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1. Introduction 

The processes taking place at carbon | electrolyte interfaces are of significant scientific 

importance due to their large role in the development of novel energy storage and conversion 

devices, including lithium and sodium ion batteries [1,2], pseudo- and supercapacitors [3,4] 

and fuel cells [5,6]. However, the vast majority of the research conducted in the field is 

focused on the materials science based understanding of materials and interfaces, while an 

understating based on fundamental electrochemistry is largely being ignored.  

Ionic liquids are a novel type of solvent and electrolyte [7,8] with some unique properties 

compared to that of conventional aqueous or organic solvent based electrolytes, such as 

negligible vapor pressure, extremely wide electrochemical window and chemical inertness 

[9]. They also offer a multitude of opportunities as “designer” solvents due to the almost 

unlimited number of combinations of cations and anions they compose of and properties they 

have to offer [10]. While ionic liquids have been in the center of scientific interest for almost 

15 years to date, the processes taking place at the interfaces of ionic liquids are still not very 

well understood [11]. On the contrary, a large amount of contradicting experimental and 

theoretical information exists on these topics. It is thus one of the main concerns of this thesis 

to try and provide an enhanced understanding of the interfacial properties of carbon | ionic 

liquid interfaces based on in situ infrared spectroscopy. 

In situ infrared spectroscopy is an analytical method developed in the early 1970’s [12] in 

order to provide a better understanding of both the structural and kinetic effects at metal | 

electrolyte interfaces. Although the literature concerning the use of metal electrodes for in situ 

infrared spectroelectrochemistry is vast [13], the use of pure carbon electrodes has largely 

been ignored. This thesis is an attempt to bridge that gap in scientific knowledge by 

measuring in situ infrared spectra for three different kinds of pure carbon electrodes with 

varied physical and chemical properties in order to provide a baseline for future studies of 

carbon interfaces by infrared spectroscopy. 

The major purpose of this thesis is to combine classical electrochemistry measurements with 

novel in situ infrared spectroelectrochemical experiments in order to derive a better 

understanding of carbon | ionic liquid interfaces based on the models of fundamental 

electrochemistry. 
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2. Literature overview 

2.1. In situ spectroelectrochemistry 

The first studies of electrochemical phenomena with in situ spectroscopic techniques were 

conducted in the mid 60’s [14] in order to “see” the processes taking place at the electrode 

surface.  Since the ability to gain a quantifiable picture of the interfacial phenomena taking 

place at the surface of a working electrochemical system was of high value in a world where 

most interpretations and qualitative understanding of interfacial phenomena were based on the 

methods of “blind” electrochemistry, this spurred a great deal of interest in the development 

of these novel methods, with ultraviolet- visual (UV-Vis) and infrared spectroscopy being the 

first two types of spectroscopy to be applied for such studies. It should be noted, though, that 

while in situ spectroelectrochemical methods are commonplace today, most of these studies 

are focused on the reactions taking place at an electrode surface, studies of the electrical 

double layer [15,16] are much less prevalent due to the higher demands in terms of specificity 

and sensitivity of method and purity of the materials. 

2.1.1. Infrared spectroelectrochemistry 

The vibrational and rotational structure of a material is probed by infrared spectroscopy. This 

makes in situ infrared spectroscopic methods extremely valuable for the studies of interfacial 

phenomena, since both effects of structural change as well as that of interfacial concentration 

can be probed with high sensitivity. As the energy of the radiation associated with infrared 

spectroscopy is relatively low, these methods do not themselves cause adverse effects that 

could complicate the interpretation of spectra. That said, since the optics applied for in situ 

infrared spectroelectrochemistry are relatively complicated, the interpretation of these spectra 

is not always as clear and concise as one would like. As already mentioned, the primary focus 

of spectroelectrochemical studies with infrared radiation is on that of both single crystal and 

rough metallic electrodes, mostly because of the methods with enhanced sensitivity that have 

been developed for these materials. Because of the metallic properties of these materials, 

incident light polarized in the plane parallel to the surface has a much greater optical 

sensitivity of the adsorbate than that polarized in the direction normal to the surface [17]. 

Rough or roughened metallic surfaces also possess high surface plasmon activity and are thus 

suitable for interfacial studies incorporating plasmonic resonance [18]. In general, it is still 

unknown whether carbon electrodes possess similar properties or not, but the general 
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consensus and understanding [19] is that they do not, which is a major reason for why pure 

carbon electrodes have not been applied to many infrared spectroelectrochemical studies. 

Two primary methods of in situ infrared spectroelectrochemistry are applied in this thesis: 

infrared absorption spectroscopy (IRAS) [20] and infrared reflection-absorption spectroscopy 

(IRRAS) [21]. Both have been applied in the attuned total-reflection (ATR) Kretschmann 

configuration [22]. These methods can be distinguished between by the optics at the interface 

of the electrodes- while in the IRAS method the interface is being probed by the evanescent 

wave caused by the reflection of light at the surface of an optical hemisphere, the IRRAS 

method primarily probes the radiation reflected at the working electrode surface. Both 

methods have their own strengths and weaknesses, but the application of one method or 

another is primarily based on the electrode material under study: only thin film electrodes can 

be used for the IRAS method while macroscopic electrodes are applicable for the IRRAS 

method. The technique of subtractively normalized interfacial Fourier transform infrared 

spectroscopy (SNIFTIRS) [23] is applied trough the thesis for the potential modulation in 

order to achieve interfacial sensitivity. The method applies the static measurement of spectra 

at a probed potential relative to that of an arbitrary reference potential as the background. 

Typically, the potential of zero charge (pzc) is chosen as the background potential for studies 

of the electrical double layer in order to simplify the interpretation of the spectra. 

2.1.2. In situ electroreflectance spectroscopy 

Electroreflectance (ER) spectroscopy is a widely used technique for the study of 

semiconductor electronic structure [24]. In the mid 60’s it was discovered that the technique 

could also be used to probe metallic interfaces in in situ electrochemical conditions [25] using 

the external reflection technique with near infrared to ultraviolet irradiation. The thorough 

research that continued found that, differently from semiconductors, ER could be used to 

selectively probe the surface states of a metallic interface, thus providing an extremely 

powerful tool for the analysis of interfacial phenomena from an electronic standpoint.  

Although ER provided some fascinating insight into the electronic effects of metallic 

interfaces, many of the discovered experimental phenomena are still not adequately explained. 

Due to some technical difficulties and the fact that very few groups around the world had the 

knowledge and capability for in situ ER, the method was abandoned in the early 90’s. In situ 

ER spectroscopy has not yet been applied for the study of carbon electrodes. 
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2.2. Ionic liquids 

Ionic liquids are molten salts, although typically the term is only considered for materials with 

a melting point under 100 °C [7,8]. Another term, room-temperature ionic liquids is used for 

the characterization of salts with a melting point under 20 °C. Ionic liquids are slated to be 

composed of anions and cations only, which is largely responsible for their unique properties 

as both solvents and electrolytes. Ionic liquids and room-temperature ionic liquids are 

typically composed of large, asymmetric organic cations and highly coordinated symmetric 

anions [26]. Because of this general structure, the formation of a highly stable crystal lattice is 

inhibited, which is responsible for their relatively low melting point. Because of the ionic 

structure, ionic liquids also possess extremely low vapor pressure, which allows them to be 

used in ultra high vacuum (UHV) environments and to be purified in such environments. 

Studies have found that the vapor associated with ionic liquids is composed of ionic clusters 

[27], which is responsible for this abnormally low vapor pressure. Ionic liquids are generally 

chemically, electrochemically and thermally (up to 200-300 °C) stable [28,29], although 

many of the anions have a tendency to hydrolyze in the presence of water impurities [30,31]. 

Impurities are also one of the greatest concerns associated with ionic liquids as they tend to be 

difficult to purify post synthesis. Because a large number of ionic liquids are also hydrophilic, 

they tend to have a moderate concentration of water in them, even if only kept in the cleanest 

of environments. The major impurities associated with ionic liquids are water, halide and 

alkali ions and synthesis intermediates. Most ionic liquids have moderate to low [9] electrical 

conductivity, primarily caused by their relatively high viscosity. 

2.1.1. 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) 

EMImBF4 is one of the most often used ionic liquids for fundamental electrochemical studies 

[32–34]. The calculated gas phase ionic pair structure of EMImBF4 is shown in Fig. 1. 

Because it is composed of relatively small ions, the use of EMImBF4 in microporous carbon 

materials has been seen to offer slightly enhanced capacitance compared to that of more bulky 

ionic liquids [35], associated with a higher effective electrochemically active surface area. 

EMImBF4 is also among the highest in electrical conductivity among ionic liquids [11] with a 

viscosity significantly lower than that of bulky pyrrolidinium based ionic liquids. It is also 

very well suited for infrared studies since it has strong and easily distinguishable absorption 

bands associated with both cations and anions. Those bands have also been seen to depend 

upon the interaction with one-another as well as that of the general chemical environment 

[36]. Among the negative qualities, EMImBF4 has a relatively high melting point of 15 °C 
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[11] which significantly limits its use in systems of practical importance. The BF4
−
 is also 

highly susceptible to hydrolysis in the presence of water impurities that can be caused by the 

relatively high hydrophilicity of the material. However, a major consideration of why the 

particular ionic liquid was chosen to study in this thesis is the commercial availability of 

highly pure forms of this material, which isn’t the case for most ionic liquids. 

2.3. Electrochemistry 

Electrochemistry is the scientific discipline concerned with electronic and chemical structure 

of interfaces as well as their relation to electron transfer reactions. It is a highly branched 

discipline that interacts closely with materials science, colloidal science and interfacial 

physics as well as many other chemical sciences. In this thesis, two widely used methods of 

electrochemical analysis are applied in order to support the data measured by the 

spectroscopic methods. Cyclic voltammetry (CV) is applied in order to probe the width of 

electrochemical windows of the systems under study and to confirm that no residual faradic 

reactions take place at the electrode surface. Electrochemical impedance spectroscopy (EIS) is 

applied in order to rationalize the physical processes taking place at the interface as well as to 

measure the differential capacitance- potential (CE) curves for the systems under study. This 

data is correlated with the insights gained from spectroscopic measurements in order to make 

assessments about the electrical double layer structure formed at the interfaces of the systems 

under study. 

2.2.1. Electrical double layer 

The formation of an electrical double layer is based on the Volta problem [37,38], i.e. the 

differences in inner electric potential between two materials constituting an interface. This 

potential difference is screened at the interface by the effective charge carriers, polarizability 

and the orientational and spatial structure of the materials. Although modification of the 

dielectric electrolyte structure at a metal | electrolyte interface is by far the most studied part 

of the electrical double layer, in order to describe important properties of an interface, such as 

electrochemical activity or specific adsorption, one also has to consider the part of the 

electrical double layer inside an electrode material. While this is of little significance for the 

characterization of differential capacitance- potential curves for metal interfaces, the CE 

curves of both semiconductor and semimetal electrodes are largely dominated by this 

contribution, stemming from the formation of a space-charge layer [39] inside the electrode. It 

should also be noted that for materials for which the electronic structure can be described as 
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that of a two-dimensional electronic gas possess a different form of space-charge capacitance, 

one that is primarily limited by the density of electronic states of the material, called quantum 

capacitance [40]. Thus it has been shown that while the CE curves of highly oriented 

pyrolytic graphite (HOPG) can be described by the model of a semimetallic space-charge 

layer [39,41,42] and some contributions of quantum capacitance [40], the CE curves of 

graphene and few-layer graphene are primarily effected by the contributions from quantum 

capacitance [43]. 

While historic models of the electrical double layer, such as the Helmholtz [44], Gouy-

Chapman [45] and Stern [46] models, focus exclusively on the electrostatic contributions to 

the screening of electronic charge, more recent considerations [38,47–49] have also 

emphasized the importance of dipole moments, dipole interactions, polarizability and 

compressibility of the electrolyte materials. 

2.2.2. Electrochemistry of ionic liquids 

As mentioned earlier, ionic liquids are advantageous for the use as electrolytes for 

electrochemical systems because of their high chemical and electrochemical stability [11]. 

Indeed, while supercapacitors applying aqueous or acetonitrile based electrolytes are limited 

to an electrochemical window of 2 or 2.8 V [3,50,51], supercapacitors based on ionic liquids 

have been applied to up to 3.5 V cell potentials [3]. That increase in cell potential does come 

at a price, though, as the high viscosity and low electrical conductivity mean that the power 

characteristics of such supercapacitors is not as high as those of electrolyte solutions [3]. The 

wide electrochemical window also means that ionic liquids can be used as a reaction medium 

for electrochemical synthesis and deposition, for which conventional electrolytes are ill suited 

for [8,9,52]. That said, the electrochemical properties of ionic liquids and the electrical double 

layer structure associated with them is still under intense study. Much of the early literature of 

these subjects is littered with studies where the purity of the materials had not been 

emphasized enough [11], and thus there is a great deal of contrasting information that has 

been published, because of which one should thread carefully when making assumptions 

about the electrochemistry of ionic liquids based on those earlier studies. 
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3. Experimental 

3.1. Equipment 

Amorphous carbon (aC) was deposited using AJA International Ultra high vacuum (UHV) 

magnetron sputtering system applying the following parameters: base vacuum 10
−9

 Torr, 3 

mTorr Ar pressure, 200 W pulsed DC source (100 kHz, 3 msek), 50 W bias at the sample, 

sample temperature 190 °C, 3” graphite (99.999%) target. The film deposition rate 0.2 Å s
−1

 

was controlled by using a quartz crystal microbalance. Atomic force microscopy (AFM) data 

were obtained by Agilent TechnologiesTM Series 5500 system. Raman spectra were taken 

with Renishaw inVia microRaman, using 514 nm laser exitation line. The infrared 

spectroscopic measurements were performed using a PerkinElmer Spectrum GX FTIR 

equipped with a liquid nitrogen cooled mid-range MCT detector and the electrochemical 

measurements were conducted using an Autolab PGSTAT 30 potentiostat in a three-electrode 

glass cell (Fig. 2) with an Ag|AgCl wire in the same IL for a pseudo-reference electrode 

(−0.156 V vs. ferrocene/ferrocenium couple [53]). Impedance spectra were measured within 

ac frequency range from 10
−3

 to 10
5
 Hz with 5 mV ac modulation. An ATR spectrum of 

EMImBF4 liquid was measured separately using a Si hemisphere. EMImBF4 from Solvionic 

(99.5 %, H2O ~100 ppm) was additionally dried in UHV at 100 °C for 48 h, until reaching a 

pressure of 10
−9

 Torr and water content below the detection limit of Karl Fischer method (<10 

ppm). 

3.2. Preparation of the electrodes 

Magnetron sputtering of carbon is as simple as sputtering of gold, but the key aspect is the 

low conductivity of the thin carbon films prepared under normal sputtering conditions. Thus 

the sputtering parameters for the deposition of thin carbon films were optimized in this work. 

It was observed that the 20 nm thick carbon films directly sputtered onto the flat side of ZnSe 

hemisphere are suitable for in situ infrared absorption spectroscopy (IRAS) measurements 

(Fig. 3a).  

A thin (~5 µm) HOPG layer is glued onto the ZnSe hemisphere with a thin layer (~300 nm) of 

dielectric epoxy (EPO) glue and exfoliated with scotch tape (Fig. 3a). Usually only one 

exfoliation is required to produce a see-trough layer of few-layer graphene (FLG) on the 

hemisphere. Although the produced surface is somewhat uneven, the hemisphere setup 

requires only the middle, infrared active part of the hemisphere to be uniformly covered. 
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Optical transmission and Raman spectroscopy measurements suggest the thinner parts of the 

electrode to compose of <10 layers of graphene. 

The carbide-derived carbon (CDC) porous supercapacitor electrodes were prepared from 0.2-

2 micrometer sized carbon powder (made from TiC by chlorination process [54]) + 5 % PTFE 

binder, roll-pressed to form a 100 µm thick electrode and sputter-coated with 2 µm thick Al 

layer in order to increase electronic conductivity. Aluminium contact layer is stable in dry 

EMImBF4 due to the low solubility of formed Al2O3 and AlF3 layers, but it should be noted 

that in the presence of 0.1 % water content Al would dissolve quickly. The specific surface 

area for microporous carbon SBET = 1860 m
2
 g

−1
 was estimated according to the Brunauer–

Emmett–Teller (BET) theory [55]. 

The infrared reflection-absorption spectroscopy (IRRAS) measurements applied 3 mm 

diameter CDC (Al layer facing upwards) electrodes pressed against an ATR hemisphere using 

perforated aluminium foil as a string and an electrical contact (Fig. 3b). IL immerses between 

the ZnSe and the electrode from the sides as the glass cell has 6 mm inner diameter. 

3.3. Infrared set-up 

Our constructed experimental system [56,57] uses 10 mm diameter infrared transparent ZnSe 

(infrared refractive index n = 2.4) hemisphere as the base for the working electrode (Fig. 2). 

The small glass cell also includes a Pt spiral counter electrode and a Luggin capillary for the 

connection of the reference electrode to the cell. 0.4 cm
3
 EMImBF4 was added into the dried 

cell inside an argon filled glove box, and the cell was thereafter sealed with PTFE stoppers. 

An IR beam was directed through a ZnSe wire grid polarizer (Pike Technologies) and a ZnSe 

lens to the ATR hemisphere at 65 degrees of incidence. IR measurements were carried out in 

an inert atmosphere at the temperature of 23 °C.  

The spectra for positive and negative potentials were measured in separate experiments, 

starting from the potential of zero charge (pzc). 128 scans at a resolution of 4 cm
−1

 were 

collected at each potential and the measurement cycle was repeated 3 times. The resulting 

spectra were calculated by dividing the sample with the reference spectrum and presented as 

absorbance ΔA so that the positive-going bands represent a gain of a particular species at the 

sample potential relative to that at the reference potential. The measured bands were assigned 

to certain vibrations with the help of DFT-B3LYP/6-311+G** calculations applying 

GAUSSIAN 09 software. Calculated IR band frequencies were multiplied by 0.97, which is a 

common practice as the DFT calculation tends to overestimate the peak wavenumbers.  
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4. Results and analysis 

4.1. Materials characterization 

Fig. 4 shows the AFM topography images of both aC (a) and FLG (b) electrodes. It can be 

seen that the surface of the aC electrode is very flat, however, that the surface consists of 

small micro- and polycrystalline areas, as one would expect for an amorphous material. The 

surface of the FLG electrodes isn’t quite as flat as that of aC electrodes, which is mostly due 

to the choice of substrate and thus the slightly wavy structure of the EPO glue is seen on the 

AFM image. That considered, the terraces on the electrode are seen to be of single layer 

height and there are large single crystal areas of C (0001) seen for the FLG electrode. The 

average width of the terraces for the FLG electrodes is over 4 µm. The CDC(TiC) electrodes 

used in this study have been previously characterized by electron microscopy, which show the 

electrodes as that of connected microcrystalline particles. 

Raman spectra of the three different carbon electrodes are shown in Fig. 5. The spectrum of 

FLG is represented as that of HOPG due to the effect of substrate on the spectra. It can be 

seen that HOPG has only a single, very sharp peak representative of the G band vibration, 

which shows excellent quality of the material. Meanwhile, both the G band peak at 1587 

cm
−1

, representative of sp2 bonded microcrystalline areas as well as the D band peak at 1337 

cm
−1

, representative of disordered sp3 bonded areas, are seen for the CDC(TiC) electrode. 

These peaks are also significantly wider than that seen for HOPG, caused by the disorder in 

the structure of the material. The Raman peaks of aC are even wider as one would expect for a 

material with an amorphous structure. Only a single peak is seen at 1533 cm
−1

, however it is 

clearly evident that the G and D bands are merged. 

4.2. Electrochemistry 

The CV graphs of the three different carbon materials measured in the EMImBF4 ionic liquid 

are shown in Fig. 6. It can be seen that all three carbon materials afford a very wide 

electrochemical window in the ionic liquid. The cathodic and anodic limits of the 

electrochemical window for aC are slightly higher than that for the CDC and HOPG 

electrodes. Irreversible faradic current for the aC|EMImBF4 system starts at ±2.05 V vs. 

Ag|AgCl, for an electrochemical window of 4.1 V. The electrochemical window for the 

HOPG electrode is somewhat narrower, from −1.9 V to +1.85 V for a total of 3.75 V. 

However, it can be seen that the cathodic breakdown for the HOPG electrode is somewhat 

reversible. This effect is interpreted to stem from the intercalation and subsequent 
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graphenisation effect caused by the intercalation of imidazolium cations into the graphite 

matrix, proven by the splitting of the G band peak in ex situ Raman measurements (not 

shown). As one would expect, the CV of the CDC electrode is largely different from that of 

aC and HOPG electrodes due to the extremely high specific surface area. The charging and 

discharging current dominates the voltammogram for the whole electrochemical window, 

which is again slightly narrower than that of aC, from −1.9 V to +1.6 V for a total 3.5 V, in 

agreement with what has been shown by 2-electrode measurements of the same material in 

the EMImBF4 ionic liquid [58]. 

Electrochemical impedance spectroscopy phase angle diagrams measured at the pzc are 

shown in Fig. 7. The minimum phase angle for the HOPG|EMImBF4 interface is seen to be 

−89.8 degrees, confirming the ideal polarizability of the system. The phase angle is seen to 

deviate from this value only slightly in a very wide frequency range, showing the lack of 

significant trace faradic reactions at the interface and excellent purity of both electrode and 

electrolyte materials. Meanwhile, due to the higher resistance associated with the aC 

electrode, the phase angle diagram is shifted to half a decade lower frequencies compared to 

that for HOPG. This higher resistance as well as non−uniformity of the electrode can also be 

associated with the higher phase angle values for the aC|EMImBF4 interface. Again, the 

results for the CDC electrode differ widely from that of the flat electrodes. Because of the 

high diffusion resistance associated with diffusion of ions into the microporous structure of 

the CDC, the phase angle values are shifted over 4 orders of magnitude compared to that of 

the HOPG electrode. It is seen, however, that the formation of a plateau starts at extremely 

low frequencies (<10 mHz), associated with double layer capacitance of the electrode.  

The differential capacitance- potential (CE) graphs for the three systems under study are 

shown in Fig. 8. The CE curve for the HOPG|EMImBF4 system is typical of that of HOPG in 

other electrolytes with extremely low capacitance at the minimum and a general V-shape [39], 

mainly caused by the semimetallic nature of the C (0001) plane. The capacitance minimum at 

−0.2 V is also interpreted as the pzc of this system. Surprisingly, the aC|EMImBF4 system 

shows a completely different CE curve with a high degree of hysteresis associated with the 

measurements starting at either anodic or cathodic potentials. Because of a low degree of 

graphitization for the aC electrodes, the electrodes can be considered as that of 

semiconductors with a moderate degree of free charge carriers associated with the defects in 

the carbon structure. Thus it is highly probable that the electric double layer extends through 

the entire 20 nm thickness of the electrode and that the hysteresis of the CE measurements can 

be associated with surface doping of ions, i.e. that of ion specific adsorption at surface defect 
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sites. Within such a consideration, the initial decrease of capacitance, measuring from either 

the cathodic or anodic side is due to desorption of ions at the surface, while the increase can 

be interpreted to be caused by the adsorption of counterions at the surface. The general 

magnitude of capacitance for both the HOPG and aC electrodes is approximately the same 

(~5 µF cm
−2

) and the interpretation of pzc for the aC|EMImBF4 interface is made based on the 

open-circuit potential at 0 V. 

 Because of the porous nature of the CDC electrode the capacitance is much higher than that 

of the flat electrodes. However, the general shape of the CE curve is very much similar to that 

of the HOPG electrodes. Interestingly, the minimum of capacitance for the CDC electrode is 

shifted by 0.4 V compared to that of the HOPG electrode, to 0.2 V. As is the case with HOPG 

electrodes, this minimum can be associated with the semimetallic nature of the material, while 

quantum capacitance [40] is also expected to play a large role in the formation of this 

minimum, which is interpreted to be the pzc. The shift in pzc for the materials is interpreted to 

stem from the difference in work function, i.e. the higher degree of dopants in the CDC 

structure compared to that of pristine HOPG. That considered, specific adsorption of ions at 

disordered parts of the CDC electrode can also play a role in this shift [57]. 

4.3. In situ infrared spectroscopy 

The comparison between the ATR spectrum of EMImBF4 calculated for monolayer 

adsorption [57] and the in situ IRAS spectrum of the aC|EMImBF4 system at −1.6 V relative 

to 0 V is shown in Fig. 9. The interpretation of the major vibrations in the ATR spectrum of 

EMImBF4 is given in Table 1.  

Table 1: EMImBF4 ATR spectrum interpretation. 

Wavenumber / cm
−1

 Vibration type Vibration characterization 

3164 ν Symmetric H1; H2; H3 stretching 

3124 ν Asymmetric H1; H2; H3 stretching 

1573 ν Asymmetric C1; N1 stretching 

1171 δ H1 in-plane rocking 

1037 ν B-F stretching 

848 δ H1 out-of-plane rocking 

756 δ H2; H3 out-of-plane rocking 

704 δ H1; H3 out-of-plane twisting 

ν – valence band, δ – deformation band 
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It can be seen that the in situ spectrum is weaker than that of the ATR spectrum calculated for 

monolayer adsorption, which confirms the earlier assumptions about the lack of an 

enhancement effect associated with the aC electrode. The peaks for the in situ spectrum 

represent about 60% of the intensity of the monolayer absorbance and the peaks for cations 

and anions follow a general trend expected for dense double layer formation via direct charge 

compensation of electrode surface charge density. It can also be seen that the absorption peaks 

are at lower wavenumbers compared to that of the ATR spectrum. This in general confirms 

the earlier assumptions made about the aC|EMImBF4 interface based on the CE curve that the 

change in capacitance is largely defined by the specific adsorption of ions. 

The potential dependence of the IRAS spectra of the aC|EMImBF4 interface are shown in Fig. 

10. The same general trends described previously can also be seen for the whole width of the 

electrochemical window- an increase of cation (1166 cm
−1

) and decrease of anion (1020 cm
−1

) 

surface concentration at cathodic potentials and vice versa. 

The potential dependence of the in situ IRRAS spectra of the CDC(TiC)|EMImBF4 system are 

shown in Fig. 11. The spectra are very different from that of the aC interface. Firstly, they are 

a lot more intensive, as one would expect for a material with a higher specific surface area. 

However, it is seen that all the peaks in the spectra, both at cathodic and anodic potentials, are 

in the same direction and negative relative to the reference potential. It should also be noted 

that there are no significant changes in the adsorption values of the major peaks in the spectra, 

compared to that of the ATR spectrum and the relative peak areas for the major anion and 

cation peaks matches that for the ATR spectrum, at approximately 15-to-1. It should be noted 

that because of symmetry considerations, the BF4
−
 anion in gas phase does not actually 

possess an infrared active B−F symmetric stretching vibration and thus the intensity of this 

peak is defined by the interaction between cations and anions in the ionic liquid structure. 

Thus it is concluded, similar to a recent in situ infrared study about a compareable interface 

[59] that these peaks do not represent changes at the interface of the CDC electrode and 

instead stem from the changes in the thin ionic liquid layer between the ZnSe hemisphere and 

the CDC electrode. It is seen that because of the actuation of the porous carbon matrix, ionic 

liquid absorbed by the electrode decreases the amount of ionic liquid in the thin layer, which 

is detected by our measurements. No significant effect of charge separation is seen based on 

these results, hinting at a high degree of dipole polarization at the interface. Similar results 

have also been produced for CDC electrodes with in situ quartz crystal microbalance [60] and 

dilatometry [61,62] methods. 
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The p-polarized in situ IRAS spectra of the FLG|EMImBF4 interface are shown in Fig. 12 and 

Fig. 13. It should be noted that, similar to what was found for thin-film bismuth electrodes 

[56], the s-polarized spectra are more intensive and show the opposite potential dependence 

compared to the p-polarized spectra, which can be explained by the semimetallic nature of the 

materials. This means that if one were to measure potential dependent in situ IRAS spectra 

with FLG without polarized light, the spectra would not be representative of the changes at 

the interface. It is seen that, again, the produced spectra are very different from those of both 

the aC interface and the CDC interface. Firstly, there are spectral features present that are not 

commonly seen for thin film measurements of in situ infrared spectra. Extremely wide 

(approximately 1000 cm
−1

 wide) Gaussian shaped peaks with a strong dependence on the 

electrode potential are detected. These peaks are interpreted to stem from the 

electroreflectance effect, commonly seen in the UV-Vis spectra of metal interfaces [63]. 

Strong peaks representative of the G-band vibration of the FLG electrode are also seen. These 

features will be discussed in more detail later. Similar to the spectra produced for the CDC 

electrode, the IRAS spectra for the FLG|EMImBF4 interface are extremely intensive, while 

the major cation and anion vibrations are seen to be pointing in the same direction, regardless 

of applied potential. However, different from that of the CDC|EMImBF4 interface, these 

peaks all show a gain of the relative species in relation to the pzc and thus match the general 

logic of the CE curve. Also, the peak for the anion vibration is shifted significantly compared 

to the ATR spectrum to 1020 cm
−1

, similar to that seen at the aC interface. It should also be 

noted that the peak area ratio between the major anion (1020 cm
−1

) and cation (1171 cm
−1

) 

vibrations is seen to be significantly different from that of the ATR spectrum, at 22-to-1 ratio, 

compared to a 15-to-1 ratio seen for both the ATR spectrum and the CDC|EMImBF4 

interface, which is indicative of a major change in the interaction between cation and anion 

species in the probed region. All these effects suggest that these peaks are indeed 

representative of the electrical double layer. However, it seems illogical that the spectra for 

the FLG|EMImBF4 interface are about 50 times as intensive as those seen for the 

aC|EMImBF4 interface, when both are measured in the same principal thin film configuration. 

Even accounting for the differences in electrical double layer structure and electrode thickness 

(<5 nm for FLG and 20 nm for aC), such increase of signal intensity is rare even for rough 

metallic surfaces and comparison with the monolayer ATR spectrum would lead one to 

believe that the electrical double layer is over 100 monolayers thick. Theoretical models [64] 

and experiments with graphene micro-ribbons [65] have predicted that the plasmonic 

resonance of graphene is applicable for spectroscopy in the terahertz frequency range. A 
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recent article [66] has also shown that graphene nano-ribbon arrays exhibit plasmonic 

enhancement of adsorbed structures. Thus, it is concluded that the plasmonic resonance of 

graphene [67] is indeed applicable for the investigation of the electrical double layer structure 

and is the source of this significant enhancement at the interface of FLG electrodes. The first 

article to show this effect for graphene nanoribbons [66] also demonstrated that the 

enhancement effect for graphene extends much deeper into the adsorbate structure compared 

to that of the conventional SEIRA effect for metal electrodes [16], which is considered to 

exclusively enhance the spectral features of only the contact layer of the electrode. The 

enhancement for graphene, however, is seen to extend atleast 8 nm from the interface and is 

thus very well suited to study the changes in the diffuse part of the electrical double layer. 

4.4. Electrical double layer 

Finally, we can discuss the implications of both the electrochemical measurements and the in 

situ infrared spectra on the electrical double layer structure associated with these electrodes. 

The integrated peak areas associated with both the major anion and cations vibrations are 

shown in Fig. 14 for the aC|EMImBF4 interface, Fig. 15 for the CDC(TiC)|EMImBF4 

interface and Fig. 16 for the FLG|EMImBF4 interface. As discussed previously, these results 

represent very different spectral dependences, dependent on both the electrical double layer 

structure and spectral logic. 

The electrical double layer formation at the aC interface has already been discussed based on 

the properties of the material and the CE curves. Despite the high degree of spectral noise 

associated with these measurements, which is to be expected for unenhanced spectra of sub-

monolayer changes, the linear trendlines of the spectral dependences represent well the 

previously proposed model of electrode surface doping of ions, as by far the most important 

form of screening seen for these electrodes is based on direct charge compensation in the 

dense layer. 

As the CE curves of both the CDC and FLG electrodes both stem from the same physical 

phenomena and show an extremely similar general shape, one would assume that the 

electrical double layer structure associated with these materials would also be similar. 

However, as previously discussed and seen from Fig. 15 and 16, that is not the case- a slightly 

trounced parabolic potential dependence with a maximum near the pzc is seen for the CDC 

electrode while a general V-shaped potential dependence with a minimum at pzc is observed 

for the FLG interface. For both electrodes, little in terms of direct charge compensation is 

seen as both the cation and anion peaks follow the same general trends. Even considering the 
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previously proposed thin layer explanation for the CDC electrodes, one would expect that if 

direct charge compensation was the major mechanism of potential screening in the electrical 

double layer, the thin layer would also be enhanced with one ion more so than the other. It 

should be noted, though, that the models of the electrical double layer that consider direct 

charge compensation the only form of electrode charge screening, such as the Gouy-Chapman 

diffuse double layer theory , were proposed prior to the advent of the dipole moment Debye, 

or any of the interactions associated with dipole moments. That said, even as early as 1928 

[38,47] the strong dipole moment of water was used to explain the large difference of pzc 

between Hg and Ga interfaces relative to that of their work functions. Many of the latter 

models of the electrical double layer have also emphasized the importance of dipole screening 

in the electrical double layer [38], though such models have not seen very wide acceptance 

among the scientific community, primarily due to their relative complexity. Another point of 

emphasis is that, even as early as 1972, it was shown [39] that the differential capacitance of 

HOPG in nonspecific aqueous electrolyte solutions has an extremely weak dependence on the 

electrolyte concentration in a very wide range of electrolyte concentrations, from 10
−5

 M to 

0.9 M solutions. Based on this knowledge, the interpretation that HOPG acts in electrolyte 

solutions as a semimetal was made; however, those results also show that direct charge 

compensation in the the diffuse part of the electrical double layer can not be of major 

importance for these systems. This is also the conclusion this thesis arrives at based on the CE 

curves and the in situ infrared results- the screening of the electrical potential difference for 

graphite and graphene based materials is largely governed by the formation of a dipole lattice 

at the electrode surface. This lattice of weakly structured electrolyte at the electrode interface 

can screen either positive or negative surface charge densities based on the collective dipole 

of the structured layer. A similar consideration of the screening of potential difference can be 

seen for solid dielectrics in dielectric capacitors, where the electrical charge at the metal 

electrodes is screened by the induced polarizability of the dielectric and not charged species. 

Now we come back to the electroreflectance and G band peaks observed for the 

FLG|EMImBF4 interface shown in Fig. 17. It can be seen that both of these features represent 

the same basic V-shaped potential dependence as that seen for the CE curves of HOPG and 

CDC electrodes, as well as the anion and cation peak intensity seen in the same spectra, and it 

is highly unlikely to be so coincidentally. That said, all the previously named features stem 

from slightly different physical phenomena. Based on the theory of in situ ER spectroscopy, 

the wide adsorption bands in the in situ infrared spectra of the FLG|EMImBF4 interface 

represent the empty surface electronic bands, to which electrons can be excited by infrared 
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radiation. Thus it is the surface electronic structure that is being probed by these features. The 

fact that the absolute slope (0.233 eV V
−1

) at both the anode and cathode side is of the same 

value is representative of the fact that no specific adsorption occurs at the FLG surface and 

thus the empty electronic bands of the surface are not modified by the adsorbate structure. As 

discussed under Raman spectroscopic characterization of the carbon materials, the G band is 

representative of the sp2 carbon vibrations. Moreso, in situ Raman spectroscopic 

measurements of graphene [68] have shown this feature to be extremely sensitive to the 

electrode surface charge, which both the wavenumber and intensity of this vibration are 

dependent upon. The same principal effect is seen for our measurements, as the location of 

this peak strongly depends on the electrode potential. Based on this knowledge, one is lead to 

believe that, as is the case in electrolyte solutions [39], the shape of the CE curves of graphite 

and graphene based materials is largely defined by the electrode material [43]. A different 

viewpoint was expressed in a recent theoretical paper [69] attempting to explain the CE 

curves of ionic liquid interfaces with graphite in terms of the formation of two double layers. 

Based on the results shown in this thesis, however, those considerations can be seen as 

oversimplified and that more comprehensive models are required in order to explain the 

capacitance of ionic liquid interfaces. Indeed, considering both the electronic structure of 

graphene [70] and the in situ IRAS spectra shown for the FLG|EMImBF4 interface, one is 

lead to believe that it is truly a case of one, complex double layer and not the addition of 

many arbitrary, noninteracting layers, as considered by the theoretical article [69] and historic 

electric double layer theories [38]. That said, this can not be either confirmed or denied at the 

present state of knowledge and extensive research would be required to do so. 

4.5. Electrochemical breakdown 

The IRAS spectrum of the aC|EMImBF4 interface at −2.4 V, shown in Fig. 18, is quite 

different from the spectrum of EMImBF4 liquid (Fig. 9) or IRAS spectra measured at more 

electrode positive potentials (Fig. 8). It can be seen that the negative-going peaks belong to 

EMImBF4 (indication of desorption of ionic liquid from the surface) whereas the positive-

going peaks (2971, 2943, 2872, 2848, 2814, 1608, 1445, 1371, 1345, 1244, 1141, and 724 

cm
−1

) are totally different from the EMImBF4 spectrum, suggesting that a new compound has 

formed. The spectrum in Fig. 9 is in a good agreement with the calculated IR spectrum of 1,5-

diethyl-4,8-dimethyl-1,4,5,8-tetraazafulvalene, indicating that at E < −2 V the EMIm+ cation 

decomposes to hydrogen and the dimer formation takes place (reaction scheme is given in 

Fig. 18b). Strong positive peaks indicate to the formation of a thick layer of the dimer.  
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A different dimer, with two hydrogens at C1 and C1’ present, has also been proposed as a 

product [71], but the visible formation of hydrogen bubbles yields to the conclusion that the 

dimer in Fig. 18b is the compound that forms. 

It has to be noted that for the CDC electrode, the spectra for the cathodic product was not 

detected even at −3.4 V (not shown), likely due to the production of H2 gas bubbles in the 

pores, which causes a significant ohmic drop. 

The anodic oxidation reaction starts at +1.6 V for the CDC electrode, at +1.85 V for the 

HOPG electrode, and only at +2.05 V for the aC film. The double bonds in the graphene 

sheets of HOPG are more prone to react compared to somewhat more tetrahedral bonds at the 

surface of the aC electrode. The higher catalytic behavior of CDC electrode is due to the 

porous surface, which probably reduces the reaction activation energy. 

Elemental fluorine evolution from solutions containing fluoride anions has a thermodynamic 

value of +2.87 V vs. NHE [72], which is about +2.6 V vs. our reference electrode. Therefore, 

the direct fluorine formation should not take place at +1.6 < E < +2.4 V, but some kind of 

fluorination reaction definitely occurs. According to cyclic voltammetry data in Fig. 5, the 

anodic process is totally irreversible, but fluorinated graphite has found use in batteries [73] 

and if a fluorocarbon forms, it should give some reduction peaks at more positive potentials.  

There is a wide peak at 1224 cm
−1

 and extremely sharp peak at 835 cm
−1

 in the infrared 

spectra for all three carbons – indicative of the formation of new compounds, while the 

negative peaks belong to EMImBF4 and indicate the desorption of IL from the electrode 

surface. A peak at 1200 cm
−1

 was measured in the IR spectra of graphite fluoride (with 

molecular composition C:F = 1:1, obtained from Sigma-Aldrich), shown in Fig. 19a. The fact 

that the IR spectra at E = 2 V are very similar for the three different carbons indicates rather 

the formation of some fluorinated product and not the C-F bond at the carbon surface. Ex situ 

measurements (after removal of EMImBF4) did not give any IR peaks characteristic for 

carbon fluoride [74]. The trace anodic fluorination of carbon has been detected by the XPS 

method for glassy carbon [75], but not for HOPG and doped diamond electrodes [75] in the 

anhydrous solutions containing BF4− anions. Therefore, it can be concluded that the IR peaks 

at 1224 cm
−1

 and 835 cm
−1

 are caused by the formation of some molecular products.  

The formation of BF3 has been proposed in Refs. [76] and [77], however, the experimental 

spectrum of BF3 gas has IR peaks at 1453 and 693 cm
−1

, which do not match with the 

measured in situ spectra. BF3 is a strong acid and gives various compounds with organic 

molecules. Therefore, we have calculated several BF3 complexes and some of these appear to 

have infrared peaks near 1230 cm
−1

 (Fig. 19a). Combination of BF3 with BF4
−
 anion gives a 
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stable product B2F7
−
; the calculated IR spectra of EMIm

+
 B2F7

−
 ion-pair has asymmetric 

stretch peaks near 1167 cm
−1

. Also, BF3 complex with some fluorinated product may be 

considered as the source for the peak at 1224 cm
−1

. The fluorination may occur at the side 

chains as such processes have been described in the literature - electrochemical fluorination of 

toluene results in methyl group fluorination [78]. Electrochemical fluorination can proceed as 

an addition to the double bond, replacement of a hydrogen atom or cleaving of the nitrogen-

carbon bonds [78]. 

The sharp peak at 835 cm
−1

 is connected with the symmetric vibration of a tetrahedral X+BF3 

group. In the literature, there is an IR spectrum of BF3-imidazolium product, where the BF3 

group is attached to the C2 position, but there is no sharp peak near 835 cm
−1

 [79]. However, 

the calculated spectra of the compound, where BF3 is attached to the imidazolium N atom, 

gives a strong peak at 837 cm
−1

, which indicates that the fluorination reaction might lead to 

the cleaving of N-C bond and formation of the imidazolium trifluoroborate derivatives is 

possible. Among the calculated theoretical products, the substance given in Fig. 19b (1-

methyl-3-trifluoroboroimidazole - MImBF3) has the lowest energy as well as the best fit with 

the experimentally measured spectra. 
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5. Summary 

Cyclic voltammetry, electrochemical impedance spectroscopy as well as in situ infrared 

spectroscopy have been applied for the study of three different pure carbon materials in an 

ionic liquid electrolyte in order to gain a better understanding of the processes taking place at 

the interfaces of the materials. Physical characterization of the materials has been done by 

atomic force microscopy and Raman spectroscopy measurements, showing significant 

structural and electronic differences between the materials. 

The electrochemical measurements showed that while the amorphous carbon (aC) electrode 

can best be described as a semiconductor, the differential capacitance- potential (CE) curves 

of the porous carbon derived carbon (CDC) and highly oriented pyrolitic graphite (HOPG) are 

rather similar, stemming from the semimetallic nature of graphite. 

Two new electrodes have been applied for in situ infrared measurements, providing new 

opportunities for future studies of carbon interfaces. It has been shown that although porous 

CDC electrodes are generally not well suited for the study of the electrical double layer 

structure by infrared spectroscopy, the in situ infrared spectra of aC and FLG electrodes in 

ionic liquid medium are well suited for these kinds of studies. For the first time, the in situ 

electroreflectance (ER) and plasmonic enhancement effects have been shown for a pure 

carbon electrode. 

Based on both the electrochemical and spectroscopic data, a general understanding of the 

electrical double layer formation at the three carbon electrodes has been provided. Both the 

CE curves and spectral data suggest that the differential capacitance of the aC electrodes is 

largely affected by specific ion interactions at the electrode surface and that direct charge 

compensation in the dense layer is primarily responsible for the capacitance behavior at the 

electrolyte side of the electrical double layer. Meanwhile, analysis of the spectral data for both 

the CDC and FLG electrodes is indicative of the fact that dipole interactions are of great 

importance for the screening of the electrical potential difference and surface charge at the 

interfaces of these materials. The importance of a comprehensive consideration of the formed 

electrical double layer is also emphasized based on the combined understanding of the IRAS, 

ER and CE data for the FLG|EMImBF4 interface. 
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In situ infrapuna spektroelektrokeemia mõõtmised süsinikelekdroodidel ioonse vedeliku 

keskkonnas 

Ove Oll 

Kokkuvõte 

Tsüklililise voltamperomeetria, elektrokeemilise impedantsi spektroskoopia ja in situ 

infrapunaspektroskoopia meetodeid kasutati kolme erineva süsinikelektroodi 

elektrokeemiliste omaduste iseloomustamiseks ioonse vedeliku keskkonnas, et omandada 

parem arusaam materjalide piirpindadel toimuvatest füüsikalistest protsessidest. Materjale 

iseloomustati lisaks ka aatomjõu mikroskoopia ja Raman spektroskoopia meetoditega. 

Elektrokeemilised mõõtmised näitasid, et kui amorfne süsinik (aS) on pigem iseloomustatav 

kui pooljuht materjal, siis poorse karbiidse süsiniku (KS) ja kõrgorienteeritud pürolüütilise 

grafiidi (KOPG) differentsiaalmahtuvuse potentsiaalist sõltuvuse (ME) kõverad on üsnagi 

sarnased, mis tuleneb vastavate materjalide poolmetallilistest omadustest. 

In situ infrapuna spektroelektrokeemia mõõtmisteks tutvustati kaht uut elektroodi materjali, 

mis loovad uusi võimalusi pindprotsesside uurimiseks vastavate elektroodide piirpindadel. 

Näidati, et kuigi KS ei ole hästi sobilik infrapunaspektroskoopiliseks elektrilise kaksikkihi 

iseloomustamiseks, siis nii mõnekihiline grafeen (MKG) kui aS pakuvad häid võimalusi 

vastavate uuringute teostamiseks ioonse vedeliku keskkonnas. Esmakordselt demonstreeriti in 

situ elektroneeldumise ja plasmonite resonantsi meetodeid puhtakujulistel 

süsinikelektroodidel. 

Elektrokeemia ja spektroskoopia meetodite tulemuste põhjal loodi üldine arusaam uuritavate 

süsinikelektroodide piirpindadel toimuvatest protsessidest. Nii ME kõverad kui ka 

spektroskoopia andmed viitavad, et aS differentsiaalmahtuvus on suuresti mõjutatud ioonide 

spetsiifilisest interaktsioonist piirpinnaga, ning et mahtuvuslik käitumine elektrilise kaksikkihi 

elektrolüüdi osas antud süsteemis on peamiselt põhjustatud otsesest laengu kompensatsioonist 

elektrilise kaksikkihi tihedas osas. Samaaegselt viitab KS ja MKG spektrite analüüs, et dipool 

moment ja selle interaktsioonid on äärmiselt olulisel kohal vastavates süsteemides elektrilise 

potentsiaali erinevuse ja pinnalaengu ekraneerimisel. Samuti tähtsustatakse komplektset 

mõistmist elektrilise kaksikkihi struktuurist, mis tuleneb infrapuna 

adsorptisioonispektroskoopia, elektroneeldumise ja differentsiaalmahtuvuse andmetest 

MKG|1-etüül-3-metüülimidazoolium tetrafluoroboraadi süsteemi kohta.  
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Figure 1: Optimized ionic pair structure with atom notations used trough the thesis. 

 

 

Figure 2: General measurement scheme for in situ infrared spectroelectrochemistry. 
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Figure 3: Measurement scheme for in situ infrared absorption spectroscopy (IRAS) (a) and 

infrared reflection-absorption spectroscopy (IRRAS) (b) measurements. 
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Figure 4: AFM topography images of (a) 20 nm amorphous carbon (aC) and (b) few-layer 

graphene electrodes (FLG). 
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Figure 5: Raman spectra of the different carbon electrodes used in the thesis. 

 

Figure 6: Cyclic voltammograms (CV) at potential scan rate of 10 mV s
−1

 (HOPG and aC) 

and 1 mV s
−1

 (CDC) of the three different carbon electrodes used in the thesis measured in 

EMImBF4. 
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Figure 7: Electrochemical impedance spectroscopy phase angle diagrams of the three 

different carbon electrodes used in the thesis measured at the pzc in EMImBF4. 

 

Figure 8: Differential capacitance- potential (CE) graphs at 200 Hz (HOPG and aC) and 1 

mHz (CDC) of the three different carbon electrodes used in the thesis measured in EMImBF4. 
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Figure 9: Comparison of the ATR spectrum of EMImBF4 calculated for monolayer 

adsorption with the p-polarized in situ IRAS spectra of the 20 nm aC | EMImBF4 interface 

measured at −1.6 V relative to the reference potential at 0 V. 
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Figure 10: P- polarized in situ IRAS spectra of the 20 nm aC | EMImBF4 interface measured 

relative to the reference spectrum at 0 V. The spectra are shifted by a constant in the vertical 

direction for clarity. 
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Figure 11: P- polarized in situ IRRAS spectra of the CDC(TiC) | EMImBF4 interface 

measured relative to the reference spectrum at 0 V. The spectra are shifted by a constant in the 

vertical direction for clarity. 
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Figure 12: P-polarized in situ infrared spectra of the FLG|EMImBF4 interface measured 

relative to the reference spectrum at pzc. The spectra are shifted in the vertical direction for 

clarity. Areas where different spectral information has been extracted have been outlined. 
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Figure 13: P- polarized in situ IRAS spectra of the FLG|EMImBF4 interface measured 

relative to the reference spectrum at pzc. The spectra are shifted by a constant in the vertical 

direction for clarity. 
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Figure 14: Comparison of the (■) anion and (▲) cation peak areas relative to the applied 

potential for the in situ IRAS spectra of the 20 nm aC | EMImBF4 interface measured relative 

to the reference spectrum at 0 V from the data seen in Figure 10. 

 

Figure 15: Comparison of the (■) anion and (▲) cation peak areas relative to the applied 

potential for the in situ IRRAS spectra of the CDC(TiC) | EMImBF4 interface measured 

relative to the reference spectrum at 0 V from the data seen in Figure 11. 
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Figure 16: Comparison of the (■) anion and (▲) cation peak areas relative to the applied 

potential for the in situ IRAS spectra of the FLG|EMImBF4 interface measured relative to the 

reference spectrum at the pzc from the data seen in Figure 12. 
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Figure 17: The dependences of Edip (a) and G band position (b) on electrode potential from 

the data seen in Figure 12. 
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Figure 18: Experimentally measured and calculated spectra of the reaction products at −2.4 V 

(a) and the reaction scheme (b). 
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Figure 19: Experimentally measured and calculated spectra of the reaction products at E > 2 

V (a) and proposed reaction scheme (b).   
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