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Abstract — The macroscopic model of a particle as a sphetle avi exactly determined surface is not adequateeémanometer size
range. Two various parameters are used to degtgbsize of a particle. The difference betweenctiiision radius and the mass radius
of a particle is estimated to be 0.115 nm fittingeav semiempirical model to the experimental datansition from the elastic collisions
specific for molecules to the inelastic collisisEecific for macroscopic particles is describedaishe Einstein factor of the “melting”
of the particle internal energy levels. Dipol pidation interaction is included into the model gsihe ¢o-4) potential. The model is
approaching the Chapman-Enskog equation in thenficdecule limit and the Millikan equation in the mascopic limit. An algorithm
is presented to calculate the particle mobility difflision coefficient according to the parameteframbient gas and the particle.

NOMENCLATURE

a, b, c slip factor coefficients, dimensionless

B particle mechanical mobility, m-Ns?

By particle mechanical mobility according to the Milin equation, m Nsl
d particle mass diameter 2 m
D particle diffusion coefficient, fs?
e elementary charge, 1.8001°C
Ejqef deformation energy, J
i, f,  correction factors in the modified Millikan equati¢24), dimensionless

difference between particle collision radius andsnadius, - r,, m
Boltzmann constant, 1.38023 J K1
particle electrical mobility (zero field limit), friv-1 s1
mean free path of gas molecules, m
gas molecule mass, kg
particle mass, kg
number concentration of gas molecules m
particle electric charge, C
radius, m
gas molecule collision radius, m
particle collision radius, m
particle mass radius, m
factor of reflection law in expression of collisieross-section (14), dimensionless
coarse particle limit of the factgr dimensionless
gas temperature, K
effective collision temperature, K
dimensionless temperature (19)
potential energy, J
potential energy of polarization interaction, J
particle volume,
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Greek letters

dipole polarizability of gas molecules3m
collision distance or collision diameter, m
electric constant 8.88.012 F nil

gas viscosity, Pa s

particle density, kg ra

collision cross-section, f

dimensionless first collision integral far{4) potential (19)
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All equations are written in SI. When expressingnetical values, the practical measurement unitsamu, g cr?, cn? V-1 st and pPa s are
used.



INTRODUCTION

We are using the terparticle in a wide sense referring to macroscopic and regopic particles. The term
microscopic is used when dealing with molecules and clusténs. central symmetry of the particles under
discussion is expected, i.e. the interactive fdveewveen two particles is assumed to be unambigyousl
determined by the distance between the centetsedfino particles.

The traditional macroscopic model of a particleaagphere with an exactly determined geometric seriga
not adequate in the nanometer size range. In atphyisics, the microscopic particles are charaadrizy
continuous coordinate functions and the conceph@farticle size does not play any fundamenta!. rbhe
concepts of mass and mobility are considered ab dedihed for any particle. The concepts of sizel an
density of particulate matter are considered a$ aeflned only for macroscopic particles. Modermosel
physics deals with particles of a wide size ranugitis desirable to have the concept of size unguously
well defined for all particles including the clusteand molecules.

When two colliding particles approach each othke distance between the particle centers reaclees th
rebounding interval where the repulsive componenthe interaction force is rapidly increasing. The
magnitude of the interval is about 0.1 nm. If theeof the particle is ten nanometers or more wiltth of

the interval is small enough to be neglected. tiamaeter particles are examined, a specificatiothef
concept of the size is required.

A result by Winklmayret al. (1991) can be considered as an example pointihgheuneed to specify the
concept of size. A new wide-range particle sizecBpeneter that is able to measure ultrafine pasiclown

to the molecular size is described in the papee dinectly measured parameter of a particle isethetric
mobility and the size of the particle is calculat@sl a solution of the Millikan mobility equationh&
diameter of a single-charged particle of mobilifyld® cntV-1st is estimated to be 1.1 nm by Winkimagr

al. (1991). An ion of indicated mobility has a massabbut 130 amu (Mason, 1984). The density of matter
in a sphere of diameter of 1.1 nm and mass of H30 laas an unrealistic value of 0.31 g¥iif the density

is estimated to be 2 g éinthe diameter of the particle should be 0.59 nothBestimations of the particle
diameter are based on correct calculations butftereht concepts of the particle size. The congrgy can

be solved only when the concept of the particle Szpecified.

Mobilities of molecular particles have been cargfgtudied in the kinetic theory of gases (Chapraad
Cowling, 1970) and in the theory of ion mobiliti@gicDaniel and Mason, 1973; Mason and McDaniel,
1988). A discussion of the problem from a viewpahgpplications has been given by Mason (1984hdf
interactions between a particle and ambient gasentds were quantitatively known, the mobility bét
particle could be exactly calculated. Unfortunatehe ab initio calculation of interactions is extremely
complicated in case of molecule-molecule collisiansl practically impossible in case of cluster-roole
collisions. Thus the measurements are the mairceauifr reliable information about the mobilities refl
particles and empirical or semiempirical modelstheetools for practical calculations.

The Millikan equation is considered to be the esseof empirical knowledge about the mobilities of
spherical macroscopic particles (Anngs al.,, 1972). The example above shows the problems én th
nanometer size range. Ramamurthi and Hopke (198@pped an improved empirical equation fitted ® th
kinetic theory in the lower size limit and to thelllan equation in the higher size limit. Anothempirical
model for full size range composed as a modificatibthe Millikan equation has been suggested auadiyo
published by the author (Tammet, 1988, 1992). Témmesidea is developed below. Full discussion is
presented and some shortcomings of earlier modedlaminated in the present study:

- the concept of the particle size is specified,
- the model of transition from elastic to the irstia collisions is essentially improved,
- the Sutherland approximation of polarization iatgion is replaced by theo{4) potential model,

- an error caused by the interpretation of the iitcds reduced to the standard conditions by Kilgat
(1971) as real mobilities in the standard condgjas rectified.
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A weak spot of the present study is the experimetdata (Kilpatrick, 1971) used estimating the enagir
parameters of the model. The data does not fullseicéhe size range of the transition from elastic t
inelastic collisions. The data by Kilpatrick (19749e discussed by various authors (e.g. Meyeto# .,
1980, Bohringeet al., 1987) and there is no more complete data setadlaitoday. It is to be hoped that the
gap will be filled before long as the advances evedlopment of the electrospray ionization - mass
spectrometry (Smitlet al., 1991) are promising. When combined with an ioobitity spectrometer, the
electrospray ionization - mass spectrometer igaaliinstrument to obtain the data required fotingshe
models of the size-mobility relation for nanomegarticles.

A particle can be characterized by the mechaniaabilty B, the electric mobilityK, and the diffusion
coefficientD. Non-linear effects that are essential in higlcteie fields (e.g. Mason, 1984) are not discussed
and the zero field limit is expected considering thlectric mobility in the present paper. The three
parameters are bound with two exact equations

D =KkTB, K =0gB (1)

whereq is the particle charge. Because the param&els andK are equivalent attributes of the particle,
only B is used to express the mobility of a particle belo

COLLISION SIZE

The collision radius or diameter of a particle cainipe considered to be an exact parameter of auviser
model in the kinetic theory of gases. A similauation exists in structural chemistry and crystaiégphy.
The distance between the centers of two atomsdc#ile bond length in a molecule or crystal can be
precisely measured using the X-ray technique. €hgth of a bond is interpreted as a sum of two &tom
radii. Several definitions of the atomic radius éadween used in structural chemistry (e.g. Well$4)9
However, the measured lengths of bonds differ ftbensum of radii up to few percent in any modele Th
additivity of radii is expected in all models, hutis not exactly satisfied in the nature. Nevelgks, the
concept of the atomic radius is fruitful in praetiand commonly accepted as a fundamental concept o
structural chemistry and crystallography.

The physical collision distance is defined as tleseast approach between the centers of two cafidin
particles. The collision radius of the first kirgldefined as a half of the average physical colliglistance
between two identical particles. We are not ushedoncept of the collision radius of the firstkim the
present paper and the term “collision radius” i§imdel as the collision radius of the second kindegi
below. The concept of the collision radius of tkeand kind is based on the particle collision cigEgion
and the rigid sphere model of a particle.

In the kinetic theory, the scattering cross-sectdérthe ambient gas molecules by a patrticle is #-we
determined parameter. When two ideal hard sphdreada r, andr, elastically-specularily collided, the
cross-section i€ = 1(r, + r,)2 The collision distance defined &s- ,/Q/1t is nearly equal to the average
distance of the closest approach between the mekcWe can estimate the value of collision distanc
fitting the calculated values of the transport piraena to the measured values. The collision raofitke
second kind is defined ag= d/2 in case of an encounter of two identical pagiciThere is no perfect
additivity of radii in force when a mixture of vatis particles is considered, but the errors ardl ®naugh

to be neglected solving practical problems. Thealctalues of the collision size can be calculatsidg the
measured values of gas viscosifyand the well-known equation of the kinetic the¢Ghapman and

Cowling, 1970):
JmKT
n=0.1792 il : (2)

62

The collision diameter depends on temperaturellhis that the simple rigid sphere model is nacdhte.
A model of force centers e.g. the Lennard-Jonesaeinardthe Tang-Toennies model (Chapman and Cowling,
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1970; Tang and Toennies, 1984) can explain theralpee of viscosity on temperature. Unfortunately,
there is no simple concept of particle size in alehavhere the interaction potential is a continufauntion
of the distance. An alternative is the model ofesph of variable radii (Chapman and Hainsworth,4}192
where the radius is expected to decrease with@arase in temperature. The Chapman-Hainsworth m&del
considered to be obsolete and it is not used irkihetic theory today. However, the idea of vargabize
cannot be disregarded when the estimation of the isi the aim of an analysis. Empirical valuesha t
efficient collision size of molecules in nitrogendaair calculated according to equation (2) arsemeed in
Table 1.

Table 1. Collision diameter of nitrogen and “air ewile”

according to the experimental data (CRC Handbook, 1888 equation (2)

gbooboooooooboboboboooooooboboboobooon

Temperature 200 300 400 500 600 K
o0o0ooOoO0oooOoOooooO0O0obDOoOoOoooOoOO0oDbOoooobooo

Viscosity of nitrogen 12.9 17.9 22.2 26.1 29.6 a|sP

Viscosity of air 13.3 18.6 23.1 27.1 30.8 uPas
o of nitrogen molecule 0.397 0.373 0.360 0.351 0.345nm
o of “air molecule” 0.394 0.369 0.356 0.347 0.341 nm

gbooboooooooboboboboooooooboboboobooon

The empirical formulas

N,: 8= 0.2996( T+ (4K / T)°-7) nm

3
air 8= 0.3036( 1+ ( 44</T)°'8) nm )
approximate the sizes calculated above with anr dess than 0.0003 nm. Empirical formulas (3) and
equation (2) can be used interpolating the tabdlagtues of viscosity. The approximation erroresd than
0.06 pPa s in case of viscosity of air at T = 60@&rd less than 0.03 pPa s in case of all otheresalu
presented in Table 1.

MOBILITY SIZE
The Cunningham-Knudsen-Weber-Millikan equation

1+:{a+ bex;{—c:ﬂ

B= By, = (4)
oermr
is an accepted representation of empirical knovdeglgout the dependence of mechanical mobility en th
radius of a macroscopic particle. For the sake relviby equation (4) is called the Millikan equation
Theoretically derived equations are usually vedifiiy comparing them with the Millikan equation guieel
as a standard (e.g. Anratal., 1972).

The slip factor coefficients have been estimatedifierent ways by various authors (see Aratial., 1972;
Allen and Raabe, 1985; Rader, 1990). We are uti@gound average valuas=s 1.2,b=0.5andc =1 in
numerical calculations. The estimates of the aoll#i parameters of the new model suggested irpdpsr
essentially depend only on the sum of first twofitoents a + b.

Every possible equation of the mobility-size relatican be used to define the mobility size. Thdikéih
mobility diameter is defined as a solution of equat(4) whereB,, is replaced by the measured value of
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mobility. When coarse particles moving at low Rdgsanumbers are considered, the slip factor in ggua
(4) can be omitted and the Stokes mobility diametar be calculated. The value of the Stokes mybilit
diameter will differ from the value of the Millikamobility diameter. The various definitions of tmbility
diameter can be evaluated only when an independdué of a more fundamental diameter is available.
Hence, the mobility diameter of a spherical pagtisl not a fundamental parameter. Its physical mgas a
transformed value of the mobility.

The Millikan equation has proved to be precise ghaio avoid any practical complication when thee ¢
ambient gas molecules is negligible. The stateffaira will be different when microscopic particlese
studied.

MASS SIZE

We are looking for a fundamental parameter thatcdcoe interpreted as a simple and natural extensfon
the macroscopic concept of size. A pragmatic amproa issued from the problem how to calculate the
aerosol mass concentration according to the nurotsecentration and vice versa. A common solution is
based on the postulate that the density of thacpéate matterp does not depend on particle size and
particle volume is determined by the m&ss m/p. The radius defined by the equation

rmzsﬂzg 3m (5)
\/411 \/4T[p

is called the volume radius or the mass radius.cdfecur with Mason (1984) in using the last term and
recommending the mass radius as a fundamental neeafsthe particle size.

It is assumed that the density of the particle tunz® is independent of the particle size. Accagrdothe
experimental data (e.g. Gamarnik, 1993), the mawinvariation of the lengths of the structural boms
nanometer particles and clusters is estimated t@bbet few percent. The same value can be considere
the characteristic of the roughness of the modphaticle mass size in practice.

It should be pointed out that the density of thetipalate matter can exceed the density of the ensed
matter of packed particles. An array of packed sgphéas the density of 0 case of the simple cubic
lattice and 0.7@ in case of the closest packing.

REVIEW OF THE BASIC MODELS OF THE FREE MOLECULE REGE

In the free molecule regime, the velocities of anbigas molecules are independent of the partedteity.
According to the Chapman-Enskog kinetic theory, firet approximation for the mobility of a partictd
massm, among the molecules of maggand number concentratiogis

3 /Tt(1+ m,/m,)
Bl - 8ngQ(l,1) 2rrka ! (6)

where collision cross-section is represented byatrexrage first collision integr&d™®. An estimate of the
relative error of the first approximation is

Bz_Bl_ n-g(GQ(lZ)/Q(ll)_s)z
B,  30nf+100 + 16nmQ©22/ Q1)

whereB, is the second approximation of the mobilify{t? and Q@2 are the higher collision integrals
(McDaniel and Mason, 1973).

Collision integrals are calculated and tabulatedvBrious models of interaction between collidiragtizles.
The elastic interactions are described using therantion potential. Two simple model potentiale af

: (7)
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special importance. When a charged patrticle isdio with a neutral molecule, the interaction be¢én the
point chargey and the induced dipole separated by the distargdescribed by the potential

2

___4q
Upol(r) - _8T|E r4

(0]

: (8)

wherea is the dipole polarizability of the molecule. Te#ect of quadrupole and higher order polarization
as well the effect of the polarity of the charge aot considered in the present paper.

Another simple model potential is the potentiaklzfstic rigid sphere:

U (1) = if r<d thenw ©)
P/ T0E r>8 then O

The results are well known in both cases (McDamel fason, 1973). In the first caseldfr) = U,,(r):

Q9 =0.92060 |-% (10)
e\ e kT
B=B,=B,=05105 " &(+m/m) , (11)
en, am,

where g/e is the number of elementary charges. Equation i€Xnown as the polarization limit or the
contemporary expression of the Langevin formulehds been proved fairly useful when interpreting th
measured mobilities of atomic and small molecudaisi(Bohringeet al., 1987). In the second caseld(r)

= Ug(r):

Q@ =52 (12)

B8 _ ! - . (13)
B, 10+ 16m,/m,) + 3Qqm,/m)

The relative error expressed by equation (13) dsesegapidly whemr, >m:

rq)/mg = 1 2 5 10
(B.-B)/B = 1.8% 0.6% 0.1% 0.03% .

EFFECT OF INELASTIC INTERACTION ON THE COLLISION GBSS-SECTION

When collisions between particles and moleculesirabient gas are inelastic, the actual collisiors&+o
section exceeds the calculated value assumindhtaas molecules are elastically scattered byainicle.
Inelastic collisions will occur when the internaheegy of a particle or an ambient gas molecule is
interconvertible with the energy of translation.uSha violation of the law of elastic-specular sty
occurs and there is a corresponding increase lisiool cross-section.

The success of the elementary theory of heat dypafcgases demonstrates that the energy of tladoatof
polyatomic molecules is interconvertible with theesgy of translation at room temperature. Howetles,
mobilities of atomic and small molecular ions iratdimic gases calculated according to equation lja%)
proved to be acceptable (McDaniel and Mason, 186Bringer et al., 1987). Obviously, the separatbn
the rotational energy levels of diatomic molecukesoo large to have a significant effect on théision
cross-section. Therefore, the internal energy dfiant gas molecules can be neglected when calogltie
mobilities.

The separation of the internal energy levels of acnwscopic particle is very small and interconwarsi
between the translational energy and the internatgy of the particle is actual. A result is heansfer
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between gas and a particle. The corresponding sdopc phenomenon is called the accommodationeof th
kinetic energy of a molecule to the temperaturahef particle surface. An experimental and theaaétic
analysis of the issue has been carried out firddlitikan (1923) and Epstein (1924).

An inelastic interaction cannot be described byeptial. The collision cross-sections have beenutated
using sophisticated techniques for various regiofaselastic scattering of gas molecules by a rgpthere
(Chapman and Cowling, 1970). The collision crosgisa of an inelastic sphere exceeds the geometrica
cross-sectiom®? and can be written using a faceor (r,,, T) as

Q™ =g(r, , T)*(T) . (14)

The mass radius is used above as a characteristie garticle size and the dependence of thesootli
distanced on temperature is pointed out in the equation. WhE gas molecules are assumed to be
thoroughly accommodated to temperature of the geytthe value of the facta should be of 1.393 as
calculated by Epstein (1924). The actual valuéheffactors varies between 1 in case of atomic ions gnd

= 2.25/@+b) =1.32 in case of macroscopic particles, dependinghenreal law of the reflection of gas
molecules by a particle. The law of the reflectafrgas molecules is not determined by the Knudsenber
but by the absolute size of the particle. Thereftite low pressure techniques used for the measuteoth
the slip factor cannot be used when studying tbefa.

MOBILITY OF A NEUTRAL PARTICLE IN THE FREE MOLECULEREGIME

Equation (6) and the approximatidh= B, are exact enough to satisfy the requirements peremxental
aerosol research. The problem of the size-mobhibtgtion is reduced to the calculation of the sadin
integral Q*. Equation (14) is used as the basis for furthecuision which makes it possible to interpret
the results in terms of the patrticle size.

The collision distance is the sum of the partiaddlision radiusr, and the average collision radius of an
ambient gas moleculg: &(T) =r(T) + r(T). The functionr (T) is estimated on the basis of gas viscosity
measurements. The functiofT) is splitted into two addends:

r(T) =r, +h(T) (15)

linking the concepts of the mass radius and thésaoi radius of a particle. The temperature-deeand
addendh is called theextra-distance. Theoretical evaluation of the functidiT) is a hopeless task. An
empirical model is useful in applications if thentgerature-dependent addem@) is presented by a simple
parametric approximation and the parameters caesbmated fitting the model to the measurements. An
example is the equatioh = h, + h/T whereh, and h, are the empirical parameters. However, the
measurement data available in the present studynairé@nformative enough to enable to evaluate the
parameters of a two-parametric model. Therefore, hlue of the parametdr is considered to be an
empirical constant when analyzing the measuremetat loklow.

The extra-distanch as an empirical quantity is automatically takingpiaccount all possible undiscussed
effects including the effect of Van der Waals farce

When clusters and nanometer particles are considtdre law of the transition of the internal enefggtor
s=¢(r,,T) from the initial value 1 to the saturation lexglwill present a problem. A fitting of a two-
parametric formal mathematical approximation ofttla@sition function to the empirical data was perfed
in an earlier study by the author (Tammet, 199)vds shown that the transition from elastic calhs to
inelastic collisions should take place at the pletmass diameter of about 1-2 nm.

The physics of collisions is rather complicatedll{(Bg, 1990) and the existing knowledge is not =it
for theoretical calculation of the transition fulects(r,T). A semiempirical model is thus built on the basis
of limited knowledge. Two physical statements ased1
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1. The melting of internal degrees of freedom o fharticle energy is described by the Einsteinofact
(AE/KT)2erexT/(erEkT-1)2 whereAE is the separation of energy levels. The statemsdmdsed on an analogy of
the process considered with the melting of thetiaral and vibrational degrees of freedom by thating of
polyatomic gas or a solid body.

2. The average separation of internal energy lemedscluster is inversely proportional to the nembf the
atoms in the cluster (Petrov, 1986) or to the valu€ .

The separation of the energy levels in the expoessif the Einstein factor is replaced by the averag
separation in an approximate model:

LB 27X (1g s
(16)

'm

s=1+ (s, ~ Dx%e" /(& - 97

The model consists of one parameteto be evaluated fitting the model to the empirdaia. Nevertheless,
the error of the fitting of the model to the mea&sunents is less than in case of the two-parameiriodl
approximation used in the earlier study (Tamme®2)9

MOBILITY OF A CHARGED PARTICLE IN THE FREE MOLECULEREGIME

Considering a nonpolar ambient gas like nitrogemamgen, the electric charge of the particle isuces a
dipole moment of an initially nonpolar gas moleculde charge-dipole interaction results in the eckd
cross-section of a collision between a particle amdolecule. The induced quadrupole and higher metsne
are neglected in the present paper.

The energy of polarization interaction at the motrwrthe collisionU,,(3) can be calculated using equation
(8). Hopke and Ramamurthi (1988), Strydenal. (1990) and Ramamurtlet al. (1993) have corrected the
equation of the mobility of charged nanometer phes using the Sutherland approximation according t
Chapman and Cowling (1970)

B..
B, = 9-9 . (17)
L+ 0.2013U_,(3)
KT

When the size of the rigid sphere decreases antbames zero, the expression of the mobility must
approach to the polarization limit (11). The reguient is not satisfied when using the Sutherland
approximation (17). It follows the limits of the tBerland approximation should be examined. An inpdo
theoretical model is required for the examinatibthe quality of the approximation.

Two kinds of the interaction potential models cstisg of both a rigid sphere and polarization iatgion
are known in the kinetic theory of ion mobility (Raniel and Mason, 1973). In the simpée-4) potential
model, the particle charge is located in the cevitéine particle and the potential is:

{if r<d(T) then o
U=

if r>03(T) then U,,(r) (18)

In the sophisticated core models the particle ahasgassumed to be distributed on a spherical cirfa
Unfortunately, a core model consists of additiopatameters that should be evaluated accordingeo th
empirical data. Available data are not sufficieat stimating the values of the additional paramsete
Therefore, the simpled4) potential model is used in the present paper.



Dimensionless parameters

QD" = oY /(n6 2)} (19)

T* =KT/U(d)

are traditionally used in numerical calculationse Wiark the collision integral for theo{4) model with an
indexc-4. The table of the functio@ ")’ (T*) presented by McDaniel and Mason (1973) can bacepl by
the interpolation algorithm:

(20)

1 |if T*<1 then 14691xT*Y2-p34%T* ¥4+ 0188T 94+. 0059
QY =
” if T*>1 then 1+0106xT* 1+ p26% T+ ¥3

The approximation is correct in the limit - 0 and the relative error of the calculated valsekess than
0.09% for the values presented in the table pubdtidly McDaniel and Mason (1973).

The effect of the dipole polarization increasesdbiéision integral calculated for a neutral rigohere by an

addend(Qg’_lf - 1)Tr62. The addend does not depend on the fatdren considering the polarization limit.

Hence, equation (14) is expanded in the followirayw

QY =[«r,, T) + Q57 ~YmdX(T) (21)
whereQ{")" is calculated for an elastic-specular interaction.

An original alternative approach has been propdseéhillips (1993). The molecule trajectories nda t
charged particle were numerically calculated usangomputer program not available in the publication
Numerical results presented by Phillips (1993) hasebeen compared with the results of Chapman-Ensko
theory and cannot be judged in the present paper.

ELECTRICAL COMPRESSION OF THE COLLISION DISTANCE

The collision distance between a neutral particlé argas molecule has been considered as a furaftion
temperature. The true argument of the function s #iverage maximum deformation energy that is
determined by temperature in case of a neutraicpartf the particle is charged, the energy ofgpiation
interaction is added to the maximum deformationrgyneAs a result the collision distance will de@ea
when compared with the collision distance betweeeral particle and a molecule. The effect is etquk

to be similar to the effect of equivalent increastemperature.

When expressed in the reference system of the psadee, the average kinetic energy of a pair otmaéu
colliding particles is BT (Chapman and Cowling, 1970). The kinetic energy el fully transformed to the
deformation energy in case of a direct collisiorlyoif the collision angle ish, the average maximum
deformation energy will be KIcog$. The average maximum deformation energy integrateer all
collision anglesE,; equals tokT for a neutral particle. In the first approximatiaghe average deformation
energy for a charged patrticle is

E, =KT+0U_(85)0. (22)

The effect can be easily taken into account whenatigjgment of the collision distance is replacedahy
effective temperature

pol

T,=E,/k=T+0U_ (&)K. (23)

T, is expressed as a function®fequations 23 and 8), adds a function oT; (equation 3). Thus, a system
of equations should be solved to determine theeglof both variables. A simple iterative procedure
presented in the appendix rapidly converges whamgethe equation under realistic conditions.

pol
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The electrical compression is a peculiarity of tke4{ potential model when interpreted in terms o th

Chapman-Hainsworth “soft” spheres. The same physitatt is automatically included when using any of
the models based on a continuous interaction foncti

MODIFIED MILLIKAN EQUATION

The radius of a particle and the collision distaace not distinguished in the classic Millikan edqomt(4).
Replacement of the particle radius by the colligistanced is a precondition for perfect conversion of the
Millikan equation to the free molecule regime equatas the particle size decreases. Additional
improvements are required to take into accountfitite mass of the particle, the polarization ratgion
and transition to the elastic-specular collisiamshie limit ofr . 0. A modified equation written as a product

of three factors is thus proposed
1+ ! a+ bexr{—cé)
o I

B=f,f 24
if2 o (24)

The collision distance is calculated as a sum
=1, +h+ry(T,) (25)

where the possible dependence of the addema temperature is neglected because the avagaberical
information is not sufficient to estimate the paegens of the dependence. The value,a$ estimated to be

a half of the collision distance between two gadecues calculated according to equation (3) by the
effective temperature considering the effect otteleal compression.

The first correction factor in equation (24) accauiar the finite mass of the particle

f = /1+% . (26)

The second factor takes into account the inelastisions and the polarization interaction
2.25

f,= ,
" @[ty (™) + 4 T) -1

(27)

wherea andb are the slip factor coefficient® ") is calculated according to equation (20) aratcording

to equation (16). In case of electrically neutrattiglesQ&%)'=1.

Arguments of the algorithm (24-27) are the paranseté ambient gas and any combination of two values
from the set of three particle parameters (masgisadnass and density). The algorithm consists @f tw
parameters that are not evaluated above:

- the extra-distancle (parameter of the collision distantg
- the critical radius,, (parameter of the functicsfr,,T;)).

We are considering the above parameters to be eadpionstants that should be evaluated when dittire
model to the measured data.

Equation (24) is approaching the Chapman-Enskog equéd) in the fine particle limit and the Millikan
equation (4) in the coarse particle limit.
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FITTING OF THE MODEL TO THE EXPERIMENTAL DATA

The mass and the electrical mobility of charged nsater particles can be independently measured @asing
mass spectrometer and a drift tube. There is ndadaiinstrumentation for the direct measuremerthef
geometric size in the nanometer range. The gap dmailfiled with information about the density ofeth
particulate matter.

Available empirical data are poor. Reliable resufsthe simultaneous measurement of ion mass anc
mobility have been published by Bohringgal. (1987) together with a careful analysis of thaikable data

by other authors. lons with mass up to 2000-3000 arast be presented in the data set to make itlpess

to estimate the value of the parameterThe original measurements by Bohringeel. (1987) cover the
mass range up to 188 amu. The only available datecsering the mass range up to 2122 amu has beet
published by Kilpatrick (1972). The agreement betwtdee data by Kilpatrick and Bohringer al. in the
common mass subrange is fair. Charged nanometdiclearare a traditional subject of atmospheric
electricity where they are called the atmosphenisi In the literature about atmospheric elecyi¢ite most
quoted source of information about ion mass-mabddrrelation is a paper by Meyerettal. (1980) where

the results by Kilpatrick are reproduced as thetngomplete data for big cluster ions. There is nwere
satisfactory data set available in the literatliteerefore, the classic data set by Kilpatrick (1982)sed in

the present paper to evaluate the empirical passétting the model to the measurement data.

The mobilities of the particles were measured byé#tilick in dry nitrogen at a pressure of 760 tord a
temperature of 20C. Before publication the data were converted ®dfandard conditions by multiplying
the measured mobilities by the ratio of temperat@&3/473 according to the Langevin rule. Howetles,
converted values presented in the report cannattbgpreted as the real values of the mobilitytahdard
conditions (B6hringeet al., 1987). The Langevin rule is valid in the polatiaa limit only and the ratio of
the real mobilities of the particles measured blp#trick differ essentially from the ratio of thésmlute
temperatures. Therefore, the measured values ahdidity were restored multiplying the presentedliea
by 473/273 before using the data in the preseniystu

In the Kilpatrick data set, the mass and electmeability of a single-charged particle are presdniéhe size
and density of the particle remain unknown. The camspn of the model and the data is not possible
without any knowledge about the size or the densityfill the gap, a hypothesis is advanced statiad the
correlation between the mass and density of agbaus negligible when considering the full dat& Jée
average density of the particles is assumed tonban&known constant. The mathematical problem is to
choose the values of the three free parametersafdidtancen, critical radiusr, and the average particle
densityp) so that the mean-square relative deviation batwbke calculated and measured mobilities will
reach the minimum value. The solution acquired uaingmerical procedure is:

p=2.07gcnt h=0.115nm re,=1.24 nm.

The data and the results of fitting the model todhta are presented in Table 2. The errors areluistd
randomly along the table with a mean-square vafu2.59%. The variability of the real densities o€ th
particles is a possible origin of the fitting esor

Table 2. The empirical data by Kilpatrick (1972pahe best fit of the data using the model (24-27)

Mass Sign UAA Mobility : craV-1s1 AA; Error Mass Sign UAA Mobility : cAvV-1s1 AA; Error

(amu) ++ reduced measured calculated (%) (amu)- +educed measured calculated (%)
355 - 2.49 4.31 4.41 2.2 244 + 1.28 2.22 2.13 -3.8
46 - 236 4.09 400 -2.3 256  + 1.26 2.18 2.09 4.1
60 - 2.06 3.57 3.61 1.3 292 - 1.14 1.98 1.99 0.6

60 + 2.07 3.59 3.61 0.8 292 - 1.13 1.96 1.99 15



84 + 1.84 3.19 3.19 0.0 292 + 1.14 1.98 1.99 0.6
90 - 1.83 3.17 3.11 -2.0 295 - 1.19 2.06 1.98 -4.0
114 - 1.69 2.93 2.85 -2.8 361 - 1.06 1.84 1.83 -0.6
114 + 1.73 3.00 2.85 -5.0 407 - 0.984 1.71 1.74 2.0
127 - 1.52 2.63 2.74 3.8 430 - 0976 1.69 1.70 0.6
130 + 1.56 2.70 271 0.3 430 + 0976 1.69 1.70 0.6
152 - 1.46 2.53 2.56 11 499 - 0.906 1.57 1.60 1.8
152 + 1.44 2.50 2.56 25 499 + 0.906 1.57 1.60 1.8
168 + 1.47 2.55 2.46 -3.4 511 - 0922 1.60 1.58 -1.0
188 + 1.34 2.32 2.36 1.6 660 - 0.820 1.42 1.41 -0.6
215 + 1.21 2.10 2.24 6.8 660 + 0.842 1.46 141 2 -3.
222 - 1.27 2.20 221 0.5 1061 - 0.607 1.05 1.10 4.5
240 + 1.24 2.15 2.15 0.1 1612 - 0.497 0.86 0.84 -2.1
244 + 1.27 2.20 2.13 -3.1 2122 - 0.411 0.71 0.71 -1.0

12

The density of an array composed of the spheresmdity of 2.07 g crhis 1.08 g cni in case of the simple
cubic lattice and 1.53 g chin case of the closest packing.

It is recommended that the estimated valbnes 0.115 nm and_, = 1.24 nm be treated as a preliminary
approximation using the algorithm presented by #goga (24-27) and in the Appendix. The values of the
parameters should be adjusted when the advancedimental data becomes available.

DISCUSSION

If the size of a particle in the Millikan equati¢#) is represented by the mass radius, the difteréetween
the Millikan model and the present model is lenth% for particles with diameters greater than 463
and less than 0.1% for diameters above 720 nm. e source of error is the neglecting of the dédfere
between the mass radius and the collision distaneestraightforward usage of the Millikan modemgle
replacement of the radius in equation (4) by thdiston distanced defined by equation (25) will
dramatically reduce the difference. The residualat®n is less than 1% for particles of a diametieove
2.8 nm and less than 0.1% for particles of a diamabove 4.2 nm.

Both correction factors in equation (24) are esakanly in the case of very small particles. Thadeor of
the factors is illustrated in Figure 1. The effettle finite mass, is considerable in case of molecules and
small clusters. The second factor is different feutral and charged particles. In case of neutnaigies, the
polarization effect is zero anfj demonstrates the transition from elastic-specatdlisions to inelastic
scattering that is characteristic of the macroscqairticles. The curvg(g=0) in Figure 1 can be used to
discriminate between macroscopic particles andtelss Traditionally, the particles are called clusti
their behavior differs from the behavior of the muscopic particles because of the discrete streaititheir
internal energy (Petrov, 1986). The scattering lagust the effect of the structure of the intereiaérgy of
the particle. If the internal energy levels areé&o during the collisions, the particles shouldbesidered to
be molecules or clusters. If the internal energgle are melted out, then the scattering of theemaeés is
inelastic and a particle can be considered to b®eroscopic body. Thus, the curve illustrates thasfier
from the molecular or cluster state into the mawopg particle state. Particles of diameter below rim
could be called the clusters or molecules and gestiof diameter above 2 nm could be called maomsc
particles according to the dominant mechanism efgntransfer by collisions.
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Mobility correction factor
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Fig. 1. Dependence of the mobility correction fast(26-27) on the size of neutral and single-chagaticles in air. Standard
conditions and the particle density of 2 g&are assumed.
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Fig. 2. Dependence of mobility on the particle mdissneter in air according to equations (6, 11,1122,and 24-27). Standard
conditions and the particle density of 2 g&are assumed. Curve 1 is presenting the mobilipadicles of zero diameter and finite
mass calculated according to the plotted fictitidisneter.

The cluster ion mobilities have been interpreteshgivarious models. In the gas discharge phystus, t
Langevin model (equation 11) is used to estimagezéro field mobilities. In the aerosol researble, rigid
sphere model (equations 6 and 12) is more commba.€ffect of the polarization interaction is usyall
included according to the Sutherland approximaibf). The mobilities calculated using these modeld
the present model are compared in Figure 2. Curvenfirms the well-known fact (e.g. Mason, 19843tth
the Langevin formula cannot be used to interpretrtfobilities in standard conditions below 2.228fm s

The error of the rigid sphere model combined wikie tSutherland approximation depends on the
specification of the particle size and collisiorstdnce. Curve 2 in Fig. 2 is calculated assumiiag tine
collision radius of the particle is equal to thessaadius. When drawing curve 3, the extra-distaf@e115

nm was added to the mass radius. As a result,uhe ¢s close to the continuous curve 4 represgritie
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present model. The agreement is very good in tamelier range from 0.6 to 1.3 nm or in the mobiktyge
from 0.7 to 1.8 cmV-1st that is typical for cluster ions. The results a@se for high mobilities where the
Sutherland approximation is not exact enough, andioiv mobilities where the scattering of gas males
IS not elastic-specular.

The difference between the present model and thieeBand approximation is demonstrated in Figure 3
where the ratio of the mechanical mobilities ofrgeal and neutral particles is compared. The diffezas
not important for particles with diameter above 0n7.

Traditionally, the mobilities of molecular and deisions measured in various experiments are ngaibri
reduced to the standard conditions, and the reduceblilities are presented in the publications. The
common procedure of reduction

27215K p
K =K 28
reduced measured T 10 1325 Pa ( )
is correct in the Langevin model, where
T _TdB_ (29)
Kdr BdT

The model developed in the present study can bd tesevaluate the correctness of the procedure of
reducing various mobilities to the standard coondsi A function expressed by an iterative algorittannot

be differentiated in a closed form as a rule. Tésults of the numerical differentiation of the nibpi
according the temperature (see Appendix) are ptedém Figure 4. The incorrectness of the relafz) for

the temperature dependence is dramatic even inofaselecular ions.

Ratio of mobilities

1 J pun—
Sutherl, ng//
0.9 aDD!’OXI-
mationy
/
0.8 /
//Present
model
0.7 /
0.6
0 0.5 1 1.5 2 2.5

Mass diameter : n

Fig. 3. Ratio of the mobility of a single-chargedtjzde to the mobility of a neutral particle in @ccording to the Sutherland
approximation by the diametdy+0.23 nm, and the present model. Standard conditiod the particle density of 2 g €rare assumed.

The standard procedure for mobility reduction (B3)ot well based and mistakes may follow when cedu
mobilities are interpreted as the values of reabiliiies under standard conditions. An earlier aition
(Tammet, 1992) can be considered to be an examglech a mistake. The values of mobility presereal
paper by Kilpatrick (1970) as reduced by a facta@#8/473 = 0.577 were interpreted in the papen(het,
1992) as the values of the mobility at standarddit@ns. A quantitative error in the values of the
coefficients of size-mobility equation was the fesaf this misinterpretation. According to the pees
model, the ratio of mobilities corresponding to paratures of 273 K and 473 K is 0.65 for the higlaesl
0.81 for the lowest mobility presented by Kilpakrid970).
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Fig. 4. Effect of temperature on the mobility ofutral and single-charged particles in air accordmthe present model. Standard
conditions and the particle density of 2 g&are assumed.

A simultaneous check of the pressure effect hasodstrated that the mobility remains inversely
proportional to the pressure up to the diamet&.®hm with a relative error less than 1%.

SUMMARY AND CONCLUSIONS

The model of the particle size-mobility relatiornvdped in the present study is a combination gbidoal
knowledge stored in the Millikan equation, partanuphysical laws and mathematical approximation of
available measurements. Some features of the naoetel

- specification of the radius of a particle discriating between the concepts of the collision size the
mass size,

— approaching the Chapman-Enskog equation whendtielp size decreases sufficiently and the Milika
equation when the particle size increases suffilgien

— accounting for the dependence of the law of tfleaion of gas molecules on the particle size,
— consideration of the polarization interaction adaag to the ¢-4) potential model,
— consideration of the collision distance as a fiamcof the interaction energy.

The patrticle radius is replaced by an effectivelisioh distance when calculating the mobility of an
nanometer particle. Three addends are includedthe#oequation for the collision distance: the sadin
radius of an ambient gas molecule, the particlesmadius, and an extra-distance that covers tlierelifce
between the particle mass radius and the collisamius. The estimated value of the extra-distarfce o
0.115 nm takes into account all of the interactibesveen a particle and ambient gas moleculesatieatot
considered in the theoretical model.

Collisions between the molecular particles and amtbgas molecules can be assumed to be elastialapec
When the particle size increases, the internalggnet a particle will be interconvertible with tlemergy of
collisions and the character of collisions changethe inelastic one. The transition process ismesd by
the Einstein factor

(AE/KT)2e2EkT/(eRENT-1)2 |
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where the average separation of energy I&AElss inversely proportional to the particle masgh# particle
mass diameter is less than 1.4 nm, elastic calissidominate and the particle can be considered as
molecule or a cluster characterized by frozen nakenergy. If the particle mass diameter is grethi@n 2

nm, inelastic collisions dominate and the partcada be considered as a macroscopic body.

If the particle radius is presented as a sum ofrthss radius and an extra-distance of 0.115 nimalised
size-mobility function (Strydonet al., 1990) is close to the function developed in thesent study in the
range of mobilities from 0.7 to 1.8 ém1s?.

The dependence of mobility on temperature at a taohspressure is essentially different from the
proportionality expected in the traditional procesltor the reduction of the mobilities of ions ketstandard
conditions. The mobilities of the nanometer paggctan be reduced to the standard pressure widmyut
considerable error but proportional reduction ®$kandard temperature cannot be recommended.

The quantitative results of the present study ase8 on the measurement data by Kilpatrick (197d)tlae
revision of the numerical estimates is requiredmwingproved experimental data become available.
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APPENDIX

Four algorithms written in Turbo-Pascal are présgibelow.

The functionMobility is an implementation of the algorithm defined loyations (24-27). It is presented to enable tha datification.
The function can be immediately used in a compprtegram to calculate the mobility of a particleanfy known size, charge and density.

The functionMassDiameter is a simple demonstration how to solve the invgmgblem and calculate the size of a particle afviam
mobility in a computer program. The function is teem for the air environment but it can be easitydified changing the numerical values in
the body of the function. The simple iterative mdere used in the example is not converging in somnealistic extreme situations (very high
charge and a very small size simultaneously). Hne zalue of the function. indicates a failure.

The functiondBdT presented as a simple application example was pisétihg the curves in Figure 4. The procedDeemoTable is an
extended application example showing how to cateulse electrical mobilities and data for plottifigures 3 and 4.

Algorithms
function Mobility { air nitrogen }
{velocity/force } (GasMass {amu}, { 28.96 28.02 }
{ (m/s)/fN } Polarizability{nnd}, { 0.00171 0.00174 }
VisConl {nm},{ 0.3036 0.2996 }
VisCon2 {K}, { 44 40 }
VisCon3, { 0.8 0.7 }

Pressure {mb},
Temperature {K},
ParticleDensity{g cr},
ParticleCharge{e},
MassDiameter{nm} : real) : real;
function Omegall (x : real) : real; QfL.1(T*) for («o-4) potential}
var p, q : real; {and elastic-specular collispn
begin
if x> 1 then Omegall ;=1 + 0.106 / x + 0.2&Xp ((4/3) * In (X))
else begin p := sqrt (x); q := sqrt (p); Omegad1.4691/p-0.341/q+ 0.181 *x * q + 0.0&8d;
end,
const a=1.2; b=0.5; c =1, {the slip factoeffiwients}
ExtraDistance = 0.115 {nm}; TransitionDiamete2 48 {nm};
var GasDiameter, MeanVelocity, Viscosity, FreePBlipolEffect,
DeltaTemperature, CheckMark, ParticleMass, ColiiBigtance, Kn, Omega, s, X, y : real;
begin
Viscosity {uPa s} :=0.02713 * sqrt (GasMass * Temperature) /
sqr (VisConl * (1 + exp (VisCon3 * MigCon2 / Temperature))));
MeanVelocity {m/s} := 145.5 * sqrt (Temperatur&asMass);
FreePath {nm} := (166251 * Viscosity * Temperat)/ (GasMass * Pressure * MeanVelocity);
ParticleMass {amu} := 315.3 * ParticleDensityXpe(3 * In (MassDiameter));
DeltaTemperature := Temperature;
repeat
CheckMark := DeltaTemperature;
GasDiameter {nm} := VisConl * (1 + exp (VisCon3(VisCon2 / DeltaTemperature)));
CollisionDistance {nm} := MassDiameter / 2 + Eafiistance + GasDiameter / 2;



DipolEffect := 8355 *sqr (ParticleCharge* Polarizability / sqr (sgr (CollisionDistance));
DeltaTemperature := Temperature + DipolEffect;
until abs (CheckMark - DeltaTemperature) < 0.01;
if ParticleCharge = 0 then Omega := 1 else Omed@amegall (Temperature / DipolEffect);
Kn := FreePath / CollisionDistance;
if Kn < 0.03 {underflow safe} theny :8 else y := exp (- ¢ / Kn);
X :=(273.15 / DeltaTemperature) * exp (3 * InghsitionDiameter / MassDiameter));
if x > 30 {overflow safe} then s :=1
elseif x>0.001 thens:=1+exp (x)*&qvf (exp (x) -1)) *(2.25/(a+b)-1)
else {underflow safe} s:= 1+ (2.25/ (a +H));
Mobility := ((2.25 / (a + b)) / (Omega + s - 1)) sqrt (1 + GasMass / ParticleMass) *
(1+Kn*(@+b*y))/(6*PI*Viscaty * CollisionDistance);
end;
{Electrical mobility (cn?V-1s1) = 1.602 * Particle charge (e) * Mobility (m fhs1)}

{Diffusion coefficient (cn?s1) = Temperature (K) * Mobility (m fNt s1) / 7244}
I/ two corrections are marked with bold

function MassDiameter{Air environment}
{nm} (Pressure {mb},
Temperature {K},
ParticleDensity{g cr},
ParticleCharge{e},
MechMobility{m fN1s1} : real) : real;

{MechMobility = 0.624 * ElectricalMality / ParticleCharge}
var c,d, test :real;

n :integer;
begin
c:=300; n:=0;
repeat
n:=n+1;
d:=

:= (0.6 + sqrt (0.36 + 200 * ¢ * MechMobilijy) (c * MechMobility) - 0.3;
test := Mobility (28.96, 0.00171, 0.3036, 44,0.
Pressure, Temperature, Partietedly, ParticleCharge, d);
c:=(1.2/(d +0.3) + 200/ sqr (d + 0.3)stt
until (abs (test / MechMobility - 1) < 0.0001) @r = 99);
if n < 99 then MassDiameter := d else MassDiamet®;
end;

function dBdT (ParticleCharge {e}, MassDiameter {nmkal) : real;
{Approximate numerical derivative dB/dT used whéatiing curves in Figure 4}
begin

dBdT := Mobility (28.96, 0.00171, 0.303.}, 0.8, 1000, 273.65, 2, ParticleCharge, MassDiamne

end;

procedure DemoTable;
{A table of electrical mobility and data for ploty Fig. 3 & 4.

Standard conditions and the particle densit¥ gfcm-3 are assumed}
var T, p, d, BO, B1: real;

begin
T:=273.15; p :=1000; d :=0.3;
writeln (‘'d:nm cm?/(V-s) B1/BO0 (T/B0)(dB0/dT) (T/BHB1/dT)";
repeat
BO := Mobility (28.96, 0.00171, 0.3036, 44, Oo3.T, 2, 0, d);
B1 := Mobility (28.96, 0.00171, 0.3036, 44, 0o37T, 2, 1, d);
writeln (d : 4 : 2,
1.602*B1:9: 3,
B1/B0:9:3,
(T/BO) *dBdT (0,d) : 11: 3,
(T/B1) *dBdT (1, d) : 15: 3);
d:=d+0.1;
until d > 2.55;

end;

Mobility (28.96, 0.00171, 0.3036, 44, 0.8, 10R02.65, 2, ParticleCharge, MassDiameter);
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