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Abstract

Randomised controlled trials (RCTs), while the golden standard of estimating
causal effects in clinical studies, are not always possible to conduct due to
ethical reasons or other restrictions. Observational studies are an alternative
in such cases. However, in such studies, treatment assignment may be subject
to systematic biases.

Propensity score (PS) methods are a popular tool to adjust for confound-
ing factors in observational studies. By attempting to mimic RCTs, these
methods are quite intuitive. This thesis provides a theoretical overview of
the most popular PS methods, and conducts a simulation study to compare
PS matching, PS weighting, and conventional covariate adjustment.

CERCS research specialisation: P160 Statistics, operation research, pro-
gramming, financial and actuarial mathematics.

Key Words: propensity score, observational studies, matching, weighting,
covariate adjustment.

SISSEJUHATUS KALDUVUSE MAARA MEETODITESSE
Magistritoo
Kristin Jesse

Liuhikokkuvote

Randomiseeritud uuringud on pohjuslike seoste hindamise kuldstandard klii-
nilistes uuringutes, kuid neid ei ole alati eetilistel vo6i muudel pohjustel voi-
malik labi viia. Vaatlusuuringud on sellisel juhul heaks alternatiiviks, aga
ravi maaramine voib neis olla siistemaatiline.

Kalduvuse mééra (propensity score, PS) meetodid on populaarne t6oriist se-
gavate tegurite arvessevotmiseks vaatlusuuringutes. Need meetodid on kiillalt
intuitiivsed, kuna ideeks on imiteerida randomiseeritud uuringuid. See ma-
gistrito6 annab teoreetilise tilevaate populaarsematest PS meetoditest ning



viib 1abi simulatsiooniuuringu vordlemaks PS iihildamist, PS kaalumist ja
tavaparast tunnustele kohandamist.

CERCS teaduseriala: P160 Statistika, operatsioonianaliiiis, programmee-
rimine, finants- ja kindlustusmatemaatika.

Mairksonad: kalduvuse maar, vaatlusuuringud, ithildamine, kaalumine, tun-
nustele kohandamine.
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Introduction

In medical studies, as well as many other fields, it is often of interest how an
exposure, also referred to as a treatment or an intervention, affects a certain
outcome. To account for possible covariates that affect either the exposure
or outcome, or both, different methods can be applied. Such studies, that
assess the effect of a treatment on an outcome, can commonly be divided
into two: randomised controlled trials (RCTs) and observational studies.

In randomised trials, the study subjects are randomly allocated into the ex-
perimental group, that receives the treatment of interest, and the control
group, that receives a different treatment or no treatment at all. If the ran-
domisation is properly conducted, it is unlikely that the study groups differ
remarkably, on average, in any aspect other than the assigned treatment.

However, it is not always possible or reasonable to conduct RCTs. In this
case, observational studies are conducted. Routinely collected register data is
one such option to analyse differences in outcomes. However, in observational
studies there is no randomisation - treatment assignment may be subject to
systematic biases. Propensity scores (PS) have been introduced by Rosen-
baum and Rubin (1983) as one option to address this inherent weakness of
observational studies.

A propensity score is the probability of a subject being assigned to a partic-
ular treatment, given a set of observed covariates. In randomised trials the
propensity score is determined by the study design and is known. In obser-
vational studies the propensity score is, in general, not known and needs to
be estimated from available data - most often using an appropriate logistic
model, where treatment status is regressed on available baseline covariates.
Other possible methods include random forests (Lee et al.|[2010]), and neural
networks (Setoguchi et al. 2008). In this thesis, only logistic regression will
be used.

The purpose of this thesis is to introduce the propensity score and its ap-
plications, and to illustrate the similarities and differences between these
methods and classic covariate adjustment (logistic regression). A simulation
study was conducted to examine these differences. Chapter [1I] provides an
overview of what the propensity score is and why it is necessary, as well as
underlying theorems to show why it works. Chapter [2| covers the assumptions
which the propensity score methods rely on. Chapter |3| introduces different



propensity score methods that are commonly used in practice. In Chapter
[], these methods are applied on simulated data.

The original contributions of the author of this thesis are the detailed proofs
of the theorems from Rosenbaum and Rubin (1983) in Chapter [I] and the
simulation study in Chapter [4] The thesis was written within the Industrial
Master’s Programme in Quantitative Analysis in collaboration with IQVIA.



1 The Basics of the Propensity Score

In this chapter, the propensity score and its purpose will be introduced. Sec-
tion relies on Rosenbaum and Rubin (1983). The proofs of the theorems
are outlined in Rosenbaum and Rubin (1983) and detailed by the author of
this thesis.

1.1 Randomised Controlled Trials and Observational
Studies

Let us assume we wish to asses the effect of a treatment, also known as
exposure or intervention, on a certain outcome. The aim is to compare
outcomes of two groups, one of which receives the treatment of interest and
the other does not. These are called a treatment group (or experimental
group) and a control group, respectively. There may be more than one
treatment group or more than one control group to be compared in a study,
but in this thesis only one of each will be considered.

The treatment may be a treatment in the colloquial sense, like a drug that
a patient is prescribed, or an operation they undergo; or a different kind
of exposure, like smoking or having access to higher education. While the
latter two would not be referred to as treatments in everyday conversations,
here "treatment' refers to any exposure of interest. The outcome may be
any event of interest, such as death, recovery from pneumonia, or graduating
from high school.

In addition to treatment and outcome, there are other factors to be con-
sidered, called confounders. Confounders are any covariates that affect both
the outcome and whether the subject received treatment. For example, when
studying a drug’s effect on recovery from an illness, having a liver disease
may mean the person is less likely to be prescribed the drug, but also that
the person is more likely to die during treatment and thus not to achieve the
outcome of recovery. Since our aim is to assess the true effect of the treatment
on the outcome, all such confounders need to be taken into account.

The golden standard of clinical studies is the randomised controlled trial
(RCT). In these studies, the subjects are randomly allocated into the treat-
ment or control group. If conducted correctly, this eliminates differences in
confounders. Clearly, if the treatment assignment is truly random, then on



average the treatment and control group should not differ remarkably in any
other aspect than the treatment which they receive.

However, RCTs are not always the way to go. For example, when studying the
effect of smoking during pregnancy on the development of the fetus, it would
be highly unethical to conduct a randomised study. In addition to ethical
questions, other issues, such as time constraints, may arise. Assessing a
certain drug’s effect on ten-year morbidity, for example, would clearly require
a study that is longer than ten years, which is often not a reasonable length
for an RCT. In such cases, observational studies are conducted. For such
data, we as investigators have no control over who gets treatment and who
does not. One type of observational studies use routinely collected register
data, which is the main focus here.

If we wish to study the effect of drug A on an outcome, e.g. 30-day morbidity,
just calculating the average effect amongst those who have taken drug A and
comparing it to the average amongst those who have not, would most likely
give us a skewed picture of the true effect due to aspects that have affected the
assignment of treatment. For example, doctors may prefer prescribing drug
A to younger patients while using a different approach for older people. Since
in general, old people tend to die more often than young people, calculating
the average outcome in these groups and claiming this is the true difference
in treatment effect would make it seem like drug A reduces 30-day morbidity
drastically. Now, if we compared people of similar ages, the picture may be
very different.

If we truly wish to know what effect a treatment has on a person, we would
need two alternative universes: one where the subject does not receive treat-
ment, and another that is identical in every other way, except that the subject
receives treatment. Then we could see which outcome is achieved in either
of these scenarios. These scenarios are referred to as potential outcomes or
counterfactual outcomes. In reality, we can never compare these situations
because a person cannot simultaneously receive and not receive treatment.

Let us formulate this in mathematical terms. Let Z be an indicator for
whether a subject received treatment, i.e. Z = 1 if the subject received
treatment and Z = 0 if they did not. While in general, the treatment may
also be continuous or have many levels, like the dosage of a drug, here we
will only consider a binary treatment.

Let Y;, ¢t € {0,1}, be the counterfactual outcomes, where Y; is the outcome



if treatment was received (Z = 1) and Yj is the outcome if treatment was not
received (Z = 0). Just like treatment, the outcome may also be a continuous
variable or a discrete variable with many levels, but here we will only study
binary outcomes, i.e. Y; = 1 if the subject achieves the outcome, and Y; = 0 if
the outcome event does not happen to the subject. To reiterate, one subject
has two potential outcomes, Yj if they do not receive treatment, and Y; if they
do. These may be equal (Y =Y; =0 or Yy = Y] = 1) or different (Yy =0
and Y7 = 1, or Yy = 1 and Y; = 0), depending on the person. However, we
can ever only observe one of these for each subject. We would only know
both if we had the aforementioned parallel universes at our command.

Additionally, let X be a vector of observed covariates preceding treatment.
Ideally, this would include all confounders that affect the treatment assign-
ment and outcome.

Often in reality, we do not know exactly which confounders are present,
and therefore must consult with experts in the relevant field who will have
better knowledge of possible causal structures. Sometimes, several different
models may need to be considered, analysed and presented, as one can never
be completely certain of the underlying causal structures when dealing with
observational data.

Causal structures can be illustrated by directed acyclic graphs (DAGs) like
in Figure[I] The presence of an arrow pointing from one variable to another
indicates that there is a direct causal effect between these variables for at
least one individual. The lack of an arrow, on the other hand, means that
we know there is no causal effect between those variables for any individual
in the population. A path is causal if it consists only of arrows pointing in
the same direction; otherwise it is non-causal. (Hernan and Robins 2020))

NN/

7 —Y,

Figure 1: A directed acyclic graph (DAG)

Figure (1] depicts a situation where the treatment Z has a direct causal effect
on the outcome Y;. Of the covariates, X; has direct causal effect on the
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treatment Z, X, has direct causal effects on both the treatment and the
outcome, and X3 has a direct causal effect on the outcome Y;. While X;
does not affect the outcome Y; directly, there is a causal path between them:
X1 — Z — Y,. However, there is no causal relationship between Z and X3,
for example, because the paths "collide" at Y;.

Returning to the example of drug A and its effect on 30-day mortality, we
can now express the scenario mathematically. If a patient is prescribed drug
A, then for that person Z = 1. If a patient is not prescribed this drug, then
Z = 0. If a patient dies within 30 days of the start of the study, then the
outcome Y = 1, otherwise Y = 0. For simplicity, let us assume that age,
denoted by X, is the only confounder.

The average treatment effect (ATE), which we wish to estimate, is the dif-
ference between the expected outcome of the population if everyone received
treatment and the expected outcome of the population if no one received
treatment, i.e.

E(Y1) — E(Yo), (1)

where F(-) is expectation in population. Since we can only observe one of the
counterfactual outcomes for each subject based on their treatment status, we
can estimate the difference

EM | Z=1)-EX|Z=0), (2)

which is usually not equal to the average treatment effect .

To illustrate this, let us consider the data in Table [I, Let us say that, in
this example, this data set is our entire study population. We can now easily
calculate the average treatment effect and the observed difference ,
and see that they are not equal:

3 4

EYi|Z=1)-B(Yy| Z=0)=

= —0.467

| =
wl N



Table 1: Example of a possible study population. Here, Z is treat-
ment with drug A, Y and Y7 are the counterfactual outcomes (30-day
mortality if not treated or if treated, respectively), and X is age in
full years. Observed outcome is in bold text.

Subject | Z Yo, Y; X
Mary 1 0 0 19
John 1 1 0 25
Will 1 0 1 27
Martin 1 0 0 35
Tony 1 1 0 36
Tina 0O O 1 48
Jane 0 1 1 60
Wanda 0 1 0o 77

If we now also pay attention to the age of the patient, we notice that all
the younger patients (ages 19 to 36) were treated with drug A and none of
the older patients (ages 48 to 77) were treated with the drug. Due to these
circumstances, we would severely overestimate the actual effect of drug A on
30-day mortality if we were to use the difference between observed outcome
averages as an estimate.

To address this inherent weakness of observational studies, propensity scores
have been introduced as one possible option. The following section covers
definitions and theorems necessary to understand the concept.

1.2 Definitions and Theorems

This section relies on Rosenbaum and Rubin (1983). The proofs of the theo-
rems are outlined in Rosenbaum and Rubin (1983) and detailed by the author
of this thesis. In the following, x is a realisation of the random variable X.

Definition 1 (Rosenbaum and Rubin [1983). The conditional probability of
being assigned treatment (Z = 1) given the covariates X is called propensity
score, and denoted

ps(x) =P(Z=1| X=u),

where P(-) is the probability function.
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In the example in Table I} the propensity scores would be
ps(x € {19,25,27,35,36}) =1

and
ps(x € {48,60,77}) = 0.

In this small population, for any other age, the propensity score is unde-
fined. Generally, when dealing with larger populations, we will expect the
in-between ages (or values of other confounders) also to be present and only
to be dealing with a sample instead of the whole population. In that case, the
propensity score values can be interpolated naturally, assuming that we know
the nature of the relationship between different covariates and the treatment
assignment.

Definition 2 (Rosenbaum and Rubin (1983)). We say that function b is a
balancing score if the distribution of X given b(X) is the same for treated
and untreated units, i.e.

P(X=2|Z2=0, bX)=b(z)=P(X=x| Z=1, b(X)=>b(z))
for all . In that case, we use the notation X 1L Z | b(X).

In the example in Table [I such function b cannot be found. Conditional
probability is only defined if the probability of the event we are conditioning
on is greater than zero. In the given example, however, at least one of
the probabilities P(Z = 0, b(X) = b(x)) and P(Z = 1, b(X) = b(x)) is
always equal to zero, unless b is a constant function, in which case it gives no
additional information and the conditional probabilities are still not equal.

Let us give another example to illustrate what a balancing score is. Consider
the data in Table where by (X7, X5) = 2X1+3X,5 and by (X, Xo) = X+ X,
Calculating the necessary distributions is then straightforward. We can see
that the distributions P(X | Z =0, b;) and P(X | Z = 1, b;) are equal,
because
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Table 2: Example of a function that is a balancing score (b1) and a
function that is not a balancing score (b2). Here by (X1, X2) = 2X; +
3X2 and bg(Xl,XQ) = Xl + XQ.

N

X4

o
[iry

—_— == =0 O OO
O R R R, OOR R
»—tOH»—l»—l»—tO»—ﬁ
HHM[\DP—‘)—‘H[\DE

W N Ot O W W N Ot

P(X=z|Z=0,b=5=P(X=x|Z=1, by=5)
_{Lifw:OJL

0, otherwise,
PX=z|Z=0,0=3)=PX=z|Z=1, by =3)

_{Lifm:mJL

0, otherwise,
PX=z|Z=0,0=2)=PX=z|Z=1, by =2)

_{Lifm:OﬂL

0, otherwise.

For by, however, the distributions are not equal, because

5, if @=(1,0),
PX=x|Z=0,b=1)=1{2 if z=(0,1),
0, otherwise,

PX=z|Z=1 b2:1):{§7 if =(1,0)or x=(0,1),

0, otherwise.

Therefore, b; is a balancing score, but b, is not.
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The following definitions are used as assumptions in the theorems that follow.
More about the assumptions can be read in Chapter [2]

Definition 3. We say that exchangeability holds if, given measured con-
founders, the potential outcomes are independent of observed exposure, i.e.

Vi.Yo) LZ | (X=2) Va

Definition 4. We say that positivity holds if the probability of each indi-
vidual being assigned to the treatment group or control group is non-zero,
i.e.

0O<PZ=1|X=x)<1 Ve

Definition 5 (Rosenbaum and Rubin [1983). We say that treatment assign-
ment is strongly ignorable if

Y, Yo)) LZ | (X=2), 0<PZ=1|X=2)<1 Va,
i.e. both exchangeability and positivity hold.

In the data in Table |1, the treatment assignment is clearly not strongly
ignorable, because the positivity condition does not hold.

The following theorem shows the relationship between the propensity score
and balancing scores.

Theorem 1 (Rosenbaum and Rubin [1983). Let b be some function of X.
Then b(X) is a balancing score if and only if there exists a function f such
that ps(X) = f(b(X)), where ps is the propensity score.

Proof. Necessity (<): Let ps(X) = f(b(X)) for some f. We need to show
that X 1 Z | b(X), which is equivalent to

P(Z=1|X=x,bX)=0bz)=P(Z=1|bX)="0bx))
or P X=z|bX)=0bz)=0 Ve

by definition of conditional independence. Since b(X) is a function of X, we
have

PZ=1|X=a, bX)=0bx)=PZ=1| X =1z) =ps(z).
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Therefore, it is sufficient to show that
P(Z=1|bX)=0b(x)) =ps(x).

It holds that

P(Z=1]bX)=0bx)=EPZ=1|X=2)|bX)=0bx))
= E(ps(z) | b(X) = b(z)) (ps def.)
= E(f(b(z)) | b(X) = b(z)) (assum.)
= f(b(z)) (*)
= ps(x) (assum.),

where (*) holds due to the property of conditional expectation that for a
random variable W, E(f(W) | W) = f(W).

Sufficiency (=): Let b be a balancing score. Suppose, for the sake of contra-
diction, that there exist @, €z such that b(x;) = b(xs), but ps(x1) # ps(xs),
meaning that there is no such function f that ps(X) = f(b(X)).

From the discussion in proof of necessity, and assumption that ps(x;) #
ps(as), we get

P(Z =1]b(X) =b(21)) = ps(@1) # ps(@2) = P(Z =1 [ b(X) = b(x2)).
On the other hand, since b(x;) = b(x2), it must hold that

P(Z =1]b(X) =b(21)) = P(Z = 1] b(X) = b(,))-

This is a contradiction, and therefore, if b is a balancing score there must
exist a function f such that ps(X) = f(b(X)).

]

It follows directly from Theorem (1], taking f to be the identity function, that
the propensity score itself is also a balancing score.

Theorem 2 (Rosenbaum and Rubin |[1983). If treatment assignment is strongly
ignorable given X then it is also strongly ignorable given b(X), that is if

V,Y) LZ|(X=2), 0<P(Z=1|X=z)<1 Va
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then
(Vi Yo) L Z | (b(X) = b(@)), 0<P(Z=1]|bX)=b@) <1 Vb(a),
where b is a balancing score.
Proof. Since b is a balancing score, then from the proof of Theorem
PZ=1|bX)=0bx)=P(Z=1]| X =x),

and the inequality 0 < P(Z =1 | b(X) = b(x)) < 1 follows trivially from
0< P(Z=1]| X =) < 1. Thus the proof of positivity is complete.

To prove the exchangeability, assuming that the counterfactual outcomes
(Y1, Yy) are independent of treatment Z given covariates X, we need to show
that (Y1,Yo) L Z | b(X) holds; equivalently

P(Z =1 Yy, Yo, b(X) = b(x)) = P(Z = 1| b(X) = b(a))

or P((Y1,Yy) | b(X) = b(x)) = 0.
Again, from proof of Theorem [I, we have P(Z =1 | b(X) = b(z)) = ps(z).
Therefore if suffices to show that P(Z =1 | Y3, Yy, b(X) = b(x)) = ps(x).

Indeed, if f is a function such that ps(X) = f(b(X)), then

P(Z =1]Y1,Y,b(X) =b(z)) =

=E(P(Z=1|1,Y, X =2) | Y1,Y,,b(X) = b(z))

=FEPZ=1|X=2x)|Y,Y,bX)=>0b(x)) (assum.)
= E(ps(z) | Y1,Y0,b(X) = b(x)) (ps def.)
= E(f(b(z)) | Y1,Y0,0(X) = b(x)) (Th[1)
= f(b(z)) (*)
= ps(x), (assum.)

where (*) holds due to the property of conditional expectation that for a
random variable W, E(f(W) | W) = f(W).

]

Theorem 3 (Rosenbaum and Rubin [1983). Let treatment assignment be
strongly tgnorable and b be a balancing score. Then the expected difference in
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observed responses to two treatments at b(x) is equal to the average treatment

effect at b(x), i.e

E(Yi | (X) =0b(z),Z = 1)~E(Yy | b(X) = b(x),Z = 0) =
= E(Y1 = Yo | b(X) = b(a)).

Proof. Given strongly ignorable treatment assignment, it follows directly
from Theorem [2] that

EY [0(X) = b(z), Z =1)=E(Y, | b(X) = b(z), Z = 0) =
= E(M1 [ 0(X) = b(x)) — E(Y, | b(X) = b(z))
= E(Y1 =Yy | 0(X) = b(z))

]

In other words, Theorem [3] tells us that under strongly ignorable treatment
assignment, units from different treatments with the same value of the bal-
ancing score b can act as controls for each other in the sense that the expected
difference in their responses equals the average treatment effect. In the fol-
lowing chapters, we use the propensity score as a balancing score.

In general, as discussed in the previous section, if treatment assignment is
not strongly ignorable, then comparing a randomly selected treated unit to
a randomly selected control unit does not result in average treatment effect,
that is

B(Yi | Z=1) - E(Yy | Z=0) # B(Vi) — E(Y),

because sampling has been done from conditional distribution of Y; given
Z =1, not from the marginal distribution of Y;.

Theorem 3| is a powerful tool in observational studies, as long as one re-
members that it relies on the assumption of strongly ignorable treatment
assignment. If exchangeability or positivity do not hold, then the balancing
property of the propensity score is not guaranteed.
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2 Assumptions for Propensity Score Meth-
ods

To identify causal effects using propensity score methods, four assumptions
need to hold: consistency, exchangeability, positivity, and no misspecification
of the used models.

2.1 Consistency

Consistency is the assumption that a subject’s potential counterfactual out-
come under the treatment received is equal to the outcome observed. Note
that this differs from the statistical property of consistency, which is that the
bias of an estimator approaches zero when information increases. (Cole and
Hernan 2008])

This may seem like a fairly obvious assumption that would always be fulfilled.
However, problems may arise if treatments and counterfactual outcomes are
not well-defined, or if data set is not sufficiently rich. Let us illustrate this
with the following example inspired by Herndn and Robins (2020).

Say we want to observe the effect of obesity Z at age 40 on mortality R by
age 50. There are many ways a person could become obese by the age of 40.
They could have been obese for ten years or only one. They could be slightly
over the limit of the definition of obese, or severely so. Therefore there are
many different versions of treatment Z and for it not to be ill-defined we
need to specify which version of obesity we are interested in.

Even if we managed to unambiguously define the "obesity" to be studied,
there are still several ways a person could get to that point. Say person
A has a genetic predisposition to large amounts of fat tissue in their waist
and in their coronary arteries. If this person is obese at age 40 and has a
myocardial infarction at age 48, then the outcome is Y; = 1. If that same
person A would have neutral genes but poor diet and low activity levels,
they can still be obese at 40, but might not die by age 50. In that case the
outcome is Y7 = 0. Therefore, even under relatively well-defined treatment,
the outcome is ill-defined. Ill-defined counterfactual outcomes, in turn, lead
to vague causal questions.

To reiterate, for consistency to hold, the potential counterfactual outcome
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under the treatment received must be equal to the outcome observed. If
the outcome is defined ambiguously, then there might be several different
possible values for the same counterfactual outcome: the previous example
illustrates that if Y3 = 0 for an obese person if they had "good" genes but
poor diet, and Y; = 1 for the same person if they had "bad" genes and good
diet, then the potential counterfactual outcome has two different values at
the same time, and the observed outcome cannot possibly be equal to both
of them.

The process of better specifying the treatment and outcomes will sharpen the
question of interest. Say that experts now agree that no meaningful vagueness
remains in the definitions of treatment and counterfactual outcomes. Even
then, we need to make sure that, when using observational data, there are
some individuals that received treatment (Z = 1) and some that did not
(Z =0). Being able to describe a well-defined intervention is not meaningful
if we have no data where, for example, the equality Y; = 1 holds for at least
some individuals. This overlaps partially with the positivity assumption

described in §2.3

The characterisation of the treatment versions should be done in cooperation
with experts in the study field, but because even experts are fallible, it is best
to make the discussions and assumptions as transparent as possible, so that
others can refer to and challenge them. (Hernan and Robins [2020))

2.2 Exchangeability

Exchangeability, in its essence, means the assumption of no unmeasured
confounders (Cole and Hernan 2008). That is, given measured confounders,
the potential outcomes are independent of observed exposure,

(VoY) LZ|(X=g) Va,

like given in Definition 3]

A randomised experiment is expected to result in exchangeability because
independent predictors of the outcome will be approximately equally dis-
tributed between the treated and the untreated groups. In observational
studies, where treatment is not randomly assigned, the reasons for receiv-
ing treatment are likely to be associated with some predictors of outcome.
Exchangeability will not hold if there exist unmeasured predictors U of the
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outcome such that the probability of receiving treatment depends on U within
strata of measured covariates X. In other words, if we have an unmeasured
confounder that for different values of X affects the treatment assignment Z
differently, then exchangeability does not hold. (Hernédn and Robins 2020)

For the assumption to hold, we need to measure enough joint predictors of
exposure and outcome so that the associations between exposure and out-
come, that are due to their common causes, disappear. Exchangeability as-
sumptions are not testable in observed data, but there is certain sensitivity
analysis that can be applied. (Cole and Hernan 2008))

2.3 Positivity

Positivity assumption (Definition {4)) is the condition that the probability of
each individual being assigned to each level of treatment is non-zero,

O<PZ=1|X=z)<1 Ve

Positivity and exchangeability together give the previously defined strongly
ignorable treatment assignment in Definition

If a subject cannot possibly be exposed to a treatment at one or more levels of
the confounders, then positivity is violated because there is a zero probability
of receiving treatment. For example, if liver disease is a contraindication
for taking a medication, then when studying the effects of that medication,
people with liver disease have a near-zero probability of receiving treatment.
One simple solution in that case would be to restrict the inference to a subset
where positivity holds, i.e. we exclude people with liver disease and do not
claim to draw any conclusions about that sub-population. (Cole and Hernan
2008])

Even if structural zeros are absent, we may encounter zeros by chance be-
cause of small sample sizes or high dimensional data. In fact, when modelling
continuously distributed covariates, random zeros are essentially a given due
to the infinite number of possible values. In such cases, the use of paramet-
ric models smooths over the random zeros by borrowing information from
individuals with histories similar to those that, by chance, resulted in zeros.
(Cole and Hernén 2008)

Weighting methods (covered in Chapter are more sensitive to random zeros
than standard regression or stratification methods. For example, inverse
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probability weights would be undefined for zero-probabilities. Non-weighted
methods like standard regression and stratification implicitly extrapolate to
levels of the covariates with lack of positivity. (Cole and Hernan 2008)

Covariates that cause severe non-positivity bias because of a strong associa-
tion with exposure, may need to be omitted. (Cole and Hernan 2008)

2.4 Correct model specification

To appropriately use the methods described in Chapter [3] it is important
to correctly specify the model for treatment assignment, i.e. the propensity
score. As we are focusing on estimating the propensity score using logistic
regression, the same problems may arise as with any regression model. On
one hand, if we leave out important covariates, our estimates could be biased.
On the other hand, if we include too many covariates, we might run into over-
specification issues, such as inflated standard errors.

To specify the correct propensity score model, statistical methods are usually
not enough, and we must consult with experts in the relevant field who will
have better knowledge of possible causal structures. Several different models
may need to be considered and presented, as we cannot be completely certain
of the underlying causal structures in observational data. And even then,
there is no guarantee of no misspecification as the approaches may be biased
in the same direction. (Herndn and Robins [2020)
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3 Propensity Score Methods

The following gives an overview of methods where the propensity score (PS)
is used in practice, and why, relying on the assumptions covered in Chapter
2] these methods give the desired results. The presented corollaries also hold
for any other balancing score, but only propensity scores are of interest to
us.

3.1 Matching

3.1.1 Overview

Since, in general, E(Y; | Z = t) # E(Y;), t € {0,1}, then the expected
difference between the average outcome of all available treated units and the
average outcome of all available control units does not necessarily equal the
expected treatment effect.

The goal of matching is, for each treated unit, to find a comparable control
unit (or several) based on observed covariates. Ideally, matching would be
done exactly on all covariates . In that case the resulting sample distribu-
tions of x would be identical for the treated and control units. By Theorem [I]
it is sufficient to match exactly on a balancing score b, e.g. propensity score,
to obtain the same probability distribution of baseline covariates for the
treated and control groups.

Corollary [3.1] follows directly from Theorem

Corollary 3.1 (Rosenbaum and Rubin 1983)). Suppose treatment assignment
is strongly ignorable. Further suppose that a value of the propensity score,
ps(x) is randomly sampled from the population of units, and then one treated
unit and one control unit are sampled with this value of ps(x). Then the
expected difference in response to the two treatments for the units in the
matched pair equals the average treatment effect at ps(x). Moreover, the
mean of matched pair differences obtained by this two-step sampling process
is unbiased for the average treatment effect.

Due to the potentially infinite amount of possible values of the estimated

propensity score, or more generally, any balancing score, finding an exact
match to a treated unit among control units is often impossible. Thus, a
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control unit with a value of the estimated propensity score close enough to
that of the sampled treated unit will be chosen. Which difference in value is
deemed small enough will be determined for each study separately.

In most studies, one-to-one matching is used, but many-to-one matching
or matching using a varying amount of controls to one treated unit is also
possible. Different approaches to matching include, for example, matching
with or without replacement, and greedy or optimal matching. (Austin|2011)

When matching with replacement, the same control unit can be matched to
several different treated units. Then, variance estimation must account for
this fact. (Austin 2011)

In greedy matching, first a treated unit is sampled and then the control unit
closest in estimated propensity score value will be chosen as a match for it.
This process is repeated until all treated units have been matched or until
no control unit can be found to match a treated unit. The remaining units
in the sample will then be excluded from the following analysis. In optimal
matching, matches are made so that the total within-pair difference of the
propensity score is minimized. (Austin [2011))

After matched groups have been formed, the treatment effect can be esti-
mated by directly comparing the treated and untreated units in these groups.
The reporting of treatment effects can then be done in the same metrics as
in randomised controlled trials. Just like in randomised controlled trials, in
propensity score matching, in case of large samples, the single covariates are,
on average, similarly distributed in different treatment groups. (Austin 2011)

Propensity score matching requires a substantial overlap in the distributions
of the propensity score in treatment and control groups. If there is little over-
lap then a match cannot be found for a lot of units based on their propensity
score, and Corollary cannot be applied. In this case, inferences could be
made for only a small subset of the population.

R software offers a package called MatchIt (Ho et al. 2011) for matching
purposes.

3.1.2 Example

Let us consider the propensity score distributions in Figure 2] In blue, we
have the propensity score distribution of the treatment group, and in red,
the propensity score distribution of the control group. There are two differ-
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ent scenarios depicted: Figure 2 shows a sample with quite a considerable
amount of overlap, while Figure [2b clearly has a large number of treated sub-
jects that cannot be matched to a similar subject of the control group, and
an even larger number of control group subjects that will not even be con-
sidered for a match with a treated subject. However, the overlap regions of
the propensity scores are approximately from 0.2 to 0.75 for both scenarios.
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n= 1000 n= 1000
31 =500 | = 500
=
w
@ 2 2
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1 1 \
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=9 44
w
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0.00 0.25 0.50 075 100 000 0.25 0.50 075 1.00
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Figure 2: Samples with different overlap in the distributions of propen-
sity scores in treatment and control groups.

a) Unmatched data, sufficient overlap.

b) Unmatched data, insufficient overlap.

c) Matched data corresponding to a).

d) Matched data corresponding to b).

After one-on-one matching without replacement based on the propensity
score, we get new distributions for both groups, seen in Figures 2k and [2d.
While both scenarios result in seemingly good matches, it is important to
note that while in the left-hand side scenario, 95% of the treated people
have been matched to corresponding control group units, only about 17% of
the treatment group has been matched to control units on the right-hand
side, leaving us with only about 11% of the original data, in total. Even in
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the sufficient overlap scenario, only slightly over 60% of the total data set
remains.

In the right-hand side scenario, certain inferences could still be made, de-
pending on the outcome of interest, but the study question would need to
be revised to reflect the actual subset of the population that the remaining
data represents.

Such pairs of figures are often used in practice to illustrate how well the
groups have been matched, but we must keep in mind that, while a good
visual aid, they should not be used without considering how many subjects
are actually matched.

Matching has been criticised for discarding a lot of information, even if most
treated units find a match, like in Figures [2h and [2k. Additionally, matching
on propensity score in particular, has been noted by King and Nielsen (2019)
to increase imbalance and bias.

3.2 Stratification
3.2.1 Overview

In the stratification method, units are divided into subclasses or strata based
on the observed covariates x. The following Corollary is an immediate infer-
ence from Theorem [

Corollary 3.2 (Rosenbaum and Rubin [1983). Suppose treatment assignment
is strongly ignorable. Suppose further that a group of units is sampled using
ps(x) such that ps(x) is constant for all units in the group, and at least
one unit in the group received each treatment. Then, for these units, the
expected difference in treatment means equals the average treatment effect at
that value of ps(x). Moreover, the weighted average of such differences, that
is, the directly adjusted difference, is unbiased for the treatment effect, when
the weights equal the fraction of the population at ps(x).

When classifying directly based on the covariates x, the number of subclasses
grows fast; even if each covariate only has two possible values, the number
of strata would be 2¥, where k is the number of different covariates. Thus,
the more covariates we observe, the more subclasses will likely not have both
treated and control units in them. Stratifying on propensity score is a good
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alternative, given that the assumptions for Corollary hold. (Rosenbaum
and Rubin |1983)

Although Corollary only talks of constant propensity scores, in practice,
stratification means dividing the data into a certain small number of sub-
classes based on the propensity score. Then, in each subclass, the propensity
score values for the treated and untreated are roughly similar, and thus the
distribution of observed baseline covariates will be roughly similar for the
treatment groups as well. In general, to estimate the treatment effect in the
entire population, stratum-specific estimates are weighted by the proportion
of subjects within that stratum. (Austin [2011)

Rosenbaum and Rubin (1984) showed that such stratification on the propen-
sity score eliminates approximately 90% of the bias due to measured con-
founders when estimating a linear treatment effect.

3.2.2 Example

In Figure [3p, we see the same propensity score distribution as in Figure 2h.
The overlap region is now divided into five strata of equal lengths: [0.2, 0.31),
0.31, 0.42), ..., [0.64, 0.75). Figures [3b-f show the distributions of propen-
sity scores in these strata.

On visual inspection, the PS distributions for control and treatment groups
are closer to each other within the strata than in the entire sample. The
last subgroup, where propensity scores range from 0.64 to 0.75, has very few
observations and the distributions there are not as similar as in the other
strata. Different subgroups could be considered to reach even more similar
distributions.
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Figure 3: Distributions of propensity scores for treatment and control
groups in different strata.

a) Distributions in the entire data set.

b)-f) Distributions in 5 strata of equal length.

3.3 Covariate Adjustment using Propensity Score

In this method, the outcome variable is regressed on the estimated propensity
score and an indicator denoting treatment status. Corollary follows from
Theorem [3]

Corollary 3.3 (Rosenbaum and Rubin . Suppose treatment assign-
ment is strongly ignorable, so that in particular, E(Y; | ps(x),Z = t) =
E(Y; | ps(x)) for propensity score ps. Further suppose that the conditional
expectation of Y given ps(x) is linear:

E(Y: | ps(z),Z =t) = oy + Beps(x), t € {0,1}.
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Then the estimator o

(d1 — o) + (B1 — Bo)ps(x)
is conditionally unbiased given ps(x;) (i = 1,...,n) for the treatment effect
at ps(x), namely E(Y; — Yy | ps(x)), if & and fB, are conditionally unbiased
estimators of oy and By, such as least squares estimators. Moreover,

(&1 — &) + (B1 — Bo)ps,

where ps = n~' Y. ps(x;), is unbiased for the average treatment effect if the
units in the study are a simple random sample from the population.

Covariate adjustment using propensity score relies heavily on that the model
of the relationship between the propensity score and the outcome is specified
correctly. (Austin 2011)

3.4 Inverse Probability of Treatment Weighting

3.4.1 Overview

Propensity score weighting methods use a function of the propensity score
to achieve balance in the sample. The populations are reweighted, thus
creating a pseudo-population where the treatment assignment and observed
covariates are independent. Unlike propensity score matching, weighting
keeps most of the units in the analysis, thus offering increased precision
in estimates. Several different weighting methods are used, including inverse
probability of treatment weighting, fine stratification weighting, standardised
mortality ratio weighting, matching weighting, and overlap weighting. (Desai
and Franklin 2019)

In this thesis, only inverse probability of treatment weighting (IPTW) will be
covered. In IPTW, units are weighted by the inverse probability of receiving
the study treatment actually received, i.e.

1
w 5 1— 2z ps(@)’ for treated (z; = 1),
i = — g
pS(iBz‘) 1— pS(ZBi) —, for controls (,zZ = ())’
1 — ps(x;)

where z; and «; are are the treatment indicator and measured covariates,
respectively, for the i-th subject.
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After weighting, a subject essentially becomes w subjects in the new, pseudo-
population. Since, under the positivity assumption, the propensity score is
strictly between zero and one (0 < ps(x;) < 1), then also 0 < 1 —ps(x;) < 1,
and thus 1 < w; < oo. This means that each subject contributes more
than one subject’s worth into the pseudo-population after weighting, and
the pseudo-population is inevitably larger than the actual population.

This gives unbiased point estimates of average treatment effect, but will
most often result in biased standard errors of these point estimates. Thus,
stabilised weights are generally preferred, where the weights are calculated
as

2 Nn,=1 (1 _ Zi)nz:(]
SW; = n_ 4 n
ps(zi) 1 —ps(z;)
nzzl/n7 for treated (z; = 1),
— ps(x;)
M, for controls (z; = 0),
1 — ps(z;)

where z; and x; are the treatment indicator and measured covariates for
the i-th subject, respectively, n.—; and n,—; are the numbers of treated and
control units in the sample, and 7 is the sample size. This means that instead
of simply inverting the treatment probability, we divide the proportion of
treated by the subject’s propensity score, if the subject is treated, or the
proportion of controls by one minus the subject’s propensity score, if the
subject is a control. (Cole and Hernan [2008))

Extreme weights may occur for subjects that have a very low probability of
receiving the treatment they actually received. To prevent variance inflation,
weight truncating is often implemented by removing subjects with extreme
weights (e.g. smaller than 1st and larger than 99th percentile) from the
analysis. The cut-off points are often chosen arbitrarily, but one must keep
in mind that while decreasing variance, removing extreme weights might
increase bias. (Desai and Franklin [2019)

Variance estimation in regression models requires heteroscedasticity-consistent
standard errors, meaning the sample error terms need to be uncorrelated and
have constant variance. With weighting, the assumption of constant variance
is often not fulfilled, thus resulting in biased variance estimates. Without
going into detail, the so-called robust sandwich estimator, also known as
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White’s (1980) estimator, is used to correct for this flaw. In R, the sandwich
package (Zeileis et al. 2020; Zeileis 2006) provides the vcovHC() command
for this purpose.

3.4.2 Example

In Figure [ on the left, we see another example of propensity score densities
for a treatment and a control group. In this case, there are 434 treated
subjects and 566 controls in the sample.

After calculating the inverse probability of treatment weights as explained
previously, and weighting the data, we get new densities with a much better
overlap in the propensity scores. The graph looks exactly the same for both
regular and stabilised weights due to the way they are calculated. The only
difference is the size of the pseudo-population created by weighting the data.
When using regular weights, the size of the pseudo-population would be 1992
in this case, which is almost twice the size of the original data set. With
stabilised weights, however, the size remains approximately the same.

n= 993
n=571
nf= 427

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 075 1.00
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Figure 4: Propensity score distributions in treatment and control
group before (left) and after (right) weighting.

29



3.5 Propensity Score Methods vs. Conventional Co-
variate Adjustment

One may wonder, why bother with propensity score methods at all. We
already have the trustworthy, conventional covariate adjustment, where all
relevant covariates are included in a regression model alongside with the
treatment when modelling an outcome.

A common concern for covariate adjustment is over-fitting to data when there
is a large number of covariates compared to the number of outcome events.
As a rule, it is recommended to have at least 10 events per each covari-
ate included in the model. The propensity score reduces the dimensionality
of the data, thus also reducing (but not entirely removing) the potential for
over-fitting. Propensity score methods also aim to approximate some charac-
teristics of a randomised experiment, making the results easy to comprehend
and interpret for practitioners. (Elze et al. 2017)
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4 Simulations

The data used in this part are fully simulated using R language (R Core Team
2020) and RStudio software (RStudio Team [2020)). Inspiration for a scenario
and included variables was obtained from “Seven-day antibiotic courses have
similar efficacy to prolonged courses in severe community-acquired pneumo-
nia — a propensity-adjusted analysis” (Choudhury et al. 2011). However, the
simulations are only very loosely based on the article and are not expected
to give similar results to those presented by Choudhury et al.

The R code for the simulations is available at:
https://github.com/kryzzo/propscore.

4.1 Description of the Baseline Covariates

The population to be studied is all patients admitted to the hospital with
severe community-acquired pneumonia in Fakeville, Simulandia.

The treatment of interest is antibiotic courses for 14 days. The control group
is people who received antibiotic courses for 7 days. For simplicity we assume
that everyone has followed their doctors’ orders perfectly.

The outcome to be studied is 30-day mortality within the population, i.e. a
patient received the outcome if they died within 30 days of being admitted
to the hospital, and did not receive the outcome if they were alive 30 days
after the admittance, whether still hospitalised or not.

All baseline covariates, affecting the treatment assignment and/or the out-
come, are age, gender, and 5 different comorbidities: congestive cardiac
failure, liver disease, diabetes, smoking status, and chronic obstructive pul-
monary disease (COPD). They are simulated according to the scheme in
Table [3] The data simulated in this manner do not necessarily reflect how
such covariates would relate to each other in reality.

For age, first an age group is randomly chosen with the probabilities pre-
sented in Table [3, and then an exact age is simulated uniformly within that
age group. People over the age of 65 have a much higher probability of hav-
ing cardiac failure than younger people. All subjects under the age of 18
are non-smokers. COPD is very common in the study population - someone
with COPD is more likely to end up in a hospital with severe pneumonia
than someone without COPD. Smokers have COPD with twice the proba-
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bility of non-smokers (50% vs. 25%). Gender, liver disease and diabetes are
independent of the other covariates.

Table 3: Simulation scheme for the baseline covariates.

variable variable distribution used
name description for simulation
age age in years 6% probability to be uniformly in [1, 18)
22% probability to be uniformly in [18, 40)
29% probability to be uniformly in [40, 65)
35% probability to be uniformly in [65, 80)
8% probability to be uniformly in [80, 90)
gender gender 60% probability to be a man
40% probability to be a woman
smoke smoking status 0% probability to be a smoker if age <18
20% probability to be a smoker if age > 18
cardiac congestive cardiac 1% probability to have CF if age <65
failure (CF) 10% probability to have CF if age > 65
COPD chronic obstructive | 25% probability to have COPD if non-smoker
pulmonary disease 50% probability to have COPD if smoker
liver liver disease 5% probability to have disease for all
diab diabetes mellitus, 15% probability to have disease for all

any type

Age is a continuous variable, while all the other covariates are binary. For
gender, 0 denotes a woman and 1 denotes a man. For the comorbidities, the
variables are indicators: 1 means the patient has the comorbidity, and 0 that
they do not. The treatment (variable name "treat") and outcome (variable
name "death") will also be denoted with zeros and ones in the same manner.

We are going to consider several different scenarios for simulating treatment

and outcome:

1. Randomised trial, where the treatment assignment is independent of
all baseline covariates.

2. A scenario where all the baseline covariates are confounders, i.e. all of
them affect both treatment and outcome.

3. A more realistic scenario, where some baseline characters are con-
founders, and some affect only treatment or outcome.

In the following, we describe more precisely how the data sets in these sce-
narios were simulated, and analyse them.

32



4.2 Scenario 1: Randomised Trial
4.2.1 Description

Let us start with a simulation of a simple randomised trial, where the treat-
ment assignment is independent of the baseline covariates. Let there be a
40% probability for any study subject to be in the treatment group (antibi-
otic course of length 14 days) and 60% probability to be in the control group
(antibiotic course of length 7 days). The propensity score is thus equal to
04, ps(X)=P(Z=1|X)=P(Z=1)=04 VX.

The outcome probability, i.e. the probability to die within 30-days of hospi-
talisation, is calculated based on a logit-model,

1

Pout = HTp(—m)’

where

m = —3.5 4 B treat + 0.01 age + 0.2 cardiac
+ 0.1 COPD — 0.1 diab + 1 smoke.

Here, 3 is the expected change in the log odds of the outcome in treatment
vs. control group if the other variable values are fixed,

B =log(oddsz—1) — log(oddsz—o),

PY=1|Z=t) PY=1|Z=1)
OddSZ_t P(Y:O’Z:t) 1—P(Y:1‘Z:t)’ t€{0>}

For simplicity, we will refer to 5 as treatment effect throughout this chapter.

Lastly, for each subject, an outcome is randomly generated from a Bernoulli
distribution with parameter pgy;.

We will view two different sub-scenarios: one where treatment has no effect
on the outcome (f = 0) and one where a treated unit is less likely to die
within 30 days than a control unit (8 = —1).

4.2.2 Analysis of a Single Data Set

We sampled 1000 individuals from the aforementioned population. There are
387 people in the treatment group and 613 in the control group. A complete
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summary of the data can be viewed in Appendix [A] Knowing the truth that
lies behind the data, we can now estimate the propensity score with logistic
regression with all the baseline covariates included, and see if it works the
way it is supposed to.

In Figure [5| we see the estimated logit model of the propensity score, i.e.

The expected model would thus be

0.4

E(l) =log | ——— | ~ —0.405.

() =log (1 - o.4>

None of the coefficients in the estimated logit PS model in Figure [5] are
statistically significantly different from zero, except for the intercept, which

is close to the expected value.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4793838 0.1982146 -2.419 0.0156 *

genderl -0.0620243 0.1333605 -0.465 0.6419

age 0.0012450 0.0030614 0.407 0.6842

cardiacl 0.031e846 0.3014423 0.105 0.9163

COPD1 -0.0818905 0.1475286 -0.555 0.5788

Tiverl -0.2043553 0.3154339 -0.648 0.5171

diabl 0.1301973 0.1789170 0.728 0.4668

smokel -0.0001959 0.1698639 -0.001 0.9991

Signif. codes: 0 *#%%’ 0,001 ‘**' 0.01 ‘*' 0.05 *.” 0.1 * * 1

Figure 5: Estimated logit propensity score model output for a simu-
lated randomised trial where the true PS is 0.4.

The propensity scores are calculated as

1

P T D)

In Figure [0 we see the propensity score densities for the treatment and
control groups. They are overlapping and all very close to 0.4 as expected;

the slight differences come only from random sampling.
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Figure 6: Propensity score distributions for the treated and control
units in a simulated randomised trial where the true PS is 0.4
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Figure 7: Absolute standardised mean differences between treatment
and control group for baseline covariates in a simulated randomised
trial.
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Since the treatment is generated independently of all the baseline covari-
ates, there should be no imbalances in the covariate distributions between
the treatment groups. Of course small imbalances arise from the random
sampling. Let us look at the balance plot in Figure[7] It depicts the absolute
standardised mean differences in the baseline covariates between treatment
and control groups. In practice, variables with an absolute standardised
mean difference larger than 0.1 are usually considered imbalanced. Here, we
see that no such covariate imbalances are present in our sample, which is also
illustrated by the overlapping propensity score distributions in Figure [0}

Although not needed here due to the already balanced covariates, we can also
have a look at how matching and weighting based on the propensity score
would affect the sample balance.

In PS matching, for each treatment group unit, a control group unit is picked
with a similar estimated propensity score. Thus, we create a new data set
where we have an equal number of people in each of the two groups. Since in
the current data set, there are 387 people in the treatment group, 387 control
group subjects are chosen to match them, and therefore 226 people (controls
who do not receive a match) are removed from the data set altogether. The
changes in the baseline covariate balance and propensity score overlap are
minimal, as expected (see Figure .

In inverse probability of treatment weighting (IPTW) each unit receives a
weight as described in Chapter [3.4] Due to the true propensity score being
0.4, the regular weights should be distributed around o%; = 2.5 for the treated

and ﬁ ~ 1.67 for the controls. Stabilised weights should have a mean of
approximately 1, regardless of the true propensity score. This holds, as can

be seen in Figure [9]

Figure shows the balance in propensity score and after weighting. The
baseline covariates are near-perfectly balanced here.
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ferences in baseline covariates (right) between the treatment and con-
trol groups after PS matching in a simulated randomised trial.
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Figure 9: Distributions of weights (left) and stabilised weights (right)
in a simulated randomised trial.
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Figure 10: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS weighting in a simulated randomised trial.

As mentioned previously, the outcome was simulated in two different ways:
one where § = 0 and one where § = —1. The first case means that treatment
has no effect on 30-day mortality, and the second case means that for fixed
values of all other covariates, the log odds of the treated are one unit smaller
than the log odds of the controls.

Table 4: 30-day mortality by treatment

death death
(B=0) 0 1 (B=-1) 0 1

treat treat
01572 41 0| 576 37
11]353 34 11379 8

All the models, for estimating 3, here and in the following sections are:

1. logistic regression where treatment is the only included independent
variable, all data included (model name in tables: no adjustment),
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2. logistic regression where treatment and all baseline covariates are in-
cluded in the model (all covariates included),

3. logistic regression on matched data, only treatment included (matched
data),

4. weighted logistic regression with regular inverse probability of treat-
ment weights, only treatment included (weights),

5. weighted logistic regression with stabilised weights, only treatment in-
cluded (stabilised weights),

6. weighted logistic regression with corrected standard error estimate us-
ing the sandwich estimator (White [1980) (corrected standard error for
IPTW).

The last three models will always result in the same point estimate of 3, but
can have different standard errors of that estimate.

Since we are looking at a (simulated) randomised trial, we can estimate the
treatment effect with a simple logistic regression without including any of
the baseline covariates in the model. However, we can also see that using
covariate adjustment, matching, or weighting does not change the model
drastically, as the covariates are balanced between the treatment groups, like
demonstrated previously.

For these specific data sets, when the true treatment effect is zero (8 = 0),
the estimated treatment effects can be found in Table[5]| and when 5 = —1, in
Table[6] In both cases, the models yield quite similar results, with a slightly
wider confidence interval when using matching than in other methods. The
estimated coefficients are somewhat different from the true value of 5, due
to the random sampling, but all the confidence intervals cover the true 5.

Complete model outputs can be found in Appendix
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Table 5: Treatment effect estimates from a simulated randomised trial
sample when true § = 0.

estimated standard confidence
method coef. () error interval (95%)
no adjustment 0.296 0.242 (-0.178, 0.769)
all covariates 0.302 0.246 (-0.180, 0.785)
included
matched data 0.291 0.271 (-0.241, 0.822)
regular weights 0.287 0.239 (-0.181, 0.755)
stabilised weights 0.287 0.242 (-0.187, 0.760)
corrected standard 0.287 0.242 (-0.188, 0.761)
error for IPTW

Table 6: Treatment effect estimates from a simulated randomised trial

sample when true g = —1.

estimated standard confidence
method coef. (3) error interval (95%)
no adjustment -1.113 0.396  (-1.888,-0.338)
all covariates -1.129 0.401  (-1.915, -0.343)
included
matched data -1.000 0.422  (-1.827,-0.173)
regular weights -1.143 0.371  (-1.870, -0.415)
stabilised weights -1.143 0.401  (-1.929, -0.356)
corrected standard -1.143 0.396  (-1.919, -0.366)
error for IPTW

4.2.3 Analysis of Repeated Simulations

Now that we have seen an example of one possible sample from the described
population, let us repeat this simulation 1000 times to see how much the point
estimates and their standard errors vary for each method.

Figures [11] and [12] show violin plots of how these 1000 coefficient estimates
and their standard errors, respectively, are distributed for each method when
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the true effect is f = 0. Figures [13] and [14] show similar violin plots when
5 =—1.

What we saw in the previously analysed data sets still holds for the 1000
simulations: the point estimates of J are, on average, close to the true value
used in the data simulations, and matching gives, on average, less precise
estimates (standard errors are higher), for both =0 and g = —1.

weighting i —v

matching - \/l
- /\q

no adj.

-1.0 0.5 0.0 0.5 1.0

Figure 11: Distribution of point estimates of 8 for different methods
where true 8 = 0 in simulated randomised trials.
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Figure 12: Distribution of standard errors of 3 estimates for different
methods where true 8 = 0 in simulated randomised trials.

weighting
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Figure 13: Distribution of point estimates of § for different methods
where true § = —1 in simulated randomised trials.
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Figure 14: Distribution of standard errors of 3 estimates for different
methods where true 8 = —1 in simulated randomised trials.

Lastly, let us have a look at how often the true 8 lies within the estimated
95% confidence intervals. If the confidence intervals are estimated correctly,
then for about 95% of the models, the true 8 should fall within these bounds.
In the case of these simulated randomised trials, this is true for almost all
the different models. Regular weighting performs slightly worse than the
others, but still gives good enough results. The values for different models
are presented in Table [7]
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Table 7: Percentage of the 1000 models where the confidence interval
(CI) covers the true value of f3.

True 3 True 3
(8=0) (B=-1)
method in CI method in CI
no adjustment 95.1% no adjustment 95.7%
all covariates all covariates
included 94.8% included 95.7%
matched data 95.2% matched data 95.6%
regular weights 94.2% regular weights 94.5%
stabilised weights 94.9% stabilised weights 95.5%
corrected standard corrected standard
error for IPTW 94.9% error for IPTW 95.5%
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4.3 Scenario 2: All Covariates are Confounders
4.3.1 Description

Now that we have seen how the methods behave in a certain simulated ran-
domised trial, let us move on to a slightly more complicated scenario, where
all baseline covariates affect both the treatment and the outcome.

Let the treatment logit model be the following:

my. = 1 — 0.02age — 0.2 gender — 0.2 cardiac — 0.2 liver
—0.2COPD — 0.2diab — 0.2 smoke

This means that older people and men (gender = 1) are less likely to be
assigned treatment, and each comorbidity the person has, reduces the odds
of receiving treatment as well.

After generating the baseline covariates as given in Table [3| the probability
of being assigned treatment (Z = 1) is calculated for each subject as

1
T T exp(omg)

Dtr

Then, a treatment is randomly sampled from a Bernoulli distribution with
probability py,. for each unit in the sample.

Let the outcome probability be calculated as

1
1+ exp(—mout)’

Pout =

where

Mot = —2 + B treat 4+ 0.01 age 4+ 0.1 gender + 0.1 cardiac + 0.1 liver
+ 0.1 COPD + 0.1 diab + 0.1 smoke,

i.e. the odds of dying within 30 days of hospitalisation are bigger for older
people and men, and each comorbidity raises the odds as well.

Lastly, an outcome is sampled from a Bernoulli distribution with probability
Pout -
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4.3.2 Analysis of a Single Data Set

Again, we sampled 1000 individuals according to the aforementioned scheme.
There are 409 treated and 591 control units in this sample. A complete
summary of the data is given in Appendix [A]

Let us estimate the propensity score with logistic regression. Ideally, we
would see the exact value of my, for each patient, but since we have randomly
sampled units, we would expect just something similar. Indeed, this is the
case, as shown in Figure [I5] Cardiac failure is the only comorbidity that
has been estimated to have a rather different coefficient than the true one
(-0.98 instead of -0.2), possibly due to the fact that cardiac failure is rare
in our sample - only 44 people out of a 1000 have it. We will continue the
analysis with this propensity score, as we would in practice, assuming it did
not contradict any expert knowledge at hand.

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) 1.020984 0.196353 5.200 2.0e-07 #%*

genderl -0.112915 0.135557 -0.833 0.4049

age -0.023170 0.003077 -7.529 G5.le-14 **=

cardiacl -0.979387 0.425723 -2.301 0.0214 *

COPD1 0.102282 0.151275 0.676 0.4990

Tiverl -0.160141 0.307062 -0.522 0.6020

diabl -0.196207 0.203538 -0.964 0.3351

smokel -0.268593 0.176981 -1.518 0.1291

Signif. codes: 0 ‘#**%’ 0,001 ***’ 0.01 “*’ 0.05 “.” 0.1 * ' 1

Figure 15: Estimated logit propensity score model output.

In Figure the propensity score densities in the treatment and control
groups are depicted. Unlike in the randomised trial, here the distributions
are quite different from each other, and a simple logistic regression with
treatment as its only independent variable would likely not yield correct
results.
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treatment

Figure 16: Propensity score distributions for the treated and control
units.

We perform one-on-one nearest-neighbour matching on the data, in the hopes
of balancing the baseline covariates between treatment groups. This means
we match 409 control units to the treated units, and discard 182 people from
the original data. However, as can be seen in Figure [I7, even in such a
matched data set, some imbalance remains. Specifically, the absolute stan-
dardised mean difference in age is imbalanced in the original data set, and
remains so in the matched data (see Figure [17).

In hopes of a better balance, let us match the data with a smaller caliper -
instead of a nearest neighbour, let us look for a match only within a certain
range of the treated unit’s propensity score. This means that some treated
units may be left without a match, if no control units with a similar enough
PS exist. In this case we pick 0.1 standard deviances of the PS to be the
caliper. This leaves us with a data set of size 710 (355 treated and 355
controls). Figure shows that this gives us a better balance in baseline
covariates and the propensity score, at the cost of more than one fourth of
the initial data set.
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Figure 17: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS matching. Not a good match.
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Figure 18: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS matching with a smaller caliper.

For IPTW, the distributions of the weights are shown in Figure [19] The
regular weights have a mean value of 2 (2.46 for treated and 1.69 for controls).
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The mean values of the stabilised weights are approximately 1 for each of the
treatment groups as well as the whole sample.

3 3
2 2
=
(]
o
@
=
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weights stabilised weights

treatment [_] o [_] 1

Figure 19: Distributions of weights (left) and stabilised weights (right).
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Figure 20: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS weighting.

With weighting, a good balance is achieved in the data, as illustrated by
Figure [20]
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Again, for 30-day mortality we cover two cases, one of which has 5 = 0
and the other § = —1. Table |§ shows the distribution of the outcome by
treatment groups.

Table 8: 30-day mortality by treatment

death death
(86=0) 0 1 (B=-1) 0 1

treat treat
0] 460 131 0] 460 131
11328 81 11]368 41

Tables [9] and [I0] show the estimates of 5 with different methods in these spe-
cific simulated data sets. Complete model outputs are available in Appendix

Bl

Table 9: Treatment effect estimates when true 8 = 0.

estimated standard confidence
method coef. (3) error interval (95%)
no adjustment -0.143 0.159 (-0.454, 0.169)
all covariates 0.034 0.166 (-0.292, 0.361)
included
matched data -0.068 0.184 (-0.428 0.293)
regular weights 0.028 0.155 (-0.275, 0.331)
stabilised weights 0.028 0.157 (-0.280, 0.336)
corrected standard 0.028 0.167 (-0.300, 0.356)
error for IPTW
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Table 10: Treatment effect estimates when true g = —1.

estimated standard confidence
method coef. (B) error interval (95%)
no adjustment -0.938 0.192  (-1.315, -0.562)
all covariates -0.876 0.198  (-1.264, -0.487)
included
matched data -0.971 0.203  (-1.368, -0.574)
regular weights -0.821 0.181  (-1.174, -0.467)
stabilised weights -0.821 0.188  (-1.189, -0.452)
corrected standard -0.821 0.206  (-1.224, -0.418)
error for IPTW

All the methods seem to perform relatively well, as the true value of 3 is
in all the confidence intervals. This time, the logistic regression with only
treatment as an independent variable gives a different estimate than the other
methods. Matched data has a larger standard error than the other methods
again. In the following, we study whether these differences are systematic.

4.3.3 Analysis of Repeated Simulations

Let us repeat this simulation 1000 times to see how much the point estimates
and their standard errors vary for each method. Figures[2I]and [22show violin
plots with the distributions of the estimated treatment effects and standard
errors, respectively, when the true value of 3 is zero. Figures [23|and [24] show
the same plots when g = —1.

It is clear that in both cases, the model with no adjustment for the covariates
gives biased estimates of [, while the other methods, on average, work well.
Again, in matching we get visibly larger standard errors than in other meth-
ods, which can be explained by the smaller sample size. Weighting without
any correction, on the other hand, gives smaller standard errors, because
the pseudo-sample that we get, with weights that average at 2, is two times
larger than the original.
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Figure 21: Distribution of point estimates of g for different methods
where true 8 = 0.
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Figure 22: Distribution of standard errors of 3 estimates for different
methods where true 8 = 0.
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Figure 23: Distribution of point estimates of g for different methods
where true g = —1.
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Figure 24: Distribution of standard errors of 3 estimates for different
methods where true g = —1.
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As for the confidence intervals, for all methods (except no adjustment) they
cover the true value of § in approximately 95% of the simulations when
treatment has no effect on the outcome. When the true (8 is equal to -1,
regular weighting gives too small confidence intervals, that cover the true
value only in less than 93% of the cases.

Table 11: Percentage of the 1000 models where the confidence interval
(CI) covers the true value of f.

True True
(8=0) (B=-1)
method in CI method in CI
no adjustment 89.4% no adjustment 92.9%
all covariates all covariates
included 95.9% included 95.1%
matched data 94.9% matched data 95.6%
regular weights 94.9% regular weights 92.8%
stabilised weights 95.2% stabilised weights 94.3%
corrected standard corrected standard
error for IPTW 96.2% error for IPTW 95.1%

In conclusion, for simulated scenario 2, all adjustment methods gave unbi-
ased estimates. Matching gave the largest standard errors, while weighting
without any correction resulted in the smallest. Compared to covariate ad-
justment, weighting, with sandwich estimator-corrected standard errors, gave
the most similar results.
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4.4 Scenario 3: A More Realistic Case
4.4.1 Description

Now we will consider a more realistic scenario where some baseline covariates
are confounders, while some affect only treatment or outcome.

This time, let the treatment logit model be

my- = 0.5 — 0.02age + 0.2 gender + 1 liver
+ 1 COPD — 2 smoke

If all other covariates are fixed, then older people, women, and smokers are
less likely to be assigned antibiotic courses of 14 days (Z = 1), while peo-
ple with liver disease or COPD are more likely to be prescribed the longer
courses.

After generating the baseline covariates as given in Table [3| the probability
of being assigned treatment (Z = 1) is calculated for each subject as

1
T T exp(omg)

Dtr

Then, a treatment is randomly sampled from a Bernoulli distribution with
probability py,. for each unit in the sample.

The outcome probability will be calculated as

1
1+ exp(—mout)’

Pout =

where

Moyt = —3.5 + [ treat + 0.02age + 0.2 cardiac
+ 2smoke — 0.1 diab,

i.e. the odds of dying within 30 days of hospitalisation are bigger for older
people, smokers, and those with cardiac failure, while diabetics are less likely
to die.

Lastly, an outcome is sampled from a Bernoulli distribution with probability
DPout-
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4.4.2 Analysis of a Single Data Set

As in the previous scenarios, we sampled 1000 people as described. There
are 404 treated and 596 control subjects in the sample. A complete summary
of the data set can be seen in Appendix [A]

Once again, we estimate the propensity score with logistic regression. The
estimated coefficients are given in Figure 25| The estimations look to be
close to the true values used in the data simulation, and the ones that are
not in the model my,, are not statistically significantly different from zero in
the estimated model.

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.407365 0.201705 2.020 0.04342 =

genderl 0.324484 0.145223 2.234 0.02546 *

age -0.019793 0.003278 -6.038 1.56e-09 =#=%=

cardiacl 0.272879 0.342244  0.797 0.42526

COPDL 1.299663 0.168538 7.711 1.24e-14 *=**

Tiverl -1.268941 0.427707 -2.967 0.00301 =#=

diabl 0.068451 0.188448 0.363 0.71643

smokel -2.252578 0.262588 -8.578 < 2e-16 ***

Signif. codes: 0O ‘%¥*’ 0,001 ‘**’ Q.01 ‘*’ 0.05 *.” 0.1 * ' 1

Figure 25: Estimated logit propensity score model output.

The propensity score densities in treatment and control group shown in Fig-
ure [26| are not similar and, once again, need balancing.

Just like in the previous scenario, simple nearest-neighbour matching, with-
out restricting the distance, does not give a very good match, and the im-
balances remain (see Figure . Like before, we choose the caliper to be
0.1 standard deviances of the PS to get a better match. When matching
like that, only 628 people remain in the new data set, meaning that we have
removed 90 people from the treatment group and 282 people from the control
group. However, the new data set is nicely balanced, as can be seen in Figure

28
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Figure 26: Propensity score distributions for the treated and control
units.
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Figure 27: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS matching. Not a good match.
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Figure 28: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS matching with a smaller caliper.

When dealing with IPTW, some large weights occur, as can be seen in Figure
We will now consider the weighted models for two different cases: one
where all data is included (the extreme weights remain), and one where we
have trimmed weights, i.e. removed the data points with weights larger than
10 (Figure . This means that in addition to the previously listed 6 mod-
els, in this case we will estimate 3 more: regular weighting after trimming,
stabilised weighting after trimming, as well as one with corrected standard
error.

Trimming the data removed 10 observations in this case. Some imbalances
remain in the baseline covariates in both trimmed and non-trimmed weight-
ing. In the data set with trimmed weights, smoking is slightly more out of
balance than in the data that includes the larger weights (see Figures [31{and

32).
The two different cases of treatment effect give us the outcome distributions
by treatment group shown in Table
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Figure 30: Distribution of weights (trimmed).
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Figure 31: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS weighting.
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Figure 32: PS distributions (left) and absolute standardised mean
differences in baseline covariates (right) between the treatment and
control groups after PS weighting (trimmed).
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Table 12: 30-day mortality by treatment

death death
B=0| o 1 B=-1)] 0 1

treat treat
01485 111 0] 489 107
11363 41 11387 17

Tables [13] and [14] show the § estimates and their confidence intervals when
estimated with different models. Expectedly, the model with no covariate or
propensity score adjustment gives an inaccurate estimate for the treatment
effect, and the true [ is not covered by the confidence intervals. The con-
fidence intervals from the weighting methods without trimming also do not
cover the true value if § = —1. The standard error of the model coefficient
from matched data is once again the largest.

Table 13: Treatment effect estimates when true 5 = 0.

estimated standard confidence
method coef. (3) error interval (95%)
no adjustment -0.706 0.196  (-1.089, -0.323)
all covariates -0.039 0.226 (-0.482, 0.403)
included
matched data 0.068 0.260 (-0.442, 0.578)
regular weights -0.262 0.188 (-0.631, 0.106)
stabilised weights -0.262 0.192 (-0.640, 0.115)
corrected standard -0.262 0.238 (-0.728, 0.204)
error for IPTW
regular weights -0.287 0.191 (-0.661, 0.087)
(trimmed)
stabilised weights -0.287 0.199 (-0.677, 0.103)
(trimmed)
corrected standard -0.287 0.225 (-0.727, 0.153)
error for IPTW
(trimmed)
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4.4.3

We repeat the previously described simulation 1000 times to try and identify
some patterns. Figures and show violin plots with the distribution
of the estimated effects and standard errors, respectively, for when g = 0.

Table 14: Treatment effect estimates when true § = —1.

estimated standard confidence
method coef. (B) error interval (95%)
no adjustment -1.606 0.270  (-2.134, -1.077)
all covariates -1.132 0.289  (-1.698, -0.566)
included
matched data -1.049 0.349  (-1.732, -0.366)
regular weights -1.604 0.279 (-2.150 -1.057)
stabilised weights -1.604 0.299  (-2.189, -1.018)
corrected standard -1.604 0.291  (-2.173, -1.034)
error for IPTW
regular weights -1.431 0.270  (-1.959, -0.902)
(trimmed)
stabilised weights -1.431 0.292  (-2.002, -0.859)
(trimmed)
corrected standard -1.431 0.287  (-1.994, -0.867)

error for IPTW
(trimmed)

Analysis of Repeated Simulations

Figures [34] and [36) depict the same for when 8 = —1.

While our single simulation showed better results with trimmed weights, the
1000 simulations show that, for data generated in this manner at least, the
trimmed weights give us biased estimates. Covariance adjustment, match-
ing, and weighting without trimming, however, give less biased or even unbi-
ased results. The largest standard errors come from matching and corrected

weighting estimates.
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Figure 33: Distribution of point estimates of g for different methods
where true 8 = 0.
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Figure 34: Distribution of point estimates of § for different methods
where true § = —1.
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Figure 35: Distribution of standard errors of 3 estimates for different
methods where true g = 0.
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Figure 36: Distribution of standard errors of 3 estimates for different
methods where true g = —1.

In this scenario, the only methods that give us true 95% confidence intervals
are conventional covariate adjustment, matching, and IPTW with corrected
standard errors (without trimming), as shown in Table
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Table 15: Percentage of the 1000 models where the confidence interval
(CI) covers the true value of f3.

True True 3
(8=0) (B=-1)
method in CI method in CI
no adjustment 5.9% no adjustment 34.1%
all covariates all covariates
included 95.3% included 95.7%
matched data 94.5% matched data 95.6%
regular weights 86.6% regular weights 75.8%
stabilised weights 87.4% stabilised weights 79.8%
corrected standard corrected standard
error for IPTW 96.5% error for IPTW 94.6%
regular weights 71.8% regular weights 82.8%
(trimmed) (trimmed)
stabilised weights 76.0% stabilised weights 86.3%
(trimmed) (trimmed)
corrected standard corrected standard
error for IPTW 84.3% error for IPTW 93.1%
(trimmed) (trimmed)

In conclusion, for simulated scenario 3, covariate adjustment was unbiased
and with good standard error estimates (95% confidence interval covered the
true 5 value in 95% of cases). Matching gave the largest standard errors
again, while weighting without any correction resulted in the smallest vari-
ance. Weight trimming, while making standard errors more similar to those
of conventional covariate adjustment, resulted in biased estimation of 3, on
average.
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4.5 Discussion

We simulated data sets of a population of patients admitted to the hospital
with severe community-acquired pneumonia. The treatment we are inter-
ested in is antibiotic courses of length 14 days. The control group is those
with antibiotic courses of exactly 7 days. The outcome of interest is 30-day
mortality, i.e. whether the patient dies within 30 days of admittance to the
hospital. Included baseline covariates are age, gender, congestive cardiac fail-
ure, liver disease, diabetes, chronic obstructive pulmonary disease (COPD),
and smoking.

We investigated three scenarios: a randomised trial, a case where all co-
variates are confounders, and a more realistic case with some covariates as
confounders while others only affect treatment or outcome. In all these sce-
narios we applied propensity score matching and weighting, as well as regular
covariate adjustment. All the methods worked in accordance with what was

described in Chapter [3]

Since matching removes a part of the available data, then the smaller sample
size causes larger standard errors, but the estimated treatment effects are
unbiased. Matching, while very intuitive, is often criticised for its tendency
to remove a very large part of the data, especially in observational studies
where more control data is available than treatment data.

Weighting, when standard errors are corrected using the sandwich estimator,
provides unbiased estimates and reasonable standard errors if there are no
extreme weights. In case of small treatment probabilities, large weights occur
and cause an inflation of standard errors. To counteract this, weights are
trimmed by removing observations with very large weights. This, in its turn,
causes biased estimations of the treatment effect. This bias-variance trade-off
must be taken into account when dealing with extreme weights.

Covariate adjustment provides unbiased and stable estimates. The only issue
that may arise, is when there are too few outcome events for the amount of
covariates in the model, in which case a regression model cannot be fitted or
will be severely over-fitted. In that case propensity score methods can be a
good alternative.
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Conclusion

Propensity score methods are one way to balance data for causal effect es-
timations in observational studies, and these methods are becoming increas-
ingly common in the medical field. They include matching, stratification,
weighting, and covariate adjustment using propensity score. This thesis
covered the theory behind these methods, and applied the matching and
weighting in a simulation study. The simulation part also compared these
two methods to the conventional covariate adjustment.

All the applied methods worked well in the scenarios implemented here.
Matching resulted in larger standard errors of the estimated treatment effects
than other methods due to the smaller sample size. If very large weights occur
in the weighting methods it can result in an inflation of the standard errors.
This can be combated by trimming the weights, i.e. removing observations
with extreme weights. However, this in its turn causes biased estimates of
the treatment effect, so the bias-variance trade-off needs to be taken into
account when using this method. Conventional covariate adjustment was
unbiased and stable in all the implemented cases.

While propensity score methods provide a great overview of balance in the
baseline covariates and help mimic an RCT-like scenario, covariate adjust-
ment remains a reliable method for causal effect estimation in observational
studies.
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A Simulated Data Set Summaries

Table Al: Scenario 1. Baseline covariate summary by treatment group.

Treated Control
Variable n (%) n (%)
N 387 613
Age
1, 18) 20 (5.2) 35 (5.7)
18, 40) 00 (23.3) 140 (22.8)
140, 65) 112 (28.9) 200 (32.6)
(65, 80) 134 (34.6) 196 (32.0)
180, 90) 31 (8.0) 42 (6.9)
Gender
male 230 (59.4) 374 (61.0)
female 157 (40.6) 239 (39.0)
Cardiac failure 20 (5.2) 30 (4.9)
Liver disease 16 (4.1) 31 (5.1)
COPD 105 (27.1) 177 (28.9)
Diabetes 64 (16.5) 90 (14.7)
Current smoker 73 (18.9) 116 (18.9)
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Table A2: Scenario 2. Baseline covariate summary by treatment group.

Treated Control
Variable n (%) n (%)
N 409 091
Age
1, 18) 44 (10.8) 19 (3.2)
18, 40) 123 (30.1) 106 (17.9)
140, 65) 112 (27.4) 146 (24.7)
(65, 80) 109 (26.7) 269 (45.5)
80, 90) 21 (5.1) 51 (8.6)
Gender
male 228 (55.7) 343 (58.0)
female 181 (44.3) 248 (42.0)
Cardiac failure 7 (17) 37 (6.3)
Liver disease 19 (4.6) 35 (5.9)
COPD 119 (29.1) 173 (29.3)
Diabetes 47 (11.5) 81 (13.7)
Current smoker 66 (16.1) 129 (21.8)
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Table A3: Scenario 3. Baseline covariate summary by treatment group.

Treated Control
Variable n (%) n (%)
N 404 296
Age
1, 18) 40 (9.9) 17 (2.9)
18, 40) 118 (29.2) 127 (21.3)
140, 65) 110 (27.2) 173 (29.0)
(65, 80) 111 (27.5) 219 (36.7)
180, 90) 25 (6.2) 60 (10.1)
Gender
male 258 (63.9) 331 (55.5)
female 146 (36.1) 265 (44.5)
Cardiac failure 18 (4.5) 32 (5.3)
Liver disease 8 (2.0) 36 (6.0)
COPD 155 (38.4) 133 (22.3)
Diabetes 70 (17.3) 101 (16.9)
Current smoker 21 (5.2) 152 (25.5)
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B Model outputs

B.1 Simulation Scenario 1: Randomised Trial

call:
gim(formula = death ~ treat, family = "binomial", data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.4289 -0.4289 -0.3721 -0.3721 2.3258

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6356 0.1617 -16.302 <2e-16 w¥¥
treatl 0.2955 0.2416 1.223 0.221
Signif. codes: 0 ‘#**%’ Q.001 ‘**’ Q.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 532.77 on 999 degrees of freedom
Residual deviance: 531.29 on 998 degrees of freedom
AIC: 535.29

Number of Fisher Scoring iterations: 5§

Figure B1: Scenario 1. R output of model without adjustment, true g = 0.
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call:
gim(formula = death ~ treat + gender + age + cardiac + COPD +
Tiver + diab + smoke, family = "binomial"”, data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.8464 -0.4138 -0.3441 -0.2761 2.8159

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -3.947304 0.457089 -8.636 < 2e-16 **%

treatl 0.302491  0.246123 1.229 0.219063

genderl 0.286451  0.259187 1.105 0.269078

age 0.014858  0.006288 2.363 0.018130 =

cardiacl -1.033815 0.742821 -1.392 0.164001

COPD1 0.058567 0.270061 0.217 0.828313

Tiverl -0.515329  0.739565 -0.697 0.485928

diabl 0.348532 0.310476 1.123 0.261620

smokel 0.988228  0.264041 3.743 0.000182 ===

Signif. codes: 0 ‘#**%’ Q.001 ‘**’ Q.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 532.77 on 999 degrees of freedom

Residual deviance: 505.01 on 991 degrees of freedom

AIC: 523.01

Number of Fisher Scoring iterations: 6

Figure B2: Scenario 1. R output of model with conventional covariate adjustment,
true 8 = 0.

75



call:
gim(formula = death ~ treat, family = "binomial"”, data = matched_data)

Deviance Residuals:
Min 10 Median 3Q Max
-0.4289 -0.4289 -0.3730 -0.3730 2.3239

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.6308 0.2031 -12.956 <2e-16 #¥*
treatl 0.2907 0.2711 1.072 0.284
Signif. codes: 0O f***’ (Q.001 ‘*=’ 0.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 422.09 on 773 degrees of freedom
Residual deviance: 420.93 on 772 degrees of freedom
AIC: 424.93

Number of Fisher Scoring +iterations: 5
Figure B3: Scenario 1. R output of model with matching, true 5 = 0.
call:

gim(formula
weights

death ~ treat, family = "quasibinomial"”, data = sim_data,
w)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7694 -0.6794 -0.4799 -0.4737 3.6992

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.6286 0.1787 -14.712 <2e-16 w¥¥
treatl 0.2868 0.2387 1.202 0.23
Signif. codes: 0 ‘#**%’ Q.001 ‘**’ Q.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for quasibinomial family taken to be 2.004147)
Null deviance: 1090.8 on 999 degrees of freedom

Residual deviance: 1087.9 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5§

Figure B4: Scenario 1. R output of model with weighting, true g = 0.

76



Call:
gIm(formula
weights

death ~ treat, family = "quasibinomial", data = sim_data,
sW)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.4787 -0.4226 -0.3757 -0.3709 2.4205

Coefficients:
Estimate Std. Error t value Pr(=|t])

(Intercept) -2.6286 0.1614 -16.291 <2e-16 ***
treatl 0.2868 0.2416 1.187 0.236
Signif. codes: 0 ‘*¥%’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

(Dispersion parameter for quasibinomial family taken to be 1.002043)
Null deviance: 533.87 on 999 degrees of freedom

Residual deviance: 532.48 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

Figure B5: Scenario 1. R output of model with stabilised weighting, true g = 0.

z test of coefficients:

Estimate Std. Error 2z value Pr(>|zl|)
(Intercept) -2.62859 0.16192 -16.2335 <2e-16 *#*
treatl 0.28677 0.24208 1.1846 0.2362

signif. codes: 0 ‘*%%’ Q0,001 ‘**' 0.01 "=’ 0.05 *.” 0.1 * ' 1

Figure B6: Scenario 1. R output of model with weighting corrected with sandwich
estimator, true g = 0.
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call:
gim(formula = death ~ treat, family = "binomial", data = sim_data)

Deviance Residuals:
Min 10 Median 3Q Max
-0.3529 -0.3529 -0.3529 -0.2044 2.7853

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7452 0.1696 -16.187 < 2e-16 #*%
treatl -1.1129 0.3955 -2.814 0.00489 *
Signif. codes: 0O f***’ (Q.001 ‘*=’ 0.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 367.04 on 999 degrees of freedom
Residual deviance: 357.37 on 998 degrees of freedom
AIC: 361.37

Number of Fisher Scoring +iterations: 6

Figure B7: Scenario 1. R output of model without adjustment, true 5 = —1.
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Call:
gIlm(formula = death ~ treat + gender + age + cardiac + COPD +
Tiver + diab + smoke, family = "binomial"”, data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.8413 =-0.2954 -0.2413 -0.1644 3.1208

Coefficients:
Estimate Std. Error z value Pr(|z|)
(Intercept) -2.716734 0.484233 -5.610 2.02e-08 ===

treatl -1.128941 0.400941 -2.816 0.00487 ==

genderl -0.614798 0.315029 -1.952 0.05099

age 0.002381 0.007636 0.312 0.75523

cardiacl -0.360675 0.768210 -0.470 0.63871

COPD1 -0.582413 0.379248 -1.536 0.12461

Tiverl 0.374228 0.636755 0.588 0.55673

diabl -0.990428 0.610375 -1.623 0.10466

smokel 1.440640 0.326249 4.416 1.01e-05 *=**

Signif. codes: 0 ‘**%’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 367.04 on 999 degrees of freedom
Residual deviance: 330.26 on 991 degrees of freedom
AIC: 348.26

Number of Fisher Scoring iterations: 6

Figure B8: Scenario 1. R output of model with conventional covariate adjustment,
true § = —1.
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call:
gIim(formula = death ~ treat, family = "binomial", data = matched_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.3340 -0.3340 -0.2044 -0.2044 2.7853

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -2.8581 0.2244 -12.74 <2e-16 **%
treatl -1.0000 0.4219 -2.37 0.0178 =
Signif. codes: 0 ‘#***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 247.39 on 773 degrees of freedom
Residual deviance: 241.12 on 772 degrees of freedom
AIC: 245.12

Number of Fisher Scoring iterations: 6

Figure B9: Scenario 1. R output of model with matching, true g = —1.

call:
gim(formula
weights

death ~ treat, family = "quasibinomial”, data = sim_data,
w)

Deviance Residuals:
Min 10 Median 3Q Max
-0.4732 -0.4507 -0.4429 -0.3233 4.5339

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.7488 0.1883 -14.60 < 2e-16 %
treatl -1.1425 0.3710 -3.08 0.00213 **
Signif. codes: 0 f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “." 0.1 * " 1

(Dispersion parameter for quasibinomial family taken to be 2.004148)
Null deviance: 672.83 on 999 degrees of freedom

Residual deviance: 650.95 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 6

Figure B10: Scenario 1. R output of model with weighting, true § = —1.

80



call:
gim(formula
weights

death ~ treat, family = "quasibinomial”, data = sim_data,
sw)

Deviance Residuals:
Min 10 Median 3Q Max
-0.3705 -0.3528 -0.3468 -0.2011 2.8205

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.7488 0.1701 -16.165 < 2e-16 #*%
treatl -1.1425 0.4011 -2.848 0.00449
Signif. codes: 0O f***’ (Q.001 ‘*=’ 0.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for quasibinomial family taken to be 1.002086)

Null deviance: 364.70 on 999 degrees of freedom
Residual deviance: 354.69 on 998 degrees of freedom
AIC: NA

Number of Fisher Scoring +iterations: 6

Figure B11: Scenario 1. R output of model with stabilised weighting, true g = —1.

z test of coefficients:

Estimate std. Error 2z value Pr(=|z]|)
(Intercept) -2.74880 0.16985 -16.1833 < 2.2e-16 *
treatl -1.14251 0.39604 -2.8848 0.003916 ==

Signif. codes: 0 ‘#**%’ Q.001 ‘**’ Q.01 “*’ 0.05 “.” 0.1 * ' 1

Figure B12: Scenario 1. R output of model with weighting corrected with sandwich
estimator, true § = —1.
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B.2 Simulation Scenario 2: All Covariates are Con-
founders

call:
gIlm(formula = death ~ treat, family = "binomial", data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7079 -0.7079 -0.6644 -0.6644 1.7996

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.25603 0.09903 -12.683 <2e-16 w#®*
treatl -0.14254 0.15875 -0.898 0.369

Signif. codes: 0 f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1033.2 on 999 degrees of freedom
Residual deviance: 1032.4 on 998 degrees of freedom
AIC: 1036.4

Number of Fisher Scoring iterations: 4

Figure B13: Scenario 2. R output of model without adjustment, true 5 = 0.
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Call:
gIlm(formula = death ~ treat + gender + age + cardiac + COPD +
Tiver + diab + smoke, family = "binomial"”, data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0121 -0.7311 -0.6350 -0.4886 2.2012

Coefficients:
Estimate Std. Error z value Pr(|z|)
(Intercept) =-2.392216 0.287249 -8.328 < 2e-16 *+¥%

treatl 0.034355 0.166434 0.206 0.836464

genderl 0.153576 0.159427 0.963 0.335397

age 0.014998 0.003926 3.821 0.000133 #=*

cardiacl -0.154359 0.376758 -0.410 0.682024

COPD1 0.267611 0.171431 1.561 0.118515

Tiverl 0.329247 0.319096 1.032 0.302161

diabl 0.105269 0.228319 0.461 0.644755

smokel 0.104594 0.195511 0.535 0.592665

Signif. codes: 0 ‘**%’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1033.2 on 999 degrees of freedom
Residual deviance: 1010.4 on 991 degrees of freedom
AIC: 1028.4

Number of Fisher Scoring iterations: 4

Figure B14: Scenario 2. R output of model with conventional covariate adjust-
ment, true 5 = 0.
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call:
gim(formula = death ~ treat, family = "binomial"”, data = matched_data)

Deviance Residuals:
Min 10 Median 3Q Max
-0.6993 -0.6993 -0.6785 -0.6785 1.7786

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) -1.28382 0.12878 -9.969 <2e-16 ##*
treatl -0.06763 0.18393 -0.368 0.713

Signif. codes: 0 ‘#*%%’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 732.20 on 709 degrees of freedom
Residual deviance: 732.06 on 708 degrees of freedom
AIC: 736.06

Number of Fisher Scoring iterations: 4

Figure B15: Scenario 2. R output of model with matching, true g = 0.

Call:
gIlm(formula
weights

death ~ treat, family = "quasibinomial"”, data = sim_data,

w)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.9241 -0.9996 -0.8687 -0.7898 4.8527

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.31784 0.10983 -11.999 <2e-16 **%
treatl 0.02803 0.15450 0.181 0.856

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “." 0.1 * " 1

(Dispersion parameter for quasibinomial family taken to be 2.006908)
Null deviance: 2077.4 on 999 degrees of freedom

Residual deviance: 2077.4 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

Figure B16: Scenario 2. R output of model with weighting, true 5 = 0.
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call:
gim(formula
weights

death ~ treat, family = "quasibinomial”, data = sim_data,
sw)

Deviance Residuals:
Min 10 Median 3Q Max
-1.2305 -0.7118 -0.6375 -0.5559 3.1035

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -1.31784 0.10100 -13.048 <2e-16 ##*
treatl 0.02803 0.15693 0.179 0.858

Signif. codes: 0 ‘#*%%’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

(Dispersion parameter for quasibinomial family taken to be 1.002963)
Null deviance: 1037.1 on 999 degrees of freedom

Residual deviance: 1037.1 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

Figure B17: Scenario 2. R output of model with stabilised weighting, true 5 = 0.

z test of coefficients:

Estimate std. Error 2z value Pr(s|z|)
(Intercept) -1.317837 0.102238 -12.8899 <2e-16 ***
treatl 0.028029 0.167164 0.1677 0.8668

Signif. codes: 0 ‘#**%’ Q.001 ‘**’ Q.01 “*’ 0.05 “.” 0.1 * ' 1

Figure B18: Scenario 2. R output of model with weighting corrected with sandwich
estimator, true § = 0.
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call:
gim(formula = death ~ treat, family = "binomial", data = sim_data)

Deviance Residuals:
Min 10 Median 3Q Max
-0.7079 -0.7079 -0.4596 -0.4596 2.1448

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.25603 0.09903 -12.683 < 2e-16 =**
treatl -0.93848 0.19212 -4.885 1.04e-06 **%

signif. codes: 0 ‘*%%’ Q0,001 ‘**' 0.01 "=’ 0.05 *.” 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 918.09 on 999 degrees of freedom
Residual deviance: 891.63 on 998 degrees of freedom
AIC: 895.63

Number of Fisher Scoring iterations: 4

Figure B19: Scenario 2. R output of model without adjustment, true g = —1.
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call:
gIlm(formula = death ~ treat + gender + age + cardiac + COPD +
Tiver + diab + smoke, family = "binomial", data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0065 -0.6923 -0.5127 -0.3983 2.4007

Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.964516 0.301818 -6.509 7.57e-11 =%

E

treatl -0.875531 0.198275 -4.416 1.01le-05 ==

genderl 0.324145 0.176827 1.833 0.0668 .

age 0.008784 0.004215 2.084 0.0372 =

cardiacl -1.094293 0.540076 -2.026 0.0427 =

CoPD1 0.089471 0.191522 0.467 0.6404

Tiverl 0.452943 0.340087 1.332 0.1829

diabl 0.167487 0.244105 0.686 0.4926

smokel -0.200904 0.224302 -0.896 0.3704

Signif. codes: 0 ‘#*%%’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 918.09 on 999 degrees of freedom

Residual deviance: 876.45 on 991 degrees of freedom

AIC: 894.45

Number of Fisher Scoring iterations: 4

Figure B20: Scenario 2. R output of model with conventional covariate adjust-
ment, true g = —1.
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call:
gIlm(formula = death ~ treat, family = "binomial", data = matched_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.7183 -0.7183 -0.4596 -0.4596 2.1448

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2231 0.1180 -10.368 < 2e-16 *
treatl -0.9714 0.2025 -4.796 1.62e-06 *
Signif. codes: 0 f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 729.56 on 817 degrees of freedom
Residual deviance: 704.88 on 816 degrees of freedom
AIC: 708.88

Number of Fisher Scoring iterations: 4

Figure B21: Scenario 2. R output of model with matching, true g = —1.

call:
gIm(formula
weights

death ~ treat, family = "quasibinomial", data = sim_data,

w)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.3803 -0.8776 -0.8104 -0.6191 5.8442

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.2882 0.1089 -11.828 < 2e-16 **¥*
treatl -0.8208 0.1805 -4.548 6.08e-06 ***
Signif. codes: 0 ‘*%%*’ 0,001 ‘*+*’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

(Dispersion parameter for quasibinomial family taken to be 2.007102)
Null deviance: 1774.8 on 999 degrees of freedom

Residual deviance: 1731.2 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

Figure B22: Scenario 2. R output of model with weighting, true 5 = —1.
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Call:
glm(formula death ~ treat, family = "quasibinomial"”, data = sim_data,
weights = sw)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0611 -0.6604 -0.5667 -0.3960 3.7376

Coefficients:
Estimate Std. Error t value Pr(-|t])

(Intercept) -1.2882 0.1001 -12.863 < 2e-16 ***
treatl -0.8208 0.1880 =-4.367 1.39e-05 ***
Signif. codes: 0 ‘***’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for quasibinomial family taken to be 1.002977)

Null deviance: 918.59 on 999 degrees of freedom
Residual deviance: 897.82 on 998 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

Figure B23: Scenario 2. R output of model with stabilised weighting, true g = —1.

z test of coefficients:

Estimate Std. Error z value Pr(|zl|)
(Intercept) -1.28816 0.10181 -12.6529 < 2.2e-16 #%¥
treatl -0.82075 0.20568 -3.9904 6.596e-05 #=%¥

Signif. codes: 0 ‘*%%*’ 0,001 ‘*+*’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

E
E

Figure B24: Scenario 2. R output of model with weighting corrected with sandwich
estimator, true g = —1.
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B.3 Simulation Scenario 3: A More Realistic Case

Call:
gIlm(formula = death ~ treat, family = "binomial”, data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.6420 -0.6420 -0.4626 -0.4626 2.1391

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) =-1.4746 0.1052 -14.015 < 2e-16 *%%
treatl -0.7062 0.1955 -3.613 0.000303 **=

Signif. codes: 0 ‘**%’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 852.33 on 999 degrees of freedom
Residual deviance: 838.32 on 998 degrees of freedom
AIC: 842.32

Number of Fisher Scoring iterations: 4

Figure B25: Scenario 3. R output of model without adjustment, true 5 = 0.
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call:
gim(formula = death ~ treat + gender + age + cardiac + COPD +
Tiver + diab + smoke, family = "binomial"”, data = sim_data)

Deviance Residuals:
Min 10 Median 3Q Max
-1.4320 -0.5189 -0.4125 -0.3215 2.5392

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.175975 0.350816 -9.053 < 2e-16 *%*

treatl -0.03947% 0.225835 -0.175 0.861242

genderl -0.049429  0.194831 -0.254 0.799727

age 0.018201  0.004852 3.751 0.000176 #*=

cardiacl 0.287709  0.380389 0.756 0.449436

COPD1 -0.168772 0.217456 -0.776 0.437677

Tiverl -1.122896  0.631370 -1.779 0.075321 .

diabl -0.180851  0.264439 -0.684 0.494036

smokel 2.031530 0.221033 9.191 < 2e-16 =%«

signif. codes: O *‘*¥%’ 0,001 ‘**’ 0.0l **’ Q.05 “.” 0.1 * ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 852.33 on 999 degrees of freedom
Residual deviance: 726.79 on 991 degrees of freedom
AIC: 744.79

Number of Fisher Scoring iterations: §

Figure B26: Scenario 3. R output of model with conventional covariate adjust-
ment, true 5 = 0.
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Call:
glm(formula = death ~ treat, family = "binomial”, data = matched_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.4788 -0.4788 -0.4637 -0.4637 2.1371

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.17617 0.18652 -11.67 <2e-16 ***
treatl 0.06774 0.26033 0.26 0.795

Signif. codes: 0O f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * " 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 422.19 on 627 degrees of freedom
Residual deviance: 422.12 on 626 degrees of freedom

AIC: 426.12

Number of Fisher Scoring iterations: 4

Figure B27: Scenario 3. R output of model with matching, true g = 0.

Call:
gIlm(formula
weights

death ~ treat, family = "quasibinomial"”, data = sim_data,

w)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.5650 -0.7690 -0.6755 -0.5928 6.7456

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7585 0.1279 -13.752 <2e-16 ***
treatl -0.2624 0.1879 -1.396 0.163
Signif. codes: 0 ‘**%’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for quasibinomial family taken to be 2.041331)
Null deviance: 1587.2 on 999 degrees of freedom

Residual deviance: 1583.2 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

Figure B28: Scenario 3. R output of model with weighting, true 5 = 0.
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Call:
glm(formula death ~ treat, family = "quasibinomial"”, data = sim_data,
weights = sw)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6303 -0.5580 -0.4937 -0.3954 4.2876

Coefficients:
Estimate Std. Error t value Pr(-|t])

(Intercept) -1.7585 0.1169 -15.047 <2e-16 ***
treatl -0.2624 0.1924 -1.363 0.173
Signif. codes: 0 ‘***’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for quasibinomial family taken to be 1.016269)
Null deviance: 801.15 on 999 degrees of freedom

Residual deviance: 799.23 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

Figure B29: Scenario 3. R output of model with stabilised weighting, true 5 = 0.

z test of coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.75849 0.10987 -16.0046 <2e-16 ##¥
treatl -0.26237 0.23777 -1.1034 0.2698

Signif. codes: 0 ‘*%%*’ 0,001 ‘*+*’ 0.01 ‘*’ 0.05 “.” 0.1 * * 1

Figure B30: Scenario 3. R output of model with weighting corrected with sandwich
estimator, true g = 0.
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call:
gIm(formula
weights

death ~ treat, family = "quasibinomial", data = trim_data,

w)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5712 -0.7637 -0.6727 -0.5912 6.3624

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7585 0.1234 -14.253 <2e-16 ***
treatl -0.2871 0.1910 -1.503 0.133
Signif. codes: 0 ‘#*¥*’ 0.001 ‘*+*’ 0.01 ‘*’ Q.05 ‘.’ 0.1 * * 1

(Dispersion parameter for quasibinomial family taken to be 1.900252)
Null deviance: 1463.0 on 989 degrees of freedom

Residual deviance: 1458.7 on 988 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4
Figure B31: Scenario 3. R output of model with weighting (trimmed), true 5 = 0.
Call:

gim(formula
weights

= death ~ treat, family = "quasibinomial"”, data = trim_data,
= sw)
Deviance Residuals:
Min 10 Median 3Q Max
-1.2130 -0.5523 -0.4911 -0.3908 4.0440

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7585 0.1137 -15.472 <2e-16 ®**
treatl -0.2871 0.1988 -1.444 0.149
signif. codes: O *‘*¥%’ 0,001 ‘**’ 0.0l **’ Q.05 “.” 0.1 * ' 1

(Dispersion parameter for quasibinomial family taken to be 0.9611689)
Null deviance: 750.97 on 989 degrees of freedom

Residual deviance: 748.92 on 988 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4

Figure B32: Scenario 3. R output of model with stabilised weighting (trimmed),
true g = 0.
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z test of coefficients:

Estimate Std. Error 2z value Pr(>|zl|)
(Intercept) -1.75849 0.10988 -16.0044 <2e-16 *#*
treatl -0.28714 0.22452 -1.2789 0.2009

signif. codes: 0 ‘*%%’ Q0,001 ‘**' 0.01 "=’ 0.05 *.” 0.1 * ' 1

Figure B33: Scenario 3. R output of model with weighting (trimmed) corrected
with sandwich estimator, true 8 = 0.

call:
gIlm(formula = death ~ treat, family = "binomial", data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.6291 -0.6291 -0.2932 -0.2932 2.5172

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -1.5195 0.1067 -14.237 < 2e-16
treatl -1.6057 0.2698 -5.952 2.65e-09 ===
Signif. codes: 0 ‘#***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 749.64 on 999 degrees of freedom
Residual deviance: 702.04 on 998 degrees of freedom
AIC: 706.04

Number of Fisher Scoring iterations: 5

Figure B34: Scenario 3. R output of model without adjustment, true § = —1.
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call:
glm(formula = death ~ treat + gender + age + cardiac + COPD +
Tliver + diab + smoke, family = "binomial", data = sim_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.2244 -0.5185 -0.3523 -0.2478 2.7021

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.489943 0.351758 -7.079 1l.46e-12 #=%

treatl -1.132228 0.288819 -3.920 8.85e-05 **

genderl -0.095397 0.208278 -0.458 0.6469

age 0.009156 0.005078 1.803 0.0714 .

cardiacl 0.379377 0.398173 0.953 0.3407

CoPD1 -0.055804 0.238964 -0.234 0.8154

Tiverl 0.317275 0.425555 0.746 0.4559

diabl -0.668864 0.322642 =-2.073 0.0382 =

smokel 1.579292 0.228012 6.926 4.32e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 “.” 0.1 * ’ 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 749.64 on 999 degrees of freedom

Residual deviance: 640.22 on 991 degrees of freedom

AIC: 658.22

Number of Fisher Scoring iterations: 6

Figure B35: Scenario 3. R output of model with conventional covariate adjust-
ment, true g = —1.
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Call:
gIlm(formula = death ~ treat, family = "binomial"”, data = matched_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.4637 -0.4637 -0.2792 -0.2792 2.5552

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) =-2.1762 0.1865 -11.666 <2e-16 *
treatl -1.0493 0.3485 -3.011 0.0026 ==
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “." 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 318.78 on 627 degrees of freedom
Residual deviance: 308.66 on 626 degrees of freedom
AIC: 312.66

Number of Fisher Scoring iterations: 6
Figure B36: Scenario 3. R output of model with matching, true g = —1.
Call:

gim(formula
weights

death ~ treat, family = "quasibinomial”, data = sim_data,
w)

Deviance Residuals:
Min 10 Median 3Q Max
-1.5609 -0.6953 -0.5706 -0.3350 4.9729

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7727 0.1285 -13.794 < 2e-16 *
treatl -1.6035 0.2790 -5.747 1.21e-08 *
Signif. codes: 0O f***’ (Q.001 ‘*=’ 0.01 “*’ 0.05 “.” 0.1 * ' 1

(Dispersion parameter for quasibinomial family taken to be 2.041387)
Null deviance: 1212.5 on 999 degrees of freedom

Residual deviance: 1127.5 on 998 degrees of freedom

AIC: NA

Number of Fisher Scoring +iterations: 5

Figure B37: Scenario 3. R output of model with weighting, true 5 = —1.
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call:
gim(formula
weights

death ~ treat, family = "quasibinomial”, data = sim_data,
sw)

Deviance Residuals:
Min 10 Median 3Q Max
-1.2051 -0.5334 -0.4399 -0.2129 3.1608

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7727 0.1175 -15.092 < 2e-16 *
treatl -1.6035 0.2990 -5.363 1.01le-07
Signif. codes: 0 f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “." 0.1 * " 1

(Dispersion parameter for quasibinomial family taken to be 1.016267)

Null deviance: 653.50 on 999 degrees of freedom
Residual deviance: 613.92 on 998 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

Figure B38: Scenario 3. R output of model with stabilised weighting, true g = —1.

z test of coefficients:

Estimate Std. Error 2z value Pr(>|z]|)
(Intercept) -1.77272 0.11150 -15.8992 < 2.2e-16
treatl -1.60347 0.29076 -5.5148 3.491e-08 **%

signif. codes: 0 ‘*%%’ Q0,001 ‘**' 0.01 "=’ 0.05 *.” 0.1 * ' 1

Figure B39: Scenario 3. R output of model with weighting corrected with sandwich
estimator, true g = —1.
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call:
gim(formula
weights

death ~ treat, family = "quasibinomial"”, data = trim_data,
w)

Deviance Residuals:
Min 10 Median 3Q Max
-1.5609 -0.6910 -0.5716 -0.3637 4.8498

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7727 0.1240 -14.297 < 2e-16 **=*
treatl -1.4305 0.2699 -5.301 1.42e-07 *
Signif. codes: 0 f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “." 0.1 * " 1

(Dispersion parameter for quasibinomial family taken to be 1.900143)
Null deviance: 1181.8 on 989 degrees of freedom

Residual deviance: 1115.8 on 988 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: §

Figure B40: Scenario 3. R output of model with weighting (trimmed), true g = —1.

call:
gim(formula
weights

= death ~ treat, family = "quasibinomial"”, data = trim_data,
= sw)
Deviance Residuals:
Min 10 Median 3Q Max
-1.2051 -0.5327 -0.4387 -0.2312 3.0826

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.7727 0.1142 -15.519 < 2e-16
treatl -1.4305 0.2915 -4.907 1.08e-06 *
Signif. codes: 0 f***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “." 0.1 * " 1

(Dispersion parameter for quasibinomial family taken to be 0.9611603)
Null deviance: 639.6 on 989 degrees of freedom

Residual deviance: 609.2 on 988 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 6

Figure B41: Scenario 3. R output of model with stabilised weighting (trimmed),
true § = —1.
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z test of coefficients:

Estimate Std. Error z value Pr(|z|)
(Intercept) -1.77272 0.11150 -15.8990 < 2.2e-16 *=
treatl -1.43055 0.28739 -4.9776 6.436e-07 ==

Signif. codes: 0 ‘#*%%’ 0,001 ‘**’ 0.01 “*’ 0.05 “.” 0.1 * " 1

Figure B42: Scenario 3. R output of model with weighting (trimmed) corrected
with sandwich estimator, true § = —1.
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