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Abstract − The macroscopic model of a particle as a sphere with an exactly determined surface is not adequate in the nanometer size 
range. Two various parameters are used to describe the size of a particle. The difference between the collision radius and the mass radius 
of a particle is estimated to be 0.115 nm fitting a new semiempirical model to the experimental data. Transition from the elastic collisions 
specific for molecules to the inelastic collisions specific for macroscopic particles is described using the Einstein factor of the “melting” 
of the particle internal energy levels. Dipol polarization interaction is included into the model using the (∞-4) potential. The model is 
approaching the Chapman-Enskog equation in the free molecule limit and the Millikan equation in the macroscopic limit. An algorithm 
is presented to calculate the particle mobility and diffusion coefficient according to the parameters of ambient gas and the particle. 

NOMENCLATURE 
 a, b, c slip factor coefficients, dimensionless 
 B particle mechanical mobility, m N-1 s-1 
 BM particle mechanical mobility according to the Millikan equation, m N-1 s-1 
 dm particle mass diameter 2rm, m 
 D particle diffusion coefficient, m2 s-1 
 e elementary charge, 1.60×10-19 C 
 Edef deformation energy, J 
 f1, f2 correction factors in the modified Millikan equation (24), dimensionless 
 h difference between particle collision radius and mass radius rp - rm,, m 
 k Boltzmann constant, 1.38×10-23 J K-1 
 K particle electrical mobility (zero field limit), m2 V-1 s-1 
 l mean free path of gas molecules, m 
 mg gas molecule mass, kg 
 mp particle mass, kg 
 ng number concentration of gas molecules, m-3 

 q particle electric charge, C 
 r radius, m 
 rg gas molecule collision radius, m 

 rc particle collision radius, m 
 rm particle mass radius, m 
 s factor of reflection law in expression of collision cross-section (14), dimensionless 
 s∞ coarse particle limit of the factor s, dimensionless 
 T gas temperature, K 
 Tδ effective collision temperature, K 
 T* dimensionless temperature (19) 
 U potential energy, J 
 Upol potential energy of polarization interaction, J 
 V particle volume, m3 
Greek letters 
 α dipole polarizability of gas molecules, m3 
 δ collision distance or collision diameter, m 
 εo electric constant 8.85×10-12 F m-1 
 η gas viscosity, Pa s 
 ρ particle density, kg m-3 
 Ω collision cross-section, m2 

 Ω∞−4
1 1( , )*  dimensionless first collision integral for (∞-4) potential (19) 

 
All equations are written in SI. When expressing numerical values, the practical measurement units nm, amu, g cm-3, cm2 V-1 s-1 and µPa s are 
used. 
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INTRODUCTION 
 

We are using the term particle in a wide sense referring to macroscopic and microscopic particles. The term 
microscopic is used when dealing with molecules and clusters. The central symmetry of the particles under 
discussion is expected, i.e. the interactive force between two particles is assumed to be unambiguously 
determined by the distance between the centers of the two particles. 

The traditional macroscopic model of a particle as a sphere with an exactly determined geometric surface is 
not adequate in the nanometer size range. In atomic physics, the microscopic particles are characterized by 
continuous coordinate functions and the concept of the particle size does not play any fundamental role. The 
concepts of mass and mobility are considered as well defined for any particle. The concepts of size and 
density of particulate matter are considered as well defined only for macroscopic particles. Modern aerosol 
physics deals with particles of a wide size range and it is desirable to have the concept of size unambiguously 
well defined for all particles including the clusters and molecules. 

When two colliding particles approach each other, the distance between the particle centers reaches the 
rebounding interval where the repulsive component of the interaction force is rapidly increasing. The 
magnitude of the interval is about 0.1 nm. If the size of the particle is ten nanometers or more, the width of 
the interval is small enough to be neglected. If nanometer particles are examined, a specification of the 
concept of the size is required. 

A result by Winklmayr et al. (1991) can be considered as an example pointing out the need to specify the 
concept of size. A new wide-range particle size spectrometer that is able to measure ultrafine particles down 
to the molecular size is described in the paper. The directly measured parameter of a particle is the electric 
mobility and the size of the particle is calculated as a solution of the Millikan mobility equation. The 
diameter of a single-charged particle of mobility of 1.9 cm2 V-1 s-1 is estimated to be 1.1 nm by Winklmayr et 
al. (1991). An ion of indicated mobility has a mass of about 130 amu (Mason, 1984). The density of matter 
in a sphere of diameter of 1.1 nm and mass of 130 amu has an unrealistic value of 0.31 g cm-3. If the density 
is estimated to be 2 g cm-3, the diameter of the particle should be 0.59 nm. Both estimations of the particle 
diameter are based on correct calculations but on different concepts of the particle size. The controversy can 
be solved only when the concept of the particle size is specified. 

Mobilities of molecular particles have been carefully studied in the kinetic theory of gases (Chapman and 
Cowling, 1970) and in the theory of ion mobilities (McDaniel and Mason, 1973; Mason and McDaniel, 
1988). A discussion of the problem from a viewpoint of applications has been given by Mason (1984). If the 
interactions between a particle and ambient gas molecules were quantitatively known, the mobility of the 
particle could be exactly calculated. Unfortunately, the ab initio calculation of interactions is extremely 
complicated in case of molecule-molecule collisions and practically impossible in case of cluster-molecule 
collisions. Thus the measurements are the main source of reliable information about the mobilities of real 
particles and empirical or semiempirical models are the tools for practical calculations. 

The Millikan equation is considered to be the essence of empirical knowledge about the mobilities of 
spherical macroscopic particles (Annis et al., 1972). The example above shows the problems in the 
nanometer size range. Ramamurthi and Hopke (1989) proposed an improved empirical equation fitted to the 
kinetic theory in the lower size limit and to the Millikan equation in the higher size limit. Another empirical 
model for full size range composed as a modification of the Millikan equation has been suggested and briefly 
published by the author (Tammet, 1988, 1992). The same idea is developed below. Full discussion is 
presented and some shortcomings of earlier model are eliminated in the present study: 

- the concept of the particle size is specified, 

- the model of transition from elastic to the inelastic collisions is essentially improved, 

- the Sutherland approximation of polarization interaction is replaced by the (∞-4) potential model, 

- an error caused by the interpretation of the mobilities reduced to the standard conditions by Kilpatrick 
(1971) as real mobilities in the standard conditions, is rectified. 
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A weak spot of the present study is the experimental data (Kilpatrick, 1971) used estimating the empirical 
parameters of the model. The data does not fully cover the size range of the transition from elastic to 
inelastic collisions. The data by Kilpatrick (1971) are discussed by various authors (e.g. Meyerott et al., 
1980, Böhringer et al., 1987) and there is no more complete data set available today. It is to be hoped that the 
gap will be filled before long as the advances in development of the electrospray ionization - mass 
spectrometry (Smith et al., 1991) are promising. When combined with an ion mobility spectrometer, the 
electrospray ionization - mass spectrometer is an ideal instrument to obtain the data required for testing the 
models of the size-mobility relation for nanometer particles. 

A particle can be characterized by the mechanical mobility B, the electric mobility K, and the diffusion 
coefficient D. Non-linear effects that are essential in high electric fields (e.g. Mason, 1984) are not discussed 
and the zero field limit is expected considering the electric mobility in the present paper. The three 
parameters are bound with two exact equations 

 D = kTB,                    K = qB (1) 

where q is the particle charge. Because the parameters B, D and K are equivalent attributes of the particle, 
only B is used to express the mobility of a particle below. 

COLLISION SIZE 

The collision radius or diameter of a particle cannot be considered to be an exact parameter of any precise 
model in the kinetic theory of gases. A similar situation exists in structural chemistry and crystallography. 
The distance between the centers of two atoms called the bond length in a molecule or crystal can be 
precisely measured using the X-ray technique. The length of a bond is interpreted as a sum of two atomic 
radii. Several definitions of the atomic radius have been used in structural chemistry (e.g. Wells, 1984). 
However, the measured lengths of bonds differ from the sum of radii up to few percent in any model. The 
additivity of radii is expected in all models, but it is not exactly satisfied in the nature. Nevertheless, the 
concept of the atomic radius is fruitful in practice and commonly accepted as a fundamental concept of 
structural chemistry and crystallography. 

The physical collision distance is defined as the closest approach between the centers of two colliding 
particles. The collision radius of the first kind is defined as a half of the average physical collision distance 
between two identical particles. We are not using the concept of the collision radius of the first kind in the 
present paper and the term “collision radius” is defined as the collision radius of the second kind given 
below. The concept of the collision radius of the second kind is based on the particle collision cross-section 
and the rigid sphere model of a particle. 

In the kinetic theory, the scattering cross-section of the ambient gas molecules by a particle is a well-
determined parameter. When two ideal hard spheres of radii r1 and r2 elastically-specularily collided, the 
cross-section is Ω = π(r1 + r2)2. The collision distance defined as δ = Ω π  is nearly equal to the average 
distance of the closest approach between the molecules. We can estimate the value of collision distance 
fitting the calculated values of the transport phenomena to the measured values. The collision radius of the 
second kind is defined as rp = δ/2 in case of an encounter of two identical particles. There is no perfect 
additivity of radii in force when a mixture of various particles is considered, but the errors are small enough 
to be neglected solving practical problems. The actual values of the collision size can be calculated using the 
measured values of gas viscosity η and the well-known equation of the kinetic theory (Chapman and 
Cowling, 1970): 

 η
δ

= 0 1792
2

.
m kTg

  . (2) 

The collision diameter depends on temperature. It follows that the simple rigid sphere model is not adequate. 
A model of force centers e.g. the Lennard-Jones model or the Tang-Toennies model (Chapman and Cowling, 
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1970; Tang and Toennies, 1984) can explain the dependence of viscosity on temperature. Unfortunately, 
there is no simple concept of particle size in a model where the interaction potential is a continuous function 
of the distance. An alternative is the model of spheres of variable radii (Chapman and Hainsworth, 1924), 
where the radius is expected to decrease with an increase in temperature. The Chapman-Hainsworth model is 
considered to be obsolete and it is not used in the kinetic theory today. However, the idea of variable size 
cannot be disregarded when the estimation of the size is the aim of an analysis. Empirical values of the 
efficient collision size of molecules in nitrogen and air calculated according to equation (2) are presented in 
Table 1. 

 

Table 1. Collision diameter of nitrogen and “air molecule” 

according to the experimental data (CRC Handbook, 1993) and equation (2) 

 
                                

  Temperature 200 300 400 500 600 K 

                                

  Viscosity of nitrogen 12.9 17.9 22.2 26.1 29.6 µPa s 

  Viscosity of air 13.3 18.6 23.1 27.1 30.8 µPa s 

  δ of nitrogen molecule 0.397 0.373 0.360 0.351 0.345 nm 

  δ of “air molecule” 0.394 0.369 0.356 0.347 0.341 nm 

                                

 

The empirical formulas 

 
( )
( )

N K / nm

air: K / nm

2: . ( )

. ( )

.

.

δ

δ

= +

= +





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02996 1 40

0 3036 1 44

0 7

0 8

T

T
 (3) 

approximate the sizes calculated above with an error less than 0.0003 nm. Empirical formulas (3) and 
equation (2) can be used interpolating the tabulated values of viscosity. The approximation error is less than 
0.06 µPa s in case of viscosity of air at T = 600 K and less than 0.03 µPa s in case of all other values 
presented in Table 1. 

MOBILITY SIZE 

The Cunningham-Knudsen-Weber-Millikan equation 

 B ≈ B

l

r
a b c

r

l

rM =
+ + −
















1

6

exp

πη
 (4) 

is an accepted representation of empirical knowledge about the dependence of mechanical mobility on the 
radius of a macroscopic particle. For the sake of brevity equation (4) is called the Millikan equation. 
Theoretically derived equations are usually verified by comparing them with the Millikan equation accepted 
as a standard (e.g. Annis et al., 1972). 

The slip factor coefficients have been estimated in different ways by various authors (see Annis et al., 1972; 
Allen and Raabe, 1985; Rader, 1990).  We are using the round average values a = 1.2, b = 0.5 and c = 1 in 
numerical calculations. The estimates of the additional parameters of the new model suggested in this paper 
essentially depend only on the sum of first two coefficients a + b. 

Every possible equation of the mobility-size relation can be used to define the mobility size. The Millikan 
mobility diameter is defined as a solution of equation (4) where BM is replaced by the measured value of 
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mobility. When coarse particles moving at low Reynolds numbers are considered, the slip factor in equation 
(4) can be omitted and the Stokes mobility diameter can be calculated. The value of the Stokes mobility 
diameter will differ from the value of the Millikan mobility diameter. The various definitions of the mobility 
diameter can be evaluated only when an independent value of a more fundamental diameter is available. 
Hence, the mobility diameter of a spherical particle is not a fundamental parameter. Its physical meaning is a 
transformed value of the mobility.  

The Millikan equation has proved to be precise enough to avoid any practical complication when the size of 
ambient gas molecules is negligible. The state of affairs will be different when microscopic particles are 
studied. 

MASS SIZE 

We are looking for a fundamental parameter that could be interpreted as a simple and natural extension of 
the macroscopic concept of size. A pragmatic approach is issued from the problem how to calculate the 
aerosol mass concentration according to the number concentration and vice versa. A common solution is 
based on the postulate that the density of the particulate matter ρ does not depend on particle size and 
particle volume is determined by the mass V = m/ρ. The radius defined by the equation 

 r
V m

m = =3

4

3

4
3 3

π πρ
 (5) 

is called the volume radius or the mass radius. We concur with Mason (1984) in using the last term and 
recommending the mass radius as a fundamental measure of the particle size. 

It is assumed that the density of the particle substance is independent of the particle size. According to the 
experimental data (e.g. Gamarnik, 1993), the maximum variation of the lengths of the structural bonds in 
nanometer particles and clusters is estimated to be about few percent. The same value can be considered as 
the characteristic of the roughness of the model of particle mass size in practice. 

It should be pointed out that the density of the particulate matter can exceed the density of the condensed 
matter of packed particles. An array of packed spheres has the density of 0.52ρ in case of the simple cubic 
lattice and 0.74ρ in case of the closest packing. 

REVIEW OF THE BASIC MODELS OF THE FREE MOLECULE REGIME 

In the free molecule regime, the velocities of ambient gas molecules are independent of the particle velocity. 
According to the Chapman-Enskog kinetic theory, the first approximation for the mobility of a particle of 
mass mp among the molecules of mass mg and number concentration ng is 

 B
n

m m

m kT1 1 1

3

8

1

2
=

+

g

g p

gΩ( , )

( / )π
  , (6) 

where collision cross-section is represented by the average first collision integral Ω( , )1 1 . An estimate of the 
relative error of the first approximation is 
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+ +
g

p
2
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/
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( , ) ( , )

Ω Ω
Ω Ω

  , (7) 

where B2  is the second approximation of the mobility, Ω(1,2) and Ω(2,2) are the higher collision integrals 
(McDaniel and Mason, 1973). 

Collision integrals are calculated and tabulated for various models of interaction between colliding particles. 
The elastic interactions are described using the interaction potential. Two simple model potentials are of 
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special importance. When a charged particle is colliding with a neutral molecule, the interaction between the 
point charge q and the induced dipole separated by the distance r is described by the potential 

 U r
q

rpol
o

( ) = − α
πε

2

48
  , (8) 

where α is the dipole polarizability of the molecule. The effect of quadrupole and higher order polarization 
as well the effect of the polarity of the charge are not considered in the present paper. 

Another simple model potential is the potential of elastic rigid sphere: 

 U r
r

rsph

if then

if then  0
( ) =

< ∞
≥





δ
δ

  . (9) 

The results are well known in both cases (McDaniel and Mason, 1973). In the first case of U(r) = Upol(r): 

 Ω( , ) .1 1 0 9206= q

e kT

α
εo

  , (10) 

 B B B
q

en

m m

m
= = =

+
2 1 0 5105

1
.

( / )
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o g p

g

ε
α

  , (11) 

where q/e is the number of elementary charges. Equation (11) is known as the polarization limit or the 
contemporary expression of the Langevin formula. It has been proved fairly useful when interpreting the 
measured mobilities of atomic and small molecular ions (Böhringer et al., 1987). In the second case of U(r) 
= Usph(r): 
 

 Ω( , )1 1 2= πδ   , (12) 

 
B B

B
2 1

1

−
 = 

1

10 16 30 2+ +( ) ( )m m m mp g p g

  . (13) 

The relative error expressed by equation (13) decreases rapidly when m mp g> : 

  m mp g/   =   1   2   5  10 

 ( ) /B B B2 1 1−   = 1.8% 0.6% 0.1% 0.03%  . 

EFFECT OF INELASTIC INTERACTION ON THE COLLISION CROSS-SECTION 

When collisions between particles and molecules of ambient gas are inelastic, the actual collision cross-
section exceeds the calculated value assuming that the gas molecules are elastically scattered by the particle. 
Inelastic collisions will occur when the internal energy of a particle or an ambient gas molecule is 
interconvertible with the energy of translation. Thus a violation of the law of elastic-specular scattering 
occurs and there is a corresponding increase in collision cross-section. 

The success of the elementary theory of heat capacity of gases demonstrates that the energy of the rotation of 
polyatomic molecules is interconvertible with the energy of translation at room temperature. However, the 
mobilities of atomic and small molecular ions in diatomic gases calculated according to equation (11) has 
proved to be acceptable (McDaniel and Mason, 1973; Böhringer et al., 1987). Obviously, the separation of 
the rotational energy levels of diatomic molecules is too large to have a significant effect on the collision 
cross-section. Therefore, the internal energy of ambient gas molecules can be neglected when calculating the 
mobilities. 

The separation of the internal energy levels of a macroscopic particle is very small and interconversion 
between the translational energy and the internal energy of the particle is actual. A result is heat transfer 
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between gas and a particle. The corresponding microscopic phenomenon is called the accommodation of the 
kinetic energy of a molecule to the temperature of the particle surface. An experimental and theoretical 
analysis of the issue has been carried out first by Millikan (1923) and Epstein (1924). 

An inelastic interaction cannot be described by potential. The collision cross-sections have been calculated 
using sophisticated techniques for various regimes of inelastic scattering of gas molecules by a rigid sphere 
(Chapman and Cowling, 1970). The collision cross-section of an inelastic sphere exceeds the geometrical 
cross-section πδ2 and can be written using a factor s s r T= ( , )m  as 

 Ω( , ) ( , ) ( )1 1 2= s r T Tm πδ   . (14) 

The mass radius is used above as a characteristic of the particle size and the dependence of the collision 
distance δ on temperature is pointed out in the equation. When all gas molecules are assumed to be 
thoroughly accommodated to temperature of the particle, the value of the factor s should be of 1.393 as 
calculated by Epstein (1924). The actual value of the factor s varies between 1 in case of atomic ions and s∞ 
= 2.25/(a+b) ≈1.32 in case of macroscopic particles, depending on the real law of the reflection of gas 
molecules by a particle. The law of the reflection of gas molecules is not determined by the Knudsen number 
but by the absolute size of the particle. Therefore, the low pressure techniques used for the measurement of 
the slip factor cannot be used when studying the factor s. 

MOBILITY OF A NEUTRAL PARTICLE IN THE FREE MOLECULE REGIME 

Equation (6) and the approximation B B≈ 1 are exact enough to satisfy the requirements of experimental 
aerosol research. The problem of the size-mobility relation is reduced to the calculation of the collision 
integral Ω( , )1 1 . Equation (14) is used as the basis for further discussion which makes it possible to interpret 
the results in terms of the particle size. 

The collision distance is the sum of the particle collision radius rc and the average collision radius of an 
ambient gas molecule rg: δ(T) = rc(T) + rg(T). The function rg(T) is estimated on the basis of gas viscosity 
measurements. The function rc(T) is splitted into two addends: 

 rc(T) = rm + h(T) (15) 

linking the concepts of the mass radius and the collision radius of a particle. The temperature-dependent 
addend h is called the extra-distance. Theoretical evaluation of the function h(T) is a hopeless task. An 
empirical model is useful in applications if the temperature-dependent addend h(T) is presented by a simple 
parametric approximation and the parameters can be estimated fitting the model to the measurements. An 
example is the equation h = ho + hT/T where ho and hT are the empirical parameters. However, the 
measurement data available in the present study are not informative enough to enable to evaluate the 
parameters of a two-parametric model. Therefore, the value of the parameter h is considered to be an 
empirical constant when analyzing the measurement data below. 

The extra-distance h as an empirical quantity is automatically taking into account all possible undiscussed 
effects including the effect of Van der Waals forces. 

When clusters and nanometer particles are considered, the law of the transition of the internal energy factor 
s s r T= ( , )m  from the initial value 1 to the saturation level s∞ will present a problem. A fitting of a two-
parametric formal mathematical approximation of the transition function to the empirical data was performed 
in an earlier study by the author (Tammet, 1992). It was shown that the transition from elastic collisions to 
inelastic collisions should take place at the particle mass diameter of about 1-2 nm.  

The physics of collisions is rather complicated (Billing, 1990) and the existing knowledge is not sufficient 
for theoretical calculation of the transition function s(rm,T). A semiempirical model is thus built on the basis 
of limited knowledge. Two physical statements are used: 
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1. The melting of internal degrees of freedom of the particle energy is described by the Einstein factor 
(∆E/kT)2e∆E/kT/(e∆E/kT-1)2  where ∆E is the separation of energy levels. The statement is based on an analogy of 
the process considered with the melting of the rotational and vibrational degrees of freedom by the heating of 
polyatomic gas or a solid body. 

2. The average separation of internal energy levels in a cluster is inversely proportional to the number of the 
atoms in the cluster (Petrov, 1986) or to the value of rm

3 . 

The separation of the energy levels in the expression of the Einstein factor is replaced by the average 
separation in an approximate model: 

 
x

E

kT T

r

r

s s x x x

= =









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







∞

∆ 273

1 1 1

3

2 2

K

e e

cr

m

( ) ( )

  . (16) 

 

The model consists of one parameter rcr to be evaluated fitting the model to the empirical data. Nevertheless, 
the error of the fitting of the model to the measurements is less than in case of the two-parametric formal 
approximation used in the earlier study (Tammet, 1992). 

MOBILITY OF A CHARGED PARTICLE IN THE FREE MOLECULE REGIME 

Considering a nonpolar ambient gas like nitrogen or oxygen, the electric charge of the particle is induces a 
dipole moment of an initially nonpolar gas molecule. The charge-dipole interaction results in the enhanced 
cross-section of a collision between a particle and a molecule. The induced quadrupole and higher moments 
are neglected in the present paper. 

The energy of polarization interaction at the moment of the collision Upol(δ) can be calculated using equation 
(8). Hopke and Ramamurthi (1988), Strydom et al. (1990) and Ramamurthi et al. (1993) have corrected the 
equation of the mobility of charged nanometer particles using the Sutherland approximation according to 
Chapman and Cowling (1970) 

 B
B

U

kT

q
q 0

pol

=
+

=

1
0 2011. ( )δ

  . (17) 

When the size of the rigid sphere decreases and approaches zero, the expression of the mobility must 
approach to the polarization limit (11). The requirement is not satisfied when using the Sutherland 
approximation (17). It follows the limits of the Sutherland approximation should be examined. An improved 
theoretical model is required for the examination of the quality of the approximation. 

Two kinds of the interaction potential models consisting of both a rigid sphere and polarization interaction 
are known in the kinetic theory of ion mobility (McDaniel and Mason, 1973). In the simple (∞-4) potential 
model, the particle charge is located in the center of the particle and the potential is: 

 U
r T

r T U r
=

< ∞
>





if then

if then pol

δ
δ
( )

( ) ( )
. (18) 

In the sophisticated core models the particle charge is assumed to be distributed on a spherical surface. 
Unfortunately, a core model consists of additional parameters that should be evaluated according to the 
empirical data. Available data are not sufficient for estimating the values of the additional parameters. 
Therefore, the simple (∞-4) potential model is used in the present paper. 
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Dimensionless parameters 

 ( )
( )

Ω Ω(1, )* (1, )

*

1 1 2=
=







πδ
δT kT U

 (19) 

are traditionally used in numerical calculations. We mark the collision integral for the (∞-4) model with an 
index ∞-4. The table of the function Ω∞−4

1 1( , )*( *)T  presented by McDaniel and Mason (1973) can be replaced by 
the interpolation algorithm: 

 Ω∞−

− −

− −= ≤ × − × + × +
≥ + × + ×





4
1

1 2 1 4 5 4

1 4 3

1 14691 0 341 0185 0 059

1 1 0106 0 263
(1, )*

/ / /

/

* . * . * . * .

* . * . *

if then

if then

T T T T

T T T
.(20) 

The approximation is correct in the limit T*→0 and the relative error of the calculated values is less than 
0.09% for the values presented in the table published by McDaniel and Mason (1973). 

The effect of the dipole polarization increases the collision integral calculated for a neutral rigid sphere by an 

addend ( )Ω∞− −4
1 21(1, )* πδ . The addend does not depend on the factor s when considering the polarization limit. 

Hence, equation (14) is expanded in the following way 

 Ω Ω( , ) ( , )*[ ( , ) ] ( )1 1
4

1 1 21= + −∞−s r T Tm πδ  , (21) 

where Ω∞−4
1 1( , )* is calculated for an elastic-specular interaction. 

An original alternative approach has been proposed by Phillips (1993). The molecule trajectories near the 
charged particle were numerically calculated using a computer program not available in the publication. 
Numerical results presented by Phillips (1993) have not been compared with the results of Chapman-Enskog 
theory and cannot be judged in the present paper. 

ELECTRICAL COMPRESSION OF THE COLLISION DISTANCE 

The collision distance between a neutral particle and a gas molecule has been considered as a function of 
temperature. The true argument of the function is the average maximum deformation energy that is 
determined by temperature in case of a neutral particle. If the particle is charged, the energy of polarization 
interaction is added to the maximum deformation energy. As a result the collision distance will decrease 
when compared with the collision distance between a neutral particle and a molecule. The effect is expected 
to be similar to the effect of equivalent increase in temperature. 

When expressed in the reference system of the mass centre, the average kinetic energy of a pair of neutral 
colliding particles is 2kT (Chapman and Cowling, 1970). The kinetic energy will be fully transformed to the 
deformation energy in case of a direct collision only. If the collision angle is ϕ, the average maximum 
deformation energy will be 2kTcos2ϕ. The average maximum deformation energy integrated over all 
collision angles Edef equals to kT for a neutral particle. In the first approximation, the average deformation 
energy for a charged particle is 

 Edef = kT + Upol(δ) . (22) 

The effect can be easily taken into account when the argument of the collision distance is replaced by an 
effective temperature 

 Tδ = Edef /k = T + Upol(δ)/k . (23) 

Tδ is expressed as a function of δ (equations 23 and 8), and δ as a function of Tδ (equation 3). Thus, a system 
of equations should be solved to determine the values of both variables. A simple iterative procedure 
presented in the appendix rapidly converges when testing the equation under realistic conditions. 
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The electrical compression is a peculiarity of the (∞-4) potential model when interpreted in terms of the 
Chapman-Hainsworth “soft” spheres. The same physical effect is automatically included when using any of 
the models based on a continuous interaction function. 

MODIFIED MILLIKAN EQUATION 

The radius of a particle and the collision distance are not distinguished in the classic Millikan equation (4). 
Replacement of the particle radius by the collision distance δ is a precondition for perfect conversion of the 
Millikan equation to the free molecule regime equation as the particle size decreases. Additional 
improvements are required to take into account the finite mass of the particle,  the polarization interaction 
and transition to the elastic-specular collisions in the limit of r→0. A modified equation written as a product 
of three factors is thus proposed 

 B f f

l
a b c

l
=

+ + −

















1 2

1

6

δ
δ

πηδ

exp

  . (24) 

The collision distance is calculated as a sum 

 δ δ= + +r h r Tm g( )  (25) 

where the possible dependence of the addend h on temperature is neglected because the available empirical 
information is not sufficient to estimate the parameters of the dependence. The value of rg is estimated to be 
a half of the collision distance between two gas molecules calculated according to equation (3) by the 
effective temperature considering the effect of electrical compression. 

The first correction factor in equation (24) accounts for the finite mass of the particle 

 f
m

m1 1= + g

p

 . (26) 

The second factor takes into account the inelastic collisions and the polarization interaction 

 ( )f
a b T s r T

2

4
1

2 25

1
=

+ + −∞−

.

( ) ( *) ( , )(1, )*Ω m δ

 , (27) 

where a and b are the slip factor coefficients, Ω∞−4
1 1( , )* is calculated according to equation (20) and s according 

to equation (16). In case of electrically neutral particles Ω∞−4
1 1( , )*=1. 

Arguments of the algorithm (24-27) are the parameters of ambient gas and any combination of two values 
from the set of three particle parameters (mass radius, mass and density). The algorithm consists of two 
parameters that are not evaluated above: 

- the extra-distance h  (parameter of the collision distance δ), 

- the critical radius rcr (parameter of the function s(rm,Tδ)). 

We are considering the above parameters to be empirical constants that should be evaluated when fitting the 
model to the measured data. 

Equation (24) is approaching the Chapman-Enskog equation (6) in the fine particle limit and the Millikan 
equation (4) in the coarse particle limit. 
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FITTING OF THE MODEL TO THE EXPERIMENTAL DATA 

The mass and the electrical mobility of charged nanometer particles can be independently measured using a 
mass spectrometer and a drift tube. There is no available instrumentation for the direct measurement of the 
geometric size in the nanometer range. The gap could be filled with information about the density of the 
particulate matter. 

Available empirical data are poor. Reliable results of the simultaneous measurement of ion mass and 
mobility have been published by Böhringer et al. (1987) together with a careful analysis of the available data 
by other authors. Ions with mass up to 2000-3000 amu must be presented in the data set to make it possible 
to estimate the value of the parameter rcr. The original measurements by Böhringer et al. (1987) cover the 
mass range up to 188 amu. The only available data set covering the mass range up to 2122 amu has been 
published by Kilpatrick (1972). The agreement between the data by Kilpatrick and Böhringer et al. in the 
common mass subrange is fair. Charged nanometer particles are a traditional subject of atmospheric 
electricity where they are called the atmospheric ions. In the literature about atmospheric electricity, the most 
quoted source of information about ion mass-mobility correlation is a paper by Meyerott et al. (1980) where 
the results by Kilpatrick are reproduced as the most complete data for big cluster ions. There is no newer 
satisfactory data set available in the literature. Therefore, the classic data set by Kilpatrick (1972) is used in 
the present paper to evaluate the empirical parameters fitting the model to the measurement data. 

The mobilities of the particles were measured by Kilpatrick in dry nitrogen at a pressure of 760 torr and 
temperature of 200°C. Before publication the data were converted to the standard conditions by multiplying 
the measured mobilities by the ratio of temperatures 273/473 according to the Langevin rule. However, the 
converted values presented in the report cannot be interpreted as the real values of the mobility at standard 
conditions (Böhringer et al., 1987). The Langevin rule is valid in the polarization limit only and the ratio of 
the real mobilities of the particles measured by Kilpatrick differ essentially from the ratio of the absolute 
temperatures. Therefore, the measured values of the mobility were restored multiplying the presented values 
by 473/273 before using the data in the present study. 

In the Kilpatrick data set, the mass and electrical mobility of a single-charged particle are presented. The size 
and density of the particle remain unknown. The comparison of the model and the data is not possible 
without any knowledge about the size or the density. To fill the gap, a hypothesis is advanced stating that the 
correlation between the mass and density of a particle is negligible when considering the full data set. The 
average density of the particles is assumed to be an unknown constant. The mathematical problem is to 
choose the values of the three free parameters (extra-distance h, critical radius rcr and the average particle 
density ρ) so that the mean-square relative deviation between the calculated and measured mobilities will 
reach the minimum value. The solution acquired using a numerical procedure is: 

 ρ = 2.07 g cm-3          h = 0.115 nm          rcr = 1.24 nm. 

The data and the results of fitting the model to the data are presented in Table 2. The errors are distributed 
randomly along the table with a mean-square value of 2.59%. The variability of the real densities of the 
particles is a possible origin of the fitting errors. 

 

Table 2. The empirical data by Kilpatrick (1972) and the best fit of the data using the model (24-27) 

 
 _____________________________  ______________________________  
 Mass  Sign ÚÄÄ Mobility : cm2 V-1s-1 ÄÄ¿Error Mass Sign ÚÄÄ Mobility : cm2 V-1s-1 ÄÄ¿Error 

 (amu)  +/− reduced  measured  calculated  (%) (amu) +/− reduced  measured  calculated  (%) 
 _____________________________  ______________________________  
 35.5 − 2.49 4.31 4.41 2.2 244 + 1.28 2.22 2.13 -3.8 

 46 − 2.36 4.09 4.00 -2.3 256 + 1.26 2.18 2.09 -4.1 

 60 − 2.06 3.57 3.61 1.3 292 − 1.14 1.98 1.99 0.6 

 60 + 2.07 3.59 3.61 0.8 292 − 1.13 1.96 1.99 1.5 
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 84 + 1.84 3.19 3.19 0.0 292 + 1.14 1.98 1.99 0.6 

 90 − 1.83 3.17 3.11 -2.0 295 − 1.19 2.06 1.98 -4.0 

 114 − 1.69 2.93 2.85 -2.8 361 − 1.06 1.84 1.83 -0.6 

 114 + 1.73 3.00 2.85 -5.0 407 − 0.984 1.71 1.74 2.0 

 127 − 1.52 2.63 2.74 3.8 430 − 0.976 1.69 1.70 0.6 

 130 + 1.56 2.70 2.71 0.3 430 + 0.976 1.69 1.70 0.6 

 152 − 1.46 2.53 2.56 1.1 499 − 0.906 1.57 1.60 1.8 

 152 + 1.44 2.50 2.56 2.5 499 + 0.906 1.57 1.60 1.8 

 168 + 1.47 2.55 2.46 -3.4 511 − 0.922 1.60 1.58 -1.0 

 188 + 1.34 2.32 2.36 1.6 660 − 0.820 1.42 1.41 -0.6 

 215 + 1.21 2.10 2.24 6.8 660 + 0.842 1.46 1.41 -3.2 

 222 − 1.27 2.20 2.21 0.5 1061 − 0.607 1.05 1.10 4.5 

 240 + 1.24 2.15 2.15 0.1 1612 − 0.497 0.86 0.84 -2.1 

 244 + 1.27 2.20 2.13 -3.1 2122 − 0.411 0.71 0.71 -1.0 

The density of an array composed of the spheres of density of 2.07 g cm-3 is 1.08 g cm-3 in case of the simple 
cubic lattice and 1.53 g cm-3 in case of the closest packing. 

It is recommended that the estimated values h = 0.115 nm and rcr = 1.24 nm be treated as a preliminary 
approximation using the algorithm presented by equations (24-27) and in the Appendix. The values of the 
parameters should be adjusted when the advanced experimental data becomes available. 
 

DISCUSSION 

If the size of a particle in the Millikan equation (4) is represented by the mass radius, the difference between 
the Millikan model and the present model is less than 1% for particles with diameters greater than 103 nm 
and less than 0.1% for diameters above 720 nm. The main source of error is the neglecting of the difference 
between the mass radius and the collision distance in a straightforward usage of the Millikan model. Simple 
replacement of the radius in equation (4) by the collision distance δ defined by equation (25) will 
dramatically reduce the difference. The residual deviation is less than 1% for particles of a diameter above 
2.8 nm and less than 0.1% for particles of a diameter above 4.2 nm. 

Both correction factors in equation (24) are essential only in the case of very small particles. The behavior of 
the factors is illustrated in Figure 1. The effect of the finite mass f1 is considerable in case of molecules and 
small clusters. The second factor is different for neutral and charged particles. In case of neutral particles, the 
polarization effect is zero and f2 demonstrates the transition from elastic-specular collisions to inelastic 
scattering that is characteristic of the macroscopic particles. The curve f2(q=0) in Figure 1 can be used to 
discriminate between macroscopic particles and clusters. Traditionally, the particles are called clusters if 
their behavior differs from the behavior of the macroscopic particles because of the discrete structure of their 
internal energy (Petrov, 1986). The scattering law is just the effect of the structure of the internal energy of 
the particle. If the internal energy levels are frozen during the collisions, the particles should be considered to 
be molecules or clusters. If the internal energy levels are melted out, then the scattering of the molecules is 
inelastic and a particle can be considered to be a macroscopic body. Thus, the curve illustrates the transfer 
from the molecular or cluster state into the macroscopic particle state. Particles of diameter below 1.4 nm 
could be called the clusters or molecules and particles of diameter above 2 nm could be called macroscopic 
particles according to the dominant mechanism of energy transfer by collisions. 
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Fig. 1. Dependence of the mobility correction factors (26-27) on the size of neutral and single-charged particles in air. Standard 
conditions and the particle density of 2 g cm-3 are assumed. 
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Fig. 2. Dependence of mobility on the particle mass diameter in air according to equations (6, 11, 12, 17, and 24-27). Standard 
conditions and the particle density of 2 g cm-3 are assumed. Curve 1 is presenting the mobility of particles of zero diameter and finite 

mass calculated according to the plotted fictitious diameter. 

 

The cluster ion mobilities have been interpreted using various models. In the gas discharge physics, the 
Langevin model (equation 11) is used to estimate the zero field mobilities. In the aerosol research, the rigid 
sphere model (equations 6 and 12) is more common. The effect of the polarization interaction is usually 
included according to the Sutherland approximation (17). The mobilities calculated using these models and 
the present model are compared in Figure 2. Curve 1 confirms the well-known fact (e.g. Mason, 1984) that 
the Langevin formula cannot be used to interpret the mobilities in standard conditions below 2.2 cm2 V-1 s-1. 
The error of the rigid sphere model combined with the Sutherland approximation depends on the 
specification of the particle size and collision distance. Curve 2 in Fig. 2 is calculated assuming that the 
collision radius of the particle is equal to the mass radius. When drawing curve 3, the extra-distance of 0.115 
nm was added to the mass radius. As a result, the curve is close to the continuous curve 4 representing the 
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present model. The agreement is very good in the diameter range from 0.6 to 1.3 nm or in the mobility range 
from 0.7 to 1.8 cm2 V-1 s-1 that is typical for cluster ions. The results are worse for high mobilities where the 
Sutherland approximation is not exact enough, and for low mobilities where the scattering of gas molecules 
is not elastic-specular. 

The difference between the present model and the Sutherland approximation is demonstrated in Figure 3 
where the ratio of the mechanical mobilities of charged and neutral particles is compared. The difference is 
not important for particles with diameter above 0.7 nm. 

Traditionally, the mobilities of molecular and cluster ions measured in various experiments are numerically 
reduced to the standard conditions, and the reduced mobilities are presented in the publications. The 
common procedure of reduction 

 K K
T

p
reduced measured

273.15K

101325Pa
=  (28) 

is correct in the Langevin model, where 
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= = 1 . (29) 

 

The model developed in the present study can be used to evaluate the correctness of the procedure of 
reducing various mobilities to the standard conditions. A function expressed by an iterative algorithm cannot 
be differentiated in a closed form as a rule. The results of the numerical differentiation of the mobility 
according the temperature (see Appendix) are presented in Figure 4. The incorrectness of the relation (29) for 
the temperature dependence is dramatic even in case of molecular ions. 
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Fig. 3. Ratio of the mobility of a single-charged particle to the mobility of a neutral particle in air according to the Sutherland 
approximation by the diameter dm+0.23 nm, and the present model. Standard conditions and the particle density of 2 g cm-3 are assumed. 

 

The standard procedure for mobility reduction (28) is not well based and mistakes may follow when reduced 
mobilities are interpreted as the values of real mobilities under standard conditions. An earlier calculation 
(Tammet, 1992) can be considered to be an example of such a mistake. The values of mobility presented in a 
paper by Kilpatrick (1970) as reduced by a factor of 273/473 = 0.577 were interpreted in the paper (Tammet, 
1992) as the values of the mobility at standard conditions. A quantitative error in the values of the 
coefficients of size-mobility equation was the result of this misinterpretation. According to the present 
model, the ratio of mobilities corresponding to temperatures of 273 K and 473 K is 0.65 for the highest and 
0.81 for the lowest mobility presented by Kilpatrick (1970). 
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Fig. 4. Effect of temperature on the mobility of neutral and single-charged particles in air according to the present model. Standard 
conditions and the particle density of 2 g cm-3 are assumed. 

 

A simultaneous check of the pressure effect has demonstrated that the mobility remains inversely 
proportional to the pressure up to the diameter of 2.5 nm with a relative error less than 1%. 

SUMMARY AND CONCLUSIONS 

The model of the particle size-mobility relation developed in the present study is a combination of empirical 
knowledge stored in the Millikan equation, particular physical laws and mathematical approximation of 
available measurements. Some features of the model are: 

− specification of the radius of a particle discriminating between the concepts of the collision size and the 
mass size, 

− approaching the Chapman-Enskog equation when the particle size decreases sufficiently and the Millikan 
equation when the particle size increases sufficiently, 

− accounting for the dependence of the law of the reflection of gas molecules on the particle size, 

− consideration of the polarization interaction according to the (∞-4) potential model, 

− consideration of the collision distance as a function of the interaction energy. 

The particle radius is replaced by an effective collision distance when calculating the mobility of an 
nanometer particle. Three addends are included into the equation for the collision distance: the collision 
radius of an ambient gas molecule, the particle mass radius, and an extra-distance that covers the difference 
between the particle mass radius and the collision radius. The estimated value of the extra-distance of 
0.115 nm takes into account all of the interactions between a particle and ambient gas molecules that are not 
considered in the theoretical model. 

Collisions between the molecular particles and ambient gas molecules can be assumed to be elastic-specular. 
When the particle size increases, the internal energy of a particle will be interconvertible with the energy of 
collisions and the character of collisions changes to the inelastic one. The transition process is described by 
the Einstein factor 

(∆E/kT)2e∆E/kT/(e∆E/kT-1)2  , 
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where the average separation of energy levels ∆E is inversely proportional to the particle mass. If the particle 
mass diameter is less than 1.4 nm, elastic collisions dominate and the particle can be considered as a 
molecule or a cluster characterized by frozen internal energy. If the particle mass diameter is greater than 2 
nm, inelastic collisions dominate and the particle can be considered as a macroscopic body. 

If the particle radius is presented as a sum of the mass radius and an extra-distance of 0.115 nm, a simplified 
size-mobility function (Strydom et al., 1990) is close to the function developed in the present study in the 
range of mobilities from 0.7 to 1.8 cm2 V-1 s-1. 

The dependence of mobility on temperature at a constant pressure is essentially different from the 
proportionality expected in the traditional procedure for the reduction of the mobilities of ions to the standard 
conditions. The mobilities of the nanometer particles can be reduced to the standard pressure without any 
considerable error but proportional reduction to the standard temperature cannot be recommended. 

The quantitative results of the present study are based on the measurement data by Kilpatrick (1971) and the 
revision of the numerical estimates is required when improved experimental data become available. 
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APPENDIX 

 Four algorithms written in Turbo-Pascal are presented below. 

 The function Mobility is an implementation of the algorithm defined by equations (24-27). It is presented to enable the data verification. 
The function can be immediately used in a computer program to calculate the mobility of a particle of any known size, charge and density. 

 The function MassDiameter is a simple demonstration how to solve the inverse problem and calculate the size of a particle of known 
mobility in a computer program. The function is written for the air environment but it can be easily modified changing the numerical values in 
the body of the function. The simple iterative procedure used in the example is not converging in some unrealistic extreme situations (very high 
charge and a very small size simultaneously). The zero value of the function. indicates a failure. 

 The function dBdT presented as a simple application example was used plotting the curves in Figure 4. The procedure DemoTable is an 
extended application example showing how to calculate the electrical mobilities and data for plotting Figures 3 and 4. 

 

Algorithms 

 

function Mobility   {        air                    nitrogen } 
 {velocity/force }         (GasMass {amu}, { 28.96 28.02 } 
 {    (m/s) / fN   } Polarizability{nm3}, { 0.00171 0.00174 } 
    VisCon1 {nm}, { 0.3036 0.2996 } 
    VisCon2 {K}, { 44 40 } 
    VisCon3,  { 0.8 0.7 } 
    Pressure {mb}, 
    Temperature {K}, 
    ParticleDensity{g cm-3}, 
    ParticleCharge{e}, 
    MassDiameter{nm} : real) : real; 
 function Omega11 (x : real) : real;  {Ω(1,1)*(T*) for (∞-4) potential} 
  var p, q : real;  {and elastic-specular collisions} 
  begin 
   if x > 1 then Omega11 := 1 + 0.106 / x + 0.263 / exp ((4/3) * ln (x)) 
   else begin p := sqrt (x); q := sqrt (p); Omega11 := 1.4691 / p - 0.341 / q + 0.181 * x * q + 0.059 end; 
  end; 
 const a = 1.2; b = 0.5; c = 1; {the slip factor coefficients} 
  ExtraDistance = 0.115 {nm}; TransitionDiameter = 2.48 {nm}; 
 var GasDiameter, MeanVelocity, Viscosity, FreePath, DipolEffect,  
  DeltaTemperature, CheckMark, ParticleMass, CollisionDistance, Kn, Omega, s, x, y : real; 
 begin 
  Viscosity  {µPa s} := 0.02713 * sqrt (GasMass * Temperature) / 
              sqr (VisCon1 * (1 + exp (VisCon3 * ln (VisCon2 / Temperature)))); 
  MeanVelocity {m/s} := 145.5 * sqrt (Temperature / GasMass); 
  FreePath  {nm} := (166251 * Viscosity * Temperature) / (GasMass * Pressure * MeanVelocity); 
  ParticleMass {amu} := 315.3 * ParticleDensity * exp (3 * ln (MassDiameter)); 
  DeltaTemperature := Temperature; 
  repeat 
   CheckMark := DeltaTemperature; 
   GasDiameter {nm} := VisCon1 * (1 + exp (VisCon3 * ln (VisCon2 / DeltaTemperature))); 
   CollisionDistance {nm} := MassDiameter / 2 + ExtraDistance + GasDiameter / 2; 
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   DipolEffect := 8355 * sqr (ParticleCharge) * Polarizability / sqr (sqr (CollisionDistance)); 
   DeltaTemperature := Temperature + DipolEffect; 
  until abs (CheckMark - DeltaTemperature) < 0.01; 
  if ParticleCharge = 0 then Omega := 1 else Omega := Omega11 (Temperature / DipolEffect); 
  Kn := FreePath / CollisionDistance; 
  if Kn < 0.03 {underflow safe} then y := 0 else y := exp (- c / Kn); 
  x := (273.15 / DeltaTemperature) * exp (3 * ln (TransitionDiameter / MassDiameter)); 
  if x > 30 {overflow safe} then s := 1  
   else if x > 0.001   then s := 1 + exp (x) * sqr (x / (exp (x) - 1)) * (2.25 / (a + b) - 1)  
   else {underflow safe}  s := 1 + (2.25 / (a + b) - 1); 
  Mobility := ((2.25 / (a + b)) / (Omega + s - 1))  *  sqrt (1 + GasMass / ParticleMass) * 
          (1 + Kn * (a + b * y)) / (6 * PI * Viscosity * CollisionDistance); 
 end; 
 {Electrical mobility (cm2 V-1 s-1) = 1.602 * Particle charge (e) * Mobility (m fN-1 s-1)} 
 {Diffusion coefficient (cm2 s-1) = Temperature (K) * Mobility (m fN-1 s-1) / 7244} 
// two corrections are marked with bold 
 
 
 
function MassDiameter {Air environment} 
    {nm}  (Pressure {mb}, 
    Temperature {K}, 
    ParticleDensity{g cm-3}, 
    ParticleCharge{e}, 
    MechMobility{m fN-1 s-1} : real) : real; 
              {MechMobility = 0.624 * ElectricalMobility / ParticleCharge} 
 var     c, d, test : real; 
           n : integer; 
 begin 
  c := 300; n := 0; 
  repeat 
   n := n + 1; 
   d := (0.6 + sqrt (0.36 + 200 * c * MechMobility)) / (c * MechMobility) - 0.3; 
   test := Mobility (28.96, 0.00171, 0.3036, 44, 0.8,  
                   Pressure, Temperature, ParticleDensity, ParticleCharge, d); 
   c := (1.2 / (d + 0.3) + 200 / sqr (d + 0.3)) / test; 
  until (abs (test / MechMobility - 1) < 0.0001) or (n = 99); 
  if n < 99 then MassDiameter := d else MassDiameter := 0; 
 end; 
 
function dBdT (ParticleCharge {e}, MassDiameter {nm} : real) : real; 
 {Approximate numerical derivative dB/dT used when plotting curves in Figure 4} 
 begin 
           dBdT := Mobility (28.96, 0.00171, 0.3036, 44, 0.8, 1000, 273.65, 2, ParticleCharge, MassDiameter) - 
   Mobility (28.96, 0.00171, 0.3036, 44, 0.8, 1000, 272.65, 2, ParticleCharge, MassDiameter); 
 end; 
 
procedure DemoTable; 
 {A table of electrical mobility and data for plotting Fig. 3 & 4.  
   Standard conditions and the particle density of 2 g cm-3 are assumed} 
 var T, p, d, B0, B1 : real; 
 begin 
  T := 273.15; p := 1000; d := 0.3; 
  writeln ('d:nm  cm²/(V·s)  B1/B0 (T/B0)(dB0/dT) (T/B1)(dB1/dT)'); 
  repeat 
   B0 := Mobility (28.96, 0.00171, 0.3036, 44, 0.8, p, T, 2, 0, d); 
   B1 := Mobility (28.96, 0.00171, 0.3036, 44, 0.8, p, T, 2, 1, d); 
   writeln (d : 4 : 2, 
    1.602 * B1 : 9 : 3, 
    B1 / B0 : 9 : 3, 
    (T/B0) * dBdT (0, d) : 11 : 3, 
    (T/B1) * dBdT (1, d) : 15 : 3); 
   d := d + 0.1; 
  until d > 2.55; 
 end; 
 


