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1. INTRODUCTION 

High-throughput technologies have greatly advanced research in reproductive 
biology and provided insights for causes behind reproductive illnesses and novel 
diagnostic methods to detect them. Compared to nucleic acid-based approaches, 
the contribution of high-throughput proteomics to this advancement has been 
substantially modest, partly due to high complexity associated with studying 
proteins. Nevertheless, proteomic studies are important, because proteins are the 
main functional output of the genome and changes in the proteome reflect the 
processes occurring in cells and tissues more directly. Fortunately, the last decade 
has seen tremendous technological developments in mass spectrometry (MS)-
based proteomics, which now enables the measurement of entire expressed 
proteomes of mammalian cells. Therefore, MS proteomics has matured to provide 
new insights for the continuous challenges in reproductive biomedicine, such as 
the incomplete understanding of the molecular causes behind non-infectious 
reproductive diseases and the low efficiency of assisted reproductive techno-
logies (ART). 

Endometriosis is a frequent gynecological disease (~5–10% among women of 
reproductive age) with still unknown pathogenetic mechanism. The disease is 
characterized by the spread and survival of endometrial cells outside the uterus, 
which is associated with a significant drop in the quality of life (pain, infertility, 
depression) for these women. The surgical diagnostics of endometriosis is also 
cumbersome which results in delayed time to diagnosis, risks associated with 
surgery and significantly higher costs for the healthcare system. Studying tissues 
and blood from endometriosis patients with MS proteomics may provide better 
understanding behind the causes of this illness and provide new minimally 
invasive markers for its diagnostics. 

In vitro fertilization (IVF) is more and more common practice in the developed 
world, as family planning is pushed to later years of life. The efficacy of IVF as 
a medical procedure is surprisingly low of about ~30% that is often caused by 
repeated implantation failure (RIF) of transferred embryos. As RIF may be 
related to defects in endometrial receptivity, monitoring of proteomic patterns in 
the minimally invasively obtainable uterine fluid may offer personalized embryo 
transfer strategies. Such an approach could lead to reduced emotional distress, 
time and material costs to the patients and the medical system. 

The main goal of the current thesis was to apply contemporary MS proteomics 
methods to tackle ongoing issues in reproductive medicine, e.g. discover proteomic 
changes in endometrial cells that may be behind development and persistence of 
endometriosis, and, to determine whether proteins secreted to the uterine fluid 
enable monitoring of normal and disturbed endometrial receptivity. 
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2. REVIEW OF THE LITERATURE 

2.1 Quantitative mass spectrometry-based proteomics 

2.1.1 Introduction to mass spectrometry-based proteomics 

Proteomics is commonly regarded as the large-scale study of the full complement 
of proteins (i.e. the proteome) of organelles, cells, tissues, organs, body fluids 
etc., classically by biochemical methods and nowadays mostly through the use of 
biological mass spectrometry (MS) (Aebersold and Mann, 2016; Pandey and 
Mann, 2000). Nevertheless, the subjects for proteomics investigations can also 
include only a selected number of proteins or single proteins, not only complex 
samples. As a technology-rich biomolecular discipline, the focus of proteomic 
research centers on both biological insight and the technical advancement of 
analyzing proteomes. 

There are three principal ways for approaching the study of proteomes: (1) on 
the level of peptides (bottom-up), (2) on the level of large proteolytic fragments 
(middle-down) and (3) on the level of the intact protein (top-down) (Figure 1). 
The first approach, bottom-up proteomics, starts out by digesting the proteome, 
usually under denaturing conditions with the aid of specific proteases (most 
notably trypsin, which cleaves after lysines and arginines) into individual 
peptides (Aebersold and Mann, 2003). This renders the proteome conveniently 
accessible for commonly used methods in analytical separation and detection. 
Consequently, peptides are separated with liquid chromatography (LC), ionized 
and directed to a mass detector where the mass to charge (m/z) ratios of their 
molecular ions and/or fragments are measured (Aebersold and Mann, 2016; 
Pandey and Mann, 2000). In contrast, top-down proteomics tries to separate and 
measure the proteins in their intact forms, bypassing the digestion step of the 
bottom-up workflow (Kelleher, 2004). The third approach, termed middle-down 
proteomics, is a combination of both bottom-up and top-down approaches, where 
the proteins are cleaved with minimal proteolysis into larger than peptide 
fragments and analyzed as such (Taverna et al., 2007). 

By avoiding digestion with proteases, the top-down approach provides theor-
etically the most comprehensive avenue for studying proteomes, as its workflow 
does not cause any loss of information on the composition of different proteo-
forms that a complex protein mixture may contain (Smith et al., 2013). However, 
the complexity of the human proteome has been estimated to be up to ~6 billion 
different protein species, which arises from alternative splicing, single amino acid 
polymorphisms (arising from single nucleotide polymorphisms, SNPs) and post-
translational modifications (PTMs) of the ~20,000 expressed genes in the genome 
(Ponomarenko et al., 2016). In addition to the analyte complexity, protein 
solubilization and separation is less effective than that of peptides. Also, protein 
signals are diluted due to wide isotopic and charge distributions and not all MS 
instruments are able to sensitively scan large proteins (Toby et al., 2016). These 
analytical challenges currently limit the top-down approach to simplified protein 
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mixtures (e.g. purified complexes, soluble and low-molecular-weight fractions of 
proteomes)(Cheon et al., 2016), thus, further technological improvements are still 
needed to expand its applications to proteome-wide scale. 

 

 
Figure 1. Overview of the MS-based proteomics approaches for the identification of 
proteins in proteomes: peptide (‘bottom-up’), large proteolytic fragment (‘middle-down’) 
and protein (‘top-down’) level identification. All three approaches differ in the sample 
preparation prior to LC/MS/MS and in the level of detail of the results, but involve 
chromatographic separation and tandem-MS (MS/MS) data acquisition steps. 
 
On the other hand, the bottom-up approach is a well-established framework for 
proteomics applications and its proteome coverage has now nearly reached the 
entire expressed proteome (i.e. covering most of the annotated genes while not 
accounting for proteoform diversity) of eukaryotic cells (Mann et al., 2013). As 
contrasted to direct protein analysis above, it owes its success to the analytical 
accessibility of its substrates, i.e. to peptides (0.7–3 kDa). Peptides have much 
better solubility compared to full-length proteins and display excellent separation, 
ionization and fragmentation behavior in LC/MS/MS. Vast number of workflows 
for bottom-up approach have been implemented, either for qualitative or 
quantitative analyses, focusing on PTMs (e.g. phosphorylation, ubiquitinylation 
etc.) or unmodified proteins, with a growing number of software solutions to 
analyze the data from raw spectra to final statistical and bioinformatical analysis 
(Cox and Mann, 2008; MacLean et al., 2010; Tsiamis et al., 2019). Unfortunately, 
as illustrated in Figure 1, cleavage of proteins into peptides creates potential loss 
of information, known as the protein inference problem (Nesvizhskii and 
Aebersold, 2005). This means that based on identified peptides it is sometimes 
complicated, if not impossible, to infer which exact protein or proteins were 
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found in the sample, as the presence of significant sequence overlap/identity and 
missing peptide sequences make it difficult to prove/disprove one or the other. 
This has more relevance to human samples where multiple protein proteoforms 
can be produced due to alternative splicing. As MS instruments are continuously 
improved and subject to ongoing advancements, higher and higher sequence 
coverages can be expected to be obtained. Thus, to a certain extent reducing this 
conundrum in shotgun experiments. Utilizing targeted MS for validation experi-
ments, unique sequences can be chosen avoiding the inference problem 
altogether, with detection specificities outperforming classical methods such as 
immunoassays (Aebersold et al., 2013). 

To overcome limitations set by the bottom-up approach for detecting different 
co-occurring PTM patterns, middle-down approach has demonstrated to be an 
alternative strategy, especially for the analysis of variably modified histone tails, 
monoclonal antibodies and branched ubiquitin chains (Cristobal et al., 2017). 
Nevertheless, middle-down approach requires digestion optimization to produce 
sequences of desired length (~3–10 kDa) and currently no commercially available 
protease works for all proteins. 

 
 

2.1.2 Instrument platforms used in MS-based proteomics 

Modern MS-based proteomics instruments are intricate machines carrying out 
peptide/protein separation, analyte ionization, precursor isolation/fragmentation 
(for tandem MS or MS/MS), m/z measurements and data collection. A basic 
scheme of an LC/MS/MS instrumentation is made up of an LC-unit, ion source 
and MS instrument with multiple mass analyzers and a fragmentation section(s) 
(Figure 2). It is also possible to bypass the LC-separation step by directly infusing 
the samples into the MS. 
 

 
Figure 2. General scheme of an LC/MS/MS instrument. Note, the first mass analyzer can 
also sometimes perform ion detection (e.g. in ion traps), but often functions only as an 
m/z filter (e.g. in quadrupole tandem instruments). 
 
The emergence of MS-based proteomics was largely made possible by the intro-
duction of soft ionization techniques, namely matrix-assisted laser desorption/ 
ionization (MALDI) (Karas and Hillenkamp, 1988; Tanaka et al., 1988) and 
electrospray ionization (ESI) (Fenn et al., 1989). Both of these methods enabled 
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effective ionization of peptides and proteins without fragmenting their molecular 
structures. In MALDI, ions are created by transferring laser energy to ultraviolet-
absorbing matrix molecules (mostly organic acids, e.g. sinapinic acid) which then 
impart a charge to peptides/proteins mixed with the matrix. In ESI, analytes in 
the liquid phase are ionized by creating a strong electric field between a capillary 
tip (e.g. coming from the LC) and the MS inlet. This leads to charge accumulation 
on the liquid surface, expulsion of charged droplets and evaporation or ejection 
of ionized peptides and proteins (Wilm, 2011). As a general rule, peptides and 
proteins become multiply charged during ESI, which makes them amenable to 
the m/z scan ranges of popularly used MS analyzers (i.e. orbitraps, ion traps, time-
of-flight analyzers). Secondly, the ease by which ESI can be coupled to the LC 
and thereby combine separation and MS measurements in real-time, has made it 
the mainstay ionization method in MS-proteomics. 

LC plays another essential role in high-throughput proteomics by simplifying 
the complex mixtures introduced to the MS. Unlike in small molecule applica-
tions, miniaturization of the LC system flow-rates has been strongly favored in 
proteomics due to the sensitivity gain for limited sample amounts (Mitulovic and 
Mechtler, 2006). Reducing the inner diameter (ID) of columns squarely increases 
the concentration of analytes in the solution, e.g. going from 4.6 mm ID column 
(a regular analytical LC) to a 75 µm ID column (a common nano-LC size) results 
in theoretical sensitivity gain of >3,700-fold. For peptide and protein analysis, 
packed and monolithic reversed phase (RP) stationary phases are preferred due 
to their great resolving capabilities and compatibility with both ESI and MS 
(Fanali et al., 2013). However, for comprehensive PTM analyses (e.g. 
glycosylation) dedicated column materials should be preferred that enable better 
retention and separation than RP for those chemically distinct peptide species.  

Nearly all MS detectors (Table 1) can be used for proteomic analyses, yet for 
most discovery type experiments high resolving power and fast scanning speeds 
are required. Modern instruments mainly utilize orbitrap and time-of-flight (TOF) 
as detectors, and, quadrupole or ion trap for precursor filtering. TOF analyzers 
measure the flight time of ions that are dependent on their m/z values (Hoffmann 
and Stroobant, 2007). In contrast, Orbitrap analyzer records harmonic oscillations 
of ions along a spindle-shaped electrode, where the frequency of oscillations is 
related to their m/z values (Olsen et al., 2005).  
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2.1.3 MS/MS data acquisition strategies 

The qualitative and quantitative nature of proteomic data are not only determined 
by the wide selection of analyzers available, but also by the chosen strategy to 
collect the data on a tandem-MS instrument. Data acquisition mode refers to the 
specific way the MS/MS system is directed to record data for peptide/protein 
identification and quantification. There are mainly three different approaches in 
contemporary proteomics: (1) data-dependent (DDA), (2) targeted and (3) data-
independent acquisition (DIA) (Schubert et al., 2017). After the spread of high-
performance MS/MS instruments, techniques such as peptide fingerprinting 
(protein identification based on solely intact peptide masses) (Henzel et al., 1993) 
have now largely become obsolete. 

Since its inception, the DDA mode (Aebersold and Mann, 2003) has remained 
popular, especially for discovery proteomics. It operates on a simple decision tree 
of intensity-based selection of peptides for MS/MS. This decision tree is 
frequently coupled with a feature called dynamic exclusion, where precursors 
selected for fragmentation are put on a time-limited hold to avoid repeated 
analyses of the same peaks (Zhang et al., 2009). DDA is an excellent method for 
discovery-oriented investigations as its breadth of detection still surpasses others, 
yet due to its somewhat stochastic nature in peak selection, undersampling and 
low reproducibility of trace-level proteins can occur (Hu et al., 2016). Never-
theless, transfer of peptide identifications based on accurate mass and retention 
time (RT) have been implemented to improve data coverage in DDA experiments 
(Tyanova et al., 2016). Recently, the dynamic range and depth of proteome 
coverage was also improved by the introduction of the so-called BoxCar methods, 
where ions from multiple narrow m/z ranges are collected by differing lengths of 
time before their measurement in the analyzer (Meier et al., 2018). 

Targeted MS analysis in the form of selected, multiple and parallel reaction 
monitoring (SRM, MRM and PRM, respectively) has become the gold-standard 
in high sensitivity and specificity peptide/protein measurements (Marx, 2013). 
Whereas DDA is mostly intended for generating hypotheses, targeted MS is used 
for confirming them. This, however, entails that prior information about specific 
proteins is known (e.g. from a discovery experiment, mRNA levels etc.) or hypo-
thesized (e.g. based on literature), followed by method development where RTs 
and quantitatively useful fragments of peptides (synthetic or from DDA data) are 
determined (MacLean et al., 2010). As targeted MS approach measures only a 
limited number of peptides repeatedly and without interference, it attains very 
high quantitative precision and sensitivity (Marx, 2013). Also, its specificity is 
considered superior to classical confirmatory methods like Western blot or ELISA 
(Aebersold et al., 2013). Overall, targeted approaches are excellent for develop-
ment of specific assays. 

DIA, conceptually described more than a decade ago (Venable et al., 2004), 
has only recently been ‘put to practice, especially after the introduction of soft-
ware solutions to tackle the complex nature of DIA datasets (Searle et al., 2018; 
Ting et al., 2017; Tsou et al., 2015). In DIA, MS/MS fragmentation is carried out 
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in small windows (i.e. Δ20 m/z) of a mass range (i.e. m/z 500–900), thereby 
collecting data for virtually all peptides in the selected range. By the virtue of 
narrowing the peptide detection windows, DIA offers greater sensitivity than 
DDA, nearing that of SRM/MRM – a crucial feature for improving the analytical 
dynamic range for samples with wide intra-sample analyte concentration ranges 
(Lin et al., 2018). The challenges with DIA are still associated with the complex 
spectra that are sometimes cumbersome to interpret exhaustively, but an ongoing 
effort is being made to overcome these hurdles (Hu et al., 2016). 

 
 
2.1.4 Experimental design strategies for quantitative proteomics 

Raw MS signal is not inherently an accurate measure of the absolute quantity of 
an analyte present in a sample, as it varies due to many factors such as individual 
ionization efficiencies of peptides and the presence of co-ionizing substances 
(Aebersold and Mann, 2003). Therefore, most quantitative studies in proteomics 
are done on a relative scale, i.e. comparing the change in MS signals from sample-
to-sample. Accurate absolute quantification of individual proteins can be 
achieved using spiked-in known amounts of isotopically labelled synthetic 
peptides (Bantscheff et al., 2012). However, for practical reasons this is not 
feasible on a proteome-wide scale, and methods that rely on the averaging effect 
of multiple peptide ionization efficiencies onto the protein level have been 
devised (Bantscheff et al., 2012). Nevertheless, this is not always accurate and is 
to be used only when rough estimations are sufficient for study purposes. 

Workflows in quantitative proteomics can broadly be categorized into two 
main branches: (1) label-based, and (2) label-free (Figure 3). In label-based 
approaches one or more of the samples are modified by incorporation of either 
stable isotopes (e.g. 13C, 15N) or chemical adducts (e.g. variably isotope-coded 
acyl groups). Differently labelled samples are then mixed and further processed/ 
analyzed as one sample (Aebersold and Mann, 2003). In contrast, with label-free 
proteomics approaches all samples are processed separately throughout all steps 
(Bantscheff et al., 2012). 

Most common of all the label-based methods are the stable isotope labelling 
with amino acids in cell culture (SILAC) and the isobaric tagging of peptides 
(Bakalarski and Kirkpatrick, 2016). In SILAC, one of the samples is grown in the 
presence of stable isotope-labelled (‘heavy’) amino acids, while the other uses 
natural (‘light’) counterparts (Ong et al., 2002). Commonly, either heavy or 
medium heavy lysine (13C6 or 13C6

15N2-containing), heavy arginine (13C6 or 
13C6

15N4-containing) or both are used. Such a selection of amino acids is desirable, 
as in the case of trypsin (cleavage after Lys and Arg) or Lys-C (cleavage after Lys) 
all peptides will be labelled with the respective amino acid (except for C-terminal 
peptides that do not have Lys or Arg in their termini). After labelling, the samples 
can be combined (Figure 3) and processed together eliminating any technical 
variability that can ensue from separated handling, and to reduce analysis time 
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Figure 3. Different quantitative proteomics workflows. In case of metabolic labelling, 
light (L) and heavy (H) samples can be combined either on cell or protein level, depending 
on a particular experimental setup. Note, dashed arrows indicate steps where technical 
variation and/or bias can occur. 
 
due to multiplexing. Quantitative data will be read out from the relative intensities 
of MS-resolved and mass-separated peaks of the heavy and light peptides, both 
of which behave identically during chromatography and ionization (Geiger et al., 
2011). The limited drawback of SILAC is that it dilutes the signal from the same 
peptide across labels and reduces peptide identification rates by increasing 
number of peaks in the MS spectra (contributing to the missing values problem 
mentioned before) (Bakalarski and Kirkpatrick, 2016). SILAC in its original form 
can only be carried out on limited number of samples (i.e. using light, medium 
heavy and heavy amino acids). Nevertheless, it can be extended to an unlimited 
number of samples by using one of the samples as a spike-in reference to essentially 
derive ratios of ratios (Geiger et al., 2011) – the only cost being increased 
measurement time and repeated MS/MS sampling of a reference. The spike-in 
approach can be advantageous when working with material for which no labelling 
would be conceivable (e.g. clinical samples like human tissues), instead the 
standard can be made representative of the material by combining several meta-
bolically labeled cell lines (termed ‘Super-SILAC’) (Geiger et al., 2010; Shenoy 
and Geiger, 2015). 

Isobaric tagging of peptides (e.g. by methods such as iTRAQ or TMT) 
introduces multiplexing of samples by utilizing intelligently designed chemical 
reagents (Bachor et al., 2019). These reagents have identical MS-level masses, 
but undergo cleavage under MS/MS yielding fragments with different masses that 
are dependent on the reagent used for a specific sample (Ross et al., 2004; 
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Thompson et al., 2003). Relative intensities of those reporter fragment ions 
directly reflect the protein abundances across samples. As at the MS1-level 
masses are merged, iTRAQ and TMT do not dilute the MS signal, thus, enabling 
better sensitivity in addition to the high-throughput achieved from multiplexing. 
Also, coverage for quantitative data is enhanced and occurrences of missing 
values are reduced because peptides from all samples in an experiment are 
analyzed by a single comprehensive MS/MS event. Isobaric tagging has been 
described up to 18-plex by using triplex SILAC with 6-plex TMT (Dephoure and 
Gygi, 2012), but the current availability of 11-plex reagents can theoretically 
enable a 33-plex version. MS/MS-level quantitative analysis can, however, suffer 
from dynamic range compression issues leading to quantitative inaccuracies if 
co-eluting peptides happen to be co-isolated. For such cases only gas phase 
separation (Wenger et al., 2011) or MS/MS/MS analysis can rectify compression 
distortions (Ting et al., 2011). 

A promising, however still in proof-of-principle stage label-based method, 
termed NeuCode has recently been described that combines the benefits of both 
SILAC and isobaric tagging (Hebert et al., 2013). The approach exploits very small 
mass differences of below mDa, arising from neutron mass defect of different 
elements (Hebert et al., 2013). Such mass differences are achieved by using 
differentially labelled 15N and 13C amino acids, resulting in isobaric MS and 
MS/MS signals at low resolution, however quantitative read-outs of the iso-
topologues are achieved using ultra-high resolution scans MS1 (i.e. around 
500,000 at 400 m/z). Nevertheless, the approach requires high-performance 
instruments capable of fast ultra-high resolution scanning (such instruments are 
currently not yet widespread, mainly due to their high cost), and requires 
developments in the understanding of the peak merging effect of closely spaced 
high abundant isotopologues (Bakalarski and Kirkpatrick, 2016). 

Technically the simplest way to measure protein abundance is via the use of 
label-free analysis (Figure 3), which processes samples separately and where 
proteins are compared based on their cumulative LC/MS/MS signals (e.g. number 
of scans per protein or area under the curve (AUC) of peptides associated with a 
protein) (Wang et al., 2019). Evidently, label-free offers no multiplexing and 
potentially adds the highest degree of technical variability to the data compared 
to label-based methods. Yet, recent studies have shown that modern instruments 
can offer comparable quality to that achievable with SILAC (Tebbe et al., 2015). 
This is further facilitated by advanced normalization techniques (Cox et al., 2014) 
and statistical modeling that incorporates the usage of multiple MS-data features 
(Clough et al., 2012). Label-free is particularly suitable for clinical samples where 
suitable standards are not easily available or cannot be produced (Cox et al., 
2014). Another advantage is a higher dynamic range (2–3 orders of magnitude) 
compared to labeled methods (1–2 orders of magnitude), nevertheless, the latter 
captures small changes in relative abundance with more accuracy and precision 
(Schulze and Usadel, 2010). 

The final choice of optimal quantitative strategy will come down to the 
specific needs of a particular experiment and experimenter. Factors such as the 
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availability of standards, specific instruments in the laboratory, number of samples, 
magnitude of differences of interest, required robustness of measurements and 
available budget will have to be weighed against each other to determine the best-
suited approach. 
 
 

2.2 Emerging role of proteomics in reproductive biology 

The research in reproductive biology focuses mainly on the male and female 
reproductive systems and on the embryo. The emphasis is on understanding the 
underlying biology, elucidating causes behind infertility (e.g. dysfunction of 
sperm, oocytes, embryos or endometrial functioning), finding new diagnostic 
biomarkers and improving assisted reproductive technologies (ART). More 
advanced technologies are required, as the prevalence of infertility in developed 
countries is growing and the current ART technologies have poor efficacy of 
around 30%, rendering the overall practice relatively inefficient and costly for the 
healthcare system (Kupka et al., 2014).  

Before the completion of the Human Genome Project and the advent of 
sequencing technologies, most of the research in molecular reproductive 
medicine was led by hypothesis testing with classical biochemistry and molecular 
biology tools. During the last decades, use of hypothesis-free omics-technologies 
has shown a growing trend (Altmae et al., 2014). Application and studies 
involving proteomics have nevertheless been relatively modest, especially 
compared to genomics and transcriptomics (Figure 4). This can be attributed to 
the complexity and limited availability of proteomics technologies, but also to the 
dynamic range challenges that proteomes pose compared to genomes and 
transcriptomes (Zubarev, 2013). For example, where mRNA levels in the cell  
 

 
Figure 4. Number of PubMed listed articles from 1999–2019 related to reproductive 
sciences and different omics-methods. Data were retrieved by searching for reproduction 
(“reproduction”, “endometrium”, “sperm”, “oocyte”, “embryo”, “ovaries”, “testis”) and 
omics- (“genome”, “genomics” / “microarray”, “rna seq”, “transcriptome” / “proteomics”, 
“proteome”) related keywords in article abstracts. 
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may span only three to four orders of magnitude, protein abundance varies on a 
scale of at least seven orders of magnitude (up to ten orders of magnitude for 
blood) and even more given the differing signal responses of peptides after 
protein digestion. Nevertheless, proteomics is expected to provide the most novel 
findings for the field in the upcoming decades (Altmae et al., 2014). 
 
 

2.3 Endometrial function in health and pathology 

2.3.1 Role of endometrial cells in uterine functioning and  
embryo implantation 

Endometrium as the innermost layer of the uterus plays a pivotal role in the 
attachment of the developing embryo to the maternal organism, and, in the 
initiation of pregnancy. During the menstrual cycle, successful implantation is 
considered possible only in a short period of time, known as the window of 
implantation (WOI) (Harper, 1992). WOI usually starts on cycle day 19 or 20 and 
lasts about 4–5 days. The execution of the attachment can only happen when the 
maternal conditions are optimal for accepting the developing blastocyst, 
therefore, the endometrium can be considered as a gatekeeper (Macklon and 
Brosens, 2014). 

Endometrial tissue is mainly composed of glandular and luminal epithelial 
cells and stromal cells (making up the functional layer of the endometrium), but 
includes also somatic stem cells, vascular endothelial, blood and immune cells 
(Jimenez-Ayala et al., 2008; Lee et al., 2011a). Histologically, the glandular cells 
form tube-like structures that are located inside a vascular stroma (Figure 5A), 
rest of the cellular interface to the uterine lumen is made up of luminal epithelial 
cells (Jimenez-Ayala et al., 2008). This functional layer of endometrium is 
responsive to ovarian hormones (estrogen and progesterone), regenerating and 
(unless successful fertilization has taken place) shedding every menstrual cycle, 
lasting on average 28 days (Figure 5B). During the proliferative phase of the 
menstrual cycle, estrogen causes the endometrial cells to proliferate, whereas in 
the secretory phase progesterone arrests mitotic activity and triggers differentiation. 

Endometrial epithelial cells (EECs) are the first to make a contact with the 
blastocyst during the implantation process. In humans, this can only happen 
successfully about 6–10 days after ovulation and implantation attempts outside 
this timeframe lead to its failure, demonstrating that endometrial receptivity is 
under tight maternal control (Aplin and Ruane, 2017). In later stages of implant-
tation, the EECs are displaced and the embryo, guided by trophoblasts, invades 
into the stroma, until the epithelium eventually covers it fully. The process of 
initial apposition, attachment and invasion through the luminal epithelium has 
been suggested to involve multiple cell surface glycoproteins, including mucins 
(Aplin et al., 2001), trophinin (Sugihara et al., 2007), dystroglycan (Heng et al., 
2015) and several integrins (Aplin and Ruane, 2017). 
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Figure 5. A. Cross-sectional micrograph of an early secretory phase endometrium 
showing endometrial glands (tubular structures) and the surrounding stroma. Image 
courtesy of Triin Laisk from the Institute of Clinical Medicine, University of Tartu. 
B. Endometrial tissue and its changes throughout the menstrual cycle. Concentration 
curves of circulating hormones have been indicated. Note, that the sharp rise of gonado-
tropins FSH and LH trigger ovulation in the beginning of the secretory phase. Image 
produced using the BioRender App (https://app.biorender.com/). FSH – follicle 
stimulating hormone, LH – luteinizing hormone, WOI – window of implantation. 
 
Endometrial stromal cells (ESCs) are mostly of fibroblastic nature and morpho-
logy. Towards the end of the proliferative and throughout the secretory phase, 
they markedly expand in volume in response to progesterone stimulus that triggers 
a whole cascade of changes in the endometrium known as decidualization. The 
increased volume of ESCs is simultaneously accompanied by acquiring epithelial-
like morphology and an increase in ribosomes, mitochondria, residual bodies, 
glycogen and lipid droplets in the cytoplasm. Proteomic profiles of these decidual 
stromal cells are also markedly changed (Paule et al., 2011), leading to the secretion 
of multiple cytokines, growth factors and extracellular matrix (ECM) proteins. 
These processes are required for ESCs to establish optimal interaction with the 
embryo, by recognition and selection processes of the embryo, and to stimulate 
the activity of vascular and immune cells within the endometrial tissue (Zhu et 
al., 2014a). 

The endometrium also houses stem cells (Chan et al., 2004), that are responsible 
for the regeneration of the functional layer after each menstruation (Gargett et al., 
2016). Endometrial stem cells are usually found, albeit scarcely, near blood 
vessels in the basal and functional layer. Despite not being clear yet whether 
epithelial and stromal cells derive from different stem cells, they are hypothesized 
to belong to bone marrow-derived stem cells and their involvement in several 
uterine pathologies (e.g. endometriosis) is considered relevant (Djokovic and 
Calhaz-Jorge, 2014). 
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2.3.2 Assessment of normal endometrial receptivity 

The WOI encompasses the synchronization of spatiotemporal functions of 
endometrial cells, including changes in their secretome, eventually rendering the 
tissue and surrounding environment receptive and supportive to the embryo 
implantation (Bhusane et al., 2016). Yet, the acquisition of the receptive state in 
the endometrium is not considered to be an all-or-none event, but rather a 
graduated phenomenon with more or less optimal outcomes for implantation and – 
of pregnancy (Lessey and Young, 2019).  

Since the 1950s, tissue histology criteria set forward by Noyes et al have been 
used to assess endometrial receptivity of biopsies obtained from the endometrium 
(Noyes et al., 1950). These criteria correlate the morphological changes in glands 
and stroma (shape of glandular structures, signs of mitotic activity, presence of 
subnuclear vacuoles, stromal edema, amount of luminal secretions etc.) to the 
cycle day of the menstrual cycle. However, the accuracy and precision of this 
approach are poor, subject to interobserver variability and non-morphological 
receptivity defects in the endometrium remain undetected (Murray et al., 2004). 
Thus, significant effort has been made to identify receptivity markers at the 
molecular level.  

Numerous studies have reported multiple different proteins associated with 
the opening of the WOI and their disrupted expression in infertility. There is a 
significant amount of evidence that aberrant progesterone signaling, or proges-
terone resistance, is often present in different conditions leading to impaired 
endometrial receptivity and infertility (Choi et al., 2016; Fox et al., 2016; Joshi 
et al., 2017; Lessey and Young, 2019). Progesterone exerts numerous down-
stream effects in the endometrium (Large and DeMayo, 2012), including down-
regulation of its own expression and that of estrogen receptor alpha (ESR1), and 
the cross talk with multiple transcription factors (e.g. IHH, HOXA10, HAND2, 
FOXO1, STAT3, GATA2, SOX17) (Marquardt et al., 2019). One of the hall-
marks of progesterone resistance is the persistently elevated level of its nuclear 
receptor (PGR) at the time of implantation in the uterus (Fox et al., 2016). A 
wider consequence of progesterone resistance is increased inflammation through 
unbalanced estrogen signaling – phenomenon which is thought have significance 
also for the symptoms of endometriosis (Marquardt et al., 2019). Why endo-
metrial progesterone signaling becomes abnormal in some cases is not precisely 
clear, however, at least in women with endometriosis sirtuin-1 (SIRT1) and B-
cell lymphoma 6 protein (BCL6) may be important, as they increase in activity 
in response to inflammatory stimuli, and, in complex with each other interfere with 
progesterone target gene expression (Lessey and Young, 2019; Yoo et al., 2017). 

Another set of single markers described to correlate with the WOI opening are 
various integrins (especially integrin ανβ3), L-selectin ligand, matrix metallo-
proteinases, E-cadherin, pregnancy-associated endometrial alpha 2-globulin 
(alpha-2 PEG), luteinizing hormone/choriogonadotropin receptor (LHCGR), 
leukemia inhibitory factor (LIF), macrophage colony-stimulating factor (CSF1), 
transcription factor HOXA10 and vascular endothelial growth factor A (VEGFA) 
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(Craciunas et al., 2019). Nevertheless, none of the single markers has produced 
convincing evidence for clinical use, either lacking in sensitivity and/or specifi-
city (Craciunas et al., 2019). Higher diagnostic power can be achieved by monit-
oring simultaneously the activity of multiple markers, i.e. with biomarker panels, 
such as the 248-gene transcriptomic test ‘Endometrial receptivity array’ (ERA® 
test) (Diaz-Gimeno et al., 2011a). 
 
 

2.3.3 Assessment of pathological endometrial receptivity 

The assessment of attainment of a sufficiently receptive endometrium may provide 
greatest benefit for a group of IVF patients who suffer from repeated implantation 
failure (RIF) without any other known reproductive problems (endometriosis, 
endometrial abnormalities, premature ovarian insufficiency, polycystic ovarian 
syndrome etc.). RIF diagnosis is considered when at least three implantation 
failures with good-quality embryo transfers have occurred or conception was not 
achieved after a transfer of at least ten good-quality IVF embryos (Sebastian-
Leon et al., 2018). Subsequently, endometrial factor remains as the most sus-
pected, but not finitely proven culprit behind those cases of unexplained RIF. 

Currently there are two emerging theories for endometrial receptivity-based 
RIF causes in IVF: a temporally displaced or a disrupted WOI. In case of the 
displaced WOI, RIF is happening due to asynchrony between the developing 
blastocyst and the endometrium (Ruiz-Alonso et al., 2013; Ruiz-Alonso et al., 
2014). This was deducted based on the fact that personalized embryo transfer 
(ET) time in RIF women lead to an increased number of pregnancies (Patel et al., 
2019; Ruiz-Alonso et al., 2013). Other studies have also reported that women 
undergoing frozen ET have higher pregnancy rates if their ET is temporally 
adjusted after a non-receptive ERA® test result (Rosen et al., 2019; Tan et al., 
2018). Although, contradictory reports have also been published, where person-
alized ETs with ERA® did not improve pregnancy rates in women with good 
prognosis (i.e. with 0–2 previous frozen ETs), even though ERA® reported 64% 
of these women to be pre- or -post-receptive (Bassil et al., 2018). Nearly all the 
studies call for larger prospective studies to determine whether ERA® provides a 
meaningful result for personalizing ET. 

On the other hand, as the ERA® test does not appear to help all RIF patients, 
it is possible that another subpopulation of RIF patients suffers rather from a 
generally disrupted gene expression in the endometrium than just from a tem-
porally displaced WOI. As the ERA® test was originally derived based on only 
healthy fertile women, Koot et al theorized that a different transcriptomic profile 
based on direct analysis of RIF women (with suspected endometrial disruptions) 
and healthy controls might provide a better gene expression signature for RIF 
diagnostics (Koot et al., 2016; Macklon, 2017). Authors of that study found that 
RIF women indeed have evidence for altered gene expression in the endometrium 
(Koot et al., 2016; Macklon, 2017). 
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To find a common ground between the displaced and disrupted theories for 
RIF, a recent report put forward that both the displaced and disrupted signatures 
can be detected at the same time in some RIF patients, while other RIF patients 
can be uniquely classified either as with a signature indicative of a displaced or a 
disrupted WOI (Sebastian-Leon et al., 2018). Consequently, Sebastian-Leon et al 
proposed a new RIF taxonomy that stratifies RIF patients into four distinct 
categories having different clinical implications for treatment (Figure 6). 

 

 
Figure 6. Recurrent implantation failure taxonomy as suggested by Sebastian-Leon et al, 
2018. Given two potential molecular causes and their specific molecular (transcriptomic) 
patterns in the endometrium for RIF (displaced or disrupted WOI), patients can be 
categorized into four groups, each of which should be clinically addressed as appropriate. 
Note, that both causes can simultaneously be present. Figure reproduced and modified 
from Sebastian-Leon et al, 2018. 

 
  

2.3.4 Uterine fluid as an indicator of endometrial health and 
development 

The fluid of the upper female reproductive tract (i.e. the fallopian tubes and the 
uterus) plays an essential role in embryo development and implantation, as it is 
the medium and buffer where the early embryo develops and finds its way to the 
correct implantation site in the uterine wall (Hu and Yu, 2017). Embryo 
implantation fails in the absence of endometrial glands – the main secretory 
source of the fluid in the uterus (Filant and Spencer, 2013; Gray et al., 2002). In 
addition, disruption of uterine fluid homeostasis can cause incorrect embryo 
implantation and pregnancy loss (Zhang et al., 2015). Uterine liquid environment 
is also necessary for sperm transit prior to fertilization. 

The content of uterine fluid is made up of secreted molecules from the cells 
lining the uterine cavity, i.e. primarily from endometrial epithelial cells, but also 
from immune and vascular cells and extracellular vesicles released by various 
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cell types present in the endometrium (Lee et al., 2015; Ng et al., 2013). In 
addition, soluble contents from the fallopian tubes and the cervicovaginal region 
may partially end up and mix with the fluid in the uterus (Casado-Vela et al., 
2009). Steroid hormone dependent secretion of small molecules, such as simple 
carbohydrates, amino acids, metabolic intermediates (e.g. pyruvate, lactate), 
antioxidants, electrolytes, lipids and lipid hormones in uterine fluid are all 
necessary to sustain embryo viability and development until a dedicated blood 
supply has been established for an implanted embryo (Bhusane et al., 2016; Hu 
and Yu, 2017). Signaling proteohormones, such as cytokines, chemokines and 
growth factors are differentially regulated during the WOI and regulate endo-
metrial function (Berlanga et al., 2011). So far, the entire proteomic diversity in 
uterine fluid has been estimated to consist of up to a few thousand different 
proteins (Fitzgerald et al., 2018b; Hannan et al., 2012; Parmar et al., 2008). 

Volume of the uterine fluid and its regulation during the peri-implantation 
timeframe seems to be an important factor for implantation success and for the 
correct implantation site, as well. Under normal circumstances, fluid volume is 
decreased prior to embryo attachment to facilitate luminal closure and prevent 
floating of the embryo in the uterine cavity (Zhang et al., 2017). This process is 
under the control of progesterone/estrogen balance and in rodent models is 
disrupted by excessive estrogen (Zhang et al., 2015). 

Sampling uterine fluid for endometrial diagnostics has many desirable attributes 
over taking biopsy samples from endometrial tissue, as currently done for tests 
such as ERA®. The latter is considered relatively invasive and excludes embryo 
transfer in the same IVF cycle as the biopsy. However, collecting a uterine lavage 
or fluid is minimally invasive and does not impair pregnancy rates when per-
formed in the same cycle for IVF and ET (Berkkanoglu et al., 2004; Boomsma et 
al., 2009a; Olivennes et al., 2003; van der Gaast et al., 2003). Efforts have been 
made to correlate transcriptomic patterns of uterine fluid to the changing 
receptivity status of the endometrium with results showing that it indeed similarly 
predicts opening of the WOI (Chan et al., 2013). Nevertheless, the need for RNA 
amplification and the use of mRNA sequencing renders the process potentially 
less reproducible and less cost-efficient than a simplified rapid ELISA-type of 
assay measuring proteins in the fluid. Therefore, development of protein-based 
marker panels, which could be used with high throughput in the same cycle with 
IVF-ET, is highly desired for clinical use. 

Studies on uterine fluid proteins have reported many proteins to be implicated 
in endometrial receptivity (Table 2). Unfortunately, none of the proposed markers 
have made into clinical diagnostic use and most studies have been exploratory 
without proper follow-up validation or the markers have had insufficient 
sensitivity/specificity for diagnostics (Craciunas et al., 2019). Results with the 
best reported classifier performance have been achieved with uterine fluid LIF 
measurements, which did appear to discern women with unexplained infertility 
fairly well from fertile controls (Mikolajczyk et al., 2003). However, other results 
have not been highly consistent and the value of LIF as a single marker for  
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endometrial receptivity is still not clear (Salamonsen et al., 2013). It is also 
notable that recombinant LIF per se does not improve implantation and 
pregnancy rates in women with RIF, and actually led to a significantly worse 
pregnancy rate after embryo transfer (Brinsden et al., 2009). 

MS-based proteomics studies on uterine fluid (Table 2) have generally been 
performed with first generation methods (i.e. 2D-PAGE combined with MALDI 
MS or MS/MS), which have poor reproducibility, low coverage and by now have 
been phased out in favor of more sensitive LC/MS/MS approaches. It was and 
somewhat still is a widespread concerning practice that many MS-based bio-
medical proteomics studies do not account for multiple testing and rely solely on 
uncorrected statistics for significance calling (Diz et al., 2011). Unfortunately, 
none of the proteins found in the uterine fluid proteomics studies listed in Table 2 
would retain conventional significance if corrected for multiple comparisons. 
This is not to say that the results are inherently erroneous, but the false positive 
rates in those studies are higher than 5%. 
 
 

Endometriosis is a prevalent chronic gynecological disease affecting women of 
reproductive age with a 5–10% prevalence (Zondervan et al., 2018). This hetero-
geneous estrogen-dependent inflammatory condition is characterized by endo-
metrial-like tissue proliferating in extrauterine (non-eutopic) sites and forming 
ectopic lesions mostly on the surfaces of peritoneal cavity organs. The ectopic 
lesions can be subcategorized into three phenotypes (from least to most severe): 
(1) superficial peritoneal lesions, (2) ovarian endometriomas and (3) deep 
infiltrating lesions (Chapron et al., 2019). The disease itself is categorized to four 
stages depending on severity scoring (Chapron et al., 2019; Vercellini et al., 
2014). Endometriosis is mostly associated with reduced quality of life (moderate 
to severe pain, fatigue, depression) and infertility, although for some women no 
overt symptoms are present. No reliable diagnostic markers have been established 
so far (Falcone and Flyckt, 2018). Diagnostics mostly relies on patient interviews, 
imaging (for endometriomas and deep endometriosis) and/or laparoscopic 
surgery if the lesions are below visual detection limit (peritoneal lesions) for 
imaging technologies. Although, surgery is no longer recommended as a first-line 
approach due to high recurrences rates of ~40–50% and associated risks with 
surgery, and should be reserved only for cases where prior attempts for pregnancy 
have failed (Chapron et al., 2019; Guo, 2009). 

The establishment of endometriotic lesions requires the transfer of endometrial 
cells to extrauterine sites, most commonly believed to occur through retrograde 
menstruation as the lesions are anatomically often found consistent with a 
gravity-driven peritoneal flow from the Fallopian tubes (Djokovic and Calhaz-
Jorge, 2015; Vercellini et al., 2007). Nevertheless, this does not explain all cases 
of endometriosis, such as lesions found in rare anatomical locations (brain, lungs, 

2.3.5 Pathogenetic mechanisms driving the establishment, 
development and maintenance of endometriotic lesions 
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limbs, nasal cavity) and retrograde menstruation also occurs in women without 
endometriosis. Therefore, it has been proposed that abnormal mesenchymal stem 
cell (MSC) differentiation explains these occurrences better (Figueira et al., 
2011). By that theory multipotent MSCs from bone marrow and/or endometrium 
transdifferentiate to endometrial cells found in lesions. Similar, and somewhat 
mutual, theory proposes lymphatic and vascular spread of uterine endometrial 
fragments (Jerman and Hey-Cunningham, 2015). Both of these latter transmission 
theories are believed to play more role for less frequent cases of endometriosis, 
and for case reports in literature where endometriotic lesions have, under rare 
circumstances, been found in men (Taguchi et al., 2012). Overall, no single theory 
for endometriotic lesion establishment explains all endometriosis cases and factors 
that affect cellular invasiveness, proliferation and survival must also be at play. 

Genetic factors clearly appear to contribute to the development of endo-
metriosis, as monozygotic twins have an estimated heritability of ~50% (Saha et 
al., 2015), while common SNP-based heritability is about ~25% (Lee et al., 
2013). The largest genome-wide association study in endometriosis to date found 
strong evidence for 19 SNPs and highlighted genes involved in sex steroid 
hormone signaling (Sapkota et al., 2017). Depending on the severity stratification 
the explained risk variance was explained up to 2–5%, which implicates that 
majority of relevant loci are still to be discovered. Other reported loci have also 
implicated genes involved in Wnt signaling, cell adhesion, cell migration, 
angiogenesis and inflammation (Sapkota et al., 2017; Zondervan et al., 2018). 

In support of genetic evidence, numerous studies have found aberrant estro-
genic signaling in endometriosis. Increased aromatase activity in ectopic lesions 
elevates local levels of estrogens (Zeitoun and Bulun, 1999), and levels of estrogen 
receptors (especially ERβ relative to ERα) are increased in lesions (Bulun et al., 
2012; Pellegrini et al., 2012). High ERβ-to-α is also associated with progesterone 
resistance and may therefore contribute to infertility seen in endometriosis (Fox 
et al., 2016). Amplified estrogenic signaling supports ectopic proliferation of endo-
metriotic cells, reduces their responsiveness to apoptotic signals, increases 
cellular adhesiveness and also drives epithelial-mesenchymal transition (EMT) 
(Han et al., 2015) – latter of which may find contribution from epigenetic silencing 
of E-cadherin promoter (Li et al., 2017) and increased peritoneal levels of trans-
forming growth factor-β1 (TGFB1)(Young et al., 2014). TGFB1 also appears to 
trigger a Warburg-like metabolic reprogramming of endometriotic cells elevating 
local lactate levels which further fuels cell invasion, angiogenesis and immune 
suppression (Hirschhaeuser et al., 2011) – all features which are relevant to 
endometriotic cells (Zondervan et al., 2018). Nevertheless, it is still somewhat 
unclear whether the cellular properties described for endometriotic tissue are 
inherent to endometrial cells/tissue or are rather a result of the local inflammation 
and fibrosis, or a mixture of both. 
 
 



30 

2.3.6 Proteomics studies on the pathogenesis of endometriosis 

Proteomics studies on endometriosis pathogenesis have yielded results with limited 
overlap in terms of proteins reported (Table 3). Similarly to above-mentioned 
uterine fluid proteomics studies, majority of the investigations have been carried 
out with less advanced proteomics methods using relatively lax statistical criteria 
given the high-throughput nature of the acquired data (i.e. not accounting for 
multiple testing). Nevertheless, many of the studies have used follow-up validation 
and partially confirmed the high-throughput hits, mostly with immunological 
methods and less so with functional assays. 

Results have been more congruent on general themes (either on pathway or 
enrichment level) that are thought to be affected in endometriosis, such as altered 
cellular motility/invasiveness, proliferation, involvement of cellular stress 
response and susceptibility to apoptosis (for references, see Table 3). Of particular 
note, a thorough study by Vehmas et al suggested activation of the TGFB1 pathway 
as it was found to be very significantly (p=1.3×10–21) implicated in ovarian endo-
metriomas (Vehmas et al., 2014), which also agrees with results for altered 
(peritoneal) microenvironment described in the previous section. Nevertheless, 
the overall results from proteomics studies have not been very conclusive demon-
strating that more rigorous studies are warranted. 
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2.4 Summary of the literature review 

MS-based proteomics has evolved rapidly in recent times, where the number of 
detected proteins has increased from few hundreds since the early implementation 
of the technology to near the complete expressed proteome, as of date. In 
reproductive medical research, a large wave of proteomics studies was carried 
out during the emergence of the technology. However, due to the shortcomings 
of the initial methods, the retrieved results were often of limited coverage, 
quantitative accuracy and precision. Thus, a call for revisiting many of these areas 
in reproductive sciences is warranted to confirm initial results and widen our 
understanding on the role of protein dynamics in reproductive health. 

The causes behind endometriosis are complex and multifactorial, and far from 
completely understood. Studying the role of proteins in the pathogenetic mechan-
isms of the disease may offer new perspectives for developing novel interven-
tional therapeutics, and for finding diagnostic biomarkers with higher specificity 
and lower invasiveness. Similarly, MS proteomics is ideally suited for finding 
new biomarkers for monitoring endometrial receptivity. Using uterine fluid 
proteins would offer advantages over current biopsy-based approaches – both in 
terms of invasiveness and in terms of applicability in the same menstrual cycle as 
uterine sampling. Therefore, time is ripe for another wave of proteomics studies 
in reproductive medicine to complement insights from genomics and transcript-
tomics. 
  



34 

3. AIMS OF THE STUDY 

The general aim of the study was to apply contemporary proteomics technologies 
for the study of human endometrial proteins in health and dysfunction, such as 
infertility and endometriosis. The specific aims were: 
1. To shed light to the pathogenetic processes occurring in endometriotic lesions 

by characterizing the proteomes of ectopic and eutopic stromal cells. 
2. Perform a discovery proteomics study to find potential novel and specific 

biomarkers from immunodepleted blood plasma for the non-invasive diag-
nostics of endometriosis. 

3. Characterize the proteomic profile of secretory phase uterine fluid and how it 
changes in transition from a pre-receptive state to a receptive one. 

4. Study tissue expression and cellular localization of selected uterine fluid 
proteins indicative of endometrial receptivity. 

5. Determine if minimally invasively obtainable uterine fluid is suitable for 
monitoring of endometrial receptivity, and, whether it is altered in women 
with recurrent implantation failure of unknown origin. 
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4. MATERIALS AND METHODS 

4.1 Ethics statement and study participants 

All four independent studies within this thesis were carried out in accordance 
with approved guidelines. The studies were approved by the Ethics Committee 
of University of Tartu, Karolinska University Hospital and by the Institutional 
Review Board of University of California, San Francisco (UCSF). 

The subjects of the studies included healthy controls, endometriosis patients 
and women with RIF. Study subjects were recruited through advertisements, 
hospitals or IVF clinics. Archived endometrial biopsy samples were obtained 
from a biobank. Informed written consent was obtained from all participants. In 
addition, participants were asked to fill out medical questionnaires to obtain 
thorough information regarding general and reproductive health characteristics, 
including menstrual cycle anamnesis, use of medications, presence of systemic 
diseases and other health conditions.  

Volunteers comprising control groups in studies I (endometrial biopsies), 
II, III (uterine lavages) and IV (endometrial biopsies and uterine lavages) were 
self-reported healthy women recruited through advertisement or through IVF 
clinics undergoing first attempt IVF for male-factor infertility or had tubal factor 
infertility (TFI). All control women had regular menstrual cycles of 28±5 days 
without any evidence of endometriosis, polycystic ovary syndrome (PCOS), 
primary ovarian insufficiency (POI) or uterine abnormalities (e.g. fibroids, adeno-
myosis). Women in control groups in studies I, II (discovery cohort), III (uterine 
lavages) and IV were with proven parity. Plasma control group in study I included 
all women with endometriosis-like symptoms (e.g. pelvic pain, infertility) but were 
laparoscopically determined as not having endometriosis. Control group in study 
III comprised women undergoing gynecologic surgery for fibroid management 
or tubal ligation. All control women in the studies were not pregnant nor taking 
contraceptive medications for the last 3 months. 

The diagnosis of endometriosis for patients in studies I and III was determined 
by visual observation of lesions during laparoscopic surgery and confirmed by 
histology. Endometriosis staging was carried out using the American Society for 
Reproductive Medicine revised classification system (1997). The RIF cohort in 
study II comprised women undergoing repeated IVF [4.5±2.0 (range: 3–10) failed 
previous cycles] due to male-factor infertility or TFI, and were without endo-
metriosis, PCOS, POI or uterine abnormalities. All patients in the studies were 
not pregnant or taking contraceptive medications for the last 3 months. The main 
characteristics of all the cohorts participating in the studies are summarized in 
Table 4. 
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4.2 Clinical collection of samples 

Endometrial and/or endometriotic peritoneal lesion biopsies and uterine lavages 
were collected by skilled clinicians in the Tartu University Hospital, Karolinska 
University Hospital or obtained from the UCSF National Institutes of Health 
Human Endometrial Tissue and DNA Bank. 

Endometriotic lesion biopsies were collected under general anesthesia during 
laparoscopic surgery and endometrial biopsies were simultaneously obtained 
using an endometrial suction catheter (Pipelle, Laboratoire CCD). Endometrial 
biopsies from controls were collected under local anesthesia. After biopsy 
extraction, samples were immediately placed in an ice-cold 1:1 mixture of 
Dulbecco’s Modified Eagle’s Medium (DMEM) and Ham’s F-12 for transport to 
the laboratory. 

The procedure for collecting uterine fluid was done by flushing the uterus with 
0.5 ml of saline for approximately 30 s followed by aspiration of the fluid. Lavages 
were performed with an intrauterine insemination catheter (Cooper Surgical) 
inserted through the cervical canal into the uterine cavity, while avoiding touching 
of the uterine fundus. Samples were then cleared of cells or tissue debris by 
centrifuging at 400 g for 5 min at 4 °C, the supernatants were carefully transferred 
to new tubes and stored at –80 °C until further processing. 

Blood plasma samples were collected in the Tartu University Hospital. 
Venous blood samples were collected to EDTA tubes, centrifuged at 1,600 g for 
10 min at 4 °C, the top plasma layer was transferred to a new tube and centrifuged 
at 16,000 g for 10 min at 4 °C. The supernatant was then frozen at –80 °C for 
storage until further processing. 

The beginning of the endometrial secretory phase was determined by monit-
oring for the surge in the urinary concentration of luteinizing hormone (LH+0) 
with a urinary ovulation prediction test. Early secretory or pre-receptive phase 
(ESE) samples were collected 1–3 days after the LH+0, while the mid-secretory 
or receptive phase (MSE) samples were collected 6–9 days after LH+0. Addi-
tionally, MSE phase histology samples for endometrial dating according to the 
Noyes et al criteria (Noyes et al., 1950) were taken from control women in studies 
I, II (discovery cohort), III and IV. MSE biopsies were taken after collecting the 
uterine lavages. 
 

4.3 Endometrial cell purification and cell culture  
(Study I and II) 

Biopsies in ice-cold 1:1 DMEM and Ham’s F-12 were washed with 7 ml of fresh 
medium to remove tissue debris and blood cells. Tissue was then dissociated in 
5 ml DMEM without phenol red containing 0.5% collagenase (Sigma-Aldrich) 
with a shaking rotator at 110 rpm 37 °C up to 1 h or until collagenase digestion 
was complete. To remove undigested tissue pieces dispersed cells were filtered 
through a 50 µm nylon mesh. Isolation of stromal and glandular cells was 
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performed as described previously (Cervello et al., 2010). Briefly, the cells resus-
pended in 10 ml of culture medium in a 15 ml tube were placed in an upright 
position for 10 min for the sedimentation of epithelial glands. The top 8 ml of 
medium containing free-floating stromal cells was aspirated from the sedimented 
epithelial cells in the bottom. The process was repeated three times. Final puri-
fication was carried out by selective adherence of stromal cells to culture dishes 
for 30 min at 37 °C in 5% CO2. Non-adhering epithelial cells were aspirated by 
washing the culture dishes twice with 5 ml of culture medium. Epithelial glandular 
cell samples were spun down and stored at –80 °C until further sample preparation. 

Purified ESCs were cultured 2–5 passages in DMEM/F12, 10% fetal bovine 
serum (FBS) with 100 U/ml penicillin, 100 µg/ml streptomycin, 0.25 µg/ml 
amphotericin B at 37 °C and under 5% CO2. Confluent cells were dissociated 
with 0.25% trypsin-EDTA (Gibco), sedimented by centrifugation at 200 g for 6 
min and washed twice with 2 ml PBS each. Cell pellets were kept at –80 °C until 
further sample preparation and mixing with the SILAC spike-in standard.  

To prepare the SILAC standard ESCs from a healthy endometrium and 
Ishikawa cancer cell-line were separately cultured for 6 passages in DMEM in 
the presence of 0.266 mM heavy (13C6

15N2) lysine (Lys8) and 0.133 mM heavy 
(13C6

15N4) arginine (Arg10) (Cambridge Isotope Laboratories) and 10% dialyzed 
FBS (Thermo Fisher Scientific). 200 mg/L light proline was also added to the 
labelling medium to suppress arginine-to-proline inter-conversion (Bendall et al., 
2008). 
 
4.4 Preparation of cell samples for non-targeted LC/MS/MS 

(Study I) 

Cell pellets were processed by the enhanced filter-assisted sample preparation 
protocol (Erde et al., 2014) with modifications. Briefly, cell pellets were sus-
pended in 10 volumes of 4% sodium dodecyl sulfate (SDS), 100 mM Tris-
HCl pH 7.5, 10 mM dithiothreitol (DTT) and incubated at 95 °C for 5 min. 
Solutions were probe sonicated (Bandelin) with 20x 1 sec pulses at 50% power. 
Protein concentrations were measured in 8 M urea, 100 mM Tris-HCl pH 7.5 
using tryptophan fluorescence (excitation/emission wavelengths of 295/350 nm, 
respectively). Samples were then spiked 1:1 with the SILAC standard. The 
standard consisted of 2:1 mix of labelled ESCs from a healthy donor and labelled 
Ishikawa cells. Samples were on-filter (30 kDa molecular weight cut-off; Milli-
pore), alkylated with 50 mM iodoacetamide (IAA) and digested overnight with 
1:50 dimethylated porcine trypsin (Sigma-Aldrich) in the presence of 1.0% 
sodium deoxycholate. The detergent was removed by acid precipitation and 
extraction with ethyl acetate. The digested proteins were pre-fractionated into six 
fractions using strong cation exchange (SCX) (Figure 7, “Cells”) and desalted 
with in-house made C18 (3M Empore) solid phase extraction StageTips 
(Rappsilber et al., 2007). Final LC/MS/MS samples were reconstituted in 0.5% 
trifluoroacetic acid (TFA). 
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Figure 7. Peptide offline pre-fractionation and online chromatography of different pro-
teome samples. Abbreviations: ACN – acetonitrile, FA – formic acid, FT – flow-through, 
OAc – acetate, AC – acetone, RP – reversed phase, SCX – strong cation exchange, SDS-
PAGE – sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 
 
 
4.5 Preparation of blood plasma samples for non-targeted 

LC/MS/MS (Study I) 

Frozen plasma was thawed on ice and pooled based on diagnosis, endometriosis 
stage and menstrual cycle phase as outlined in Figure 8. Altogether 36 pools were 
created, each pool having plasma from 4–5 individuals. The processing order of 
pools was randomized to neutralize potential systematic technical biases.  
 

 
Figure 8. Experimental design for blood plasma pooling. 
 
The pools were immunodepleted for the 14 most abundant proteins (albumin, 
IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-macroglobulin, 
alpha1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein AII, complement 
C3, transthyretin) found in human blood plasma using the Multiple Affinity 
Removal Column Human 14 spin-cartridge kit (MARS-14, Agilent) according to 
the manufacturer’s instructions. Briefly, 8 µl of plasma were combined with 
192 µl of a mild urea-based buffer and filtered through a 0.22 µm syringe filter. 
The immunoaffinity spin-cartridge was then pre-equilibrated with the carrier 
buffer and the sample loaded on to the cartridge, centrifuged for 1 min at 100 g 
and the flow-through (FT) collected. The spin cartridge was then incubated for 
5 min at room temperature and washed twice with 400 µl of the carrier buffer by 
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centrifugation at 100 g for 2.5 min. The bound proteins were eluted by washing 
with a concentrated urea buffer and the spin-cartridge was re-equilibrated for 
another round of depletion. Both washes and the FT were combined (‘the depleted 
plasma’) and precipitated with 2:1:3 (v/v/v) methanol:chloroform:water precip-
itation, the precipitated protein pellets were washed with –20 °C chilled methanol 
and air dried. The pellets were suspended in 7 M urea, 2 M thiourea, 100 mM 
ammonium bicarbonate (ABC) solution (7/2 urea:thiourea buffer). After reduction 
and alkylation of cysteines with 5 mM DTT and 20 mM chloroacetamide (CAA), 
respectively, for 1 h at room temperature in the dark, the samples were digested 
4 h in 1:50 (enzyme:protein) ratio using Achromobacter lyticus Lys-C (Wako 
Pure Chemical Industries). Solutions were diluted five times with 100 mM ABC 
and further digested overnight at room temperature with 1:50 dimethylated 
porcine trypsin (Sigma Aldrich). Digested samples were then fractionated into 
seven fractions using alkaline (pH 10) reversed phase C18 StageTips (Figure 7, 
“Blood plasma”). Prior to injection to LC/MS/MS, samples were acidified with 
TFA to pH ~2. 
 
 

4.6 Preparation of uterine fluid samples for non-targeted 
LC/MS/MS (Studies I, III and IV) 

Uterine fluids were thawed on ice, measured for protein concentration using the 
Micro BCA kit (Thermo Fisher Scientific) and prepared for XCell SureLock Mini 
SDS-PAGE (Invitrogen) system according to the manufacturer’s instructions. 
Samples were electrophoresed using the NuPAGE 4–12% Bis-Tris gradient gels 
(Invitrogen). Gels were stained with SimplyBlue SafeStain (Invitrogen) and each 
lane was sliced into six fractions (Figure 7, “Uterine fluid”). Each fraction was 
further cut into ~1 mm3 pieces to increase contact with downstream processing 
solutions. The gel material was destained with vortexing in 1:1 ACN:100 mM 
ABC, reduced with 10 mM DTT at 56 °C and alkylated with 50 mM IAA in the 
dark. Proteolysis was carried out with 10 ng/µl of dimethylated porcine trypsin 
(Sigma Aldrich) in 100 mM ABC at 37 C overnight. Peptides were extracted from 
the gel matrix using bath sonication, 30 min vortexing in 2 volumes of 1:2 5% 
FA:ACN. Organic solvents were evaporated in a vacuum-centrifuge and peptides 
desalted with C18 tips. Samples were reconstituted in 0.5% TFA. 
 
 
 

4.7 Non-targeted full proteome LC/MS/MS and raw data 
analyses (Studies I–IV) 

Samples were injected to an Ultimate 3000 RSLCnano system (Dionex) equipped 
with a 0.3 × 5 mm trap-column (5 µm C18 particles, Dionex) and an in-house 
packed (3 µm C18 particles, Dr Maisch) analytical 50 cm × 75 µm emitter-column 
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(New Objective). Detailed pre-fractionation strategies and chromatographic 
conditions for different full proteomes are outlined in Figure 8. Overall, peptides 
were eluted at flow rates of 200–250 nl/min with continuous A to B gradients 
(buffer A: 0.1% formic acid (FA), buffer B: 80% acetonitrile (ACN), 0.1% FA,) 
to a quadrupole-orbitrap Q Exactive Plus (Thermo Fisher Scientific) mass 
spectrometer (MS) using a nano-electrospray source (spray voltages of 2.4–
2.6 kV). The MS was operated in positive polarity with a top-N (top 5, 10 and 15 
for uterine fluid, blood plasma and cellular proteomes, respectively) DDA 
strategies. One measurement cycle consisted of a 350–1400 m/z MS1 scan at a 
resolution setting of R=70,000 at 200 m/z which was followed by MS/MS scans 
of the 5/10/15 most intense ions (z: +2 to +6) at R=17,500. Normalized collision 
energy using higher-energy collisional dissociation (HCD) was set to NCE=26, 
isolation width was 1.5 m/z. MS and MS/MS ion target values were 3e6 and 5e4 
ions, respectively, using 60 ms injection times. Dynamic exclusion varied from 
20–70 s depending on total chromatographic time. 

MS raw data were processed with the MaxQuant 1.4.0.8 software package 
(Cox and Mann, 2008). For SILAC samples, Lys8 and Arg10 were defined as the 
heavy channel amino acids. Methionine oxidation, asparagine/glutamine deam-
idation and protein N-terminal acetylation were defined as variable modifications, 
while cysteine carbamidomethylation was set as a fixed modification. Peptide 
search was performed against in silico trypsin digested (C-terminal cleavage after 
lysine/arginine without proline restriction) UniProt (www.uniprot.org) Homo 
sapiens reference proteome database. First and main search MS mass tolerances 
were ±20 and ±4.5 ppm, respectively. MS/MS mass accuracy tolerance was 
±20 ppm. Protein identifications were reported if ≥1 razor or unique peptides of 
≥7 amino acids were identified. Transfer of peptide identifications (match 
between runs) based on accurate MS1 mass and RT was allowed. For SILAC 
samples, protein quantification was reported if ≥2 H/L ratio measurements with ≥3 
points across a chromatographic peak were available. For label-free samples, 
protein quantification was reported if ≥1 peptide was quantified with ≥3 points. 
Label-free protein intensities were normalized using the MaxLFQ algorithm (Cox 
et al., 2014). Signal integration of missing SILAC label channels (re-quantification) 
was also enabled. Peptide-spectrum match and protein false discovery rate (FDR) 
were kept ≤1% using a target-decoy approach. All other parameters were default. 
 
 

4.8 RNA extraction and quantitative real-time PCR  
(Studies I, III and IV) 

RNA was extracted from cells and tissue biopsies according to the manufacturer’s 
instructions using RNeasy MinElute Cleanup kit (Qiagen) (Study I, III) or Arcturus 
PicoPure Frozen RNA Isolation kit (Thermo Fisher Scientific) (Study IV). DNase 
treated samples were converted to cDNA with RevertAid First Strand cDNA 
Synthesis Kit (Thermo-Fisher Scientific) (Study I) or iScript cDNA Synthesis kit 
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(Bio-Rad Laboratories) (Study III) or NUGEN Ovation Pico WTA System 
(NuGEN Technologies) (Study IV). Quantitative real-time polymerase chain 
reaction (qRT-PCR) was performed with 5×HOT FIREPol EvaGreen qPCR Mix 
Plus (ROX) master mix (Solis BioDyne) in 7500 Fast Real-Time PCR System 
(Applied Biosystems) (Study I, III) or with TaqMan Universal PCR Master Mix 
(Applied Biosystems) in a StepOne Plus instrument (Applied Biosystems) 
(Study IV). HPRT1 (Study I), RPL18 (Study III) and 18S ribosomal RNA (Study 
IV) were used as reference genes. The 2–ΔΔCt method (Livak and Schmittgen, 
2001) was used for calculating the relative expression and to determine mRNA 
expression fold changes (FC) along with paired (Study I) or non-paired (Study 
III, IV) t-test with significance threshold set at p<0.05. Primer sequences are 
available in the publications associated with the respective studies. 
 
 

4.9 Respirometry (Study I) 

Cellular routine respiration measurements were carried out with high-resolution 
respirometry (Oroboros Instruments) using a Clark electrode at 37 °C. Approxim-
ately 106 cells of paired endometriotic eutopic and ectopic ESC cultures were 
transferred into respiratory chambers of the oxygraph. After steady-state res-
piratory flux (Vr) was established, the ATP synthase was inhibited with 2 μg/ml 
oligomycin (VOly), followed by uncoupling of the oxidative phosphorylation by 
stepwise titration of carbonyl cyanide p-trifluoromethoxyphenylhydrazone 
(FCCP) up to optimum concentrations in the range of 2–10 μM (VFCCPmax). Finally, 
respiration was inhibited and measured in the presence of rotenone (VRot, complex 
I inhibition) at 2.5 μM, and then, antimycin A (VAntA, complex III inhibition) at 
2.5 μM. Oxygen consumption slopes were calculated with DatLab 4.0 (Oroboros). 
 
 

4.10 Uterine fluid sample preparation for targeted 
LC/MS/MS (Study II) 

Proteins were directly precipitated from uterine fluids with 10% trichloroacetic 
acid (TCA) overnight at 4 °C. The precipitated protein pellets were washed with 
–20 °C chilled acetone and air dried. Protein concentrations were determined with 
the Micro-BCA assay (Thermo Fisher Scientific). 15 µg of uterine fluid proteins 
were then suspended in the 7 M urea/2 M thiourea buffer in 100 mM ABC, 
reduced with 5 mM DTT and alkylated with 20 mM CAA. Pre-digestion with 
1:50 Lys-C was carried out for 4 h at room temperature, followed by overnight 
digestion with 1:50 trypsin. Samples were desalted with C18 SPE tips and 
reconstituted in 0.5% TFA. 
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4.11 Targeted LC/MS/MS and raw data analysis (Study II) 

Samples were injected to an Ultimate 3000 RSLCnano system with a configuration 
as described in paragraph 4.9 above. Peptides were eluted at 250 nl/min with a 
90 min A to B 10–45% gradient to a Q Exactive Plus MS/MS using a nano-
electrospray source (positive mode, spray voltage of 2.6 kV). The MS was 
operated in a scheduled PRM mode by isolating and fragmenting only selected 
peptides from proteins selected for targeted validation. Scheduled MS/MS was 
performed within ±3 min windows of their predicted RTs by using the indexed 
retention time (iRT) method (Escher et al., 2012). Briefly, iRT indices were 
determined for all peptides from the validation set in method development runs 
using a spiked-in iRT calibration mix (Biognosys). MS/MS isolation window was 
1.0 m/z with an ion target value and fill time of 2e5 ions and 160 ms, respectively. 
HCD NCE was set to 26. MS raw files were analyzed with the Skyline software 
(MacLean et al., 2010). Spectral library was created from the previously measured 
uterine fluid full proteome data. Peptides with the highest intensities in the library 
were preferred for the targeted analysis. No restrictions on amino acid com-
position were enforced, as this was found to exclude many peptides with strong 
MS response factors. For quantitative analysis only y-ion fragments (from ion 
3, y3) with +1 and +2 charges states were allowed. After automated extracted ion 
chromatogram integrations, all integrations were manually inspected for correct 
peak picking. Ion traces with strong interference and erroneously picked peaks 
(i.e. with mass errors > ±20 ppm, lack of fragment chromatographic co-elution) 
were discarded. Integrations were then exported and processed with an in-house 
written R script. Peptide AUCs were summed into protein AUCs, normalized 
using EEF1A1 AUCs and log2-transformed. Missing values were imputed using 
MaxQuant’s Perseus module as described in paragraph 4.9 above. Imputation was 
not performed for proteins in paired samples where both ESE and MSE values 
were absent. 
 
 

4.12 Immunohistochemistry (Study III and IV) 

Paraffin-embedded endometrial slides of 4–5 µm were deparaffinized, washed 
and processed for antigen retrieval with either submerging in citrate buffer at 
90 °C for 10 min or using a 2100-retriever autoclave (Biocare). Endogenous per-
oxidase was inactivated with 3% H2O2 in methanol and the slides were incubated 
with 1:150 rabbit anti-human polyclonal anti-stanniocalcin 1 (STC1) (Santa 
Cruz) or 1:500 rabbit anti-human polyclonal ectonucleotide pyrophosphatase/ 
phosphodiesterase family member 3 (ENPP3) (Sigma Aldrich) primary anti-
bodies at 4 °C overnight. STC1 detection was performed with 1:300 goat anti-
rabbit secondary antibody (Vector Laboratories) and ENPP3 with Rabbit/Mouse 
HRP polymer kit MACH 3 (Biocare Medical). STC1 slides were developed with 
the Vectastain Elite ABC immunoperoxidase detection and DAB kits (Vector 
Laboratories), ENPP3 slides were developed with the Betazoid DAB Chromogen 
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kit (Biocare Medical). After counterstaining with hematoxylin, slides were 
mounted and analyzed with a microscope by two blinded observers. ENPP3 
staining intensity was quantified with the Immunoreactive Score (IRS) and STC1 
was quantified by a five-grade scale (0 – no staining, 1 – few stained cells, 2 – faint, 
3 – moderate, 4 – strong staining). Kruskal-Wallis test (Study III) and Mann–
Whitney U test (Study IV) were used for significance testing at p<0.05. 
 
 

4.13 Bioinformatics and statistical analyses  
of proteomics data 

For the SILAC experiment (Study I), statistical analyses were carried out using 
the MaxQuant Perseus software and Microsoft Excel’s Real Statistics Resource 
Pack. To account for any SILAC mixing errors the median peptide log H/L ratio 
was shifted to zero based on the assumption that most proteins across conditions 
do not change. Ratios were then inversed, log2-transformed and proteins were 
filtered to have at least three measurements per group. Measured ratios were 
checked for conformity with the normal distribution. One-way analysis of variance 
(ANOVA) with multiple testing correction using the Benjamini & Hochberg’s 
FDR procedure (FDR<0.05) was used to detect significantly changing proteins. 
Post-hoc comparisons and significance (p<0.05) were determined with the Tukey’s 
honestly significant difference (HSD) test.  

Term enrichment analysis for the SILAC data was carried out with the Data-
base for Annotation, Visualization and Integrated Discovery (DAVID) bio-
informatics resources (Huang da et al., 2009) using the significantly up- or down-
regulated UniProt (www.uniprot.org) identifiers as the search input. Human 
expressed genome was set as the enrichment background and EASE score of 0.1 
was set as the enrichment cut-off value. DAVID EASE score is a more conser-
vatively modified p-value of the Fisher Exact test. For general data mining 
purposes we used an enrichment q-value of ≤0.1 for Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Pathway and Gene Ontology Biological process 
(GOBP) terms. 

For label-free proteomics data, MaxQuant label-free protein intensities (LFQ) 
were imported to the Perseus software environment. The LFQ values were log2-
transformed and proteins were filtered to have ≥50% valid values in sample 
groups. Missing values were then imputed or randomly drawn from a distribution 
created by down-shifting and compressing the measured intensity distributions 
by 1.8 and to 0.3 standard deviation units, respectively. Thereby simulating 
intensities on the threshold of MS detection and enabling statistical analysis for 
proteins where their abundance is negligible in certain conditions, but high in 
others. Statistical difference was tested with either paired or non-paired samples 
t-test as appropriate. All p-values were corrected for multiple testing with the 
Storey’s q-value method (Storey and Tibshirani, 2003). Proteins with a q-value 
<0.05 were considered significantly different. The targeted MS validation data in 
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Study II was analyzed either with paired (for paired ESE and MSE samples) or 
independent (for MSE and RIF MSE samples) t-test, proteins were considered 
validated if p<0.05.  

Principal component analysis (PCA) was used to study the ability of proteins 
to distinguish different groups of samples in the targeted MS validation dataset 
(Study II) and was conducted with the R packages FactoMineR and factoextra 
(Le et al., 2008). Term enrichment analyses in Study II were conducted with the 
FunRich software using UniProt ‘Cellular localization’ and Gene Ontology 
‘Biological process’ terms (Pathan et al., 2015). Gene enrichment was estimated 
with the Fisher’s exact test against the expressed human genome and adjusted for 
multiple testing with the Benjamini-Hochberg’s FDR method. 

To estimate the classification accuracy (sensitivity and specificity) of different 
protein sets in Study II we used Random Forest machine learning with the 
R package randomForest (Breiman, 2001). Different 3- and 4-protein panels from 
the 21 proteins that were validated to be implicated in endometrial receptivity and 
showed displacement in RIF (AOC1, CD55, CRISP3, CTSB, DPP4, ELANE, 
ENPP3, GRN, LCN2, MMP26, MPO, MSLN, MVP, NNMT, PGR, RNASET2, 
SDCBP2, SLC26A2, SLC34A2, STC1 and TCN1 were combinatorically gener-
ated and their classification performance was evaluated using the Random Forest 
supervised machine learning approach. Paired ESE and MSE samples were 
essentially treated as independent samples (i.e. both representing random samples 
of the studied phases), as the requirement for paired samples in clinical practice 
is inconvenient, and receptivity status is preferably determined based on a single 
MSE sample collected at a post-LH surge day of 6–9. The Random Forest 
sensitivity and specificity estimates are then similar to the cross-validation 
estimates and reduce the over estimation of classification accuracy. 
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5. RESULTS 

5.1 Profiling of proteomes of endometriotic cells (Study I) 
5.1.1 Proteomes of primary stromal cells from endometriotic lesions 

differ compared to cells from the endometrium (Study I) 

Using a spike-in super-SILAC standard and fractionation based quantitative 
proteomics workflow (Figure 9) we were able to identify and quantify ~6,900 and 
~4,000 proteins across samples, respectively, from primary stromal cell samples 
obtained from peritoneal endometriotic lesions and endometrium of endo-
metriosis patients and healthy controls. For the standard, we used a mixture of 
heavy labelled (incorporation ~98%) secretory phase ESCs of healthy women and 
EECs of Ishikawa endometrial cancer cell line (Nishida et al., 1985). 

Figure 9. Experimental scheme for super-SILAC internal standard-based quantitative 
proteomics workflow for investigating primary stromal cells from endometriosis patients 
and healthy controls. 
 
It was evident from the comparative results that primary ectopic ESCs (ecESC) 
are significantly more different from their eutopic counterparts (euESCs) than 
endometriosis euESCs versus control euESCs (Figure 10). In fact, 1,492 and 
1,437 proteins were differentially expressed (ANOVA q<0.05, post-hoc p<0.05) 
when comparing ecESCs to endometriosis euESCs and control euESCs, respect-
ively, while control and endometriosis euESCs had only 110 proteins differentially 
expressed. This magnitude of differences was also reflected in effect sizes with 
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ecESCs having many fold higher significant changes over euESCs. Also, in 
hierarchical clustering ecESC clearly clustered separately, while distinction 
between endometriosis and control euESCs was less pronounced (Figure 11). 
Proteins with strong effect sizes (≥4-fold difference) in ecESCs over euESC 
comparisons (listed in Table 5) were subjected to literature search to find their 
potential relevance for endometriosis. 

 

Figure 10. Volcano plots of different ESC comparisons indicate stark contrasts between 
primary cells from ecESC vs euESC. A. Endometriosis euESCs compared to control 
euESCs. B. ecESCs compared to endometriotic euESCs. C. ecESCs compared to control 
euESCs. Data were analyzed with one-way ANOVA (Benjamini & Hochberg FDR ≤0.05) 
and significantly changing proteins pair-wise tested with Tukey-Kramer’s post-hoc test 
(p≤0.05 considered as a significant difference). x- and y-axis values have been obtained 
by taking log2 and log10 of the ratio of mean L/H ratios and post-hoc test p-values of 
indicated ESC sample pairs, respectively. Significantly changing proteins have been 
indicated in yellow. 
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Figure 11. Hierarchical clustering of ecESC and euESC samples based on ANOVA 
significant proteins distinctly group the ecESC samples apart from euESCs. L/H ratios 
were z-score normalized and column/row clustering was based on Pearson correlation 
and Euclidean distance, respectively. Abbreviations: ptnt ecESC – ESCs from peritoneal 
lesions of endometriosis patients, ptnt euESC – ESCs from endometrium of endometriosis 
patients, ctrl euESC – ESCs from endometrium of healthy controls. 
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5.1.2 Extensive changes in energy metabolism in ecESCs (Study I) 

As differences were more pronounced in ectopic vs eutopic comparisons than 
between eutopic cells from patients and healthy women, we focused further on 
proteins significantly different in ecESCs. To more effectively mine the data in 
significantly down- and upregulated protein lists for systems-level themes, we used 
enriched KEGG Pathway and Gene Ontology Biological Process terms associated 
with the respective proteins. 

Most strikingly among the significantly enriched themes in ecESCs we found 
evidence for upregulated glycolysis (enrichment FDR < 0.001) and downregulated 
tricarboxylic acid (TCA) cycle (FDR<0.001) and oxidative phosphorylation 
(FDR<1×10–21). Proteins associated with these pathways were up- or down-
regulated in a coordinated fashion relative to euESCs (Figure 12) which is 
reminiscent of the Warburg effect described in various tumors. Additionally, key 
enzymes participating in glycolysis [phosphofructokinases PFKP, PFKL – rate-
limiting irreversible step; L-lactate dehydrogenase chain A (LDHA) – 
regeneration of NAD+ for anaerobic respiration; pyruvate kinase, tumor isoform 
(PKM2) – essential for maintaining the Warburg effect in tumors (Christofk et al., 
2008)] are all significantly upregulated in ecESCs (FCPFKP=+2.8, p=0.008; 
FCPFKL=+1.7, p=0.002; FCLDHA=+2.7, p=0.00004; and FCPKM2=+2.0, p=0.007). 
Furthermore, it was evident that less active glycolytic enzyme isoforms 
(FCPFKM=–1.6, p=0.001 and FCLDHB=–1.5, p=0.0004) were downregulated in 
contrast to their active isoforms (Figure 13). 

Several terms emerged from KEGG analysis (‘focal adhesion’, ‘tight, gap and 
adherens junction’, ‘ECM-receptor interaction’, ‘leukocyte transendothelial 
migration’) that indicated upregulation of numerous proteins involved in cellular 
adhesiveness and motility in ecESCs (Figure 14A). Strongest upregulation was 
seen for different collagens (COL1A1, COL1A2, COL3A1, COL5A1), fibronectin 
(FN1), spectrin alpha chain, nonerythrocytic 1 (SPTAN1), and cGMP-dependent 
protein kinase (PRKG1). Differently from the energy metabolism alterations, 
many of the adhesion and motility involved proteins also seem to show increasing 
upregulation across control euESC, endometriotic euESC and ecESC. 

We also found alterations in immune related proteins in primary ecESCs 
compared to euESCs. Several antigen peptide transporters (TAP1, TAP2, TAPBP) 
and major histocompatibility complex subunits (B2M, HLA-A2, -C) are lower, 
while HLA-A3 subunit is strongly upregulated both in endometriotic euESCs and 
ecESCs compared to healthy euESCs (FC=+4.5, p=0.02; FC=+5.8, p=0.004), 
respectively (Figure 14B). Most proteasomal subunits show negligible down-
regulation, while subunits involved in the formation of the immunoproteasome 
(PSME1, –2, –3, PSMB8, –9, –10) are downregulated in a pronounced manner 
(Figure 14C). 
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Figure 12. Protein expression level evidence for the Warburg effect in ecESCs characterized by 
upregulated glycolysis (A) and downregulated oxidative metabolism (TCA cycle (B) and 
oxidative phosphorylation (C)) under normoxic conditions. Expression levels of different proteins 
are indicated by mean L/H ratio ± standard error where the light and heavy signals are the sample 
and standard channels, respectively. * p<0.05. 
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Figure 14. Expression profiles of ANOVA significant proteins of different enriched 
KEGG themes: A. Proteins involved in adhesiveness and motility; B. Antigen processing 
and presentation; C. Proteasome subunits. * p<0.05. 

Figure 13. ecESCs upregulate more active glycolytic enzyme isoforms (PFKL, LDHA) 
over less active ones (LDHB, PFKM). Upregulation is also seen for PFKP. * p<0.05. 
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5.1.3 Alterations of proteins involved in proliferation, survival and  
apoptosis in ecESCs (Study I) 

In addition to term enrichment analysis we looked at various proteins known to 
regulate cell survival or apoptosis that are significantly altered (ANOVA q<0.05) 
across sample groups. Based on post-hoc analyses (p<0.05), we found eight 
downregulated and one upregulated pro-apoptotic (i.e. tumor suppressors) 
proteins, and five upregulated and one downregulated anti-apoptotic (i.e. proto-
onco- or oncogenes) proteins in ecESCs, whereas only two anti-apoptotic pro-
teins were significantly upregulated in endometriotic euESCs with others 
showing no significant changes compared to control euESCs (Table 6). 
 
Protein Gene FC (p-value), 

endometriotic 
euESC vs 

control euESC

FC (p-value), 
ecESC vs 

endometriotic 
euESC 

FC (p-value), 
ecESC vs 

control euESC 

Apoptosis-associated 
speck-like protein 
containing a CARD 

ASC –1.2 (p=0.2) –1.5  
(p=0.02) 

–1.8 
(p=0.0005) 

Apoptosis-inducing 
factor 2 

AIFM2 +1.5 (p=0.1) –1.7  
(p=0.009) 

–1.2  
(p=0.5) 

Apoptosis regulator 
BAX 

BAX +1.1 (p=0.5) –1.7 
(p=0.0000003)

–1.6 
(p=0.0000007) 

Caspase-1 
CASP1 +1.2 (p=0.9) –11.9 

(p=0.0001) 
–10.1 

(p=0.0001) 

Caspase-7 CASP7 –1.1 (p=0.9) –2.0 (p=0.004) –2.1 (p=0.001) 

Cyclin-dependent 
kinase inhibitor 2A 

CDKN2A +1.3 (p=0.5) +2.3  
(p=0.009) 

+3.3 
(p=0.0009) 

Death-associated 
protein kinase 3

DAPK3 –1.1 (p=0.9) –1.8  
(p=0.02) 

–2  
(p=0.008) 

Inactive serine 
protease PAMR1 

PAMR1 +1.5 (p=0.4) –7.1 
(p=0.0008) 

–4.8  
(p=0.001) 

Mothers against 
decapentaplegic 
homolog 4 

SMAD4 +1.1 (p=0.3) –1.4  
(p=0.002) 

–1.3  
(p=0.04) 

Apoptosis inhibitor 5 
API5 +1.0 (p=1.0) –1.6 

(p=0.0001) 
–1.6 

(p=0.00007) 

Catenin beta-1
CTNNB1 +1.7 (p=0.03) +1.9  

(p=0.02) 
+3.2 

(p=0.00009) 

Catenin alpha-1
CTNNA1 +1.3 (p=0.04) +1.3  

(p=0.05)
+1.8 

(p=0.0003) 

Catenin alpha-2
CTNNA2 +1.3 (p=0.11) +1.4  

(p=0.04) 
+1.9 

(p=0.0007) 

GTPase HRas HRAS +1.2 (p=0.3) +1.4 (p=0.04) +1.7 (p=0.001) 

Tumor protein D53 TPD52L1 +1.9 (p=0.4) +4.1 (p=0.03) +7.9 (p=0.005) 

Abbreviations: FC – fold change, euESC – eutopic endometrial stromal cell, ecESC – ectopic 
endometrial stromal cell. 

Pro-apoptotic 
A

nti-apoptotic 
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5.1.4 The main inducer of hypoxia response is upregulated in ecESCs 
(Study I) 

As our proteomics data did not cover the hypoxia-inducible factor 1-alpha 
(HIF1A), we used qRT-PCR to detect its expression in eu- and ecESCs. We also 
included various other glycolytic and oxidative phosphorylation enzymes genes 
(COX6C, UQCRC1, -2, NDUFB6, ATP5H, PGK1, ENO1, PFKP, PFKL) to 
validate the accuracy of our proteomics measurements. We did not use GAPDH 
as a reference gene, as the protein level data indicated that it is upregulated in 
ecESCs (FCecESC/end.euESC=+1.6, p=0.002; FCecESC/euESC=+1.7 p=0.0006), and 
HPRT1 was used instead (FCecESC/end.euESC=+1.1, p=0.6 and FCecESC/euESC=–1.1 
p=0.9). Most of the primary cells used in qRT-PCR experiment were from an 
independent group of patients (4/5 patients) than the one used in proteomics. 

qRT-PCR showed that HIF1A is indeed significantly upregulated in ecESCs 
(FCecESC/end.euESC=+2.3, p=0.0002) (Table 7), which is consistent with a Warburg 
effect in ecESCs. All other included metabolic gene mRNAs have similar 
significant changes to protein levels with the exception of NDUFB6 and ATP5H, 
which did not reach significance on the mRNA level. 
 
Table 7. mRNA level changes of selected glycolytic and oxidative phosphorylation 
enzymes, and HIF1A, in ecESC vs endometriotic euESC. Positive/negative values 
indicate up-/downregulation in ecESCs relative to euESCs. Significantly (p<0.05) 
differently expressed genes are in bold. 

Glycolysis Oxidative phosphorylation 

Gene mRNA FC 
(ectopic/eutopic) 

p-value Gene mRNA FC 
(ectopic/eutopic) 

p-value 

PGK1 2.08 0.001 COX6C –1.72 0.02 

ENO1 2.07 0.002 UQCRC1 –1.91 0.004 

PFKP 4.89 0.0003 UQCRC2 –1.42 0.003 

PFKL 1.35 0.01 NDUFB6 –1.1 0.3 

HIF1A 2.32 0.0002 ATP5H –1.19 0.2 

FC – fold change, euESC – eutopic endometrial stromal cell, ecESC – ectopic endometrial 
stromal cell. 
 
 

5.1.5 ecESCs have attenuated mitochondrial respiration (Study I) 

Next, we used live-cell high-resolution respirometry to determine whether the 
expressional level changes translate directly into reduced oxygen consumption in 
ecESCs compared to euESCs. We found that in routine state ecESCs compared 
to the same patient’s euESCs respire at a reduced level (ΔVr=–2.5±0.9 nmol/ 
(min × mg), p=0.01) (Figure 15A) and have less oxygen consumption due to oxi-
dative phosphorylation (Δ(Vr˗VOly)/(Vr,ecESC˗VOly,ecESC) = –33.7±15.2%, p=0.046) 



58 

(Figure 15B). Notably strong reductions are observed for maximal respiratory 
potential of ecESCs (ΔVFCCPmax= –8.3±1.8 nmol/(min x mg), p=0.0004) and 
maximal respiratory chain capacity compared to euESCs (Δ(VFCCP˗VAntA)/ 
(VFCCP,ecESC˗ VAntA,ecESC) = –44.7±5.5%, p=0.0006) (Figure 15B). The first 
parameter reflects the difference of oxygen consumption when the mitochondrial 
proton gradient is disrupted/uncoupled and the electron chain complexes are 
maximally stimulated, while the second parameter expresses maximal respiration 
difference of ecESCs compared to euESCs where oxygen consumption is 
attributable to oxidative phosphorylation. There was also less respiration due to 
proton leakage in ecESCs (Δ(VOly˗VAntA)/(VOly,ecESC˗VAntA,ecESC)= =–40.6±9.2%, 
p=0.006).  

Finally, we also compared activities of several enzymes important in energy 
metabolism of ecESCs with the same patient euESCs. We found evidence for 
lowered activity for citrate synthase (–32.2±9.2%, p=0.02), adenylate kinase  
(–43.6±1.5%, p=0.0001) and creatine kinase (–50.3±10.8%, p=0.02). 

Figure 15. EcESCs respire at an attenuated rate and have lower respiratory capacity 
compared to euESCs. (A) Difference of ecESC versus euESC respiration is shown in the 
presence of and in the absence (Vr) of various respiration affecting poisons (Oly, FCCP, 
Rot, AntA). (B) Relative changes of ecESC versus euESC respiratory parameters (proton 
leakage, respiration due to oxidative phosphorylation and maximal respiratory chain 
capacity) are presented. Data are presented as mean change (ectopic versus eutopic) ± 
standard error of the mean (SEM). Significance with respective p-values are indicated 
(*). Abbreviations: Vr – routine oxygen consumption, Oly – oligomycin, ATP synthase 
inhibitor, FCCP max – maximal respiration induced by the ionophore FCCP, Rot – 
rotenone, complex I inhibitor, AntA – antimycin A, complex III inhibitor. 
 
 

5.1.6 Lack of endometriosis-specific protein markers in pooled and 
immunodepleted blood plasma (Study I, unpublished results) 

We used comprehensive proteomics analysis also on blood plasma samples of 
women with and without endometriosis to reveal endometriosis-specific protein 
markers that could be used as non-invasive markers for endometriosis diagnostics. 
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To maximize the number of individuals for studying potential endometriosis-
specific plasma biomarkers without excessively inflating total LC/MS/MS 
measuring time, we used pooled plasma samples of endometriosis patients (24 
pools, 119 women) and controls (12 pools, 53 women) (Figure 7). Our endo-
metriosis cohort contained follicular and luteal phase plasma samples from 
women with stage I–II and III–IV endometriosis. To rule out unspecific markers 
(i.e. may be altered in other gynecological conditions) that can emerge when 
using healthy women without any clinical complaints as controls, the control 
group consisted of women undergoing laparoscopy because of endometriosis-like 
symptoms, but to whom endometriosis diagnosis was not confirmed. This also 
helped to rule out any controls who could have asymptomatic endometriosis. 

As plasma is dominated by albumin and other highly abundant proteins, which 
render the depth of detection very shallow, we decided to use immunodepletion 
of the 14 most abundant proteins by MARS-14 (Human 14 Multiple Affinity 
Removal System®) in blood plasma (Figure 16A). This approach enabled us to 
significantly increase the number of different proteins detectable by shotgun 
proteomics from 260 (with 3,026 different peptide sequences) with non-depleted 
samples to 964 (13,775 peptides) with depleted samples. Nevertheless, despite 
successfully depleting for the highest 14 proteins (Figure 16A ‘MARS-14 retained  

 

 
Figure 16. A. SDS-PAGE analysis of immunodepleted plasma pools (top) and MARS-14 
column retained proteins (bottom left). B. LPA shows a trend for down-regulation in luteal 
phase control samples compared to endometriosis group, where phase-specific change is 
not observable. Although, a highly significant change is observable when looking at LPA 
selectively, the effect is merely trending (q<0.1) for significance when corrected for 
multiple testing in the statistical analysis of the proteomics list. 
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proteins’) the resulting samples still contained another level of very abundant and 
non-changing proteins (such as A1BG, APOB, APOH, C4B, CFB, CFH, CP, GC, 
HPX, ITIH1, ITIH2, ITIH4, SERPINA3, SERPINC1; based on LC/MS/MS) 
among the top represented proteins (Figure 16A ‘Immunodepleted pools’). 

ANOVA analysis based on endometriosis and control grouping revealed 4 
proteins that had differences between groups (complement receptor type 2, 
p=0.001; sulfhydryl oxidase, p=0.002; platelet-activating factor acetylhydrolase, 
p=0.003; and proteoglycan 4, p=0.005), but none of these remained significant or 
trending for significance after multiple testing correction (q>0.1). Subgrouping 
into additional groups based on endometriosis stages and/or menstrual cycle 
phases did not result in any other significant proteins, although, apolipoprotein(a) 
(LPA) showed a trend for significance (q=0.07) when analyzing endometriosis 
and control groups based on cycle phases (follicular versus luteal). In control 
samples, LPA was lower in luteal compared to follicular phase (FC=–7.0), 
whereas there was no difference in the endometriosis group (Figure 16B). As the 
discovery experiment using immunodepletion and sample pooling revealed 
neither sufficiently robust nor endometriosis-specific markers, we did not pursue 
further investigations into plasma-based protein biomarkers. 
 
 
5.2 Assessment of endometrial receptivity through uterine 

fluid proteomics (Studies II–IV) 

5.2.1 Profiling of uterine fluid protein composition from early  
to mid-secretory phase (Study II) 

To find potential new endometrial receptivity markers, we first sought to measure 
the entire uterine fluid proteome of six healthy fertile women and detect the 
changes from ESE to MSE phase with discovery proteomics, and, then sieve and 
evaluate the most useful markers with targeted proteomics. 

Due to the presence of very high levels of serum albumin in uterine fluid 
(Figure 17A), samples were gel-fractionated to minimize the suppressive effect 
that albumin peptides can have on lower abundant co-eluting peptides. Measuring 
the samples in this manner enabled us to identify and quantify 36,171 peptides 
belonging to 3,158 different proteins (FDR<1%; 2,758 proteins with ≥2 unique 
peptides) or protein groups of which we filtered out 2,196 that met the criteria for 
statistical analysis (≥50% valid values per group). 

Based on UniProt ‘cellular localization’ term enrichment, uterine fluid contains 
more exosomal, extracellular, extracellular matrix-associated and plasma 
membrane proteins compared to glandular epithelium, but also more cytosolic 
and endoplasmic reticulum luminal proteins (Figure 17B). It is noteworthy that 
many of these proteins have multiple localizations, particularly proteins that are 
also partitioned into extracellular vesicles (~47.0% of cytosolically annotated 
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proteins have also exosomal annotation). The fluid is less represented by mito-
chondrial, nuclear and endoplasmic reticulum membrane proteins compared to 
glandular cells. 

Figure 17. A. Uterine fluid proteome is dominated by high levels of albumin (band at 
~66.5 kDa). ESE and MSE samples of a single healthy fertile volunteer are presented. 
B. Characterization of uterine fluid proteome composition. Top ten UniProt ‘cellular 
localization’ terms showing the greatest magnitude of increase or decrease in the uterine 
fluid compared to endometrial glandular tissue. P-values of enrichment relative to the 
entire background human proteome have been indicated. Abbreviations: Mw std – 
molecular weight standard. 
 
When looking at the quantitative differences between ESE and MSE we found 
that during the transition 367 proteins changed significantly (q≤0.05, FC range: 
–15.2 to +60.9), from which 185 proteins had at least twofold change (Figure 18). 
The genes for 20 of these significantly changing proteins are also included in the 
ERA® test (ANXA4, ARHGDIB, ATP6V1A, COMP, CORO1A, CRISP3, CTNNA2, 
DPP4, ECM1, FGB, GBP2, HABP2, HMHA1, MMP26, NNMT, PAEP, POSTN, 
PSMB10, SFRP4, TCN1) (Diaz-Gimeno et al., 2011a). With the exception of 
MMP26 and HABP2, majority of proteins show abundance changes in the same 
direction as measured on the endometrial tissue mRNA level. The overall overlap 
of genes used in ERA® (n=238) and uterine fluid proteins subjected to statistical 
analysis in our data (n=2196) is 54. 
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Figure 18. Volcano plot (left) summarizing the differences between ESE and MSE 
proteomes. Data are presented as log2 of fold changes from ESE to MSE against log10 of 
p-values. Proteins whose abundance change remained statistically significant after 
correcting for multiple testing have been color-coded yellow (< 2-fold difference) and 
green (≥ 2-fold difference). The p-value distributions (right) of either using a paired or 
independent test show that the within-subjects variability is less than between subjects. 
 
As our study used paired samples from the same individual, we also noted that 
for many proteins the abundances in each time point had more variability (i.e. 
between-subjects variability) than the individual ESE to MSE changes (within-
subjects variability). This underlies that paired in contrast to independent design 
is more effective for finding receptivity-specific changes. This is also evident 
from the p-value distributions where the paired one is shifted toward lower values 
compared to p-values obtainable with an independent t-test (Figure 18). 

Gene Ontology ‘Biological process’ term enrichment analysis of MSE 
significantly upregulated proteins indicated that relative to the entire human 
proteome there is enriched number of proteins participating in immune response, 
coagulation and sugar metabolism (Figure 19A). MSE downregulated analysis 
showed higher representation of proteins associated with DNA replication, 
mRNA splicing and endoplasmic reticulum to Golgi vesicle mediated transport 
(Figure 19B).  
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Figure 19. A. Top ten enriched Gene Ontology ‘Biological process’ terms relative to entire 
human proteome background among MSE upregulated proteins. B. Top ten enriched 
Gene Ontology ‘Biological process’ terms relative to the entire human proteome back-
ground among MSE downregulated proteins. Enrichment p-values have been indicated. 
 
 

5.2.2 Proteins previously not associated with endometrial receptivity 
(Study II) 

To determine if proteins with a very large effect size (|FC| ≥5, q<0.05, n=45) in 
our uterine fluid discovery data (Table 8) have been previously described in the 
context of human endometrial receptivity, we performed a comprehensive 
literature search. We found that 32 out of the 45 proteins/genes from this set have 
been reported in the context of endometrial functioning and/or receptivity. These 
studies were mostly conducted on the transcript level using tissue biopsies. 
Therefore, 13 proteins (GRN, MPO, ELANE, SLC34A2, LCN2, PARP4, CAND2, 
ISYNA1, PAMR1, PALLD, CDH11, ITGA6 and COL7A1) to the best of our 
knowledge are novel and have not previously been implicated in uterine receptivity 
in human studies. 
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5.2.3 Correlation between uterine fluid and endometrial tissue gene 
expression (Studies III and IV) 

We were also interested to determine whether the dynamics observed in uterine 
fluid proteins is in correlation with gene expression in the endometrial tissue. In 
conjunction with our collaborators, we chose STC1 and ENPP3 from the 45 most 
differentially abundant fluid proteins to examine their correlation with tissue 
expression (Table 8). Both proteins are strongly upregulated in uterine fluid of 
fertile women during opening of the WOI (Figure 20); nevertheless, the localiza-
tions of STC1 and ENPP3 have not been characterized in the human endometrium. 
 

 
Figure 20. The levels of STC1 and ENPP3 increase in uterine fluid during the mid-
secretory phase when the endometrium becomes receptive for embryo implantation. 
Normalized log2-transformed label-free (LFQ) protein intensities of paired samples are 
shown on the y-axis. ESE – early secretory phase, MSE – mid-secretory phase. 
 
ENPP3 mRNA was detectable both in endometrial stromal and glandular com-
partments (Figure 21A). In the glands, ENPP3 protein is upregulated in the mid- 
and late secretory phase compared to the proliferative phase (Figure 21B), 
mirroring the abundance differences also seen in the fluid. Interestingly, 
immunohistochemistry staining of endometrial tissue showed protein expression 
only in the apical region of the glandular epithelium despite the transcription seen 
in stroma (Figure 21C). 

STC1 mRNA expression was studied only in whole tissue, where it showed 
average increase in the ESE and MSE compared to the proliferative phase, 
however, this was statistically non-significant (Figure 22A). Staining of MSE 
endometrium showed that STC1 is ubiquitously expressed in the endometrial 
tissue with positive staining in stromal cells, glandular and luminal epithelial cells 
(Figure 22B). 
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Figure 21. ENPP3 expression in endometrial tissue. A. in mid-secretory phase, ENPP3 
mRNA is expressed both in endometrial stroma and glands. B. ENPP3 protein is 
upregulated in the mid- and late secretory versus the proliferative phase. C. Mid-secretory 
ENPP3 shows staining only in the apical region of the glandular epithelium. * p<0.05, 
** p<0.001, IRS – immunoreactive score, PE – proliferative phase, MSE – mid-secretory 
phase, LSE – late secretory phase. 
 
 

Figure 22. A. Whole endometrial tissue STC1 mRNA is expressed throughout the 
menstrual cycle with varying levels. B. Mid-secretory STC1 protein is expressed in 
endometrial stromal and glandular cells. PE – proliferative phase, ESE – early secretory 
phase, MSE – mid-secretory phase, n.s. – non-significant. 
 
 

5.2.4 Validation of uterine fluid discovery data with targeted 
proteomics (Study II) 

To determine which of the 45 proteins listed in Table 8 would be robust enough 
for potential further diagnostic development, we assembled a targeted MS-assay 
using suitable peptides of the proteins identified in the discovery experiment. For 
the validation, new healthy controls (n=11) were recruited and we also included 
a cohort of RIF-patients for whom endometrial-factor RIF was suspected (n=29). 
During the clinical collection of uterine lavages, it was observed that the yield 
and protein concentration tended to vary. Therefore, to counteract this effect, 
peptides from EEF1A1 protein were included into the targeted assay as intensity 
normalization peptides, as EEF1A1 showed nearly constant level across samples 
in the discovery experiment (FCMSE/ESE=1.0, p=0.99, CV=0.7%). Albeit, EEF1A1 
is present in erythrocytes (Bryk and Wisniewski, 2017) and based on visual 
observations, uterine fluid samples tend to have varying levels of contamination 
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by hemolyzed blood. We did observe fluctuating levels of hemoglobin alpha 1 
chain (HBA1) peptides in the validation samples (Figure 23A), but HBA1 was 
found to explain only ~9% of the variability of EEF1A in the fluid (Figure 23B). 
Therefore, samples were not excluded based on hemolyzed blood contamination, 
as it is somewhat unavoidable in the clinical setting (Boomsma et al., 2009a), and 
by our results does not appear to contribute to the overall EEF1A1 found in the 
uterine fluid. 

Figure 23. A. Peak areas of HBA1 peptides from sample to sample show varying levels 
of hemolyzed blood in different uterine lavages. B. Correlation between summed peak 
areas of EEF1A1 and HBA1 peptides. 
 
Out of the 45 proteins selected for the validation phase of the experiment, 38 were 
confirmed as significantly different (p<0.05) between control ESE and MSE 
samples of new recruits. All of the significant proteins also had abundance 
differences in the same direction as observed in the discovery part of the study. 
The targeted MS data distinctly separate ESE and MSE groups in PCA analysis 
(Figure 24A). Seven proteins (CAND2, CD36, GBP2, IGFBP7, IL6ST, ITGA6, 
PIGR) did not reach statistical significance in the validation. Overall, we 
considered 38 out of the 45 significantly changing proteins as validated and 
sufficiently robust for further evaluation. 
 
 

5.2.5 Altered window of implantation in women with repeated 
implantation failure (Study II) 

Our validation measurements also included women with RIF (n=29) for whom 
endometrial-factor implantation defects are suspected. We hypothesized that 
during the mid-secretory phase RIF women would show alterations in the 
receptivity markers we chose for validation. Plotting the three different groups 
(control ESE and MSE with RIF MSE) by their primary components indicated 
three discernable groups with a partial overlap between control MSE and RIF 
MSE (Figure 24B). However, over half of the validated proteins (21/38) 
displayed similar levels between control ESE and RIF MSE instead. This was 
also reflected in PCA when plotting the high end of the most significantly 
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different (p<0.005) proteins between control MSE and RIF MSE where most 
overlap is shifted to control ESE and RIF MSE (Figure 24C). 

The uterine fluid protein signature consisting of the 21 proteins with ESE-like 
expression (Figure 24D) thus seems to indicate potential displacement of the 
window of implantation in our RIF cohort. Nevertheless, not all of the validated 
proteins from the control ESE and RIF MSE are at the same level, as 17 out of 
the 38 proteins (ALDH1A3, BCAT1, CDH11, COL7A1, COMP, HGD, ISYNA1, 
MAP3K5, PAEP, PALLD, PAMR1, PARP4, PGMRC1, POSTN, SDC2, SFRP1, 
SFRP4) still display similar levels between control MSE and RIF MSE. 

 
Figure 24. A. Validated (p<0.05) targeted proteins separate control ESE (turquoise) and 
MSE (yellow) groups into distinct PCA spaces illustrating their collective association 
with the respective cycle phases. B. PCA analysis including RIF MSE samples (red). 
C. Proteins highly significantly (p<0.005) different between control MSE and RIF MSE 
group, shifting RIF MSE to more closely overlap with the control ESE than control MSE 
samples. D. Proteins indicative of potential WOI displacement in women with RIF. The 
y-axis in the boxplots denotes normalized and log2-transfromed summed peptide 
intensities of the respective proteins. To visualize group separation in the PCA the convex 
areas of sample groups have been color-coded.  
 
 

5.2.6 Uterine fluid panel consisting of four proteins enables uterine 
receptivity monitoring with high sensitivity and specificity (Study II) 

One of our main interests was whether uterine fluid proteins could be applied to 
monitor endometrial maturation and receptivity and how many proteins would be 
needed to provide sufficiently high sensitivity and specificity without rendering 
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the panel technically too complex and expensive for the potential development 
into an immunoassay. To that end, using the set of 21 validated and RIF displaced 
proteins, we combinatorically tested different three (1,330 combinations) and four 
(5,985 combinations) protein panels and determined how they distinct receptive 
samples from pre-receptive samples or RIF affected samples. Using Random 
Forest machine learning, a panel consisting of PGR, NNMT, SLC26A2 and LCN2 
was estimated to provide optimal results, enabling distinguishing of control MSE 
from ESE with both sensitivity and specificity of 91.7% and control MSE from 
RIF MSE with sensitivity of 96.6% and specificity of 91.7% (Figure 25A). All 
these four markers had RIF MSE levels closer to control ESE than to control MSE 
levels (Figure 25B), thus potentially indicating that our RIF cohort suffers from a 
displaced WOI. Positive and negative predictive values were not determined, as it 
is difficult to estimate what the exact prevalence of RIF is in the general population 
due to varied definitions for RIF (Bashiri et al., 2018; Laufer and Simon, 2012). 

 
Figure 25. Panel consisting of uterine fluid proteins PGR, NNMT, SLC26A2 and LCN2 
provides high specificity and sensitivity for separating MSE samples from ESE samples 
and RIF MSE from control MSE. A. Relative contribution of each protein in Random 
Forest classification models and the estimated sensitivity/specificity of the panel. 
B. Levels of the panel proteins in RIF MSE group are more similar to control ESE than 
to control MSE, which are also reflected in the PCA plot, Individual boxplots of the 
proteins are shown below. 
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6. DISCUSSION 

6.1 Shared molecular properties between endometriotic 
cells and those of tumorigenic or stem cell origin (Study I) 

The principal finding of our endometriosis stromal cell study highlighted extensive 
changes in the protein expression of enzymes involved in energy metabolism 
indicative of a pseudohypoxic state of ectopic ESCs (Figures 12 and 13) which 
we later confirmed by directly measuring reduced oxygen consumption in 
ecESCs (Figure 15). Such increased glycolytic and lowered oxidative energy pro-
duction under normoxic conditions has been a long-known phenomenon in tumor 
cells, known as the Warburg effect (Vander Heiden et al., 2009; Warburg, 1956). 
In addition to our results, several other studies have reported the potential signi-
ficance of HIF1A, hypoxia and the Warburg effect in endometriosis (Kato et al., 
2012; Wu et al., 2007; Wu et al., 2019; Young et al., 2016; Young et al., 2014). 

Hypoxia-adaptive gene expression is regulated by the hypoxia-inducible factors 
(HIFs), which are made up of actively regulated α-subunits (HIF1A, HIF2A, 
HIF3A) and a constitutively expressed β-subunit, by binding to the hypoxia-
responsive element (Mohlin et al., 2017). Under normoxia, HIF1A (the main  
α-subunit) is expressed, but quickly degraded by hydroxylation of its key proline 
residues by prolyl hydroxylase domain (PHD) proteins. This leads to the sub-
sequent binding of the von Hippel-Lindau tumor suppressor protein (VHL) and 
proteasomal degradation of HIF1A (Maxwell et al., 1999). This critical hydroxyla-
tion is reduced under hypoxia, which then leads to the stabilization of the protein 
and enables it to exert its gene regulatory functions – affecting over 1,000 target 
genes (Hayashi et al., 2019) involved in neoangiogenesis, cell proliferation, 
invasion, survival and apoptosis among others. 

Oxygen levels are not the only way HIFAs are regulated and multiple oxygen-
independent mechanism have been described (Masoud and Li, 2015) – some of 
which may have relevance for endometriosis. Multiple growth factors appear to 
upregulate transcription and translation of HIF1A and for endometriosis the role 
of TGF-β1 through the down-regulation of inhibitor of DNA-binding protein 2 
(ID2) has been pointed out (Young et al., 2016), as well as interleukin-6 (IL-6) 
mediated upregulation of pSTAT3 (phosphorylated signal transducer and 
activator of transcription 3), which stabilizes HIF1A (Kim et al., 2015). Another 
mechanism by which HIF1A can be stabilized under normoxia is through the 
increased production of reactive oxygen species (ROS) by inactivating oxidiza-
tion of the Fe2+ cofactor of PHD (Gerald et al., 2004). ROS is known to be 
increased in endometriotic cells and the peritoneal environment of endometriosis 
patients (Scutiero et al., 2017). We also observed increased normoxic HIF1A 
mRNA in ecESCs, nevertheless, under primary cell culture conditions no  
TGF-β1 nor IL-6 stimulation was used. It is therefore plausible that higher ROS 
plays a contributory role in the induction of the Warburg effect in ecESCs, but 
remains to be proven. 
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There are multiple potential pathogenetic consequences for endometriotic 
cells from the anaerobic metabolism. Our results showed that LDHA (mainly 
converts pyruvate to lactate) is upregulated by ~250%, while LDHB (mainly 
converts lactate to pyruvate) is downregulated in endometriotic cells. This 
signifies that peritoneal ecESCs produce net elevation in lactate levels, which is 
also corroborated by observations of increased lactate in the peritoneal cavity of 
endometriosis patients (Young et al., 2014). Lactate is well known to promote 
migration, invasiveness and immune evasion of tumor cells (Hirschhaeuser et al., 
2011) – properties which have also been ascribed to endometriotic cells 
(Aznaurova et al., 2014). There is clearly a reason why the immune system tends 
to ignore ectopic growth of endometrial cells. In addition to altered cytokine 
levels (TGF-β1, IL-6, IL-10, IL-15, IL-17, IL-33, TNF-α), increased local acidity 
through elevated lactic acid may at least partially provide the answer by 
promoting immunotolerance (Sun et al., 2017; Symons et al., 2018). Attenuated 
and changed activity of immune cells in response to altered microenvironment 
around the endometriotic lesions is now considered to be an important aspect in 
the persistence of ectopic lesions (Symons et al., 2018). Albeit, it is less clear how 
much does it contribute to the initial development of the lesions and whether the 
altered microenvironment precedes or follows the development of endometriosis. 

Warburg effect is also exhibited by stem cells and gradual differentiation of 
cells is accompanied by gradual shift in energy metabolism from anabolic to 
aerobic (Xu et al., 2013). Increased pseudohypoxia and glycolytic activity is an 
inherent feature of MSCs (Palomaki et al., 2013), that also perform a critical 
function in regenerating the endometrium after each menstrual shedding and are 
thought to play a role in endometriosis (Djokovic and Calhaz-Jorge, 2015). In 
fact, during menstruation endometriosis patients compared to healthy controls 
have increased shedding of the basalis layer of the endometrium which harbors 
MSCs (Leyendecker et al., 2002). Therefore, it is possible that the pseudohypoxic 
differences we see in our results between ESCs from lesions and the endometrium 
are the result of different level of ‘stemness’ of the ESCs, i.e. ectopic lesions are 
established by the more stem cell-like stromal cells compared to stromal cells 
biopsied from the eutopic endometrium. 

In addition to metabolic changes, we also measured significant changes in 
proteins related to cell survival, proliferation, invasiveness and cellular adhesive-
ness in ecESCs. Primary ecESCs mainly appear to have downregulated pro-
apoptotic proteins, while anti-apoptotic proteins are mostly upregulated (Table 6). 
Number of the tumor suppressors that our data cover have also been found to be 
reduced in endometriotic lesions by other studies, such as BAX (Cho et al., 2018), 
CASP1 (Braun et al., 2007) and PAMR1 (Kobayashi et al., 2012), while nuclear 
SMAD4 was found to be unchanged in the eutopic endometriotic endometrium 
(Dela Cruz et al., 2015) and loss of heterozygosity of CDKN2A has been 
associated with endometriosis (Goumenou et al., 2000). The expression of 
AIFM2, CASP7 and DAPK3 have not been reported in endometriosis to our 
knowledge. Among the pro-survival proteins only the proto-oncogenic CTNNB1 
has been implicated in ectopic endometriotic cysts (Pazhohan et al., 2018), 
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whereas no data exist for CTNNA1/2 and TPD52L1, while HRAS has been only 
investigated for mutations with negative findings (Vestergaard et al., 2011). It is 
noteworthy that some changes appear to suggest anti-proliferative adaptions 
instead, exemplified by CDKNA2A and API5, perhaps as a counter-response to 
the aforementioned pro-proliferation expressional changes. Nevertheless, most of 
the results are in concordance with other studies that have emphasized increase 
in proliferation and reduced apoptosis of endometriotic cells.  

When looking at the highest effect sizes among upregulated proteins in 
ecESCs, a number of pro-invasiveness related proteins top the list: SERPINE2 
(~31-fold compared to control euESCs) and NNMT (~9-fold). Both of these 
proteins carry prominent roles in cellular invasiveness and migration, but also in 
normal functioning of the endometrium. SERPINE2 has been implicated in 
cellular invasiveness in multiple studies (Buchholz et al., 2003; Gao et al., 2008; 
Nagahara et al., 2010; Selzer-Plon et al., 2009; Wang et al., 2015), and is 
expressed in the endometrium during the WOI where it has been suggested to 
enable tissue remodeling prior to implantation (Lee et al., 2011b). NNMT was 
recently demonstrated to be the master regulator in the transformation of cancer-
associated stromal fibroblasts from in situ to a metastatic phenotype and affecting 
the expression of thousands of genes (Eckert et al., 2019). NNMT has also been 
shown to play important role in proliferation and invasiveness in other cell types 
(Hah et al., 2019; Tang et al., 2011), and it has been shown to be upregulated in 
endometriotic lesion tissues (Eyster et al., 2007). Interestingly, NNMT showed a 
trend in our data for elevated levels also in endometriotic euESCs which may 
implicate its more important role in the overall endometriosis pathogenesis. 
Moreover, NNMT was also highly upregulated during MSE in our uterine fluid 
study, which may, similarly to SERPINE2, suggest its role in implantation in the 
normal functioning of the endometrium, but which may endow undesirable 
properties to ESCs in the development of endometriotic lesions. Other upregu-
lated proteins in ecESCs involved in cellular adhesion and motility are presented 
on Figure 14A, overall, supporting that ecESCs are characterized by adhesive and 
invasive properties. 

The main limitation of studying primary ESCs is related to the use of cultured 
cells. Culturing the cells after isolation from patient samples may theoretically 
alter the phenotype that these cells express in response to the in vivo micro-
environment, or culturing may introduce alterations that are only present in vitro. 
Nevertheless, it was shown by a recent study that culturing endometriotic cells 
does not really alter their phenotypes and such cells retain their characteristic 
molecular markers (Bouquet De Joliniere et al., 2014). It is also desirable to study 
only a specific cell population compared to whole tissue, which is made up from 
multiple cell types and may not have a reproducible profile from biopsy to biopsy. 
This problem that arises from tissue heterogeneity in endometriosis studies has 
been reviewed and discussed by our group elsewhere (Saare et al., 2017). Another 
limitation of our study is the usage of ecESCs only from peritoneal implants, as 
the observed changes may not be directly carried over to ovarian endometriomas. 
Finally, our samples were all collected during the secretory phase, which may 
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limit the gained insight only to the secretory phase of the menstrual cycle. 
Peritoneal lactate differs more distinctly in the secretory phase between endo-
metriosis patients and controls and less so in the proliferative phase (Young et 
al., 2014), suggesting that the induction of metabolic effects may also be cyclical 
if they are driven by hormonal signaling. 
 
 

6.2 Proteomics avenues for the diagnostics of 
endometriosis (Study I) 

Blood-based biomarkers for the non-invasive diagnostics of endometriosis have 
been a long sought-out goal for multiple previous studies with no definitively 
useful markers yet found (Nisenblat et al., 2016). We decided to approach the 
blood plasma proteomic discovery of endometriosis markers with an upstream 
immunodepletion and peptide fractionation – an approach which has not yet been 
attempted to our knowledge. However, a drawback for such a workflow is the 
laborious processing and prolonged instrumental analysis time of samples. 
Therefore, to include as many patients and controls as available, we used 
experimental design based on pooled samples. However, we did not detect any 
meaningful differences between patients and controls nor did subgrouping reveal 
any proteins different between groups. The only protein for which we detected a 
trend for significance was LPA, which appears to be decreased in the luteal versus 
follicular phase plasma of controls, whereas no change is observable for 
endometriosis. It is noteworthy, that LPA and its associated lipoprotein particle, 
lipoprotein(a), concentrations have been reported to be elevated in women with 
endometriosis (Crook et al., 1997). Nevertheless, we did not consider this level 
of evidence of further interest nor specific enough for endometriosis, as 
apolipoproteins are altered in other conditions (Saleheen et al., 2017). 

Recent blood discovery studies for endometriosis similarly did not find neither 
specific nor sensitive markers or marker sets for further diagnostic development. 
A rigorous immunological plasma study of multiple cytokines in a large and well-
defined cohort showed that plasma cytokines do not enable differentiation of 
patients from controls (Knific et al., 2019). A shotgun proteomics study with 
pooling and immunodepletion did report differing proteins in endometriosis 
versus control serum samples, but no correction for multiple testing was carried 
out in this study, nor were the selected markers significant in a later follow-up 
validation stage (Irungu et al., 2019). Similar problems were apparent also in 
another proteomics study, i.e. no markers were reported with rigorous statistics 
(Manousopoulou et al., 2019). Any p-values from (prote)omics studies with 
hundreds or thousands of simultaneous tests need to be corrected for false discovery 
that arises in these situations (Krzywinski and Altman, 2014), especially when 
reporting candidates for diagnostic purposes that need clear and consistent 
separation for high sensitivity/specificity. Despite technological advances in 
LC/MS/MS technology, current MS-based plasma proteomics approaches may 
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still not yet be ripe for detecting the ultra-low-abundant proteins that leak from 
diseased tissues. Foremost, due to the 1010 concentration range problem presented 
by blood plasma proteins (Geyer et al., 2017). Therefore, in the arrival of techno-
logical improvements that address concentration dynamic range related issues in 
blood plasma, studies on endometriosis-specific proteins may need to be revisited. 
 
 

6.3 Suitability of uterine fluid proteins for endometrial 
receptivity monitoring (Study II, III and IV)  

It is estimated that about two thirds of implantation failures are caused by defects 
in endometrial receptivity and the remaining one third by embryo-side problems 
(Craciunas et al., 2019). Thus, minimally invasive monitoring of endometrial 
receptivity could help to improve IVF success rates, facilitate identification of 
endometrial factor RIF patients and reduce costs for the healthcare system by 
avoiding futile procedures. In our proof-of-concept study, we show that uterine 
fluid proteins can provide useful information on endometrial receptivity, while 
remaining minimally invasive and useable within the same cycle as the fluid 
sampling. 

The protein composition of uterine fluid is complex with many high abundant 
proteins dominating the proteome – quite similarly to blood plasma. This 
similarity may suggest that there is significant transudation of proteins from 
plasma, although, these proteins have been shown to be expressed also in 
endometrial glandular epithelial cells (Hannan et al., 2010). Nevertheless, their 
concentrations compared to the rest of the proteome are not as extreme as in blood 
plasma, and after moderate fractionation, we were able to identify ~3,200 proteins 
in the fluid from healthy fertile controls. About one tenth of them significantly 
change from ESE to MSE coinciding with the opening of the WOI. Our bioinfor-
matics analyses indicated that most of the proteins are annotated as extracellular, 
extracellular matrix-associated, plasma membrane, exosomal or secreted, while 
there is also significant amount of proteins known to be intracellular or cytosolic – 
although, many of the identified cytosolic proteins are known to be partitioned 
into extracellular vesicles as well. In addition, we detected multiple known 
exosomal markers (e.g. CD9, CD81, CD63) (Kowal et al., 2016), which would 
indicate that there is a significant amount of extracellular vesicles in uterine 
lavage. Presence of extracellular vesicles in uterine cavity has also been reported 
by others (Ng et al., 2013), and animal studies have suggested that they play a 
role in embryo-endometrium cross-talk (Zhang et al., 2017). Nevertheless, it 
cannot be ruled out that uterine fluid also contains material from damaged or 
lysed endometrial cells to some extent. 

We found that many differentially abundant fluid proteins between ESE and 
MSE have previously been reported in the context of endometrial receptivity. The 
mRNA levels of 20 of these proteins are also measured in the widely used ERA® 
test. It is noteworthy that majority (18/20) of the shared ERA® genes show up- or 
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downregulation in the same direction as their respective uterine fluid proteins. 
This shows that the significantly changing uterine fluid proteins can reflect tissue 
gene expression. Nevertheless, the overall overlap of genes used in ERA® and 
proteins quantifiable in the fluid was only 54/238. Thus, 34 of the transcript-
tionally different genes in endometrial tissue do not show meaningful differences 
on the fluid protein level, or their mRNA/protein correlation is inherently low in 
the tissue. In dynamic states, such as when the endometrium transitions from the 
pre-receptive to the receptive state, mRNA/protein correlation can be low com-
pared to steady states where there is more correlation (Liu et al., 2016). This can 
be either due to time delay between protein synthesis and transcription, post-
transcriptional regulation, variable protein stability, location-dependent synthesis 
and/or trafficking of proteins (Liu et al., 2016). For ENPP3 we saw that even 
though it is transcribed in endometrial stromal cells, there is almost no detectable 
protein in the stroma, and the protein is predominantly present only in the apical 
region of the glandular cells from where it also likely makes it to the uterine fluid. 
Throughout various time points of the menstrual cycle ENPP3 mRNA and protein 
showed much better correlation in glandular cells, also mirroring the dynamics 
we observed in uterine fluid. Thus, the correlation between mRNA and protein 
can also depend on the particular cell type observed in the tissue. For STC1 we 
did not study cell type-specific expression of its mRNA, but STC1 protein was 
present in all cell types of the endometrium. Dynamics of the overall tissue 
mRNA of STC1 was poorly correlated with STC1 protein in the uterine fluid, 
suggesting that the eventual levels in the fluid are determined by other processes 
than mRNA transcription. 

Among the significantly changing uterine fluid proteins found in our dis-
covery data, we were able to validate 38 out of 45 proteins using targeted MS and 
samples from independent controls. There may be several reasons why seven of 
the 45 candidates were not validated. The validation samples were collected from 
three different clinics instead of one, as in the discovery part of the study. Thus, 
there could be more technical variability in the data, although, the validation 
cohort better represents the results that will be measured in an inter-clinical real-
life context, where it is desirable to have only robust biomarkers. Finally, failure 
to replicate some of the effects observed in small discovery studies in larger ones 
may come down to the higher biological variability that larger populations have. 

From technical side of uterine fluid analysis, it is important to emphasize that 
we observed variable volumes of the lavage fluid that was collected in the clinics. 
As mentioned before, even though the volume of the uterine fluid somewhat 
fluctuates throughout the menstrual cycle, there were notable intra-cycle phase 
differences observed as well, that appeared to be related to how much lavage fluid 
was aspirated after flushing the uterus. These volume-related factors can lead to 
different measured concentrations of proteins even though the absolute quantities 
in the uterus do not change. To capture changes in total amounts, we used reference 
normalization for which EEF1A1 showed most stable levels between ESE and 
MSE. Based on the overlap of results for several genes between our study and 
previous studies obtained with biopsies, we conclude that this approach counteracts 
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these factors when comparing ESE and MSE time points. Overall, we considered 
the remaining 38 proteins as validated and sufficiently reproducible to merit 
further developments into an assay. 

When estimating the sensitivity and specificity of the validated proteins, using 
machine learning we arrived at a four-protein panel (PGR+NNMT+SLC26A2+ 
LCN2) which showed high sensitivity and specificity of 91.7% for estimating 
whether the endometrium is pre-receptive or receptive. Such a four-protein panel 
is also conveniently smaller than the entire fluid protein complement, which is an 
important consideration if the assay is to be transferred onto an ELISA-based 
platform. For classifying subjects as ‘RIF’ when analyzing RIF samples that are 
collected 7–9 days after the LH-surge, the panel demonstrated sensitivity of 
96.6% and specificity of 91.7%. In a theoretical future clinical use, a ‘RIF’ result 
by this panel would direct the patient into further sampling of the fluid outside 
the previous LH-test time point to determine whether a ‘receptive’ status is 
achieved (subject has displaced WOI) or not (subject has disrupted WOI). The 
latter case may then signify that in such a subject attempting IVF-ET without 
other interventions is futile. 

When attempting to compare the performance of our panel to that of the ERA® 
test, the latter has been reported to give sensitivity and specificity of 88.6% and 
99.8%, respectively, for endometrial dating. Differentiation of non-pathological/ 
pathological (pathology defined as ≥5 implantation failures or with hydrosalpinx) 
MSE was achieved with a sensitivity of 99.5% and specificity of 15.7% (Diaz-
Gimeno et al., 2011a). However, in the current stage the performance char-
acteristics of these two approaches cannot be accurately compared head-to-head, 
as our and ERA® control cohorts consisted of 17 and 88 individuals, respectively, 
while for altered receptivity detection our study had 29 RIF and ERA® 7 mostly-
RIF patients. The molecular signature of ERA® has, however, been applied to 
RIF patients in a number of follow-up studies with varying levels of success for 
improving implantation rates in ERA ‘non-receptive’ RIF patients undergoing 
personalized IVF and ET (Patel et al., 2019; Ruiz-Alonso et al., 2013). 

The performance of our predictors may change when applied to a larger popu-
lation. Nevertheless, our results suggest that during MSE, uterine fluid proteins 
might be superior in determining whether a patient suffers from an endometrial-
factor RIF or not, while performance in endometrial dating is similar or slightly 
less than ERA®. Overall, uterine fluid proteins show promising results for 
improving minimally invasive endometrial receptivity assessment both in healthy 
patients and in women with RIF of unknown origin. 
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6.4 Role of endometrial factors in women with recurrent 
implantation failure of unknown origin reflected  

in uterine fluid (Study II) 

We found that 21 uterine fluid proteins out of 38 validated receptivity-associated 
proteins in our RIF MSE cohort had the same levels as in control ESE samples. 
The above-mentioned four-protein panel, consisting of PGR, NNMT, SLC26A2 
and LCN2 enabled high discrimination of RIF MSE from control MSE. Of this 
panel, only LCN2 has not previously been implicated in endometrial receptivity, 
whereas PGR, NNMT and SLC26A2 have been reported in the context of 
endometrial receptivity (Chan et al., 2013; Qiao et al., 2008). 

Persistent elevation of the progesterone receptor or PGR expression in endo-
metrial epithelial cells was initially shown to be associated with luteal phase 
defects (Lessey et al., 1996) – a condition where there is low secretion of pro-
gesterone from the ovaries or diminished responsiveness of the endometrium to 
progesterone. High PGR expression in the glandular epithelium is considered to 
be a hallmark of progesterone resistance – a prominent feature of many infertility 
associated conditions (Fox et al., 2016). Similarly, in our study, RIF MSE and 
control ESE had higher levels of PGR than control MSE uterine fluid samples. 
The expression of nicotinamide N-methyltransferase or NNMT in the endo-
metrium is also regulated by progesterone, but also by estrogen, and during the 
WOI it is normally downregulated in the endometrium (Tapia-Pizarro et al., 
2014). NNMT is a multifaceted enzyme that catalyzes the metabolism of nicotin-
amide and various xenobiotics. As discussed in the context of our endometriosis 
study, it influences the expression of multiple of genes, which are involved in 
proliferation and cellular migration. Similarly to NNMT, the expression of sulfate 
transporter or SLC26A2 is under the control of progesterone (Dassen et al., 
2007). Its main function is the transport of several different anions across lipid 
bilayers and its expression is attenuated during the WOI in women with PCOS 
(Qiao et al., 2008). Not much is known about the role of neutrophil gelatinase-
associated lipocalin or LCN in human endometrial function, but the fertility of 
LCN2–/–knockout mice is impaired (Berger et al., 2006). 

Overall, the results of uterine fluid proteins clearly show that there are 
alterations in uterine functioning of women with RIF. Future studies should also 
address whether the uterine fluid panel addresses only RIFs that are caused by 
displaced gene expression or also RIF cases that have a more generally disrupted 
WOI. 
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7. CONCLUSIONS 

Considering the findings of the studies presented in this thesis, following con-
clusions can be drawn: 
1. Primary ectopic endometrial stromal cells are substantially different from their 

eutopic counterparts, as evidenced by pathway-wide changes in anaerobic and 
oxidative cellular metabolism. These changes are characterized by reduced 
oxidative metabolism and increased glycolysis in the presence of oxygen – a 
phenomenon known as the (pseudohypoxic) Warburg effect. The ectopic 
endometrial stromal cells also have higher levels of HIF1A and display 
reduced oxidative respiration compared to eutopic cells. In addition, ectopic 
endometrial stromal cells have upregulated proteins involved in cellular 
motility, adhesiveness and invasiveness, most notably proteins such as 
SERPINE2 and NNMT, which normally play a role in implantation and 
endometrial receptivity. Many known pro- (e.g. caspase-1/7, SMAD4, BAX 
and others) and anti-apoptotic (e.g. HRAS, CTNNA1, CTNNA2, CTNNB1) 
proteins are down- and upregulated, respectively, in primary ectopic endo-
metriotic cells, which is in agreement with previous reports of reduced apoptotic 
potential of endometriotic cells. 

2. Immunodepleted blood plasma proteome analyzed to a depth of ~1000 proteins 
does not enable separation of endometriosis patients from patients affected by 
other gynecologic conditions. 

3. Proteins secreted to the uterine fluid make up a complex and dynamic 
proteome that significantly changes in transitioning from a pre-receptive to a 
receptive state during the endometrial secretory phase.  

4. Endometrial tissue and cell-specific mRNA and protein expression may not 
correlate to a high degree, as evidenced by ENPP3 and STC1. ENPP3 gene is 
transcribed in all cells of the endometrium, but its protein is expressed only in 
the apical glandular epithelium. STC1 tissue mRNA expression throughout the 
menstrual cycle is more variable than its protein levels in uterine fluid. 

5. Protein signature consisting of 21 receptivity-specific uterine fluid proteins 
suggests alteration of the window of implantation in women with recurrent 
implantation failure of unknown origin. A four-protein panel consisting of 
PGR+NNMT+SLC26A2+LCN2 enables high accuracy for endometrial 
receptivity detection with a specificity and sensitivity of 91.7%. The same 
panel discriminates RIF mid-secretory samples from non-RIF samples with a 
sensitivity and specificity of 96.6% and 91.7%, respectively. 
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8. SUMMARY IN ESTONIAN 

Inimese endomeetriumi normaalne ja patoloogiline profiil 
proteoomika vaatevinklist 

DNA ja RNA sekveneerimisel põhinevad oomika-meetodid on märkimisväärselt 
panustanud reproduktiivmeditsiini arengusse, aidates selgitada haiguste põhjus-
likke tagamaid ning võimaldanud uusi viise nende haiguste diagnoosimiseks. 
Mass-spektromeetria (MS) tehnoloogiatel põhineva proteoomika panus on 
genoomika ja transkriptoomika kõrval olnud mõnevõrra tagasihoidlikum ning 
seda peamiselt valkude mitmekesisusega seotud tehniliste raskuste tõttu. Siiski 
on pärast viimase kümnendi MS-proteoomika progressiivset arengut raku-
proteoomide terviklik määramine lõpuks teostatav. Valkude kvantitatiivne 
määramine ja iseloomustamine on oluline, kuivõrd proteoom on genoomi pea-
mine funktsionaalne väljund, pealegi on näidatud, et transkriptide tase peegeldab 
valkude tegelikku ekspressiooni ainult osaliselt. Kaasaegse MS-proteoomika 
laialdasem rakendamine võimaldaks leida uusi lahendusi ka mitmetele reproduk-
tiivmeditsiiniga seotud probleemidele, nagu haiguste molekulaarsete mehha-
nismide väljaselgitamine ja kehavälise viljastamise efektiivsuse tõstmine. 

Reproduktiivmeditsiinis on jätkuvalt oluliseks teemaks endometrioosi tekke-
põhjused. Endometrioos on sagedalt (~5–10% viljakas eas naisi) esinev güneko-
loogiline haigus, millega kaasneb emakaõõne limaskesta ehk endomeetriumi 
rakkude levik ja ellujäämine väljaspool emakat. Haigusega kaasnevad sageli 
krooniline valu, viljatus ja meeleoluhäireid, mis toovad kaasa patsientide elu-
kvaliteedi märkimisväärse languse.. Endometrioosi täpne diagnoos määratakse 
laparoskoopilise operatsiooniga, mis omab kirurgilisest protseduurist lähtuvaid 
ohte ja on tervishoiusektorile kulukas. Kuna endometrioosi sümptomid kattuvad 
mitmete teiste haigustega ja siiani puuduvad diagnostikaks mitte-invasiivsed 
biomarkerid, võib diagnoosini jõudmine aega võtta aastaid pärast esimeste kae-
buste tekkimist. Seetõttu võib endometrioosi kolderakkude ja patsientide vere-
proteoomide uurimine anda uusi vihjeid haiguse patogeneesi kohta ning välja 
pakkuda perspektiivseid biomarkereid endometrioosi diagnoosimiseks. 

Kehaväline viljastamine ehk IVF on üha sagedamini teostatav protseduur ja 
seda eelkõige aina hilisemasse ikka nihkunud pereplaneerimise tõttu. IVF kui 
meditsiiniline protseduur on aga madala efektiivsusega, kuna ainult ~30% protse-
duuri läbinud naistest rasestub. Üheks sagedaseks põhjuseks on siiratud embrüote 
ebaõnnestunud implantatsioon, mis osade naiste korral osutub korduvaks ja 
otseselt mitteseletatavaks probleemiks. Seetõttu arvatakse, et neil IVF patsien-
tidel võib esineda häireid endomeetriumi retseptiivsuse või loomuliku arenguga. 
Emakaõõne sekreedist retseptiivsusega seotud valguliste mustrite määramine 
võimaldaks efektiivsemalt tuvastada aega, millal konkreetsele patsiendile IVF 
embrüot siirata või tuvastada, kas protseduur on üldse edukalt teostatav. Taoline 
lähenemine vähendaks aja- ja materiaalset kulu, mis korduvalt ebaõnnestuvate 
protseduuridega paratamatult kaasneb. 
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Käesoleva väitekirja üheks eesmärgiks oli rakendada kaasaegse proteoomika 
meetodeid endometrioosipatsientide endomeetriumi ja kõhuõõne kollete rakkude 
uurimiseks ning vereplasmast haigusele spetsiifiliste markerite tuvastamiseks. 
Teine osa tööst käsitleb emakasekreedi proteoomikat, mille käigus uuriti, kas 
sekreedivalgud sobivad endomeetriumi retseptiivsuse vähe-invasiivseks määra-
miseks ja retseptiivsushäirete tuvastamiseks. 
 
 
Uurimistöö täpsemad eesmärgid olid: 
• Võrrelda endometrioosipatsientide kõhuõõne kolletest ja eutoopilisest endo-

meetriumist eraldatud stroomarakkude valgulisi profiile ja kõrvutada neid 
tervete naiste omaga, et tuvastada kolderakkudes toimunud patogeneetilisi 
protsesse. 

• Tuvastada uusi potentsiaalseid endometrioosi-spetsiifilisi markereid vere-
plasma valkude seast. 

• Iseloomustada endomeetriumi sekretoorse faasi sekreedi valgulist komplekti 
ja tuvastada sekreedi koostise muutused endomeetriumi üleminekul eelretsep-
tiivsest retseptiivsesse faasi. 

• Määrata endomeetriumi koe ja sekreedi geeniekspressiooni omavaheline 
kattuvus. 

• Hinnata emakasekreedi valgupaneeli sensitiivsust ja spetsiifilisust endomeet-
riumi retseptiivsuse määramiseks ja selle häirete tuvastamiseks. 

 
 
Materjalid ja meetodid: 
Endometrioosi stroomarakkude proteoomika uuringuteks värvati laparoskoopi-
lisele kirurgiale suunatud naisi, kellel diagnoositi endometrioos ning kellelt koguti 
endomeetriumi (n=5) ja kõhuõõne kollete (n=6) biopsiad. Kontrollideks värvati 
terveid ja viljakaid naisi (n=5). Biopsiatest eraldatud stroomarakke kultiveeriti  
3–5 passaaži, paralleelselt valmistati SILAC aminohapetega valmistatud standard. 
Rakuproovidest eraldati valgud ning proovid segati kokku standardi valkudega, 
millele järgnes valkude proteolüüs trüpsiiniga. Saadud peptiidiproovid analüüsiti 
vedelikkromatograafia-tandem-massispektromeetria (LC/MS/MS) meetodiga 
ning valkude identifitseerimine ja kvantiteerimine teostati MaxQuant tarkvaraga. 
Statistiliseks võrdlemiseks kasutati ANOVA (valepositiivsete määr <0,05 pärast 
mitmese testimise korrektsiooni) ja Tukey-Kramer analüüsi (p<0,05). Oluliselt 
muutuvaid valke hinnati KEGG ja GO terminite rikastusanalüüsiga, kasutades 
selleks tarkvarakeskonda DAVID. Tulemuste valideerimiseks kasutati qRT-PCR 
meetodit ja respiromeetriat, võrreldes oksüdatiivse hingamise erinevusi eutoopi-
liste ja ektoopiliste rakkude vahel. Endometrioosi-spetsiifiliste markerite uuri-
miseks vereplasmast kasutati vereproove patsientidelt (n=119) ja kontrollidelt 
(n=53). Kontrollgrupi moodustasid naised, kes olid suunatud laparoskoopiale 
endometrioosile viitavate sümptomite tõttu, kuid kellel endometrioosi ei tuvas-
tatud. Mõlema grupi proovidest moodustati segud (endometrioosi segusid n=24, 
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kontrolle n=12), seejärel eemaldati proovidest plasma 14 kõige kõrgema kont-
sentratsiooniga valku, kasutades selleks MARS-14 immuunoafiinsuskolonni. 
Järelejäänud valgud sadestati ja trüpsinolüüsiti. Peptiide fraktsioneeriti aluselise 
pööratud faasi kromatograafiaga ja tuvastati LC/MS/MS meetodil. Tulemusi 
analüüsiti MaxQuanti Perseus tarkvaraga. 

Emakasekreedist diagnostilise valgupaneeli tuvastamiseks teostati esmalt 
proteoomika avastamisfaasi uuring, kasutades selleks tervetelt viljakatelt naistelt 
(n=6) pärit varajase ja kesksekretoorse faasi endomeetriumi sekreete. Valgud 
eelfraktsioneeriti SDS-PAGE meetodil kuueks fraktsiooniks ja trüpsinolüüsiti 
geelis peptiidideks. Valkude tuvastamine ja kvantiteerimine viidi läbi LC/MS/MS 
ja MaxQuant analüüsiga. Statistiliseks võrdlemiseks normaliseeriti valguinten-
siivsused ja erinevuse olulisus määrati paaris t-testiga, korrigeerides q-väärtuse 
meetodiga (q<0,05) mitmese testimise suhtes. Sekreedi valkude rakulist lokali-
satsiooni analüüsiti GO-terminite rikastusega. Enimmuutuvate valkude (>5-kordne 
erinevus, n=45) põhjal koostati suunatud MS/MS meetod, mida rakendati uue 
rühma tervete kontrollide (n=12) ja korduva implantatsiooni-häirega (RIF, 
recurrent implantation failure) naiste (n=29) proovide mõõtmiseks. Juhumetsa 
(random forest) analüüsiga hinnati erinevaid 3- ja 4-valgumarkeriga paneele, et 
leida retseptiivsuse määramiseks tõhusaim markerite paneel. 

QRT-PCR analüüsiga määrati endomeetriumi koes ja erinevates rakutüüpides 
STC1 ja ENPP3 geeniekspressioon. ENPP3 valgutaset ja rakuspetsiifilist 
ekspressiooni mõõdeti erinevates menstruaaltsükli faasides immunohistokeemia 
meetoditega. STC1 rakuspetsiifiline valguekspressioon määrati kesksekretoorse 
endomeetriumi koeslaididelt. 
 
 
Uurimistöö peamised tulemused ja järeldused: 
LC/MS/MS analüüsi tulemus näitas, et endometrioosi patsientide ektoopilised 
stroomarakud on proteoomi tasemel eutoopilistest rakkudest oluliselt enam 
erinevad kui haigete ja tervete eutoopilised rakud omavahel (vastavalt ~1500 vs 
~100 erineva ekspressiooniga valku). Ektoopilistes rakkudes on ulatuslikud 
ekspressioonilised muutused valkudes, mis seotud anaeroobse ja oksüdatiivse 
metabolismiga. Need muutused sarnanevad vähirakkudes kirjeldatud pseudo-
hüpoksia-laadse Warburgi efektiga. Warburgi efekti korral kasutavad rakud 
normoksia tingimustes rohkem glükolüütilist ja vähem oksüdatiivset Metabo-
lismi. Taoline kohastumus aitab suurendada biosünteetiliste prekursorite tootmist 
ning põhjustab fenotüüpset dediferentseerumist ja immuunseire nõrgenemist. 
Ektoopilistes rakkudes täheldasime samuti ligikaudu 2× kõrgemat HIF1A 
(hüpoksia vastuse induktor) mRNA taset ja vähenenud hapnikutarbimist eutoopi-
liste rakkudega võrreldes. Need tulemused kinnitavad, et ektoopilistes rakkudes 
on sõltumata hapniku olemasolust rakuline hüpoksia vastus suurenenud. 

Lisaks Warburgi efektile täheldasime ektoopilistes rakkudes oluliselt kõrgemat 
rakkude liikumise, adhesiooni ja invasiivsusega seotud valkude ekspressiooni. 
Osa nendest valkudest on kõrgenenud tasemega ka endometrioosipatsientide 
eutoopilistes stroomarakkudes, mis viitab sellele, et endometrioosi korral leidub 
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juba endomeetriumis muutunud omadustega rakke. Kolderakkudes on tugevalt 
ülesreguleeritud sellised valgud nagu SERPINE2 (+3000%, p=5×10–7) ja NNMT 
(+900%, p=0,001). SERPINE2 ja NNMT täidavad eutoopilises endomeetriumis 
olulist füsioloogilist funktsiooni, osaledes embrüo implantatsioonis ja endo-
meetriumi retseptiivsuses. Kuidas need valgud osalevad endometrioosi pato-
geneesis on veel ebaselge, kuid tuumorites on nende kõrgenenud taset seostatud 
koeinvasiivsusega. 

Eelnevate uuringutes on endometrioosi rakkudele omistatud kõrgenenud 
apoptoosiresistentsust ja aktiivsemat proliferatsiooni. Meie proteoomika andmed 
näitavad samuti, et kolderakkudes on mitmed pro- (kaspaas-1/7, SMAD4, BAX 
jt) ja anti-apoptootilised (HRAS, CTNNA1, CTNNA2, CTNNB1) valgud vas-
tavalt alla- või ülesreguleeritud, mis toetab varasemaid täheldusi. 

Endometrioosi patsientide veremarkerite uuringuks kasutasime enimesindatud 
plasmavalkude eemaldamisel põhinevat meetodit ja LC/MS/MS analüüsi, mis 
võimaldas meil tuvastada kokku 964 valku. Paraku statistiline võrdlus ei näida-
nud olulisi erinevusi patsientide ja kontrollide vereplasma valguprofiilide vahel. 
Üheks võimalikuks põhjuseks võib olla haiguse-spetsiifiliste valkude väga madal 
esindatus veres, mis jääb allapoole LC/MS/MS määramispiiri. Ka teised hilju-
tised endometrioosi vereplasma uuringud ei ole näidanud kliiniliselt kasutatavate 
haiguse-spetsiifiliste markerite leidumist. 

Meie poolt teostatud emakasekreedi analüüsid näitavad, et sekreedivalgud 
(>3000 erinevat valku) moodustavad kompleksse ja dünaamilise proteoomi, mis 
muutub märkimisväärselt (n=367 valku, q<0,05) endomeetriumi üleminekul eel-
retseptiivsest staadiumist retseptiivsesse. Retseptiivsusega seotud valkude eks-
pressioonidünaamika kattuvuse hindamiseks sekreedi ja koe vahel uuriti ENPP3 
ja STC1 geeni- ja valguekspressiooni endomeetriumirakkudes. ENPP3 mRNA 
ekspressioon tuvastati nii endomeetriumi strooma- kui ka epiteelirakkudes, kuid 
valk oli tuvastatav ainult näärmeepiteeli apikaalses osas ja emakasekreedis. 
Näärmeepiteeli ENPP3 valguekspressiooni muutumine menstruaaltsükli jooksul 
korreleerus emasekreedi LC/MS/MS mõõtmistega. STC1 valguekspressioon oli 
tuvastatav kõikides endomeetriumi rakutüüpides ja -sekreedis, kuid STC1 mRNA 
tase koes ei korreleerunud märkimisväärselt sekreedi valgutasemega. Need tule-
mused näitavad, et rakkude, koe ja sekreedi mRNA-valk tasemed kattuvad 
piiratud määral ning ei ole alati ennustatavad. 

Emakasekreedi proteoomika tulemusi valideerisime suunatud MS/MS meeto-
diga, kasutades uusi kontrollproove ja kaasates mõõtmistesse ka RIF-patsiente. 
Ühtekokku valideerus 38 valku 45-st valitud markerist (p<0,05) ning 21 markeri 
korral täheldasime RIF-patsientide kesk-sekretoorse faasi proovides kontrollide 
varajase sekretoorse faasiga võrdväärseid tasemeid. Need tulemused viitavad 
potentsiaalsele nihkele RIF-patsientide endomeetriumi retseptiivsuse arengus, 
mis võib seletada, miks nendel naistel on embrüosiirdamised korduvalt ebaõnnes-
tunud. Lisaks sellele tuvastasime neljast valgust koosneva paneeli (PGR+ 
NNMT+SLC26A2+LCN2), mis demonstreeris kõrget spetsiifilisust ja sensitiiv-
sust nii endomeetriumi retseptiivsusakna (mõlemad 91,7%) kui ka RIF-staatuse 
(vastavalt 96,6% ja 91,7%) määramisel. 



86 

Kokkuvõtteks näitasime antud tööga, et kaasaegsete proteoomika meetodite 
rakendamine võimaldab saada uusi ja täpsemaid teadmisi molekulaarsete muutuste 
kohta, mis leiavad aset patogeneetiliste protsesside korral nagu endometrioos ja 
viljatus. Samuti võimaldab MS-proteoomika tuvastada perspektiivikaid bio-
markereid, kuid väga keerulise maatriksiga proovide korral (vereplasma) on vaja 
veel edasisi tehnoloogilisi arenguid, et tõsta meetodite tundlikkust veelgi. Lisaks 
sellele eeldavad antud tööst saadud laiapõhjalised tulemused jätku-uuringuid ja 
optimeerimist enne nende potentsiaalset rakendamist kliinilises praktikas. 
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