yd −XdBd)′Xd

= y′dXd −B′
dX

′
dXd

= y′dXd −
(
y′dXd(X′

dXd)−1
)
X′

dXd = 0

Thus, the AMSE in (3.106) simplifies to

AMSE(t̂dgreg-D, t̂greg) = (b− c)r′drd. (3.107)

82



Now the AV(t̂dgreg-D) for the sampling design in (3.100) is,

AV(t̂dgreg) = (b− c)r′drd + cr′d11′rd. (3.108)

Under Σ = diag(Xλ), r′d1 = 0 due to (3.85), and the approximate vari-
ance (3.108) equals to (3.107). This proves the statement (3.105) of the
proposition.

�

Special case of this result is proved in Sõstra (2007, p. 33) and in Sõstra and
Traat (2009), where t̂dgreg is a ratio estimator and Bd = B.
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Chapter 4

Simulation study

In this thesis we use the real data of the healthcare personnel of Estonia, re-
ceived from the Department of Health Statistics of the National Institute for
Health Development. Sources of the data were health personnel hourly wages
and other characteristics, received from economic reports of the healthcare
providers and the statistical register of the healthcare providers.

4.1 Data description

The population of the healthcare personnel of Estonia (March 2009) consists
of 21764 medical laborers from 1112 healthcare institutions (HI), such as
clinics, family doctor offices, dental care centers, rehabilitation care centers
and so on.

More precisely, the following study and auxiliary variables were included to
the persons database, used by us as the population frame.

Two study variables:

– hourly wage (a continuous variables: in Estonian kroons),

– physician (a binary variable: 1- if the medical laborer is working as
physician, for example surgeon, cardiologist, neurologist and so on; 0-
otherwise).
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The auxiliary variables:

– ID of healthcare institution (where the medical laborer belongs to),

– age of the medical laborer (in years) for the selection probabilities,

– sex of the medical laborer (0 for men and 1 for women),

– education level of the medical laborer (values from 1 to 5, where 5 is
the highest level),

– domain indicator d (d = 1, 2, 3, 4).

The population is divided into 4 domains by the type of the healthcare
institution:

– Domain 1: family doctor centres, emergency care, diagnostics providers,
general and central hospitals;

– Domain 2: regional hospitals;

– Domain 3: special health care and dental care institutions;

– Domain 4: rehabilitation hospitals, nursing care hospitals, local hos-
pitals.

The above division was made for the purposes of this thesis to achieve dif-
ferent domain sizes and the differences in study variable characteristics. Do-
main sizes are given in Table 4.1.

Table 4.1: Population and domain sizes
Domain no. of laborers %

1 10863 49.9
2 6742 31.0
3 3139 14.4
4 1020 4.7

Population 21764 100

The population characteristics of study variables are presented in Table 4.2.
The study variables perform differently in the domains. For example, the
smallest mean of the hourly wage is in the fourth, and the biggest is in the
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third domain. For the binary variable (physician) the fourth domain is also
smallest in terms of means (proportions), whereas the first and the second
domains are approximately equal. Differences in standard deviation (Std)
are bigger for continuous variable.

Table 4.2: Population characteristics of study variables
Domain Total Mean Min Max Std

Continuous variable
1 925580 85.20 13.64 705.88 47.54
2 628572 93.23 27.50 753.68 61.69
3 351135 111.86 3.10 1096.67 89.92
4 70673 69.29 27.69 455.92 39.61

Population 1975962 90.79 3.10 1096.67 60.41
Binary variable

1 2607 0.24 0 1 0.43
2 1512 0.22 0 1 0.42
3 600 0.19 0 1 0.39
4 154 0.15 0 1 0.36

Population 4873 0.22 0 1 0.42

Two sample designs were applied for the population frame, simple random
sampling without replacement (SI) and the multinomial design (MN). The
MN design, is an unequal probability sampling design with selection proba-
bilities pi, i = 1, 2, ..., 21764, found by the age of persons,

pi =
Agei∑21764

i=1 Agei

.

This choice of pi was not motivated by the precision of estimators. The
aim was to check performance of our formulas under the design other than
SI. It can be seen from Table 4.3 that selection probabilities are almost
uncorrelated with our study variables in the population as a whole and also
in each domain separately. The distribution of pi is shown on Figure 4.1.
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Table 4.3: Correlation between selection probabilities and study variables
XXXXXXXXXXXDomain

Corr(p, ·) Continuous v. Binary v.

1 0.051 0.068
2 0.043 0.063
3 -0.016 0.125
4 0.101 0.105

Population 0.022 0.073

p

D
en

si
ty

2e−05 4e−05 6e−05 8e−05

0
50

00
15

00
0

25
00

0

Figure 4.1: Distribution of the selection probabilities

For both designs 5000 independent samples were drawn with sample size 400
from the population of medical laborers.

The samples in the domains have different sizes over simulations (Table 4.4).
There is no any empty domain sample through simulations.
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Table 4.4: Sample sizes in the domains over simulations
Domain Average Minimum Maximum

SI design, medical laborers
1 199.8 159 235
2 123.9 90 158
3 57.6 37 84
4 18.7 3 34

Population 400.0 400 400
MN design, medical laborers

1 204.8 168 238
2 116.9 87 148
3 57.8 34 84
4 20.5 4 38

Population 400 400 400

4.2 The choice of the initial estimators

We have four domains and two study variables. The natural restriction to
require is summation of domain totals up to the population total. In our case
the population total is not known (from the register or any other source). So,
we are going to estimate four domain totals, and the population total as well,
from the same sample. However, the initial estimators, chosen by us, do not
satisfy the required summation restriction. The restriction matrix R and
the restriction equation for the vector of true totals θ = (θ1, θ2, θ3, θ4, θP )′,
are:

R = (1, 1, 1, 1,−1), (4.1)
Rθ = 0. (4.2)

In Chapter 3 the SYN and the GREG estimators for both the population
and the domain total were studied. In the domain’s case the underlying
model (the population level P-model or the domain level D-model) plays an
important role in the statistical properties of the estimator. Here we will
study these properties empirically. More precisely, we observe the following
estimators:

– the GREG estimator for the population total (3.22), t̂greg,
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– the SYN estimator for the population total (3.29), t̂syn,

– the GREG (3.58) and the SYN (3.59) estimators for a domain total,
both with the assisting D-model, t̂dgreg-D and t̂dsyn-D respectively,

– the GREG (3.63) and the SYN (3.64) estimators for a domain total,
both with the assisting P-model, t̂dgreg-P and t̂dsyn-P respectively.

The auxiliary matrix consists of three variables: the vector of ones for the
intercept, sex of a person and the level of his/her education. We have a
domain indicator that allows to identify the auxiliary matrix at the domain
level. Therefore, we can fit the model on both the population and the domain
level.

The simple covariance structure, Σ = σ2I, and the model with intercept
are assumed. The Remark 3.2 then tells that Σ = diag(Xλ) for some
constant vector λ. As a consequence, t̂greg = t̂syn; moreover, according to
the Proposition 3.18, t̂dgreg-D = t̂dsyn-D.

For both designs, the four estimators (t̂greg, t̂
d
greg-D, t̂dgreg-P , t̂dsyn-P ) are com-

puted from the M = 5000 samples. They are the building blocks for the
restriction estimators. The following measures compare their performance
over M simulations:

– the relative bias, RB(θ̂) =
1
M

PM
m=1 θ̂(m)−θ

θ ,

– the relative standard deviation, RD(θ̂) =

q
1
M

PM
m=1(θ̂(m)− 1

M

PM
m=1 θ̂(m))2

θ ,

– the relative root mean square error, RRMSE(θ̂) =

q
1
M

PM
m=1(θ̂(m)−θ)2

θ ,

where θ̂(m) is the computed estimate of the population or domain total from
the mth simulation and θ refers to the true total.

Performance measures of the four estimators under the SI case are given in
Table 4.5, and under the MN case in Table 4.6.

The GREG estimator is nearly unbiased, also confirmed by Tables 4.5 and
4.6. Furthermore, we know that the GREG estimator for a domain is also
nearly unbiased regardless of the model choice (Proposition 3.17).
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Table 4.5: Characteristics of different estimators for the population and the
domain totals, SI design

Continuous variable
True total Mean RB, % RD, % RRMSE, %

GREG
Population 1975962 1976099 -0.01 2.65 2.65

SYN-P
Dom 1 925580.8 971393.4 -4.95 2.75 5.66
Dom 2 628572.2 593646 5.56 2.39 6.05
Dom 3 351135.7 326783 6.94 2.89 7.51
Dom 4 70673 84023 -18.89 2.73 19.09

GREG-P
Dom 1 925580.8 925658 -0.01 2.91 2.91
Dom 2 628572.2 627851 0.11 4.38 4.38
Dom 3 351135.7 351367 -0.07 9.52 9.52
Dom 4 70673 70798 -0.18 11.14 11.14

GREG-D
Dom 1 925580.8 926278 -0.08 2.93 2.93
Dom 2 628572.2 628009 0.09 4.43 4.43
Dom 3 351135.7 350431 0.20 9.93 9.93
Dom 4 70673 69557 1.58 9.87 10.00

Binary variable
GREG

Population 4873 4875.89 -0.06 8.15 8.15
SYN-P

Dom 1 2607 2349.33 9.88 7.39 12.34
Dom 2 1512 1405.21 7.06 7.66 10.42
Dom 3 600 935 -55.83 12.00 57.11
Dom 4 154 179 -13.97 8.94 19.27

GREG-P
Dom 1 2607 2597 0.35 10.82 10.82
Dom 2 1512 1500 0.73 12.30 12.32
Dom 3 600 605 -0.83 28.50 28.51
Dom 4 154 153 0.00 55.84 55.84

GREG-D
Dom 1 2607 2599 0.27 10.97 10.97
Dom 2 1512 1501 0.66 11.90 11.92
Dom 3 600 595 0.67 27.17 27.17
Dom 4 154 148 3.90 57.14 57.28
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Table 4.6: Characteristics of different estimators for the population and the
domain totals, MN design

Continuous variable
True total Mean RB, % RD, % RRMSE, %

GREG
Population 1975962 1975115 0.04 2.77 2.77

SYN-P
Dom 1 925580.8 970810.4 -4.89 2.86 5.66
Dom 2 628572.2 593697.7 5.55 2.53 6.10
Dom 3 351135.7 326572.8 7.00 3.03 7.62
Dom 4 70673 84034.14 -18.91 2.93 19.13

GREG-P
Dom 1 925580.8 925407.7 0.02 3.03 3.03
Dom 2 628572.2 627943.7 0.10 4.66 4.67
Dom 3 351135.7 350678.9 0.13 10.06 10.06
Dom 4 70673 70782.9 -0.16 10.99 10.99

GREG-D
Dom 1 925580.8 925118.4 0.05 2.96 2.96
Dom 2 628572.2 629157.5 -0.09 4.82 4.82
Dom 3 351135.7 351644.5 -0.14 10.59 10.59
Dom 4 70673 69894.8 1.10 10.08 10.14

Binary variable
GREG

Population 4873 4865.952 0.14 8.39 8.39
SYN-P

Dom 1 2607 2345.494 10.03 7.65 12.62
Dom 2 1512 1405.913 7.02 8.03 10.66
Dom 3 600 935.0718 -55.85 12.53 57.23
Dom 4 154 179.4724 -16.54 11.14 19.94

GREG-P
Dom 1 2607 2606.858 0.01 11.19 11.19
Dom 2 1512 1507.998 0.26 13.24 13.24
Dom 3 600 607.3754 -1.23 29.78 29.80
Dom 4 154 154.3719 -0.24 55.10 55.10

GREG-D
Dom 1 2607 2598.228 0.34 11.44 11.45
Dom 2 1512 1508.435 0.24 13.13 13.13
Dom 3 600 603.7609 -0.63 27.54 27.55
Dom 4 154 151.6712 1.51 55.45 55.47
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From Tables 4.5 and 4.6 (rows GREG-P and GREG-D) we see that the bias is
ignorable for almost all domains. A small bias occurs in the fourth domain.
This can be explained by small sample size in that domain, only 18.7 in
average for SI case and 20.5 for MN case. Unbiasedness holds asymptotically.

From the same tables, we also see that the SYN-P is biased for the do-
main totals. For example, for both designs the bias is very large in the
third domain (about 56%!). That means that the true regression model in
this domain differs completely from the population regression model. The
bias of SYN-P was notified in Remark 3.6 and the bias value was given in
Proposition 3.19.

From Tables 4.5 and 4.6 we see that the variance of the SYN-P is smaller
than that of the GREG-P. This illustrates the well known fact that the
synthetic estimator has small variability (see e. g. Yang and Rubin-Bleuer,
2007). Looking on the RRMSE column, we see the opposite in most of the
domains. The reason is in the substantial bias of the SYN-P estimator.

In Chapter 2 three different restriction estimators are described. All of
them allow initial estimators (or some of them) to be biased. The following
vector was chosen as the vector of initial estimators for four domains and
the population total:

θ̂ = (t̂1greg-P , t̂2greg-D, t̂3syn-P , t̂4syn-P , t̂greg)′. (4.3)

In this vector, the estimators of the domains 3 and 4 (t̂3syn-P and t̂4syn-P )
are biased. The restriction equation (4.2) is not satisfied for (4.3), which
means that sum of the domain estimators is not equal to the estimator of
the population total. The estimators are not consistent.

We illustrate the non-consistency over simulations for both the SI and the
MN designs. We calculate the difference and the relative difference:

Diff =
4∑

d=1

θ̂d − t̂greg,

RDiff = Diff/tgreg,

where θ̂d is the estimator of domain d in (4.3). In Table 4.7 mean, mini-
mum and maximum difference are presented for both continuous and binary
variable. Also the proportions of samples for which |RDiff | > 0.01 are
calculated.
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Table 4.7: Differences Diff and its characteristics
Design Mean Minimum Maximum |RDiff | > 0.01

Continuous variable
SI -10812.3 -152348.2 82927.4 0.495
MN -8716.3 -152204.4 109970.9 0.515

Binary variable
SI 357.5 -304.3 971.1 0.973
MN 357.1 -385.9 944.5 0.967

We see that the consistency problem is quite serious, especially for the binary
variable. For the continuous variable, about 50% of all samples have the
relative difference bigger than 0.01, which means for half of the samples
|Diff | > 19759.6 (0.01 of the true total). This difference is too large and
can not be ignored.

For the binary variable about 97% of samples are inconsist to the extent
|RDiff | > 0.01. The Figures 4.2 and 4.3 show the distribution of the
relative difference for the SI case and Figures 4.4-4.5 for the MN case.

The distribution in Table 4.7 and on Figures 4.2, 4.4 indicates for the con-
tinuous variable that the sum of domain estimates tends to be smaller than
the estimated population total. For the binary variable, as it can be seen
from Figures 4.3, 4.5, this sum is almost always bigger.
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Figure 4.2: Distribution of relative difference, SI design, continuous variable
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Figure 4.3: Distribution of relative difference, SI design, binary variable
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Figure 4.4: Distribution of relative difference, MN design, continuous vari-
able
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Figure 4.5: Distribution of relative difference, MN design, binary variable

4.3 MSE and bias of the initial estimators

For the GR estimators we need the MSE matrix M of the initial estimators,
i. e. M = AMSE(θ̂), θ̂ given in (4.3). The components of M are calculated
with formulas of Section 3.7.1, and are given in Table 4.8 for SI design and
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in Table 4.9 for MN design. The matrix M is positive definite in all cases
as can be seen from the eigenvalues in Table 4.10.

Table 4.8: AMSE matrix M for the vector of initial estimators (4.3), SI case
Continuous variable, ×105

t̂1greg-P t̂2greg-D t̂3syn-P t̂4syn-P t̂greg

t̂1greg-P 7242.69 0 1330.84 283.31 7293.78
t̂2greg-D 0 7586.72 1405.81 276.17 7586.72
t̂3syn-P 1330.84 1405.81 6965.57 -3080.75 5165.77
t̂4syn-P 283.31 276.17 -3080.75 1830.91 997.68
t̂greg 7293.78 7586.72 5165.77 997.68 27165.26

Binary variable
t̂1greg-P t̂2greg-D t̂3syn-P t̂4syn-P t̂greg

t̂1greg-P 80889.04 0 13640.82 3442.92 81052.42
t̂2greg-D 0 31821.16 6091.24 1219.67 31821.16
t3syn-P 13640.82 6091.24 118052.3 9714.89 26821.95
t̂4syn-P 3442.92 1219.67 9714.89 938.87 6226.87
t̂greg 81052.42 31821.16 26821.95 6226.87 152400.1

Table 4.9: AMSE matrix M for the vector of initial estimators (4.3), MN
case

Continuous variable, ×105

t̂1greg-P t̂2greg-D t̂3syn-P t̂4syn-P t̂greg

t̂1greg-P 7809.75 0 1423.53 306.88 7861.8
t̂2greg-D 0 8560.69 1546.3 311.56 8437.06
t̂3syn-P 1423.53 1546.3 7070.47 -3060.53 5711.64
t̂4syn-P 306.88 311.56 -3060.53 1835.61 1113.62
t̂greg 7861.8 8437.06 5711.64 1113.62 30161.26

Binary variable
t̂1greg-P t̂2greg-D t̂3syn-P t̂4syn-P t̂greg

t̂1greg-P 87208.59 0 14588.88 3730.42 87375.03
t̂2greg-D 0 38637.35 7266.21 1469.93 38215.83
t3syn-P 14588.88 7266.21 118531.04 9818.22 29448.28
t̂4syn-P 3730.42 1469.93 9818.22 966.72 6867.80
t̂greg 87375.03 38215.83 29448.28 6867.80 167846.21

96



It can be seen from all four M matrices that the domain estimators t̂1greg-P
and t̂2syn-D are uncorrelated. This is in line with Proposition 3.23. The cross-
AMSEs are generally positive. Only for the continuous variable it is negative
between the estimators in the third and the fourth domains for both the SI
and the MN cases. It can be explained by rather large negative bias in the
fourth domain. For the third domain it is positive.

Table 4.10: Eigenvalues of the AMSE matrix M
SI design MN design

Continuous Binary Continuous Binary
variable variable variable variable

3.29×109 2.19×105 3.64×109 2.39×105

7.62×108 1.09×105 8.18×108 1.09×105

7.41×108 4.50×104 7.64×108 5.24×104

2.86×108 1.07×104 3.23×108 1.19×104

4.85×105 27.86 5.44×105 29.96

Three diagonal elements of M that corresponds to the GREG estimators,
are their approximate variances.

For the SI case we see that AMSE(t̂2greg-D, t̂greg) = AV(t̂2greg-D). For the
MN case this does not hold. This illustrates Proposition 3.24.

The vector θ̂ of initial estimators has two biased components, t̂3syn-P and
t̂4syn-P . Others are asymptotically unbiased (see Proposition 3.17). The ap-
proximate bias of these two components is calculated using (3.79), resulting
in the following numerical vectors:

Ab(θ̂) = (0, 0,−24376.56, 13388.26, 0)′ (4.4)

for the continuous variable, and

Ab(θ̂) = (0, 0, 336.03, 25.87, 0)′ (4.5)

for the binary variable.
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4.4 GR estimators

In Section 2.2 three different restriction estimators were described. They
are:

θ̂GR1 = (I−KR)(θ̂ − b),
θ̂GR2 = (I−K∗R)θ̂,

θ̂GR3 = (I−K∗R)(θ̂ − b),

where K = VR′(RVR′)−1, K∗ = MR′(RMR′)−1, V and M are accord-
ingly the covariance and the MSE matrices of the initial estimator-vector θ̂
in (4.3). The GR estimators θ̂GR1 and θ̂GR3 are unbiased for θ. The bias of
θ̂GR2 is

b(θ̂GR2) = (I−K∗R)b.

Numerically, in the SI case it is equal to

(1880.37, 2023.44,−22625.33, 11357.52,−7364.00)′

for the continuous variable, and to

(−38.16,−16.49, 63.88, 5.37, 14.61)′

for the binary variable. Under the MN design, values of the bias are accord-
ingly,

(1800.13, 2125.25,−23016.43, 11543.36,−7547.70)′

and
(−40.27,−20.32, 68.13, 5.64, 13.18)′.

We see that the restriction estimator θ̂GR2 has all components biased. Com-
pared to the initial estimator θ̂, bias has appeared to the initially unbiased
components, whereas it has decreased in the initially biased components.
Despite of the bias, θ̂GR2 is more accurate than the initial θ̂, in the MSE-
terms.

The initial estimate-vector θ̂ (4.3) is calculated from each of the 5000 sam-
ples, drawn separately by the SI and the MN designs. The estimates were
computed with both study variables, the continuous and the binary variable.
Then, in each sample three GR estimators were computed, based on θ̂ in
that sample and on the respective theoretical AMSE matrices M (given in
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Tables 4.8 and 4.9). The covariance matrix V is computed from the relation
V = M− bb′, where b is given in (4.4) and (4.5).

Table 4.11 shows results of the first three simulated samples to illustrate
transformation of initial estimates to the GR estimates. All three GR esti-
mators satisfy summation restriction to zero, while the initial estimator does
not.

Table 4.11: The values of estimators of selected samples (SI and MN designs,
binary variable)
Estimator Sample Domain d

d = 1 d = 2 d = 3 d = 4 Population Rθ̂ =
SI design

Initial
1 2450.3 1428.3 884.1 178.3 4706.2 234.9
2 2291.8 1878.7 1003.3 191.0 5160.7 204.1
3 2777.1 1460.7 917.8 192.5 5019.6 328.6

GR1
1 2523.2 1459.8 544.0 151.2 4678.3 0.0
2 2382.3 1917.8 662.2 163.7 5126.0 0.0
3 2796.2 1469.0 580.7 166.4 5012.3 0.0

GR2
1 2425.6 1417.6 707.4 165.0 4715.7 0.0
2 2270.2 1869.4 849.8 179.5 5168.9 0.0
3 2742.5 1445.8 670.7 173.9 5032.9 0.0

GR3
1 2463.7 1434.1 643.6 159.6 4701.0 0.0
2 2308.4 1885.9 785.9 174.1 5154.3 0.0
3 2780.6 1462.3 606.8 168.6 5018.2 0.0

MN design

Initial
1 2666.0 1676.8 952.5 178.1 4883.7 589.7
2 2419.3 1423.5 931.1 169.9 4725.0 218.8
3 2674.4 1241.9 908.7 164.7 4604.8 384.8

GR1
1 2533.9 1613.3 622.7 154.0 4923.8 0.0
2 2502.3 1463.4 591.2 142.9 4699.8 0.0
3 2661.1 1235.5 573.3 139.0 4608.8 0.0

GR2
1 2600.0 1645.1 513.6 145.0 4903.7 0.0
2 2394.8 1411.7 768.3 157.6 4732.4 0.0
3 2631.3 1221.1 622.4 143.1 4617.9 0.0

GR3
1 2640.5 1664.6 446.9 139.5 4891.4 0.0
2 2435.3 1431.2 701.5 152.1 4720.1 0.0
3 2671.8 1240.6 555.6 137.5 4605.6 0.0
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Besides the consistency of estimators, the variability and the bias of estima-
tors are also of interest. From Proposition 2.5 we know that all three GR
estimators should be more accurate than the initial estimator in the MSE
terms. Theoretical AMSEs are calculated with formulas (2.11), (2.15) and
(2.21). Results are included in Table 4.12 for the SI case and 4.13 for the
MN case.

For better visualization, MSE matrices are presented in a vectorized form
with AMSEs of the domain and the population estimators in the bold font.
From the Löwner ordering of matrices (2.24), the same ordering holds for
the diagonal elements of these matrices (see (1.12)). The AMSEs in bold in
Tables 4.12 and 4.13 confirm this result for all domains and for the population
in both SI and MN cases.

For the smallest fourth domain and the continuous variable, the AMSE of
GR1 is about 50 times smaller than that of the initial estimator in that
domain. This holds for both sampling designs. For the third domain the
decrease is also large. It can be explained by very biased initial estimators
(SYN-P) in these domains (see Tables 4.5 and 4.6). In the formula of θ̂GR1

(2.10) this bias is first subtracted and then the transformation by (I−KR)
is made, which optimizes the accuracy of the estimator.

The estimator GR3 is the second best estimator, as can be seen from the
AMSEs. But both estimators, GR1 and GR3, require knowledge of the
initial bias. The estimator GR2 is free of this requirement, but is biased
itself. Still, the AMSE of GR2 is smaller than that of the initial estimator in
all domains and in the population. Tables 4.5 and 4.6 confirm this also. The
decrease in AMSEs is especially remarkable in the case of the binary variable
for the third and fourth domains, where initial estimators were substantially
biased.
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Table 4.12: Theoretical AMSEs between estimators for SI case
Continuous variable, ×105

θ̂GR1 θ̂GR3 θ̂GR2 θ̂

Domain 1 6934.5 6939.9 6975.2 7242.7
Domain 1, Domain 2 -331.7 -325.9 -287.8 0
Domain 1, Domain 3 1572.0 1507.2 1081.7 1330.8
Domain 1, Domain 4 326.1 358.6 572.2 283.3
Domain 1, Population 8500.9 8479.8 8341.3 7293.8
Domain 2 7229.8 7236.1 7277.0 7586.7
Domain 2, Domain 3 1665.3 1595.6 1137.8 1405.8
Domain 2, Domain 4 322.2 357.2 587.0 276.2
Domain 2, Population 8885.6 8862.9 8713.9 7586.7
Domain 3 834.7 1614.5 6733.6 6965.6
Domain 3, Domain 4 149.4 -242.0 -2811.7 -3080.8
Domain 3, Population 4221.4 4475.2 6141.3 5165.8
Domain 4 32.5 229.0 1518.9 1830.9
Domain 4, Population 830.2 702.8 -133.6 997.7
Population 22438.1 22520.7 23063.0 27165.3

Binary variable
Domain 1 71185.0 77648.9 79105.0 80889.0
Domain 1, Domain 2 -4192.9 -1399.9 -770.9 0
Domain 1, Domain 3 14176.4 3354.5 916.8 13640.8
Domain 1, Domain 4 3599.0 2689.4 2484.5 3442.9
Domain 1, Population 84767.5 82292.9 81735.4 81052.4
Domain 2 30009.5 31216.3 31488.1 31821.2
Domain 2, Domain 3 6322.7 1646.8 593.5 6091.2
Domain 2, Domain 4 1287.1 894.1 805.6 1219.7
Domain 2, Population 33426.4 32357.1 32116.3 31821.2
Domain 3 5104.1 23222.1 27303.3 118052.3
Domain 3, Domain 4 1013.7 2536.6 2879.6 9714.9
Domain 3, Population 26616.9 30759.9 31693.2 26822.0
Domain 4 267.2 395.2 424.0 938.9
Domain 4, Population 6167.1 6515.3 6593.8 6226.9
Population 150977.9 151925.2 152138.6 152400.1
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Table 4.13: Theoretical AMSEs between estimators for MN case
Continuous variable, ×105

θ̂GR1 θ̂GR3 θ̂GR2 θ̂

Domain 1 7498.1 7502.4 7534.8 7809.7
Domain 1, Domain 2 -368.0 -362.9 -324.6 0.0
Domain 1, Domain 3 1685.5 1630.1 1215.8 1423.5
Domain 1, Domain 4 353.1 380.9 588.7 306.9
Domain 1, Population 9168.7 9150.5 9014.6 7861.8
Domain 2 8126.2 8132.3 8177.4 8560.7
Domain 2, Domain 3 1855.5 1790.2 1301.0 1546.3
Domain 2, Domain 4 366.1 398.9 644.2 311.6
Domain 2, Population 9980.0 9958.5 9798.1 8437.1
Domain 3 908.2 1615.9 6913.5 7070.5
Domain 3, Domain 4 164.2 -190.7 -2847.6 -3060.5
Domain 3, Population 4613.4 4845.5 6582.7 5711.6
Domain 4 36.3 214.3 1546.8 1835.6
Domain 4, Population 919.8 803.4 -67.9 1113.6
Population 24681.8 24757.9 25327.6 30161.3

Binary variable
Domain 1 76959.1 83566.5 85188.5 87208.6
Domain 1, Domain 2 -5170.6 -1837.3 -1019.1 0.0
Domain 1, Domain 3 15071.7 3894.5 1150.8 14588.9
Domain 1, Domain 4 3868.3 2942.9 2715.8 3730.4
Domain 1, Population 90728.5 88566.6 88036.0 87375.0
Domain 2 36028.9 37710.5 38123.2 38637.4
Domain 2, Domain 3 7509.8 1871.2 487.0 7266.2
Domain 2, Domain 4 1539.5 1072.7 958.1 1469.9
Domain 2, Population 39907.6 38817.0 38549.3 38215.8
Domain 3 5589.7 24497.1 29138.4 118531.0
Domain 3, Domain 4 1119.2 2684.5 3068.8 9818.2
Domain 3, Population 29290.3 32947.3 33845.0 29448.3
Domain 4 295.7 425.3 457.1 966.7
Domain 4, Population 6822.7 7125.4 7199.8 6867.8
Population 166749.0 167456.3 167630.0 167846.2
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Since MSEs of the initial estimators were developed to hold asymptotically,
then the MSEs (2.11), (2.15) and (2.21) of the GR estimators involving them
will be also the approximate MSEs. These approximate theoretical MSEs
were compared with the empirical ones. On Figure 4.6 this is done for the
SI case, and on Figure 4.7 for the MN case. We see that for the SI design,
empirical results are similar to the theoretical values. Only for the second
domain (with the GREG-D as the initial estimator), and for the population
(with the GREG as the initial), the theoretical AMSE of the continuous
variable seems to underestimate a little the real MSE (the empirical). But
for the binary variable and for the population case, the theoretical AMSE
is bigger than the empirical one. Nevertheless, we cannot make any con-
clusion here about some tendentious overestimating or underestimating of
MSEs. For the MN case, we see that theoretical AMSEs are smaller than
corresponding empirical MSEs almost in all cases. But this difference is
very small. Values of the empirical MSEs and cross-MSEs are given in the
Appendix C, Tables 5.1 and 5.2.

Figures 4.6 and 4.7 confirm the findings of the previous tables of MSEs −
the highest benefit of GR estimators is got for the third and for the fourth
domains, which have the substantial initial bias.
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Figure 4.6: Empirical and theoretical MSEs, SI case.
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Figure 4.7: Empirical and theoretical MSEs, MN case.
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4.5 Conclusions from simulations

The simulation study confirmed the theoretical results of this thesis. Though,
many theoretical results were developed to hold asymptotically, they worked
well also with rather small sample sizes in our examples.

Three different restriction estimators were considered for four domains with
the requirement that these estimators sum up to the estimator of the popu-
lation total, received from the same sample.

The biased estimator SYN-P was chosen as an initial estimator for two do-
mains, while for other two domains the asymptotically unbiased estimators
were taken. Behavior of these initial estimators was studied in terms of the
relative bias and the RRMSE.

Known AMSE matrix of initial estimators was used in the restriction esti-
mators. Simulation-based behavior of the restriction estimators was studied
with special emphasis on their mean square errors. Samples were taken by
two sampling design, the SI (as the equal probability design) and the MN
(as the unequal probability design). Population size was 21764 and sample
size 400 persons.

The main simulation results are summarized below.

– Different estimators (GREG and SYN) for the domains were studied.
The SYN-P estimator showed smaller variance than the GREG esti-
mator, but lead to the enormous bias.

– The GREG estimator is asymptotically unbiased for the domain total
(irrespective of the underlying model). But for small sample sizes the
minor bias may occur (like it happened in our example with GREG-D
for the fourth domain).

– In the role of initial estimators, two asymptotically unbiased and two
biased estimators were chosen for domain totals, and the asymptoti-
cally unbiased GREG for the population total. The AMSE matrix of
the initial estimator-vector was found for both designs. Its structure
illustrated theoretical results of the thesis. It was seen from the AMSE
matrix that the domain GREG estimators were uncorrelated irrespec-
tive of the design. For the SI design, the AMSE of the GREG-D in
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the second domain and the GREG in the population was equal to the
asymptotic variance of the GREG-D. This property did not hold for
the MN design.

– The extent of the inconsistency of the initial estimators was studied,
and found to be rather large. The inconsistency disappeared with
putting on restrictions and going over to the GR estimators.

– Two of the GR estimators (GR1 and GR3) were unbiased, but required
knowledge of the bias of initial estimators. The estimator GR2 was free
of this requirement, but biased itself. All three GR estimators showed
smaller AMSEs than these of the initial estimators in both calculations
− with theoretical formulas derived in this thesis, and also empirically
over repeated samples. For the domains with biased initial estimators,
the AMSE of the GR1 and GR3 showed high decrease when compared
with the AMSE of initial estimators. As it was expected, the AMSE of
the GR1 was smallest (for the continuous variable and fourth domain
it was about 55 times smaller than the AMSE of the initial estimator).
For the GR3 the biggest decrease compared with the initial AMSE was
about 8 times. The AMSE of the GR2 was much bigger than that of
the GR1 and the GR3, due to the bias, but still considerable smaller
than that of the initial estimator. For the asymptotically unbiased
domain estimators, the decrease in AMSEs was not so large.

– Empirically computed MSEs of the GR estimators were close to the
asymptotic theoretical values for both designs and for both study vari-
ables.
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Chapter 5

General conclusions

In this thesis estimation under linear restrictions was studied. More specif-
ically, we focused on the domain estimation under summation restriction.
Our starting point was that domains are initially estimated by conceptually
different estimators with some of them being biased, and their sum is not
equal to the estimated population total. We used the initial estimators from
the GREG and the SYN families, specified under two different models for
the domains - the population and the domain model.

The main goals of this thesis were achieved. The following results were
received

1. The three GR estimators satisfying linear restrictions, generalized to
allow biased initial estimators, were proposed. Though we concen-
trated more deeply on the summation restriction in the domains, all
derived formulas for GR estimators in Chapter 2 hold for general linear
restrictions.

2. The mean square error (MSE) and the bias expressions for the GR
estimators were derived. This was done in matrix form since estimation
under restrictions is a multivariate problem.

3. The MSE matrices of the three GR estimators were ordered (in the
Löwner sense), and the GR estimator with the smallest MSE matrix
was found. It appeared that the GR2 estimator was most accurate. It
was shown that all tree GR estimators are never less accurate (in MSE
terms) than the initial estimator.
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4. Two important estimators, the GREG and the SYN, were elaborated
in more detail, both for estimation of the population total and then for
the domains case. Though GREG is much considered in the literature,
and to some extent also SYN, we still discovered many new properties
of these estimators, especially for SYN and especially for the mutual
relationship of the GREG and the SYN.

5. The conditions for the equality of the GREG and the SYN were deeply
studied, and novel results were established for the domains case.

6. The second-order Taylor expansion was derived for the GREG and
the first-order for the SYN estimators. Based on these, the linearized
forms of the estimators were derived, as for the population total, so for
the domain totals. In domain’s case the two different assisting models
(population and domain models) were treated.

7. The expressions of the bias, the covariance and the mean square error of
the estimators were found. They were the approximate (linearization-
based) expressions.

8. The expressions for the approximate cross-mean square errors between
the GREG and the SYN estimators were developed, for both assisting
models in domains case.

9. Special cases of the design covariance matrix ∆ were also considered.
These cases included the SI and the MN designs. Respectively, some
approximate mean square errors simplified under assumptions for ∆.
For example, the domain GREG estimators were uncorrelated irre-
spective of the model.

10. The theoretical results of this thesis were illustrated and tested in a
simulation study, which confirmed the derived properties of the GR
and the considered initial estimators. Conclusions on the simulation
results are summarized in Section 4.5.
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Appendix A

Proof of the Proposition 3.3

Proof. The estimator

t̂greg = t̂y − T̂
′
XyT̂

−1
XX(t̂X − tX)

can be viewed as a function at four arguments, three of which are matrices,

t̂greg = f(W), A.1

where W = (t̂y, t̂X, T̂Xy, T̂XX).

For the Taylor expansion we need derivatives of t̂greg up to the second order
in a neighborhood of a point W0 = (ty, tX,TXy,TXX) that consists of true
totals. We use the expansion (1.51) for f(W), where W is replaced with its
vectorized form,

vec(W) = (t̂y, t̂
′
X, T̂

′
Xy, vec′T̂XX)′. A.2

Properties of the Proposition 1.3 are used for the matrix derivatives. We
denote the first derivatives with respect to each of the four arguments by I,
II, III and IV.

I =
d t̂greg

d t̂y
= 1.

II =
d t̂greg

d t̂X

(1.45)
=

d (t̂X − tX)
d t̂X

· d t̂greg

d (t̂X − tX)
(1.43)
= Ip · (−1⊗ B̂)

= −T̂
−1
XXT̂Xy.

III =
d t̂greg

d T̂Xy

(1.45)
=

d (T̂
′
Xy)

d T̂Xy

· d t̂greg

d (T̂
′
Xy)

(1.47)
= K1,p ·

d
[
−T̂

′
XyT̂

−1
XX(t̂X − tX)

]
d T̂

′
Xy

(1.43)
= −Ip

[
T̂
−1
XX(t̂X − tX)⊗ 1

]
= −T̂

−1
XX(t̂X − tX).
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IV =
d t̂greg

d T̂XX

(1.45)
=

d (T̂
−1
XX)

T̂XX

· d t̂greg

d (T̂
−1
XX)

(1.44)
= (T̂

−1
XX ⊗ T̂

−1
XX)

[
(t̂X − tX)⊗ T̂Xy

]
= T̂

−1
XX(t̂X − tX)⊗ T̂

−1
XXT̂Xy.

Now we derive the necessary second order derivatives. Trivially, we get zero
matrices for all second derivatives of I. The second derivatives of II, III and
IV by t̂X are the following:

d

d t̂X

(II) = 0;

d

d t̂X

(III)
(1.45)
= −d (t̂X − tX)

d t̂X

· d (III)
d (t̂X − tX)

(1.43)
= −Ip

(
1⊗ T̂

−1
XX

)
= T̂

−1
XX;

d

d t̂X

(IV) =
d (IV)

d (t̂X − tX)

(1.48)
=

d
(
T̂
−1
XX(t̂X − tX)

)
d (t̂X − tX)

⊗ vec′(T̂
−1
XXT̂Xy) + 0

 (1⊗Kp,1 ⊗ Ip)

(1.43)
= (1⊗ T̂

−1
XX)⊗ vec′(T̂

−1
XXT̂Xy) = T̂

−1
XX ⊗ T̂

′
XyT̂

−1
XX,

where the vec-operator disappeared due to T̂
−1
XXT̂Xy being a vector itself.

The second derivatives by T̂Xy have the following expressions:

d

d T̂Xy

(II)
(1.43)
= −1⊗ T̂

−1
XX;

d

d T̂Xy

(III) = 0;

d

d T̂Xy

(IV) = 0, at the point t̂X = tX.

The second derivatives by T̂XX of III and IV will lead to zero at the point
t̂X = tX. So, we have only one derivative different from 0 at this point:

d

d T̂XX

(II)
(1.45)
=

d T̂
−1
XX

T̂XX

· d(II)

d T̂
−1
XX
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(1.44)
= (T̂

−1
XX ⊗ T̂

−1
XX)(T̂Xy ⊗ Ip) = T̂

−1
XXT̂Xy ⊗ T̂

−1
XX.

All necessary partial derivatives are found. The first matrix derivative of
t̂greg with respect to W at the point W0 = (ty, tX,TXy,TXX) is

d t̂greg

dW

∣∣∣∣
W=W0

=



d t̂greg

d t̂y
d t̂greg

d t̂X
d t̂greg

d
ˆTXy

d t̂greg

d
ˆTXX



∣∣∣∣∣∣∣∣∣∣∣∣∣
W=W0

=


1

−T−1
XXTXy

0p×1

0p2×1

 . A.3

The second matrix derivative with respect to W has the structure

d2 t̂greg

dW2 =


d

d t̂y
(I) d

d t̂y
(II) d

d t̂y
(III) d

d t̂y
(IV)

d

d t̂X
(I) d

d t̂X
(II) d

d t̂X
(III) d

d t̂X
(IV)

d

d
ˆTXy

(I) d

d
ˆTXy

(II) d

d
ˆTXy

(III) d

d
ˆTXy

(IV)
d

d
ˆTXX

(I) d

d
ˆTXX

(II) d

d
ˆTXX

(III) d

d
ˆTXX

(IV)

 ,

and at the point W0, it is

d2 t̂greg

dW2

∣∣∣∣
W=W0

=


0 0 0 0
0 0 −T−1

XX T−1
XX ⊗T′

XyT
−1
XX

0 −T−1
XX 0 0

0 T−1
XXTXy ⊗T−1

XX 0 0

 ,

where 0 denotes a zero-block of a suitable dimension.

According to (1.51) the Taylor expansion of t̂greg up to the second term is

t̂greg, sec = f(W0) +
d t̂greg

dW

∣∣∣∣′
W=W0

vec(W−W0)

+
1
2
vec′(W−W0)

d2 t̂greg

dW2

∣∣∣∣′
W=W0

vec(W−W0). A.4

For simplicity, let us denote vec(W −W0) = (w1,w
′
2,w

′
3,w

′
4)
′, where w2

and w3 are of size p × 1 and w4 is of size p2 × 1, with definitions derived
from (A.2).
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We use the derivative (A.3) for the second summand in (A.4),

d t̂greg

dW

∣∣∣∣′
W=W0

· vec(W−W0) = w1 −T′
XyT

−1
XXw2

= (t̂y − ty)−T′
XyT

−1
XX(t̂X − tX). A.5

The second derivative of t̂greg has many zero-blocks, therefore the third
summand in (A.4) simplifies a lot after multiplication with vec(W −W0).
What remains is

L =
1
2

{
−w′

3T
−1
XXw2 + w′

4

(
T−1

XX ⊗T−1
XXTXy

)
w2

−w′
2T

−1
XXw3 + w′

2

(
T′

XyT
−1
XX ⊗T−1

XX

)
w4

}
. A.6

It simplifies further, since its terms are pairwise equal. To see this, note that
the terms of L are scalars and can be transposed. Therefore,

w′
3T

−1
XXw2 = w′

2T
−1
XXw3.

For transposition of the fourth term in L we use (1.6), and since the Kro-
necker product is not commutative, we use (1.21):[
w′

2

(
T′

XyT
−1
XX ⊗T−1

XX

)
w4

]′ = w′
4

(
T−1

XXTXy ⊗T−1
XX

)
w2

= w′
4Kp,p

(
T−1

XX ⊗T−1
XXTXy

)
K1,pw2. A.7

Since K1,p = Ip, and according to the property (1.20),

w′
4Kp,p = vec′(T̂XX −TXX)Kp,p = (Kp,pvec(T̂XX −TXX))′

= [vec(T̂XX −TXX)′]′ = vec′(T̂XX −TXX) = w′
4,

we have that the fourth and the second term are equal.
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Now we can write L in (A.6) as

L = −w′
2T

−1
XXw3 + w′

2

(
T′

XyT
−1
XX ⊗T−1

XX

)
w4

= −(t̂X − tX)′T−1
XX(T̂Xy −TXy)

+(t̂X − tX)′
(
T′

XyT
−1
XX ⊗T−1

XX

)
vec(T̂XX −TXX). A.8

Finally, we can put together the Taylor expansion (A.4) from (A.5) and
(A.8),

t̂greg, sec = ty + (t̂y − ty −T′
XyT

−1
XX(t̂X − tX))− (t̂X − tX)′T−1

XX(T̂Xy −TXy)

+ (t̂X − tX)′
(
t′XyT

−1
XX ⊗T−1

XX

)
vec(T̂XX −TXX).

Recalling that T̂
′
XyT̂

−1
XX = B′, the expression (3.24) in Proposition 3.3 is

proved.

�

114



Appendix B

Proof of the Proposition 3.6

Proof. The proof of the expression (3.30) is similar to the derivation in
Proposition 3.3. The estimator t̂syn is a linear function of two random matrix
arguments,

t̂syn = f(T̂Xy, T̂XX).

The first order derivatives are the following:

d t̂syn

d T̂XX

=
d

(
T̂
′
XyT̂

−1
XXtX

)
d T̂XX

(1.45)
=

d T̂
−1
XX

d T̂XX

·
d

(
T̂
′
XyT̂

−1
XXtX

)
d T̂

−1
XX

= (−T̂
−1
XX ⊗ T̂

−1
XX)(tX ⊗ T̂

′
Xy) = −T̂

−1
XXtX ⊗ T̂

−1
XXT̂

′
Xy

= −T̂
−1
XXtX ⊗ B̂.

d t̂syn

d T̂Xy

=
d

(
T̂
′
XyT̂

−1
XXtX

)
d T̂Xy

=
d T̂

′
Xy

d T̂Xy

·
d

(
T̂
′
XyT̂

−1
XXtX

)
d T̂

′
Xy

(1.47)
= K1,p(T̂

−1
XXtX ⊗ 1) = T̂

−1
XXtX.

Denoting W0 = (TXy,TXX), the first order derivative of f at the point W0

is

d t̂syn

dW

∣∣∣∣
W=W0

=

 d t̂syn

d
ˆTXy

d t̂syn

d
ˆTXX


∣∣∣∣∣∣∣
W=W0

=
(
−T−1

XXtX ⊗B
T−1

XXtX

)
.

The vectorized form of W−W0 is

vec(W−W0) =
(

vec(T̂XX −TXX)
T̂Xy −TXy

)
.

Now the formula (1.51) of the Taylor expansion results in

t̂syn, lin = B′tX +
(

d t̂syn

dW

)′∣∣∣∣∣
W=W0

vec(W−W0)

= B′tX + (−t′XT−1
XX ⊗B′, t′XT−1

XX)
(

vec(T̂XX −TXX)
T̂Xy −TXy

)
.
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After multiplying matrices, we get

t̂syn, lin = B′tX − (t′XT−1
XX ⊗B′)vec(T̂XX −TXX)

+ t′XT−1
XXT̂Xy − t′XT−1

XXTXy. B.1

Since B′tX = t′XB = t′XT−1
XXTXy, the terms B′tX and t′XT−1

XXTXy cancel out
in (B.1). The second term in (B.1) simplifies with the property (1.14) of
the vec() operator, the vec() can be omitted if applied to a scalar:

(t′XT−1
XX ⊗B′)vec(T̂XX −TXX) = vec

[
B′(T̂XX −TXX)T−1

XXtX

]
= B′(T̂XX −TXX)T−1

XXtX

= B′T̂XXT−1
XXtX −B′tX.

Finally, we get

t̂syn, lin = −B′T̂XXT−1
XXtX + B′tX + t′XT−1

XXT̂Xy,

which is equivalent to (3.30).

�
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Appendix C
Empirical MSEs of the initial and GR estimators

Table 5.1: Empirical MSEs between estimators for SI case
Continuous variable, ×105

θ̂GR1 θ̂GR3 θ̂GR2 θ̂

Domain 1 6958.4 6954.1 7007.6 7191.7
Domain 1, Domain 2 -316.2 -307.1 -259.2 39.2
Domain 1, Domain 3 1578.8 1573.8 1039.6 1249.0
Domain 1, Domain 4 328.1 331.3 600.7 360.8
Domain 1, Population 8549.1 8552.0 8388.7 7527.3
Domain 2 7428.7 7453.3 7494.4 7923.4
Domain 2, Domain 3 1723.2 1551.9 1094.0 1412.7
Domain 2, Domain 4 330.9 417.6 648.8 282.4
Domain 2, Population 9166.6 9115.6 8978.0 7658.4
Domain 3 854.1 1608.6 6707.6 6937.9
Domain 3, Domain 4 152.2 -234.3 -2808.8 -3073.2
Domain 3, Population 4308.3 4500.0 6032.4 5081.5
Domain 4 33.0 230.8 1530.7 1834.0
Domain 4, Population 844.1 745.4 -28.7 1062.1
Population 22868.2 22913.0 23370.3 27293.2

Binary variable
Domain 1 73406.9 77928.0 79677.8 80744.9
Domain 1, Domain 2 -5716.7 -2919.1 -1931.7 -1511.7
Domain 1, Domain 3 14305.3 4905.7 2140.7 12185.9
Domain 1, Domain 4 3636.7 2830.2 2611.8 3350.7
Domain 1, Population 85632.2 82744.8 82498.6 81405.9
Domain 2 30487.7 32061.2 32587.8 32751.5
Domain 2, Domain 3 6052.5 577.8 -1004.2 3042.6
Domain 2, Domain 4 1232.7 765.5 638.5 935.7
Domain 2, Population 32056.2 30485.4 30290.5 29834.1
Domain 3 5061.2 23862.5 28216.2 117218.1
Domain 3, Domain 4 1006.5 2614.3 2956.9 9534.2
Domain 3, Population 26425.6 31960.4 32309.7 23584.7
Domain 4 266.5 404.0 430.8 916.7
Domain 4, Population 6142.5 6614.0 6638.1 5987.7
Population 150256.5 151804.7 151736.8 152417.1
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Table 5.2: Empirical MSEs between estimators for MB case
Continuous variable, ×105

θ̂GR1 θ̂GR3 θ̂GR2 θ̂

Domain 1 7674.7 7675.0 7717.4 7966.4
Domain 1, Domain 2 -514.1 -492.5 -430.8 10.4
Domain 1, Domain 3 1683.9 1656.6 1172.4 1294.5
Domain 1, Domain 4 355.2 371.5 618.1 403.6
Domain 1, Population 9199.7 9210.5 9077.1 8077.4
Domain 2 8522.9 8573.4 8660.0 9354.6
Domain 2, Domain 3 1919.6 1616.0 895.5 1150.8
Domain 2, Domain 4 379.5 534.8 900.6 496.5
Domain 2, Population 10307.9 10231.7 10025.3 8228.0
Domain 3 926.4 1582.2 7027.6 7069.9
Domain 3, Domain 4 167.4 -194.8 -2973.8 -3068.2
Domain 3, Population 4697.3 4660.0 6121.6 5643.2
Domain 4 37.2 235.5 1653.3 1831.5
Domain 4, Population 939.3 947.1 198.3 1052.3
Population 25144.2 25049.3 25422.3 29428.0

Binary variable
Domain 1 77557.5 83687.2 85150.2 87316.8
Domain 1, Domain 2 -4648.4 -780.8 150.9 1240.6
Domain 1, Domain 3 15188.2 4108.4 1332.6 15167.1
Domain 1, Domain 4 3940.6 3038.9 2809.0 3857.4
Domain 1, Population 92037.8 90053.6 89442.6 88871.3
Domain 2 37970.3 40312.6 40880.3 41428.3
Domain 2, Domain 3 8180.5 1279.4 -448.5 6508.7
Domain 2, Domain 4 1658.3 1094.8 951.7 1479.0
Domain 2, Population 43160.6 41906.0 41534.4 41247.3
Domain 3 5758.0 25703.0 30907.8 119092.0
Domain 3, Domain 4 1161.8 2786.6 3217.7 9901.2
Domain 3, Population 30288.4 33877.4 35009.5 31398.5
Domain 4 305.9 438.2 473.9 980.5
Domain 4, Population 7066.5 7358.6 7452.3 7178.4
Population 172553.4 173195.6 173438.8 173580.7
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Osakogumite hindamine kitsen-
duste olemasolul baseerudes ül-
distatud regressioon- ja süntee-
tilisele hinnangule

Kokkuvõte

Tänapäeval on nõudmine usaldusväärse statistika järele oluliselt kasvanud.
Seejuures vajatakse näitajaid üha detailsemal tasemel – mitmesuguste osa-
kogumite tasemel. Vajalikke näitajaid saadakse nii valikuuringutest kui ka
erinevatest registritest. Soovitavateks näitajateks on tunnuseväärtuste ko-
gusummad. Registrite korral võib juhtuda, et isegi kui nad sisaldavad hu-
vipakkuvaid tunnuseid, puuduvad sealt huvipakkuvate osakogumite identi-
fikaatorid, mistõttu ei saa osakogumite kogusummasid sealt arvutada. Teisalt
võib sama tunnus olla küsitletud valikuuringus ja seda koos osakogumi iden-
tifikaatoritega. Võimalus leida osakogumi hinnangud valikuuringust tekitab
kooskõlalisuse probleemi: valikuuringust saadud hinnangud ei summeeru
üldkogumi või vastavate suuremate osakogumite summadeks, mis on välja
võetud registrist. Kooskõlalisuse probleem kerkib esile ka mitme paralleelselt
läbiviidava uuringu korral, mis sisaldavad ühiseid uuritavaid tunnuseid. Veel
üks ebakooskõlalisuse olukord tekib siis, kui ühe ja sama uuringu raames
on erinevate osakogumite parameetrid hinnatud erinevate hinnangufunkt-
sioonide või meetodite abil, põhjuseks kas täpsuse tõstmine osakogumis või
olemasolevad praktilised võimalused. Ka sellisel juhul võib osakogumi hin-
nanguid summeerides saada erineva tulemuse vastava suurema osakogumi
või üldkogumi hinnangust.
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Teoreetikute jaoks on hinnangute ebakooskõlalisus loomulik nähtus; seosed,
mis kehtivad üldkogumi parameetrite jaoks, ei pruugi kehtida valimist saadud
hinnangute jaoks, seda viimaste juhusliku loomu tõttu. See nähtus häirib
aga statistiliste näitajate tarbijaid. Samas on teada, et lisainformatsiooni
haaramine hinnangusse võib tõsta selle täpsust. Ka seoseid üldkogumi para-
meetrite vahel võib vaadelda lisateabena. Siit tekkis mõte, et kui kaasata
antud lisateave hinnangufunktsiooni konstrueerimisse, siis ehk oleks võima-
lik saavutada kaks eesmärki korraga: tõsta hinnangute täpsust ja lahendada
kooskõlalisuse probleem hinnangute vahel. Antud töö põhiteemaks ongi osa-
kogumite hinnangute väljatöötamine, mis on kooskõlalised ja parema täp-
susega võrreldes esialgsete hinnangutega.

Kooskõlalisuse probleem pole valikuuringute valdkonnas uus, seda on uuri-
tud juba mõnda aega. Hinnangute kooskõla kahe erineva uuringu vahel või
valikuuringu ja registri vahel on püütud saavutada kalibreerimismeetoditega
(Zieschang 1990, Renssen ja Nieuwenbroek 1997, Traat ja Särndal 2009,
Dever ja Valliant 2010). Nendes meetodites on kooskõlalisuse nõue lisatud
kalibreerimise kitsendustesse. Teised autorid (Kroese ja Renssen 1999, Knot-
tnerus ja Van Duin 2006) kasutasid teistsugust kalibreerimistehnikat, nn
korduvkaalumise tehnikat, kus juba leitud hinnangud kalibreeritakse uue in-
formatsiooni ilmumisel ümber.

Antud dissertatsiooni ideed pärinevad meetodist, mis on esitatud raama-
tus Knottnerus (2003). Sealne üldine kitsendustega hinnang (General Re-
striction estimator, lühidalt GR) baseerub nihketa esialgsetele hinnangutele
ja rahuldab lineaarseid kitsendusi. Saadud GR-hinnangul on mitmeid häid
omadusi, mille hulgas on hinnangu nihketus ja väiksem dispersioon võrreldes
esialgsete hinnangutega. GR-hinnang on ka optimaalne teatud hinnangute
klassis, mis rahuldavad antud kitsendusi. Knottneruse GR-hinnang ei ol-
nud välja töötatud osakogumite jaoks. Dissertatsioonis Sõstra (2007) aren-
dati GR-hinnang välja osakogumite kooskõlaliseks hindamiseks ning hiljem
täiendati seda artiklis Sõstra ja Traat (2009).

Ülalnimetatud töödes keskendutakse nihketa hindamisele, see tähendab et
aluseks on nihketa lähtehinnangud ja tulemuseks on nihketa kuid kitsendusi
rahuldavad hinnangud. Käesolevas dissertatsioonis on GR-hinnangut ül-
distatud nii, et ta on rakendatav ka nihkega alghinnangutele. Osakogu-
mite hindamiseks kasutatakse sageli hinnanguid, mis võivad omada nihet.
Näiteks kasutatakse (seda eriti just väikeste osakogumite korral) mudelipõhi-
seid hinnangud (Rao, 2003), sünteetilist ehk projektsioonhinnangut (Särndal
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jt. 1992, lk. 408-412, Yung ja Rubin-Bleuer, 2007). Kuigi need hinnangud
on nihkega, on nende positiivseks omaduseks väike varieeruvus. Senini pole
uuritud, kuidas nihkega lähtehinnangud mõjutavad kitsendusi rahuldavat
GR-hinnangut.

Antud töös keskendutakse osakogumite ja üldkogumi hindamisele summeeru-
vuskitsenduse olemasolul. Nii nihketa kui ka nihkega lähtehinnangud on lu-
batud. Lähtehinnangute rolli on valitud üldistatud regressioon- (Generalized
Regression, lühidalt GREG) ja sünteetiline (SYN) hinnang. Mõlemad hin-
nangud võivad osakogumites olla üles ehitatud erinevate mudelite eeldusel
(Lehtonen ja Pahkinen 2004, lk. 187-213). Vaadeldavateks mudeliteks on
üldkogumitaseme ehk P-mudel ja osakogumitaseme ehk D-mudel. Hinnan-
guid, mis on konstrueeritud D-mudeli abil, nimetatakse kirjanduses otses-
teks hinnanguteks, ja P-mudeli abil - kaudseteks hinnanguteks. Antud töös
on vaadeldud GREG ja SYN hinnangute omadusi, on tuletatud nende hin-
nangute nihked ja ruutkeskmised vead (Mean Square Error, lühidalt MSE),
samuti vastastikused ruutkeskmised vead.

Käesoleva dissertatsiooni eesmärgid, mis töö käigus ka realiseeriti, olid järg-
mised.

1. Tuletada uued üldisemad osakogumite GR-hinnangud, mis rahuldavad
summeeruvuskitsendust. Üldistusena lubati nihkega lähtehinnangud.

2. Tuletada saadud GR-hinnangute nihked ja MSEd. Tuginedes saadud
avaldistele näidata, et GR-hinnangud on täpsemad kui esialgsed.

3. Uurida osakogumite GREG ja SYN hinnangute, mis on valitud lähte-
hinnangute rolli, omadusi.

4. Tuletada GREG ja SYN hinnangute lineariseeritud kujud, millest tule-
tada hinnangute nihke ja MSE ligikaudsed avaldised, seda nii osakogu-
mite kui ka üldkogumi korral. Osakogumite juhul arvestada nii D- kui
ka P-mudelitega.

5. Tuletada vastastikused MSEd erinevate hinnangute vahel.

6. Uurida piisavat tingimust GREG ja SYN hinnangute kokkulangemiseks
nii üldkogumi kui ka osakogumite korral.

7. Hinnangute omadused töötada välja üldkujul, mis kehtiksid suvalise
valikudisaini jaoks. Erijuhtudena vaadelda kahte valikudisaini, lihtsat
juhuvalikut ja multinomiaalset disaini.
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8. Illustreerida teoreetilisi tulemusi simuleerimisülesandes reaalsete and-
mete põhjal, ja veenduda tulemuste rakendatavuses.

Osakogumite hindamine on mitmemõõtmeline probleem, vaatluse all on ko-
rraga palju osakogumeid ja hinnang on tegelikult hinnangute vektor. See-
pärast on püstitatud ülesannete lahendamiseks loomulik kasutada maatrik-
saparatuuri, mida ongi käesolevas töös tehtud. Hinnangute vektori täpsust
on mõõdetud MSE-maatriksi abil.

Dissertatsioonis on kasutatud disainipõhist lähenemist, mille kohaselt on
hinnangute omadused määratud valikudisaini poolt ja ka uuritava tunnuse
väärtuste poolt lõplikus üldkogumis. Valikudisaini on käsitletud mitmemõõt-
melise jaotusena ja valim on realisatsioon sellest jaotusest. Töös on eeldatud,
et osakogumite valimid pole liiga väikesed.

Esimeses peatükis antakse maatriksite teooria vajalikud mõisted ja omadused,
samuti valikuuringute teooria disaini-põhise lähenemise alused. Siin on toodud
ka hinnangute kovariatsiooni- ja MSE-maatriksite definitsioonid ning omadu-
sed.

Teises peatükis on toodud käesoleva dissertatsiooni põhitulemused, mis puu-
dutavad osakogumite hindamist nihkega lähtehinnangute ja summeeruvuskit-
senduse olemasolul. Näite abil demonstreeritakse, et kui Knottneruse (2003)
GR-hinnangu konstruktsiooni rakendada nihkega lähtehinnangutele, siis tule-
musena saadud hinnang pole täpsem kui esialgne. Selles peatükis pakutakse
välja kolm uut GR-hinnangut ja näidatakse, et nende MSEd ei ole suuremad
kui lähtehinnangu oma. Tuletatakse ka GR-hinnangute ja lähtehinnangu
järjestus MSE- maatriksite suhtes ja on leitud hinnangute hulgas parim hin-
nang.

Kolmanda peatüki tähelepanu on keskendunud lähtehinnangute klassidele,
milleks on GREG ja SYN hinnangud, nii üldkogumile kui ka osakogumitele.
Töös on kirjeldatud situatsioone ja tingimusi, millal need kaks hinnangut on
võrdsed. Samuti on tuletatud hinnangute Taylori read. Lineariseeritud hin-
nangutele tuginedes on leitud hinnangute ligikaudsed nihked, kovariatsiooni-
ja MSE-maatriksid. Osakogumite korral on uuritud nii D- kui ka P-mudelid.
Antud töö seisukohalt oli oluline leida lähtehinnangute MSE-maatriks. See-
pärast tuletati ka vastastikused MSEd erinevate hinnangute vahel. Näidati,
et teatud tingimuste korral need MSEd lihtsustuvad, näiteks olid osakogu-
mite GREG-D hinnangud ligikaudu mittekorreleeritud.
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Neljandas peatükis on kirjeldatud simuleerimiseksperimenti ja on esitatud
selle tulemused Kasutati Eesti meditsiiniasutuste personali andmed. Eesmär-
giks oli illustreerida GR-hinnangute käitumist praktilises situatsioonis. Üld-
kogum mahuga 21764 inimest jaotati nelja erineva suurusega osakogumisse
ning seejärel võeti kogu üldkogumist korduvalt valimeid mahuga 400 kasu-
tades lihtsat juhuvalikut (tagasipanekuta) ning multinomiaaldisaini. Uuri-
tavaid tunnuseid oli kaks - tunnitasu pideva tunnuse, ja arst/mitte binaarse
tunnuse esindajana. Kõigepealt on töös illustreeritud lähtehinnangute eba-
kooskõla probleemi nii tabeli kui ka graafikute abil. Seejärel on demonstree-
ritud, et kõik kolm GR-hinnangut rahuldavad kitsendusi. Samuti on leitud
esialgsete ja GR-hinnangute MSE-maatriksid, seda nii tuletatud valemite
abil kui ka empiiriliselt üle korduvate valimite. Tuletame meelde, et tule-
tatud valemid kehtivad asümptootiliselt. Graafikute abil on näidatud, et
asümptootilised MSEd on väga lähedased empiirilistele, seda isegi üsna väikese
osakogumivalimi korral. Tabelite abil on illustreeritud töö teoreetilises osas
tõestatud MSE-võrratuste kehtivust. Samuti ka näidatud, et kõige kolme
GR-hinnangu MSEd on väiksemad kui esialgse hinnangu oma.

Simuleerimiskatse käigus sai kinnitust ka valikuuringute valdkonnas teadaolev
fakt, et SYN-P hinnang on tunduvalt väiksema varieeruvusega kui GREG,
kuid võib kaasa tuua suure nihke. Näitasime (Proposition 3.19), et see juh-
tub nendes osakogumites, kus üldkogumi mudel erineb osakogumi omast.

Simuleerimisülesanne näitas, et osakogumites, kus nihe polnud eriti suur, on
hinnangute GR1 ja GR3 MSEd tunduvalt väiksemad kui hinnangul GR2.
Samas nõutakse mõlema hinnangu valemis esialgse nihke teadmist, mis aga
pole praktikas teada. Hinnang GR2 on vaba sellest eeldusest ja demon-
streeris väga häid tulemusi (MSE mõttes) just nendes osakogumites, kus
esialgne nihe oli suur.

Töös tuletatud kolm GR-hinnangut on uudsed, need lubavad kasutada nihkega
lähtehinnanguid. Neil on mitmeid häid omadusi. Lisaks kooskõlalisuse
saavutamisele osakogumite hindamisel, on nad täpsemad (MSE mõttes) kui
esialgsed hinnangud. Neid saab rakendada praktikas. Uusi tulemusi saadi
ka osakogumite GREG ja SYN hinnangute korral. Nende hinnangute vas-
tastikused MSE avaldised on uued, samuti SYN hinnangu üldkujulised nihke
ja MSE avaldised. Töös esitatud süstemaatilist käsitlust GREG ja SYN hin-
nangute võrdumise tingimuste kohta ja seonduvate omaduste kohta ei ole ka
mujal kirjanduses leida.
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