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PREFACE

The dissertation you are going to read is based on innovative engineering and
technology for space applications, and it contributes to advancing various
auxiliary disciplines like planetary science. Contemporary science erases
borders between disciplines and essentially requires multidisciplinarity to
achieve novelty.

This notion has been developed in a relatively small team compared to a space
agency or large industry. University-based access for space exploration, especially
in a country without extensive space heritage, is fresh. The author is grateful that
he took the path that provides a rigid means for self-education, participation in
numerous fascinating projects and autonomy to govern individual interests.

A combination of multiple disciplines in the XVIII-–XIX century defined
natural sciences in order to describe the natural world; as knowledge grew, in the
XX century, specialisation became more common for the following reasons: the
creation of new disciplines and inability to sustain broad knowledge by a single
person (Cockell, 2002). However, the answer to fundamental questions (e.g., the
meaning of life through a prism of understanding its origin, evolution,
distribution and future, the role of asteroid and comets in extinction and
cross-contamination, panspermia, etc.) demands a multidisciplinary strategy.
Besides, due to the physical constraints of Earth-based space science, the only
way to advance the knowledge and understanding of the Early Solar System, its
future and its existential context in the universe requires dedicated space
missions, which are an inevitable part of modern space science. Furthermore,
cosmic exploration has an undeniable revolutionary contribution to
understanding our home planet’s state and how to live sustainably. For instance,
a study of extraterrestrial atmospheric processes, presumably on Titan or Venus
or in fact elsewhere, might have, in the long term, a significant impact on
understanding our atmosphere and the ways to sustain it tolerable for living
beings, including primates.

This dissertation contributes to the miniaturisation of planetary missions and
instruments as a collection of articles by involving a multidisciplinary approach.
It contributes to small affordable nanosatellites and small probes to increase the
knowledge about the vast cosmos we all live in and sustainable ways to explore it.

TARTU, 2021
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1. INTRODUCTION

Human’s view on their place in the universe has changed throughout history in
the anthropogenic context: first, the reality has been pursuit as geocentric, in
which all heavenly objects spun around the ancient Greek observer; later, the
heliocentric model was proposed by Copernicus, and only subsequently our solar
system was placed as miscellaneous part of the moving galaxy within the
universe. In the historical context, the novelty was not always accepted, and the
transition between theories and hypotheses took a long time (in the context of
human life span) and sacrifices. For example, Giordano Bruno (1548–1600) was
conceptually connected to the Copernican model and advocated for cosmic
pluralism – a historical cosmological view claiming that stars are other suns
having their orbiting planets, which might host life and intelligence, and that the
universe is centreless and infinite. He was found guilty of such views and was
burned alive in Rome’s Campo de’ Fior in 1600.

Significant changes and progress in cosmic understanding were made in the
XX century, primarily due to robotic space exploration. The era of satellite-based
exploration began in the middle of the last century with launching the first object
into orbit known as Sputnik-1 by the Soviet Union and lead by S. Korolev1

(Siddiqi, 2000). The era of space exploration is only six and a half decades old
but incorporates the rapid development of space technology during the Space
Race and later with the computational revolution’s hand and commercial
privatisation.

State-funded agencies dominated the pioneering mission developments; now,
the field is consolidated with academia, public and thriving private sectors. The
countries without space programs now can build small satellites and purchase a
launch service, thanks to the rapid technological progress, general quality of
education, access to information and commercialisation of space products and
services. Tens of companies compete in small boosters business, while some
target to bring a price as low as approximately 10 kEUR·kg−1 (Frick and
Niederstrasser, 2018), which is, for instance, a purchase equivalent of a few
high-end laptops by the university. For example, Estonia successfully engineered
and operated its first student-built nanosatellite ESTCube-12 in 2013 without
previous experience and expertise (Slavinskis, Pajusalu, Kuuste, et al., 2015).
The global space access provided by nanosatellites is visualised in Figure 1,
totalling 76 countries (Kulu, database 2021), with clear coverage of small and
developing nations.

Different types of satellites exist, including artificial satellites, and in the
present work, satellite or spacecraft means an artificial satellite that actively

1Who also was behind Y. Gagarin’s flight and first soft lunar landing in 1966, a Soviet Ukrainian
who was almost killed by the Soviet regime under Stalin’s purges in the late 1930s.

2Science popularisation article: https://space-travel.blog/ec1-1st-818b12cb4d53.
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Figure 1: Launched nanosatellites by countries.

As of August 20, 2021 (Kulu, database 2021). For instance, Estonia is one of the leading countries
in Eastern Europe, the Nordic and Balkan regions.

fulfils a function. Characterisation of the satellite by mass and volume is an
important factor when it comes to mission classification (which is also orbit
dependent) and cost estimation (which is also Technology Readiness Level
(TRL) correlated). The satellites general categories are listed in Table 1. In the
opposition of a single complex mission, the formation-flying mission becomes a
widely used approach. Also, around a third of all proposed missions between
2000 and 2025 are nanosatellites or nanospacecraft (Di Mauro, Lawn, and
Bevilacqua, 2018).

Class Mass [kg]
1 Large satellite over 1000
2 Medium satellite 500–1000
3 Small satellite under 500
3a Minisatellite 100–500
3b Microsatellite 10–100
3c Nanosatellite 1–10
3d Picosatellite 0.1–1
3e Femtosatellite under 0.1

Table 1: Satellite classification by mass
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1.1. Nanospacecraft and New Space

As of August 20, 2021, 1766 nanosatellites were launched, and over 92% of
them are cubesats (Kulu, database 2021). Cubesat is a standardised class of a
satellite or spacecraft that consists of single or multiple units. Each unit
volumetrically resembles a 10 cm cube and has a typical mass in the range of
1–2 kg. The cubesats have been maturing since 1999, and the forecast points out
that 1800–2400 additional nanosatellites will be launched by 2025 (DelPozzo
and Williams, report 2020). The number of launched nanosatellites with the
forecast is visualised in Figure 2. This increase is partially boosted by the recent
industrial commercialisation of space activities, entrepreneurial approach and
new frontiers for exploration, referred to as New Space (Frischauf et al., 2018;
Paikowsky, 2017).

Figure 2: Launched nanosatellites with the forecast.

As of August 20, 2021 (Kulu, database 2021).

One of the distinguishing features of New Space from “conventional space” is
minimal state involvement on the governmental level; it is driven by economic
models of market needs, where reason overcomes bureaucracy. Numerous small
and medium enterprises got involved in building and operating cubesats or
technologies supporting their operation. With such a model, generally, more can
be achieved in shorter times, and importantly, more reasonable risks could be
taken without bureaucratic justification. The possibility to launch cubesats as a
secondary payload or by small affordable boosters provides many opportunities
for universities and various enterprises to operate their satellites.

The cubesat orbit classification indicates a significant technological gap
between Low Earth Orbit (LEO) and deep space cubesats. In fact, only two twin
spacecraft MarCO undertook interplanetary voyages (Schoolcraft, Klesh, and
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Werne, 2017), and more missions are approaching by large space agencies
(Crusan and Galica, 2019; Michel et al., 2018). Certainly, cubesats will not
replace classic missions but will assist them by taking higher risks and
contributing with multi-point measurements and rapid development. An example
of a high-risk mission is a remote observation of presumable visit of an
interstellar object (Fitzsimmons, Hainaut, et al., 2019; Fitzsimmons, Snodgrass,
et al., 2018), which would require standing spacecraft in one or multiple
locations in space for a prolonged time, similarly as planned for Comet
Interceptor mission (Snodgrass and Jones, 2019). However, cubesats could be
parked in various locations and times, awaiting precious visitors to appear. Hera
mission, in assistance with Juventas and Milani cubesats in closer proximity
(Michel et al., 2018), will assist the assessment of DART impact (Cheng et al.,
2018) on the binary asteroid (65803) Didymos-Dimorphos as a part of the AIDA
mission (Zhang et al., 2021). Cubesats mostly perform focused planetary
research while demonstrating new technologies for future missions. The gap
between LEO and deep space nanoprobes is partially due to limitations in
propulsion, miniaturisation of space instrumentation, and tested deep-space
components at an affordable price tag.

The development of instrumentation, propulsion (Tardivel, Klesh, and
Campagnola, 2018), and mission-design approaches require novelty and prior
in-orbit demonstrations (Imken et al., 2017). The author of this dissertation has
contributed to the miniaturisation of planetary missions and instruments by
developing missions, mission concepts, payloads and simulation tools that
commit to the long-term aims of cosmic examination with nanospacecraft.
Section 2 focuses on the innovative propulsion method – Coulomb Drag
Propulsion (CDP), which has two applications: (i) plasma brake on the
ESTCube-2 and FORESAIL-1 satellites as discussed in Subsection 2.1, and (ii)
an interplanetary voyage by Multi-Asteroid Touring (MAT) mission concept with
Electric Solar Wind Sail (E-sail) as discussed in Subsection 2.2. Instrumentation
for space missions, such as an ongoing OPIC instrument development with the
latest updates, is outlined in Subsection 3.1. The tool for instrument design,
performance estimation and mission design, which was used for OPIC and MAT,
is briefly presented in Subsection 3.2. Finally, the discussion and conclusions are
outlined in Section 4.
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2. BREAKTHROUGH SPACE TRAVEL: COULOMB
DRAG PROPULSION

Miniaturisation is one of the primary directions in the evolution of technology.
The exponential growth of the microprocessor performance is presently
occurring (Etiemble, 2018) and contributes to general technological
miniaturisation. However, miniaturisation has its limitations, which are often
defined by the laws of physics. For instance, the processing power can be
improved with increased clock speed, but the system’s thermal performance
limits it; the clock speed can be increased until it hits the “thermal wall”, and
parallelisation would be needed (Etiemble, 2018). Another example is the
miniaturisation of the optical systems: the smaller aperture is, the less light
would reach the sensor. The size limitations of space payloads and the inability
to change the size or brightness of natural objects provide one controllable
parameter – a reduced distance between the instrument and the target. This
demands propulsion. The traditional propulsion system also has its fundamental
limitation: the delta-v budget would be proportional to the mass of carried
propellant. It is defined by Tsiolkovsky rocket Eq. 2.1:

∆v = Isp ·g0 · ln
m0

m f
(2.1)

, where ∆v (delta-v) is a change of velocity, Isp is a specific impulse, g0 is a
standard gravity, m0 is the initial spacecraft mass (i.e., wet mass), and m f is the
final spacecraft mass (i.e., dry mass).

Energy in the universe is conserved, and it cannot appear from anywhere and
disappear into nothingness; it just migrates from one form to another. Building
blocks of all matter interact in four different ways: (i) the strong interaction (e.g.,
quarks in the nucleus); (ii) the electromagnetic interaction; (iii) the weak
interaction (e.g., leptons interaction); and iv) the gravitational interaction
(Mansfield and O’Sullivan, 2020). The Solar System voyage requires much more
than a rocket and propellant: dynamic flight experts plan and execute hitchhiking
gravity-assist manoeuvres of nearby planets to reach desired destinations in the
Solar System. Besides gravitational interaction, the electrostatic interaction is
also feasible for Solar System voyages since electrically charged solar wind is
available vastly in space.

Nanosatellites utilise all types of available propulsion: electrical, chemical
and more advanced. The primary application for thrusters in the nanocraft scale
is attitude control; it is rarely employed for orbital manoeuvres (Lemmer, 2017).
Cubesats launched as a secondary payload cannot carry any pyrotechnics, which
rules out igniter for solid-fuel rocketry; however, a dedicated fleet launch would
allow it. Mass and volumetric constraints of cubesats limit the use of liquid and
hybrid chemical propulsion for major orbital manoeuvres, although the
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development of non-toxic monopropellants was reported (Lemmer, 2017).
Pressurised cold-gas propulsion and electric propulsion (e.g., resistojet, pulsed
plasma, electrospray and miniature ion thrusters) have been evaluated and
developed to fit the cubesat envelope (Lemmer, 2017; Levchenko et al., 2018).
Cold-gas propulsion provides relatively low specific impulse, which might be
insufficient for most orbital operation demands, except for minor orbital
adjustments. Electric propulsion provides a high specific impulse. However, it
requires substantial power, which is exceptionally limited1 on nanospacecraft.

Alternative propulsion also exists on cubesat scales, such as solar wind sail
(also termed photonic pressure sail (Johnson et al., 2011)), Electric Solar Wind
Sail (E-sail) (Janhunen, 2004) (also termed Coulomb Drag Propulsion (CDP)2),
electrodynamic tethers (Corsi and Iess, 2001) and laser pressure (Parkin, 2018)
among others. These propulsions typically utilise available space resources, such
as sunlight, ionosphere, magnetic field and solar wind. Electrodynamic tethers
are used for changing orbital parameters by taking advantage of a magnetic field
and a charged tether (i.e., Lorentz force). Solar sail utilises the photonic pressure
of sunlight. The larger sail area grants increased thrust; however, it also increases
the probability of being damaged by micrometeoroids. The thrust (T) of solar sail
also decreases with solar distance R as 1/R2 (T∝R−2).

The improvement to solar sail, in terms of decreased thrust with heliocentric
distance, is provided by E-sail, which utilises the solar wind rather than sunlight
– the positively biased tether interacts with charged solar wind particles. Dr
Pekka Janhunen invented the E-sail concept. His team has significantly advanced
the concept at the Finnish Meteorological Institute during the last decade; the
additional contribution is being provided by the University of Tartu (UT), Aalto
University and Aurora Propulsion Technologies. The E-sail thrust decreases by
approximately 1/R (T∝R−1) caused by increased Debye length at greater
distances3 despite the weaker solar wind (Janhunen and Sandroos, 2007). It
works similarly to spider ballooning caused by the interaction between spider’s
charged silk and atmospheric electric charge (Morley and Robert, 2018). An
alternative application of such a system is LEO satellite deorbiting by plasma
brake (Janhunen, 2010) – a negatively charged tether flying through the relatively
stationary ionosphere. In principle, any Coulomb drag device, either positively or
negatively charged, would work both in solar wind and ionosphere. However, in
the ionosphere, the usage of negative CDP (i.e., plasma brake) is preferred from
the engineering point of view: it requires less power and can be operated without
an electron emitter. In the solar wind, the negative polarity is not feasible
because the high kinetic energy of solar wind ions obliges a higher voltage than

1It also decreases by the inverse-square law if the heliocentric distance increases.
2Named after the French scientist Charles-Augustin de Coulomb (1736–1806), who used his

torsion balance devise to determine how the force between charges depends on their distance.)
3Electron Debye length is proportional to solar wind electron temperature (∝T−1

e ), and higher
temperature yields wider electron sheath and propulsive effect.
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in LEO. Such high voltage would cause electron field emission from the thin
wires, increasing the power consumption. Therefore, the negative polarity is
applied in LEO to slow down the satellite and decrease the altitude. The positive
polarity is utilised in the solar wind to accelerate and manoeuvre in space. Both
CDP devices have been involved in this dissertation: (i) negative CDP is being
developed and tested for ESTCube-2 and FORESAIL-1 LEO satellites for
deorbiting purposes and E-sail thrust evaluation in the space environment (more
details in Subsection 2.1), and (ii) MAT mission concept and satellite design for
Main Asteroid Belt (MAB) flyby with a fleet of nanospacecraft equipped with
CDP described in Subsection 2.2.

2.1. ESTCube-2 and FORESAIL-1

The first endeavours to test E-sail and plasma brake in space were onboard the
ESTCube-1 satellite (Slavinskis et al., 2015) and then Aalto-1 (Praks et al.,
2021), the first national satellites for both neighbouring countries – Estonia
(University of Tartu) and Finland (Aalto University), respectively. Despite their
inability to deploy the tether, they provided precious lessons for their younger
siblings: ESTCube-2 and FORESAIL-1, 3U nanosatellites. The mission
objectives and payloads are discussed in great detail by Ehrpais et al., 2016;
Iakubivskyi, I., Ehrpais, Dalbins, et al., 2016; Iakubivskyi, I., Ehrpais,
Slavinskis, et al., 2017; Iakubivskyi, I., Ilbis, et al., 2017; Iakubivskyi, I.,
Janhunen, et al., 2020. Both satellites will be equipped with the experimental
modules that the Finnish Meteorological Institute, Finland designs for testing
CDP and E-sail propulsive effect in LEO. The module is hosted at the end of the
longer side of the satellite and is shown in Figure 3.

If equipped with CDP, a fast-moving satellite would reduce its orbital velocity
and altitude. Plasma brake, a negative CDP, is an artificial process of lowering the
spacecraft’s velocity by electrostatic interaction between the negatively charged
tether and ions. The atoms in the ionosphere are stable compared to orbiting
spacecraft at 7–8 km·s−1, causing the tethered satellite to slow down. The working
principle is visualised in Figure 4.

The same tether is used for both the E-sail and plasma brake. The tether
production has strict requirements for the processes involved and materials used,
outlined in Iakubivskyi, I., Janhunen, et al., 2020. The basic structure of the
tether composes of multiple interconnected conductive wires in the Heytether
structure (Seppänen et al., 2011). The individual cells of Heytether provide
immunity to single event damage by micrometeoroid impacts and weathering
(e.g., atomic oxygen and dust erosions, thermal cycles, aluminium sputtering).
The controlled spinning around one axis is an essential part of the CDP tether
management. Centrifugal force and end mass of the tether’s tip assist the
tether(s) deployment and maintenance (i.e., keep them stretched) during the
operation. In the case of ESTCube-2 and FORESAIL-1 is a small aluminium
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(a) ESTCube-2
(b) FORESAIL-1

Figure 3: ESTCube-2 and FORESAIL-1 anatomies.

(Iakubivskyi, I., Janhunen, et al., 2020)

Figure 4: Operational concept of CDP.

The ionospheric distribution is not uniform and is dynamically driven by solar activity
(Iakubivskyi, I., Janhunen, et al., 2020).

mass of 2–2.5 g. The multi-wire tether is stored on the reel. A stepper motor
turns the reel to release the well-packed tether. The schematic of the experiment
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is shown in Figure 5.



Figure 5: Negative CDP (plasma brake) schematics.

(Iakubivskyi, I., Janhunen, et al., 2020)

The most straightforward system, as in the ESTCube-2 and FORESAIL-1
case, is single tethered. This system is sufficient for nanoprobes operation and
technology demonstration while reduces the risks and complexity. A multi-tether
system would be needed for larger space assets and longer Solar System
voyages, providing higher thrust and more control over manoeuvrability.

A previous particle-in-cell simulation study obtained the thrust per unit length
calculation for a CDP plasma brake, given in Equation 2.2 (Iakubivskyi, I.,
Janhunen, et al., 2020; Janhunen, 2014).

dF
dz

= 3.864×Pdyn

√
ε0Ṽ
e n0

exp(−Vi

Ṽ
) (2.2)

where Pdyn = min0v2
0 is the dynamic pressure, mi is the ion mass, and vi is the

plasma flow with respect to the satellite; Ṽ is given in Equation 2.3.

Ṽ =
Vw

ln(λ eff
D /r∗w)

(2.3)

where r∗w is the effective electric radius of tether, λ eff
D =

√
ε0Vw/en0 is the effective

Debye length and Vi = miv2
0/2e is the bulk ion flow energy.

Using Equation 2.2 for the negative CDP experiment, the thrust per unit length
is approximately 86 nN·m−1, considering the tether’s width of 2 cm, the single-
wire diameter of 35 µm, the mean ion mass of 10 amu, and a −1 kV voltage
for the tether (Iakubivskyi, I., Janhunen, et al., 2020). The tether resembles the
Heytether structure with four parallel and numerous perpendicular wires, creating
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cells that provide tether’s resistance to micrometeoroid impacts (tether sketch is
shown in Subsection 3.2 of Iakubivskyi, I., Janhunen, et al., 2020).

Numerous models predict an approximate density and distribution of the
atmosphere and ionosphere at various altitudes. Among popular models are:

• Mass-Spectrometer-Incoherent-Scatter (NRLMSISE-00) (Hedin, 1983);
• Marshall Engineering Thermosphere (MET-V 2.0) (Owens and Vaughan,

2002);
• Drag Temperature Model (DTMB78) (Barlier et al., 1979);
• Horizontal Wind Model (HWM93) (Hedin, 1991);
• International Reference Ionosphere (IRI2001) (Bilitza, 2001);
• NeQuick Ionosphere Electron Density Model (NeQuick v2.0) (Nava,

Coïsson, and Radicella, 2008).
Including various factors in Iakubivskyi, I., Janhunen, et al., 2020, the

deorbiting rates for a typical three-unit cubesat (4.5 kg, which approximately
corresponds to ESTCube-2 and FORESAIL-1) are visualised in Figure 6
(Iakubivskyi, I., Janhunen, et al., 2020).

The thrust is controllable by the voltage applied to the system. The highest
thrust would be achieved at full voltage and could be gradually decreased by
tuning the voltage. The voltage variations are also used for orbital adjustments
by spin plane modifications (more information in Section 2.2).

The following requirements for CDP are derived from Iakubivskyi, I.,
Janhunen, et al., 2020:

• The CDP experiment should support two modes of operation:

1. Spin-Rate Modification (SRM) measurement when the tether is
charged either positively or negatively in synchronisation with the
satellite’s rotation: the spin rate increases when moving downstream
and decreases when moving upstream. The change in spin rate during
one polar pass is expected to be ≈0.1 deg·s−1 for the CDP negative
mode; for the positive mode it is expected to be ≈0.06 deg·s−1.

2. Deorbiting with the plasma brake when the tether is continuously
charged negatively. It is estimated that the satellite will deorbit by
10 km in six months with an unwrapped 30 m tether. Effective
deorbiting requires at least 150 m of deployed tether.

• The CDP payload should perform the following operations:

1. Reel out the tether at ∼1 mm·s−1.
2. Charge the tether negatively.
3. On board ESTCube-2, charge the tether positively and remove

electrons.
4. Turn the charging on and off in a seconds-long time frame (SRM

mode).
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Figure 6: Expected deorbiting rates by the CDP for a three-unit cubesat (4.5 kg)
with various unwrapped tether lengths.

The wide area is caused due to uncertainties in the spin plane in relation to the orbital vector.
The atmospheric drag will additionally contribute to deorbiting rate. The following environmental
factors will also influence the deorbiting rates: 1) ionospheric plasma density and distribution at
various latitudes, longitudes and altitudes and its migration enhanced by the solar wind, and 2) the
ion ratio of oxygen to hydrogen (Iakubivskyi, I., Janhunen, et al., 2020).

5. Provide an angular momentum to deploy at least 30 m of the tether
(preferably all 300 m) starting from the initial 11 m, for which the
angular momentum is provided by the Attitude Determination and
Control System (ADCS).

6. Keep the tether charged for a period of at least six months (deorbiting
mode).

ESTCube-2 will also test a positive mode for the actual E-sail application and
is equipped with the electron emitter developed at the Dresden University of
Technology, based on the NanoFEEP propulsion system (Bock and Tajmar,
2018). The design uses a cold-field emission electron emitter of multi-walled
carbon nanotubes (Tajmar, 2002). The electron emitter is essential for
implementing positive CDP in its native environment – the solar wind.

2.1.1. Sustainable Space Utilisation

Global space access and demand for satellite-based services introduce challenges
to the ever-growing uncontrolled space debris in LEO. The risk of collisions



between the functional and non-functional satellites create enormous amounts of
small debris in the process. At some point, the number of debris would initiate
inevitable cascade collisions and result in unusable LEO with a debris belt,
predicted by Kessler and Cour-Palais, 1978. It is referred to as “Kessler
Syndrome” and was well visualised in the 2013 Gravity movie (dir. A. Cuarón)
when the missile strikes the LEO satellite and initiates an uncontrollable cascade
effect inspired by the work of Kessler and Cour-Palais, 1978. For instance, it is
predicted that the 2009 equivalent accident to Cosmos 2251 and Iridium 33
would happen every five to nine years (Wang, 2010). The actual damage by a
centimetre sized object can be observed on Sentinel-1a solar panel (Krag et al.,
2017). It was also proposed that the explicit introduction of economic incentives
suggests an alternative in which orbital space becomes economically
unprofitable, perhaps well before it becomes physically unusable (Adilov,
Alexander, and Cunningham, 2018).

United Nation’s Committee on the Peaceful Uses of Outer Space developed
guidance for sustainable space usage and limitation of a post-mission lifetime in
orbit to 25–30 years (Klinkrad et al., 2004). However, the policies are not legally
binding and require many synergies and agreements in the international political
arena. In order to tackle the debris problem, one needs to include Post-Mission
Disposal (PMD) device, which would lower the altitude of the spacecraft to the
point when atmospheric drag would naturally decompose the object. There is
also a need to follow the design philosophy “design for demise”, which would
ensure complete disintegration of the vehicle before it potentially reaches
populated areas on Earth (Trisolini, Lewis, and Colombo, 2018). Additionally,
Active Debris Removal (ADR) is planned with a dedicated satellite to remove
nonfunctional satellites (Forshaw et al., 2016; Juillard et al., 2020). European
Space Agency (ESA) dedicates many resources and efforts to tackle this
problem; however, this process is expensive and requires resources equivalent to
science mission planning. There are few PMD devices, but the CDP plasma
brake has advantages over other systems (more details in Iakubivskyi, I.,
Janhunen, et al., 2020). The simplistic overview is visualised in Figure 7.

The main advantages of CDP plasma brake are: (i) a semi-autonomous
system that can be designed to function when the satellite fails, (ii) resistance to
micrometeoroid impacts, (iii) low power, mass and volume, iv) scalable for
larger satellite and higher orbits. For instance, a 200-kg object can be deorbited
from a 1200-km altitude, and an 800-kg satellite from an 850-km altitude in 11
years (Janhunen, Toivanen, and Envall, 2017). ESTCube-2 and FORESAIL-1 are
technology demonstration missions designed to mature CDP plasma brake and
make it viable for space vehicle builders and constellation designers.

Global satellite constellations bring numerous challenges to LEO satellite
traffic. While service, such as global internet access, would improve the quality
of life for millions, it introduces challenges associated with space junk. SpaceX
Starlink constellation’s initial orbital plane was in 1100–1325 km altitude and
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Figure 7: Simplistic comparative overview of deorbiting modules.

The CDP is the pentagon in the middle (Iakubivskyi, I., Janhunen, et al., 2020).

later was resubmitted to 550 km altitude; now, it is operated at approximately
340 km (del Portillo, Cameron, and Crawley, 2019; Space Exploration Holdings,
LLC, 2018). Perhaps, such orbital parameters are the most sustainable way to
operate the constellation: very low altitude, maintained with active propulsion to
compensate for the atmospheric drag per unit mass FD, which is mathematically
described in Eq. 2.4. Once the satellite runs out of fuel or fails, it quickly
deorbits naturally. However, such a low LEO fleet introduces another
distinguishable problem – light pollution for ground-based observation. Lately, it
has become a dramatic issue for astronomers globally, as a constellation of
satellites interferes with data from optical and radio astronomy, and valuable and
expensive time on the telescopes is lost (Levchenko et al., 2020). This is a
complex problem, and there is no straightforward solution that would satisfy all
involved parties. The current solution is anti-reflective coatings, which still
requires significant improvements.

FD =−1
2

CD
A
m

ρ|V |V (2.4)

, where CD is a drag coefficient, A
m is the area to mass ratio of the craft, ρ is

atmospheric density (the models for numerical estimation have been provided in
Subsection 2.1), and V is the relative satellite velocity to the atmosphere (it is
typically assumed that atmospheric angular velocity is the same as of Earth). As
it is clear from Eq. 2.4 without adequate atmospheric density, the drag would be
insufficient; above 700 km, the atmospheric density becomes so low that the
satellite would require propulsion to deorbit in the timely manner defined by the
international agreements. Since all planned constellations would not be able to
operate in orbit under the International Space Station, the CDP is a potentially
helpful independent module to deorbit dysfunctional space assets from higher
orbits.
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2.2. Multi-Asteroid Touring mission

Figure 8: MAT blueprint.
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Asteroids are thought to be leftover planetesimals that are closely related to
the precursor bodies that formed both the terrestrial planets and the cores of the
giant planets; the most primitive ones contain a record of the original
composition of the solar nebula in which the planets formed (Michel, DeMeo,
and Bottke, 2015). Self-surviving mechanisms also trigger human interest in
small solar system bodies: some asteroids intercept Earth’s trajectory and,
therefore, create a risk of collision; the historical phenomenon, such as the
Chicxulub impact, caused, most likely, Cretaceous–Paleogene mass extinction
event and killed dinosaurs 65.5 Ma (Alvarez et al., 1980).

E-sail provides a feasible solution for spacecraft to operate in deep space and
fly by an asteroid by utilising practically unlimited resources available in a solar
system, essentially solar wind. The Multi-Asteroid Touring (MAT) mission
concept was proposed to visit tens of asteroids in the Main Asteroid Belt (MAB)
with a fleet of nanospacecraft operated by E-sail (Slavinskis, Pajusalu, Sünter,
et al., 2018).

Small Bodies Assessment Group recommends4 a balanced program of
telescopic observation (ground-based, airborne and space-based), laboratory
studies, theoretical research and missions to MAB utilising the full spectral range
from ultraviolet to far-infrared to investigate next outstanding fundamental
questions in the decade 2023–2032: (i) physical properties and processes, (ii)
chemical composition and (iii) evolution and dynamical evolution (McAdam
et al., 2020). Until today, fewer than 20 out of over a million known asteroids
have been studied by space missions. Visualisation of visited small bodies is

4Expressed in the 2020 White Paper (McAdam et al., 2020).



(a) MAB trajectory
(b) Jupiter trojans, Hilda and MAB
trajectory

Figure 9: Various original E-sail orbits for the MAT mission.

(Slavinskis, Pajusalu, Sünter, et al., 2018)

A foundation for designing a more complex mission case and system-level
design in Iakubivskyi, I et al., 2021 were following mission-level requirements

5Science popularisation article: https://space-travel.blog/mat-101d13b76f9b.
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presented in Subsection 3.1. In the case of orbiting missions, the target is 1–2
objects; alternatively, the flyby can target more asteroids (Bowles et al., 2018;
Clark et al., 2018; Snodgrass et al., 2018). MAT is a mission concept dedicated
to a distributed close-range spectral survey of hundreds of asteroids by a fleet of
nanospacecraft to increase statistical knowledge of asteroids with resolved
surfaces5.

The initial paper by Slavinskis, Pajusalu, Sünter, et al., 2018 defined the
mission and system requirements and proposed few feasible orbits for a single
tethered nanoprobe. The range of the proposed orbit differs from 3.2 to
8.3-years-long journeys. This resulted in the more detailed spacecraft assessment
in Iakubivskyi, I et al., 2021 to fulfil the mission requirements while keeping the
mass below 6 kg for a spacecraft with a 20-km-long tether charged to 15–30 kV.
The resulting acceleration from the thrust (in order of hundreds of nanonewtons
per meter, depending on tether structure) produced by the system is
approximately 1 mm·s−2 at 1 Astronomical Unit (AU). This number is strongly
correlated with the solar activity driven by the solar cycle and, therefore, affects
solar wind conditions. Depending on space weather, this can be compensated by
adjusting the voltage using an algorithm that interprets the accelerometer
readings and adjusts tether voltage for required acceleration management. A
variety of models exist to forecast roughly solar wind conditions for a particular
sailing day (MacNeice et al., 2018).

https://space-travel.blog/mat-101d13b76f9b


derived from Slavinskis, Pajusalu, Sünter, et al., 2018:
1. Launch to marginal escape or other solar-wind intersecting orbits with a

small rocket (e.g., PSLV or Epsilon).
2. Acquire elliptical heliocentric orbits between 1 and 3 AU. Specific orbital

parameters differ from spacecraft to spacecraft.
3. Withstand four years in an elliptical orbit to the main belt or equivalent

environment.
4. Perform flybys of 20—40 primary targets at distances between 200 and

1000 km.
5. When possible, maximise the number of primary targets (minimise the

number of spacecraft) by using one spacecraft to fly by multiple primary
targets.

6. Locate targets by scanning the sky.
7. When located and if needed, perform relative orbital corrections to reach

the required flyby distance.
8. Maximise the illuminated and imaged surface coverage.
9. Observe active asteroids at different phase angles, including the Sun behind

the asteroid.
10. Store science data until the Earth flyby.
11. Transmit science data during the Earth flyby.

2.2.1. MAT spacecraft adaption

The baseline orbit for the design and analysis was 3.2 years MAB orbit6 shown
in Figure 9a. It was adapted for the structural and thermal analysis and split into
simplistic operational steps shown in Figure 10.

The main operational modes derived from Iakubivskyi, I et al., 2021 are
following:

1. Deployment (near the Earth at 1 AU):

i) Deployment from a launch vehicle’s fairings;
ii) Commissioning of spacecraft, detumble, spin-up around a controlled

axis and deployment of the Remote Unit (RU) with the tether;
iii) Deployment of solar panels on the RU;
iv) Testing low- and high-data-rate communications.

2. Acceleration (1–2 AU):

i) Activation of navigation, high-voltage source and electron emitters;
ii) Acceleration with the E-sail;

iii) The angle between the spin plane and the Sun is 33.4◦ at 1 AU and
linearly decreases (active control) to 0◦ at 2 AU;

6Visualisation of deployment and flyby: https://vimeo.com/577117925.

31

https://vimeo.com/577117925


Multi-Asteroid Touring 
Operation concept

Not to scale

1. DEPLOYMENT
 

2. ACCELERATION
 

4.
 S

CI
EN

CE

3. APPROACH

 
 

6. EARTH FLYBY
 

5. CRUISE~2–2.75 AU

~1
 A

U

~1–2 A
U

~2.75 AU0-45º
Sun

vector 

Figure 10: Simplified operation MAT concept for the analysis.

(Iakubivskyi, I et al., 2021)

iv) Low-data-rate communications with the Earth.

3. Approaching the main asteroid belt (2–2.75 AU):

i) Deployment of a thermal screen on the RU;
ii) Active Attitude and Orbit Control System (AOCS) and E-sail

manoeuvres to minimise the flyby distance;
iii) Low-data-rate communications with Earth.

4. Science (≈ 2.75 AU)

i) Approaching the target;
ii) Remote sensing during flyby (Pajusalu and Slavinskis, 2019);

iii) Low-data-rate communications with Earth.

5. Cruise (2.75–0.95 AU)

i) Returning back to the Earth’s proximity with scientific data stored on
board;

ii) Low-data-rate communications with Earth, transmitting the scientific
data, if possible.

6. Earth flyby (0.95–1 AU)

i) High-data-rate communications: downlink the scientific data during
Earth flyby.

The spacecraft was designed to operate with a 20-km-long tether, and the
total mass limit is 6 kg. The baseline design is a cubesat according to Planetary
System Corporation dispenser design (Tullino and Swenson, 2017) and nearly
1U deployable Remote Unit (RU). The RU is designed to operate independently
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and assist the deployment and maintenance of the E-sail. The exploded view of
the spacecraft is shown in Figure 11.

Figure 11: MAT spacecraft anatomy.

(Iakubivskyi, I et al., 2021)

The RU is equipped with electrospray propulsion to adjust the trajectory and
deploy the tether. The trajectory is adjusted by the spin plane corrections, which
are done by (i) applying full voltage (i.e., maximum thrust) during the first half
rotation and zero-thrust during another half or (ii) by applying electrospray thrust
in the RU in the desired direction, or by the combination of both. The RU’s
thruster firing would be critical for manoeuvrability during the critical scientific
operation (i.e., attitude and trajectory adjustment for target imaging). The angular
velocity of the spin-plane trajectory correction is calculated by Equation 2.5 from
Iakubivskyi, I et al., 2021. The anatomy of RU is shown in Figure 12.

ω =
1

2 ·π ·
√

dF/dr
k ·m , (2.5)

where dF/dr is the E-sail thrust per length, which is 250 nN·m−1 for MAT at
10 kV average voltage at 1 AU, and three times smaller at 3 AU (Janhunen et al.,
2010); k is the ratio between the tether tension and E-sail force, which can be as
low as 3 for a single-tether system at 1 AU, and 9 at 3 AU; m is the RU mass
(0.75 kg). It results in approximately 10.9 deg·h−1 at 1 AU and 3.6 deg·h−1 at
3 AU, if the spin periods and voltages are constant.

Preliminary system budgets and power equilibrium used for thermal analysis
are derived from Iakubivskyi, I et al., 2021 and are shown in Table 2.
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Component
Modes power consumption and equilibrium [W]

1.Dep. 2.Ac. 3.Ap. 4.Sc. 5.Cr. 6.E. f.
Main Spacecraft

E-sail 0.1 7–3 3–0.1 0.1 0.1–3 0.1
TILE 1.5 0.5 1.5–0.5 0.5 0.5 0.5

Main bus 0.5 0.5 0.5 0.5 0.5 0.5
Heater 0 0 0–1.6 1.6 1.6–0 0

Transmitter 0.5 0.025 0.5 0.025 0.5 10
Instrument 1 1 1 1 1 1

Reaction Wheel (RW) x 0.25 0.5 0.25 0.5 0.25 0.5
RW y 1.05 0.5 0.25 0.5 0.25 0.5
RW z 0.4 0.075 0.1 0.075 0.1 0.1

COM to RU 0.1 0.1 0.1 0.1 0.1 0.1

Pout put 5.4 10.2–6.2 7.2–4.9 4.9 4.9–6.2 13.3
Pavailable 37.8 34–8.9 8.5-5.4 5.4 5.4–30.8 30.8
Margin 32.4 23.8–2.7 1.3–0.5 0.5 0.5–24.6 17.5

Remote Unit
Motor 1 0 0 0 0 0
AOCS 0.1 0.18 0.18–0.1 0.1 0.1–0.18 0.18

Bus 0.2 0.2 0.2–0.1 0.1 0.1–0.2 0.2
Heater 0 0 0–0.25 0.25 0.25–0 0

COM to MS 0.1 0.1 0.1 0.1 0.1 0.1

Pout put 1.4 0.48 0.48–0.55 0.55 0.55–0.48 0.48
Pavailable 1.9 1.9–1.08 1.05–0.67 0.67 0.67-4.7 4.7
Margin 0.5 1.42–0.6 0.57–0.12 0.12 0.12–4.22 4.22

Table 2: Subsystems’ power budget and power equilibrium at various mission
modes.

P–power, COM–communications. The table is taken from Iakubivskyi, I et al., 2021.
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Figure 12: RU subspacecraft anatomy.

(Iakubivskyi, I et al., 2021)

The environmental analysis demonstrated the feasibility of such spacecraft to
operate with passive thermal design in deep space and accomplish the scientific
objectives. The thermal distribution during the mission for the main spacecraft
and RU are shown in Figure 13.
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3. INSTRUMENTATION AND SIMULATIONS

An optical instrument is one of the most common instruments on space missions.
Various phenomena are observed and characterised by visual cameras. There is a
tendency in camera’s miniaturisation and an increase in the number of cameras
per satellite. For example, the Mars 2020 Perseverance rover is equipped with 23
cameras and, during its first 147 sols, produced over 112k images. The first
Estonian satellite, ESTCube-1, was equipped with a camera that brought great
success to the mission (Slavinskis, Pajusalu, Kuuste, et al., 2015). This camera
led to the development of the European Student Earth Orbiter dual-camera
payload (Sünter, Kuuste, Kütt, et al., 2016; Sünter, Kuuste, Slavinskis, et al.,
2016). Later, it led to the development of a double-camera set-up for the
ESTCube-2 satellite scheduled for the launch in 2022 (Ehrpais et al., 2016;
Iakubivskyi, I. et al., 2016). ESTCube alumni Pajusalu and Slavinskis, 2019
also built the instrument prototype for the MAT mission. Essentially, almost
every satellite requires an optical instrument and the development of new,
innovative and custom ideas for the era of New Space. The following
Subsection 3.1 discusses the current instrument, Optical Periscopic Imager for
Comets, development in Tartu Observatory. In order to evaluate the performance,
develop autonomy algorithms and imaging strategies for an instrument, such as
OPIC and optical instrument for MAT, a highly capable physically-based Space
Imaging Simulator for Proximity Operations (SISPO) was developed and is
presented in Subsection 3.2.

3.1. Optical Periscopic Imager for Comets (OPIC)

Figure 14: OPIC blueprint.
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Cometary science started with basic direct observations and can be naturally
divided into five conceptual periods: (i) before 1600, comets were interpreted as
heavenly omens, possibly meteorological atmospheric phenomena; it is hard to
date the first observations, but known records exist from Old Babylonian period
(early second millennium B.C.) (Steele, 2001); (ii) the discovery of the universal
gravitational law contributed to positional measurements during two following
centuries, and two critical events occurred: the successful prediction of the
March 1759 return of 1P/Halley’s comet and the discovery of the
non-gravitational motion of Comet 2P/Encke; (iii) in 1835, the spatial structure
of a comet was described in detail for the first time with the passage of 1P/Halley,
and this started a new field of cometary physics; iv) 1950 marked the modern
view in cometary structure as an ensemble of solar system objects composed of
primordial ice and dust, generally on long-period orbits and shaped by their
interactions with the solar radiation field and the solar wind; v) the current era of
space missions, in situ observations and sample return began with comet
21P/Giacobini–Zinner flyby in 1985 and 1P/Halley in 1986 (Dones et al., 2004a).

Ernst Julius Öpik, an Estonian astronomer and astrophysicist, predicted that
comets should arrive from the cloud far beyond Pluto, lately named the Öpik–
Oort cloud. Öpik, 1932 and Oort, 1950 pointed out that once the comet’s orbit
becomes large enough, passing stars affect it; in fractional terms, stars change
cometary perihelion distances much more than they change the overall size of the
orbit (Dones et al., 2004b). In dedication to his discoveries, Tartu Observatory
is now developing an instrument, called OPIC, to fly by a long-period comet or
an interstellar object in a prominent case. The family of visited small bodies in
the current exploration era is meagre and requires investigation of a vast number
of small bodies, especially unweathered comets, in order to fill in the knowledge
gaps; currently visited small bodies are visualised in Figure 15.

OPIC is the first Estonian deep space instrument being developed for the
ESA-JAXA F-class mission Comet Interceptor1 (Snodgrass and Jones, 2019).
Three probes will assist the study of a long-period or dynamically new comet, or
an interstellar object by fast rendezvous. The main goal is to investigate how a
long period comet differs from a short period one. One of these probes, B2, is
equipped with the miniature OPIC instrument (a 500 g camera); the probe is
spin-stabilised at 4–15 RPM. OPIC shall take full-frame images of coma to
identify dust particles. The mission will arrive at Earth-Sun Lagrange point L2
on a shared ride with ESA’s ARIEL telescope (Pascale, Eccleston, and Tinetti,
2018) and will remain in quasi-halo orbit for up to three years (Sánchez et al.,
2021). It will depart to intercept a yet-to-be-discovered target at a relative
velocity of 10–70 km·s−1 at a suitable time and conditions with an expected
heliocentric distance of 1.1–1.25 AU. The mission consists of a mothercraft A
(ESA) parked at L2 until the departure to the target’s interception orbit is

1The presentation about the mission can be watched here: https://vimeo.com/521276732.
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Figure 15: Asteroids and comets bothered by spacecraft.

A montage of 18 of the 20 asteroids and comets that have been photographed up close as of
December 2018, when New Horizons flew past Arrokoth. This version is in color but does not
show the bodies at their correct relative albedo or brightness. Not included are Vesta or Ceres, both
of which are many times larger than Lutetia. Montage by Emily Lakdawalla for The Planetary
Society. Data from NASA / JPL / JHUAPL / SwRI / UMD / JAXA / ESA / OSIRIS team / Russian
Academy of Sciences / China National Space Agency. Processed by Emily Lakdawalla, Daniel
Machacek, Ted Stryk, Gordan Ugarkovic / Thomas Appéré. This work is licensed under a Creative
Commons Attribution 3.0 Unported License.

confirmed. The B1 (JAXA) and B2 (ESA) daughter spacecraft will be deployed
from A to enhance the scientific return by performing multi-point measurements.
The B2 probe’s planned trajectory incorporates the closest approach of roughly
400 km. The full operation time is relatively short, equals 72 hours of planned
operations at most, unless the probe survives the encounter with a near
environment. The data collected before the possibly fatal closest approach will
be transmitted in compressed packages at 10 kbit·s−1.

The instrument evolved since the publication by Pajusalu et al., 2020; some
modifications are introduced in this section. The general view and basic
components are demonstrated in Figure 16.

The periscope is a vital element of OPIC design. It protects the camera from
the impact of high-velocity particles produced by the comet. The body of the
study object might be weathered by Sun for the first time. The typical activity of
the comet evolves from roughly 3 AU. The sublimation-driven process produces
non-volatile material (i.e., dust) motion that reaches escape velocity; there is also
evidence of accumulation of non-escaping particles of various sizes (Thomas et
al., 2015). These particles have high impact energy due to their velocity. The
periscope’s aluminium mirror protects optics and other parts of the instrument
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Figure 16: OPIC anatomy.

The view represents external and internal parts which are described in Table 3.

from being damaged during close interaction. The viewing geometry is shown in
Figure 17.

Figure 17: The viewing geometry of OPIC.

The actual preliminary performance of the instrument is shown in Figure 18.
It shows captured frame while approaching the comet at 600 km on a 400-km
closest-approach trajectory. The trajectory was simplified as a straight line since
the integration of Keplerian orbital parameters would have a negligible effect on
the performance estimation. The development of such image simulations is done
by Space Imaging Simulator for Proximity Operations (SISPO), described in
Subsection 3.2.
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Part Title Description
1 Camera head An integrated imaging module, 3DCM734-1 from 3D

plus, has a CMV4000 2048×2048 pixels sensor, a three
million gate ProASIC3 FPGA, 1 GB of flash memory,
and 64 MB of RAM. It is rated to 40 krad of total ionising
dose and operating temperature from −40 to +70°C.

2 Optical assembly Commercial Off-The-Shelf (COTS) LM35JCM-V 2/3"
ruggedised 35-mm C-mount f/2 lens assembly. The
filter will be integrated with the optical assembly’s front
element. It is designed for use in environments with
strong vibrations and shocks but requires testing on the
vibration bench for the Ariane 62 vibration profile.

2a Optical supports Two metallic supports with set screws for supporting
optical assembly.

3 Periscope assembly The periscope assembly consists of two parts and a
mirror. The lower part functions as a mirror holder, and
the upper part serves as a baffle.

3a Metal mirror The current design requires an aluminium substrate with
a protected silver layer and an additional protective coat.

4 Interface Data and power interface consists of a two-board
assembly 5 mm apart, which is bolted to the enclosure.
The front PCB is directly attached to the camera head
with pins, and the rear PCB has two identical Micro-D
connectors from NorComp (580-M09-213L001).

5 C-mount adapter An aluminium adapter that provides a mechanical
interface between the camera head and optics.

6 Top plane An aluminium plate that provides a structural and thermal
interface to B2 spacecraft.

7 Enclosure An aluminium enclosure around the body and bottom
plate provides structural stability and protects optics and
electronics against harmful radiation.

Table 3: OPIC anatomy description.

3.1.1. Image capturing

The following cases make mission operation and fulfilment of scientific
requirements challenging:

1. The high relative velocity of up to 70 km·s−1 will provide merely minutes
when the nucleus can be resolved; the longer time will be available to
capture the entire coma.

2. Spin-stabilised spacecraft B2 does not provide the opportunity to point the
instrument (i.e., the instrument can only control the timing and length of

40



Figure 18: An expected image of the comet 67P/C–G without jets at approaching
distance of approximately 600 km.

The frame on the right is the actual full-frame size image expected by OPIC instrument, which
was simulated in SISPO (more details in Subsection 3.2). The right view is zoomed region. The
image is simulated with a pinhole camera. The object’s brightness would depend on its albedo and
heliocentric distance, which is expected to be 1.1–1.25 AU.

exposure); the rotating view will intercept with nucleus closer to the edge
of the frame (see Figure 19), and in specific geometrical configurations, the
nucleus might not be visible.

3. The probe B2 might not survive the encounter with the comet (i.e., the
kinetic energy of particles impact might be fatal) and, therefore, the data
must be transmitted before the potentially damaging encounter.

4. The limited resources and low data budget provide numerous limitations
on data that can reach Earth. Due to the wide Field of View (FoV), the
prioritised scientific data would be the one to (i) resolve a 3D structure of the
coma (in combinations with data from other payloads), (ii) capture resolved
images of a nucleus, (iii) image dust particles and vi) provide means for
navigation and localisation of B2 spacecraft.

5. One full frame image would take over 80 minutes to transmit. The full
sky image (the FoV corresponds to 1

6 of one full B2 spin) would take over
eight hours, which is unfeasible in the context of probe’s lifespan and data
budget. Pajusalu et al., 2020 describes the roadmap of required autonomous
algorithms for data prioritisation, compression and cropping.
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Figure 19: Flight geometry of B2 spacecraft and OPIC’s FoV.

3.2. Space Imaging Simulator for Proximity Operations (SISPO)

SISPO is a newly developed physically-based space imaging simulator
developed by the University of Tartu and Aalto University; other institutes also
contribute to the current development. It is based on open-source Blender
software and its Cycles rendering engine. SISPO is applicable for
terrestrial-body mission-oriented operations, such as the design of advanced
deep-space missions, the simulation of large sets of configurable scenarios, and
the development and validation of algorithms for autonomous operations,
vision-based navigation, localisation and image processing (Pajusalu,
Iakubivskyi, I., et al., 2021).

SISPO was initially used for the MAT mission development (see Section 2.2)
and potential scientific data production. Currently, it is actively used for the
development of OPIC (see Subsection 3.1) and EnVisS (Da Deppo et al., 2020;
Pernechele et al., 2020) instruments. It can also be utilised for planetary surface
missions, for example, simulating surface and subsurface rover operation
environments, such as lava caves. The author of this dissertation, as a member of
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the international team PELE2, develops future sampling tactics in Martian caves
utilising Earth analogues as sampling ground for astrobiology research (Csuka
et al., 2020; Kopacz et al., 2018), and SISPO could be potentially employed for
such mission development.

SISPO main functionality includes image rendering using a fast OpenGL
engine and physically-based high-detail Cycles rendering engine. It also has the
following auxiliary features (more information in Subsection 3.2.2), some of
which are still in development:

• 3D reconstruction;
• Gas and dust environment;
• Camera distortions;
• Attitude dynamics in the initial stage (the Orekit framework). It contains

rotation from the reference frame to the satellite frame, and the angular
velocity and angular acceleration of the spacecraft in its frame.

3.2.1. Blender and Cycles

Cycles, developed by the Blender project (Blender Online Community, 2021), is
open-source software for realistic physically-based rendering. It uses path
tracing, which is a type of ray tracing. The ray tracing is an inverted process to
the natural light propagation, where light travels from the source, then reflects
from the surface and reaches the sensor. In the ray tracing, the ray is shot from
the camera’s pixel, and then it bounces from the surface with specific shaders and
textures and eventually reaches the light source. The limitation of ray tracing is
an exponential growth of rays, which is computationally heavy. In path tracing,
instead of sending a single ray from a pixel, it shoots multiple rays, bouncing
without producing new rays. The rays bounce until they finally reach light
sources or exhaust the sampling limit; the amount of light and surface shader
values are then registered by specific pixels. For photorealistic surface
generation, SISPO uses micropolygon displacement texture, also called adaptive
subdivision or tessellation: it implements adaptive subdivision of the object,
which is then displaced by micropolygon displacement during rendering. The
comparison between SISPO and other available simulators is shown in Figure 4
on the example of asteroid 25143 Itokawa (Gaskell et al., 2008).

3.2.2. Auxiliary features

3D reconstruction. SISPO provides the possibility to reconstruct 3D surfaces
based on structure from motion algorithms (more information in Westoby et al.,
2012), which are provided by external packages, such as OpenMVG (Moulon

2Planetary Analogues and Lava Tube Expedition, an international team is studying lava caves
by in situ biological and geological sampling collection and intends to find a correlation between
unconnected environments (i.e., lava caves on various geological locations, primarily volcanic
islands). More information can be found in Guðlaugardóttir, 2021; Iakubivskyi, 2019.
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Simulator Developer Rendering Example of rendered image

SurRender Airbus

Backward ray
tracing or image
generation with
Open Graphics
Library (OpenGL)

Planet and
Asteroid
Natural
Scene
Generation
Utility
(PANGU)

University
of Dundee,
UK and
ESA

Fractal terrain
generation using
OpenGL

SISPO
University of
Tartu,
Estonia and
Aalto
University,
Finland

Blender Cycles
physically based
path tracer (the
same model as
above with a simple
diffuse shader)
Blender Cycles
physically based
path tracer
with procedural
displacement and
reflectance textures

Table 4: The comparison of available simulators for space-scene image rendering.

The data was taken from Pajusalu, Iakubivskyi, I., et al., 2021.

et al., 2017) and OpenMVS (Cernea, 2021). It takes the set of images as input,
detects common features between various frames and reconstructs the point
cloud, which then can be turned into a textured mesh. Figure 20 demonstrates the
numerical comparison between the input 3D model for image generation and the
reconstruction of comet 67P/C–G based on the 25 frames generated by SISPO
during the simulated flyby.

Camera. Blender software does not simulate common optical aberrations and
motion blur, which is expected from the hardware performance in the real
environment. Tangential and sagittal astigmatisms and internal and external
comatic aberrations are modelled by the SISPO-integrated external tool. The
Optical Aberrations for Still Images Simulator (OASIS)3 tool was developed by
Bührer, 2020.

Gas and dust. The typical heliocentric distance for a comet to show the signs
of activity is 2.5–3 AU, and H2O, in certain circumstances, sublimates at 5–10 AU;
in this process, a comet relieves its cold volatile storage, which was preserved for

3https://github.com/SISPO-developers/OASIS.
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Figure 20: Comparative reconstruction of comet 67P/C–G.

The comparison was made with CloudCompare software (Girardeau-Montaut, 2011). This image
is from Pajusalu, Iakubivskyi, I., et al., 2021.

a long time – billions of years (Rickman, 2004). The coma is typically observed in
the form of scattered light from released gas and dust particles; this mechanism is
simulated and integrated into SISPO. Currently developed coma creator4 is based
on the volumetric-scattering shader from Cycles (Pajusalu, Iakubivskyi, I., et al.,
2021).

4https://github.com/SISPO-developers/ComaCreator.
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4. DISCUSSION AND CONCLUSIONS

Space missions and relevant technology are still relatively developing fields that
have been operating for less than 70 years. There are few fundamental reasons,
among many more, for that. First, it is expensive; one might call it luxury by
economic standards of the first quarter of the XXI century. Secondly, it is
time-consuming: the process starts from proposal writing, and it ends with the
satellite commissioning, which is then transferred to the data interpretation step
that reflects on the academic position creation, primarily based on the
generations of master and doctoral theses. For example, if the Cassini–Huygens
mission proposal would be initiated now, the famous Grand Finale (Edgington
and Spilker, 2016) would happen in the 2060s; that is a career lifetime for a
human. Thirdly, space technology is complicated and requires comprehensive
expertise and synchronised teamwork, which are not exceedingly easy to
congregate, especially by non-space-faring nations without a needed education,
expertise and experience. Despite mentioned challenges, the field is thriving with
innovation and, more noticeably, public support to space-related topics. The
launch price per launched kilogram could be reduced significantly1, which in
succession with tens of other remarkable companies, such as Rocket Lab, will
make the launch of nanosatellites2 extremely affordable and feasible for
technology demonstration and supportive science missions, both for Low Earth
Orbit (LEO) and deep space.

The world of nanospacecraft and the commercialisation of the space field, in
general, are shaping these limitations to globally affordable and opportunistic
directions. Cubesats are assisting scientific missions and contribute to the
exploration of the Solar System. Propulsion, autonomy and scientific
instrumentation are still limiting factors. The Electric Solar Wind Sail (E-sail), a
type of Coulomb Drag Propulsion (CDP), provides a viable solution of space
travel with microspacecraft: it utilises electrostatic force created by the solar
wind interaction with a positively charged tether.

The first attempts to test E-sail and plasma brake were onboard the
ESTCube-1 satellite and then Aalto-1. Despite the unsuccessful deployment of
their tethers, they have provided precious lessons learned for the next generation
of satellites. ESTCube-2 and FORESAIL-1 (see Suction 2.1) contribute to the
technology demonstration missions of CDP in the form of plasma brake
deorbiting. ESTCube-2 will also test a positive mode with the involvement of
electron emitters for evaluating the E-sail thrust, measured by changes in spin
rate. The results of these missions will be crucial for the further development of
plasma brake modules and E-sail and are aiming to demonstrate an actual

1For instance, SpaceX’s heavy-lift Starship: the payload capacity is over 100 tonnes, and the
predicted price, when reusability is achieved, is in the range of 2–10M USD, which brings the price
to 20–100 USD/kg (Mann, 2020).

2Mainly cubesats that are operated since 1999.
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deorbiting by CDP means. It will also influence the technologies for the tether
deployment and maintenance of spin plane, tether production, and multi-tethered
system implementation. The tether itself requires a novel implementation for
manufacturing. Currently, it consists of multiple interconnected aluminium alloy
filaments with diameters ranging from 25 to 100 µm in the Heytether
resemblance. Such structure prevents tether from being destroyed by
micrometeoroid impacts and various erosion effects, such as aluminium
sputtering. Other conductive metals can also be employed in the future, such as
gold, copper, titanium, nickel, steel, and silver. The latter has limitations in the
LEO applicability due to atomic oxygen erosion. Density and strength are also
important factors. The primary complication in the previous missions was a
deployment step; therefore, ESTCube-2 and FORESAIL-1 will utilise
space-grade stepper motor and undergo extensive testing to improve general
system reliability. Both satellites provide a solid ground for future mission
development in E-sail’s natural habitat – solar wind, for example, the MAT
mission adaptation.

This thesis contributes to the mission concept development of the deep-space
nanospacecraft fleet to the Main Asteroid Belt (MAB) entitled Multi-Asteroid
Touring (MAT). Fewer than 20 asteroids have been explored by spacecraft from
close vicinity. The ground-based or remote space telescopes observations do not
provide sufficient resolution to resolve the geomorphology and composition of
small solar system bodies. Each 6 kg MAT spacecraft is equipped with a
20-km-long tether which ensures a total journey time of approximately 3.2 years
to MAB with one heliocentric orbit. The fleet of 50 spacecraft could provide data
about hundreds of asteroids in MAB with an approximate heliocentric distance
of 2.75 AU. The data is stored in the onboard memory and downloaded during
the Earth flyby. One of the biggest challenges for the spacecraft is to
accommodate satisfactory-against-requirements thermal design and radiation
protection in a small package for a long-duration trip and significant fluctuations
of solar fluxes throughout the mission. The application of various surface
finishes and other passive control strategies provides sufficient isolation for the
craft to operate in the hot (0.95 AU) and cold (2.75 AU) cases. The MAT mission
concept is an innovative way to explore the solar system. It demonstrates the
capabilities of E-sail at its unparalleled excellence since there is practically no
propulsion that would allow such a mission scenario with stated mission
requirements (e.g., an independent fleet of cubesat launched together to study
hundreds of asteroids). The Aurora Propulsion, a private enterprise, is also
developing a separate E-sail-propelled concept targeting the North Star3.

The CDP propulsive effect firmly depends on the applied voltage, length and
number of tethers and space weather conditions. The space weather conditions in
LEO are mainly connected to the distribution and density of the ionospheric

3https://aurorapt.fi/northstarmission/, accessed 26/07/2021.
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plasma and H/O ion ratio. Various models listed in this thesis support the
preliminary estimation of ionospheric conditions in a specific orbit; however, it
moves, and this migration is caused by solar activity. The same applies to
deep-space operation, where the variation of solar wind is a decisive factor for
the propulsive effect. It changes based on the 11 years solar cycle and short-term
solar events in general. To some extent, thrust parameters can be compensated by
voltage adjustment to provide the required average acceleration over time.

The optical payload for fast flyby missions for the MAT mission requires the
development of autonomous operation, especially for scenarios with limited
communication and short operation time. Such algorithms could be developed
with the assistance of specialised simulator software. Simulation tools would
also be helpful for the performance estimation, design of advanced deep-space
missions, the simulation of large sets of configurable scenarios, and the
development and validation of algorithms for autonomous operations,
vision-based navigation, localisation and image processing. In collaboration with
Aalto University, the UT has developed the Space Imaging Simulator for
Proximity Operations (SISPO); it is a fully functional simulator based on the
open-source Blender software and employs various additional packages for
optical aberrations, coma simulations and reconstruction. It employs
micropolygon displacement texture generation for realistic surface generation. In
Pajusalu, Iakubivskyi, I., et al., 2021, various use-cases were discussed, among
them are: example of asteroid 25143 Itokawa simulation, volumetric particle
effect for coma generation on the comet 67P/C–G, lunar surface generation in
comparison with the actual Apollo-15 operation side, subsurface exploration on
the example of the Martian analogue lava cave, and spacecraft flyby simulation.
Some features require further development and integration, which include the
following: attitude dynamics, image compression, spectral reluctance simulation,
Solar System ephemeris integration for historical and upcoming events. SISPO is
actively used for OPIC and ENVISS instruments development for the
ESA-JAXA Comet Interceptor mission despite the ongoing improvements and
developments.

OPIC is the first Estonian deep space instrument hosted on one of three
probes of the Comet Interceptor mission. Currently, there are three probes: A, B2
and B1. The Japan Aerospace Exploration Agency is building the latter. Probes
A and B2 are from ESA. The spin-stabilised probe B2 is planned to intercept the
study object at the closest distance of approximately 400 km. Comet Interceptor
will study a long-period or dynamically new comet or an interstellar object by
fast rendezvous. The OPIC instrument on the B2 probe should take resolved
images of the nucleus and full-frame coma images. In addition, it could perform
3D reconstruction and B2 localisation. It is also designed to perform image
compression and prioritisation by intelligent algorithms driven by short mission
operation time and limited data rates. OPIC uses a space-grade camera from 3D
Plus, COTS optics, and a custom-developed rigid structure to comply with the



operational environment. It is equipped with a periscope and metallic mirror to
protect the camera from the impact of high-velocity particles of ice and dust
produced by the comet. This instrument is a vital payload that could help
understand the unresolved questions about the origin of the Solar System, the
role of asteroids and comets in life, and how we can protect Earth from any
potential impacts.

To conclude, the dissertation presented here explores the author’s contribution
to the miniaturisation of planetary missions and instruments by developing the
nanosatellites missions, mission concept, instrumentation and simulation tool for
planetary research and technology demonstration. Firstly, it demonstrates the
design and performance of the Coulomb Drag Propulsion (CDP) payload for
deorbiting on the ESTCube-2 and FORESAIL-1 satellites, the new generation of
CDP cubesats to be launched in 20224. Then it leads to the more advanced CDP
application – Electric Solar Wind Sail (E-sail) for the Multi-Asteroid Touring
(MAT) mission concept to visit hundreds of asteroids by a fleet of
nanospacecraft, which is primarily based on ESTCube-2 experience and relevant
missions. The MAT mission was selected among three candidates to ESA’s New
Science Ideas5, and undertook one dedicated delta session of the
small-planetary-platforms concurrent-design-facility study6; however, it was not
selected but indicated prominent interest for future E-sail missions. Thirdly, it
discusses the actual Estonian instrument development and its current state for the
upcoming ESA-JAXA deep-space science mission Comet Interceptor to be
launched with the ARIEL space telescope to Earth-Sun L2 quasi-halo orbit in
2029. The tool, called SISPO, to simulate the optical instrument performance
and develop autonomous algorithms for OPIC and MAT instrument is manifested
in the last part. The UT initiated the Space Imaging Simulator for Proximity
Operations (SISPO) tool, and it has an ongoing contribution from various other
universities now. It is open-source software based on Blender; the team
encourages everyone to use it and contribute to improvements. Overall, it is
undeniable that Estonian contribution to European and global space technology
and exploration is proliferating despite being a remarkably young space nation.
The author believes that the projects presented here will contribute significantly
to the local space community advancement and upcoming prominent
space-project engagement.

4Dates are subject to change.
5https://www.cosmos.esa.int/web/new-scientific-ideas, accessed: 15.08.2021
6https://sci.esa.int/web/future-missions-department/-/

60411-cdf-study-report-small-planetary-platforms-spp, accessed: 15.08.2021
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SISUKOKKUVÕTE

Nanosatelliide kasutamine demonstratsioon- ja
teadusmissioonidel

Kosmosemissioonide kavandite ning neis kasutatavate seadmete ja
tõukurtehnoloogiate välja töötamine hõlmab tihti nii uudseid lahendusi kui ka
reaalsel kosmoselennul tõestamist (Frischauf et al., 2018; Paikowsky, 2017).
Siinse väitekirja autor on andnud oma panuse mitme missiooni kulgu, seda nii
missioonikavandi tasandil kui ka tehnilisi lahendusi ja arvutisimulatsioone
arendades. Need vahendid aitavad luua tulevikku, kus uurime Päikesesüsteemi ja
laiemat kosmost just väikesatelliitidega. Järgneva väitekirja võib jagada kahte
ossa.

• Esimene osa keskendub uudsele satelliitide tõukurtehnoloogiale, kulonilise
vastastikmõju tõukurile (Coulomb Drag Propulsion, CDP) (Janhunen,
2010), millel on omakorda kaks eristatavat kasutusvaldkonda: 1) selle
toimimine plasmapidurina ESTCube-2 ning FORESAIL-1 missioonidel
(Iakubivskyi, I., Janhunen et al., 2020) ja 2) tõukurtehnoloogia
kasutamine elektrilise päiksepurjena (Electric Solar Wind Sail, E-Sail)
(Janhunen, 2004) planeetidevahelise missiooni kavandis
“Mitmikasteroidide turnee” ehk Multi-Asteroid Touring (MAT)
(Iakubivskyi, I et al., 2021; Slavinskis, Pajusalu, Sünter et al., 2018).

• Töö teine osa hõlmab kosmosemissioonide seadmete ning tehnoloogiate
arendustööd, näiteks komeetide pildistamiseks mõeldud optilise
periskoopkaamera (Optical Periscopic Imager for Comets, OPIC) välja
töötamist (Pajusalu, Kivastik et al., 2020). Kirjeldatakse ka eelmainitud
missioonideks loodud kosmose lähioperatsioonide pildistamise
simulaatorit (Space Imaging Simulator for Proximity Operations, SISPO)
ning selle abil tehtud instrumendianalüüsi, võimekushinnangut ja
missioonikavandit (Pajusalu, Iakubivskyi, I. et al., 2021).

Kuupsatelliitide väiksus avab neile uued võimalused tõukejõudu kasutada:
päiksepurjed, elektrilised päiksepurjed, elektrodünaamilised köidikud ning
laserite abil kiirendamine. Need meetodid rakendavad enamasti edukalt saadaval
olevaid ressursse, nagu päikesevalgus, ionosfäär, magnetväli ja päikesetuul.
Elektrodünaamilised köidikud on võimelised muutma kosmosesõiduki orbiiti,
kasutades selleks laetud traadi liikumist magnetväljas. Päikesepurje töö põhineb
valguse rõhul ehk footonite impulssmomendi ülekandumisel purjele. Purje
pindala suurendades on võimalik suurendada ka tõukejõudu, kuid samas kasvab
oht mikrometeoroidide tabamusteks. Samuti seab oma piirid asjaolu, et Päikesest
eemaldudes väheneb kiirelt tõukejõud. Seda probleemi saab leevendada
elektrilise päiksepurje tehnoloogia abil, mis kasutab päikesekiirguse abil
päikesetuult, mille laetud osakesed satuvad vastastikmõjju satelliidist välja
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keritud positiivse laenguga traatidega. Sellisel süsteemil on ka teine väljund:
päikesepurje tehnoloogiat saab kasutada, et tuua madalal Maa orbiidil lendavaid
ja oma missiooni lõpetanud satelliite kiiremini atmosfääri tagasi Nii saaks vältida
kuhjuva kosmoseprügi probleemi. 4,5 kg raskused varsti startivad kuupsatelliidid
ESTCube-2 ja FORESAIL-1 rakendavad mõlemad kosmoses kuni 300 meetri
pikkust elektrilist päikesepurje, millel on võimekus langetada 9–13 kuu jooksul
satelliitide orbiidi kõrgust 200 km võrra.

Mitmikasteroidide turnee missiooni kavand pakuti välja võimalusena
külastada kümneid asteroide peamises asteroidivöös, kasutades selleks hulka
elektrilise päiksepurjega varustatud nanosatelliite. Selle missiooni eeldus on, et
ESTCube-2 katsetab päikesepurje edukalt Maa orbiidil. Missiooni kaasatavad 6
kg raskused satelliidid oleksid võimelised väljutama 20 km pikkuse elektrilise
päikesepurje ning tagaksid passiivse termoregulatsiooni 3,2 aastaks, kusjuures
nende lennu suurim kaugus Päikesest oleks 2,75 astronoomilist ühikut.
Väitekirjas on toodud arutlus missiooni kavandit puudutavate tähtsamate
küsimuste ning esmase analüüsi üle.

OPIC on Eesti esimene süvakosmosemissiooniks arendatud instrument, mis
on osa Euroopa Kosmoseagentuuri (ESA) ja Jaapani Kosmoseuuringute
Agentuuri (JAXA) koostöös ellu viidavast F-klassi missioonist Komeedipüüdur
(Comet Interceptor, CI) (Snodgrass ja Jones, 2019). Komeedipüüduri
põhieesmärk on uurida pika perioodiga või uudsete komeetide või
Päiksesüsteemi väliste kehade ehituslikke erinevusi võrreldes juba tuntud
lühikese perioodiga komeetidega. Seetõttu moodustavad missiooni kolm eri
suuruse ja eesmärgiga sondi, mis lähenevad sihtmärgile eri kaugustelt. Väitekiri
esitleb OPIC-u instrumendi disaini ning annab hinnangu selle oodatava
võimekuse kohta, kasutades spetsiaalselt selleks loodud SISPO
simulatsioonitarkvara. Väitekirja viimane osa selgitab põhjalikumalt SISPO kui
tööriista tööpõhimõtteid. SISPO-t saab kasutada eri taevakehade
missioonipõhiseks analüüsiks. Programm võimaldab luua keerukaid
süvakosmosemissioonide kavandeid, simuleerida arvukate erinevate
parameetritega stsenaariume, rakendada pildipõhist navigatsiooni ja
lokalisatsiooni ning kasutada erisuguseid pilditöötlusvõimalusi. SISPO on
arendatud eraldiseisva laiendusena vabavaralisele programmile Blender ning see
kasutab pindade loomiseks mikropolügoonide nihutamisel põhinevat tekstuuri.
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CURRICULUM VITÆ

Iaroslav Iakubivskyi (May 21, 1992)**
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2017–present PhD candidate in Physics, University of Tartu, Estonia
2015–2017 M.Sc. in Engineering, University of Tartu, Estonia. Robotics

and Computer Engineering: Space Technology.
2012–2013 Exchange, Warsaw University of Technology, Poland.

Airplane and propulsion design; flying on simulators.
2009–2014 BA, National Aviation University, Ukraine.

Gas turbines and jet engines engineering.
1999–2009 School. Ternopil, Ukraine.

EXPERIENCE

VOCATIONAL

5.2020–present Comet Interceptor’s Science Team Associate
OPIC instrument development for ESA–JAXA mission.

9.2017–present Junior Research Fellow, Tartu Observatory,Estonia.
A/2019 Teaching Responsible lecturer for the course LTTO.00.011

"Introduction to Space Technology" (3 ECTS), UT.
2–6.2019 & Visiting researcher, Aalto University, Finland.
6.2020–2.2021 Space technology and science.
10.2018–2019 Visiting researcher, Columbia University in the City of

New York, USA.
PELE Astrobiology research: Martian analogue caves.
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2005–2009 Scouting, Plast, Ukraine.
Survival in extreme conditions.
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INTERNATIONAL TRAINING EVENTS

07–08.2019 “Small satellites in planetary research”, Tartu, Estonia.
08.2018 “Nanosatellites and their role in planetary and atmospheric

research”, Tartu, Estonia.
08.2017 “Impacts and Their Role in the Evolution of Life”,

Saaremaa, Estonia.
07.2017 Opticon astronomy instrumentation school, University of

Copenhagen, Denmark.
03.2017 & “Astrobiology Introductory Course” (part 1 and 2)
03.2018 Le Teich, France.
08.2016 “Volcanism, Plate Tectonics, Hydrothermal Vents and

Life”, Terceira island, Azores.
07.2016 “Biosignatures and the Search for Life on Mars”, Iceland.

SCIENTIFIC EXPEDITIONS

Planetary analogs and Exobiology lava caves Expeditions (PELE)
Our international team performs: pXRF, XRD, Raman spectroscopy, water
analysis, 16s rRNA extraction and lipids characterisation, thin section analysis
and SEM. The main focus is volcanic islands with planetary analogue sites.
21.04–5.05.2019 Sampling in Pico and Terceira islands caves, Azores.
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CONFERENCES

09.2021 Flash talk “OPIC instrument on Comet Interceptor mission” at the
AbGradCon, Tokyo, Japan (online).

09.2021 Co-convener at the virtual EPSC: “Planetary Missions,
Instrumentation, and Mission Concepts: New Opportunities
for Planetary Exploration”.

08.2021 Poster “OPIC Instrument for the Planned Comet Interceptor
Mission” at the 35th AIAA/USU Annual Small Satellite Conference.

10.2020 Oral presentation “Cubesat for refining ephemerides for the Ariel
mission” at the Ariel virtual consortium meeting.

01.2020 Poster “Design of Nanospacecraft for Main-Belt Voyage” at the
Finnish Satellite Workshop, Finland.

06.2019 Oral presentation “Coulomb drag propulsion experiments of
ESTCube-2 and FORESAIL-1” at the 6th International Conference
on Tethers in Space, Madrid, Spain.

03.2019 Oral presentation “Platform design for Multi-Asteroid Touring
concept” at the Europlanet Planetary Instrumentation Workshop,
Saariselkä, Lapland, Finland.

09.2018 Poster “Nanospacecraft design and mission overview for statistical
asteroid prospecting” at the EPSC 2018, Berlin, Germany.

05.2018 Oral presentation “Nanospacecraft design for an interplanetary fleet
formation propelled by E-sails” at the 7th Interplanetary CubeSat
Workshop, Paris, France.
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at the Yearly Meeting of the Stockholm Univ. Astrobiology Centre.
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International Astronautical Congress (IAC), Adelaide, Australia.
08.2017 Poster “Nanospacecraft and their role in astrobiology” at the Early

History of Planetary Systems and Habitable Planets, Estonia.
04.2017 Oral presentation “ESTCube-2 plasma brake payload for effective

deorbiting” and poster “Design of Coulomb drag plasma brake for
800 kg/850 km satellites” at the 7th European Conference on Space
Debris, ESA/ESOC, Darmstadt, Germany.

09.2016 Oral presentation at the 67th IAC, Guadalajara, Mexico.
07.2016 Poster “Moon colonisation”, Reykjavik, Iceland
03.2016 Oral presentation “ESTCube-2 mission” at the 59th Scientific

Conference "Open Readings", Vilnius, Lithuania.

LANGUAGES

English (advanced), Ukrainian (native), Russian (advanced),
Polish (intermediate), Estonian (beginner).
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Charles Villmanni stipendium; Kõrghariduse eriala nutika spetsialiseerumise
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Planetary Exploration”.
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Instrument for the Planned Comet Interceptor Mission” 35.
igaastasel Väikesatelliitide konverentsil, USA.
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03.2016 Suuline ettekanne 59. teaduskonverentsil “Open Readings 2016”,
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