
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Technology
Robotics and Computer Engineering

Gaurav Garg

Digital Twin for Industrial Robotics

Master’s Thesis (30 ECTS)

Supervisor(s): Prof G. Anbarjafari

Dr. Vladimir Kuts

Tartu 2021

Digital Twin for Industrial Robotics

Abstract:
This thesis aims to develop a Digital Twin model for robot programming that incorporates
Virtual Reality (VR). The digital twin is a concept of creating a digital replica of a physi-
cal object (such as a robot), which is similar to establishing a model simulation along
with some additional functionalities. Simulation software, such as robot operating system
(ROS) or other industrial-owned simulation platforms, simulates a robot operation and
sends the details to the robot controller. In contrast to this, the Digital Twin model estab-
lishes a two-way communication channel between the digital and the physical models.
In this thesis, the proposed Digital Twin model can help in online/remote programming
of a robotic cell with high accuracy by creating a 3D digital environment of a real-world
physical setup, which is similar to watching a movie with 3D glasses. To create a Digital
Twin model, the gaming platform is used that comes with specialized plugins for virtual
and augmented reality devices. One of the main challenges in any robotic system is
writing a code for a defined path and modifying it for future requirements. Programming
robot via this traditional approach requires a lot of time and often disturbs the running
process. Whereas, in the case of a Digital Twin model, the program can be adjusted or
regenerated without disturbing the execution cycle of a physical robot.

In this work, I have considered the FANUC robot model M-10iA/12 and created
a 3D virtual environment using a gaming engine (Unity), that describes a complete
Digital Twin model. After establishing a Digital Twin, we can see the motion replica
in a physical robot with benefits of VR environment, where we can see more precise
details of the trajectory w.r.t to the working components. The simulation analysis gives
the latency of approximately 40ms (milliseconds) with a mean error of joint movements
is around 0.28°. Based on the results, it can be concluded that the model developed under
this thesis is suitable for industrial applications.

Keywords:
Digital Twin, FANUC, Robot, KAREL language, Unity, Blender, Virtual Reality, Tool
Center Point (TCP)

CERCS:
T120 System Technology, Computer Technology, T125 Automation,robotics, control
technology, T130 Production Technology

2

Digitaalne kaksik tööstusrobotiks
Lühikokkuvõte:

Käesoleva lõputöö eesmärk on arendada robotite programmeerimiseks virtuaalreaal-
sust (VR) hõlmav digitaalse kaksiku (ingl Digital Twin) mudel. Digitaalne kaksik on
mõiste, mis tähistab füüsilise objekti (nagu näiteks roboti) digitaalse koopia loomist,
sarnanedes mudelipõhisele simulatsioonile koos mõningate lisafunktsionaalsustega. Si-
mulatsioonitarkvarad nagu näiteks Robot Operating System (ROS) või muud tööstuslikud
simulatsiooniplatvormid simuleerivad roboti tööd ning saadavad detailsed andmed roboti
kontrollerile. Seevastu digitaalse kaksiku mudeli puhul luuakse kahe-suunaline suhtluska-
nal digitaalse ja füüsilise mudeli vahel. Selles lõputöös välja pakutud digitaalse kaksiku
mudel võimaldab üle võrgu robotraku programmeerimist kõrge täpsusega, luues selleks
3D digitaalse keskkonna päris-elu füüsilisest keskkonnast, sarnanedes 3D prillidega filmi
vaatamisele. Digitaalse kaksiku mudeli loomiseks kasutati mänguarendusplatvormi, mis
hõlmas spetsiaalseid pistikprogramme virtuaal- ja täiendreaalsusseadmete jaoks. Üks
põhilisi väljakutseid robotsüsteemides on lähtekoodi kirjutamine etteantud trajektoori
jaoks ning selle modifitseerimine tuleviku nõuete täitmiseks. Sellisel traditsioonilisel
moel programmeerimine on ajakuluks ning tekitab katkestusi protsessi töös. Digitaalse
kaksiku mudeli puhul on aga võimalik programmi muuta või taasluua ilma füüsilise
roboti käitustsüklit häirimata.

Töös kasutasin FANUC roboti mudelit M-10iA/12 ning Unity mängumootoriga lõin
3D virtuaalse keskkonna, mis kirjeldab terviklikku digitaalse kaksiku mudelit. Peale digi-
taalse kaksiku loomist saame näha liikumise replitseerimist füüsilisel robotil, sealjuures
lisanduvad VR keskkonna eelised, kus saame näha liikuvate komponentide trajektoo-
ride detailsemaid andmeid. Simulatsiooni analüüs näitas, et latentsusaeg on ligikaudu
40 millisekundit ning keskmine liigeste hälve on 0.28°. Tulemustest võib järeldada, et
dissertatsiooni raames välja töötatud mudel on kasutatav tööstuslikes rakendustes.

Võtmesõnad:
Digitaalne kaksik, FANUC, robot, KAREL-keel, Unity, Blender, virtuaalne reaalsus,
tööriista keskpunkt (TCP)

CERCS:
T120 System Technology, Computer Technology, T125 Automation,robotics, control
technology, T130 Production Technology

3

Contents
Glossary 8

1 Introduction 9
1.1 Thesis Highlights . 10
1.2 Contribution . 10
1.3 Thesis Organization . 10

2 Related Work 12
2.1 Digital Twin Model . 12

2.1.1 Digital Twin and Virtual Reality for Multi-Robot Manufacturing
Cell Commissioning . 12

2.1.2 Knowledge Driven Digital Twin Manufacturing Cell 13
2.2 Virtual Reality (VR) . 14

3 Model Description 16
3.1 Robot . 16
3.2 VR Controller . 16

4 Creation of Digital Model 18
4.1 3D Model Rigging . 18
4.2 Import 3D model in Unity . 20

4.2.1 Defining Tool Center Point (TCP) 21
4.3 Inverse Kinematic (IK) for Digital Model 22

4.3.1 Unity Coordinate System . 23
4.3.2 Tranform Matrix between Unity and Physical Robot 25

4.4 Communication Channel . 26
4.4.1 Source Code . 27

5 User Interface (UI) 28
5.1 Virtual Reality (VR) Interface . 28

5.1.1 Setting VR Environemnt in Unity 28
5.2 Physical Device Interface via Teach Pendent 29

6 Results and Analysis 33
6.1 Joint Movement Analysis . 33

7 Discussion 37
7.1 Generalized Solution For FANUC Robots 37
7.2 Use Case Scenarios . 37

7.2.1 Trajectory Planning For Complex Edges 37

4

7.2.2 Program Creation In Space Constrained Surroundings 38
7.2.3 Training robotic operations via Machine learning (ML) 38
7.2.4 Predictive Maintenance & Error Detection 39

8 Conclusion 40

Acknowledgement 42

References 46

Licence 47

5

List of Figures
1 Multi-Robot Manufacturing Cell . 13
2 Knowledge-drive Robot Simulation model 14
3 Medical Application with digital twin 15
4 M-10iA/12 Robot Specification . 16
5 3D Model in Blender Software . 19
6 Blender Rigging . 20
7 Pivot Point Creation . 21
8 Robot Setup and its environment . 22
9 Tool Center Point . 23
10 Inverse Kinematic Packages . 24
11 Unity Coordinates System . 25
12 Coordinates System . 25
13 Communication Setup . 27
14 Controlling Twin model via Virtual reality controller 29
15 Control cycle between Digital and Physical model 30
16 Robot Status Data . 31
17 Online/Offline Mode . 31
18 Robot Trajectory (axis values in mm) 33
19 Range of Movement of Individual Joints 34
20 Difference Between Commanded (IK) and Executed (FK) Joint Angles 34
21 Joint Angle movement for a random trajectory 35
22 Difference Between Commanded (IK) and Executed (FK) Joint Angles 35
23 VR Environment for programming an Engine component 38
24 Robotic Operation in constrained space 39

6

List of Tables
1 Glossary . 8
2 VR Comparison with other Softwares. 13
3 HTC Vive Specifications . 17

7

Glossary

Abbreviation/Word Meaning
ROS Robot Operating System
VR Virtual Reality
AR Augmented Reality
MR Mixed Reality
w.r.t. with respect to
ms milliseconds
AI Artificial Intelligence
fbx filebox 3D file format
dae collado file format
UI User Interface
KDTMC Knowledge-driven digital twin manufacturing cell
RMS Root Mean Square
KMs Kilometers
Kg Kilograms
HMD Head-Mounted Device
FOV Field of View
SDK software development kit
STL standard triangular language
AR Augmented Reality
MR Mixed Reality
TCP Tool Centre Point
IK Inverse Kinematic
FK Forward Kinematic
UOP User Operator Panel
Unity Gaming Engine
Roboguide FANUC owned robot simulation software, it supports only

FANUC robots simulation
KAREL Programming languge based on PASCAL

Table 1. Glossary

8

1 Introduction
Game Engines are proven to be excellent in terms of graphics displays [1]. The level
of details that can be shown or designed on gaming platforms is one of the missing
components from existing industrial simulation software present in the market. Enhanced
graphics is one of the key features of game engines. In addition to their enhanced
graphics, these game engines provide an excellent environment for generating synthetic
data. For example, gathering data for an artificial intelligence (AI) model for pick
and place applications under different illumination intensities is a time-consuming and
challenging task in a physical environment. However, on a gaming engine, all it takes is
an understanding of ray-light interaction, and a large amount of training data for the AI
model can be generated in a short period of time.

On the other hand, nearly all industrial simulation software is based on an offline
simulation, where we set up the simulation environment and generate a program, which
can be transferred to a physical system. However, the programs developed through
offline simulation environments lack accuracy, which results in time-consuming rework
overhead on physical models. To overcome this limitation, the digital twin comes with
the Online Simulation, allowing one to connect with the robot and move it along the
desired path on the simulation screen and actual model. However, one of the challenging
tasks of these digital twin models is to create and connect them with the actual model, as
it requires a well-defined digital 3D structure. Generally, for industrial purposes, CAD
software for 3d modeling is used. However, at present, CAD software does not support
file formats such as filmbox (.fbx), collado (.dae) that is required for gaming engines.
This requires additional 3D modeling software for rendering and converting the models
in suitable formats.

In this thesis, I have worked on creating a digital setup of a physical robot. The
developed digital model has the capability to generate the program for the actual robot
setup. One can argue that there are already many simulation software present in the
industry that can help to create a program, but it comes with an additional cost or
is limited to a single robot type. To overcome these limitations, gaming engines for
industrial applications have been utilized, which comes with prepacked packages for
integration of Virtual/Augmented and mixed reality devices from different manufacturers
that are missing in the available simulation software.

Robot Operating System (ROS) is one of the powerful open-source simulation
platforms. However, it is missing the components of actual deployment or for production-
ready solutions. Due to this, ROS2 is being introduced, which explicitly considers the
development of a real-world production environment. The main difference between ROS
and ROS2 is the internal architecture[2], but the simulation tools/environment like a
gazebo, rviz remains the same. However, integrating the packages with other simulation
tools such as Unity can solve today’s demand for high precision simulations. The unity
platform has the capability to handle high-resolution components; thus, training the

9

robotic system inside Unity environment along with some physics and motion controlling
packages from ROS like MoveIt, mapping makes a complete solution.

1.1 Thesis Highlights
In this thesis, I have established a Digital Twin setup for an industrial robot (FANUC)
and covers the following:

1. Digital Twin model: Developed a digital 3D model for gaming engine (Unity)
that generates a program for the physical robot. In particular, I have used FANUC
robot model M-10iA/12 and tested the program on the physical robot (Section 4).

2. Communication Setup : Established a communication channel between Digital
and Physical robot for exchanging required data such as joint angles and actual
robot status signals (Section 4.4).

3. Virtual reality Interface : Created a virtual reality environment on the Unity
platform. For visualizing the VR environment, I have used the HTC VIVE VR
device (Section 5.1).

1.2 Contribution
The contribution of this thesis work is three-fold:

1. The key contribution of this thesis is that I have developed a Digital Twin model of
an industrial robot, which helps in controlling a physical robot in synchronization
with a digital model for a desired robot trajectory which is usually done either
offline or trajectory points are stored in robot memory via real-time communication
setup [3, 4, 5].

2. Next, during the survey, participants found that the created virtual environment
is interactive and easy to use for robotic operations. On average, participants
rated three on a scale of 0-10, where 0 means very easy, and 10 represents highly
difficult.

3. Finally, while previous research [6, 7] has worked on robots that support the same
environment as the gaming engine, here communication across different platforms
(Dot Net to KAREL) is developed.

1.3 Thesis Organization
The rest of the thesis is as follows. Next, we discuss the related work. Then the hardware
description of the model is explained in Section 3. Section 4 presents the digital twin

10

model creation and its user interface (UI) is discussed in Section 5. The results and
analysis of the experimentation are projected in Section 6. In Section 7, I have discussed
the generalization of the developed solution, and some use case scenarios. Finally,
conclusion with a discussion of future directions is covered in Section 8.

11

2 Related Work
For the last two decades, researchers have been working on the development of digital
twin models. However, it has recently attracted a lot of attention, and work is being
done in a variety of research industries ranging from medical to industrial manufacturing
because, unlike other simulation environments, it provides two-way communication
between physical and digital robot model. In this section, we discuss relevant literature
with respect to digital twin models, which revolve around the intersection of digital
twin and virtual reality for multi-robot manufacturing. We broadly divide the related
works into the following: (1) Digital Twin model development and (2) Digital Twin
Applications.

2.1 Digital Twin Model
Digital Twin maps a physical object or process with digital environment that enables sim-
ulation, prediction and optimization [5, 8] and helps in product designing and simulating
manufacturing systems [9, 10, 11] and processes [12].

Robotic applications [13], are the specific area of digital twin domain. Over the past
few years many researchers are being conducted to utilize the capability of digital twin
for various robotic tasks [7, 14, 15, 16], in issues of human-robot collaboration [17], or
in issues related to predictive maintenance [18]. Industry 4.0 [19, 20] is highly used with
robotics to generate a flexible solution with an ability to adapt and reconfigure systems.
Additional to this, it makes a system intractable with its environment through extensive
sensory systems.

2.1.1 Digital Twin and Virtual Reality for Multi-Robot Manufacturing Cell Com-
missioning

The research group from the University of Oviedo and the Idonial center of Technology
has created a digital twin of a manufacturing cell [21]. The cell consists of two robots, a
conveyor belt coupled with HTC Vive via control system as shown in Figure 1a. The
digital environment, which is designed in the Unity Engine platform, is a replication
of the physical setup as shown in Figure 1b. The simulation environment is designed
by capturing 3D cloud data of the actual environment and parsing it through blender
software. The task of the robotic cell is to detect the missing component on a tray, which
is placed by an operator, and complete it. The training and testing are accomplished in a
digital environment. Here the task of filling the tray is done in a virtual environment via
an HTC Vive controller.

The effectiveness of Digital twin-based virtual reality is compared with simulation
tools from robot manufacturers and commercial simulation software with virtual reality
integration, shown in Table 2[21]. Comparison is made on various parameters such

12

(a) Digital Twin Design Approach
(b) Simulation Environment

Figure 1. Multi-Robot Manufacturing Cell

Robot Manufacturers Commercial Sim. DT Based on VR
Tools with VR

Low investment 2 1 3
Multi-robot 1 3 3
Human-robot collab. 1 1 3
Immersive 1 3 3
Customization 1 2 3
Training 1 2 3
Versatility 1 2 3

Table 2. VR Comparison with other Softwares.

as acquisition costs (labeled as Low investment in the table), robots from different
manufacturers (Multi-robot), human-robot collaboration (Human-robot collab), virtual
reality (Immersive), environment customization (Customization), usability for training
(Training), and versatility to include new functionalities (Versatility). The scale is divided
from 1–3, where “1” indicates the worst or not supported, and ”3” means the best.

2.1.2 Knowledge Driven Digital Twin Manufacturing Cell

A digital twin is not limited to the creation of a digital model and perceiving online
control. Research is moving towards the creation of intelligent and resilient systems.
The study shows an implementation of a knowledge-driven digital twin manufacturing
cell (KDTMC) [22]. KDTMC approach targets a smart manufacturing system that
supports autonomous manufacturing by integrating perception, simulation, prediction,
optimization, and controlling strategy.

Figure 2 [22], shows a digital twin setup for KDTMC, here a communication channel
is established to collect data from the physical robot and store it to optimize the path

13

(a) Robot Model (b) Control Bus (c) Digital Model

(d) Robot Joints Current RMS and Torque Value Plot

Figure 2. Knowledge-drive Robot Simulation model

based on the torque and root mean square (RMS) of the current values of individual robot
arm joints. Figure 2a shows an actual robot, Figure 2b shows control bus setup along
with communication established between actual and digital model, Figure 2c explains
the Digital model of robot, and Figure 2d indicates the root mean square (RMS) value
of current at each joint angle along with torque values for a particular trajectory. This
data can be used to optimize the planning path algorithm, predictive maintenance, or
calculation of life expectancy on the basis of running conditions [23].

2.2 Virtual Reality (VR)
Virtual Reality (VR) is a major component of the Digital Twin setup. In a virtual
environment, the feedback from the physical system is captured so that the user gets a
sense of immersion while operating in a virtual setup [24]. VR has found its application
in extensive sectors such as flight simulator [25] and surgical simulators [26]. With the
help of VR setup, the workforce such as pilots, doctors can be pre-trained before using
the actual machines and setup.

Medical sector application: In [27], the researchers utilize the digital twin of the

14

Universal robot for remote surgery. Figure 3 shows the setup for experimentation of
remote surgery using digital twin via VR interface [27]. A distance of approximately
10KMs separated the physical robot and digital twin. The communication between
physical and digital setup was established over 4G network. The time lapse or delay
reported for the commanded movement was in the range of 50ms-150ms.

(a) Actual Remote Surgery Setup (b) Digital Twin for Remote Surgery

Figure 3. Medical Application with digital twin

In this thesis, I control a physical robot via a digital model that operates in the
virtual environment. There are certain robot status signals that are being captured and
are necessary for any twin model, which are not mentioned in the existing literature.
Additionally, this work has elaborated more on the controlling algorithms used in the
physical and digital setup, compares the joint movement, and visualizes the errors
between guided and executed joint angles.

15

3 Model Description
Here, experimental setup is explained that includes two components. First component is
a Robot. In this experimentation, I have used FANUC robot. Second main component of
this setup is the VR controller, for which HTC Vive VR device has been used.

3.1 Robot
In this work, the FANUC robot model M-10iA/12 is used for experimentation. It is
a hollow arm design that provides space for cable integration inside robot arm links
rather than outside [28]. Such design protects the cables from wear and tear, making
maintenance more manageable and cuts down maintenance costs. Another benefit of
the hollow arm is the high productivity and shortened cycle times due to the rigid arm
and servo motors, by allowing increasing speed during operation. The specifications
and other information related to robot joint speed and robot motion range are shown in
Figure 4 [28].

Figure 4. M-10iA/12 Robot Specification

Figure 4 column-1 shows the robot specifications like the number of axes is 6, the
mass of the robot body being 130Kg, its lifting capacity is 12Kg, etc. The lifting capacity
is a sum of (end effector/gripper weight+ component weight). The end effector/gripper is
an attachment to the 6th axes of a robot, and its design depends on the type of application
a robot has to handle. And the component weight is the object weight that the robot
needs to lift using its end-effector/gripper. Individual joints speed limits in mm/s and
rotation limits in degree are also defined in Figure 4 column-2 and 3 respectively.

3.2 VR Controller
The next main component of this experimental setup is a VR controller. In particular, we
are utilizing the HTC Vive VR device [29], due to its availability in the lab. However,

16

any VR model can be used for a virtual environment projection. The two main units of
any VR device are:

1. A central Head-Mounted Device (HMD) unit equipped with a camera: This
unit helps in immersing a digital view into the real world. It acts as an eye in a
virtual environment and helps to visualize the virtual scenes.

2. Handheld controllers: To perform any action in VR world, controllers act as a
human hand. The actions defined in SDK of vive are defined similarly to our daily
routine work with human hands such as grab, hold, button push, etc.

Display refresh rate 90HZ
Resolution each eye 1080x1200
Field of View (FOV) 110°

HMD refresh rate 225HZ
Controller Pose refresh rate 250HZ

Table 3. HTC Vive Specifications

Table 3 shows the specifications of the VR device [30]. The "Field of View (FOV)"
defines the range covered with cameras that are mounted in HMD. In this device, single
camera is embedded in HMD. However, in the newer version, two cameras are used to
increase the FOV. HMD refresh rate defines the virtual view capturing rate and the "pose
refresh rate" defines the rate of capturing pose actions performed in virtual environment
using handheld controller which is 4 ms (milliseconds). To create a specific actions or
to interact with objects in VR environment, SteamVR is used. SteamVR is an interface
which comes along with its software development kit (SDK) that provides an extensive
library to assign and read controllers actions, such as grabbing components, hitting an
object, teleporting and many other human body actions can be implemented by using
this SDK inside the VR environment [31].

17

4 Creation of Digital Model
In the last section, an introduction to the physical/hardware components (robot and VR
controller) required for creating the digital twin model is provided. I also mentioned the
specifications of these components in detail. In this section, a list of software components
is defined that can be used for digital 3D model creation along with a communication
channel set up between a digital model and the physical robot that will be used to
exchange the required data. In this section, I will start by explaining the procedure of
creating a digital model along with the coding part for establishing the communication
pathway.

To create an operational digital model in the Unity platform, some details have to be
added to the CAD model, such as rigging structure, pivot point, and child-parent relation
between links. Tools or software used for creating digital model are:

1. SolidWorks (2019): SolidWorks is a 3D modeling software used widely in the
industry for creating drawings of machines and components. Most of the industrial
simulation software supports SolidWorks file formats such as STL, AMF, SAT,
STEP, and many more. In this experimentation, the STL format is considered as
an output to get highly detailed model. STL or standard triangular language is a
file format supported by many animation character drawing software like Blender,
3D Maya. It represents the model as a combination of triangles and maintains the
edges and curves of a 3D drawing.

2. Blender (version:2.92.0): Blender is an open-source animation character mod-
eling software. There are other similar software, but I am considering this for
conversion from the 3D CAD model to 3D animation-ready model as I have some
experience in handling blender tools.

3. Unity Game Engine (version:2021.1.1f1): It provides a vast amount of packages
and assets to add animation to 3D animation models which are created in Blender
and integrate VR (Virtual Reality)/AR (Augmented Reality)/MR (Mixed Reality)
interfaces. Another widely used gaming engine is Unreal Engine which is based
on C++. Due to my experience in C#, I preferred the Unity platform.

4.1 3D Model Rigging
The first step towards creating an animation model or making it movable in a game
engine is rigging. Rigging is a process of adding bones to a 3D CAD model, just like a
human body [32]. But before adding the bones to a model, a relationship between joints
and links has to be defined. Like, if I rotate my waist, do I want to turn my neck along
with it or not. This characteristic is added by establishing the parent-child relationship
between links and links.

18

In this experimentation setup, a FANUC Robot model M-10iA/12 is used (already
discussed in Section 3.1). The CAD file of the robot is exported from SolidWorks in stl
format, which is accepted by blender software. In blender software, the Parent-Child
relationship is defined, where the Base is a parent, and consecutive links are the child
to it. Figure 5a shows a 3D model in the blender and all the six-axis/links (Axis-1,
Axis-2, Axis-3, Axis-4, Axis-5, and Axis-6) are marked. In Figure 5a, "Base" is also
marked, which is a parent to all the links. "Axis-1" is a child to "Base" and parent to
"Axis-2," and a similar parent-child relationship exists among other axis/links. This
parent-child relationship is established in blender software. A tree structure of parent-
child relationships among links is shown in Figure 5b. The concept behind establishing
this relationship is to control the movement. For example, if we rotate "Axis-1", then
rest all links from "Axis-2" to "Axis-6" will move along with it, as "Axis-1" is defined as
a parent to "Axis-2" to "Axis-6", but it won’t affect the movement of the Base. However,
if we move Base, the entire model will move along with it.

(a) 3D Model with Axis (b) Parent-Child relation

Figure 5. 3D Model in Blender Software

After establishing the relationship between links, a rigging structure is attached to the
3D model. By following the joints along a model, a rig structure is created that consist
of bones linking to each other at angles specified by joint arrangement in the 3D model.
The rig/bone structure created for the robot CAD model is shown in Figure 6a. Figure 6b
shows the integration of rig model with 3D model. Now, the animation is done on rigged
model and actual links of robot will move along with it.

In addition to the information mentioned above, the pivot point of each link must be

19

(a) Rigged Bone Structure

(b) 3D Rigged Model

Figure 6. Blender Rigging

specified. A pivot point, also known as a joint central point, is a point around which the
motion of a link is defined [33]. Thus, the parent-child relation specifies the movement
of the links, and the pivot point defines the joint movement, forming the complete model.
Finally, the defined model is exported from the blender software in fbx (film box) format.

By default the links are pivoted w.r.t its center of origin of an individual link. This
results in wrong movement as the movements are programmed for this point. So, the
pivot point position is corrected using Blender as shown in Figure 7, for all six joints of
robot arm.

4.2 Import 3D model in Unity
Once the model is exported from blender software in fbx format, it is ready for animation
and scripting inside Unity platform. After importing the model in the Unity platform, I
added some additional components to the robot environment such as floor, robot bench
etc. From simulation perspective, this environment should replicate the actual industrial
setup considering the space around operational component such as bench or mounting
table, walls/fences, etc. The programming accuracy is highly depends on this additional
details of height of robot table, and the height and distance of component with respect to
a robot.

Figure 8a shows an unity environment setup. It also shows a setup of robot with

20

(a) Axis-1 pivot Point (b) Axis-2
pivot Point

(c) Axis-3 pivot Point

(d) Axis-4 pivot
Point

(e) Axis-5 pivot Point (f) Axis-6 pivot Point

Figure 7. Pivot Point Creation

respect to its operating table (component bench). Similar setup is shown in a Figure 8b,
which reflects an actual robotic cell environment.

4.2.1 Defining Tool Center Point (TCP)

The robot model is associated with certain frames of reference in a 3D space such as
World Frame and tool Center frame known as tool center point (TCP) [34]. The robot
movement is defined with respect to its TCP, which is typically located at the center of
the end-effector in most applications. The end-effector is an operational tool attached to
the robot structure and performs a desired task such as grabbing a component, welding or
some other application specified tasks. The end-effector changes as per the application.
In this experimentation, I have considered a welding end-effector and a TCP, which is

21

(a) Unity Environment
(b) Physical Setup

Figure 8. Robot Setup and its environment

defined at the tip of end-effector as shown in Figure 9b.
Additional to this, in some cases a User Frame is defined for components. The

commanded coordinates for the movement of the end effector joint can be either defined
relative to the TCP or user frame. The User frame is a frame attached to the working
area of the component, where components are placed for robotic operations. In this case,
I have tested the robotic movement with respect to its TCP. TCP of the digital model
should be as close as possible to the TCP of the physical model, the closer the value,
the higher the accuracy between them. Figure 9a shows a TCP of Physical robot and 9b
reflects digital model TCP.

Although, TCP is an imaginary point that is defined as per the application and end-
effector design. In this case, since the target is to control and program in the digital model,
I have attached a component in green color shown in 9b for visualization purposes.

4.3 Inverse Kinematic (IK) for Digital Model
Inverse Kinematic is one of the major research fields for industrial applications [35]. With
the advancement in machine learning, researchers are trying to create inverse kinematics
with high accuracy [36]. For any mechanical structure, starting from a 2-link to n-link
robot arm, an algorithm is required to calculate its joint angles to reach a specific point
in 3D space, which is done using IK.

As already discussed in Section 3.1, in this experimentation, I have used a 6-link
robot arm. To calculate its joint angles, I have used BioIK, a part of the Unity package
manager. Starting from the Unity release 2020.3.3f1, it has provided many packages for
solving inverse kinematics. The selection of algorithm depends on the number of links

22

(a) Robot Tool Center Point
(b) Robot Tool Center Point

Figure 9. Tool Center Point

associated with mechanical structure as shown in Figure 10a.
Different solutions or packages from Figure 10a can be added to a single model,

such as "Chain IK Constrained" combined with "Two Bone IK Constrained" to create
a single solution. By combining different packages, we can get joint angle data via
"Chain IK Constrained" with joint movement limitations via "Two Bone IK Constrained",
as described in Figure 4, Column 3, where individual limits are defined for a robot.
However, these Unity packages don’t produce accurate results for industrial applications
and some positions/coordinates in digital 3D space, it violates the joint angle limitations
and results in error/accident in the Physical robot.

BioIK is a more dynamic single solution package, which can be plugged to any model.
Figure 10b shows the parameter settings for a model definition. The main parameters for
this model are velocity and acceleration that may varies for specific robot model. In this
case, I have refereed Figure 4, column 2 (shown in Section 3.1), this shows individual
joint speed in radians per second (rad/s). In this case, I have considered an average of 5
rad/s and it generates a data considering this value for all joints

4.3.1 Unity Coordinate System

In order to control a physical system by capturing data from digital environment, it is
important to understand the data representation system of Unity. There are different
functions in Unity library, to read position and rotation of a component. These functions
are as follows:

23

(a) Standard Unity Packages for IK
(b) BioIK Parameters

Figure 10. Inverse Kinematic Packages

1. World and Local Euler’s

2. World and Local Quaternion

Before we dive into Euler and Quaternion coordinates, let’s first understand what does
world and Local coordinate system means in context of the Unity environment. Whenever
we add a component in the Unity environment, two types of values are associated with
it: (1) World Coordinate system: All the components inside the gaming engine can be
located with a world frame. But when we try to get details of the Parent-child component
as defined in Figure 5b, we consider the local coordinate system. (2) Local coordinate
system: The local coordinate system gives value relative to another component rather
than with respect to the world frame. At initial step when there is no motion, all the
angles should be at 0° as shown in Figure 11a, which shows local coordinate system
values for all joints of robot from J1-J6. On the other hand, if we look at Figure 11b
without any movement, it shows 270° as a joint value with respect to the world coordinate
system. However, when we use world values for controlling physical robot, it leads to
wrong motion path and some values goes beyond the range of robot specifications as
indicated in Figure 4, column-3.

Now, we see into difference between the Quaternion and Euler coordinate system, as
most 3D mathematics uses Quaternion system for the calculation of movement positions
and angles. To describe the rotation of a component it uses four variables X, Y, Z and

24

(a) Local Euler Values (b) Global Euler Values

Figure 11. Unity Coordinates System

W. Whereas Eulers system only uses X, Y and Z variables. Euler system is easy to
understand, therefore, unity shows data in Euler system but internally uses Quaternion
system.

4.3.2 Tranform Matrix between Unity and Physical Robot

As, we got a gist of different coordinate system in the previous section. Let us get into the
type of data that is exchanged between physical model and the digital model. The model
in Unity and the physical robot may have a different coordinate system, but Unity uses
a left-handed coordinate system (Y points upward, Z points to the right, and X toward
the viewer with positive rotation in a clockwise direction. However, the FANUC robot
follows differnt orientation Z points Upward, Y to the right, and X toward the viewer.
The coordinates of both digital model and physical model is shown in Figure 12. Here,
Figure 12a shows Unity coordinate where Z is pointing upwards and Figure 12b shows X
coordinate points upwards.

(a) Coordinates in Unity Space (b) Coordinates in Physical Space

Figure 12. Coordinates System

With the help of the transform matrix, the Cartesian coordinates of Unity model

25

can be transformed to catersian coordinates of a physical robot system using Hadamard
product [37, 38, 39] as shown in equation 1:

J1ux J1uy J1uz
J2ux J2uy J2uz
J3ux J3uy J3uz
J4ux J4uy J4uz
J5ux J5uy J5uz
J6ux J6uy J6uz

 °

0 0 −1
0 −1 −0
0 1 0
−1 0 0
0 1 0
−1 0 0

 =

J1fx J1fy J1fz
J2fx J2fy J2fz
J3fx J3fy J3fz
J4fx J4fy J4fz
J5fx J5fy J5fz
J6fx J6fy J6fz

 (1)

where, J1fx, J1fy, and J1fz shows the X, Y and Z components of J1 joint for
FANUC robot respectively, and J1ux, J1uy, and J1uz indicates X, Y and Z components
of J1 joint of Unity digital model. With the help of element-wise multiplication or
Hadamard product, transformed the Unity cartesian coordinates for J1-J6 joint to Physical
robot joint coordinates.

4.4 Communication Channel
After establishing the digital model in the gaming engine, next comes selecting a com-
munication link between the Digital and Physical model, which is the backbone of the
digital twin.

FANUC robots support various communication protocols, starting from Modbus
TCP/IP to Dot Net-based APIs. However, the types of data that can be accessed using
these communication protocols are minimal. Most of the protocols support position
registers, as well as digital input and output registers. These communication methods are
easy to implement as a base code for this is provided by the company.

There exist another communication protocol known as socket messaging, which is
based on Client-Server architecture. It is one of the oldest client-server-based protocols
and is used in many industrial devices. In the case of FANUC robots, they provide a
KAREL programming language compiler, and by using this compiler, the required socket
messaging channel is written (for both Client and Server) with customized functions for
motion execution.

Talking about the KAREL programming language, KAREL is an educational pro-
gramming language designed for beginners by Richard E. Pattis in 1981 and adapted to
use in programming robots and is named after Karel Čapek. He introduced the word
"Robot" [40]. The benefits of using the KAREL programming language are two-folded.
First, the KAREL programming language is native to FANUC robots. Second, FANUC
KAREL enlists the functions to handle robot motion commands and provides access to all
data registers starting from system variables to digital signals. Thus, I have implemented
a socket messaging server with KAREL usage that receives joint angle data from the
socket client and shares robot status data to its client, and calls the motion execution
function.

26

On the unity platform, the socket messaging client is written in C# script. Now,
both physical and digital models are ready to communicate via socket channel. After
a successful handshake between Unity and Robot Controller as shown in Figure 13,
required data can be exchanged between them.

Figure 13. Communication Setup

Programming for Communication Setup: The programming part is designed con-
sidering the modularity of adding features to the robot both on the physical and digital
sides. Many industrial robots support a single-threaded application. In this case, also,
FANUC robots support synchronized functions. In this experimentation, the Unity scripts
are divided into four parts:

1. Socket server client: Responsible for initiating a connection with socket server
written on the robot side.

2. Reading and sending data: This script reads the robot joints data, which is
generated by IK and send to the robot over socket messaging port.

3. Update status: In this experimentation, certain robot status signals are pro-
grammed. Next, these status signals are pushed by the socket server to its connected
client. The list of signals is explained in Section 5.2.

4. Data recording: If the digital twin is not connected to the physical robot, a
provision is created to temporarily store the data inside the Unity environment in a
text file format. In addition to this, work has also been done to save the data sent to
the robot via socket client in physical robot memory for its repetitive operations.

4.4.1 Source Code

The code for this thesis work is available via google drive [41], the folder structure for
the code is as follows:

1. DigitalTwinVR : Unity Project files

2. WeldTwinModel : FANUC robot files

3. Roboguide: Roboguide Version 9 (FANUC robot simulation software)

27

5 User Interface (UI)
As, digital model has been created and a communication channel (for interaction between
digital and physical robot) is established. Now, let us take a look at the creation of a user
interface (UI) that acts as a medium to control and perform desired operations between
digital and physical robot.

5.1 Virtual Reality (VR) Interface
VR interface is present in the gaming industry for a long time. Nowadays, companies
and researchers have been trying to explore the possibilities to utilize this technology
in different sectors as well. The manufacturing industry is one of them, and they are
exploring the benefits and use cases of VR interface. In this thesis, I have integrated
VR with an industrial robot, with the scope of easing the programming and monitoring
robotic actions. In the traditional approach, to program a robot for a specific task, we
teach the intermediate points via teach pendant or by guiding a robot by holding its
axes (also known as collaborative robots) and save these intermediate points inside robot
memory. However, to successfully guide and generate an effective path requires training
and experience for the operators.

5.1.1 Setting VR Environemnt in Unity

In contrast to the traditional approach, the VR interface provides a simplified way for
programming the desired trajectory. In this work, HTC Vive is used to interact with
the robot. This interaction is facilitated using the robot’s digital model in a virtual
environment that is created on a Unity platform.

In a virtual environment, the VR controller generates a new position by holding
the TCP of the digital model when it is around the component/region of interest. The
data of the updated position is sent to an inverse kinematic algorithm, and the algorithm
generates the corresponding joint angles for the robot joints to reach the updated position
of TCP. By doing so, the tip of the end-effector follows the TCP and generates an entire
program from the initial position to the complete trajectory. Figure 14 shows controlling
of twin model in a virtual environment using VR controller.

After generating the list of joint angles for the required trajectory, these joint details
are sent to the physical body (robot). Now, to replicate the path of the digital robot, I have
used a forward kinematics algorithm on the physical robot side. Forward and Inverse
Kinematics are a complement of each other, where IK calculates the joint angles to reach
a position. On the other hand, forward kinematics calculate the position on the basis of
joint angles. The controlling mechanism between the digital twin and physical model is
shown in Figure 15.

28

Figure 14. Controlling Twin model via Virtual reality controller

5.2 Physical Device Interface via Teach Pendent
The robot controller comes with a predefined set of screens where we can monitor and
configure the details of a robotic operation. In this experimentation, over the socket
messaging channel, the data exchange between digital and physical mode is bi-directional.
To control the physical model through the VR interface, I am reading the robot’s status,
such as whether the communication channel is healthy or not, is there any fault on the
robot side? Or if a robot is in an operating state or in an idle state. For most industrial
robots, there is a list of status signals related to robotic operations that are internally
mapped to binary registers. In FANUC robots, these status signals are available through
User Operator Panel (UOP) signals. So, I read them in Unity and mapped them to the
digital model. Figure 16 shows the list of data that is available on the UOP screen of the
robot controller.

As we can observe from Figure 16, there is a vast amount of data available in a robot
controller, but for this experimentation, I am considering three main signals as listed
below:

1. Communication Status: Communication status (communication channel) is the
heart of the complete setup. Every second it sends a beat/flag with a "0" value and
receives back "1". If the value remains unchanged "0" for more than one second, it
raises a red flag indicating that there exists a problem with communication line and
sets the simulation mode to offline. This status bit is being read by other scripts (
such as "Parallel Motion" and "Record and Send") that requires online status for

29

Figure 15. Control cycle between Digital and Physical model

its operation. If communication is broken, then it disables the options for selection
by the user. Although, in this state, we can still create a offline simulation program
and later transfer the recorded file to the robot.

2. Fault: Fault status of the physical robot is checked/read with every communication
heart beat signal. If the robot is in a fault mode, then running the robot in any
mode (Online/Offline) is not possible. To retain any operation with robot, the fault
has to be resolved manually.

3. Running/Stop: This signal indicates whether a robot is in motion or in a stop
state. This is a binary bit signal, therefore, if robot is in running state then Parallel
motion option will be disabled.

On the basis of the feedback or status signals from the physical robot, the robot is
operated in two different modes via digital twin:

1. Parallel Motion/Online Mode: Verifying the robot’s movement is one of the
main advantages of the twin model, unlike other simulation software, which works
in offline mode, where the program is generated and sent to a physical device. It is
convenient in some cases where the path followed by the robot is fixed. However,
it requires precise information about the physical setup, which is very difficult and
often leads to rework in the actual environment. However, in this model, I am using
a simultaneous control approach to control the physical body and the simulated
model. Due to this, the manual adjustments can be removed and provides an
accurate model for immediate implementation.

30

Figure 16. Robot Status Data

To operate the robot in parallel motion. The twin model first checks the status of
communication, which should be healthy, and if it is idle or not. If both conditions
agree, the physical model can follow the commands sent from the VR interface
and record the joint angle data for future repetitive work. Figure 17a shows the set
of signals which are captured from the robot and mapped to a virtual environment.
The signals are Connection, Fault, and Running. If all three indicate a green signal,
we can operate for synchronized movements.

(a) Online Status (b) Offline Status

Figure 17. Online/Offline Mode

31

2. Record and Send/Offline Mode: The record and Send operating mode is simple
compared to parallel motion mode, as it does not require an online connection
with the robot. In this case, the user can visualize the robotic operation w.r.t its
component in the virtual environment and generates the joint data which is saved
in a local space (Unity). Once the robot comes online, the required file can be
transferred.

Additional to this, if a robot is busy in performing a predefined task, the new task
cannot be defined considering the safety concerns. However, a user can create
an offline program that records the joint values in a text file format. Later, when
the robot comes to an idle status, the file can be sent to the robot, and the motion
program can be executed. The offline status screen of VR is shown in Figure 17b,
in this situation all the signals shows red color, and stores the motion path data in
local directory.

32

6 Results and Analysis
The first step in determining the system’s responsiveness is to examine the time-lapse
to exchange data. As per the setup of the experiment, the time-lapse for transferring
joint angles (six joint angles in this experimentation) data of the digital model to the
physical robot model is observed. It is observed that by using socket messaging, it takes
approximately 40ms (milliseconds) to transfer the joint data and read robot status signals
in a digital setup. This is a considerable improvement compared to 150ms that is reported
in research [27].

6.1 Joint Movement Analysis
Now, let us dive into the accuracy of robot movement attained in a digital twin process.
Figure 18 shows a trajectory path created via VR controller movement in the virtual
environment. The path traced by the TCP of a robot is plotted in a 3D graph. Here the
movement in 3D space is in mm (millimeters).

x axis

800
900

1000
1100

y a
xis

200
150

100
50

0
50

z a
xi

s

200
300
400
500
600
700
800

Figure 18. Robot Trajectory (axis values in mm)

For the above trajectory, Figure 19, shows the range of movement of joints J1-J6 (in
degree) of a robot arm to attain the intermediate points across the motion path. At every
step, when the TCP position is updated, the IK algorithm generates a new set of Joint
angles (J1-J6).

33

Figure 19. Range of Movement of Individual Joints

After looking into the trajectory and joint angle movement, let us compare the joint
movement data of digital and physical robot, as we discussed earlier in Section 4.3
that on digital and physical robot model, we are using IK and forward kinematics (FK)
algorithms. As a result, there is a possibility of some difference in Commanded and
Executed Joint movements.

Figure 20. Difference Between Commanded (IK) and Executed (FK) Joint Angles

Figure 20 shows the difference between commanded joint angles, which is the data
generated from the digital robot model and executed motion in a physical robot. It is
observed that the value of error across each joint J1-J6 varies from 0.01° and 0.28°. The
error is at its peak at the start and end of a trajectory. There can be two different factors

34

contributing to this error, (1) error can be due to acceleration and deceleration cycle
across robot joints, (2) error induced by conversion process of IK to FK.

To analyse the cause of error, a random trajectory is generated in VR and analyzed
the errors across the joints of the physical robot. Figure 21 shows the range of movement
of a robot arm joint angles. The purpose of the random movement is to get more details
on the error. Whether it increases with an increase in joint movement range or it depends
on acceleration and deceleration cycle.

Figure 21. Joint Angle movement for a random trajectory

Figure 22. Difference Between Commanded (IK) and Executed (FK) Joint Angles

Figure 22, shows the same error range as compared to Figure 20, even during the
random motion of TCP, the error range remains in the same window of 0.1°to 0.28°.

From the above error plots, there is a possibility that the deviation of joint movements
is due to acceleration or deceleration values. As the joint moves from 0°to 80°, the error

35

also increases. However, after attaining a particular value, the error gradually decreases
if the movements remain in that range. In addition to this, it is observed that the error
across the J4-J6 joint is more as compared to J1-J3 joints, as the movement across J4-J6
varies more abruptly in the range of 0-100°as compared to J1 to J3 movement pattern,
which is smooth and its range of motion is less (0-30°) compared to other joints.

36

7 Discussion
Here, we are going to discuss that the solution/framework developed in this work is easy
to adapt to almost all FANUC robots. This makes the framework more generalized in a
way that it is independent of the robot model (see Section 7.1 for detail). Additionally,
we showed some advantages of using VR interface for programming robot and how it
can benefit in various challenging tasks using Used Case scenarios in Section 7.2.

7.1 Generalized Solution For FANUC Robots
The software components under this experimentation are developed in such a way that
we can generalize this implementation process for any FANUC robot. The first step
towards Digital Twin is to develop a 3D animated compatible robot which can be done
by following the step defined in Section 4.1 (Model Rigging).

After importing the 3D animated robot developed above, it can be imported in Unity
and other scirpts that are developed in this thesis can be simply plugged to any digital and
physical robot models. This provides a generalized solution for entire range of FANUC
robots. However, this solution has a limitation that it may not be compatible with other
robotic manufacturer companies such as KUKA, NACHI, ABB, YASKAWA, etc.

7.2 Use Case Scenarios
The concept of Digital Twin has applications in vast domains such as Industry Planning,
production estimation, medical division for remote surgery, robot trajectory simulation,
etc. In this thesis, I have discussed a few applications that give a more specific idea
about VR environment utilization and the benefits of digital twin two-way commu-
nication. These applications include trajectory programming for complex edges and
space-constrained environments, estimation of robot operation for bigger objects such as
Jet Plane, and Predictive maintenance.

7.2.1 Trajectory Planning For Complex Edges

Pointing/guiding a physical robot’s end-effector at a particular position and its orientation
can be a difficult or time-consuming task via a manual programming method. One such
setup is shown in Figure 23. The edges of the component that requires high accuracy
take a lot of time and often lead to minor adjustments. This rework can be avoided by
visualizing the component details in a VR environment, where we can clearly see the
detailed 3D view of the region of interest and move the VR hand around it.

37

Figure 23. VR Environment for programming an Engine component

7.2.2 Program Creation In Space Constrained Surroundings

Space required or available for a new setup is always a challenge for factories and
manufacturing units. This pushes the limits and demands a minimum space acquisition
for setting up robotic/machine cells. Here, the capability of a virtual environment can be
used to create a motion path in constrained spaces and simulate the feasibility of setting
up a physical system.

Figure 24 shows a setup of a tank welding application. Here robot bench and compo-
nent are closely placed. Such setup creates difficulties in creating or troubleshooting a
robot’s motion path. However, performing this task in a virtual environment provide a
safe and well-defined environment for human-robot interaction.

7.2.3 Training robotic operations via Machine learning (ML)

Nowadays, as we are trying to deploy robots for a broad range of applications such as
warehouse operations, agriculture, kitchen work, etc., the main challenge for making
applications with a robot is to teach it for a dynamic handling environment. The process
of teaching a robot can be done by creating synthetic data using a VR setup. Let us
consider agriculture application. To operate robots in an open environment, we have
to gather data for the robot vision system under different illumination intensities. This
environment is easy to create in a gaming engine as compared to capturing data in a real
scenario. Gathering data in real scenarios can be time-consuming and costly.

38

Figure 24. Robotic Operation in constrained space

7.2.4 Predictive Maintenance & Error Detection

Predictive maintenance is a hot topic specially for manufacturing sector. As a single
failure can lead to huge loses and interrupts the complete manufacturing line. Due to
which manufacturers are focusing on capturing the data from devices and predicts the
failure and maintenance requirements. For this purpose, Digital Twin can be utilized. As
Twin model defines a two-way communication. So, over this communication channel, we
can capture the robot data and fed the same to machine learning algorithms for prediction.
This eliminates the dependency on any additional software for data capturing.

39

8 Conclusion
In this thesis, we have successfully created a Digital Twin model of an industrial robot.
The developed digital model communicates with the physical robot using client-server
architecture via socket messaging. By integrating VR in a digital environment, we have
tested robot trajectory programs. The trajectories that are created in a virtual environment
are easy to follow in a physical robot. In addition to this, we have analyzed the accuracy
of the physical robot’s trajectory compared to the data generated via a VR environment.

Based on the developed digital twin model for industrial robots, my contribution
towards research enhancement can be summarized as follows: (1) Online/parallel motion
between the virtual environment and physical robot for desired trajectories, and a general-
ized program is created on the physical robot for repetitive motion execution; (2) Ease of
programming for complex edges and space-constrained environments. Based on the sur-
vey, we can confidently conclude that the VR environment is easy to operate and highly
interactive for robot programming as compared to other available programming tools;
and (3) Communication across different platforms (Dot Net and Karel) is established.
The simulation analysis shows the latency of approximately 40ms (milliseconds) with a
mean error of joint movements is 0.28°. Therefore, with this latency and accuracy, we
can utilize this model effectively for industrial applications. However, for high precision
control, there is a need to smooth out the joint movements by implementing a smoothing
function or other algorithms.

Limitations: There are a few limitations of this work, as this work can only be
copied/applied to FANUC robots. As on the robot side, the scripts are developed in
KAREL language that is native to FANUC robots only. As per my knowledge, the
KAREL platform is not being used by any other robot manufacturer company. However,
this limitation can be removed with a bit of rework on establishing communication with
other manufacturer robot libraries. Some of them provide Dot Net libraries or Java-based
APIs to interact and establish communication and control joint movements.

Future Work: Gaming platforms are loaded with many features that can be extended
to an industrial environment. One such example is the multiple user single-server
virtual reality system. There are several networking games where players from different
locations create their virtual avatar and interact in a simulated environment. The same
concept can be implemented in the industrial environment via a game engine. The main
advantage of this is the better understanding of the problem. For example, let suppose
there is a robot that is installed at a remote location, and you being a service provider,
have to listen and understand the customers and also help them to solve the problem,
assisting over telephonic discussion, takes a lot of time just to get a gist of the problem
as a client is very less likely to be comfortable with technical terms and may land on
different understanding nodes. However, having a digital twin model eases the process
of explaining and understanding the problem in a short span of time.

The accuracy of trajectories generated via VR environment depends on human hand

40

movement and most of the motion path seems rough compared to trajectories generated
via simulation software. To overcome this, further work is required to smoothen the
trajectory, this will help in utilizing the complete potential of the digital twin in a broad
range of application areas. At present, there is not much work done that compares the
motion path between Digital and Physical models. At present most of the focus is on
interaction system development with VR/AR/MR.

41

Acknowledgement
I am heartily thankful to my supervisors Professor G. Anbarjafari (University of Tartu)
and Dr. Vladimir Kuts (Taltech University), for their guidance throughout the thesis
work. Their advice helped me to stick to a plan and complete the work on time.

In addition, my former colleagues Yash Padia and Aravinda Rao, assisted me in
learning more about FANUC robots and successfully conducting experiments.

Gaurav Garg

42

References
[1] David Eberly. 3D game engine design: a practical approach to real-time computer

graphics. CRC Press, 2006.

[2] Dirk Thomas. Changes between ros1 and ros2. https://design.ros2.org/
articles/changes.html.

[3] Andrzej Burghardt, Dariusz Szybicki, Piotr Gierlak, Krzysztof Kurc, Paulina
Pietruś, and Rafał Cygan. Programming of industrial robots using virtual real-
ity and digital twins. Applied Sciences, 10(2):486, 2020.

[4] Justin W Hart, Nick DePalma, Mitchell W Pryor, Bradley Hayes, Karl Kruusamäe,
Reuth Mirsky, and Xuesu Xiao. Exploring applications for autonomous nonverbal
human-robot interaction. In Companion of the 2021 ACM/IEEE International
Conference on Human-Robot Interaction, pages 728–729, 2021.

[5] Magdalena Muszyńska, Dariusz Szybicki, Piotr Gierlak, Krzysztof Kurc, Andrzej
Burghardt, and Marek Uliasz. Application of virtual reality in the training of
operators and servicing of robotic stations. In Working Conference on Virtual
Enterprises, pages 594–603. Springer, 2019.

[6] Vladimir Kuts, Tauno Otto, Toivo Tähemaa, and Yevhen Bondarenko. Digital twin
based synchronised control and simulation of the industrial robotic cell using virtual
reality. Journal of Machine Engineering, 19, 2019.

[7] Ali Ahmad Malik and Arne Bilberg. Digital twins of human robot collaboration in
a production setting. Procedia manufacturing, 17:278–285, 2018.

[8] Haiwen Zhang, Lin Ma, Jiao Sun, Hansheng Lin, and Matthias Thürer. Digital twin
in services and industrial product service systems:: Review and analysis. Procedia
CIRP, 83:57–60, 2019.

[9] Fei Tao, Jiangfeng Cheng, Qinglin Qi, Meng Zhang, He Zhang, and Fangyuan Sui.
Digital twin-driven product design, manufacturing and service with big data. The
International Journal of Advanced Manufacturing Technology, 94(9):3563–3576,
2018.

[10] Yuqian Lu, Chao Liu, I Kevin, Kai Wang, Huiyue Huang, and Xun Xu. Digital
twin-driven smart manufacturing: Connotation, reference model, applications and
research issues. Robotics and Computer-Integrated Manufacturing, 61:101837,
2020.

43

https://design.ros2.org/articles/changes.html
https://design.ros2.org/articles/changes.html

[11] Jinfeng Liu, Xiangmeng Du, Honggen Zhou, Xiaojun Liu, L Ei Li, and Feng Feng.
A digital twin-based approach for dynamic clamping and positioning of the flexible
tooling system. Procedia CIRP, 80:746–749, 2019.

[12] Mariusz Oleksy, Grzegorz Budzik, Agnieszka Sanocka-Zajdel, Andrzej
Paszkiewicz, Marek Bolanowski, Rafał Oliwa, and Łukasz Mazur. Industry 4.0
part i. selected applications in processing of polymer materials. Polimery, 63, 2018.

[13] Chao Zhang, Guanghui Zhou, Jun He, Zhi Li, and Wei Cheng. A data-and
knowledge-driven framework for digital twin manufacturing cell. Procedia CIRP,
83:345–350, 2019.

[14] Sidharth Baskaran, Farbod Akhavan Niaki, Mark Tomaszewski, Jasprit Singh Gill,
Yi Chen, Yunyi Jia, Laine Mears, and Venkat Krovi. Digital human and robot
simulation in automotive assembly using siemens process simulate: a feasibility
study. Procedia Manufacturing, 34:986–994, 2019.

[15] Arne Bilberg and Ali Ahmad Malik. Digital twin driven human–robot collaborative
assembly. CIRP Annals, 68(1):499–502, 2019.

[16] Niki Kousi, Christos Gkournelos, Sotiris Aivaliotis, Christos Giannoulis, George
Michalos, and Sotiris Makris. Digital twin for adaptation of robots’ behavior in
flexible robotic assembly lines. Procedia manufacturing, 28:121–126, 2019.

[17] Klaus Dröder, Paul Bobka, Tomas Germann, Felix Gabriel, and Franz Dietrich. A
machine learning-enhanced digital twin approach for human-robot-collaboration.
Procedia Cirp, 76:187–192, 2018.

[18] P Aivaliotis, K Georgoulias, Z Arkouli, and S Makris. Methodology for enabling
digital twin using advanced physics-based modelling in predictive maintenance.
Procedia Cirp, 81:417–422, 2019.

[19] Fei Tao, Qinglin Qi, Lihui Wang, and AYC Nee. Digital twins and cyber–physical
systems toward smart manufacturing and industry 4.0: Correlation and comparison.
Engineering, 5(4):653–661, 2019.

[20] Ján Vachálek, Lukás Bartalskỳ, Oliver Rovnỳ, Dana Šišmišová, Martin Morháč,
and Milan Lokšík. The digital twin of an industrial production line within the
industry 4.0 concept. In 2017 21st international conference on process control
(PC), pages 258–262. IEEE, 2017.

[21] Luis Pérez, Silvia Rodríguez-Jiménez, Nuria Rodríguez, Ruben Usamentiaga, and
Daniel F Garcia. Digital twin and virtual reality based methodology for multi-robot
manufacturing cell commissioning. Applied Sciences, 10(10):3633, 2020.

44

[22] Guanghui Zhou, Chao Zhang, Zhi Li, Kai Ding, and Chuang Wang. Knowledge-
driven digital twin manufacturing cell towards intelligent manufacturing. Interna-
tional Journal of Production Research, 58(4):1034–1051, 2020.

[23] Riccardo Pinto and Tania Cerquitelli. Robot fault detection and remaining life
estimation for predictive maintenance. Procedia Computer Science, 151:709–716,
2019.

[24] Grigore Burdea and Philippe Coiffet. Virtual reality technology, 2003.

[25] SG Tzafestas, P Borne, DG Caldwell, T Fukuda, and S Monaco. Intelligent systems,
control and automation: Science and engineering, 2016.

[26] Anthony G Gallagher, E Matt Ritter, Howard Champion, Gerald Higgins, Marvin P
Fried, Gerald Moses, C Daniel Smith, and Richard M Satava. Virtual reality
simulation for the operating room: proficiency-based training as a paradigm shift in
surgical skills training. Annals of surgery, 241(2):364, 2005.

[27] Heikki Laaki, Yoan Miche, and Kari Tammi. Prototyping a digital twin for real
time remote control over mobile networks: Application of remote surgery. IEEE
Access, 7:20325–20336, 2019.

[28] RobotWorx Team. Fanuc robot specifications. https://www.robots.com/
robots/fanuc-m-10ia-12, 2017.

[29] HTC VIVE Team. Htc vive specification specifications. https://www.vive.com/
eu/product/vive/#vive-spec.

[30] Htc vive review. http://doc-ok.org/?p=1478.

[31] Lee Wasilenko. Getting started with steamvr and unity., 2019.

[32] Ilya Baran and Jovan Popović. Automatic rigging and animation of 3d characters.
ACM Transactions on graphics (TOG), 26(3):72–es, 2007.

[33] Amir Jafari, Nikos G Tsagarakis, and Darwin G Caldwell. Awas-ii: A new actuator
with adjustable stiffness based on the novel principle of adaptable pivot point
and variable lever ratio. In 2011 IEEE International Conference on Robotics and
Automation, pages 4638–4643. IEEE, 2011.

[34] M Abtahi, H Pendar, Aria Alasty, and Gh R Vossoughi. Calibration of parallel
kinematic machine tools using mobility constraint on the tool center point. The
International Journal of Advanced Manufacturing Technology, 45(5-6):531, 2009.

45

https://www.robots.com/robots/fanuc-m-10ia-12
https://www.robots.com/robots/fanuc-m-10ia-12
https://www.vive.com/eu/product/vive/#vive-spec
https://www.vive.com/eu/product/vive/#vive-spec
http://doc-ok.org/?p=1478

[35] Onder Tutsoy, Duygun Erol Barkana, and Sule Colak. Learning to balance an nao
robot using reinforcement learning with symbolic inverse kinematic. Transactions
of the Institute of Measurement and Control, 39(11):1735–1748, 2017.

[36] S Phaniteja, Parijat Dewangan, Pooja Guhan, Abhishek Sarkar, and K Madhava
Krishna. A deep reinforcement learning approach for dynamically stable inverse
kinematics of humanoid robots. In 2017 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 1818–1823. IEEE, 2017.

[37] Maria Blanton, Ana Stephens, Eric Knuth, Angela Murphy Gardiner, Isil Isler, and
Jee-Seon Kim. The development of children’s algebraic thinking: The impact of a
comprehensive early algebra intervention in third grade. Journal for research in
Mathematics Education, 46(1):39–87, 2015.

[38] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university
press, 2012.

[39] Chandler Davis. The norm of the schur product operation. Numerische Mathematik,
4(1):343–344, 1962.

[40] Richard Pattis, J Roberts, and M Stehlik. Karel the robot. A gentele introduction to
the Art of Programming, 1981.

[41] Gaurav Garg. Source code. https://drive.google.com/drive/folders/
1bhz9Jj0Lzbc8zXpIR8p0F8QQ6_ndcvo8?usp=sharing, 2021.

46

https://drive.google.com/drive/folders/1bhz9Jj0Lzbc8zXpIR8p0F8QQ6_ndcvo8?usp=sharing
https://drive.google.com/drive/folders/1bhz9Jj0Lzbc8zXpIR8p0F8QQ6_ndcvo8?usp=sharing

Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Gaurav Garg,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Digital Twin for Industrial Robotics,

supervised by Prof. G. Anbarjafari and Dr. Valdimir Kuts.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Gaurav Garg
20/05/2021

47

	Glossary
	Introduction
	Thesis Highlights
	Contribution
	Thesis Organization

	Related Work
	Digital Twin Model
	Digital Twin and Virtual Reality for Multi-Robot Manufacturing Cell Commissioning
	Knowledge Driven Digital Twin Manufacturing Cell

	Virtual Reality (VR)

	Model Description
	Robot
	VR Controller

	Creation of Digital Model
	3D Model Rigging
	Import 3D model in Unity
	Defining Tool Center Point (TCP)

	Inverse Kinematic (IK) for Digital Model
	Unity Coordinate System
	Tranform Matrix between Unity and Physical Robot

	Communication Channel
	Source Code

	User Interface (UI)
	Virtual Reality (VR) Interface
	Setting VR Environemnt in Unity

	Physical Device Interface via Teach Pendent

	Results and Analysis
	Joint Movement Analysis

	Discussion
	Generalized Solution For FANUC Robots
	Use Case Scenarios
	Trajectory Planning For Complex Edges
	Program Creation In Space Constrained Surroundings
	Training robotic operations via Machine learning (ML)
	Predictive Maintenance & Error Detection

	Conclusion
	Acknowledgement
	References
	Licence

