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grea erinevuse mõõdu valikust. Töös tutvustatakse mitmeid kasutatavaid erinevusmõõtusid
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1 Introduction

Cluster analysis or clustering is an unsupervised learning task that aims to group a set

of unlabeled objects into homogeneous clusters such that the objects of the same cluster

are similar to each other, and objects that belong to different clusters are dissimilar

according to some pre-defined criterion. Clustering methods have been developed since

the 1930s with main applications on static (non-temporal) data. In many real world

applications, one needs to perform cluster analysis on time series data, which explains the

growing popularity of time series clustering in recent years.

A central component of cluster analysis is the selection of a suitable dissimilarity mea-

sure for a pair of data objects. In literature, there are a wide range of such measures

proposed for comparing temporal data, however there is not a single dissimilarity mea-

sure that suits to all types of problems. For example, a dissimilarity measure designed

for detecting similar time series in shape, may not be much helpful when detecting time

series with common autocorrelation structures. This means that the choice of a par-

ticular dissimilarity measure should be based on the kind of similarity it captures and

whether that idea of similarity is aligned with one’s clustering objective. Once the unique

characteristics of the subject data are clear, one may also design an appropriate similar-

ity/dissimilarity measure accordingly. Hennig and Hausdorf [14] give useful guidelines for

the choice and design of dissimilarity measures.

In this work, we are interested in clustering financial time series data, such as stock

prices, interest rates, exchange rates, bond yields, monthly profits or losses of a company

etc. The motivation behind cluster analysis in the financial domain can be diverse, ranging

from identifying groups of countries with similar dependence structures in their long-term

interest rates, to detecting companies whose stock prices evolve similarly through a certain

time horizon. The latter problem will be mainly discussed as a base example in this thesis,

but the overall analysis can be extended to other types of financial data considering the

problem-specific notion of similarity.

Portfolio analysis of large number of securities is of primary interest in financial risk

management. The purpose of the analysis is to select an ensemble of securities that pro-

vides both protection and opportunities to the investor, despite the future uncertainties.
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One of the key strategies when building portfolios is diversification, that is investing in

securities which are expected to be strongly negatively correlated in order to minimize

the overall risk of the portfolio. There is a general belief that the returns on a security

are more correlated with those in the same industry than those of unrelated industries

[22]. Therefore, one basic strategy for diversification could be taking securities from dif-

ferent industrial sectors and hence manage the risks associated with potential crises in a

certain sector. While the assumption of similarly behaving returns within an industry is

somewhat naive, it is worth testing whether there is any empirical evidence supporting or

rejecting this line of thought. Cluster analysis with an appropriate dissimilarity measure

can be used to explore this problem.

The clustering objective of this thesis is to group time series that move up and down

synchronously, with possibly some short-term time delay. The idea is that an unknown

random process may affect several securities at the same time, but the influence of that

factor may have small latency on each of them. For example, some news may affect

many agricultural companies or a natural disaster in certain region may cause solvency

issues to insurance companies, leading to a downgrade in their security prices. The ideal

dissimilarity measure should capture this kind of common fluctuations in the historical

time series of securities.

Once the clustering objectives and the assumption of similarity/dissimilarity are fixed,

the next step of the analysis should be the selection of a suitable clustering algorithm.

There is not a single established distinction between many clustering methods in the liter-

ature. Two popular types of methods are partitional and hierarchical clustering methods.

In case of partitional clustering all observations in the data are partitioned into k dif-

ferent clusters by solving an optimization problem for minimizing within-cluster distance

while maximizing between-cluster distance. The number of clusters k needs to be defined

in advance. Two commonly used algorithms for partitional clustering are k-means and

k-medoids that build clusters around the means (centroid) and medoids (central data

point) of observations, respectively. In this work we base our attention on hierarchical

clustering methods, which do not require the number of clusters to be defined in advance

and build a nested hierarchy of clusters, letting the user examine potential clusters with

graphical means, such as dendrograms. The idea of nested clusters is well-aligned with
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our clustering objective, since two companies may belong to the same industrial sector

according to a standard classification system, but we can further specify their activities

within a sector, thus making a sub-sector distinction between them.

When the number of data objects (time series) gets large, dendrograms may not be

much informative and minimum spanning trees (MST) may be used from graph theory

in order to visualize the hierarchy of clusters, as well as to obtain clusters by removing

some of its edges.

1.1 Literature Review

The pioneering work in clustering financial time series belongs to Mantegna (1999)

[21], in which the author constructed a minimum spanning tree on a portfolio of stocks

from S & P index, using their daily closure prices. The author investigated the resulting

clusters and spotted groups of stocks operating in the same industry or sub-industry.

Mantegna used a dissimilarity measure based on Pearson’s correlation coefficient on the

log returns of the stock prices, which only detects synchronous similarity between time

series, without considering any possible time delays in the common fluctuations.

Since the seminal paper of Mantegna, many works have followed with different method-

ologies. Plerou et al. [28] introduced a clustering method based on Random Matrix

Theory (RMT) with an application on stock price time series. The authors analyse the

eigenvalue statistics of the empirically-measured correlation matrix against a random cor-

relation matrix, in order to distinguish genuine correlations from “apparent” correlations

that are present in random matrices. The results suggest that the eigenvalue statistics

can be used to construct optimal portfolios having a stable ratio of risk to return.

Giada and Marsili [9] propose a parameter free approach for clustering based on max-

imum likelihood principle. The authors test the performance of the algorithm by com-

paring against standard clustering algorithms on two different data sets: time series of

financial market returns and gene expression data. The results from the experiments sug-

gest that some of the algorithms produce similar cluster structures whereas the outcome

of standard algorithms has a much higher variability.

Tumminello et al. [31] introduce a spanning tree associated to the average linkage

method of hierarchical clustering in order to remedy the stability issues of minimum
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spanning trees. The authors also present bootstrap sampling method to assess link reli-

ability of the generated minimum spanning tree. The reported results suggest that the

introduced spanning tree is slightly better than the standard MST, based on numerical

experiments conducted on 300 stocks.

Billio et al. [3] propose several dissimilarity measures based on principal-components

analysis and Granger-causality tests with application on the monthly returns of hedge

funds, banks, broker/dealers, and insurance companies. The authors analyze the interde-

pendence of these entities for systematic risk management perspective and state that the

proposed measures can identify and quantify financial crisis periods.

The remainder of this thesis is organized as follows: different dissimilarity measures are

introduced in Section 2, among which there are some measures that are frequently used

in practice, but are not aligned with our clustering objective. The main features of time

series clustering are discussed in Section 3, with an emphases on hierarchical clustering

and two popular measures for assessing the quality of obtained clusters. In Section 4, we

define the minimum spanning trees in the context of community detection and formulate a

permutation test to verify whether the structure of the minimum spanning tree is a result

of random effects. Section 5 is devoted to numerical experiments with two phases: first,

we select an appropriate dissimilarity measure, which results in better performance on

synthetically generated time series and second, we use the relevant dissimilarity measure

in order to form clusters with stock prices of 594 US-based companies. The results of the

experiments are concluded in Section 6 with some discussion on potential future work.

The numerical experiments were conducted using R and Python programming lan-

guages and all the necessary datasets, scripts can be found in this GitHub repository1.

Two of the presented dissimilarity measures were computed using an existing TSclust [24]

package in R, which provides useful tools for time series clustering.

2 Dissimilarity Measures

Time series clustering is heavily based on choosing the right dissimilarity measure

among different time-series. A wide range of dissimilarity measures between time series

1https://github.com/NshanPotikyan/ClusteringFTS
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have been proposed in the literature. Here we will explore a small sample of them that

are frequently used for various clustering objectives. Time series dissimilarity measures

are categorized based on different criteria. In this work we will divide the set of measures

into two groups: model-free and model-based approaches.

In the remainder of this section and beyond, we will use the following notations:

x = (x1, . . . , xn)T and y = (y1, . . . , yn)T represent 2 time series realizations from real-

valued processes X = {Xt, t ∈ Z} and Y = {Yt, t ∈ Z} respectively. We will consider

that all the series are equal in length n, if not stated otherwise.

Some of the dissimilarity measures are actual distance measures, that satisfy all three

properties of a metric that is

1. d(x,y) ≥ 0 ∀x,y and d(x,y) = 0 ⇐⇒ x = y (positive definite)

2. d(x,y) = d(y,x) ∀x,y (symmetric)

3. d(x, z) ≤ d(x,y) + d(y, z) ∀x,y, z (triangle inequality).

There are some measures that do not satisfy all these conditions, that is why we will

avoid using the phrase distance measure and instead, will use dissimilarity measure in all

cases.

2.1 Model-free measures

We start with dissimilarity measures that are based on the raw time series or some

features derived from them, which make no assumptions about the generating processes

of the series.

2.1.1 Minkowski distance

A simple and straightforward measure of proximity between two time series of equal

size is the Minkowski distance of order p ∈ N, also known as Lp-norm distance. It is

defined as follows:

dLp(x,y) =
( n∑
t=1

|xt − yt|p
) 1

p
.

Euclidean (p = 2) and Manhattan distance (p = 1) are two well-known special cases,

which are mainly used in the context of clustering. One of the drawbacks of this metric
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is that it measures time-wise similarity of the series and fails to account for misalignment

in time. Another drawback is that these measures are sensitive to noise, thus using them

for noisy financial time series is not recommended.

2.1.2 Correlation-based

Correlation-based dissimilarity measure belongs to the family of structure-based mea-

sures, and similar to Minkowski distance, it measures dissimilarity in time. Two such

measures were constructed by Golay et. al [10]. They are defined by

dCOR1(x,y) =
√

2(1− ρ̂xy)

and

dCOR2(x,y) =

√(1− ρ̂xy
1 + ρ̂xy

)β
, β ≥ 0,

where ρ̂xy is Pearson’s correlation coefficient

ρ̂xy =

n∑
t=1

(xt − x̄)(yt − ȳ)√
n∑
t=1

(xt − x̄)2 ·
√

n∑
t=1

(yt − ȳ)2

,

where x̄ and ȳ are the average values of the corresponding series. When the correlation

between time series tends to −1, dCOR2(x,y) tends to infinity, while the parameter β

controls how fast the measure grows to infinity and how fast it descends towards 0.

These measures detect synchronized behavior between time series and are invariant

to any linear transformation. Also, when applying this measure on time series with some

trend, it is useful to consider using the detrended versions of the series. One of the

drawbacks of the correlation-based measures is that it is sensitive to time shifts. The

latter is alleviated in the next set of dissimilarity measures, which are based on cross-

correlation.

2.1.3 Cross-Correlation-based

Unlike the correlation based dissimilarity measures, cross-correlation based measures

are insensitive to time shifts. Here we represent three such measures based on the sam-

ple cross-correlation function (CCF), which is often used in transfer function models for
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identifying the suitable lag of one time series that may be useful for predicting the future

values of another time series.

The CCF of two time series x and y for time lag τ is defined as follows:

ρ̂xy(τ) =

n−τ⊕∑
t=1−τ	

(xt − x̄)(yt+τ − ȳ)√√√√ n−τ⊕∑
t=1−τ	

(xt − x̄)2 ·

√√√√ n−τ⊕∑
t=1−τ	

(yt+τ − ȳ)2

for τ = 0,±1,±2, . . . . Here τ	 = τ · 1{τ<0}, τ⊕ = τ · 1{τ≥0}. It should also be noted that

ρ̂xy(τ) = ρ̂yx(−τ).

In practice, the upper bound of τ is fixed and in our experiments we will consider

τmax = 10 as the maximum lag value, since in financial applications we are keen on

capturing relatively short-time influences between financial time series.

One of the CCF-based dissimilarity measures was introduced by Bohte et al. [4]

defined as follows:

dCCF1(x,y) =

√√√√√√1− ρ̂xy(0)2
τmax∑
τ=1

ρ̂xy(τ)2

CCF-based dissimilarity measures were also introduced by Attila Egri et al. [6]. Here

we define the measure, but with slight modification: instead of taking the maximum

over the absolute values of the cross-correlations, we take the maximum value over the

cross-correlations and also transform the result to make a dissimilarity measure [11].

dCCF2(x,y) =
√

2(1−max
τ

ρ̂xy(τ))

We define another CCF-based dissimilarity measure, where certain weights are intro-

duced for each time lag and the aggregation over the cross-correlation values takes into

account the sign of the extreme cross-correlation.

dCCF3(x,y) =

√
2
(

1− ρ̂xy(τ ∗)

wτ∗

)
,

where τ ∗ = argmax
τ
|ρ̂xy(τ) · wτ | and

wτ =
exp

(
− τ2

2τ2max

)∑
τ exp

(
− τ2

2τ2max

)
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are the weights of each time lag cross-correlation taking value from probability density

function (PDF) of normal distribution N(0, τ 2max). Normalization is performed to make

sure that the weights sum up to one.

The choice of this particular function was made considering the shape of the PDF

of normal distribution, particularly the vanishing behavior in the tails and the fact that

the maximum value is in the center of mass, which is the 0 lag in our case. With this

dissimilarity measure we give higher importance on the short-term time lags, assuming

that the more we diverge from the 0 lag, the cross-correlations become spurious. On the

other hand, the aggregation of the cross-correlations takes into account whether the series

are positively or negatively cross-correlated.

Figure 1: Time series which may be considered dissimilar if we consider the 0 lag correlation

and similar if we consider 1 lag delayed cross-correlations

As an example consider these two time series of length 20

x = (2, 1, 2, 1, . . . , 2, 1)T , y = (1, 2, 1, 2, . . . , 1, 2)T

displayed in Figure 1. These time series are dissimilar if we consider their negative corre-

lation in terms of the 0 lag, however they can be considered as similar if we consider the

1 lag cross-correlation. In order to resolve this contradiction, we assume that the 0 lag

correlation has more weight in the final decision in comparison with the other time lags.
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Also, if we take the maximum over the cross-correlations, we would get positive correla-

tion between the series, this is when we need to consider the negative cross-correlations.

On this example we have the following dissimilarity scores:

dCCF1(x,y) = 0, dCCF2(x,y) = 0, dCCF3(x,y) = 2.

2.1.4 Dynamic Time Warping

Dynamic Time Warping (DTW) is a dissimilarity measure that detects similar time

series in shape, invariant of the time of occurrence of patterns. DTW aligns the two

time series in a way that their difference is minimized. Unlike Minkowski and Correlation

based distances, DTW can be computed on time series with different lengths.

Suppose x = [x1, . . . , xn]T and y = [y1, . . . , ym]T . In order to compute DTW distance

between these time series, first we need to construct the cost matrix C ∈ Rn×m, where

Ci,j = |xi − yj|. Second, we find the warping path {(p1, q1), (p2, q2), . . . , (pk, qk)} that

minimizes
k∑
i=1

Cpi,qi ,

under these constraints:

• Boundary conditions: (p1, q1) = (1, 1), (pk, qk) = (m,n)

• Local constraint: For any consecutive (pi, qi) and (pi+1, qi+1) it holds that (pi+1, qi+1)−

(pi, qi) ∈ {(0, 1), (1, 0), (1, 1)}. The local constraint guarantees that the indices of

the warping path are monotonically non-decreasing.

The warping distance is the cumulative sum of the elements of the cost matrix aligned

with the warping path:

dDTW (x,y) =
k∑
i=1

Cpi,qi

It has been shown that DTW dissimilarity measure works well in applications, such as:

spoken word recognition [29], gesture recognition [17], but its relevance is questionable in

economic or financial applications, when we usually encounter long and noisy time series

[24] . In such cases, it is more appropriate to use structure-based dissimilarity measures.
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2.1.5 Autocorrelation-based

The autocorrelation-based dissimilarity measure compares the sample autocorrelation

functions(ACF) of the time series. Let γ̂x = (γ̂
(1)
x , . . . , γ̂

(l)
x )T and γ̂y = (γ̂

(1)
y , . . . , γ̂

(l)
y )T be

the estimated autocorrelation vectors for x and y respectively, for some l such that for all

i > l it holds that γ̂
(i)
x and γ̂

(i)
y are close to 0. We will follow the definition of the following

dissimilarity measure introduced by Galeano and Pena [8]

dACF (x,y) =
√

(γ̂x − γ̂y)T (γ̂x − γ̂y),

which is the Euclidean distance between the vectors of differences (γ̂x− γ̂y). We can also

consider partial autocorrelation functions and construct dPACF (x,y) similarly.

Autocorrelation or partial autocorrelation-based dissimilarity measures are invariant

to time shifts and also to linear transformations, for example, if we compare two time

series, such that one is the linear transformation of the other, then these dissimilarity

measures will consider those time series as similar. Both of these measures belong to

the class of feature-based measures, that is we measure the dissimilarity between some

features of the time series instead of considering the raw values. Feature-based measures

are often applied to reduce the dimensionality and noise level of the original series. It can

also be used to compare time series of varying lengths.

2.2 Model-based measures

Model-based dissimilarity measures typically assume that the generating processes of

x and y follow some kind of a model. Here the notion of similarity is that time series are

similar if the underlying models that generated them are the same or close. The dissim-

ilarity measures considered in this subsection are invariant under linear transformation

and also to time-shifting, that is if two time series are similar then shifting one of the

time series in time, will not change the notion of similarity.

2.2.1 Piccolo distance

Piccolo [27] introduced a distance measure based on the Euclidean distance of au-

toregressive expansions of invertible ARIMA models. Therefore, suitable AR models are
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fitted to each series and then the dissimilarity is measured in terms of the fitted model

parameters.

Let Π̂x = (π̂
(1)
x , . . . , π̂

(k1)
x )T and Π̂y = (π̂

(1)
y , . . . , π̂

(k2)
y )T denote AR(k1) and AR(k2)

parameter estimations for x and y.

dPIC(x,y) =

√√√√ k∑
j=1

(π
(j)
x − π(j)

y )2,

where k = max{k1, k2} and the smaller vector will be zero-padded.

2.2.2 Maharaj distance

Maharaj [19], [20] introduced two dissimilarity measures based on hypotheses testing to

determine whether or not two time series have significantly different generating processes.

The first one is given by the test statistic

dMAH(x,y) =
√
n(Π̂x − Π̂y)T V̂ −1(Π̂x − Π̂y),

where Πx and Πy are defined as in Piccolo’s distance and V̂ is an estimator of

V = σ2
xR−1x (k) + σ2

yR−1y (k),

with σ2
x and σ2

y denoting the variance of the white noise processes related to x and y

respectively, and Rx, Ry denoting the sample covariance matrix of time series x and y.

dMAH is asymptotically χ2 distributed under the null hypothesis Πx = Πy, thus the

dissimilarity can also be measured in terms of the p-value

dMAH(p)(x,y) = P (χ2
k > dMAH(x,y)).

Both of these measures are non-negative, symmetric and can be considered as dissim-

ilarity measures between time series.

2.2.3 Residual-based

Baragona [2] proposed a different model-based dissimilarity measure, which considers

the sample cross-correlation functions of fitted model residuals, also known as prewhitened

residual series. Apart from introducing the original measure (dRCCF1), we construct two

other modifications based on the different cross-correlation-based dissimilarity measures.
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Let x̂ and ŷ be the fitted values for x and y respectively, then this dissimilarity

measure is defined by:

dRCCFi
(x,y) = dCCFi

(ε̂x, ε̂y)

for i = 1, 2, 3 with ε̂x and ε̂y being the residuals from the fitted models, for example

ε̂x = x− x̂.

In this thesis, the space of possible models used to fit each series is limited to autore-

gressive models, possibly with first order differencing, in case the initial time series is not

stationary.

3 Time Series Clustering

While forecasting is one of the most common applications of time series analysis,

clustering of temporal data has gained much attention in recent years. Many general-

purpose clustering algorithms have been used for time series clustering in the literature.

In this section, we present commonly used hierarchical clustering method and define two

indices for clustering quality evaluation.

3.1 Hierarchical Clustering

Hierarchical clustering method makes a hierarchy of clusters using divisive or agglom-

erative strategies.

The divisive strategies use a top-down approach that starts with all objects as a single

cluster and then splits the cluster until reaching the clusters with single objects. This

strategy is rarely used in practice and there is no evidence that it is better than the

agglomerative strategy, therefore we will discuss agglomerative clustering approach in

more detail.

Agglomerative clustering strategy is a bottom-up approach that considers each element

as an individual cluster and then gradually merges the closest pair of clusters. The

pseudocode of the algorithm can be found in Algorithm 1.

The iterative merging process is of primary interest. In each iteration, a pair of clusters

having the minimum distance is merged. The distance between a merged cluster Ci ∪ Cj
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Algorithm 1 Agglomerative Clustering

Require: Distance matrix D ∈ RN×N

1: Initialize N singleton clusters

2: while number of clusters > 1 do

3: Merge the closest two clusters

4: Update the distance matrix

5: end

6: return Set of nested clusters

and a cluster Ck is calculated using the Lance-Williams dissimilarity update formula[25]:

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)|, (1)

where αi, αj, β and γ are parameters that define the method for agglomerative clustering.

This formula tells us that when we merge clusters Ci and Cj to form a cluster Cl, then

the distance of the new cluster Cl to Ck is a function of distances between cluster Ck and

the original clusters Ci and Cj.

Some of the well known methods for agglomerative clustering are single linkage, com-

plete linkage, average linkage. Here we will describe these methods and will specify the

parameter values of equation 1 for each method.

In case of the single linkage method, the parameters for Lance-Williams dissimilarity

update formula are αi = αj = 0.5, β = 0 and γ = −0.5, which give us

d(i ∪ j, k) = 0.5d(i, k) + 0.5d(j, k)− 0.5|d(i, k)− d(j, k)| = min{d(i, k), d(j, k)}.

Single linkage method can find arbitrary shaped clusters, however it is highly sensitive to

noise and outliers. In case of single linkage two clusters are similar, if they have at least a

pair of members, which are similar to each other, while in the case of the complete linkage

linkage, the clusters are similar to each other, if all members are similar to each other.

The parameters for complete linkage method take the following values: αi = αj =

0.5, β = 0 and γ = 0.5 and plugging these values in 1 results in

d(i ∪ j, k) = 0.5d(i, k) + 0.5d(j, k) + 0.5|d(i, k)− d(j, k)| = max{d(i, k), d(j, k)}.
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Contrary to single linkage method, complete linkage is less influenced by noise and outliers,

which comes with a cost of being unable to deal with arbitrary shaped clusters and bias

towards breaking large clusters.

The group average linkage method is a compromise between the two extremes of

single and complete linkage methods. It is derived using the following parameter values

αi = |i|
|i|+|j| , where |i| is the number of objects in cluster ci and β = γ = 0. In case of

average linkage method, equation 1 takes the form

d(i ∪ j, k) =
|i|

|i|+ |j|
d(i, k) +

|j|
|j|+ |i|

d(j, k).

The clustering results are usually illustrated with dendrograms, like the one in Figure

2. A dendrogram provides a highly intuitive interpretation to the hierarchical clustering

in a binary tree graphical format. The height of each node is proportional to the value of

the inter-group dissimilarity between its two daughters. The terminal nodes, also known

as leaves, represent individual observations plotted at zero height. This type of graphical

representation is one of the main reasons for the popularity of hierarchical clustering

methods.

Figure 2: This dendrogram is a result of applying dCCF3 dissimilarity measure with single

linkage method to cluster a set of 20 time series considered later in Section 5.

The choice of the linkage method in agglomerative clustering highly depends on the

data. Each linkage method leads to a different dendrogram and one needs to be careful
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with selecting the appropriate method for the data. In practice, we can expect that all

these methods should provide very similar results in case of having data dissimilarities

that exhibit a strong clustering tendency with well separated groups[13]. However, in

case of financial time series, we rarely obtain well separated groups and the choice of the

linkage method has strong influence on the outcome, as we will see in Section 5.

3.2 Clustering Evaluation

Since the task of any clustering algorithm is to detect groups in the data without

prior knowledge about the ground-truth, in practice we usually do not have the true

labels to compare with the results of the clustering. To alleviate this problem, usually

synthetic datasets are used, such that the person who generated the dataset knows the

true structure in the data. In other cases, when the true groups are not known in advance,

we need to rely on internal properties of our data.

Clustering evaluation measures are typically divided into two categories:

• external index - measures the alignment between the obtained clusters and the

externally supplied class (ground-truth) labels

• internal index - measures the quality of the clustering without any external informa-

tion about the true labels and is based on the data distribution, distances between

clusters or cluster centers etc.

In this section, we present one evaluation index from each category, that will be used later

to verify the quality of the clusterings obtained with different dissimilarity measures. The

choice of these indices was based on their popularity in time series clustering literature.

3.2.1 Similarity Index

The performance of clusterings can be tested using the cluster similarity measure,

which takes into account the ground-truth labels of the time series.

Suppose G = {G1, G2, . . . Gk} is the set of k ground-truth clusters, assumed to be

known, and C = {C1, C2, . . . Ck} is the set of clusters obtained by the clustering method

under evaluation. The following similarity index measures the amount of agreement be-

tween clusters in G and C.
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Sim(G; C) =
1

n

k∑
i=1

max
1≤j≤k

Sim(Gi;Cj),

where

Sim(Gi;Cj) =
2|Gi ∩ Cj|
|Gi|+ |Cj|

.

Here | · | stands for the number of elements in the set, also known as cardinality of the set.

Note that this similarity measure will return 0 if the sets of two clusterings are completely

dissimilar and 1 if they are the same.

3.2.2 Silhouette Index

In cases when information about the number of clusters is not known a priori, Sil-

houette index can be used to evaluate the obtained clustering. Its computation can be

divided into the following steps: For time series x in our dataset in cluster Ci, we calculate

1. its average dissimilarity with respect to all other time series in the same cluster

a(x) =
1

|Ci| − 1

∑
y∈Ci;y 6=x

d(x,y)

2. its average dissimilarity with respect to all other time series in the nearest cluster

b(x) = min
j;j 6=i

1

|Cj|
∑
y∈Cj

d(x,y)

3. the Silhouette value as

s(x) =


b(x)− a(x)

max{b(x), a(x)}
, if |Ci| > 1

0, if |Ci| = 1

.

The above measures are calculated for all time series in our dataset to obtain the final

score by

Sil(C) =
1

|C|

|C|∑
i=1

( 1

|Ci|
∑
x∈Ci

s(x)
)
.

Silhouette index results in a score from the range [−1, 1], with higher values relating to

a clustering with dense and well separated clusters. It should be noted that if we try to

optimize the index with respect to the number of clusters, then we will get the number of
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data points (time series) as the optimal number of clusters. For this reason, in practice we

try multiple values for the number of clusters and choose the one that results in maximum

Silhouette index.

4 Network Analysis Methods

Networks and trees are often used to represent knowledge about a complex system.

There are algorithms designed to solve the clustering problem in networks, which is com-

monly referred to as community detection problem. In this section, we represent minimum

spanning trees from network analysis methods, which will be used to identify potential

clusters. Minimum spanning trees also give topological overview of the underlying struc-

ture in the data.

4.1 Minimum Spanning Trees

Minimum spanning trees were first applied for cluster detection by Zahn in 1971 [33].

We will use some definitions from graph theory in order to define minimum spanning

trees.

Definition 1. A graph G is an ordered pair G = (V,E), where V is the set of vertices or

nodes and E is the set of edges or links, which are ordered (directed graph) or unordered

(undirected graph) pairs of vertices.

The standard distinction between graphs is whether it is undirected or directed. In

undirected graphs edges connect two vertices symmetrically, while in directed graphs the

edges have certain orientations. Graphs can also have cycles (loops), which is an edge

that connects a vertex to itself. In this work, we are interested in a particular type of

undirected graph, also known as a tree.

Definition 2. A path in a graph is a sequence of edges joining distinct vertices.

Definition 3. A tree T is an undirected graph in which any two vertices are connected

by exactly one path.

Definition 4. A spanning tree is a subtree of G that contains all the vertices in G.
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In many applications, each edge of a graph has an associated numerical value, called

a weight. Usually, the edge weights are non-negative integers representing measures such

as distance, similarity, dissimilarity etc. These edge weights are often referred to as the

cost of the edge.

Definition 5. A minimum spanning tree (MST) is a spanning tree T such that for any

other spanning tree T ′ of the graph the total weight of T is less than or equal to that of

T ′.

The total weight is the sum of all edge weights of the graph, representing the least

expensive path passing through each vertex of the graph.

Gower et al. [12] have pointed out that the clusters resulting from applying a cut

on the dendrogram obtained with a single linkage method can also be obtained by first

constructing the minimum spanning tree of a graph and then cut all edges in the tree

that have higher distance (dissimilarity) than the threshold applied to the single linkage

dendrogram. This gives the basic intuition behind community detection using minimum

spanning trees. After constructing the MST, one needs to select a threshold, such that

all the edges having weights above this threshold will be considered as inconsistent edges

and need to be removed in order to get the potential clusters or communities of nodes.

In literature, there are various algorithms for finding an MST. We will use Kruskal’s

algorithm [16] in our experiments, which is one of the simple approaches commonly used.

When there are two or more different pairs of nodes having the same dissimilarity, it is

possible to obtain different MSTs with Kruskal’s algorithm. Certain optimality criteria

have been introduced to select the optimal tree in such cases[5]. The pseudocode of

Kruskal’s algorithm is the Algorithm 2.

4.2 Friedman-Rafsky test

After constructing the MST from our time series data, the nodes are colored according

to the different categories of the time series. For example, if we have time series of

stock prices, then the categories may be the sectors to which the stock-related companies

belong. In this setting, we are interested whether the different categories are significantly

associated with the minimum spanning tree structure.
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Algorithm 2 Kruskal’s Algorithm

Require: Dissimilarity matrix D ∈ RN×N

1: Initialize the tree T

2: Construct an ordered list L from pairs of observations in non-decreasing order of their

dissimilarities

3: while |T | < |N | − 1 do

4: Take the first pair (u, v) from L

5: if adding u and v to T makes no cycles then

6: T = T ∪ {(u, v)}

7: end

8: Remove (u, v) from L

9: end

10: return T

Suppose that we have samples of size n andm from two such categoriesX = (X1, . . . , Xn)

and Y = (Y1, . . . , Ym), where Xi, Yj ∈ Rd ∀ i, j. Friedman and Rafsky [7] introduced an

MST-based multivariate (d > 1) generalization of the Wald-Wolfowitz univariate (d = 1)

non-parametric two-sample test for testing the null hypothesis of FX = FY against the

general alternative FX 6= FY .

In the univariate case, one needs to combine both samples in increasing order and

count the number of runs (test statistic) in that sample. A run is defined as a consecutive

sequence of points from identical categories. For example, if X = (1, 4, 7, 9) and Y =

(2, 3, 6, 10); then the combined sample will be (1, 2, 3, 4, 6, 7, 9, 10) and the 6 runs are

computed from the associated sequence of categories ”X Y Y X Y XX Y ”. The idea of

the test is that highly separated samples will result in a small number of runs, while highly

interlaced samples will result in a large number of runs, therefore to test the hypothesis

one needs to determine whether the observed number of runs is significantly large.

In order to define the multivariate analog of this test, one needs to introduce a way to

order multidimensional observations. Friedman and Rafsky [7] proposed the MST-based

approach, where each data point is represented as a node in the tree. After constructing

the minimum spanning tree, we remove the edges connecting vertices from different cate-
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gories and take the number of disjoint sub-trees as the number of runs, analogous to the

univariate case.

To test whether the different categories are significantly associated with the minimum

spanning tree structure or not, we use a permutation test [15] based on the ideas of

Friedman-Rafsky test. Instead of the number of sub-trees, we use the number of pure

edges, those that connect nodes of the same category, as our observed test statistic S0. To

assess whether the observed value is a result of randomness when the different categories

have the same distribution, we randomly permute the node labels (colors) and recount the

pure edges. Repeating this label shuffling procedure, we construct the null distribution of

S. We use the following biased estimator for the p-value of the permutation test in order

decide whether to reject the null hypothesis

p-value =
b+ 1

n+ 1
,

where b =
∑n

i=1 1{Si≥S0} is the number of random permutations in which the computed

statistic has been greater or equal than the observed one and n is the number of permuta-

tions. The choice of the p-value estimate should be made with caution, since if we select

the unbiased estimator b
n
, then the latter fails to control the type-I error of the test. [26]

The idea of the test can be extended to the case when we have more than one categories

for each data object (time series). For example, consider a stock network of companies

operating in different countries and suppose we want to test whether, the country category

effects the network structure invariant of the sector of the company. In other words, we

want to find out whether there is a country effect, in case we control for the difference

between sectors. The test in this case differs in terms of the permutation strategy: we

permute the country labels, keeping the sector labels unchanged.

5 Numerical Experiments

In this section we compare different dissimilarity measures in order to select the one

that is aligned with our objective, that is to detect structural similarity between time

series invariant of time shifts. It is worth noting that when choosing the appropriate

dissimilarity measure, one should not simply try all the possible dissimilarity measures
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and select the one which performs the best by some predefined criteria. The choice of

the measure should be based on the clustering objective and one needs to decide whether

dissimilarity should be based on the overall shapes or underlying dependence structures

of the time series prior to the experimental setup.

In this work we look for the dissimilarity measure that can detect structural depen-

dence between time series that may be subject to some time delays. Although we can

consider only those measures that are aligned with the above objective, here we also com-

pare the rest of the dissimilarity measures introduced in Section 2, in order to show their

drawbacks compared with the suitable measures.

Upon selection of the appropriate measure, we will use it to cluster stock prices,

construct the network of stocks and will look for potential communities with minimum

spanning trees.

5.1 Dissimilarity Selection

We perform a comparative analysis of the dissimilarity measures introduced in Section

2 on two synthetic datasets. Both of the datasets contain 20 time series with different

degrees of similarity, designed to illustrate the limitations of the commonly used proximity

measures and to test the performance of the dissimilarity measures chosen specifically for

our objective.

5.1.1 Dataset 1

This dataset consists of 20 time series {x(i); i = 1, . . . , 20} of length 100 that belong

to 4 classes: the first five time series belong to class C1, the next five belong to class C2

and so on. The time series in each classes are constructed as follows:

C1 = {x(i) |x(i)t = ηt+5−i + t+ εit}

C2 = {x(i+5) |x(i+5)
t = µ− ηt+5−i + t+ εit}

C3 = {x(i+10) |x(i+10)
t = 3 · ηt+5−i + εit},
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C4 = {x(i+15) |x(i+15)
t = −ηt+5−i + 50 + εit},

for t = 1, . . . , 100; i = 1, . . . , 5, where εit ∼ N(0, 1), η = (η1, . . . , η104) is a vector of

realizations from uniform distribution, such that η ∼ U(1, 10), µ = Eη = 5.5 .

The time series in each class are the shifted version of the first series of that class, for

example in class C2 the series x(7),x(8),x(9),x(10) are related to x(6), so that the latter is

shifted with 1, 2, 3, 4 lags respectively. In addition to shifting, Gaussian random noise is

added to each series. The figures showing the time series in each class can be found in

the Appendix.

The time series in class C1 and C2 both have an increasing linear trend, but whenever

a time series in C1 increases (decreases) with respect to the trend line, the corresponding

time series in C2 decreases (increases). In other words, the time series in C2 are the re-

flected (with respect to the trend line) versions of the series in C1. The above observations

are true for the time series in C3 and C4, with the only difference being that these series

have no trend, so their fluctuations are with respect to a horizontal line.

Class C3 and C4 consist of time series that have no trend, but they increase or decrease

synchronously with the corresponding time series from class C1 and C2 respectively, with

some differences in the magnitudes of those fluctuations. According to our notion of

similarity, the time series should be considered as similar if their fluctuations with respect

to the trend lines have the same direction possibly with short-term time delays.

The synthetic time series are designed such that the ones in C1 and C3 are similar to

each other and should be considered as one cluster, while those that belong to C2 and C4

form the other cluster of similar time series. In other words, there are two ground-truth

clusters and ideally the perfect dissimilarity measure should capture this pattern. Here

we should note that if the similarity criterion was the shapes of the time series, then

we would consider the series in C1 and C2 more similar to each other and because our

objective is to find the similar time series in terms of underlying structural dependence,

then this is not the case.

Figure 3 shows the first time series from each class and visually gives an overall idea

how the time series in each group are related to each other.

We create different clusterings using hierarchical clustering method with different dis-
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Figure 3: The first time series in each class.

similarity measures. The cluster labels are obtained by cutting the respective dendro-

grams, such that we are left with two clusters, as in the ground-truth cluster set. Cluster-

ing was performed using single, complete and average linkage methods. The results of the

clusterings were not significantly different for each linkage type on both of the synthetic

datasets, hence we present the clustering results obtained with the single linkage method,

because of its relation to minimum spanning trees. On the other hand, we expect the

ideal dissimilarity measure to discriminate between the designed classes independent from

the choice of the linkage method.

When using correlation-based measures the first order differences of the series are

compared against each other, because using correlation-based measures on time series

with trends is not meaningful. Also, the time series have been transformed into [0, 1]

range before using Euclidean distance and Dynamic Time Warping measures, which are

sensitive to scaling. Here we have used the MinMax scaling technique

x′ =
x−min(x)

max(x)−min(x)
.

Table 1 contains the clustering evaluation results in terms of the similarity index. One

can see that three out of four cross-correlation-based measures perfectly captured the

similarities in the designed time series, thus resulted in maximum similarity index.

For the three outperforming measures, we also evaluate the obtained clusterings with-
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Measure Dataset 1 Dataset 2

dL2 0.5 0.36

dCOR1 0.6 0.33

dCOR2 0.6 0.33

dCCF1 0.45 1

dCCF2 1 1

dCCF3 1 1

dDTW 0.5 0.38

dACF 0.5 0.32

dPACF 0.43 0.36

dPIC 0.5 0.38

dMAH 0.5 0.38

dRCCF1 0.5 1

dRCCF2 1 1

dRCCF3 1 0.72

Table 1: Comparison of dissimilarity measures obtained on clustering results for the two syn-

thetic datasets using Sim(G; C) measure.

out using the knowledge about the number of true clusters in the data. Silhouette index is

used to decide the optimal value for the number of clusters and the results are summarized

in Table 2.

Number of Clusters

Measure 2 3 4 5 6 7 8 9 10

dCCF2 0.52 0.32 0.31 0.31 0.29 0.27 0.07 0.08 0.08

dCCF3 0.73 0.42 0.41 0.41 0.39 0.37 0.07 0.08 0.08

dRCCF2 0.53 0.4 0.29 0.27 0.23 0.23 0.22 0.18 0.19

dRCCF3 0.69 0.48 0.29 0.27 0.23 0.23 0.22 0.18 0.19

Table 2: Silhouette index for each clustering obtained on Dataset 1 with the competitive

dissimilarity measures based on Sim(G; C) index
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We can see that the Silhouette index suggests that two clusters should be formed on

this data invariant of the four dissimilarity measures.

The time series in this dataset shared common simple structures and it is highly

improbable to encounter such time series in practice. For example, time series in each

class had the same overall trend, furthermore all the time series were affected by the

same random process but in opposite ways. To make things more realistic, we construct

another dataset and do similar analysis on this dataset.

5.1.2 Dataset 2

Similar to Dataset 1, this dataset is also composed of 20 time series that come from 4

initial classes {Ci; i = 1, 2, 3, 4}. The main differences with respect to the Dataset 1 are

the following:

• the 5 time series in each class have different trends, but they share the same random

effect (fluctuations with respect to the trend lines) with short-term time delays

• each class was generated with different random effects.

The time series in class C1 are generated with the following formulas and the type of

trend is specified in the parenthesis:

x
(1)
t = ηt+4 + t+ ε1t (increasing linear)

x
(2)
t = 3ηt+3 + ε2t (no trend)

x
(3)
t = ηt+2 + 5

√
t+ ε3t (increasing square-root)

x
(4)
t = 100 + 3ηt+1 − t+ ε4t (decreasing linear)

x
(5)
t = 30 + 2ηt + zt+1 + ε5t (ARIMA trend)

for t = 1, . . . , 100; where εit ∼ N(0, 1), η = (η1, . . . , η104) is a vector of realizations

from uniform distribution, such that η ∼ U(1, 10) and zt+1 = zt + 0.85(zt − zt−1) + ε′t,

in other words zt+1 (with z0 = 0) are realizations of ARIMA(1,1,0) model with 0.85

autoregressive coefficient and ε
′
t ∼ N(0, 1). Figure 4 shows the respective time series in

C1.

The rest of the time series of the other classes are generated similarly, but with different

realizations of η and with different ARIMA trend in the fifth time series. The figures of

the other time series can be found in the Appendix.
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Figure 4: The time series in C1 Class (Dataset 2). The blue parts of the series show the shifted

parts of the random effect.

Each class consists of time series that should be considered similar to each other,

despite having different trends. Ultimately, the clustering algorithm should group the

time series from Dataset 2 into 4 clusters formed from the initial classes.

Table 1 contains the clustering evaluations of different dissimilarity measures in terms

of the similarity index Sim(G; C). One can see that for this dataset all the cross-

correlation-based dissimilarity measures were able to achieve perfect clusterings, when

cutting the respective dendrograms at a level that results in 4 clusters. Here we explicitly

used our prior knowledge about the number of ground-truth clusters in the dataset.

As in the case of Dataset 1, we also consider different number of clusters, in order to see

whether we achieve better clusterings with any other number of clusters. The outcomes of

Silhouette index are summarized in Table 3. We can see that all the candidate dissimilarity

measures obtain the maximum value in case of 4 clusters, with dCCF3 being insignificantly

better than the rest.

Concluding the results obtained on both of the synthetic datasets, we see that clus-

tering with the cross-correlation-based measures results in significantly better clusterings

than using the rest of the dissimilarity measures. The latter is true in case of our notion of

similarity, since the synthetic datasets were generated to check the discriminating power
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Number of Clusters

Measure 2 3 4 5 6 7 8 9 10

dCCF1 0.45 0.48 0.53 0.43 0.36 0.23 0.21 0.18 0.18

dCCF2 0.27 0.39 0.57 0.5 0.42 0.4 0.38 0.37 0.27

dCCF3 0.41 0.43 0.59 0.5 0.42 0.4 0.38 0.37 0.41

dRCCF1 0.29 0.47 0.57 0.45 0.35 0.33 0.3 0.16 0.16

dRCCF2 0.19 0.31 0.45 0.44 0.41 0.34 0.28 0.23 0.24

Table 3: Silhouette index for each clustering obtained on Dataset 2 with the competitive

dissimilarity measures based on Sim(G; C) index

of the different measures. We can also see that using dCCF2 , dCCF3 and dRCCF2 measures

the clusters were perfectly aligned with the ground-truth labels. We will use dCCF2 and

dCCF3 measures in order to construct the minimum spanning trees in the next subsection,

since they are based on the raw time series and their computations do not require fitting

models to each time series as in the case of dRCCF2 .

5.2 Clustering Stock Prices

In this part of the numerical experiments, we use daily closing prices2 of 594 US-based

companies of the whole period of 2019. Alongside with the time series, we have also

obtained the industry information for each company. The industry names are coded by

the North American Industry Classification System3 (NAISC). In general, each company

may provide products or services in different industries, however the base operations of

the selected companies in our dataset are limited to the specified sectors. Table 4 contains

the distribution of the stock price time series per each industry.

Although there is an imbalance towards the stocks of companies operating in the

Manufacturing industry, we did not down-sample the time series in this class, since in

general, the distribution of companies among different industries may not be close to

being uniform.

The initial step of our experiment is to construct the dissimilarity matrices of the

2https://finance.yahoo.com
3https://www.naics.com/search

30

https://finance.yahoo.com
https://www.naics.com/search


Id Industry Name Number of Stocks

1 Professional, Scientific and Technical Services 20

2 Administrative and Support and Waste Management and Remediation Services 17

3 Finance and Insurance 78

4 Information 33

5 Manufacturing 253

6 Mining 50

7 Real Estate and Rental and Leasing 44

8 Retail Trade 37

9 Transportation and Warehousing 30

10 Utilities 32

Table 4: Distribution of the observed stocks per sector using the NAISC codes.

time series using the two pre-selected dissimilarity measures dCCF2 and dCCF3 . Figure 5

shows the histogram of pairwise dissimilarities of the time series for each of the dissimi-

larity measure. We can see that using dCCF2 results in a truncated histogram, where the

dissimilarities between certain time series is not captured. It should be noted that our

ultimate goal is not to show the potential strengths and weaknesses of these dissimilarity

measures, but rather we want to explore whether the stock prices of companies operating

in the same industry have co-movements that can be detected using the cross-correlation-

based measures.

When constructing the minimum spanning trees based on the resulting dissimilarity

matrices, we noticed that both of these measures result in the same MST. The reason

is that the dCCF3 measure gives the same results as dCCF2 , in cases when the series are

positively cross-correlated and the cross-correlations for the short-term lags are not signif-

icantly larger than the rest of the cross-correlations after applying the lag weights. Hence,

the identical minimum spanning trees are obtained on such kind of time series. On the

other hand, since the dissimilarities obtained with the dCCF2 measure are bounded above

by 1.4 (see Figure 5), it is clear that the maximum weight of an edge in the MST is at

most 1.4. In order to remove inconsistent edges from the tree, we consider two values for

the threshold 1 and 0.8. The choice of this arbitrary thresholds was made by considering

the histograms of the dissimilarity values.
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Figure 5: The pairwise dissimilarities between the stock prices using dCCF2 and dCCF3 dissim-

ilarity measures.

Figure 6: Network of the stocks when using threshold 1 on dissimilarities. The sector ids

correspond to the ones displayed in Table 4
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Figure 6 shows the MST after removing the edges having weights (dissimilarities)

above 1. The layout of the tree is modified for visual purposes with the visualization tool.

We can see potential groupings by visually inspecting the network. For example, most of

the manufacturing companies are concentrated in the middle-left part of the network, or

the ones that belong to the Mining industry are mostly clustered together in the lower

part. Also, in the upper right corner of the network we can spot the disconnected nodes.

Figure 7: The histogram shows the permutation results on the first network and the arrow

points to the number of observed pure edges marked with red

There are 373 total edges left in the network and 309 of those are pure edges that

connect companies from the same industry. In order to test whether the observed value

for the pure edges has occurred due to chance, we apply the permutation test based

on the Friedman-Rafsky test by shuffling the node categories (colors) of the network for

10000 times and recalculate the number of pure edges after each permutation in order

to estimate the null distribution of the pure edges. The results of the permutations are

displayed in Figure 7 in terms of a histogram. We can see that the observed value for

the pure edges is significantly far from the permutation results, thus there is sufficient

evidence for concluding that the structure of MST is not a result of random effects.

Next, we apply the second threshold on the network edges by removing the ones above

0.8 threshold. This results in a network, where only 116 edges are left, from which 109 are
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pure. The network is displayed in Figure 8. One can see there are isolated communities

of companies operating in industries, such as Utility, Mining, Real Estate and Rental and

Leasing. Also, we can see that there are companies from Manufacturing and Finance and

Insurance industries that have similar stock price fluctuations.

The results of the permutation test applied on this network also supports the hypoth-

esis that the structure in the network is related to the company industries. The histogram

of the permutation results can be found in the Appendix.

Figure 8: Network of the stocks when using threshold 0.8 on dissimilarities. The sector ids

correspond to the ones displayed in Table 4

Minimum spanning trees enable us to visualize the resulting clusters similar to den-

drograms in case of hierarchical clustering. As in the case the synthetic datasets, we use

hierarchical clustering to obtain potential groups of time series with similar fluctuations

with respect to their trend lines. We use both of the dissimilarity measures dCCF2 , dCCF3

and try different linkage methods to cluster the time series into 10 clusters in order to see

how much those resulting clusters are aligned with the sectors of the companies.

In Table 5 we included the results of the similarity index between the obtained clusters
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Dissimilarity Measure

Linkage Type dCCF2 dCCF3

Single 0.08 0.08

Complete 0.33 0.26

Average 0.15 0.14

Table 5: Comparison of the similarity index Sim(G; C) on clustering results obtained with

different linkage methods and dissimilarity measures

and the sector types of the companies. Since the minimum spanning trees were identical

for both of this measures, not surprisingly the single linkage method used with both

measures gives the same results. We can also see that using complete linkage method we

obtain clusters that are more aligned with the true sector types of the companies, with

dCCF2 measure having slightly higher similarity index than with dCCF3 .

Figure 9: Histogram of the 10 clusters obtained with dCCF2 measure using the complete linkage

method. The proportions of each sector are displayed on each bar. The sector ids correspond

to the ones displayed in Table 4

The resulting clustering with the complete linkage method for dCCF2 measure is further
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investigated in Figure 9. We can see that the majority of the stocks in cluster 1 belong

to Manufacturing, then Finance and Insurance industries or the cluster 2 and 3 are

dominated by stocks from Utilities and Mining sectors respectively. A similar graph

for the complete linkage method with dCCF3 measure can be found in the Appendix.

The results of the clusterings show that there is some alignment between the clusters

and the sector types, but in general one cannot simply state that stock time series that

have similar fluctuations are of companies operating in the same industry. In practice,

stock prices of different companies operating in different industries may be affected by

the same random factor.

6 Conclusion

In this thesis, we presented an end-to-end process for clustering financial time series. A

central component in this process is the choice of the dissimilarity measure between a pair

of time series. First, we represented various dissimilarity measures designed for different

objectives and later showed that using irrelevant measures results in significantly poor

clusterings. This means that the choice of the dissimilarity measure should be made with

care by making sure that the observed measure represents the desired concept of similarity

or dissimilarity between the time series under study.

In case of our notion of similarity, clusterings with the cross-correlation-based dis-

similarity measures significantly outperformed the rest of the measures on synthetically

generated datasets and the clustering of stock prices was performed using two of those

measures.

Minimum spanning trees were used to view the topological ordering of the stocks. In

particular, two trees were constructed by applying 1 and 0.8 thresholds on the edges of

the initial MST. We used a permutation test to verify that the structure of the obtained

minimum spanning trees is significantly different from what would be in case of random

labelling the tree nodes.

Finally, hierarchical clustering was performed using single, complete and average link-

age methods. The results showed that complete linkage method provides clusterings that

are better aligned with the industrial sector information of each stock. Some of the ob-
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tained clusters were dominated by stocks from a certain sector, while the others were a

random mixture of different stocks. In our analysis we also encountered cases, when a

cluster is mainly formed with stocks from two sectors. This can be explained in various

ways: for example it is possible that the companies from different sectors are partners

with the same third party, for example government and their co-movements are related to

this factor. Another possible reason can be that the companies from different industries

are collaborating together. Thus, having more information about the companies can help

to further partition the high-level clusters.

It would also be interesting to see whether the observed clusters persist through time,

since the dynamics of a time series may become more similar to time series of other

clusters as we change the observed time horizon.
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[6] Egri, A., I. Horváth, F. Kovács, R. Molontay and K. Varga (2017). ”Cross-correlation based clus-

tering and dimension reduction of multivariate time series,” IEEE 21st International Conference on

Intelligent Engineering Systems (INES), Larnaca, pp. 000241-000246.

[7] Friedman, Jerome H, and Lawrence C Rafsky (1979). ”Multivariate Generalizations of the Wald-

Wolfowitz and Smirnov Two-Sample Tests.” The Annals of Statistics, 697–717.

[8] Galeano P, Pena D (2000). ”Multivariate Analysis in Vector Time Series.” Resenhas do Instituto

de Matemtatica e Estatistica da Universidade de Sao Paulo, 4(4), 383-403.

[9] Giada, L., M. Marsili (2002). ”Algorithms of maximum likelihood data clustering with applications”,

Physica A: Statistical Mechanics and its Applications 315, 650–664.

[10] Golay, X. S. Kollias, G. Stoll, D. Meier, A. Valavanis, P. Boesiger (1998). ”A new correlation-based

fuzzy logic clustering algorithm for fMRI”, Mag. Resonance Med. 40, 249–260.

[11] Gower, J. C. (1966). Biometrika 53, 325

[12] Gower, J. C. and G. J. S. Ross (1969). ”Minimum Spanning Trees and Single Linkage Cluster

Analysis” J. R. Stat. Soc.: Ser. C 18, 54–64

[13] Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). ”The elements of statistical learning: data

mining, inference, and prediction.” 2nd ed. New York: Springer, pp 520-524.

38



[14] Hennig C., Hausdorf B. (2006) ”Design of Dissimilarity Measures: A New Dissimilarity Between

Species Distribution Areas”. In: Batagelj V., Bock HH., Ferligoj A., Žiberna A. (eds) Data Science
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Appendix

Figure 10: Time series of class C1 in Dataset 1

Figure 11: Time series of class C2 in Dataset 1
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Figure 12: Time series of class C3 in Dataset 1

Figure 13: Time series of class C4 in Dataset 1
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Figure 14: Time series of class C1 in Dataset 2

Figure 15: Time series of class C2 in Dataset 2

43



Figure 16: Time series of class C3 in Dataset 2

Figure 17: Time series of class C4 in Dataset 2
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Figure 18: The results of the permutations in case of the network with threshold 0.8 applied

on edges

Figure 19: Histogram of the 10 clusters obtained with dCCF3 measure using the complete

linkage method. The proportions of each sector are displayed on each bar. The sector ids

correspond to the ones displayed in Table 4
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