ロロ T『M

\checkmark
 ■（1）ABEDEATEAEET 3RM типи ロロ DAMEE

Внтеслателыый центр

ТЕЗИСД ДО尺ЛАДОВ

 ЭВМ TMIM "YPAM"

Секцря III
Математнческое програманитание

Tapry I966

Тартускай государственнй эниверситет ЭССР，г．Тарту，зл．えпигсоли，If

TERUCH HOCHLTOE

ЗВ甘 ТИIA＂YDA！＂
こermus
hatEMATVYECKOE TPORPAMYAPGBAHVE
На русскоу языке
Ответствения редактор Є．Аілсзтй
корректор 0．Прав дин

Poranpuri TTY 2966．Печ．дхстов 6,5 （усдовтах 5，22）
учетн．－издат．листов 3, ．Тира 800 экз．
Буиага 30×42．1／4．Спано в печагь 20／צi I906 r．
1 13－05413．Заназ 305 ．
цена 22 нол．

IІРОГРАММА СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Астахов И. И.

Алгоритм на основе метода, предложенного доктором технических наук Д.И. Голенко, производит по данным эксперимента отбор наиболее существенных факторов /параме тров/ сложногс технологического процесса. Считается, что математическая модель шсследуемого процесса вмеет вид

$$
W=A_{0}+\sum_{i=1}^{n} A_{i} x_{i}+\Delta
$$

где W - выходная функция процесса,
A_{i} - поэффиииенти,
x_{1} - переменнне параметри,
Δ - нормальная случайная величина с параметрами $\left(0,6^{2}\right)$
Крите̂рий оценки значимости отдельных факторов основнваетсяя на F-критерии согласия Фишера. Предлагаемый метод дает возможность существенно сократить объем вычислений по сравненив с класскческим методом наименьших квадратов.

Хараптеристики программы: число переменных $几 \leqslant 44$, число наблодений $\leqslant I 76$. Используются $I-2$ МБ. Аналогичная програма составлена для случая квадратичной модели.

O HЕКОTOPBX OCOEEHHOCTSX BEHTEPCKOГO METOLIA

Бескровннй Н.Т.

Решение проблемв моора, задаваемой матрицей C, венгерским методом приводит к внбору одного оптимального плана. Однако венгерскй метод не дает ответов на следушиие вопрося:
I. Единственно ли полученное решение проблемы выбора ?
2. Какие имештся друтие решения проблемн выбора ?
3. Имеется ли оптиаллное репение, проходящее через зақрепленнве элементы предполагаемого решения ?

Предлохенний автором способ выявления всех решении /планов/ проблемд внбора позволяет ответить на ати вопросн.

Определение всех возможних опттмальных решенй обусловлено тем, что при сведении әкономиескои задачи к проблеме внбора, некоторне факторы часто осташтся неучтевним.

Имея все возмохнне варианты опттмального решения, мохно выбрать из них лучшкй с учетом ранее не учтенннх фанторов.

Предложенныи способ предназначен для более эффективного решения әкономических задач, связанннх с планированием и организапиеџ народного хозяйства.

ОПТИМИЗАЦИЯ КОРМОВЬХ СМЕСЕИ пО СТОиМОСТИ И КОРМОВО

Бахченко Н.С., Краснова Г.С., Солоид С.А.

Наукой ухе установлени основнне качественнве п количественвне характеристики как отдельних кормовых мнгреднентов, так п кормовых сщесей в зависимости от вида, пола, возраста п продуктивнои направленности откорма сельскохозлиственных хивотннх. Они отрахенн в соответствуопих руководствах, таблицах, справочниках, ГОСТ-ах и используются на практике при корректировании стандартвых рецептов кормовнх смесей в случанх несоответствия им имешщегося на заводе сирьн. В настоящее времн это делается вручнум. При этом уровень стоммости единицци продукции по скорректированному таким образом рецепту зависит от того, насколько удачно из имеиишхся ингредиентов составлена смесь, удовлетворлвпая необходммвм зоотехническим требованиям.

Применение ЭВМ здесь дает возмохность не только оперативно рассчитать процентное содерхание отдельных ингредиентов в кормовой смеси в зависщмости от ее вазначения, но п определить миннмалъно возмохнур стоимость еданады сиеси в зависпмости от запаса и ассортпмента шмеицихся в данннй момент на прелприятии кормовнх интредиентов и плана производства данвого вида комбикорма, удовлетворив. при этом зоотехнические тре-

бования:

- по чиолу кормовsх единиц,
- по протепidy,
- по ноличеству и соотнопении внбраннвх незамени-мых аминокислот,
- по минеральны питателннм веществам.

Математическй система зоотехниески ограничений может быть записана с помощью четырех видов неравенств и равенства:
I) ограничения, наложеннне на процентное содержяне каких-либо питательннх веществ (в том чпсле и нормовнх едиНй) ,
2) ограничения, наложенные на отномения некоторьх иитательни веществ в смеси,
3) ограничения по максимальному и минимальному групио вому процентному содержанио ингредиентов в смеси,
4) ограничения по макстмальному ии миималнному процентному содержанип каждого ингредиента в смесп,
5) суммарное процентное содеркание всех входящих в смесь ингредиентов должно бить равно 100%.

Предварительно, в зависимости от конпретнвх пропзводственннх условии, определяется один из 3-х возможннх случаев:
a) на складах комбикормового завода имештся все видн ингредиентов в количестве, достаточном для производства заданной кормовой смеси в запланированном объеме,
б) запланированное количество единиц кормово屰 смесп не может быть произведено из-за недостатка всех вддов ингредиентов,
в) промежуточннй между "а" п "б", т.е. случаї, ког-- 6 -

да недостает только одного или неснольких входнщих в смесь ингредиентов для производства заданного количества смеси.

В случае "а" в результате расчета определяется процентное содержание входящих в смесь ингредиентов при минимальноіі стоимости их набора для производства заданного количества смесп;

в случае "б" выдаетая сигнал невозможности решения задачк;

в случае "в" рассчитывается оптимальная, с точки зрения прибыли предприятия, партия выпуска заданной кормовой смеси при соблодении всех зоотехнических ограничении.

Общая программа решения этой задачи на ЭВМ "Урал-2" состоит из несколькдх частей:

- програмака ввода исходннх данннх, по которой происходит выборка из внешней памяти (перфолента, магнитная лента) п формированндх массивов чисел в соответствии с номером рецепта и номерами ингредиентов, из ноторнх предполагается составить смесь, а тагже Формирования всей оперативной инфоормации, необходимой для обработки этих массивов по следующей за ней программе ;
- программа формирования системы ограничении, в начале ноторой анализируются исходнне даннне и определяется принадлежность к случаф "а", "б" или "в", в соответствиии с чем формпруется и система ограничений и целевая функция;
- программа анализа совместности системы ограничениии, в случае несовместности производится корренция правнх частеии ограничений таким образом, чтобы система стала совместной; величины внесенных коррективов сравниваются с величинами до-

 диентов;
 щыр которой находится оптвмальное с точкки зрения стошмости процентвое содержание ингредиентов в смесп;
- протрамава формирования и внвода расчетних данних на печать.

Оопая програма разработава а ғчетом возмоиностх обслу-

K BOIPOCУ O РАЦИОНАЛЬНОМ ВЫБОРЕ МЕРНОСТИ

Вайнгауз М.Г., Панченко В.Г., Тропин В.В.

В работе мапиностроительных предприятии больщое значение имеет внбор такой мерности металлопроката, чтоби получить нашменьший процент о'тхода металла при раскрое на заготовки.

При выборе мерности нужно соблюдать условия технолотического характера:
I) Мерность рекется на заготовки максимально возможное число раз так, чтобы остаток был меньше длины заготовки.
2) Из остатка мерности режется загбтовка меньшей длины тақхе максимально возможное число раз.
3) Нелательно иметь меньше комбинированннх раскроев, т.е. один пруток данной мерности кроитъ на возмохно меньшее число наименовании деталей.

Задача ставится сладуючим образом:
Зная длины заготовок $l_{i}(i=I, 2, \ldots, m)$ и потребное количество в $\mathbf{~} \boldsymbol{x}$ на программу завода n_{i}, найти такуо длину l, ограниченнуо заданными длинами \mathscr{L}, и $\mathscr{L}^{*}\left(\mathscr{L} * \leqslant \leqslant \leqslant \mathscr{L}^{*}\right)$, чтобы процент отхода металла был наименышим.

Вводятся в рассмотрение делие части отнопений:

$$
\begin{equation*}
K_{n i}=\frac{\mathscr{L}_{*}}{l_{i}} \quad K_{i}^{*}=\frac{\mathscr{L}^{*}}{l_{i}} \quad K_{i j}=\frac{\ell_{j}}{\ell_{i}} \quad(i j=1,2, \ldots, m \quad i>j) . \tag{I}
\end{equation*}
$$

2.

Стролтся комбинаиии тшпа:

$$
\begin{equation*}
\ell=\left(K_{m_{i}}+\tau_{1}\right) l_{i_{1}}+\tau_{2} l_{i_{2}}+\tau_{3} l_{i_{3}} \tag{2}
\end{equation*}
$$

Коэффициенты τ_{κ}-нетоторые пз чисел (I). Из (2) выбпрается помбинация, удовлетворяпиая поставленной задаче. Программа реализована на ЭВМ "Урал-2".

ПРОГРАММА МИНИМИЗАЦИИ НОРМЫ КОНЕЧНОГО СОСТОЯНИЯ ОБЪЕКТА В ЛИНЕИНОИ СИСТЕМЕ УІІРАВЛЕНИЯ

Васплвев О.В.
I. Рассматривается объект управления, поведение которого описнвается системо这 линейных дифференциальных уравнений с начальными условиями. Управлнющее воздействие ограничено по норме (амплитудные ограничения или ограничения на мопность в зависимости от определения нормы). Время управления объектом задано. Необходимо найти такое управление, удовлетворяомее заданным ограничениям, при котором норма конечного состояния объекта минимальна.
2. Метод решения существенно использует результаты работы [2]. Поставленная зядача сводитая к задаче отыскания минии-
 конечного числа переменных. играппих роль начальньх значении вектора сотряженной скстемы (см. [I]).
3. Программа обеспечивает получение первого приблпжения, удовлетворяоцего условию положительности фунниии, максжмум которои ищется. В "предельных" случалх этот результат достигается за счет уменьшения нормь по управлениш. Получение первого приблидения обеспечивается свойетвом множества точек конечного состояния, о котором автору сообпил В.Б. Тиндесом.
4. Отправляясь от первого приближения, происходит поиск

максимума искомой функции методом, аналогичным методу наискорейшего подъема. Для этого в программе предусматривается по-
 вом приближении, которая обеспечивает "улавливание" максимума вдоль этого направления. Далее происходит процесс уточнения максимума либо путем аппроксжмации параболой, что равносильно методу секущих, применнемому для решения уравнения, получаемого из необходимого условия максимума вдоль направления гралиента, либо путем кусочно-линейной ашроксимациии. Второй путь для рассматриваемьх задач в оольшинстве случаев обеспечивает более быструр сходимость.
5. В программе предусмотрено получение решения, когда множество точек конечного состояния объекта вкличает в себя начало координат. В этом случае оптимальное управленке не удовлетворяет принцииу ваксиммма Л.С. Понтратина |I].
6. Программа состоит из следупиих основннх блоков:
I) блок интегрирования системы дифференциальных уравнении с внбором управления исходя из приниипа магсммума ! I| (быстрый поиск);
2) блок выбора первого приближения;
3) блок определения наиболее удобной длины градиента;
4) блок кусочно-линейной или параболической аппроксхмации.

Jиттература.
І. Л.С. Понтрягин, Б.Г. Болтянскиій, Р.В. Гамкрелидзе, Е.Ф. Миценно Математическая теория оптимальннх процессов甲.-M. Гиз, I96I.
2. P. Габасов, Ф.М. Кириллова
"Автомат и телемеханика., J77, 1964 .

JUHEMHOTO IIPOTPAMTИPOBAHИG МETOLAMИ TVIA CИМLIEHCHOГO

Вих这тсо M．Х．，Јоссманн А．K．

Дожлад состоит из двух частей；в первой рассматри－ ваются возможности устранения погрешностей，возникавиихся при маминном решении задач линейного программирования симп－ лексннм методом，а во второй частт описнваются обстоятель－ ства，которые долвнн быть учтевн при составлении программ скмпленсното и модифмцованного симплексного метода для ЭВМ＂Урал－4＂．

Основная идея устранения погрешносте⿺ ввчислений состоит в ормулировке задач динеиного п целочисленного линейного програмапрованкя на язнке обратннх матриц（как при модифиции－ рованном симпленсном методе）и в исправлении элементов об－ ратной матри工и известныи методали линейной алгебрн．

Во второй части доклада основное внмиание（на опыте реше－ ния нонюретнех задач）уделяется на следуюпим вотросам：

I）Влияние ошибок округления на быстроту сходимос－ ти（в смисде пройденннх вериин многогранника）．

2）Влияние опибок округления на допустимость оптии－ мального решения．

3）Сокращение временх решения на ЭВМ＂Урал－4＂．
Деетса характеристика конкретннх программ сиплексного и

ЦЕНОЧИСЕЕННОЕ ЛИНЕИНОЕ ПРОІРАММР ОВАНИЕ

Вихров В.И.

1. С момөнтя появления линейного программирования как аппарата прикладной математики возникла задача нахождения оптимальной линейной программн, выраженной в целых числах. Необходимость в подобном внчислительном методе подтверддается большим количеством задач ия области комбинаторного аналияа, а также из области пдянирования и управления проияводством, которые сформулированв как зядачи линейного программирования. Многие из подобных задач позволяет решить целочисленныи метод Р. Гомори [2]. Программя, разработанная в ВЦ НИГРИ, рөялизует ук๕занный мөтод с некоторыми изменениями.
2. Для решения по указанной программе задача целечисленного прогряммирования формулируется следуощим образом: минимияировать линейную форму

$$
Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

при ограничениях:

$$
\begin{aligned}
& a_{11} x_{i}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots a_{2 n} x_{n}=b_{2} \\
& a_{k 1} x_{1}+a_{k 2} x_{2}+\ldots+a_{k n} x_{n}=\dot{b}_{k} \\
& a_{k+1,1} x_{1}+a_{k+1,2}^{1} x_{2}+\ldots+a_{k+1, n} x_{n} \leqslant b_{k+1} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leqslant b_{m} \\
& x_{1} \geqslant 0 \\
& x_{2} \geqslant 0 \\
& x_{n} \geqslant 0
\end{aligned}
$$

Найти, при капих цених значениях x_{i} достигается дөпое значение $\min Z$. Все коәффициенты $\quad c_{i}, a_{i j}, b_{j}$ - демне чисда, $b_{1}, b_{2}, \ldots, b_{k} \geqslant 0$.
3. В память машины вводятся все поәффициенты b_{j}, а ॥ c_{i} и $\alpha_{i j}$-"тодько $\neq 0$. Программа работает с НМБ и повводяет решать систөм $с n \leqslant 511$ неиявестных, $K \leqslant n, m$ ограничено внешней памятьр (чисдом НМБ) :

$$
m \leqslant\left[\frac{8192 \cdot N}{2 n+6}-1\right]_{\text {цепое }, \quad N-\text { число нмв } . ~}^{\text {. }}
$$

В ходе решения можно получать и нецедочисденнье решения вадачи. Программа рөшения построена на базе модифицированных тордановнх искдочений, хорошо изломеннвх в $[1]$ и $[3]$.

Литература

1. С.И. Зуховицкий, Л.И. Авдеева. Линейное и выпуклое программирование. Из-во "Наука", Москва, 1964 г.
2. Gomory R.B., Hoffman A.J. On the convergence of an integer-programming process, Naval Res. Logist. Quart., 10, N 2 (; § ($\boldsymbol{a} 7$, 121 - 123.
3. Stiefel E., Note on Jordan elimination, linear programming and Tchebycheff approximation, Numerisohe Hathematik 2 (1960), 1 - 17.

МОДЕЛИРОВАНИЕ СИСТЕМЫ ОБСЛУУИВАНИЯ И УІІРАВТЕНИЯ PACIPEIETEHIEM CAPbA ДЛת ИЗМАИЛБСКОГО КОНСЕРВВiOГO КОМБИНА ТА

Владвмиров В.В., Талис Л.Б.

Рассматривается модель пунита первичной переработтии зеленого горошка и цехов по производству консервов "Зелений горопек" как объекта массового обсллуиванпя.

В докладе приводится методика моделирования многоканальной скстемн массового обслуживания с нестационарннми возмумениями на входе.

Приводятая конкретне результатв, полученнце с помощью модедй и внедреннне в производство.

РЕНЕНИE ЗАДАЧ ЛННЕЙНОГО ПРОГРАММИРОВАНИН С ВВЕДЕНИЕМ ИНФОРМАІИИ В АЛПЕБРАИЧЕСКОЙ ФОРМЕ

Горенбург В.П., Пантелеева Т.Г.

При оперативном решении задач больших размеров (заводское планирование) возникает необходимость автоматизировать процесс ввода и вывода инџ̆ормации, так как ручная роспись матриця увеличивает срок выполнения задачи, снижает надежность ее ремения.

Предлагаемая программа позволяет задавать числовой мятериал и получать информанию в любой форме, удобной для заказчика

Для настройки программы на определенннй тип задачи информация вводится в алгебраической форме.

АЛГОРИTM И IIPOГPAMMA PEIIRHИЯ HA ЭBM "YPAI-2"
 КАЛЕНДАРНОГО ГРАФИКА ЗАПУСКА-ВЫПIVСКА ІЕТАЛЕЙ
 для мелКОСЕРиИНогО и индивидуального пРоизводСтвА

Горлов А.А., Гуреев В.И.

Составление календарного графика запуска-выпуска деталеіл по механическим цехам машиностроительных предприятий с помощью ЭВМ "Урал-2" на месяи обеспечивает долговременный прогноз загрузки оборудования. Он дает возмохность руководителям цеха определить перспективы выполнения месячного плана по цеху. Однакс конкретные условия производства не позволяют использовать его в течение планируемого периода, так как в процессе производства всегда возникают нарупения технологического цикла: внход из строя оборудования, несвоевреиенная псставка деталей на обработку и т.д. Поэтому наиболее эффбективннм и практически приемлемым будет грвйик, корректируемы⿺ в течение меслца.

Задача, которая решается в настоящем сообщении, представляет собой совокупность алгоритмов, из которих основннми являются следуюйие:
I) Алгоритм компоновки ходов,
2) Алгоритм многошагового процесса загрузки оборудования,
3) Отыскание минимума временил загрузки станков с

близкой технологическон характеристикой.
Исходными данннми задачи служат:
a) сведения об оборудовании,
б) сведения о подлежапих обрабочке деталях.

Все станки делятся на групाн. В одну группу входят станкI с близксі̆ технологической характеристикой, на которнх можно производить одинаковые операции. Не станочнне операции учвтываются и выделяются особо.

Сведения об оборудовании вклочают:

2) Суточннй фоодд работы станка.
3) Ноэффициент, отрахаппиий процент выполнения норм на данном станке.

В сведения о подлевамих обработке деталнх включаштся следушиие даннне:

2) Количество деталеі в партин.
3) Номера эпераций, подлежапих выполнению.
4) Группа оборудования, на котором данная операпия должна производитсл.
5) Норма времена на данную операции.
6) Очередность витолнения заказов в соответствии с nx производственной необходимость.

> Постановка задачи.

Пусть на $n_{i}(i=I, 2,3, \ldots, n)$ станках обрабатывается $m r_{j}(j=I, 2,3, \ldots, m)$ деталей. Какдая из деталей требует S_{j} операций.

Нается время $t_{i}{ }_{j \text { s }}$ обработки каждой детали-опе эании.

Требуетая произвести загрузку оборудования так, чтобн мпнимизировать общиіи цикл обработки детале-операций на $К$-ом шаге. При условии выполнения

где $t_{i j}$ - начало обработки s-ои детале-операции, m_{j} де-
$\tau_{\imath j /=1}^{\prime}$ тали на n_{i}-ом станало обработки $s+1$ детале-операгви, m; детали на n_{n}-ом станке.

Алгоритм режения.

Состоит в многошаговом приессе, заканчиваищемся выполнением последнеи детале-операни из всех заданных, так, чтобы общй цикл на лобом паге бнд бы минимальным.

Пусть имеем n станков и m деталей, которие неосходимо обработать на данных станках. Капдая из деталей n; имеет $S_{\text {; о операйі. Обозначем к-во в групие взаимозяменяемнх стан- }}^{\text {о }}$ нов через N. Здесь ммется в ндду, уто выбранная детале-операция может бить назначена на обработку на лобой из станкоп этой грипн. Ради простоты полагаеи, что

$$
n=3 ; \quad m=5 ; \quad s \leq 3 ; \quad N=2,
$$

Многожаговнй процесс удобно проилюстрировать в виде таблицы. Моиент вре:иени назначения последукией S-ой операции m; детали на даный n. станок определяется по формуле:

$$
\hat{U}_{i j}^{s}=\max \left\{t_{i} t_{j}^{s-1}\right\}
$$

где \quad_{i} - момент времени освобождения n_{i}-го станка, t_{j}^{s-1} - момент окончания обработки предыдумей детале-

операции $m_{\text {; }}$ детали.
На рис. I (см. стр. 99) показана последователнность внполнения детале-операции, с указぇнием ее трудоемкости для каждой из деталей. Здесь обозначение вида $\mathrm{m}_{j s}^{R}$ означает: $m_{\text {j }}$ - детале-операция с номером S для детали с номером j. Если $R=N$, то R означает групиу взаимозаменяемих станков с количеством N, т.е. детале-операцин S может обрабатываться на лобом станке группы N; если же $R=n_{\text {; }}$, то R означает n_{i} - один станок, на котором может обрабативаться детале-операция S.

$$
\text { Ill a } \Gamma \quad \mathrm{I} .
$$

Назначение на станки начинается с перных детале-операций (см.табл.І;стр.IOO).Из всех отобранных на данннй станок или группу взаимозаменяемвх, выбираем ту детале-операцию, которая занимает этот станок минимальное время. Считаем, что эта де-тале-операция загружает этот станок (см. шаг I, табл. I). остальные детале-операции на шаге I вычеркиваются.
lil a $\quad 2$.
Отбираем последуюцие детале-операции за загруженннли и переносим их и вычерннттые детале-операции в строку !лаг ? таблицы I и определяем возможннй конец загрузки $n_{i}-$ го станка s-ой операцией детали m, по иормуле:

$$
y_{i j}^{s}=\max \left(t_{i} t_{j}^{s-1}\right),
$$

и далее, как в шаге I, выбираем для станка n_{i} ту детале-операцию, которая занимает этот станок минимальное время, считая, что она загружает этот станок n_{i}. Остальные детале-операдии на mare 2 внчеркивавтся (см. шаг 2, табл. I).

Все последушшие паги совершенно аналогичны шагу 2.
Если на группу взаимозаменяемых станков N отобрано количество детале-операций больше 3 , то отыскание минимального времени загрузки кахдого из этой группы станков производится по особому алгоритму.

Данная таблица заканчивается выполнением всех детале-операций. Общая длина обработки какдой детали для данного примера будет

$$
m_{13}-11 ; \quad n_{23}-13 ; \quad m_{32}-19 ; \quad m_{43}-24 ; \quad 1 r_{53}-24
$$

(выделены в таблице прямоутольниками).
По полученному времени окончания обработти деталей можно составить грарики загрузки станков и последовательность обработки деталє-операций во времени. Эти граіиии наглядно иллюстрируот простои оборудования и пролеживание деталей.

Составленная по описанному алгоритму программа выдает указаннне граф̆иии на печать. форма выдачи результатов удовлетворяет заводских работников. Выдача результатов на мирокую печать гораздо удобнее для практического использования. Корректировка месяоного грайика в случае нарушения предусматривается.

Решение такой задачи на ЭВМ "Урал-2" ограничено ее техническими возможностями: недостаточное быстродействие, ограниченн оперативная память и разрядная сетта.

Увеличение оперативной памяти хотя би в два раза дает возможность значительно увеличить количество обрабатываемй партий де Ғалей и сокрапает время решения задачи в 3-4 раза. Однако даже при существубитих условиях применение ЭВМ "Урал-2" для решения задачи является праптически приемлемым.
 ЧЕСКИХ СЕТЕЙ МЕТОДОМ ІИНАМИЧЕСКОГО ІРОГРАМНІРОВАНИЯ

Григорьева А.Д.

Рассматривается 252 варианта электрических сетей нового городского района, обслуживаемого одним трансформаторным пунктом. Эки вариантн различаштся следупцими характеристиками:
I) моцностьо трансформатора (4 тиа - параметр x),
2) числом отходядих линий (3 типа - параметр y),
3) чшслом кабелей в одной траншее (3 типа - пара-

метр z),
4) сечением набеля (7 типов - параметр V).

Нагрузка ранона растет со временем по закову $P_{t}=P_{0}(1+\alpha)$. Како варпант линии нухно залохнть к начаиу I-го года эксплуатацик, ногда и какур пропзвести реконструкцию сети, чтобв суммарне расчетные затраты, приведеннне к началу экспдуатацпи сети, оыли минима.љнными.

Приведеннве расчетнне затраты за i-ый год эксплуатации определяштся формулои

$$
H_{i}(x, y, z, v, \bar{x}, \bar{y}, \bar{z}, \bar{v})=\left\{\left[K_{0}(\bar{x}, \bar{y}, \bar{z}, \bar{V})+K_{p}(x, y, z, v)\right] \cdot P_{H}+H P\right\} \cdot / D^{i}
$$

где x, y, z, \vee - характеристика состояния сети в i-ыи год әксплуатации,
$\bar{x}, \bar{y}, \bar{z}, \bar{V}_{-}$то зе в (i-1) \rightarrow ай год,
K_{0} - капитальнне затраты ва закланку данного варжанта сети,
K_{p} - капитальные затратн на реконструкциш сетп, $H P$ - стоимость потерь электроэнергии,
D - коэфффицхент приведения к началу эксплуатапиии. Математически задача формллируется так: для камдого года T эксплуатации найти
$H M(T)=\min \sum_{i=1}^{T} H_{l}(x, y, z, v, \bar{x}, \bar{y}, \bar{z}, \bar{v})$
и те значения x, y, z, v, которне нужно внбрать при $i=1,2, \ldots, T$.

I)

$$
y=\bar{y} \quad \text { (нельзя менять число отходя- }
$$

пихх линиай),
2) $V=\overline{\mathrm{V}}$ (нельзя менять сечение кабеля),
3) $\quad P_{t} \leqslant P(x) \quad$ (мощность трансформатора не меньше нагрузкт района),
4) $\Delta U(t, y, z, v) \leqslant \Delta U_{\text {gon }}$ (потерм напряяжения не превооходят допустимах),
5) $P_{\text {gon }} \geqslant_{t} / N[y] /$ (нагрузка на каждуу линих не превосхолит допустимой нагрузки в авариином режиме).

Задача разбивается на 20 этапов по числу лет и решается методом дхнамънеского программирования. Процесс оптимизации начинаетая с I-го года. На каждом этапе проствм перебором находится миннмум суммн приведенных затрат, произведенннх на трежддупих этапах.

$$
\begin{aligned}
& H M_{i}(x, y, z, v)=\min _{\substack{n o b e c u \\
x, y, z, v}}\left\{H M(\bar{x}, \bar{y}, \bar{z}, \bar{v})+H_{i}(x, y, z, v, \bar{x}, \bar{y}, \bar{z}, \bar{v})\right\} \\
&-25-
\end{aligned}
$$

Сапоминаем и управление, т.е. характеристику варианта \bar{x}, \bar{y}, \bar{z}, \bar{v}, после реконструкции которого получень минимальные растетные затраты.

Ӭтот метод позволяет моделиродать развитие сети, а такде пвет возможность планировать сеть ла лосои период, менымий人Сти лет, с минимальнымп затратамі.

IPИMEHEHVE НEKOTOPUX МЕТОДОВ ОПТИニИЗАДИИ К РЕ山ЕНИЮ ОДНОЙ ЭНЕРГЕТИЧЕСНОЙ ЗАДАСИ

Илшева Н.П., Альшанова Т.А.

Рассматривается әнергетическяя задача расчета минчмума функции потерь в зависимости от мощности Q при эаданнрй активной мощности.

Функция потерь является достаточно сложной функцией переменных $2 l$ и Q

$$
\pi=\{[L L, Q] \text {, rде } U=f(Q)
$$

\imath^{\prime} - величиіа, харатт еризующая напряжение в заданном yare,

 ражается явно, поэтому отыскание минимума $\widetilde{\pi}$ представляет значительнне трудности. Задача осложняется наложением двухсторонних ограничений на переменные - $l l$ и Q :

$$
U^{\prime} \leqslant U l \leqslant U^{\prime \prime} \quad Q^{\prime} \leqslant Q \leqslant Q^{\prime \prime}
$$

Tax ках $\mathcal{U}_{\text {является нелинейной функцией }} Q$, то задача сводится к задаче нелинейного программирования.

При решении задачи были опробованн следующие методы:

1. Метод обычного градиента с учетом деления шага пополам.
2. Метод градиента с определенным внбором шага.
3. Метод сопряженного грядиента с ияменением констянты и константы
4. Метод линейной интерполяции по переменным , где в качестве функции рассматривались проияводнне,
 выпреуказанвих.

Критерием окончания расчета является достижение с заданной точностьш минимума цедевой функции, о котором можно судить по следуппцим признакам:
a) величина проияводной целевой функции равна нулю с вяданной погрешностьш;
б) малая величина шага h (что не гарантирует достижения оптимума);
в) мапость изменения целевой функции $Ц$, которая равна функции $\pi+\lfloor \rfloor$, где \lfloor - штраиная функция.

Рассмотреннне методы имеот преимущества из-зя простотн алгоритма. Однако они сопряженн с некоторнми трудностями в достижении минимума.

Существенную роль в әтом случае играет сходимость процесса.

При выходе за пределы переменных $\langle L$ процөсс резко замеддяется, а иногда ведет к возрастанию целевой функции.

По вышеукаяанным методям рассчитано определенное число интераций. В докладе приведенн грајини поведения целевой

Функции от числа итераций.
Наиболөе бнстрый спуск наблюдался в случае применения метода линейной интерполяции по переменным \hat{Q} и функций σ.

Примерно ва 12 итераций он давал реким, который при других методах получался на 33 и более итерации.

ПРОВЕДЕНИЕ ТЕХННСЕСКОГО НОРМРОВАННЯ ОСНОВНН ОПЕР АІИИ ЕЕХАНИЧЕСНОЙ ОВРАБОТЖИ ДЕТАЛЕИ НА ЭВМ "УФАЛ-2"

Капрапова P.C., Осөнькина Н.Аь

Нормииование технодогических процессов обработки детадей явдяется одним ив ващных этапов внутризаводсвого планирования.

В ВЦ СГУ разработаны апгоритмы и составлена программа на. "Урал-2" ддя подсчета норм штучного времени на токарные, ұрезерные, сверлидьнне и пллровальнне операции. В докдаде приводится методика нормирования применительно к ЭВМ

и некоторве алгоритмы, заложеннне в прогрвмму.
Компонентв вспомогатедьного врөмени, входящие в中ормулу поденета нори атучного времети, аависят от нногих раяличнн регтороп и сведенн в таодд. в процессе рало-
 шиц.

НАХОДЛЕНИЕ УСЛОВНОГО ЖКСТРЕМУМА СУММЫ ФУНКЦИЙ

 /АЛГОРИТМ БЕЛЛММАНА/Катигский D. B., Гвоздик В.A.

Применяемы в широком классе акономико-математических задач алгоритм позволяет экономично находить при условки, что $\sum_{i=1}^{n} x_{i}=N \quad \max _{x_{i}, \cdots, x_{n}}(\min) \sum_{i=1}^{n} f_{i}\left(x_{i}\right)$

पисло функцдй не более 30 , количество значений камдой функции $\leqslant 300$. Используртся I - 2 МБ.

Для предприятй отраслеи тяжелого, энергетического и транспортного малпинос троения, выпускавощих однотипную продукциш, решены задачи по оптимальному распределенир /'в смысле максимума вннуска/ фикспрованного объема капиталовложений и по распределению заказов по отдельньм заводам так, чтобн сумма издержек была минимальна /при заданном объеме производства/.

IIPИМЕНЕНИЕ ЛИНЕЙНООО ІРОГРАММИРОВАНИЯ К ВОІРОСАМ ОПТИМАЛЬННГО РАСКРОЯ ІРЯМОУГОЛЬНОГО ЛИСТА НА ПРЯМОУГОЛЬННЕ ЗАГОТОВКИ

Каширскии О.B., Мантуров О.В.

Методом Л.В. Канторовича и B.A. Залгаллера ретается задача оптимального /в смысле экономии металла/ комплектного раскроя прямоугольного листа на произвольное количество прямоугольников различннх размеров. С помощьш модииицированного симплекс-метода удается добиться полного решения задачи с учетом комплектности изделии. Число маленьких прямоугольников не должно превышать 8 - IO. Используются I - 2 МБ.

ОПРЕ МЕТОДОМ ДИНАМИЧЕСКОГО ПРОГРАММИОВАНИЯ

Кдих 10.A., Макаров О..В., Ппотников B.A.

Задача о находдении оптимальной програман иямөнения скорости поворота судового крана сводится к минимизации максимального отклонения грува от положения статического рав новесия после остановки крана. Решөние вадачи проводится на ЭұвМ "Јрал-2" методом динамического программирования. Отнскиваются кинематические характеристики оптимальноги двихения в зависимости от раздичных граничных условий.

ОПЫТ ИСПОЛБЗОВАНИЯ ЭВМ В СИСТЕМЕ СЕТЕВОГО ПЈАНИРОВАНИЯ

Кореляков А.Н., Тесля А.Ф.

I. Спстема сетевого планирования и управления производством тяхелых бумагоделательных машин з-да им. Артема F . Двепропетровска.
В производстве завода одновременно может находиться 3-5 бумагоделательных машин, каждая из которых состомт из 150 -- 200 товарных узлов. В одном квартале заводу планируется выпуск определенного количества товарннх узлов по кахдой мащиине. При контролировании хода выполвения квартяльного плана производство каждой машины можно рассматривать как отдельный управляемый объект.

В одном квартале находятся в производстве по каждой мамине до 50 товарных узлов. В производстве товарного узла участвуот 6 - IO исполнителей (производственнне пеха, отдел главного конструктора, отдел главного технолога, отдел нооперации и отдел сбнта).

Производство товарного узла разбивается на отдельнне работы таким образом, чтобн кахдая работа выполнялась тольно одним исполнителем. По кахдому товарноиу узлу таких работ порядка IOO.

Для кахдого узла мапины составляется сетевой график

составляются ежекнартально. Исходя из планов поставки товар. ных узлов заказчикам, дмрекцией завода устанавливается дата сдачи каждого товарного узла, а также его цена в рублях.

По разработанному ЗПТИ техническому заданию на К составлена СП обсчета сетевых грапииов, причем анализ сетевых грапиков разделяется на два этапа:
I) квартальный обсчет сетевнх графиков,
2) текущей обсчет.

Квартальннй обсчет сетей.
Не позже, чем за I5 дней до начала контролируемого квартала с завода на ВЦ! поступает по чаждому товарному узлу следукцая инюормация:
I) шич̆́р узла,
2.) дата сдачи уэла,
3) цена узла,
4) список работ с их продолкительностями и пицрами исполнителей.

13 резултате просчета NL выдает заводу по каждому товарному узлу табуллгрампу 占 I, содержащуо
I) длину криттческого пути,
2) список работ, лежащих на критическом пути,с календарными датами начала и окончания работ,
3) список всех работ сети с калеңдарными датами их наиболее раннего и позднего начала и окончания; полнни и свободний резервн каждой работн.

После мнартального просчета сети записнваются на магнитную ленту.

Текулдий обсчет сетей.
Тепупий обсчет сетей проводится еженедельно. В конце рабочей неделп на ВІ с завода поступает информация о состалнии работ по кахдому товарному узлу (сети), причем в информанино вплочаштся только изменения, происшепшие за неделю по каждой сети, т.е. выполненные работы, работы получившие переоценку продолкительности и новне работы, а тагке план меслца по каждой маппне, дата просчета и время обозрения.

После очередного просчета сетей ВІ выдает заводу следупщие табуляграммн на бумехнои ленте:

Табулнграмма 少 1 содеркит временнне параметры сети с критпческим путем и выдается только для сетеи, в которых пропзошли измененкя.

Табуляграмма 2 , в которой содерхится перечень отстающих работ по товарннм узлам данной машины с временными пара.метрами работ й шхффрами исполнителей этхх работ.

Табуляграмма 3 по дате расчета сетей и времени обозренвя дает для каждого исполнителя перчень работ $4-\mathrm{x}$ типов, где: работы I типа - работы, для поторых дата их позднего окончания предществует дате расчета сети,

работы II типа - дата позднего окончания которых лежит в пределах времени обозрения,

работы III типа - дата раннето начала которнх лежит в пределах времени обозрения,

работы ІУ типа - дата раннего начала которнх предшествует дате расчета сети, а дата позднего окончания выходит за тределн времени обозрения.

Тоулиграмма 桌 4 содеркит прог ноз виполнения месячного

плана и перечень товарных узлов, дата сдачи которых по плану намечалась в контролируемом меслще, но в силу имепиихся отставаний ввщла за пределн этого меснца.

Табуляграмма л 5 содеркит оденку работм исполнияелен, т.е. сумму отрицательных отклонений по какдому исполнитело для всех товарннх узлов данной машинн.

При квартальном обсчете 39 сетеи, содержащих 60-80 работ, затрата машанного времени составляет I час; при текупем обсчете таких де сетей затрата машшнного времени составляет 1,5 часа.
II. Обсчет сетеввх графииов по времени п прогнозирова-. ние ежедневной потребностм ресурсов по раннему сроку внполнения работ.

На ВL МЧМ разработана програмама определения временных параметров сети и потребности ресурсов исходя из раннего срока внполнения работ. Для обсчета сетевого грабика указанной программой необходимо задание по каждой работе информации вида:
a) мииор работы,
б) продолжительность работы,
в) шиюр организации и ежедневное количество рабочех, выполннппих данную работу,
г) шифры материалов и их ежедневная потребность при внполнении данной работы.

Кроме тогс, необходимо задать планируемний срок окончания всех работ и сроки обозрения по работам и ресурсам. Ірограмной обсчитнваются сетевые графиии, имешии не более 1000

собитий, не более 3000 работ, не более 99 видов материалов и не более 99 организаций рабочей силы. Какдая расіота может иеть не более 99 рабочих только одной организации и не более 99 единиц измерєния материалов трех видов.

На печать выдаются все временные параметры собнтий и работ, п павпихх в полосу обозрения, ежедневная потребность в рабочед иле по каждой организации, ежедневная потребность материалоз по каждому виду и общая потребность в рабочей силе и в материалех на заданннй срок обозрения.

После первоначальното просчета сеть записнвается на магнитную ленту, и для очередного просчета сети требуются лить сведения об изменениях, происмедиих в сети за период от предыдущего просчета.

По заназу Промстроипроекта обсчет сетевого графииа, имеющего 1400 работ, закончидся за I час 30 минут.

ИСПОЛЬЗОВАНПЕ ПРИНЦИПОВ СЕТЕВОГО ПЛАНИРОВАҰПИ
В ОІЕРАТИВНОМ ПЈАНИРОВАНИИ И УIIPABЛЕНИИ СЕРИАННМ ІРОИЗВОДСТВОМ

Коробов Б.В., Ппскунова

I. Строится сетевой график процесса производства одного изделия. Собнтие графина - факт изготовления одной детали, узла, схемы, входящей в изделие. Работа графика технологическая операция по изготовленио детали, узла, схем продолительностью

$$
O_{n}=T+K,
$$

где T - производственннй цикл изготовления детали, \because - страховой запас.
2. Il программе расчета сетевих грапиков произвопится предварительннй расчет и анализ сети. Определяется крити-чесгй путь, готовятся материаліі для оптимизации составленного грффика, т.е. для сокрамения производственного цикла изготовления изделия. Сбалансированная сеть используется в дальнейшем для оперативного учета и управления производством.
3. Каждому собитию ставится в соответствие плановни номер сутто-номплекта r / h (в определении новочеркасскоіи системи непреривного оперативно-производственного планирова-

ния) и для каждой работы рассчитывается количество детален, находящихся ехедневно на даннои операпии.
4. Получая от подразделенин предмриятия емедневно оперативные даннне:

В - количество изготовленніх за день деталей,
B^{\prime} - количество находяпихся на каждои операпии деталеи,
В $_{\text {ор }}{ }^{-}$количество бракованных деталеи, можно:
a) рассчвтать фактическић номер сутно-комплекта H_{ϕ} для кахдого события сети и сравнить с плановым,
б) сравнить фактическуо комплектовку данной операпии деталями с плановои,
в) определить критическии срок запуска деталеи,
г) определить пути с наибольшим количеством отстамих сутко-позиции І т.д.
5. Введя дополнительнур постояннур информацию, мохно провести весь комшлекс расчетов по оперативному и технико--экономнческому учету и планированию предприятия, предусмотреннын скстемон ноIm.

Для оперативного учета п анализа состояния производства составлены програмы.
6. Препмщества системаг планщрования.

Коробов 5. B. , đопmapesa Б. B., Poerкова
I. Для спепиализдрования проектной органвзадри сетевые

2. Имеется система трограмм для хранения, расчетв, анализа п проверки правилностх составшени: оиноделевого еетево-

По программе рассчитывартся --
 лобого пз следупих случаев:

$$
\begin{aligned}
& \text { I. } t_{\text {ome }}=t_{\text {min }} \\
& \text { 2. } t_{\text {ome }}=t_{\text {H. }} . \\
& \text { 3. } t_{\text {ome }}=t_{\text {max }} \\
& \text { 4. } t_{\text {ome }}=\frac{3 t_{\text {min }}+2 t_{\text {omax }}}{t_{\text {min }}+4 t_{\text {Hb }}+t_{\text {onax }}} \\
& \text { 5. } t_{\text {ome }}
\end{aligned}
$$

 тии, начала и конца работ;
в) трудоемкость и стокмость каждои ракоти, работ в пределах одного подразделения п всей организации в целом:
г) вероятность свершения целевого собнтия.
3. Программа составлена для ЭВМ "Урал-3" и "Урал-4". Результать не требуют дополнительнои ручной обрасотки. Имеется возможность группировать работн по признаку критической зонн, подразделения, ответственного исполнителя.

О РЕЦЕНИИ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Куликова В. П.

I. Общая постановка задачи

Объект управления описывается системой дио̆ференциальных уравнении $\dot{x}_{i}=f_{i}\left(x_{1}, \ldots, x_{n}, u\right) \quad(i=i, \bar{n})$,

$$
\begin{aligned}
x_{1}, \ldots \ldots \ldots, x_{n}- & \text { поординаты системы, } \\
u- & \text { управление } \\
& \text { Нач. условия } \\
& x_{i}\left(t_{0}\right)=x_{i o}
\end{aligned}
$$

Требуется построить дифференииальное уравнение

$$
F\left(u^{(m)}, \ldots u^{(n)}, u, x_{1}, . ., x_{n}\right)=0,
$$

чтобн вдоль решения системы минимизировался функционал

$$
y=\int^{\infty} W\left(x_{1}, \ldots x_{n}, u, u u^{(1)} \ldots u^{(m)}\right) d t, \quad \text { где }
$$

W - заданнӓя однозначная функция, имеюцая непрерывные производнне по всем переменннм X, u.
'ууннионал характеризует качество системы.
2. Решение задачи оптимального управления базируется на методе динамического программирования Р. Беллммна и состоит в ноходдения решения функционального управления Ғеллмана, которое в стационарном случае имеет вид

$$
\begin{aligned}
& \min _{u}\left[W^{\prime}+\sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} f_{i}\left(x_{1}, \ldots \ldots, x_{n}, u\right)\right]=0 \\
& V=V\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

 Pymге-Кутта.
 *екиме , решаетея вторвм способом: шетодом градиента,

जрать такие зиаченвя ноордннат вектора $\psi(t)$, чтоон
 ตสя.

 усдовиам.

С ДВУСТОРОННИНИन ОГРАНИЧЕНИЯМИ НА IЕРЕМЕННЫЕ
 длА ЗВМ "УРАЛ - 2"

Курман А.B.

Широкий кдасс вадач зинйного програмапрования ппеет двухсторонние ограничения но переменные. Нетод [1] учитывает эти особенности и позвомяет решать задачі такого класса внячитедьно эффективнее обнного симпекс-метода.Преимупества этого метода особенно заметны при реапивации его на ӘЦВМ и проявдяртся в резком сокращении объема памяти, времени решения зядач, что, естественно, повводяет решать вадачи внячичөдьно бодьшего объема.

Программя, равработанная нами дпя реанияации әтого метода на ЗЦВМ "Урап-2" позвоняет решать задачи следуюпих размеров m и n (m - чисдо слохных ограничений, n чисдо неиявестных):
a) при исподьвовании оперативной памяти

$$
(m+5)(n+4)<1640
$$

б) при исповьзовании k магнитных барабанов

$$
n(m+4)+\left[\frac{n}{2}\right]_{4}<8192 k,
$$

где:

$$
r=\min \left\{\left[\frac{1639-n}{m+4}\right]_{4 \cdot n}-4 ;\left[\frac{1333}{m+4}\right]_{4 \cdot n}-1\right\}
$$

Программа опробована на решении яядач размеров $m \approx 50, n \approx 200$.
Вреия решения подобных задач составляет 30-40 иин.

Литөратура

1. Д.В. Вдин и Е.Г. І'одьштөйн "Линейное программирование; М., Физматгия (1963).

ПРИНЦИП ЭКСРРЕМАЛЬНОСТИ И МЕТОД РАСЧЕТА НА ЭЦВМ СІОЖНЫХ ВЕНТИЛЯИОНННХ И ГКДРАВЛИЧЕСКИХ СЕТЕИ

Курман А.В., Каганер В.М.

Рассмотрим вентидяционнур сеть, которуо мохно представить как систему уздов $j / j=1,2, \ldots, n /$, связанных ветвями $i / i=1,2 \ldots, m /$. Присвоим ваддой ветви әтой сети опредеденное направдение, а именно: направление ветви без вентидятора внбираем произвопьно, а направлениө ветви с вентидятором внбираем таким ме, как и направление двихөния воздуха в ней при работө вентилятора в нормапьном режиме. Ддя кахдой ветви i введем сдедуюцие обовначения:
R_{i} - аәродинамическое сопротвдение;
Q_{i} - поток воздуха, который считаем положительннм или отрицатедьным в зависимости от того, совпадает ли его направление с направлением ветви или нет;
$H_{i}\left(Q_{i}\right)$-характеристика вентилятора;
h_{i} - перепад давления.
Принимая теперь, как обнчно, что связь медду перепадом давления и расходом воздуха имеет вид: $h_{i}=R_{i} C_{i}^{2}$ принии экстремальности мохно сформулировать следуюцим обравом:

Потон $Q_{v}^{*}, Q_{2}^{*}, \ldots \ldots \ldots, Q_{10}^{*}$, для которого функция

$$
\begin{equation*}
\sum_{i=1}^{m}\left[\frac{1}{3} R_{i}\left|Q_{i}\right|^{3}-\int_{0}^{Q_{i}} H_{i}(Q) d Q\right] \tag{1}
\end{equation*}
$$

имеет миниум, представляет собой репение вядаии естөственного распределения воздуха по вөтвям вентиляционной сети.

Функция (1) является интеграпьной характеристиной мощности, рассөиваемой потовом на сопротивлениях вөнтиляционной сети, и мощности, сообщаемои полоку вентидлторами. Ее синсл становится особенно физически гровначннм, ногда вентиняторн внутри сети отсутствуот, т.ө. когда функдия (1) принимает вид:

$$
\begin{equation*}
\frac{1}{3} \sum_{i=1}^{m} R_{i}\left|Q_{i}\right|^{3} \tag{2}
\end{equation*}
$$

В атом сдучае ия (2) сдедует, что распредедение расходов вовдуха медду вєтвями сети происходит таким обравом, что сумиарная мощность, теряәмая в сети потоком при данной депрессии, является миндмальной. В тагой форме ато утверхдөние принядлежит ахядөмику Л.Д. Шөвякову.

Исповьвуя теперь принцип якстремельности, разивьеи метод решения яддачи естественного и принудительноюо распредедөния вовдухе по ветвям вентидяционнои сети путем миници зации Функции (1).

Пусть изнестно проияводьное распределение, удовлотворянце условию непрерввости потока в узнах (первоиу закону Кирхгофа). Это условие не нарушитса, есди в проиявольyом хентуре μ, внбрав определенное паправленхн ето

обхода, изменить величхнн потоков Q_{i} в каддой из его ветвей на произвольнуо величину q, прибавляя ее к величине потока пли вниптая ее пз величин потока в зависпиости от того, совпадает ли направление ветви с направлением обхоа нонтура или нет.

Iри таком изменении потоков в ветвях сети значєние функция (I) изменится. Притом это изменение произо処дет за счет пзменения тех ее слагаемд, которые принадлежат контуру μ, т.е. за счет пзменения велиинн:

$$
\begin{equation*}
\sum_{i=v(\mu)}\left[\left.\frac{1}{3} R_{i} \right\rvert\, Q_{i}^{3}-\int_{0}^{Q_{i}} H_{i}(Q) d Q\right] \tag{3}
\end{equation*}
$$

где через $V(\mu)$ обозначено мохество ветвен сети, принаддежапих контуру μ. Эта велычпна после указанньх пзменениы потоков в вечвяд контура μ принимает вид:

где через $V^{\prime}(4)$ обозначево мнохество ветвей контура μ, ориентированных в направнения его обхода, а через $V^{\prime \prime}(4)$ - мнохество ветвей того хө кончура, ориентированних в противоположном направлении.

Определим теперь то знатэние q, при котором сункпия (4) пмеет минимм. Для этон цели, как оончно, исследуем ее на минимум по q. Нетрудно доказать, что искомое значение q всегда существует. Это обусловлено, в пастности, особенностями характеристик вентиляторов.

Итак, если хотя бн для одного нонтура μ производная функпии (4) по q ве равна нуль, то распределение воздуха в сети мохно изменить (как это показано выше) таким образом,
 ном расщределении.

Излохенная ввше продедура минвмизаиий функдвй (I) модет бить полохена в основу итерационного метода решения задач по естественному п принупительному распределенхд воздуха по ветвям вентиляиионнои сети.

Действительно, если в качестве исходного привять какоелибо растределение, удовлетворяммее лишь условир непреривности потока в узлах, то внполняя последовательно для камдого из линеино-независимдх контуров сети (для которих щроизводная от функции (4) по q не равна нуло) рассмотреннур ввше процедуру изменения потоков в его ветвах, мах постепенно будем минимизировать функцио (I), не нарушая при этом условие непреривности потока в узлах сети. Поскольку функция (I), как это нетрудно показать, ограничена снизу, то предлагаем⿺й итерационный процесс монотонно сходитсл. Предельнмм для данного итерапионного процесса будет распределение, при котором для каддого линейно-независимого контура сети внполняется равенство:

$$
\begin{equation*}
\sum_{i \in V_{(M)}}\left[R_{i} Q_{i}^{2} \operatorname{sign} Q_{i}-H_{i}\left(Q_{i}\right)\right]-\sum_{i \in V^{\prime \prime}(\mu)}\left[P_{i} Q_{i}^{2} \int_{i j^{n}} Q_{i}-H_{i}\left(Q_{i}\right)\right]=0 . \tag{5}
\end{equation*}
$$

Но это означает, что для любого контура алгебраическая сумма потерь напоров на его ветвях равна алгебраической сумме напоров, создаваемдх вентиляторами, работапиими в этом контуре (внполняетая второи закон Кирхгофа). Отспда следует, что предельный длл данного итерационного процесса поток дает решение задачи естественного распределения воздуха по ветвям вентиляционнои сети. Сходимость процесса заметно ускоряется, если систему линейно-независимвх контуров сети выбирать таким образом, чтобн ветви с внсокими сопротивлениями по возможности не являлись обтими для различнвхх нонтуров системд. Такур систему контуров легко построить с помощьр алгоритма Краскала пля поиска "минимального" дерева [5].

Для решения задачп по определению потока в вентиляционнон сети, при котором обеспечшвавтся необходммде дебиты воздуха в заданных ветвлх, применяется тот же метод, но итерации выполннотся теперь только по тем линейно-независкмым контурам системы, которие не содерхат ветвеи с заданными дебитами. В результате будет получено распределение, при котором во всех контурах сети, не вклочапмих ветвей с заданными дебитами, алгебраические сумы депрессии будут равны нуло.

В отличие от известннх методов $[\mathrm{I}, 2,3,4]$, предлагаемый метод обеспечивает сходимость к решению при лобом начальном расгределении, удовлетворяющем условию непреривности потока в узлах, а при решении задач принудительного распределения воздуха, помимо этого, позволяет решать воп-

росн обесиеченпя заданного рекима проветривания при мини－ мальном чисде регулируших устройств，минимальной общей депрессии п минимальнои мощноств вентиляторов．Число регу－ лируроих устроиств при этом равно числу ветвей с заданными дебитами，а необходимое регулирование достигается за счет размемения регулирухиах устронств именно в әтих ветвях．

Если по какъм－либо причинам нельзя размещать регуля－ торы в некоторнх（илй во всех）ветвях с заданными дебитвми， то необходиме размещение регуляторов момет бить найнено с
 кратчанего пути［5］．

Влпе пзложение велосs в герминах расчета вентиляиион－ н⿺辶 сетед．Но әтот ме метод，естеслвенно，прпменим п дди расчета гидравлических сетей，а в суцественно более просто音 форме и для расчета электрияескх сетед．

Іредлагаемый итераиионны⿺辶 метод удобен пля әепфективнод его реализадни на ЭцВи．Програзми，разработяннне намп для машины＂Урал－2＂，позволяют рассчптидать указаннне сети，оо дерхаиие до 500 узлов，до 5500 ветвей и до 80 вентиляторов． Программи опробованн на решении рида прантических задач． Мапинное время，например，при расчете схемк проветривания вентилящии рудника имени Кирова（Кривбасс）составило около 2 часов，причем точность была принята 0，001 куб．м／сек．Эта сеть содержала 522 ветви， 344 узла п два вентилнтора глав－ ного проветривания．

Jитература

І. Абрамов Ф.А., Торговников Б.М., Вихров В. И., КаганерВ.М., ॠурман А.I. Расчет принудительного распределения воздуха в вентиляционной сети шахты с помощьо ЈвМ. Уголь, fing, I964r.
2. Багриновский А. Д. Основн теории управления шахтными
 чинского, М., 1964 г.
3. с. Цой, С.И. цхай Применение метода линейного програмиирования для решения задач по регулированив расхода воздуха в сложных вентиляционных сетях . Сб. трудов ИI'II AH Казахской ССР "Вентиляция п обеспаливанис воздуха на рупниках Казахстана". Алма-Ата, І9бб.
4. С. Гои, С.И. Петрович Оптимальное регулирование расхода воздуха в нехтных вентиляционньх сетнх - Вестник LH Казахской ССе 红 I, I965 I 。

0 РЕЕЕНИИ ЗАДАЧИ ЛИНЕИНОГО ІІРОРАММИРОВАНИЯ, СВЕЛЕННОИ К ОТЫСКАНИЮ БЕЗУСЛОВНОТО ЭКСТРЕМММА НЕКОЛОРОИ ВСПОМОГАТЕЛЬНОЙ ФУНКЦИИ

> Кутанов А.T.

Постановка задачи линейного программирования следушая. Определить

$$
\begin{equation*}
\min F(x)=\sum_{k=1}^{n} c_{k} x_{k} \tag{I}
\end{equation*}
$$

на линейних огрөничениях вида

$$
\begin{array}{ll}
f_{j}=\sum_{k=1}^{n} a_{j k} x_{k}+b_{j}=0 & j=1,2, \ldots ., m, m<n(2) \\
f_{i}=\sum_{k=1}^{n} a_{i k} x_{k}+b_{i} \leqslant 0 & i=1,2, \ldots, r
\end{array}
$$

Предполагается, что условия неотрицательности входят в (2) в вдде $-x_{k} \leqslant 0$. В работе [2] рассматривавтая только ограничения неравенства.

На основе (I), (2) и (2), строится некоторая вспомогатедвная функция

где

$$
\begin{equation*}
W(x, \alpha, \beta)=\alpha J(x)+\beta F(x), \tag{3}
\end{equation*}
$$

$$
J(x)=\sum_{j=1}^{m} f_{j}^{2}+\sum_{i=1}^{n} \varphi_{i}^{2} S_{g} \rho_{i}
$$

н $S_{q u}= \begin{cases}I & \text { мри } u>0 \\ 0 & \text { при } u \leqslant 0\end{cases}$
α 面 β^{3} - некоторые положительные числа отличше от нуля. Минимум функции (3) совпадает с ремением первоначально поставленной задачн либо при $\alpha \rightarrow \infty$ и $\beta=$ const [I], либо rре $\alpha=$ const $\beta \rightarrow 0 \quad[2]$.

Іре,плагается упорядоченный метод изменения, напрммер, нобффииента β прд фкксированном значенви α, олагодаря которому точвое решение задапк линеиного программирования достигаєтия пок некоторон повечном значения β.
 доказаиного утверкдения

$$
\begin{equation*}
F\left(x^{*}\right) \geqslant 2 \alpha, J(\bar{x})+\beta F(\bar{x}), \tag{4}
\end{equation*}
$$

 но炭 задачи лкнейного трогралмирования.

Для минкивапгии фуници (3) используется метод параллель-них касателвних [3]. Литерату:

1. Рубашев М. В. Традиентный метод решения задач выпуклого програмпрования на элеттронной модели. "Автоматика и Телемеханина, 5 II, I965.
2. Pietraykowsky, Application of the steepest ascent method to linear programming. Irace ZAM, ser A,N 11,Warszawa, 1961.
3. Shah B.V., Wome algorithms for minimizing a function of sekeral variables. Journal of the Society for Industrial and Applied Mathematics.

ИСПОЛЗЗОВАНИЕ ЭЦВМ "УРАЛ-2" ДЛЯ МОДЕЛИРОВАНИЯ

 ЭССПЛУАТАЦИОННО РАЕОТЫ 耳ЕЛЕЗНLХ ДОРОГКутдев Г.М.

 систему, для ушравления которои эффективно могут бнть псполюзованы ЭЦРМ.
2. Критерияия оценки работв мелезннх дорог ногут являться: степень удовлетворения потребности в перевозках, себестоимость тонно-километра, показатеди использования подвавного состава, производителность труда и т.д.
3. В настоящее время далеко не все крктериі могут бвнъ описаны функцдональными завискмостями. Это вызывает необходимость моделирования самого процесса работы келезных дорог.
4. В ХабИИКТе разработана машинная програмпв (для ЭЦвМ "Урал-2"), воспрокзводящая процесс работы отделения железнож дороги. Принцип действия программы состоит в том, что отдедвным ячеикам запоминашацего устройства сопоставляются отдельнне группы вагонов п путей станции. После получения исходнои индормании и финсирования ее в соответствупиих ячеиках прожс-ходит изменение содержммого ячеек в соответствии с реальнои технологией работн.

Программа позволяет получить план-прогноз на любюй заданный отрезок времени.

Лившиц В.Н., Позамантир ј.И.

Рассматривается один ия возиожных методов решения многопродуктовой транспортной задачи в следуюцей постановке: задана транспортная сеть, в узлах которой находятся пункты отправления и прибытия различных невзаимозаменяемвх родов грузов. Необходимо найти такое прикрепление пунктов отправления к пунктам наэначения и таксе распределениє перевозок по отдельньм марирутам, соедизяющим кадпьй пункт отправления с каддим пунктом назначения, чтобы общая сумма всех затрат на перевозку оказалась наименьшей. Зеличина расходов на перевозку на отдельном звене задается произвольной внпукдой функцией. от величинь объема перееозок на атом звене.

Необходимым и достаточн⿺м условием оптимальности решения выпуклой транспортной задачи является потенциєльность построенного плана перєвозок, т.е. супестьоғание для каждого p груза и каддого \subset узла такой системн чисел $\left\{U_{i}^{(\rho)}\right\}$, при ноторой для кахдого звена \ddot{j}
ісоединяюцего узел (и узел $/$) будут выполняться усдовия

$$
u_{i}^{(r)}-u c_{j}^{(p)} \leq \frac{j f_{j}}{d x_{i j}}
$$

Метод решения основан на некоторой модификации известного для линейного программирования алгоритма Канторовича - Гавурина, т.е. составляется начальннй план, проверяется выполнение усповий потенциальности и в случае их нарушения производится последовательное улучшение плана.

СИСТЕМА НЕІРЕРНВНОГО ОІЕР АТИВНО-ПР ОИЗВОДСТЗЕННОГО ПНАНИРОЗАНИЯ И РЕАЛИЗА ИИЯ ЕЕ НА ӘВМ "УРАЛ-2"

майорова В.И.

Оперативность внутрияаводского пианирования краине необходима предприятиям в их повседневной работе.

В настоящее время на многих предприятиях странн внедряется рязработанная на Новочервасском өдектровозосгроитедьном заводе система непрерывного оператввно-пропзводственного планирования.

Эта система преследует цедь создания и сохраненин стабидьннх комппектнах зяделов незавершенного производства, обеспечиваюцих ритмичную работу предприятий на всех стадиях आроизводства, а также ехедневннй учет хода выполнения подетащьного плана.

Однако оперативное управление проивводственным процессом возможно только при исподьвовании внчисдитедьной техники, так как ежедневно необходимо обрябачнвать большой поток инФормяции.

В ввчислительном центре СГУ составдена программа ддя ЭВМ "Урап-2", позводяюдая решать технико-әкономические вопросы, связаннне с внедрением и использованием Новочеркаской системы непрернвного оперативного планирования.

ОЕРАЕОТКА ЭКОНОМИЧЕСКОД ИНФОРМАЦИИ О РАЕОТЕ ІРЕЕПРИНТИЙ
 пІॄРиоД НА мл

овстенко Г.Ф.

Исходвве данвве о работе кахдого предприятия передавались по абонентскои телеграфу. Передача инйормапии осуиествляется с таблй, разработанных в НИИэМІ при Госплане БССР. В таблице учтенн особенности передачи по абонентскому телеграфу и требования схемн перфорапии для ввода этой инф์ормании в ЭВМ "Минск-2". Исходнне даннне поступарт во 2 -ом международном коде. Программа ввода переводит вср индормадиио в $10 \mathrm{c} / \mathrm{c}$, контролирует п комшанует документ. Т.к. на предприятии встречаотся шифри материалов в буквенно-цио̆ровом виде, их требуется перетиировать. Програмиа перешийровки присваивает буквен-но-циф̆ровому шифрру новый машинный шифр и осучествляет перекомпановку документов, приводя шх к постоянной длине; документу в рассортированном вцде хранятся на мЛ.

Іля накопления отчетвнх данннх за определеннни период существует архив, состоящий из кодов постоянной длиғн. Это позволяет его рассортировать по лобым реквизитам. Архив хранится на МЈ. При об̆ормлении архива ва БाІМ внпечативартоя документв, в которих обнаружени ошибки (например, повторный документ), и те предприятия, которые не передали сведений за

данный день.
После оформления архива программ счета и вывода выводят на PTA в виде оформленных отчетных документов результаты обработки данных за текуиқй день.

Ввводные таблиц содержат:
a) отклонения с начала месяца;
б) \% выполнения дневнего плана;
в) \% выполнения плана с начала месяца.

Программа позволяет выдавать на РTA ежедневнуо информацито:
a) по отрицательным отклоненинм (т.е. те реквщзиты, по которим не выполняетея план);
б) по вахнейшкм видам продукции.

 (отыт применения Эцри "Урал-2" при проектировании объектов транспортного строительства).

Персианов В.А., Усков Н.С., Четвркина И.Е.
I. Разработан алгоритм и составлена программа испытания моделей хгд. узлов (стантий) с использованием электроннои вичислительной машинн "Урал-2".
2. і:д. узел (станция) рассматривается нак сложный инменерный комплекс, выклочааштй некоторое количество одинаковых или различннх элементов подходов, станций (в узле), внутриузловых ходов, станиионных путей, стрелочннх переводов и т.д., объединенндх связами в нечто целое, назнваемое системой.
3. От простого скопления элементов ж;д. узел как система отличается тем, что его составнне части объепинены внутрениими связями и вступают друг с дрлгом в определеннне (а ве в лобие) отноиения (взаимодействие), зависниие от схемм узла и организации его работн.
4. Схема узла, отражающая его структуру (рисунок элементов и связей), ограничивает разнообразие отножений и связей. Это делает задачу исследования $қ: д . ~ у з л а ~ к а к ~ с и с т е м ь ~ п р а к т и-~$ чески разрештмой.
5. Ввиду сложности рассматриваемвхх систем, вытекающей из

множественности структурннх элементов и обилия связеи, строгое математическое описание жод. узла как системы современным математическим аппаратом невозможно, чем п объясняется выбор метода моделирования работы узла на Эвм.
6. Щия решения задачи необходимы исходнне даннне, характеризукиие входящий и внутриузловой поездо-поток,порядок его прахождения и проиолкительность обработки, путевое развитие узла, маневровне средстза и другие параметры. Некоторне из параметгов можно считать фиксированными, другие могут онть
 пределения.
7. При решении многтх проектных задач, когда моделируемая система в'натуре не существует, в риде случаев часть параметров, характеризуюиих входящий поток поездов, знутриузловие и внутристанционные передвижения, целесообразно задавать веролтностным способом; остальные параметры (преимуцественно структурнне) принимаотся согласно проектной схеш узла.
8. При решении текуцих эксплуатагионных вопросов (особенно при внсоком удельном весе пассажирских операций, хеотко ограничиваемых графиком) параметры поездопотока, его обслуживания п самой структуры узла должны приниматься фикспрованными. При этом задача заметно сужается и сводится лишь к проверке соответствия пропускнон и перерабатывахпей способностп существуюших устройств узла (путевого развития, сортировочных горок, маневровнх средств, обслуживарших оригад и т.д.) намечаемому графику движения поездов.
9. При моделировании в информапионноћ системе ЭLВМ воспроизводятоя те реальнце процессы, которые протекают в иссле-

дуемом узле. Чем полнее ины̆ормационная модель системн отряжает структуру узда и условия его работн, тем точнее оказнваштся результаты расчетов.

IO. Основннми операторами алгоритма, моделирукцего процесс работы узла, являются:

- определение времени поступления поезда в узел;
- выбор маршрута дрпкения поезда (или маневрового передвкжения) ;
- формирование ноординат состояния элементов узла;
- корректировка конечных координат.
II. Отработка п проверка результатов моделирования включает: а) определение временп работы системв по капдому из входов:

$$
\left.z=\xi_{1}+g_{2}+\xi_{3}+\ldots+\xi_{n}\right)
$$

где
ξ_{1}, \ldots, ξ_{n} - интервалы приема поездов в систему через рассматриваемыи вход:
б) подсчет числа реализации, т.е. пропущенннх поездов, маневровых передвижении и т. д., по отдельным маршрутам и узлу в целом (определение пропускноф способности узла);
в) нахождение степени загрузки элементов системы (путей, стрелочных перевозок, маневровых локомотивов и др.) по времени:

$$
\varphi=\frac{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}{z},
$$

где $a_{1}, a_{2}, \ldots, a_{2}$ - продолжительность занятия элемента последовательно обслуживаемыми поездами;
г) подсчет числа задержанных поездов по отдельным маршрутам и узлу в целом;
9.

- 65 -
д) определение общей продолительности задержек (в поездо-часах) по узлу в целом с распределением по марпрутам и категориям поездов:

$$
\sum_{i=1}^{i=n} \Delta Z_{i}=\Delta Z_{1}+\Delta Z_{2}+\cdots+\Delta z_{n}
$$

где $\Delta Z_{1 j}\left\llcorner Z_{2} ; \cdots, \Delta Z_{n}\right.$ - задержки поездов на элементех.
В общем случае испытание модели узла повторяется многократно, а перечисленнне показатели отнскиваются методами математической статистики.

Современньй системотехнический подход к узлу (станции), таким образом, означает необходимость количественной оценки степени и характера участия в работе каждого элемента узла и mx групп. Только на основании такой оценки мопно решить, чем допустимо пренебречь в построении модели.

I2. Исследование нескольких вариантов развития узла для установления его пропускнон и перерабатывапщеіи способности, мощности (количества путей на станииях, опновременно работаюмих маневровнх лономотивов, обслуживаппих бригад и т.д.) отдельных элементов и качественных показателей работы узла (станции) в целом времени нахождения поездов на станциях (и внутриузловнх перегонах) является конечной целью моделирования. Чем меньще величина задержек поездов в узле, тем более внсокой оценки заслуживает вариант проектной схемы узла или принятая организация его работн.

На основании многожратнех повторннх испытаний модели узла на Эивіі можно сюормировать и отобрать лучшие троектние варианты узла, более совершенний порядок его работи п т.д.

I3. Степень рациональности внутренней структуры системц
(вариант развития узла) устанавливается сопоставлением затрат, вызываемьх задернами поездов в узле, с теми дополнительными капиталовложенинми и эксплуатационніми расходами, которне требуются для полного устранения задержек или сведения их к определенному минимуму.
14. Нзоженннй способ истытания моделей х.д. узжа (станции) на ЮцЗМ позволяет наряду с пропускной способностьн, определить задержки поездов, т.е. одновременно с количественной дать и качественную оценку вариантных схем развития узла. Метод моделирования вооружает проектировиииов средством для более объегтивной и всесторонней оценки намечаемвх проектинх решений.

I5. Затраты машинного времени на расчет зависят, прехде всего, от сложности моделируемого узла п колеблотся от несколькдх минут до нескольких десяттов минут.

IIPOГРАMMA PACYETA CETEBOTO ГРАХИКК И РАСХОДА

 РЕСУРСОВ С ВЫДАЧЕИ РЕЗУЛЬТАТОВ ПО ИСПОЛНИТЕЛЯМПетухина Э.А., Баранова Г.И.

Расширение применения системы СІІУ на стройках Иркутской области показало необходимость дополнения и изменения существупихх программ по расчету сетевых графиков.

Разработка и оптимизация сетевнх графиков всегда сопровождается расчетами потребления ресурсов. Такие расчетн очень трудоемки. Они нужны для выявления возможногтей осуществления строительства по графику, для составления заявок на материалы. Известно, что в строительстве объекта или комплекса принимает участие больпое количество исполнителей. Отсутстве фиксации исполнителей работ в общеп таблице результатов расчета графика снижает роль этой таблицы, как носителя информации, способствукцей проведенив оптимизации и ортанизации оперативного управления. Діля выделения временннх параметров, относяшихся непосредственно к работам кащдого исполнителя приходится делать дополнительнуто виборку работ и составлять вручную дополнительнне таблицд.

По новой программе ведется расчет ьетевого граииа и расхода ресурсов на основании информации, содержащег перечень рибот, закодированных номерами своик предшествуяцих п последуопих собнтьй о укєзанием их длительности, пиира исполнителд

п объемов ресурсов по кахдой работе.
Программа предназначена для расчета основннх параметров одноцелевого сетевого граф̆ика (ранние и поздние начала и огончания в относительных днях и календарных датах, полные п частнье запасы времени, продолкительность критического пути, попкритическая зона) и расхода ресурсов по ранним или поздним началам работ.

Програмия рассчитнвает сеть с количеством работ не более I900, максшмальнни номер собнтия - IO24. Максимальная продолждтельность работы 127 дней. Продолиительность критического пути не может превышать 2047 внбранньх' единиц масштаба времени при расчете временннх параметров и 600 - прп расчете расхода ресурсов.

Максимальный пихфр исполнителя 63, максимальныи шшийр ресурса - 63. Объем ресурса, потребляемыи ежедневно по капдой работе не более 32000 единиц. Сетевой график может иметь несколько начальных и конечннх событий.

В программе предусмотрено выявление неноторых ошибок в поступакщей инбормации, замкнутые циклы, одинаковве работы, работы у которех $i>j$ или $i=j$. При выявлении ошибок они выдаются на печать, после чего происходит останов машины.

По желанию оператора результаты расчета сетевого графика могут быть выданы в различннх видах: критическии путь, подкритическая зона, все временнне параметры на весь граф̆ик или по исполнителям, расход ресурсов по кеждому исполнителю.

Нри этом временнне параметры могут иыть получены тольно в относителіьннх днях или в относительннх дннх и калепдарннх датах по всем работам или тольно по работам, продолжнтельность

котор上х не нулевая.
Те же показатели могут оыть молучены на определенній (заданннй) промепуток времени (неделэ, депаду, месяц).

По состаяленной программе был рассчитан ряд производственних задач. Расчет сетевого графика только по времен пи оценкам на 500 работ происходит в течение 13 - I4 мин. Из них непосредственно на расчет графика идет 3-4 минутл, видача результатов общим массивом по всему графику занимает 7 мин., а вндача результатов с компоновкой работ по исполнителНМ - IO MиH.

ПРИМЕНЕНИЕ МЕТОДА ДИНАМИЧЕСКОГО ПРОГРАМММРОВАНИЯ К РЕНЕНИО ЗАЦАЧИ ВЫВСРА ОПТИМАЛЬНОГО РАСГРЕДЕЛЕНИЯ ИЗДЕЛИИ

Плотникова Л.И., Голубова Л.Г.

 димо изготовить в количестве " N " в течение n пет при минимуме суммарннх затрат, т.е. обөспечив $\min \sum_{1}^{n} T_{i} N_{i}$, где T_{i} - закон изменения трудоемкости - функция времени,
N_{i} - количество изделий на i- ак этапе.
Метод динамического программирования, примененный к решению указанной задачи, позволяет свести решение n-мерной задачи к рөшению n одномерньх задач. Решение задачи проводилось на ЭЦВМ "Урал-2".
 РАСХОДА И ІІРОЦЕНТА ГОДОВОГО СННХЕНИЯ НОРМ

Радченка H.E.
I. Программа предназначена для расчета потребности в материальных ресурсах, средневзвешенных норм расхода и процента годового снижения норм и оыла использована для расчета потребности в прокате черных металлов, изделиях дальнейпего передела, трубах и метизах, средневзвепенннх норм расхода и процевта годового снижения норм для продукции предгрияттй УССР по иинистерствам в в разрезе отраслеи, групп, подгрупп и атдельных изделии. Для әтих целей был разработан макет массива перфокарт изделия.
2. Ірограмма позволяет производить расчет плана объема пропзводства изделия в нескольких заданннх единицах измерения. Кахдод такои единице ставится в соответствие коэфх̆ициент в едвнице измерения ее группы. Для удобства расчета была сделана подгрограмма перевода числа из одной единицд измерения в другуо (заданную) при условии, что обе лежат в одной группе.
3. Данная протрамма может быть использована для расчета потребностен п средневзветеннвх норм расхода в других областях. В таком случае требуется внесение необходимых поправок, в том числе для печатп таблиц с результатами расчетов далкны бнтъ введены нухнне пестизначные алцавитно-пийровне коды.

РАСЧЕT CETEBGX ГРАФИKOB БOHBWX PAЗMAPOB ПО ФАГХEHTAM

Рожкова Р.Л., Борисенко Н.Г., Точанский Ф.Э.

В системе сетевого ппанировання и управдения часто составдяотся сетевне графики бодьших размеров порядка 20 тнс. работ с 10 тнс. собнтии.

В настоящем докдаде прөддагяется фрагментальный способ расчета сетевнх графиков дпя матинной системн управления раяработками.

Сетевой грефик по той или мной разработке представляетсл ках ряд нөбольших сетея ралмером в $100-200$ работ, назнваемв фрагментами.

Каддый ия фрагментов обрабатывается п укрушвяетоя, затем ухрупненные фрагментн сшиваштся в өдиннй сетевой график, дия собнтий которого рассчитываштся ранние и поядние начала, резервн, вритические и подхритические пути.

На основе поуученных данных дедается анапогичный расчет сетевнх графиков-фрагментов с ввдачей календарного плана.

В процессе исподьзования данной машинной системн упревдөния разряботками на основе сөтөвых графиков предподагяется проивводить перөпданирование по ддительности работ, входящих в сөть, в цедях сокращения сропов исполнения.
10.

По издоженному фрагментальному спссобу рас та сетевьх графиков составлены программы на эцвМ "Урал-2" использованием НМБ, одного пкафа Ніル и АЦПУ типа "Урал-4".

Сологуб Е.И., 㲅пов Л.П., Ниссторович 3.Л. -

Многте технологические схемд химической промыпленности, обогамения и т.п. представляют собой последовательность цепи аппаратов с обратньми связями. Прьменение внчислительной технкки дало возможность рассчитнвать эти схемд строгими математическими методами. Некоторие расчеть технологических схем сводятся к решенио линейных систем алгебрапческих уравнений.

для решения систем необходхмо по конкретной схеме и заданнвм ее параметрам составить матрицу. Для больших и многокомпонентных схем составление матрииы вручнур практически невозможно Разработана система кодирования технолотических схем для задания эাрм, алгоритм составления матриц систем линейньх алгебраических уравнении по топологии схем и их известным параметрам. Алгоритм реализован в программе для дцВМ "Урал-2". В связи с тем, что матридд, соотве тствупцие таким схемам, имешт неболытое количество ненулевнх элементов /до $2-3 \% /$, матрипа хранится в памяти в сжатом по строкам виде, когда сохраняштся только неныдевые элементи пи номер столбда для какдого.

Ілг решения систем со слабо заполненными матрицами составлена программа метода покоординатного опуска с ускорением итераииисного процесса. Программа состаелена с использованием утлотненной записи матрицы и рассчитана для работь в H,
 ческв туда записиваемото приближения, неооходимнх для возобновления итерационного процесса в случаях сбоев и порчи инФ̆ормании в НФ. Если уравнения систем содерат не более 4 венулевы: кохффхициентов (как это имеет место для схем обогаменияs), гс "программа дает возможность решать системь до І60-І80 уравнешиі.

Таш:"е системи решаются для схем обогащения на अцвм "урал-2".

0 РЕІЕНИИ ЗАДАЧИ ЛИНЕЏНОГО ІРОГРАММИРОВАНИI C ПОЛУЧЕНИЕМ ІЕЛОЧИСЛЕННОГО РЕІЕНИЯ МЕТОДОМ ГОМОРИ

Стреллов B. B.

В сообщении рассматривавтся два вопроса:
I. решение основвой зелачи линейното программирования модифидированным симплексным методом с мультипликатив-

2. доведение полученного, нецелочисленного решения до делочисленного методом Гомори (задача к 2).

Программа задачи I представляет собою стандартнуш программу обработки матриды моддфицированным симплекснвм ме тодом с мультипликаппе размером $m \times n=7602_{\text {IO }}(m \leqslant 362)$.

в общем случае модийицрованный симллексны⿺𠃊 метод с мультипликатией свлзан с менышим числом вкчислений по сравнению с обычнн, оообенно при наличии в исходной матрице А нулевих величин. Алгоритм разработан сотрудником в части Лебедевым Б. И., чрограмма составлена Михайловой Н.С. и Боголюбским B.C.

Программа задачи 2 представляет собою узкую специализированнуп программу, реализаиии более чирокого метода Гомори.

Математическая модель программн предусматривает целочисленное решение \vec{P}_{0}, где для компонент справедливо
a) $\mathrm{X}_{s}= \begin{cases}\text { либо } & \mathrm{I} \\ \text { лпбо } & 0\end{cases}$

- 77 -
б) число уравнении в исходной системе не более 31 , число неизвестных не более 246, вклочая дополнительные и искусственные;
в) число получаемых дополнительннх ограничений не более IO;
г) если прибегнугъ к векторнои записи исходнои системы уравнений, то каждый вектор - столбец ее имеет не более четврех отлинни от пуля компонент, каждая из ноторых

$$
X_{i 火}= \begin{cases}\text { либо } & I \\ \text { либо } & 2 \\ \text { либо } & 3\end{cases}
$$

Алгоритм разработан сотрудником Стлривович P.C., праграмма составлена Стрелновым В.В.

\bigcirc СІУЧАЙНОЙ АДААТРИВНОИ МИНИМИЗАЦИИ ФУНЦДИЙ n ПЕРЕМЕННЫХ

Струнцева Л.П.

Рассматривается стандартная программа случайной адаптивной минимизяци қункций 12 переменннх ддя ЗДММ "Урал-2". Проводятся результаты использования данной программы для минимизации некоторых функций при раздичннх значениях параметров, характеризуюдих процесс адаптации. Результаты сравниваются с решением тех же задач другими методами минимизации.

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОПТИМАЛЬНОИ СІЕЕЦИАЛИЗАІИИ РЕМОНТНОИ БАЗЫ УГОЛЬНОИ ПРОМЫПЛЕННОСТИ

Суслов 0.П.

Супность проблемы оптимальной специализации ремонтной базы угольной промвшленности в наиболее общей постановке сводится к находдению такон схемн размещения ремонта оборудования в центральних электромеханических мастерских /ЦэММ угольних трестов, которая обеспечивает минимальные совокуппне затраты, связанние с производс'твом капитального ремонта оборудования, его транспортировкой с пахт в ДЮиМ и обратно, а также со строительством новнх или распирением деиствуших ЦЖМ.

В работе приведена акономико-математическая модель оптвмальной специализации ремонтннх предприятий угольной промымленности в наиболее общеъ постановке, а такме ряд моделен с учетом некоторых упрощапих предпоснлок, приемлемых в тех илш иннх конкретных условиях.

Рассматриваемая задача относитая к классу многоиндексних задач математического пгрограммирования.

Прхводдится првмер решения задачи по оптимальной специализации ЦЭММ для условий комбпната "Довецкуголь": 86 шахт, IО цэум ии 23 типа горношахтното оборудования.

Ошнсана методика приведенкя запачи по пентрализапрая ремонта горномахтного оборудованшн к математической пробле-
 ного программированхн на ЭВМ "Урал-4".

Дли решения задачи по спепиализапии ремонтной базн угольнож промымленности при условии учета зависмости себестоимости капитального ремонта горношахтного оборудования от объема өго ремонта предлагается пспользовать метод градиентного сцуска в пространстве потениалов.

ОПТМММЗАІИИ (ВЫРАВНИВАНИЕ) РЕСУРСОВ, ЗАЛАННЫХ НА СЕТЕВОЙ МОІЕЛМ

Тарнопольский 10.Я., Воронежскнй А.С.

При расчёте временньх характеристик одноцелевой сетевой модели не учитывается распределение ресурсов, необходимых для выполнения проекта, представленного сетевой схемэй.

Подсчет ресурсов, производимнй в дальнейшем, показнввет, что распределение их на каждне сутки работы явлнется очень неравнс иерным, т.е. график распределения имеет большие отклоभения от некоторого среднего значения (отклонения могут быть как превншапиие среднее значение, так и сильно отличающиеся от него в меньпую сторону).

Программа частичной оптимизации распределения ресурсов позволяет при зяданной средней (или полученной непосредственно по сетевой модели) потребности последних на сутки, более равномерно распределять ресурсн в течение всего времени осуществления проекта, оставляя неизменлнм их общее ко.пичество и продолкительность цикла производстта.

Сдвиг работ за предель данннх суток, в случае, если эти работы уже превышапт среднее значение потребных рабочषх, производится в пределах полного запаса.

Если в случае сдвига будет превыпен свободныйй запас по даниой работе, то обязателен перєсчєт временньх характеристик

сетевой схемы.
Исходными данными являштся сетевая схема с указанием состава бригадн (в бригаде 6 разрядов) для выполнения одной смены работы по каждой работе.

Выходнне даннне:
временнне характеристики сетевой схемы, необходимое количество рабочих на каждые сутки по $2-$ м спешиальностям (на узкую печать), продолкительность каждой работы в каядне суткII с указанием состава бригадн на эту работу, ответственного исполнителя и специальности (на широкую печать).

Программа позволяет производить расчет по сетевой модели до $5 I I$ раоот.

Время работы для сетевой схемь на 30 работ примерно 2 часа.

Ірограмма внедрялась на предприятии "Харькоэнергоремонт" при ремонте крупннх паротурбинных олоков ГРЖ.

Тененбаум Э.М.

Предлагается программа для расчета на эџвм Урал-3 аднодедевнх сетевых графинов по методу критического пути с использованием ленв оперативной памяти. Программа предназначена длн обработки информации, максимальннй объем которон определяется следушшм соотношением: сумма количества работ и событий не долхна превншать 1900.

В процессе решения предусмотренно внявление сттруктурннх опибок сети. Программа позволяет выделять критические ггти для данной сети, пути, близкие к критическим, огределять количественные характеристини каждой работн.

Сетевон график максимального объема анализируется в течение 8 - IO минут.

АЛГОРИТМ ВЫБОРА ОПТИМАЛБНОГО ПУТИ ПО СТОИМОСТИ ПРИ СОКРАУЕНИИ ПРОДОЛНИТЕЛННОСТИ РАБОТ

Трдитан H.

I. Теоретическое обоснование.
I) Постановка задачи
а) Выяснение зависимости между сокрапением времени работы и минимальной стоимостью, затрачиваемой на это сокращение.
2) Задание процесса производства сетевым графином.
a) Обозначения сети-общепринятые.
б) Предусмотрено, что в сети может бить иесколько входящрих и конечных событай или по одному входлдему и выходящему.
3) Параметры сетевого грақина.
a) Для каждой работн задаются три числа:
a/ $t_{i j}$ - продолкительность работы;
$\sigma / m_{i j}$ - возможность сокращения;
в/ $C_{i j}$ - стоимость сокращения работв на единицу времени.
б) Время раннего начала и позднего окончания считается по программе "Обсчета сетей".
4) Допущения и ограничения, принятые при разработке алгоритма.
а) Величины $\boldsymbol{x} \dot{\boldsymbol{y}}$ - целочисленнне, удовлетворномие условиям:

$$
\begin{aligned}
& \text { a/ } 0 \leqslant x_{i j} \leqslant m_{i j} \\
& \text { б/ } \sum\left(t_{i j}-x_{i j}\right) \leqslant A \quad \text { по всем путรам } \\
& \text { в/ } S=\sum_{i, j} c_{i j} x_{i j}=\min
\end{aligned}
$$

IX. Алгоритм.

I) Исходная информаитвя
a) $t_{i j}, m_{i j}, c_{i j}$
б) Признаки μ - входяних ки выходнииил -обвтиии.
в) Группа параметров для каждого события.
2) Метод выбора критического пути.
3) Выбор работ, как можно сократит'ь при минимальнзх затратах.
III. Внводы.

РЕЕЕНИЕ НА ЭЕІМ "УРАЛ-4" РАСПРЕЛЕЛИТЕЛЬНLХ ЗАДАЧ С МА ТРИДІММ БОЛЬНГГО ОБЪЕМА

Хихнняк В. 1.

Решение задач дальнейпего развития производительньх скл; поввшения экономической эф̆фективности капиталовложений, улучпения планирования пропзводства в нашей стране сейчас немыслимо без мирокого использования достижений электроники и прикладнонй математики. Однако немало важных народпохозяиственних задач, решение которых на ЭВМ дало бы большой экономический эфект, в настоящее время либо решаются без полного учета всех факторов, либо вообще не ставятся, так как их решение связано с обработкой больтого количества инфоррмации, что на современннх ЭВМ не всегда возможно. Поэтому создание методов и программ для ЭвМ, которые в приемлемые сроги позволяют получать репение практических задач с больним объемом иниорормании, представляет определенный интерес.

Известно, что многие народнохозниственнне проблемы приводятся к распределительным задачам линейного программирования. К таким проблемам относятся вопросн организации рациональньх перевозак неоднородного продукта, вопросн определения оптимального размещения перерабатываюцих предприятиии, вопросы внбора оптъмальных вариантов распределения снрья и промьшленной продунциии между промьпленннми предприятиями и многие другие.

Прм неболышом количестве поставпиков и потребителей такие задачп можно обсчитывать на существуоших Эвм по программам, которне реализуот сммплекс-метод линейного пролрамамрования. Однако, расширение таких задач до масштабов республики настолько увеличивает объем инф̆ормации, что решение ux на ЭРм по симплекс-методу становится: либо нецелесообразным из-за больших затрат мапинного времени, либо вообще невозможно из-за недостатка объема памяти мешины.

В Институте кибернетики АН УССР разработан метод обобщенного градиентного спуска в пространстве потенишалов для решения распределительных задач с матрицамщ большого объема на ЈВМ. В Понецком отделениц экономпко-промышленных исследований этот метод был несколько видоизменен, дополнен и реалпзован в виде программы для Эвм "Урал-А".

Основнымй соображениями, по которым именно этот метод был выбран для решения распределнедннх задач с матрицами большого объема являются простота метода, что позволяет реализовать его на ЭВМ в короткои программе, и возмолность одеративного вмешательства в ход птерационного процесса прлмо вQ время репения.

К недостаткам этого метода следует отнести то, что метод является приближенным, а поэтому не позвожяет внходить точно на оптимальное решение. Программа, реализующая обобщенный метод градиентного спуска в простравс'гве потенциалов на 'ЈЈМ "Урал-4", настраивается на размер решаемои задачи и позволяет применять некоторие приемы уплотнения информации.

При олочном характере матриць условий задачи и при наличии в матрице от трех до десяти блоков по составленнсй прот-

рамоле на ЭВМ "Урал-4" с использованием двух барабанов мохно обсчитввать распределительнне задачп, матрмца которнхх до oбseng не более 4000×500.

По указанной программе в Донепном отделенки экономикопромвшленных исследований был просчитан ряд запач по определению оптимальной сырьевой базы углеобогатительных Фّабрик п коксоххмзаводов Украинв с учетом качественннх характеристик углед. В среднем на решение задачи с размером матриды 4000×400 затрачивается от I5 до 20 часов машинного временгі. Сравнение решения, полученного на ЭВМ, с существуоитм полодением по оирьевой базе показывает, что внедрение машинного рдщения позводит снизить пробег I т. угля по железчой дороге на I6,I км, снизить стоимость провоза I т угдя на 4,2 коп. п получить годовур экономию за счет снихения затрат на транспортировку в размере 4199,8 тнс.руб.
 МАССОВОГО ОВСЛУНИВАНИЯ С ОГРАНИЧЕННО О ОЧЕРЕДЬD

叫льга $\mathrm{D}_{0} \mathrm{H}$.

При организации рабогм системн массового обслуживания глазнон задачен является наиболее полное пспользование об служивахиих аппаратов при одновременном наилучшем удовлетво－ рении заявок на обслухивание．

Исследование условпи，при которнх достхгался бы оитималь－時落 рехкм работн обслухивахиеи системн представляет серьез－ ныи теоретическй п практичеокий пптерес．с．

Мвожество экономических задач，репаемьх методами теории массового обслухивания，мохно ориентировочно разделить на два класса：

класс задач по определевио оптммальнои средней произ водительности обслуживапшего аппарата，

класс задач по огределении оптимального числа обсдуки－ вадиих аппаратов системн обслуживания．

Определение оптимальной средней производительности ол－ служивапцего аппарата и оптимального числя обслуживавпрх ап－ паратов системи свлзано с оптимизадией рртериев эффективнос－ ти системы обслукивания．В качестве критериев эффективғости системы обсложивания можно рассматриватв：

доли времени，в течение поторого занято обслуживавием

точно n алшаратов спстемы,
супду общих издержек,
сумму удельных пздержек.
При рассмотрении стационарного рехима системн обслукивания с ограниченной очередьд, в которур поступает простеимии поток требовании, и время обслуживания подчинено показательному закону, указанные критерии мотут быть внрахены аналитически следупииаи формуламп.

Вероятность того, что ободуживанием завято точно п аппаратов

$$
P_{n}=\frac{\alpha^{2}}{n!} \cdot P_{0}
$$

Здесь $\alpha=\lambda \cdot \tau$ - коэффициент пспользования обслукивахмего amapaтa ,
n - число аппаратов в системе обслупивания,
P_{0} - веролтность того, что все амтараты свободнH.

Сумма общих издермек

$$
z=M_{1} \cdot q_{1}+M_{3} \cdot q_{3},
$$

где M, средняя длкна очереди,
q. - иэдерхки от простоя требования в единиду времени,
M_{3} - среднее число свободннх аппаратов,
q_{3} - издержки от простоя обслуживапего аппарата в единицу времени.

Сумма удельннх иэдержек

$$
Y=\frac{M_{1} q_{1}}{M_{2}}+\frac{M_{i} q_{3}}{n},
$$

где M_{2} - среднее число требований, находящихся в систеше обслуживания.

Так как исследование указанннх бункций на экстремум аналитическим методами весьма затруднительно, то целесообразно оптимизировать их гутем привлечения ЭВМ. Использование ЭВМ дает возможность составить ряд таблиц, по которым легко и удобно находить оптимальнне параметры системн массового обслухивания. Привлечение ЭВМ к решенир задач массового обслуживания позволяет определить опттмальннй вариант функдионирования системн во многих случанх, когда достихение дели аналитеческии методами связано с большими трудностями.

МАТЕМАТИЧЕСКОЕ МОІЕ ЛИРОВАНИЕ И BHSOP
 ОПТИМАЛЬННLХ CXEM OБOTA䓚HИЯ

циупов Л.П., Сологуб Е.И.,
Ройзен В.Г., Ариннова Н.Я.

Разработан метод математкческого моделирования у расчета технологтческих схеп обогяменвя шагнетхтовьх кварыитов

 реализации на ЭПМ "Јрап-2".

Метод позволяет при заданной технологнческои дарактеристике псходного снрьн, параметров установленного в схеме оборудования и пронзводгтельностх схөпв определить качест-венно-јаличественнур II водношламовур характеристику всех продуктов схемы.

Метод позволяет моделировать:
I. Изженение топологии, т.е. самого вида схемы;
2. Изменение объемов мельниц й тинов установленннх основных атаратов;
3. Изменение михты поступааце⿺ руды п иэменение ее технологических свойств;
4. Изменение производительности схемы.

Метод основан на математмческом описании технологичес-

ких процессов，участвуоцих в обогащении．Программа вклдочает операторн для расчета технологпческих операцрн／пзмедьчение， класскфикапия，магнитная сепарапня，бшльтраикя п др．／，зави－ сомости для расчета замкнутнвх циклов измельчения п логико－ －математическии анализ для расчета．

Результатн расчета схем на манине п поназатели огробо－ вании практически совпадавт．

В случае необходимости махет бнть пропзведен вибор оптимальной схемн．

Программа внбора работает в следумием порядке：
I．Исходя из заданньх элементов，машина синтезирует схему．Вначале синтезируотся одностадиальнне схемн，зєтем двух，rpex I т．д．

2．Кахдая синтезированная схема проверяетея на огра－ ничение．

Еслии схема содеркит протаворечие о укаваннапи ограниче－ ниям，она ораяу отбраснваетоя и манинв переходит к окнтеяу друго⿱亠䒑日 охемн．

3．Далее схема направлнется на орментировочнуо оценку． Ориентировочная оценка производится на напболее благогрият－ ный случаи．Она учштивает мағсимальное количество концен－ трата，которое схема может произвести，и тот минимум затрат， которыи схема потребует．

Если схема＂не набирает пропускнон балл＂，она отбра－ сывается．

4．Прошедшая схема направляется на так называемнй технологическиі расчет．В результате технологического рас－

чета определяртся вероятнне показатели обогямения /измельчения/ рудн по данной схеше /качество концентрата п его вдход, әкономические затраты, надехвость схемы/.
5. Сверяется полученное качество концентрата с заданннм. Если качество отличветая от заданіого на величину больде допуствиоу, то корректеруется в соответствудиур сторону производительность схеми Q., у схема направляется на повторный расчет с новым Q_{0}.

Оденкон схема является сумая катитальных й әхспдуатадионных затрат за время нормативного срока окушаемости схемы, отнесенных к количеству конщентрата, промзведенного за әто времн.

После внбора оптвмальнон тополагии схемн в мапину вводится паталог существушего оборудования с указаниен технологическо苜 и экономической характеристики каждого алпарата. Исходн дз заданннх типоразмеров оборудования, для нахдож операции по определенным алгоритмям производится внбор необ ходвмого числа аппаратов.

выбор аппратов производится с учетом минимума калптальннх и әксплуатационннх затрат, связанннх с их установкои.

Іля каждой внбраннои схени определяртся:
I/ Технологхческие показатели;
2/ Себестохмоств попучвемого продукта;
3/ Расход основных производственннх материалов;
5/ Оптммальное количество к тхй борудования для пахдои операпип:

6/ Обния акономпесвая оценка схемя, которая рассчи-

 УTOPGZOपEHVG ПO AITPECAM BHCIKX PAHTOB

щероина О. В., Банин М.Б., Колесников С.В.
I. Значительное количество решаемдх на ЭЦВМ задач связано с расчетами геодезических, электрических, газовнх, водопроводних, вентиляционных и других сетей. В последнее время широко внедряются расчеты сетевнх грабиков производства работ. Все эти задачи требуют автоматической обработки на ЖЦВМ инФормацип о конфигурации сетей, что представляет определенные трудности для алгоритмизации ии программирования.
2. Обишк⿺辶 подход к автоматической обракотке информатиин о конойиграции сетей может бнть основан на применении адресов внсших рангов, теоретическая основа которых разработана Е.Л. Пденко (I).
3. Каф̆едрой электрических систем и сетей КІи в і960-65 гг. накоплен определенный оштт алгоритмиации и программирования расчетов электрических сетей с использованием адресов высших рангов (2,3). В 1965-66 гг. эта де методика была успепно применена для расчетов сетевіх граф̆иков.
4. Автоматичесная обработка пнформации о конфиуразии сети может выполняться в следуюиих вариантах:
a) при предварительном упорядочении исходной инц̆ормации "вручную";
б) с автоматическим упорядочением (сортировкои) ин-- 97 -
13.

м̆ормаиии на ЭLBM;
в) без предварительного упорядочения.
5. Во всех вариантах инйормания обрабатывается с помошккп упорядоченных массивов вторнх (иногда третькх) адреснкх отобракениі иоходной ивборматши. Схемы построения этих массивов будут показанн на плака' λ.
6. Предлагаемый метод шиеспечивает практическую возможность обработки сетей любой конфॉшграпии, удобен для подготовки исходннх данных при массовых расчетах и требует сравнительно небольтих затрат и маиинного времени.
7. Метод разработан применительно к ЭЦВМ серии "Урал". Переработка метода для ЭЦвм других серий затруднительна.

Jптература.
I. Яценко Е.Л., Адресное программирование, Гостехиздат УССР, 1963.
2. Нербина 10.В., Программирование расчетов электрических сетей на ЭЦВМ методом второго адресного отображения, "Энергетика и электротехническая промыпленность", 2, 1965.
3. Щербива К.В., Ничкпоровкч Л.В., Основы алгоритмизации расчетов режмов разопкнутвх электрических сетей на ЦвМ серии "Урал", "Известия вузов СССР Энергетхка" 토 8, 1965.

Последовательность обработки деталей по операциям

Puc. 1.

Jt maгa	n_{1}	N	
		n_{2}	n_{3}
I mar	$\begin{aligned} & \frac{m_{11}}{3} \\ & \frac{m}{3} \\ & f t \end{aligned}$	$\begin{aligned} & m_{21} \\ & -\frac{1}{2} \\ & m_{4} / 1 \\ & 7 \frac{1}{4} \\ & m_{51} \\ & 77 \end{aligned}$	$\begin{aligned} & n_{29} x^{2} \\ & \frac{21}{2} \\ & \frac{\mathrm{~m}_{4}}{4} \\ & \frac{n_{51}}{7} \end{aligned}$
II mar	$\begin{aligned} & m_{31} 12 \\ & 79 \\ & m_{22} \end{aligned}$	$\begin{aligned} & m_{51} \\ & 79 \\ & \frac{m_{12}}{5} \\ & \frac{m_{51}}{2} \\ & \frac{7}{7} \end{aligned}$	
III тат			
IV ппT		$\begin{aligned} & m_{51} \\ & x_{17} \end{aligned}$	$\frac{126}{1 y^{\prime}}$
y таг	$\begin{aligned} & m_{46} \\ & \frac{m_{3}^{3}}{} \\ & m_{52} \\ & \frac{1}{\varepsilon} \end{aligned}$	$\frac{\pi^{32}}{5}$	x
YI. mar	$\underline{M_{43}}$	$\frac{\pi_{5}}{25}$	$\left[\frac{m_{5}}{\frac{2}{2}}\right]$

Tаблица I.
*

СОДЕР尹 A H И Е

Астахов Ю.И. Программа статистического моделирования 3
Бескравный Н. T. \& пекоторнх особенностях венгерского метода 4
Бажченко Н.С., "паснова Г.С., Солодд С.А. Опттимизация нормоди, смесей по стоимости п кормовои ценності с применением әлектронннх вычис- лителвных мапин 5
Ваинггауз М.Г., Панченко В.Г., Tpomв В. В. К вопросу о радпоналном выборе мерности 9
Васильев О. В. Программа минимизации нормн конечного состояния объекта в линейной системе управления II
Вкйтсо М. Х., Лоссманн А.К. Ввчислительнне вопросы при решении на ЭВМ задач линейного программи- рования методамп типа скмплексного I3
Вихров В.И. Целочисленное линейное программирование I4
Владимиров В. В., Талис Л.Б. Моделирование системн об- служивания п управленхя распределением сырия для Измаильского нонсервного ком бината I7
Горенбург В. П., Пантелеева Т.Г. Решение задач линей- ного программирования с введением индор- магии в алгебраической форме I8
Гордов А.А., Гуреев В.И. Алгорити п программа решения на ЭВМ "Урал-2" календарного графыка за- пуска-выпуска деталей для мелкосерийного пи индивидуального производства I9

- IOI -
Тригорьева А. Д. Алгоржтм решения задачи оптимпзации городских алектрическхх сетеи методом дд- намическото программиронания 24
Илышева Н. П., Алышанова Т.А. Применение некоторьх ме- тодов оптвмизации к решенио одной энерае- тіческои задачп 27
Капралова P.C., Осенькина Н.A. Проведение технпческого нормирования основних операипии механиче- скои обработки деталеи на ЭВМ "Урал-2" 30
Кашшрскии 10. В., Гвоздкк В.А. Нахождение условного әкстремума суммн функцпн (алгоритм Белл- мана) $3 I$
Калпрский 10.B., Мантуров О.В. Пржменение линейного программирования к вопрссам оптимального раскроя прдмоугольного листа на прямо- угольные заготовки 32
 режпма скорости поворота крана методом динампческого программирования 33
Корепяков А.Н., Тесля А.Ф. Опыт использования ЭвМ в систеше сетевого планирования 34
Коробов Б. В., Іискунова . . Использование принцхпов сетевого плавирования в оперативном плани-- ровании п управлении серийным производст- вом 39
Коробов Б.В., Пономарева Б.В., Ромкова . . Система сетевого планирования и управления НИР и OKP 4I
Куликова В.П. О решении задач оптимального управления 43
Курман А.В. Программа решения задач линейного програм-- мирования с двусторонними ограничениями на переменнне для ЭЦВМ "Урал-2" 45
Кјрман А. B., Каганер В.М. Приниип әкстремальностт п ме- тод расчета на ЭІвМ сложных вентиляиионных и гддравличеоких сетей 47
Кутанов А.Т. 0 репении задачп лпнейного программирова- ния, сведенной к отнсканво безусловного әкстремума некоторой вспомогате 元нои функ- ции 54
Кутнев Г.М. Использование ЭПМ "Урал-2" для моделиро- вания эксплуатацпонной работы мелезннх дорог 57
Ливпиц В. Н., Позаманттр Э.И. Решение нелинейннхх травс- портных задач 58
Майорава В.И. Gистема непрерывного оперативно-произ- водственного планирования п реализапия ее на Эвм "Урал-2" 60
Овсшенко 1'.Ф. Обработта экономической иниормапии о ра- боте предприятй с накоплением п хранением данных за определенныи период на МI $6 I$
Персианов В.А., Усков Н.С., पетжркиня И.Е. Оденка нроектних схем мод. станцай и узлов мето- дом моделирования на электронннх вычисін- тельных машинах 53
Петухнна Э.А., Баранова Г.И. Программа расчета сетево- го графика и расхода ресурсов с выдачей результатов по исполнителни 68
Плотникова Л.И., Голубова Л.Г. Прмменение метода дпва- мичесжого программирования к решенио зада- чп выбора оптимального распределения из- делии $7 I$
Радченко H.E. Программа расчета потребностен, средне- взвешенных норм расхода и процента годово- го сникенкя норм 72
Рожкова Р. Л., Борисенко Н.Г., Точанский Ф.Э. Расчет сетевых графиков больmих размеров по фраг- мептам 73
Солюгуб Е. И., 山lупов Л. Л., Нусторович З. Л. Расчет раз- ветвленнн схем разделенषя потоков с обрат ными связями методами линейной алгебрн 75
Стрелнов B.B. 0 решении задачи линейного программиро- ванщя с получением целочисленного решения методом Гомори 77
Струнцева Л.П. 0 слдчайной адаптивной пинимизагии фуункций Ω переменных 79
Суслов О.П. Экономно-математические модєли оптималь- ной специализаиии ремонтной базн угольной промнылденнос ти 80
Тарнопольсккй Ю.Я., Воронежский А.С. Оптимизация (выравнивание) ресурсов,заданних на сетевой модели 82
Тененбаум Э.М. Программа для расчета одноцелевнх се- тевых грабииков 84
Трипкан H . Алгоритм внбора опттмального пути по стои-- моств при сокращенки продоляцтельности работ 85
Хивняк В.И. Решение на ЭВім "Урал-4" распределительных задач с матрицами большого объема 87
助льга К.Н. Определение оптимального режима работы сис-- темы массового обслуливания с ограниченной очередьџ 90
Шупов Л.П., Сологуб Е.И., Ройзен В.Г., Ариинова Н. Я. Математическое моделирование и выбор опти- мальных схем обогащения 93
Щербина Ю.В., Уанин Д. Б., Колесников С.В. Ооработта информации о конфииурапии сетей методом упо- рядочения по адресам высших рангов 97

