TARTU UNIVERSITY
Faculty of Mathematics and Computer Science
Institute of Computer Science
Computer Science

Ilja Kromonov

Fault Tolerant Distributed Computing
Framework for Scientific Algorithms

Master’s Thesis (30 ECTS)

Supervisors: Pelle Jakovits
Satish Narayana Srirama, PhD

Fault Tolerant Distributed Computing Framework
for Scientific Algorithms

Abstract:

The physical limitations of computing hardware have put a stop on the in-
crease of a single processor core’s computing power. However, Moore’s law is
still maintained through the ever increasing parallelism of the computing archi-
tectures. At the same time the demand for computational power has been unre-
lentingly growing, forcing people to adapt the algorithms they use to these parallel
architectures. One of the many downsides to parallel architectures is that with the
rise in the number of components, the chance of failure of one of these compo-
nents increases. When it comes to embarrassingly parallel data-intensive algo-
rithms, Map-Reduce has gone a long way in ensuring users can easily utilize large
amounts of distributed computing resources without the fear of losing work. How-
ever, this does not apply to iterative communication-intensive algorithms common
in the scientific computing domain. In this work a new BSP-inspired (Bulk Syn-
chronous Parallel) programming model is proposed, which adopts an approach
similar to continuation passing for implementing parallel algorithms and facili-
tates fault-tolerance inherent in the BSP program structure. The distributed com-
puting framework NEWT, which is based on the proposed model, is described and
used to validate the approach. The framework retains most of the advantages that
Map-Reduce provides, yet efficiently supports a larger assortment of algorithms,
such as the aforementioned iterative ones.

Keywords:

BSP, fault tolerance, cloud computing, iterative algorithms, Hadoop YARN

Torketaluv Hajusarvutuste Raamistik Teadusarvu-
tuse Algoritmidele

Liithikokkuvote:

Arvuti riistvara fiilisilised piirangud on 16petanud protsessorite tuumade arvu-
tusvoimsuse suurenemist, kuid arvutiarhitektuuride suurenev parallelsus sdilitab
Moore’i seaduse kehtivust. Samal ajal tduseb arvutusvdimsuse ndudlus pidevalt,
sundides inimesi kohandada algoritme paralleelsete arhitektuuride kasutamiseks.
Uks paljudest paralleelsete arhitektuuride probleemidest on tdrkete tekkimise
tdendosuse suurenemine parallelsete komponentide arvu suurenemisega. Pi-
inlikult paralleelsete ja andmemahukate algoritmidega seoses on MapReduce
labinud pika tee, et tagada kasutajatele suure hulga hajutatud arvutiressursside
lihtsustatud kasutamine ilma t60 kaotamise hirmuta. Sama ei sa delda kommu-
nikatsiooni intensiivsete algoritmide jaoks mis on levinud teadusarvutuse domee-
nis. Selles t66s on pakutud uus BSP (Bulk Synchronous Parallel) inspireeritud
parallelprogrammeerimise mudel, mille 1dhenemisviis on sarnane continuation
passing programmeerimis stiiliga ja mis vdoimaldab rakendada BSP struktuuril
baseeruvat loomulikku torkekindlust. T60s on kirjeldatud loodud hajusarvutuste
raamistik NEWT, mis pohineb pakutud mudelil ja on kasutatud selle 1ihenemisvi-
isi valideerimiseks. Raamistik sdilitab enamik MapReduce eelisi ning efektiivse-
malt toetab suuremat algoritmide hulka, nagu niiteks eelmainitud iteratiivsed al-
goritmid.

Votmesonad:

BSP, torketaluvus, pilvearvutused, iteratiivsed algoritmid, Hadoop YARN

Contents

1 Introduction
1.1 BSPModel
1.2 Outline e
2 State of the Art
21 BSPlib.
22 Pregel e
23 Hama e
24 MapReduce
25 MPI ... e
2.6 Summaryo L e e
3 Proposed Solution
3.1 Description
3.2 Implementation
4 Adapting Algorithms to NEWT
4.1 Conjugate Gradient
4.2 PAM k-medoids Clustering
5 Validation
5.1 Measuring scalability L.
5.2 Measuringoverhead L.
5.3 Comparison to OpenMPI Transparent Checkpoint/Restart
6 Conclusion and Future Work
References
License

10
10
10
11
12
12
13

15
15
17

26
26
28

34
34
35
37

39

40

44

List of Figures

1.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

[lustration of the BSPmodel 9
Overview of the architecture of NEWT and related technologies . 18
The architecture of YARN [Apal4d]. 19
Simple pi estimator implemented with NEWT 27
Conjugate gradient method of approximating solution to Az =b. . 28
Pseudocode of CG implemented using MPI 29
Synchronization of CG state in the NEWT program 30
Pseudocode of CG implemented using NEWT 31
Structure of CG under the proposed model 32
Structure of PAM under the proposed model 33
PAM performance after enabling checkpointing and on node failure 36

CG performance after enabling checkpointing and on node failure =~ 37

List of Tables

2.1
3.1

5.1
5.2

Comparison between existing and the proposed approach 14
The Communicator interface 23

Runtime comparison between NEWT and BSPonMPI (seconds). . 35
Average overhead times (sec) imposed by NEWT 38

Chapter 1

Introduction

In recent years cloud-based platforms have emerged as alternatives to super-
computers and grids for high performance computing needs. With the illusion
of infinite resources, cloud computing allows one to loan computation time on
demand with a flexible pay-as-you-use billing model. However, applications are
placed in an environment associated with a high risk of hardware failure. This
is further amplified in private cloud setups where use of commodity equipment
lessens the infrastructure cost.

For these reasons, Hadoop MapReduce [Apal4c] framework has found
widespread use in the cloud-based distributed computing field. It provides fault
tolerance by replicating both data and computation in an attempt to guarantee that
the started applications produce a result. Originally introduced by Google in 2004
[DGOS8], MapReduce excels at solving data-heavy embarrassingly parallel prob-
lems, however, it has trouble with more sophisticated algorithms [SJV12], as the
model was simply not designed to support them. Furthermore, even MapReduce
implementations that are aimed at iterative computation, such as Twister MapRe-
duce [ELZ ™" 10a], have trouble with most scientific computing problems, with one
of the main reasons being that, by design, MapReduce processes are stateless. The
stateless nature of a process implies that no state information is associated with
the given process at any time, ensuring that any part of input data is eligible for
any of the available processes without affecting the outcome. This concept en-
sures that failure of one of the nodes does not affect the sequential consistency of
the program and is at the core of the MapReduce fault tolerance mechanism.

When MapReduce does not suffice, a common alternative is to use Message
Passing Interface (MPI) - an established standard, which throughout the years has
become the de facto way of writing parallel programs. While allowing for a large
degree of flexibility in implementing synchronization between processes, MPI
code tends to be error prone and difficult to debug and maintain. The ability to
introduce various low-level optimizations comes with the danger of encountering

notorious deadlocks and race conditions. As of MPI version 3, fault tolerance is
still not part of the MPI standard, so any developments in this direction are left
to specific implementations. Most of the time these highly specialized solutions
make the programmer do extra work to ensure his application is fault tolerant, or
require additional cluster infrastructure, such as dedicated checkpoint servers. In
practice, the effort to maintain these implementations is lacking, and they usually
end up falling behind the most recent MPI standard. For example, OpenMPI has
had a transparent checkpoint/restart system as part of its implementation of MPI
for some time, however, since version 1.7, it’s no longer maintained and thus is
not part of the most current OpenMPI packages [Ind14, Opel4b].

This leads us to believe that the Bulk Synchronous Parallel (BSP) model can
be an ideal basis for a parallel computing framework that would serve the needs
of scientific computing in an on-demand environment, such as the cloud. It can
have most of the advantages of MapReduce while providing a message passing
paradigm similar to MPI without many of the issues involved. In this work a
BSP-inspired programming model is proposed, enabling transparent stateful fault-
tolerance for programs that follow it. The model is used to develop a distributed
computing framework. A number of typical iterative scientific computing algo-
rithms on are implemented on it and are used to validate the approach.

1.1 BSP Model

In 1990 [Val90] Valiant argued that a bridging model between software and
hardware has to be introduced to properly utilize existing computing resources
for parallel computation. BSP model was his proposed candidate for streamlining
the move of sequential computation to the parallel infrastructure. A BSP based
program consists of a series of supersteps as illustrated on figure 1.1, each divided
into three stages:

e Concurrent computation (using only local data)
e Communication

e Barrier synchronization

One of its main advantages over MPI is the elimination of race conditions and
deadlocks by avoiding circular data dependencies. The resulting program struc-
ture simplifies obtaining an overview of the implemented algorithm’s granularity
and estimating the expected parallel runtime and performance. While BSP may
not have been widely adopted for its initial purpose, it has inspired new program-
ming models and is the basis for several parallel programming libraries.

Local corr
Local co
Local
Local ¢
Local co
Local ¢

| - S deysiadng

BARRIER

g deysiadng
Local computation

Local computation
Local computation
Local computation
Local computation
Local computation

I

BARRIER

| + S deysiadng

)mputation
somputation

al computation
computation
:omputation
computation

Figure 1.1: Illustration of the BSP model

1.2 Outline

Chapter 2 provides a description of current state of the art in distributed com-
puting frameworks and outlines issues that are the motivation for this work. Chap-
ter 3 describes the BSP-inspired programming model, that is used for the pro-
posed distributed computing solution, as well as the implementation on top of
Hadoop YARN, including the API (Application Programming Interface). Chap-
ter 4 shows how one would adapt the conjugate gradient method and partitioning
around medoids algorithms to the proposed model, followed by validating the
proposal in Chapter 5 through the use of the aforementioned algorithms in a set
of experiments that compare the created solution to a BSPIlib implementation that
uses MPI. Finally, Chapter 6 provides a summary and outlines the future work
directions.

Chapter 2

State of the Art

This chapter provides the related work describing the existing distributed com-
puting solutions in the context of fault tolerance and their suitability for long run-
ning computations. Additionally, table 2.1 provides an overview and comparison
of these implementations. The table also includes the proposed solution, which
will be described in more detail in the following chapters.

2.1 BSPlib

BSPIib is a specification for a programming library standard inspired by the
BSP model [HMS*98]. Indeed, it was the first derivative of Valiant’s efforts. Its
goal was to define low-level communication and synchronization primitives that
would allow the creation of parallel programs that conform to the ideas expressed
in the BSP model, while keeping the API as simple and clear as possible.

Implementations which follow its specification such as PUB [BJOR99] or
Oxford BSP toolset [Hil14] are not optimized for modern architectures, further-
more, Oxford BSP toolset will not even compile out-of-the-box on 64-bit systems,
which are prevalent in today’s high performance computing world (for example,
the largest Amazon EC2 instance types are restricted to 64-bit). A more recent
implementation exists in BSPonMPI [Suil4], however, as with MPI, the task of
implementing fault-tolerance lies entirely on the shoulders of the user.

2.2 Pregel

Pregel [MAB™10] is a BSP-inspired parallel programming library that has
since grown into a fully fledged parallel programming model. It was developed
by Google engineers to address MapReduce’s inability of handling iterative graph
processing algorithms efficiently. In order to use Pregel for solving real-world

10

problems, one must first express them in terms of vertices, edges and operations
to be performed on them. Google’s proprietary implementation of the model is
now used widely in-house to solve various problems that can be represented as
a graph. Pregel has sparked tremendous interest from the parallel programming
community and a number of Pregel-like solutions have been developed since its
unveiling. Currently, two of the most promising open-source of projects of this
kind are Apache Giraph [Apal4a] and Stanford GPS [SW13].

In Pregel, each vertex is associated with a value and a set of edges, which can
change from superstep to superstep. These values are written to resilient storage
at configurable intervals and can be used to restore the state of the whole com-
putation when one or more nodes fail. Additionally, Pregel allows for messages
to be transmitted between vertexes and thus all incoming messages of that su-
perstep also need to be stored. This approach seems reasonable for many types
of problems (granted it is assumed for Pregel that the state of the vector is rela-
tively small), but the restriction of defining all supersteps of a program in a sin-
gle function forces the programmer to implement algorithms as a state machine,
and synchronize the current state with the master. This is a rather restrictive ap-
proach, which can get cumbersome for more complex iterative algorithms. One
solution to this issue is the use of Domain Specific Languages, such as Green-
Marl [HCSO12] proposed by authors of Stanford GPS. However, given the goal
of Pregel, these languages are very specific to graph processing problems and thus
not very suitable for general purpose programming.

2.3 Hama

HAMA [SYK'"10] was originally envisioned as a framework that pro-
vides Hadoop-compatible interfaces to different computation engines, including
MapReduce and Pregel. It has been one of the most actively developed (with occa-
sional spikes of activity, as well as periods of stagnation) open-source frameworks
based on the BSP model, and has gone through countless iterations, dropping sup-
port for MapReduce along the way. Currently, HAMA retains the Pregel part of
the API (the 'HAMA Graph’ package), but also provides a different approach to
writing programs under the BSP model. This alternative interface is more akin to
BSPIlib than Pregel, and gives the programmer much more control over how the
each superstep is defined by allowing the manual specification of synchronization
points and not requiring the solved problem to be represented as a graph.

Despite being in development for years, no fault tolerance mechanisms have
been implemented and any future developments in that direction are hard to assess
due to a lack of available up-to-date information online.

11

2.4 MapReduce

In addition to the BSP implementations mentioned previously, one may argue
that MapReduce also follows the Bulk Synchronous Parallel model (albeit in a
very restricted manner), as it is defined by two supersteps: aptly named 'map’
and ’reduce’, with communication from the first superstep to the next one being
followed by a global barrier. The distinguishing feature is that "'mappers’ and ’re-
ducers’ are spawned separately, such that the number of active processes changes
from one superstep to the other. This distinction is one of the main issues prevent-
ing MapReduce to accommodate most algorithms (most notably iterative ones).
The core of the issue is that all intermediate data is written to the distributed file
system, with no state being kept in memory between the two supersteps. The sec-
ond issue is the stateless nature of MapReduce processes, and it surfaces when
attempts are made to allow the model to accommodate iterative computations.

The fault-tolerance mechanism of MapReduce depends on rescheduling pro-
cesses using the input of the failed process, since that is the only state restored
during fault recovery, algorithms that hold a large amount of state information,
while only small portions of it are needed to be transmitted to other processes,
suffer a significant overhead from being implemented using MapReduce. Two ex-
amples of frameworks that achieve iterative fault-tolerant computation using the
MapReduce model are Twister [ELZ"10b] and HaLoop [BHBE10]. The afore-
mentioned issues apply to both of them, as they must use the underlying dis-
tributed file system to store the output of each iteration, which can be later used in
the fault recovery procedure.

25 MPI

As of version MPI-1.3, the MPI standard does not include fault-tolerance
mechanisms as part of it’s specification. There exist extensions, such as FT-MPI
[FDO0], which propose an implementation that can recover up to n — 1 failed
processes in a n-processes job, but still put the responsibility of recovering state
on the user. Unfortunately these endeavors inevitably get abandoned when new
versions of the standard get published (for instance, FI-MPI is written for MPI-
1.2 and is no longer maintained). Some of the mainstream MPI implementations
have had transparent fault-tolerance modules developed for them. For example,
OpenMPI has had a transparent checkpoint/restart system as part of its implemen-
tation of MPI for some time, however, since version 1.7, it’s no longer maintained
and thus is not part of the most current OpenMPI packages [Ind14, Opel4b]. An
additional issue is that typically these solutions require a distributed file system
to be present on the cluster, such as IBM GPFS [IBM14] (a commercial product)

12

or Lustre [Opel4a], which requires additional deployment effort in an on-demand
environment and not a stable cluster.

2.6 Summary

None of the mentioned frameworks provide transparent fault-tolerance and, at
the same time, a convenient way to program iterative applications in addition to
the ability to be easily deployed to on-demand infrastructure. As such, the pro-
posed solution is designed with the first two goals in mind and the third is achieved
by implementing it on top of Hadoop YARN, which should be satisfactory due to
the relative ease of acquiring a Hadoop cluster on-demand in light of services such
as Amazon Elastic MapReduce [Amal4], which now supports YARN.

13

yoroiadde pasodoid oy pue 3unsrxa usamieq uosuredwo)) 17 AqeL

-urod
suon (uoneropIsuod 19pun sayoeold | -odyod ISe] AY) WOIJ UOTINOIXS SanUI)
-ISUBI) PAUYIP-Isn YIIm suonouny pofaqe] | -de aanewro)y) o[y indur yoeo | -uod pue sonanb oFessour/aress Arerp
Jo Ioquunu Areniqle ue jo ISISu0d swei3old | 10 ss001d & s9)ea1) ‘SAJH $OS() | -QWIUI SI9A093I pue sjurodyooy) Kuy dsdg LMAN
QIdSd 0 Je[IIs ‘PApIU ST UONRZIU “eonpaydejy doopey 03 Teft (01 MXS]
-oIyouAs uoym sioueq poderd A[fenuepy | -wis uonnqrusip eyep ‘SHAH SOsN VIN Kuy dsg ewey
*O/1 Y1omiau Suronpail pue sydeid urodyoayo ise|
Sumonntedar o) suoneziundo sapnjouf 9y} WOIJ UONNIIXd SINUNUOD pue
'SOUO JINUD X9)I9A Isn[Jo peajsur suon sononb oZessow/son[eA Xo1I0A AIRIp Sur [e1MS]
-endwod [eqo[3 YPIM [JV [9521d Spuaixd | ‘ejep Sunnquisip 10 S H S9S[) | -QWIANUI SI9A0031 pue sjutodyoey) | -sseooid ydein | 1o8a1g dSq | SID piojuels
‘Indur pojusrio-a3pa pue
s101e32133e poreys ‘suoneindwiod Idisewr Jurodyoayo Ise|
Suronponur £q [0501d SPuQIXe)] XA JU) WOIJ UONNOAXd SINUNUOD pue [ep1edy]
[JOoBY UO Panooxd A[snonunuod SI yorym sononb oFessow/son[ea Xo110A AreIp Sur ydean
‘uonjouny Q[3uIS B JO sISISU0d weiold | elep Sunnquisip 10y SAH SOS[) | -OWIUI SI9A0091 pue syurodyooy) | -sseooid ydein | [e3a1d gSq Jyoedy
urodyooyo 1se|
‘Areyorrdord “xa11oA 9y} WOJJ UONNOAXd SINUNUOD pue
[OBd UO PIINOAXd A[SNONUNUOD SI YOIym onjeA Xa119A | senanb oSessoul/sonyes x911oA AIeip Sur [01 . gVINI
‘uonounj Q[Suls © Jo SISISU0D weiSold | B YIIM PIjeIoosse SI ss900I1d yoeq | -OWLIAIUI SI9A0031 pue sjutodyody)) | -sseooid ydein dsdg 98214
*1S0] 9q [[IM SYSB) 20Npay
pue deJA Ul Pa10IS UOTBULIOJUT JULS
‘AIowowr paynqInsIp Ay} -uen Auy ‘weidoid urew oY) woiy
0) U1 1y [[im oFe)s dewr oy 103 poonpoid payoyur s1ojourered o1je)s J0 WoISAS
©Jep 9JRIPOULIdIUI JY) Jey) SWNssy ‘suon | 'ssa00i1d [enuew e sI ejep Suruon | o[y dy) WIOI] Popeo[al 9q ued Jey) suoned [q01,Z714]
-eoridde oonpoydey oaneron suoddng | -nred ‘woisAs o[y panquusip oN | eyep Indur Suniojsar seojuerens A[uQ | -1jdde oaneio)y | oonpaydeN IQ)SIM],
(938 L[~) oum
2n3yuod qof FuoT "UoNNIXS ANLINI 10J ‘PoAIaS
yioddns [ea1 ON ‘SOpoU paysIuY UO SYSE) ‘s1oddewr Suowre jipds Afeonew | -oxd jou SI 9Je)s NSBL, SYSE) 0Np Surssedoid [sooal
JSIMO[S SANOIXD A[eAne[ndadg ‘suonouny | -ojne s)ds ejep 951 (SIQH) W) | -o1 pue dewr paiej syeIsoy ‘pored | eyep ‘[orrered sonpaydejy
;onpa1, pue dew, jo jstsuodo swerold | -SAS o1 panquusi(q doopey ses() | -1idax st eyep ndino pue ndur [y | A[Suissemrequiyg | oonpaydeN doopey
"aIeMpIeY JOMAU U0 Suryiom
193 03)noyJig "pAle[duiod usaq Sey oLl Suoned [864SINHI
-Ieq [eqO[3 [IUN PIAIIOAI JOU AT SITLSSIIN yordxg ‘IdIN se owes A[erouan) | -1dde oaneia dsdg qudsg
-aoeds ssaIp
‘Juow -pe Y[Se) 211U 210)s suonnjos juared
-o1dwir 0} 19sn 03 dn 3J9] ‘[opow Surwwrers -suen Sunsixy ‘suonejudwe[dwr ol
-o1d 1o[ered oyroads Aue mo[[oj J0u 90 o dxg -eW SJI JO pIepuels [JIA Jo 1ed 10N Kuy V/N IdN
SJUSWIWIOD [BIQUID) uonnqLysIp ereq 90URIA[0) J[NB] suoneorddy | [opowr ‘13014

14

Chapter 3

Proposed Solution

This chapter describes the BSP-inspired programming model that will be the
basis of the distributed computing framework in Section 3.1 and the implementa-
tion that uses this programming model on top of Hadoop YARN in Section 3.2.

3.1 Description

The goals of the proposed solution are the following:
e Provide automatic fault recovery.

e Retain the program state after fault recovery.

e Provide a convenient programming interface.

e Support (iterative) scientific computing applications.

The first thing to note is that in more complex iterative programs, each iteration
may consist of more than one distinct BSP superstep. To accommodate the con-
tinuation of the recovered program at the correct stage of the iteration, without
storing the entire address space, it makes sense to write it as a finite state machine
(FSM). In the resulting FSM each such stage is equivalent to one of the states.
This leads us to view programs under the BSP model as suitable for an abstract
computer, consisting of:

e Memory, containing mutable state and message queues

e Mapping of labels to instructions, where each instruction corresponds to
computation done at one of the supersteps

e Function pointer or state register, holding the label of the next instruction to
be executed

15

e Communicator - allows messages to be sent and received

The given description is similar to a counter machine (apart from a communi-
cator), and indeed we are simply applying the same principles to a higher level
of abstraction. The instructions, in this case, are user-defined functions and the
message queues hold incoming and outgoing messages, to adhere to principles
outlined in the BSP model regarding communication and barrier synchronization.
Writing a program under this model would then be similar to using continuation-
passing style, known from functional programming.

Using high-level imperative programming concepts, the following
pseudo code emulates the inner workings of the described abstract ma-
chine:

state < initial State
next <— initial Label
while true do
next < execute(next, state, comm)

barrier(comm)
if next == none then
break
end if
end while

The execute call runs the function defined by label next and returns the label of
the next function in the sequence. The mutation of state and sending/receiving
of messages (through communicator comm) is achieved as a side-effect of these
functions. There is a need for communication primitives that cover the semantics
of sending and receiving messages. These primitives are made accessible through
the communicator. The barrier initiates communication and synchronizes all ma-
chines as per the BSP model.

The given generic program structure allows for the state, label of the next
stage and incoming message queue to be stored into persistent storage (such as a
distributed file system) between invocations of execute, for later recovery in case
of machine failure. This recovery is then seamlessly achieved by using the stored
data on the rescheduled task, instead of the initial one, and, in the same fashion,
read from the checkpoint by the remaining processes, when they are notified of
failure elsewhere in the network by a coordinator, which has to detect the failure
state in the first place. It has to be noted, that the processes that did not fail do
not need to be restarted and can complete the recovery by simply replacing the
current state with an earlier one and then continue the execution.

A program under this model has to define the state and a mapping of labels
to functions, which describe the program flow. The return value of each of these
functions is explicitly the label of the next function to be executed. It is possible

16

to use this model to generalize any MapReduce program, since such programs can
be represented with stages labeled 'map’ and 'reduce’ with a null state, sending
messages at the end of "'map’ to machines associated with specific keys, with these
messages becoming available for processing at the 'reduce’ stage. However, it is
not restricted to problems that can be summarized in only two stages. For instance,
one can model iterative programs with an arbitrary number of iterations, by having
a function return its own label as long as more iterations need to be computed,
and since the tasks remain in memory and are not rescheduled for each stage, the
overhead is minimal. The frequency of checkpointing can then be configured by
the user, based on the estimated running time and the stability of the underlying
cluster hardware.

3.2 Implementation

Successful fault-tolerance of processes depends on a scheduling mechanism
and a resilient storage environment, where checkpoints can be stored in a reliable
manner and retrieved in case of machine or network failures. There are existing
solutions that can be used for this purpose. To take advantage of the ongoing
development of Apache Hadoop the following established and continuously sup-
ported software components were chosen:

e YARN (Yet Another Resource Negotiator) - separates the Hadoop frame-
work components, allowing for models other than MapReduce to utilize
cluster resources. [Apal4d]

e HDFS (Hadoop Distributed File System) - provides a highly fault-tolerant
distributed file system. Designed to be run on commodity hardware.
[Apaldb]

e Apache MINA - a network application framework which helps users de-
velop high performance and high scalability network applications easily.
[Apalde]

The Hadoop kernel is written in Java and exposes mostly Java interfaces for
developers, as such NEWT is implemented in Java.

Resource Management and YARN

Yet Another Resource Manager (YARN) or sometimes MapReduce v2 is the
new generation of the Hadoop MapReduce (MR) architecture, which separates
the resource management and job scheduling functionality from the JobTracker

17

 YARN
~ NodeManager

‘YARN Container

~ HDFS DataNode

YARN
ResourceManager

Node 1

'HDFS NameNode
L

4 YARN |

. NodeManager
<
[}

‘YARN Container

‘YARN Container

 HDFS DataNode

(| YARN |
- NodeManager

‘YARN Container

- HDFS DataNode

AN
YARN
NodeManager
\

‘YARN Container

 HDFS DataNode

Figure 3.1: Overview of the architecture of NEWT and related technologies

used to manage MR jobs in the previous iterations of the architecture. This de-
velopment is the result of the Hadoop developers recognizing the inadequacy of
the MR paradigm for solving many computational problems that a Hadoop clus-
ter resources could be utilized for. YARN opens up Hadoop clusters to alternative
distributed computing and data processing frameworks.

The architecture of YARN is shown in figure 3.2. As can be seen from the
figure, the two main components of a YARN user application are the Application-
Master (AM) and the Container. The AM is responsible for requesting resources
(containers) and responding to their life-cycle events. The container has a number
of computational (CPUs) and memory (RAM) resources attached to it, which are
allocated by the YARN ResourceManager (RM). When the AM receives container
handles from the RM, it is able to launch applications within those containers and
periodically get notifications about the status of the launched processes.

When implementing NEWT on top of YARN, the NEWT AM serves as a

18

MapReduce Status

Job Submission
Node Status
Resource Request

Figure 3.2: The architecture of YARN [Apal4d].

coordinator for the framework and the processes within the containers it receives
from the RM run the main program loop as described in Section 3.1.

The NEWTClient is responsible for requesting a container from the RM for
running the AM. If the RM is able to allocate the requested resources, the newly
launched AM will take over the responsibility for starting processes as needed
by the configuration of the task. The client may optionally monitor the status of
the AM. The figure 3.1 shows the relationships between components of NEWT
and related technologies. The green lines depict the connections the NEWT AM
needs to establish to launch the processes: the connection to RM is used to request
resources and monitor their use, and the connection with node managers is used
to launch containers according to the container handles received from the RM.

Before the AM is launched, it needs to be provided with a configuration of the
computational task that needs to be performed. This configuration consists of:

e input format of the task

e state object class of the task

e any number of functions that define the task (formatted as Java 1.7 closures)
e any custom message types that are used by the task

With this configuration the AM is able to set up the processes inside YARN con-
tainers to execute the required computational task.

19

Input Format

The framework provides the Input interface for defining the input format of
the task. The interface defines a function getForProcess(pid), which returns a
filepath object that specifies the input for the given process ID, and a function int
initialize() which returns the number of processes that need to be launched.

There are several input formats predefined by NEWT, including:

e Nulllnput - has a "number of processes" argument which the initialize func-
tion returns and getForProcess is null for all processes.

e HDFSFilelnput - takes a path to a directory in HDFS as an argument and
creates a process for each file in that directory, each process takes one of the
files as input.

e CommandLinelnput - takes the commandline arguments that are used to
run the program and writes them to a file in HDFS, processes can parse the
arguments using the CommandLinelnput.parseFromInputStream method.

State Object

The state object class has to inherit from the BSPState abstract class, and has
to define a constructor that accepts a JobContext instance. The JobContext class
provides access to certain contextual information specific to the given process,
such as it’s process ID, the total number of processes, and the input stream for
the given process. The constructor has to initialize all the state that is required for
the task at hand. Additionally, writeTo and readFrom methods need to be defined,
which detail which of the state should be written to/read from a checkpoint. Al-
ternatively, the state object class may implement the Java Serializable interface,
but this is not recommended.

Task Functions

When defining the description of the task, the user creates the AM instance and
uses it’s addStage(functionLabel, functionClosure) method to register functions
that the task should run. The label of the first function added will be considered
the initial function by default, it is possible to override this behavior via setlni-
tialStage(functionLabel). The current version is written using Java version 1.7 so
the functions are defined by inheriting the Stage<BSPState> abstract class, which
requires the user to implement the execute(bspComm, state, superstep) method.
In future this functionality may be rewritten to use the much more concise Java
1.8 closure syntax.

The function accepts several parameters:

20

e Instance of the BSPComm class, which exposes communication related
functionality to the function

e Instance of the subclass of BSPState which was declared as the generic
parameter of Stage

e The current superstep number

Message Types

All messages sent by NEWT processes have to implement the Writable
interface. Hadoop has a large number of writable types defined in package
org.apache.hadoop.io, which are all usable in NEWT tasks by default. If any
custom message types are to be used, they need to be registered with the AM
using the registerMessageType(messageClass) method.

Fault Tolerance and HDFS

The Hadoop Distributed File System (HDFS) is known as the integral com-
ponent of the Hadoop kernel and has been at the core of the Hadoop MapRe-
duce framework, where it stored both input and output data, as well as interme-
diary key-value pairs that the mapper stage outputs. It mimics in functionality
the Google File System and is designed with commodity hardware in mind. The
file system stores data in blocks of configurable size and has a replication factor
attribute, which defines on how many nodes each file block should be stored. The
replication enables fault-tolerant storage, which in turn allows for fault-tolerant
computing tasks to be executed on the Hadoop platform.

NEWT uses HDFS to store snapshots of the state of the processes running
inside the containers that the RM allocates. These consist of:

e superstep number

e identifier of the next function

e state object of the executed task

e contents of message queues at the beginning of the superstep

In case of failure of any machine in the cluster, the AM is able to restart the failed
process and provide it with a checkpoint ID, which will be loaded from HDFS
and the containing state will be used instead of the initial one. The remaining
processes will also be notified of the recovery and will replace their current state
with the one loaded from HDFS.

21

One of the defining features of the MapReduce framework is that of data lo-
cality. It implies that the computation is moved to the data and not vice versa,
which reduces overhead from data transfer over the network when starting tasks.
Hadoop MapReduce used this property to great effect and it can also be achieved
using YARN and HDFS. The HDFS API allows for the location of data to be
retrieved and used in the YARN container request as the preferred target node,
which allows NEWT to launch data-local processes.

Communication and MINA

The communication part of the framework is exposed through the Commu-
nicator interface, which defines common communication related operations per-
formed by NEWT (Table 3.1).

The given interface defines communication operations for processes that run
inside YARN containers, a similar interface also does the same for the AM.

At the time of creating NEWT, there has been ongoing work in integrating
MPI with the YARN resource manager [ham14], but no publicly available stable
implementation existed, as such it was decided to implement the Communicator
using Java NIO, specifically - Apache MINA. Alternative communication modes
can be added by implementing the Communicator using frameworks other than
Apache MINA.

There are several tasks that the communication module has to perform, these
include:

e initialization and establishing connections
e Dbarrier synchronization

e message passing between processes

Initialization and Establishing Connections

As can be seen from figure 3.1, each NEWT process and the NEWT AM
establish a socket connection with each other participant using the TCP/IP pro-
tocol. Initially the AM establishes connections with all processes and maintains
a mapping of process IDs to addresses, which is forwarded to the newly created
processes. The processes use this mapping to establish socket connections with
each other. When any processes fail, the AM has to update the mapping after re-
launching the failed processes and sends the updated mapping to all participants
yet again, such that they can reestablish connections with both new and old mem-
bers of the task.

22

function

description

init(context)
reinit(context)

Initialize the communicator and setup the
connections to other processes. The con-
text argument is an instance of JobContext
class, which provides access to certain contex-
tual information specific to the given process.

sendBufferedMessages Async(context, pid)
waitUntilBufferedMessagesSent(context, pid)

Sends the accumulated message buffer to the
process identified by an integer pid. The
operation is asynchronous, as such the send
function is non-blocking and the wait func-
tion blocks until the last send completes.

requestFromMasterAsync(request)
waitUntilAnswerFromMasterAsync()

Sends a request to the master, which is
an enum signifying one of the requests
from processes that the master answers to.
The operation is asynchronous, as such the
send function is non-blocking and the wait
function blocks until the last send com-
pletes and then returns the response object.

requestFromMasterSync(request)

Synchronous version of the previous operation.

isConnectedToProcess(pid)

Returns true or false depending on the state of
the connection with process signified by integer
pid.

readFromProcess Async(pid)
waitUntilReadFromProcessAsync(pid)

Listens for a message from the process signi-
fied by pid. The operation is asynchronous, as
such the read function is non-blocking and the
wait function blocks until the last read com-
pletes and then returns the response object.

dispose()

Closes connections with other processes and
disposes of the communicator.

Table 3.1: The Communicator interface

23

Barrier Synchronization

The barrier synchronization step serves both to ensure the guarantees of the
BSP model in relation to race conditions and to coordinate fault-tolerance mech-
anisms.

The algorithm for performing barrier synchronization is as follows:

e On the process side:

— sends a BARRIER ENTERED packet to the AM
— does a blocking read from the AM

— when the read completes the synchronization is done
e On the AM side:

— listens to processes for BARRIER ENTERED packets until it receives
one from each

— sends a barrier response to each process, this can be either BARRIER
EXITED, CHECKPOINT NEEDED or RECOVERY NEEDED, the lat-
ter of which is also followed by a checkpoint ID

Message Passing Between Processes

Message passing related primitives are exposed through the BSPComm class,
an instance of which is passed to each execution of the functions that define the
task. This allows the interaction with the user to happen independently of any
used communication library. The communication methods are:

e send(msg,pid)/send(msg,pid,tag) - queues message msg for delivery to a
process with ID pid, may be marked with the specified tag

e sendAll(msg)/sendAll(msg,tag) - queues message msg for delivery to all
processes in the current task, may be marked with the specified tag

e move()/move(pid) - moves a message from the receive queue, or from the
receive queue of the process with ID pid

o getReducedValue(tag,reduceOp) - syntactic sugar for the "reduce" collec-
tive operation, retrieves messages with the given tag and applies operation
reduceOp to them, returning the result

24

The reduceOp is of the ReduceOp<Writable> type, which can be implemented
by the user. A number of reduction operators are provided by default, these being:
SUM, PROD, MAX and MIN (for int, float and double types).

These functions just write messages to a messages buffer, the actual transfer
of messages is initiated just before barrier synchronization. A separate buffer is
maintained for each other process in the current task. Since messages are written
to the buffer as they are queued up in the function and the buffer is sent as a single
TCP stream, the order of messages in the receive queue on the target process
will be the same as the order they were sent in. This fits with the idea that the
framework should relieve the user from worrying about race conditions.

Since messages need to be delivered to their destination before a process sends
the BARRIER ENTERED packet, the process asynchronously sends the buffers
then waits until all of them have been received via a blocking read from the des-
tination process. Whenever a message buffer is received a confirmation packet
is sent to the sending process. This is done to avoid a race condition where bar-
rier synchronization has already completed, but the message buffer has not been
received in it’s entirety, which would allow processes to move on to the next su-
perstep without having received messages that are expected to be there.

25

Chapter 4
Adapting Algorithms to NEWT

To illustrate the usability of this approach two scientific computing applica-
tions - conjugate gradient method (CG) [She94] and k-medoids clustering were
implemented on NEWT as examples of how one would adapt algorithms to it’s
model. In previous work these particular algorithms were used to compare a num-
ber of BSP and MPI implementations [JSK13] to each other and this enables a
direct comparison of NEWT’s efficiency of to previous MPI results.

The algorithm descriptions detail the structural adaptations necessary to im-
plement them with NEWT. For how these implementations might look in actual
code refer to the simple pi estimator NEWT code in Figure 4.1. In addition, the
source code for all algorithms used in this chapter is available online at [new13]
in the test package.

4.1 Conjugate Gradient

CG is a rather complex iterative algorithm for solving sparse systems of linear
equations and is outlined in figure 4.2. The parallel version of the algorithm can be
implemented in the typical ’single program multiple data’ (SPMD) fashion, with
state of size IV split among p processes as evenly as possible. The pseudocode in
figure 4.3 presents CG (without preconditioning) implemented using MPI.

From algorithm 4.3 we can tell that if it were to be implemented in BSP style,
each iteration would need to be split into several supersteps due to requirements
of synchronizing a global dot product on two occasions and synchronizing over-
lapping portions of vectors between neighbors for matrix-vector multiplication.
Taking these requirements into consideration, one possible segregation into stages
is represented in figure 4.6 and is as follows:

e Init - initializes all needed state variables and checks how close the initial
guess for x is to the actual solution

26

public static void main(String[] args) throws IOException {
Configuration conf = NEWTConfiguration.createDefault(};
final int NUM PROCS = §;
Input input = new NullInput(NUM PROCS); //no input needed
conf.set("newt.output.dir®, "/out");
MEWTJobMaster<NullState= am = //no state to keep track of
new NEWTJobMaster=NullState=({conf, NullState.class, input);
am.addStage("map", new Stage<NullState=() {
@0verride public String execute(BSPComm bsp, NullState state) {
double sum = 0.8; int samples = 1000;
Random random = new Random();
for (int 1 = 8; i < samples; i++)
sum += Math.sqrt(l - Math.pow(random.nextDouble(),2));
bsp.send(@, new DoubleWritable(sum/samples), "pi/4");
return "reduce"”;
}
1)
am.addStage("reduce", new Stage<NullState=() {
@0verride public String execute(BSPComm bsp, NullState state) {
if (bsp.pid() == @) {
DoubleWritable result =
bsp.getReducedValue("pi/4", Reducer.DOUBLE SUM);
result.set(4*result.get()/NUM PROCS);
addToOutput(“result”, result, bsp); //write output to HDFS
1
return Stage.5STAGE END;
}
1)

am.runi();

Figure 4.1: Simple pi estimator implemented with NEWT

e Start of Loop - defines the beginning of the loop (containing operations up
until the first dot product), to serve as a reference point in flow control, at
the end messages need to be sent to all processes, containing the partial dot
product and error value

e Check Ending Condition - completes the computation of dot product and
current error value, the latter being used to decide whether the algorithm
should be finishing or the main loop should continue, returning the label of
one of the two possible stages

e Continue Loop - prepares the vector p for the subsequent matrix-vector
multiplication, sending the required overlapping portions of this vector to
neighboring processes

27

Input: b, A and initial guess for
Output: better approximation for x
r<b— Ax
err < error(r)
while err > threshold and iter < max do
24T
Oold < O
o4 z-r
péz+2-p
q < Ap
Y e
4T +p
r— T —q
err < error(r)
end while

return x

Figure 4.2: Conjugate gradient method of approximating solution to Ax = b.

e Do MatVec - receives the overlapping vector pieces and completes matrix-
vector multiplication, then computes another partial dot product, sending
the result to all processes

e End of Loop - completes the computation of dot product from the received
partial ones and computes the new error value, then returns the label of the
’Start of Loop’ stage

e Stop - the stage that is executed when the error gets below the required
margin or the maximum iteration count is exceeded in the ’Check Ending
Condition’ stage, completes the computation and writes the output to disk

When written as a NEWT program (as shown in algorithm 4.5) the structure is
essentially the same as the MPI version, but with the distinction that the code is
split into several functions, akin to a MapReduce program. Figure 4.4 shows an
excerpt from the implementation of CG, showing only the synchronization of state
between stages.

4.2 PAM k-medoids Clustering

Partitioning Around Medoids (PAM) is an iterative clustering method that di-
vides a set of observations (2D points in our case) into k clusters based on the
pairwise distances between them. The algorithm consists of the following steps:

28

//initializing MPI and state variables , omitted
PID = MPI_Comm_rank ()

NPROCS = MPI_Comm_size ()

r=b— Ax

err = norm(r)

while (error > TOLERANCE && it <= MAX_IT) {

z=r
Oold = O
o = dot(z,r)

//find global value of sigma and the maximum error
MPI_Allreduce (o, 1, MPL SUM)
MPI_Allreduce (error , 1, MPIL_MAX)

if (it == 0)
p=z

else
p=2+ 5D

//synchronize required overlapping portions of
//vector p for matrix—vector multiplication
if (PID != 0)
MPI_Send(p[0], post.size, PID—1)
if (PID != NPROCS-1)
MPI_Send(p[p.size —pre.size], pre.size, PID+1)

if (PID != 0)
MPI_Recv(pre[0], pre.size, PID-—1)
if (PID != NPROCS-1)
MPI_Recv(post[0], post.size, PID+1)

q= A-p using pre and post overlaps in the calculations

7= dot(apyq)p

// find global value of gamma
MPI_Allreduce (v, 1, MPLSUM)

T =12 +p
r=r-17q
it =it +1

error = norm(r)

}

//collecting results, omitted

Figure 4.3: Pseudocode of CG implemented using MPI

29

public static class BeginLoop extends Stage<CGState= {
@verride
public String execute(BSPComm bsp, CGState state) {
//calculations
bsp.sendAll(new DoublewWritable(state.u), "sigma")};
bsp.sendAll(new DoubleWritable(state.error), "error");
return "checkCondition";

}

public static class CheckCondition extends Stage<CGState> {
@verride
public String execute(BSPComm bsp, CGState state) {
state.u = bsp.getReducedValue("sigma", Reducer.DOUBLE SUM).get();
state.error = bsp.getReducedvValue("error", Reducer.DOUBLE MAX).get();
if (state.error > TOLERANCE && state.it <= MAX IT) {
//calculations
return "doMatVec";
} else {
//calculations
return Stage.STAGE END;

Figure 4.4: Synchronization of CG state in the NEWT program

e Randomly select & objects as the starting medoids
e Associate each object to the closest medoid, forming £ different clusters
e For each cluster, recalculate its medoid m:

— For each object o in the cluster with medoid m, swap m and o and
compute the cost of the cluster

— Select the object o with the lowest cost as the new medoid for this
cluster

e Stop once medoids no longer change

This procedure of dividing objects between clusters and recalculating the medoids
is repeated until the medoids no longer change positions between the clusters, at
which point the clustering has become stable and is concluded. In the parallel im-
plementation each process handles k /p clusters, where p is the number of parallel
processes, this means the medoids need to be synchronized after they are recal-
culated and each process has to send points that are closer to medoids it does not
handle to the corresponding process.

The segregation into stages of the algorithm is rather straightforward and fol-
lows the algorithm’s description very closely, as is displayed in figure 4.7:

30

func init(state , comm)
state.r = state.b — state.A - state.x
return "beginLoop"

func beginLoop(state , comm)
if (state.it > 0)
state.y = comm.get ReducedV alue(” gamma”, SUM)
state.x = state.x + state.ystate.p
state.r = state.r — state.ystate.q

state.z = state.r
state.o,q = state.o
state.oc = dot(state.z, state.r)

comm.sendAll(state .\ sigma,”sigma”)
comm.sendAll(state . error,”error”)
return "checkCondition";

func checkCondition(state , comm)
state.oc = comm.get ReducedV alue(” sigma”, SUM)
state.error = comm.get ReducedV alue(” error”, MAX)

if (state.error > TOLERANCE && state.it <= MAX_IT) {
if (state.it==0)
state.p = state.z
else
state.p = state.z +

state.o
state.oo1q

state.p

if (comm.PID!=0)
comm.send(p[0], post.size, comm.PID — 1)

if (comm.PID!= NPROCS —1)
comm.send(p[p.size — pre.size], pre,comm.PID + 1)

return "doMatVec"

else
output results
return STAGE END

func doMatVec(state , comm)
if (comm.PID!=0)
pre = comm.move(comm.PID — 1)
if (comm.PID!=comm.NPROCS —1)
post = comm.move(comm.PID + 1)

state.q = state.A - state.p using pre and post overlaps

_ state.o
state.’y ~ dot(state.p,state.q) Sta'te'p

comm.sendAll(state.y,” gamma”)
return "beginLoop"

Figure 4.5: Pseudocode of C3Ci1 implemented using NEWT

‘ Init ‘

Start of Loop}—»\ synchronize with all|
Check Ending
End of Loop Condition /—+ Stop ‘

|synchronize with all| .

|

| synchronize with
Do MatVeC}‘,\ neighbors ‘

Continue Loop

Figure 4.6: Structure of CG under the proposed model

e Init - initializes all needed state variables and randomly selects the initial
medoids in each cluster

e Check Ending Condition - calculates the difference between the previous
iteration’s medoids and the current one, if the medoids did not change then
move to ’Stop’, otherwise proceed to ’Divide Points’

e Divide Points - finds to which medoid each point is closest to, and transmits
points that belong to clusters handled by other processes

e Recalculate Medoids - finds new medoids in each cluster and sends the new
medoids to each other process

e Stop - the stage that is executed when medoids are determined to no longer
change in the ’Check Ending Condition’ stage, completes the computation
and writes the output to disk

These examples demonstrate when the serial programs need to be split into
multiple functions. The most obvious one is the synchronization requirement,
such as the computation of the global dot product after the Do MatVec’ stage for
CG. The second case stems from branching statements, such as the ’Check Ending
Condition’ stage, which can continue execution in two different directions. The
last case in the given example is seen in the CG ’Start of Loop’ stage, which serves
as a reference point for code, which should be executed repeatedly, serving as a
base for a loop structure in this case.

32

‘ Init ‘

‘ Stop ‘4— Check Ending . Djvide Points

Condition

‘ \synchronize medoids \

Recalculate ‘ T—
Medoids send points

Figure 4.7: Structure of PAM under the proposed model

One simple optimization is to combine stages that are part of a loop, but do
not require any communication between them, as the repeated intermediary bar-
riers would cause unnecessary overhead. For example, the PAM "Check Ending
Condition’ and ’Divide Points” would be merged in this fashion.

33

Chapter 5

Validation

Using NEWT implementations of algorithms described in the previous chapter
a series of trials were conducted to validate the approach. The NEWT versions of
these algorithms are compared to ones that use BSPonMPI - a BSPlib implemen-
tation that uses MPI for communication, which in previous work was determined
to perform as good as pure MPI for the given algorithms [JSK13]. The test cluster
composed of 16 Amazon’s m3.xlarge (Standard Extra Large) instances, each with
15 GB of memory and 8 EC2 Compute Units (4 virtual cores), running Ubuntu
Server 12.04 with Hadoop YARN 2.2.0 installed. Two types of trials were con-
ducted: one to measure scalability and the other to assess overhead from creating
state checkpoints and recovery in case of failure.

5.1 Measuring scalability

In the scalability trials, each of the algorithms was given input of size that was
kept constant (a sparse system of 125000000 linear equations for CG and 250000
points across 64 clusters for PAM). Only the number of processes p was increased
for consecutive trials.

The results in table 5.1 for NEWT include a ~14 second overhead that is
induced by YARN for initialization and allocation of process containers.

The scaling of the coarse-grained parallel algorithm (PAM) is slightly better
than the BSPonMPI implementation when looking at the 4-core and higher results.
It suggest that structuring the algorithm according to the model does not impose a
significant overhead.

In the case of the fine-grained CG algorithm the scaling of NEWT is also
better initially (2-16 cores) but starts to decline afterwards (32 and 64 cores). This
is because the communication part of the runtime starts to significantly outweigh
the computation part, resulting in a slightly worse result than BSPonMPI, which

34

conjugate gradient

k-medoids clustering

p NEWT | BSPonMPI p NEWT | BSPonMPI
1 4476 4616 1 1889 1873
2 2225 2415 2 1248 1172
4 1245 1221 4 646 601
8 697 689 8 339 330
16 350 346 16 203 185
32 227 219 32 150 153
64 240 207 64 122 151

Table 5.1: Runtime comparison between NEWT and BSPonMPI (seconds).

leaves room for optimizing the implementation of the barrier synchronization.

The sequential version (on 1 node) of CG structured according to the NEWT’s
model consistently outperformed the sequential MPI implementations, the con-
crete cause of this is under investigation. A possible explanation is that this is
related to the JVM being able to optimize the code better when certain algorithms
are structured according to NEWT’s model.

5.2 Measuring overhead

To measure the overhead imposed by storing checkpoints in HDFS enabled
periodic checkpointing were enabled. The figures 5.1 and 5.2 show timelines for
three kinds of executions of the implemented algorithms:

e without checkpointing
e with checkpointing enabled

e with checkpointing and recovery after a failure

To simulate failure in the cluster, one of the Amazon nodes was shutdown around
halfway of the program’s runtime. An additional node was added to the cluster,
such that recovered processes may be started on it when one of the nodes goes
down. The algorithms were executed on 16 Amazon m1.medium instances, each
with 3.75 GB of memory and 1 virtual core.

From figure 5.1 it can be seen that the addition of checkpoints (every minute)
for PAM had a negligible effect on performance, since the state kept by the al-
gorithm is very small in relation to the amount of computation. The checkpoints
consisted of floating point coordinates for the points belonging to clusters that
were handled by any given process and any incoming messages, totaling under a

35

M cleanup
checkpoint
B downtime

W startup
H execution

base

0 100 200 300 400 500 600 700 800 900

Figure 5.1: PAM performance after enabling checkpointing and on node failure

megabyte on average (much less than the entire address space of the program).
The time it took to write such checkpoints to HDFS was approximately 30 mil-
liseconds. When node failure occurred in the cluster, there was a period of down-
time of around 10 seconds, which included the time it took for YARN to recognize
the failure and allocate a replacement container. Following the period of down-
time, there was a brief session of recovery, which consisted of reading the state of
every process from the checkpoints and the reestablishment of socket connections
between them, this also took under a second.

When the CG algorithm was distributed among 16 processes (figure 5.2), it re-
quired to store over 400 megabytes of data to HDFS during checkpointing by each
process. Due to the size of checkpoints, the frequency of their creation was re-
duced to three and a half minutes. Storing these checkpoints took over 30 seconds
and reading them from HDFS in case of failure took approximately half the time.
Table 5.2 shows average times for the different types of overhead the framework
imposes for the two tested algorithms.

36

M cleanup
checkpoint
checkpoint recovery
B downtime
W startup

M execution
0 100 200 300 400 500 600 700

Figure 5.2: CG performance after enabling checkpointing and on node failure

5.3 Comparison to OpenMPI Transparent Check-
point/Restart

This section presents comparison of size and creation time of NEWT check-
points with ones created by applying the OpenMPI 1.5 transparent check-
point/restart (CR) mechanism to the BSPonMPI program. The memory snapshots
of the conjugate gradient algorithm done by BLCR 0.8.5 [Ber14] were around 470
MB in size, due to all of the program’s memory pages being checkpointed, includ-
ing those containing state which was not required to restart the NEWT processes,
such as the immutable sparse matrix (generated on initialization). The average
time to write these checkpoints to local storage was the same (~35 seconds) as
time required for creating NEWT checkpoints in HDFS. When checkpoints were
written directly to a mounted network file system (NFS) share (located on an
additional m1.large Amazon instance) the time to finalize checkpoint creation ex-
ceeded 450 seconds. The PAM checkpoints created by BLCR were around 20
MB in size - significantly larger than NEWT checkpoints (for the same reason as
the CG ones). The average time to write these to local storage was 3.3 seconds
and directly to the mounted NFS share around 14.5 seconds, both significantly
longer than then 0.1 second interruption to create NEWT checkpoints in HDFS.

37

These results tell us that in comparison to setting up a Hadoop cluster, significant
time and resource investment is needed for creating a high throughput redundant
storage system that makes the classic checkpoint/restart utilities work efficiently,
such as setting up a IBM GPFS [IBM14] cluster instead of a single NFS server
. This also shows that using Hadoop allows NEWT to efficiently make use of
commodity infrastructure without much overhead. Due to the unstable nature of
OpenMPI CR on the test infrastructure and the fact that continuation of processes
needs to be performed manually, the restart functionality was not compared.

CG | PAM
startup 12 12
checkpoint 34.75 0.1
downtime 11 12
recovery 15 0.3
cleanup 2 2

Table 5.2: Average overhead times (sec) imposed by NEWT

38

Chapter 6

Conclusion and Future Work

The work provides a summary of the current BSP-based distributed comput-
ing solutions and identifies several problems with their approaches. To counter
these drawbacks a BSP-inspired parallel programming model that enables trans-
parent stateful fault tolerance through checkpointing is presented. To validate the
usefulness of the proposed model, the distributed computing framework NEWT is
described and used to implement two wildly different computation kernels, which
are used in validation experiments.

NEWT supports a larger range of applications than the current BSP implemen-
tations and utilizes Hadoop YARN to perform automatic checkpoint/restart of pro-
grams. The implementations of the computation kernels on the framework showed
that it performs adequately for coarse-grained algorithms. However, results also
show that the current barrier synchronization implementation could still be opti-
mized for better support of very fine-grained algorithms. The current NEWT im-
plementation’s checkpointing time requirements were compared to BLCR’s and
determined that writing NEWT checkpoints to HDFS is as fast as writing BLCR
checkpoints to local storage.

Future work also includes identifying common communication patterns and
providing directives for executing them through the API, as well as providing an
implicit way of handling input and output data. More advanced topics include
implementing optional intelligent checkpointing strategies, such as hierarchical
checkpoint/restart, and making collective operations more efficient by using com-
munication patterns. Additionally, the framework could be used as the basis for a
scripting language for parallel iterative algorithms, where a program in the envi-
sioned language would be compiled into a NEWT program, transparently deriving
the communication patterns and synchronization points.

The framework is open-source and available online [new13]. A scientific pa-
per covering this work was accepted to "The 2014 International Conference on
High Performance Computing & Simulation" [KS14].

39

Bibliography

[Amal4]

[Apal4a]

[Apal4b]

[Apaléc]

[Apaldd]

[Apalde]

[Berl4]

Amazon Web Services. Amazon elastic mapreduce, May 2014. URL:
https://aws.amazon.com/elasticmapreduce/.

Apache Software Foundation. Apache giraph, May 2014. URL.: http:
//incubator.apache.org/giraph/.

Apache Software Foundation. Apache hadoop hdfs, May 2014.
URL.: http://hadoop.apache.org/docs/r2.0.5-alpha/hadoop-project-dist/
hadoop-hdfs/HdfsDesign.html.

Apache Software Foundation. Apache hadoop mapreduce, May 2014.
URL: http://hadoop.apache.org/docs/current/.

Apache Software Foundation. Apache hadoop yarn, May
2014. URL: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

Apache Software Foundation. Apache mina, May 2014. URL: http:
//mina.apache.org/.

Berkeley Future Technologies Group. Berkeley lab checkpoint/restart
(bler), May 2014. URL: http://crd.Ibl.gov/groups-depts/ftg/projects/
current-projects/BLCR/.

[BHBEI1O] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.

Haloop: efficient iterative data processing on large clusters. Proc.
VLDB Endow., 3(1-2):285-296, September 2010.

[BJOR99] Olaf Bonorden, Ben Juurlink, Ingo Von Otte, and Ingo Rieping. The

paderborn university bsp (pub) library - design, implementation and
performance. In In Proc. of 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Process-
ing (IPPS/SPDP, pages 99—104. Society Press, 1999.

40

[DGO8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107-113, January
2008.

[ELZ*10a] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for
iterative mapreduce. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing, HPDC 10,
2010.

[ELZ*10b] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for
iterative mapreduce. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing, HPDC 10,
pages 810-818, 2010.

[FDOO] Graham E. Fagg and Jack Dongarra. Ft-mpi: Fault tolerant mpi, sup-
porting dynamic applications in a dynamic world. In Proceedings of the
7th European PVM/MPI Users’ Group Meeting on Recent Advances in
Farallel Virtual Machine and Message Passing Interface, pages 346—
353, 2000.

[ham14] Hamster: Hadoop and mpi on the same cluster, May 2014. URL: https:
/lissues.apache.org/jira/browse/MAPREDUCE-2911.

[HCSO12] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun.
Green-marl: a dsl for easy and efficient graph analysis. In Proceedings
of the seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVII,
2012.

[Hil14] Jonathan Hill. The oxford bsp toolset, May 2014. URL: http://www.
bsp-worldwide.org/implmnts/oxtool/.

[HMS'98] Jonathan M. D. Hill, Bill Mccoll, Dan C. Stefanescu, Mark W.
Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsan-
tilas, and Rob H. Bisseling. Bsplib: The bsp programming library,
1998.

[IBM14] IBM Corporation. General parallel file system, May 2014. URL: http:
/Iwww-03.ibm.com/systems/software/gpfs/.

[Ind14] Indiana University. Openmpi fault tolerance, May 2014. URL: http:
/Iwww.open-mpi.org/faq/?category=ft.

41

[JSK13]

[KS14]

P. Jakovits, S.N. Srirama, and I. Kromonov. Viability of the bulk syn-
chronous parallel model for science on cloud. In High Performance
Computing & Simulation, 2013. HPCS ’13. International Conference
on, 2013. (In print).

P. Kromonov, 1. Jakovits and S.N. Srirama. Newt - a resilient bsp
framework for iterative algorithms on hadoop yarn. In High Perfor-
mance Computing and Simulation (HPCS), 2014 International Con-
ference on, July 2014. (Accepted for publication).

[MAB*10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.

[new13]

[Opel4a]

[Opel4b]

[She94]

[SIV12]

[Suil4]

[SW13]

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data,
SIGMOD ’10, 2010.

NEWT bitbucket repository, November 2013. URL: https://bitbucket.
org/mobilecloudlab/newt.

Open Scalable File Systems. Lustre file system, May 2014. URL:
http://lustre.opensfs.org/.

Open Systems Laboratory. Ompi transparent checkpoint/restart, May
2014. URL.: http://osl.iu.edu/research/ft/ompi-cr/.

Jonathan R Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, 1994.

Satish Narayana Srirama, Pelle Jakovits, and Eero Vainikko. Adapt-
ing scientific computing problems to clouds using mapreduce. Future
Gener. Comput. Syst., 28(1):184—192, January 2012.

Wijnand J. Suijlen. Bsponmpi, May 2014. URL: http://bsponmpi.
sourceforge.net/.

Semih Salihoglu and Jennifer Widom. Gps: A graph processing sys-
tem. In Scientific and Statistical Database Management. Stanford In-
foLab, July 2013. URL: http://ilpubs.stanford.edu:8090/1039/.

[SYK'10] Sangwon Seo, Edward J. Yoon, Jachong Kim, Seongwook Jin, Jin-

Soo Kim, and Seungryoul Maeng. Hama: An efficient matrix com-
putation with the mapreduce framework. In Proceedings of the 2010
IEEE Second International Conference on Cloud Computing Technol-
ogy and Science, CLOUDCOM 10, pages 721-726, 2010.

42

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103-111, August 1990.

43

License

Non-exclusive license to reproduce thesis and make thesis public
I, Ilja Kromonov (date of birth: 11.11.1987),

1. herewith grant the University of Tartu a free permit (non-exclusive license)
to:

(a) reproduce, for the purpose of preservation and making available to
the public, including for addition to the DSpace digital archives until
expiry of the term of validity of the copyright, and

(b) make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

Fault Tolerant Distributed Computing Framework for Scientific
Algorithms

supervised by Pelle Jakovits and Satish Srirama,
2. T am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive license does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection
Act.

Tartu, 26.05.2014

44

	Introduction
	BSP Model
	Outline

	State of the Art
	BSPlib
	Pregel
	Hama
	MapReduce
	MPI
	Summary

	Proposed Solution
	Description
	Implementation

	Adapting Algorithms to NEWT
	Conjugate Gradient
	PAM k-medoids Clustering

	Validation
	Measuring scalability
	Measuring overhead
	Comparison to OpenMPI Transparent Checkpoint/Restart

	Conclusion and Future Work
	References
	License

