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Raamistik ülikooli õppeainete teemade analüüsimiseks

Lühikokkuvõte: Erinevates teaduskondades õpetatavate ainete maht võib olla väga
suur ning tihtipeale on raske saada ülevaadet ülikooli kursustel õpetatavatest teemadest
ja nende kattuvusest. Käesoleva töö eesmärk on luua automaatne ja progressiivne viis,
kuidas avastada kursusel õpetatavaid teemasid, tuginedes eelkõige avalikult saadaval
olevatele kursuse materjalidele. Seda tüüpi analüüs pakub palju eeliseid, alustades üldi-
sest ülevaatest kursusel õpetatavatest teemadest või näiteks avastamaks aineid, mis toe-
tavad ühe projekti tegemist mitme kursuse raames. Selle jaoks peaksime leidma samal
semestril õpetatavaid ained, mis katavad samasid teemasid ja nõuavad projekti tegemist.

Pakutud raamistik on vastutav erinevate kursustega seotud tekstiliste materjalide kogu-
mises ja failidest eraldamises. Seejärel puhastatakse kogutud andmed ja teisendatakse
sobivasse formaati, mille peal teostatakse tekstianalüüsi, täpsemalt teemamodelleeri-
mist. Teemade ja kursusevaheliste seoste leidmiseks rakendatakse LDA modelleerimis-
meetodit. Viimase sammuna kasutatakse käesoleva raamistiku jaoks loodud visualisee-
rimiskomponenti, et presenteerida teemamodelleerimise tulemusi.

Võtmesõnad: tekstianalüüs, teemamodelleerimine

CERCS: P170 (Arvutiteadus, arvanalüüs, süsteemid, kontroll)

A Framework for Analysing Topics in University Courses

Abstract: The vast amount of courses being taught throughout different faculties of
a university makes it difficult to get a general overview of the topics being taught and
their overlaps from a singular point of view. The goal of this work is to provide an
automated and progressive means to discover such topics, based on the publicly avail-
able course materials. The benefits for this kind of analysis range from simply gaining
an insight and an overview of the topics covered by different courses, to more specific
and goal-oriented purposes. For example, we can discover which courses can support
cross-course projects by finding courses that cover the same topic, are taught in the same
semester and require the completion of a course project.

The proposed framework is responsible for gathering and extracting course related raw
textual content from various heterogeneous sources. The collected data is then cleansed
and transformed to a suitable format for further textual analysis, more specifically topic
modelling. LDA modelling method is used as a main tool for resolving topics and dis-
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covering relations between courses and individual course materials. As a final step of
the established mechanism, the analysis results are passed to a predefined visualization
component, specifically designed for the framework at hand.

Keywords: text analysis, topic modelling

CERCS: P170 (Computer science, numerical analysis, systems, control)
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1 Introduction
The vast amount of courses being taught throughout different faculties of a university
makes it difficult to get a general overview of the topics being taught and their overlaps
from a singular point of view. The goal of this work is to investigate and tackle that
issue by establishing a framework for analysing university courses, specifically, which
courses are related and what are the overlaps in the topics and material being taught.
There can be several benefits for this kind of analysis, starting by gaining an insight and
an overview of the topics covered by different courses, finding out which courses can
support cross-course tasks and projects, or for example validating the order in which
courses are taught in certain curriculum.

The aim is to provide a process, which upon triggering, will extract and integrate course
related textual data from various available sources, applying necessary data cleaning op-
erations, analyse the data and finally visualize the results. The process should be fully
automated, so that when new materials become available during next semester, the exist-
ing results can be updated and progressively analysed. The data sources made available
by different institutes of the University of Tartu will be used as a novel example around
which the entire framework will be built.

The first section focuses on the overall structure of the framework and introduces ELT
approach as a cornerstone for building a solid base of data in the correct format, ready
for further analysis. The following chapters provide a more detailed overview of the
individual steps in the entire process. Firstly, we describe how the raw data (HTML
content, files etc.) is gathered from various sources, and how in turn the textual content
is extracted from the raw data. The next chapter focuses on cleaning and conforming
the extracted textual content, this includes finding frequent co-occurring words and ex-
tracting acronyms. The cleansed data is then used as a foundation for performing text
analysis, more precisely - topic modelling. A known topic modelling algorithm called
Latent Dirichlet Allocation is used to resolve a model in which each topic consists of
words (i.e a topic-word distribution) and each document is composed of a fixed number
of resolved topics (i.e document-topic distribution). Different levels of granularities are
explored, both at course level, where we seek courses under the same topic, and at ma-
terial level, where we look for related materials. The final chapter gives an overview of
an example process run and shows how the results are presented and visualized.

The entire mechanism, starting from data scraping to analysis, was implemented us-
ing Python 2.7 along with multitude of complementary libraries.
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1.1 Background
The work at hand was motivated by the easily accessible and public course materials
made available by certain institutes in the University of Tartu. Combined with the need
to gain a general overview of the numerous courses being taught and their overlaps,
the available sources provided the means for further investigation and perhaps even the
means for a solution for the problem at hand.

The present work was started as a course project in Business Intelligence Seminar. In the
scope of the first version, the materials of a single academic semester were scraped and
processed (basic tokenization and stop word removal). A topic modelling algorithm was
then applied to the cleansed data and an initial visualization component built to present
the results. All in all, the initial version served as a raw proof on concept and showed
a lot of promise with the hope that it could be developed to a fully functional framework.

As a consequence, the initial version was completely revamped to guarantee a more
solid base upon which new features would be developed and existing functionality im-
proved. The visualization was then further developed to accommodate the new features
and to patch existing shortcomings and defects, albeit the core visualization framework
remained roughly the same. The present work aims to reflect the latest state of the
project, i.e after the initial version was effectively revamped and developed into a feasi-
ble framework.

1.2 Related Work
The primary goal in this work is to provide a framework for discovering topic overlaps
between university courses. This is achieved by applying topic modelling, a widely
investigated and researched area in natural language processing. While numerous ap-
proaches exist, one of the most known methods is Latent Dirichlet Allocation (LDA),
initially proposed in [12]. The LDA modelling approach has since been enhanced with
different ways of achieving inference and adopted as a tool for a wide range of analysis
purposes.

The authors of [21] applied LDA on hundreds of thousands of job postings with the in-
tention of discovering and grouping abuse jobs (e.g spamming, fake account creation).
The topic modelling concept provided an automatic means of finding related jobs and
giving an insight to the grouped jobs and their relations. Despite the fact that some of the
topics lacked the high level of granularity compared to the results of other supervised
methods, the approach in general showed a lot of promise. The authors emphasized
two significant strengths: automization of a manual process and the ability to cluster
unlabeled data, i.e the necessary requirements for building the main analysis part for the
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framework suggested in present work.

An approach based on LDA was used in [24] for tag recommendation. The idea was
to overcome the so-called cold start problem, i.e when some resources have tags only
from a few users, reducing their overall usefulness. Basically, other tags that fall under
the same topic are used for recommendation, thereby reducing the wide sparsity of tags
and allowing more specific tags to be recommended. The suggested LDA based method
displayed promising results in terms of precision and recall, compared to association
rule based approach.

A cross-language event detection system based on LDA model was proposed in [16].
The goal was to find related documents over different languages without using any trans-
lation system. Subsequently, the authors extended the LDA method in order to compare
two different topic models (one for each language). The resulting approach was then
successfully applied to various news stories. Clustering documents across different lan-
guages is of a particular relevance in the scope of present work, since the gathered and
used course data comes mainly in two different languages - Estonian and English.
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2 Methods
The purpose of this section is to give an overview of the overall process structure and
methods used throughout present work. As a first step, we describe both ETL and ELT
approach in general and why ELT was chosen as the foundation for further analysis and
visualization. We then give a more detailed examination of the actual ELT process that
was designed and how it fits with the overall workflow, prior to giving a full overview
of all the steps it contains in following sections.

2.1 ETL and ELT Approach
The process of extracting and integrating raw data from heterogeneous sources, then
cleansing and transforming it before loading the final result to a data warehouse, is re-
ferred to as Extract, Transform, Load (ETL) [28]. The entire flow can be run periodically
(e.g weekly or monthly basis, depending on the business needs) and with each run, we
only update the data warehouse with new data in relation to last update cycle.

The first step in ETL process involves gathering data from various composite sources
and integrating them into a single entity, bound by uniform format. Two seemingly
identical extraction processes can differ significantly in terms of speed (i.e how long it
takes to extract the data) and the size of the collected data, all depending on the sources.
The actual relevance of the data or how much of it can be used is not always imme-
diately evident and may be determined during later phases. The goal is to prudently
extract enough raw data to suit business needs and provide a base for effective analysis.

Figure 1. General overview of ETL process flow.
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The second step focuses on transforming the extracted data by applying different func-
tions depending on the end-user needs and preparing it to be loaded to data warehouse.
The transformation phase usually includes data cleaning, in which faulty and inconsis-
tent records are removed or otherwise handled (normalization, type conversions, data
imputation etc.).

As a final step we load the transformed data to the target data warehouse and make
it available for further analysis and visualization by end users. Numerous rules, func-
tions and analytics, with respect to the business requirements, can then be applied to the
cleansed data. The loading process is usually done periodically and in an incremental
fashion [28]. The initial bulk loading takes place only the first time the data warehouse
is constructed [28]. As with previous steps, the final data loading process design de-
pends highly on the actual business requirements.

Extract, Load, Transform (ELT), however, is an alternative version of ETL, in which
the data is first loaded to the target data warehouse and only then are the transforma-
tions applied. The ELT approach should be preferred over classical pipeline based ETL
approach when dealing with large datasets and the target system has ample amount of
resources to perform any transformations on the data at hand. Basically, the aim is to
reduce data load time and to take advantage of the target systems capabilities. Thus the
decision to opt for either ETL or ELT approach should be carefully weighted by taking
into account both the target system capabilities and the nature of the data sources. The
general ELT approach was used in the scope of present work as a cornerstone for de-
signing an effective mechanism for analysing relations between courses, starting with
the collection of relevant textual data to the eventual visualization and presentation of
the relations themselves.

2.2 Framework and ELT Process Design
Designing an effective ELT process along with a suitable database model is a demand-
ing and time-consuming task. The goal is to deliver accurate information without over-
complicating the entire flow. The process can be conceptualized using a wide range of
different flow charts, models and diagrams, e.g entity relationship diagrams for storing
source data, star schema for final destination database. The ELT process designed for
providing a base for course relations analysis, however, is relatively simple, since the
raw source data is not gathered from databases, but via other means (mainly web scrap-
ing), i.e no schema mappings are required. The overall flow applied throughout present
work can be seen in Figure 2.

In essence, two phases are sequentially executed as a part of the ELT process. As a
first step we gather textual data, including files, for each course from different sources
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Figure 2. General framework of the entire workflow including different steps in ELT
process.

and integrate them in order to compose a single storage of raw data, ready for further
processing. The content of the downloaded files is then extracted and loaded into the
target data warehouse. In the next step we aim to the clean the textual content and trans-
form it to a word dictionary in which we know how many times each word appeared at
different levels (e.g in all the course material, or in a single course material). Further
steps are taken to improve the quality of the subsequent analysis (e.g resolving frequent
co-occurring words).

The result of the final step is stored in the same database file that is used throughout
the entire ELT process. No separate data staging area is used, since the final size of the
database file turned out to be relatively small (<100MB) and with the exception of the
raw textual content, all other course material and course related attributes (e.g material
source URL) were deemed necessary and usable in the visualization part. Thus no ad-
ditional transformations or schema changes are made for proper data loading purposes.
The constructed dictionaries stored in the database file are then used to perform topic
modelling with the intention of finding out which of the courses fall under the same
topic and to what extent. Once the analysis results are persisted, the database file is
simply passed along in its entirety and the visualization part is built on top of it.
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3 Data Collection and Extraction
The collection and integration of relevant data from multiple sources is one of the first
and most influential steps of the entire ELT process. The aim of this chapter is to define
and describe all the data sources that were included as a part of the data collection phase
and the challenges it posed. For example, while the bulk of the material was scraped
from various web pages, additional sources such as Study Information System (SIS)
data were also included and integrated to an extent. In addition, text extraction from
various file types and its subsequent erroneous nature is explored.

3.1 Web Scraping
3.1.1 Courses Web Pages

University of Tartu Courses web pages were considered as a primary source of data,
since they publicly provide an initial list of all the available courses taught during dif-
ferent semesters in a specific institute, including an ample amount of textual data to start
with. Courses web page itself contains various information related to the on-goings of
most, if not all of the courses taught during a semester, this can include lecture materials,
worksheets for practice sessions, course syllabus etc. Essentially providing an excellent
base for web scraping. As a result, two web pages were included in the analysis - the
Courses web pages of the Institute of Computer Science [6] and the Institute of Mathe-
matics and Statistics [7].

The goal of web scraping is to gather as much textual data as possible with regard
to the topics taught within a given course. This includes material in the form a file (e.g
PDF, PPTX) or even the HTML content data from the web page itself, since it usually
includes the general description of the course and other similar metadata. In addition,
gathering data with regard to some course implies going through all of them one by one,
therefore giving us the means to compile a healthy list of the courses taught throughout
different semesters.

The general flow of the scraping of Courses web pages can been seen in Figure 3. We
use Courses web page that lists all available semesters as a starting point. From there,
we loop through each semester and follow only semesters that are whitelisted (i.e the
target semesters). For each semester, we get a list of courses taught during that semester.
During the processing of each course, we first extract the course related information (e.g
course code, name) and then process each course subpage (e.g Lectures, Homeworks,
Links). Whilst processing a page, we first extract all relevant textual content in HTML.
Should any hyperlinks appear during the scraping process, we first check if it is a down-
loadable material that passes our extension list check (see Section 3.1.3).
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Figure 3. Flowchart of Courses data scraping process.

Courses web page also allows to choose between Estonian and English language, effec-
tively changing the course name and in some cases the course description to the specified
language. Since English based text is effectively simpler to manage during later phases
(e.g text cleaning), it was chosen as the primary language whilst web scraping.

As an additional note, at least two years (i.e four semesters) worth of data should be
scraped in order to get a full overview of all the courses taught, since not all of them are
taught every semester or every year, but over year.
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3.1.2 Moodle Web Page

Even though a course given on particular semester might be listed in Tartu University
Courses web page, it doesn’t necessarily mean that all the material will be present there.
Some courses are centered around or the very least have some lecture related material
or for example homework submission possibilities present in Moodle environment. In
order to incorporate as much data as possible into the analysis, the official Moodle web
page of the University of Tartu [8] was included as a part of the web scraping process.

It is important to note that while there is a uniform way of determining the particular
year and semester for any course in Courses web page during web scraping, it is not as
simple with Moodle environment. Since there is a single entry for each course in Moo-
dle environment, the material present in the entry could be from the on-going semester
or during the last (not necessarily previous) semester the course was taught. As a result,
Moodle environment could not be considered as a primary source of data, but rather a
complementary data source. For the sake of properly integrating Moodle material, we
first have to determine all the courses that are taught during different semesters. This
will be achieved during the scraping of Courses web page.

Algorithm 1: Algorithm for determining current academic semester.
1 Function determine_semester:
2 year ← current year
3 semester ← ’fall’
4 if February ≤ current month ≤ August then
5 semester ← ’spring’

6 if current month == January then
7 year = year − 1

8 return year, semester

As a next step, we make the assumption that the courses listed in Moodle environ-
ment reflect the state of the currently on-going semester. Basically, we attempt to match
the courses in Moodle with the courses scraped from Courses web site for currently
on-going semester. If web scraping process encounters a course that is not listed among
the courses taught in the on-going semester, it is discarded.

In order to determine the on-going semester and year, we use a simple logic that is
based on current time and the official start and end dates of spring and fall semesters.
The year for the on-going semester will not be determined solely based on the current
year, but also on the current month, as January is still part of the fall semester that be-
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gan in previous year. The semester will be determined as ’spring’ if the current month
falls between February (the official start of spring semester) and August (end of summer
break).

Figure 4. An example of a Moodle web page for a single course in case the access is
restricted. The general course description is still scraped if it is present.

Regarding web scraping part, a different approach from the scraping of Courses web
page has to be considered, as the formatting and layout can be unique to the course
listed in Moodle web page. Furthermore, the course entries themselves might not be
publicly available and require a user who has registered to the course to be logged in,
putting limits to the amount of data we can scrape from Moodle. However, in some
cases, even when a course has restricted access, the general description of the course is
still presented and eligble for scraping (see Figure 4).

The extraction flow of a course listed in Moodle environment can be seen in Figure
5. Basically, we process each course present for given course category (e.g Institute
of Computer Science). However, each course page in Moodle can have an individual
design, making the scraping process more difficult. As a result, we scrape HTML tex-
tual content (course description) only when the course is not publicly accessible, since
it is always presented in a uniform format. For each link in given course page, we first
check if it refers to a valid downloadable material. If not, we will follow the link only
if we stay within Moodle domain. Note that this option is allowed only once to prevent
potential recursion.
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Figure 5. Flowchart of Moodle data scraping process.

3.1.3 Common File Extensions

Although textual content extracted directly from HTML documents is significant, bulk
of the materials still comes in the form of a document file format (e.g DOCX). Since
extracting data from a file can be laborious depending on the file format itself, finding
out which ones are the most used and worth scraping is paramount.

For the purpose of finding out all the possible extensions and their counts, we can per-
form a web scraping test run, in which we gather all the hyperlink references that point
to downloadable file without actually retrieving it. After collecting all the links in our
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path during scraping, we simply attempt to extract the extensions from the links. The
results of an example web scraping run, in which data was gathered for 2015 Fall, 2016
Spring, 2016 Fall and 2017 Spring semesters, can be seen in Table 1.

File extension Count
pdf 2836
zip 256
pptx 119
tex 87
m 82
php 63
gz 38
htm 33
hs 29
ppt 28
aspx 26
doc 19
bmp 18
pka 17
xls 15
jar 13
docx 13
exe 13
txt 11

File extension Count
dmg 9
jpg 8
wav 8
p 8
long 5
py 5
odt 4
syb 4
wma 4
v 3
xml 3
png 3
gif 2
json 2
ogv 2
xlsx 2
ml 2
ggb 2
full 2

Table 1. Various extensions that were scraped from Courses and Moodle sources along
with their counts.

The goal was to combine a list of all the file extensions that were suitable for extract-
ing textual content. Clearly the most dominant document file format is PDF (Portable
Document Format), as seen in Table 1. Since .zip files don’t directly contain any textual
data, they were excluded from the final list of extensions to scrape. However, there’s a
case to be made, in which we extract the contents of zip file and scavenge for any files
that may contain relevant textual content. As PPTX (Microsoft Open XML PowerPoint
Presentation file), DOCX (Microsoft Word Open XML Format Document file) and TEX
(LaTeX Source Document) files were also fairly abundant and can be mined for text
with relative ease, they were included into the final list.

Whilst extracting content from extensions related to various programming languages
(e.g .m, .php) is not difficult, the content extracted from them does not provide much
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value and as such are not worth scraping. Consequently, the final list of all the exten-
sions included as a part of the main scraping process is as follows: .pdf, .pptx, .tex,
.docx.

3.2 Text Extraction
Once a web scraping run over Courses and Moodle web page has been completed and
all the relevant files with previously established extensions have been downloaded, our
next goal aims to extract the actual textual data from the raw sources and files.

As a first step, we have to take into account that the same material might be present
in two different formats (e.g lecture slides are provided in both PDF and PPTX format).
Therefore, before extracting any content from files, we should remove those duplicates
in order to reduce any bias during the analysis phase. As a result, a simple extension
based filter was applied, in which we assume that the filename without the extension
remains the same and only the extensions vary. In case a duplicate is discovered, all
references to it will be removed, so it would not be included in the actual extraction
process. The filter is applied only in the scope of a single course, i.e the files that were
marked as duplicate, have to come from the sources of the same course during web
scraping.

From all the various document formats that were allowed to be downloaded during web
scraping phase, PDF format is the most difficult one to handle, as text extraction can be
quite erroneous. While PDF document serves well as a final presentation format, which
holds the same look as the original document, observing its structure or modifying it
can be challenging [14]. The root cause is that PDF documents are generally untagged
and don’t hold the necessary high-level logical structure information [14]. Roughly put,
a document consists of page objects, which could be anything from graphic objects to
few characters part of a word [14]. The challenge lies in finding and composing the
logical structure in order to extract meaningful content [14]. Possible text extraction
errors range from being completely unable to extract any comprehensible textual data
to smaller grammatical or symbol based errors. For example, the Estonian word võima-
lik can be extracted as v∼oimalik, which can have a noticeable impact in downstream
processing. Additional concerns are raised with regard to the use of ligatures, i.e when
two or more letters are appended together to form a single glyph [1]. Consequently, if
any such glyphs should appear in a PDF file, they will be extracted as a whole, not as
separate characters [1]. For instance, the inflected Estonian word graafi can contain the
ligature fi, which will be treated as a special symbol and as a result be filtered out during
data cleaning, leaving only the graa part.

Both .pptx and .docx are Office Open XML based file formats, basically zipped files
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that contain XML-like documents [4]. The main challenge lies in extracting the textual
content from within the XML tags. However, once extracted, the textual content can
be expected to be intact, with minimal amount of textual errors related to the extraction
process. On the other hand, .tex files don’t need to be explicitly further extracted and can
be read as a plain text file. The complicated part is removing TeX syntax so that only
the main textual content remains. Finally, since web scraping process extracts HTML
content from web pages themselves, we also have to consider filtering out the HTML
tags in that context, leaving only textual data.

3.3 SIS Data Integration
In addition to data gathered from Courses and Moodle web pages via web scraping,
other complementary sources, such as course related information in Study Information
System (SIS) of the University of Tartu [9], were also considered. The SIS data included
in the analysis was directly extracted from the systems underlying database and came
in the format of CSV file. Various tables and their respective columns, that could prove
pertinent to the analysis and integration process, were included. The full list of included
columns can be seen in Table 2.

Column Description
AINEKOOD Course code
KL_KEEL Language (either English or Estonian)
WWW Reference to a relevant web page (usually a link to Courses

web page)
KL_OPPEAASTA Calendar year during which time the course was taught
KIRJELDUS The goal or general description of a single lecture given dur-

ing the course
OPIEESMARK Study goal of the course
YLDEESMARK General goal of the course

Table 2. List of columns and their descriptions for a single entry in the CSV file exported
from Study Information System. The data contained an entry for each lecture given
during the semester for any given course (i.e the value of column KIRJELDUS may
vary, but others can stay the same in the scope of one course).

In order to integrate SIS data with the already existing data gathered via web scraping,
two vital pieces of information must first be determined in addition to course code - year
and semester during which time the course was taught. Although the calendar year was
given for each entry (see Figure 2), semester was not. As a result, the column WWW
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was used to determine which semester the course was taught. More specifically, if the
link refers to some Courses web page, the semester will be part of the URL.

Since the data was essentially composed of duplicate entries, i.e one entry in Estonian
language and a companion entry in English, only one of them was included. The latter
was chosen, considering that English based text is easier to clean and incorporate during
later phases.

With regard to the actual textual content that was included from each entry, all three
goal related fields (KIRJELDUS, OPIEESMARK, YLDEESMARK) were used to com-
pose a single entry for each course. Basically, one instance of both OPIEESMARK,
YLDEESMARK and all the lecture descriptions from KIRJELDUS fields in the scope of
a single course were aggregated to a one textual resource.

3.4 Incremental Data Updates
Progressively updating the results after the initial data warehouse construction is a vital
part of the established ELT process. Capturing only the latest changes with regard to
the previous extraction can have a tremendous effect on the overall speed of the data
collection phase and goes well with the concept of a periodically runnable process.
This can be quite useful for the framework at hand, especially when multiple semesters
are targeted during data scraping and the resulting raw data is much more substantial
in terms of size. The critical part in performing incremental data updates is classifying
which new pieces of data to extract. This usually includes using database dates, logs etc.

Consequently, two fields were added to the table that is responsible for keeping track of
the collected course material. The following fields were added with the explicit purpose
of constructing a progressively updatable data collection process:

• Collect time - the specific date and time during which given course material was
collected.

• File size - the size of the given course material. In essence, we obtain the meta-
information (HTTP headers, assuming the method is HTTP) associated with a
specific resource (URL). The material size (i.e Content-Length) is then extracted
from the collected meta-information.

Both of these fields are filled during the data scraping process.

In case of an incremental update (i.e initial data warehouse has already been con-
structed), we first delete all existing results and records (e.g analysis phase results) from
previous time the entire process was run, except information related to the collected
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courses and course materials. We instead nullify the collect time of each course mate-
rial and then re-run the data scraping step. Once we encounter a course material during
data scraping, we first check if the given material already exists locally. The course
material matching is done by comparing the name and the size of the material. If we
can’t find the material by name, then the information is completely new and the mate-
rial is eligible for downloading. Should the material already exist locally, but the local
file size differs from remote file size, then some new information has been added to the
document. Subsequently, the local file is deleted and the recently updated material is
downloaded again.

During data scraping we always set the collect time of the course material, even if
the material already exists locally. After data collection, we perform a cleaning step
in which all stale data in the format of a file or database entry is deleted. This means
that all courses and course materials that do not match the current target semesters are
removed. Additionally, if a course material does not have a date assigned to it (recall,
we nullified the collected time during the start of data scraping), we remove it. This
step is vital in case a course material is related to one of the current target semesters (e.g
material was collected during some previous data scraping run), however, we did not
encounter it during the latest data scraping run, indicating that the resource was deleted
from the remote data source.

As an additional note, the extracted HTML content is always updated locally, since
all the content pages are fully processed anyway during web scraping. Complementary
information not related to web scraping (in our case SIS data) is also removed, since
including it is a fairly quick (the CSV that contains SIS data information is processed in
a matter of milliseconds) and it gives the user an option to not include it during incre-
mental updates.

The benefits of using incremental data updates are not limited to just faster data col-
lection, but also provide the means for a potentially faster data extraction. If the textual
content was already extracted from a relevant course material (e.g a PDF file) during
some previous process run, then there is no need to perform the same step again.

3.5 Lessons Learned
Throughout testing and analysing the results of web scraping and data integration pro-
cesses, several adjustments were considered and implemented in order to improve the
quality of the data, before handing it to the next phase - data cleaning. The improve-
ments concerned mainly text extraction and were intended to better the final analysis
result by handling special cases, removing some of the bias caused by duplicate text etc.
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HTML content extraction. One of the first incorporated changes affected text extrac-
tion from HTML content that is scraped from Courses web pages. More specifically,
Courses web pages allow students to submit homeworks and other content if the course
that they are taking, requires them to do so. As such, students must be logged in be-
forehand, if they are not, or the submission is not open for example, an error will be
displayed. The error text, however, will be scraped as a part of the HTML document
and since it is present throughout various courses, it will not be filtered or removed dur-
ing data cleaning phase. In fact, depending on the error text and its abundance, it can
have quite an impact on the result of the analysis. For example various combinations
of frequently co-occurring words (see Section 4.3) can be made due to the repetitive
nature of error text. Should some of those co-occurring words be linked to a course in
the analysis phase, we can only conclude that the course had the option to submit con-
tent. While this itself can be informative, the benefit of it should be weighted against its
possible dominance in the results of the final analysis due to numerous error text based
co-occurring words. As a result, all possible content submission related errors within
<alert></alert> tags in HTML document were included as a part of a blacklist. The
following items were included in the list:

• "You must be logged in and registered to the course in order to submit solutions."

• "There are no tasks for this course."

• "Solutions to this task cannot be submitted at the moment."

In case an alert based tag is processed during text extraction, its textual content is first
compared against all the elements in the blacklist. The tag and its content are completely
removed in case of a match.

Duplicate material improvements. Additional steps were also taken to improve the
effectiveness of extension based duplicate material removal. For example, new exten-
sion .6up.pdf was introduced to the list of allowed extensions to scrape, since in some
cases the same content was provided with different layouts, but still used the .pdf ex-
tension. In this particular case, filenames that ended with .6up.pdf had six lecture slides
per page, while the regular PDF version of it had one slide per page. Adding the new
extension will guarantee that those two PDF versions will be handled as files with dif-
ferent extensions with one of them being removed due to a conflict. Regarding conflict
resolution, in case a duplicate material is detected and one of the files is in PDF format,
while the other one is not, then the non-PDF version is preferred. In all other cases,
the first entry that was processed is kept. This is due to the erroneous nature of text
extraction from PDF files.
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4 Cleaning and Conforming
After collecting and integrating data from different sources, the next vital step involves
cleaning and transforming it to a uniform format that is suitable for analysis phase.
The chapter at hand focuses on the processing and filtering of the raw textual content
gathered and extracted during data extraction phase. As a first step, we describe the
tokenization of the textual content, i.e splitting the text into sentences and words. After
which, we lemmatize and apply multiple filters to each token (e.g length checks, stop
word check) in order to remove unwanted words that would just litter the results of
the analysis. In addition, further steps are taken to improve the quality of the analysis
results: finding words that frequently occur together (i.e co-occurring words) and re-
solving acronyms in order to make them synonymous with their definitions. The final
section describes various unique cases and problems encountered along the way, both
small and big in terms of impact to the final result.

4.1 Tokenization and Lemmatization
The operation of splitting natural language text into relevant and distinct pieces (i.e
tokens) is referred to as tokenization [17]. It’s counted among the first steps during
document processing and while it is not considered a major challenge of Natural Lan-
guage Processing (NLP), it can have a significant impact in downstream processing [17].

The first step in processing a single material (e.g the content of a lecture slideshow)
involves splitting the text into sentences. While it might seem feasible to to detect the
boundaries of a sentence based on simple orthographic conventions, it can have notice-
able drawbacks when dealing with certain type of texts. For example relying solely on
word capitalization is not enough, since certain word classes are capitalized even if they
occur inside of a sentence [22]. Furthermore, lower case first letter doesn’t definitively
mean that the word is preceded by a sentence boundary (e.g in case of mathematical
variables or due to some specific conventions) [22]. More sophisticated methods and
techniques should be considered to determine proper sentence boundaries. One option
would be to use orthographic heuristic, which leans on statistical evidence in order to
establish if the word is preceded by sentence boundary [22]. Essentially, the heuristic
takes into account whether the word occurs with lowercase or uppercase first letter in
all other cases in the text, before deciding [22]. An example implementation of tok-
enization, which splits text into sentences by making use of orthographic heuristic, can
be seen in Natural Language Toolkit (NLTK) [3]. The text-to-sentences tokenization
tool provided in NLTK was used in the scope of this work to split the extracted textual
content into sentences.

Given that a textual material is split into sentences, the next goal is to split each sentence
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into tokens. This can be accomplished again by using the sentence-to-word tokenizer
provided by NLTK. The challenge here rests in properly handling various symbols and
contractions. Concerning symbols, most of them (e.g ;, : and ,) are split into separate
tokens, even if they are part of a word.

don’t→ do n’t
they’ll→ they ’ll

Figure 6. Example on how sentence-to-text tokenizer splits different contractions.

A special case if made for dash symbol (’-’), which is not classified as a breakpoint and
handled as a separate token, unless separated by a whitespace [3]. Another vital part of
tokenizing a sentence is handling different contractions (e.g let’s, don’t). The tokenizer
provided by NLTK uses regex expressions to split contractions into separate tokens, de-
pending on the contraction itself [3].

Even though splitting textual material into sentences, and in turn those sentences into
tokens, is an important aspect of tokenization, it is equally as important to prune un-
wanted tokens and normalize the ones we are actually interested in. As such, multiple
filters are applied throughout the entire tokenization process with the goal to reduce the
amount of undesirable and irrelevant content. The following filters are applied to tokens
after converting them to lowercase and trimming surrounding whitespace:

• Length check - tokens that are less than three characters long are removed.

• Latin character check - the first character of the token has to be Latin. The
token is removed if it is determined as something else (e.g Cyrillic, Korean). An-
other option would be to remove this filter and start handling different non-Latin
characters by including appropriate stop words and lemmatizers.

• Alphabetic character check - token is removed if it is not comprised of only al-
phabetical characters. In the event that the token contains even one non-alphabetical
character (including numbers) or if the token itself is just some symbol, it is dis-
carded. A an exception is made for dash symbol. If the dash appears at the end
of a token, then it is aggregated with the next token to compensate for any line
breaks. In case dash is present in the middle of token, we count it as valid. How-
ever, if it should appear in the beginning, we discard the entire token.

• Stop word check - check each token against a healthy list of stop words (see
Section 4.2). Stop word check is done after lemmatizing a token.
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• Token occurrence limit check - once all the courses and the materials they con-
tain has been processed and tokenized, we check in how many different courses
(i.e courses with different course codes) did each token appear. If the token did
not occur in at least two different courses, it is discarded. The aim is to reduce the
amount of erroneous words made possible by faulty text extraction, tokenization,
human error etc.

The length, alphabetic character and stop word checks are done continuously during
the processing of a tokenized sentence, whereas token occurrence limit check is done
post-tokenization.

Since the analysis phase is based on bag-of-words model, we keep track and count
the token frequencies throughout the entire tokenization operation. After processing a
single course material, we know how many times did each token appear in it, i.e we
compose a dictionary of words and their counts for each course material. Once all the
material has been processed, we aggregate the token frequencies at a course level, know-
ing how many times did each token appear in all the materials of a course. As a last step,
we aggregate the results at the corpus level.

In the interest of removing unwanted complexity and to improve the quality of down-
stream processing, a special consideration is put into inflected words. The purpose is to
reduce an inflected word into its basic form (e.g cars to car), so that different derivatives
of the same word wouldn’t be counted separately. Two different well-known approaches
can be considered to achieve this task - stemming and lemmatization.

Stemming attempts to normalize an inflected word by removing its inflectional suf-
fixes, thus reducing it to its root form, i.e stem [11]. While stemming works well for
more simple and straightforward cases (e.g running can be stemmed to run), it does not
guarantee that the stemmed word is a dictionary word, but rather an approximation of
it [11]. For example the word calculated can be stemmed to calculat [11]. Issues, such
as under-stemming in which we fail to reduce two words with the same meaning into the
same stem (e.g the words throws and threw) and over-stemming, where two words with
different meaning are reduced to the same stem (e.g the words new and news), should
be taken into account, before using stemming to normalize words [11].

Lemmatization on the other hand is a much more complex operation, which removes
inflectional endings and resolves the lemma of a word by relying on a dictionary that
includes a morphological analysis for each word [11]. Even though lemmatization can
be considered a more costly operation than stemming in terms of speed, its benefits lay
in a potentially more reliable and higher quality of word normalization. Since perfor-
mance speed was not a critical aspect of the work at hand, lemmatization was chosen
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as primary tool for word normalization. After a token passes initial filtering (i.e length
and alphabetic character checks), it is lemmatized and only then counted as a part of a
single course material dictionary, assuming the lemmatized word is not a stop word.

An additional factor, namely language, has to be taken into account when perform-
ing word normalization. Seeing that the material collected for each course is mainly
in English or Estonian, a different lemmatizer has to be used depending on the lan-
guage. Therefore, we must first determine the natural language of the material, before
executing the main tokenization and filtering logic. Several approaches have been pro-
posed for detecting a language based on written text, for example the authors of [13]
described an algorithm that computes an N-gram frequency profile of an input text and
compares it with previously established profiles of various languages. Another well-
known approach is to use Naive Bayes Classifier for language classification, e.g the
authors of [18] proposed a Naive Bayes Classifier that is well suited to identify the
language of short texts. For the purposes of present work, a language detection tool
(originally based on [27]), that makes use of Naive Bayes filter, is used to classify the
language of each course material. Considering that the bulk of the content is in either
Estonian or English, a simple logic is applied for final classification - if the language is
classified as Estonian, we use an Estonian language based lemmatizer, in all other cases
we apply English language based lemmatizer.

Concerning the actual lemmatizer implementations, the WordNet lemmatizer present
in [3] toolset is used to lemmatize English words and [25] is used for Estonian words. It
should be noted, however, that the WordNet English lemmatizer expects part-of-speech
tag in addition to the word to be lemmatized. Therefore, POS tagging should be ex-
plicitly performed on raw tokenized sentences (i.e before removing stop words etc.) to
guarantee proper lemmatization when individual tokens are processed. On the other
hand, the Estonian lemmatizer doesn’t require explicit POS tagging, only the raw sen-
tence should be provided (i.e no individual token lemmatization, all the sentences are
processed as an ensemble by the lemmatizer). In fact, the more textual data is provided,
the more effective the lemmatization process is, especially with regard to disambigua-
tion. However, there are still cases where multiple lemmas can be resolved (e.g Estonian
word magasin can have different lemmas based on the context - magasin or magama),
in that event, no preference is made and the token is processed in its original form.

4.2 Stop Words
In the interest of improving the quality of analysis, words that fill only a functional role
and are ambiguous in their nature, i.e stop words, should be filtered out as they provide
no meaningful benefit to the analysis at hand. Seeing that the material consists mostly
of text in either English or Estonian language, a stop word list was composed for both
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of them. The majority of English stop words were taken from [5], while Estonian stop
words were obtained from an extensive list provided in [23].

and any all are about around
been begin but can come does
etc few ever get had let

Figure 7. An example list of English stop words used to validate a token.

Each token is checked against stop words after it has been lemmatized, token itself is
removed in case of a match. All the stop words are at least three characters long, since
tokens with less are excluded from further processing by the length filter. A total of 678
English stop words and 560 Estonian stop words were included.

In addition, a process which composes a separate list of the names of numerous lec-
turers and faculty members was implemented. The reason being that the names of the
teaching staff can amply occur throughout different course material and subsequently in
the results of the final analysis. Considering that this information can be relatively eas-
ily looked up, thus not providing any significant value to analysis, all tokens that match
with a name in the faculty members list are removed. Even though stop word filtering
is done after lemmatizing a token, the check against the faculty member list should be
done before, since it is possible that a part of a name (e.g surname) can be lemmatized.
This can cause a possible name in text to be interpreted as something completely differ-
ent and allow it to pass the check.

The list containing the names of the teaching staff is composed automatically by web
scraping publicly available faculty employee contact information.

4.3 Frequent Co-occurring Words
Despite the fact that processing and counting only single words is convenient and rather
inexpensive, a significant amount of context and meaning can be lost when handling
words separately. For example, while words data and mining are separately relatively
ambiguous, together they provide much more context as to the nature of the document.
Consequently, frequent word sequence identification was introduced as part of the tok-
enization process in order to identify conceptually meaningful phrases and word occur-
rences, i.e co-occurring words.

The task of discovering frequent word sequences can pose different challenges and has
been a subject of improvement. For example, the authors of [20] define a word se-
quence as frequent if it is present in at least σ number of documents and propose an
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algorithm for finding maximal frequent sequences (i.e sequences that are frequent and
are not part of some other longer frequent sequences). The method also allows to set
a maximum gap in between words pairs. For the purposes of present work, however, a
slightly different approach was taken, in which frequent word sequence is not defined
by occurrence in multiple documents, but in the material of different university courses
(i.e courses that have different course codes).

Before actually turning towards counting any co-occurring words, certain pre-processing
steps should be taken. As a consequence, tokenization process was involved as a pre-
filtering step before finding frequent co-occurring words. More specifically, throughout
the processing of a raw sentence by the tokenizer, a clean, filtered version of the same
sentence is built (stop words removed, words lemmatized etc.).

Big data is a term that describes the large volume
of data - both structured and unstructuredy

big data term describe volume data structure unstructuredy
big data, data term, term describe, describe volume, volume data,

data structure, structure unstructured, big data term, ...

Figure 8. An example of a raw sentence turned into a cleaned sentence during tokeniza-
tion. The cleaned sentence is then used to create a list of different N-grams, which is
then reduced by various filters.

Once the tokenization process is complete and all clean sentences have been resolved
for each document, another pass is made to compute N-grams of specified length. By
default the N-grams range from size 2 to 4. The resulting N-grams are then aggregated
at a corpus level, whilst keeping track of how many courses did each N-gram appear in.
The global N-gram dictionary is then thoroughly pruned by applying following filters:

• Corpus level occurrence limit - the co-occurring word has to appear in at least σ
number of times at the corpus level, where σ is some fixed threshold. By default
σ is set to 20.

• Course level occurrence limit - in order to remove course specific textual id-
iosyncrasies, the co-occurring word is expected to be present in the material of at
least δ different courses. By default δ is set to 3.
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• Duplicate word check - if the co-occurring word is comprised of the same single
word multiple times (e.g num num), it is removed.

• Subsequence check - only the highest level N-gram is kept, all subsequences are
discarded (e.g neural network would be removed in favor of a longer frequent
N-gram recurrent neural network)

A special case is made in case the co-occurring word is a definition of an already estab-
lished acronym (see Section 4.4). In that event, the corpus and course level occurrence
limits are ignored.

sender receiver system requirements
visualization techniques sirge paralleelne

coding errors written java
kuluma aeg random graph

image compression planar graph

Figure 9. An example of list resolved frequent co-occurring words.

As a final step, each course material word dictionary is adjusted by removing the in-
dividual words that make up the newly resolved frequent co-occurring words (e.g for
co-occurring word text analysis, individual words text and analysis are removed from
course material dictionary). We then recount how many times each frequent co-occurring
word appears in a course material and if it appeared at least once, we append the co-
occurring word with its respective count to the dictionary. This operation is a lot cheaper
than making a full pass over the material for each co-occurring word, considering the
fact that if all the individual words did not appear in the dictionary, then there is no point
in counting how many times did the co-occurring word appear in the course material.

4.4 Acronym Extraction
A simple observation of the initial results of the tokenization process suggested that the
textual material contained a vast amount of abbreviations, more specifically acronyms.
As a result, the corpus level word dictionary can include short tokens that are actually
acronyms and more often than not their definitions are not always readily apparent to the
reader. More importantly, when we compose the word dictionaries, we count acronyms
and their definitions separately, since their use in either form is valid. In order to alle-
viate this concern, it might be prudent to automatically identify acronyms and find out
their respective definitions. Once we have done that, we can substitute all acronyms in
their short form with long form in the text, thus counting acronyms and their definitions
as one.
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Numerous approaches have been proposed for automatically identifying acronyms. For
example the author of [15] suggest and evaluate a rule based algorithm in addition to
comparing different machine learning based algorithms. Similarly, the authors of [26]
propose a simple rule-based algorithm for extracting acronyms and their definitions
from biomedical texts. The major advantage of rule-based algorithms is that they don’t
require any training data. However, detecting certain acronyms (e.g when acronym let-
ters match with a character inside a definition word) can be problematic and require
additional consideration. An automatic acronym detection approach, similar to [15]
and [26] was used in the scope of present work.

As a first step we define how we categorize some tokens as acronym candidates, i.e
words that could potentially be acronyms, but warrant further investigation of surround-
ing tokens and previously established acronym definitions. The following rules are
applied during the tokenization process to determine if the token could be an acronym:

• Length limit - seeing that the default maximum limit for words that comprise fre-
quent co-occurring words is 4, a similar restriction is set on the acronym character
length. Recall, one of the goals is to count the acronyms and definitions as one
entity, and since we can’t have definitions longer than 4 words, we set a maximum
character limit. In addition, tokens that have a length of less than 3 character are
filtered out, so in essence, we only consider acronyms that have 3 or 4 characters.

• Word uppercase limit - the short form an acronym has to be uppercase, only the
first or the last character may be lowercase.

None of the potential acronyms will be lemmatized, but instead processed in their raw
form. In the event that a token is classified as a potential acronym, we search the sur-
rounding tokens for a definition. We expect either the acronym short form or the long
form to be in parenthesis, i.e one of the following cases:

acronym (definition),
definition (acronym).

The first characters of the definition words have to make up the acronym. If the acronym
is 3 characters long, then the definition is expected to comprise of 3 words. After com-
posing an acronym definition dictionary for each course material, we aggregate the def-
initions and build a global definition dictionary. In case a conflict should arise during
aggregation (i.e same acronym short forms, but different long forms), we skip adding
the definition all-together. As a final step we loop through all the course material word
dictionaries and replace all potential acronyms with their definitions by first looking at
the course material acronym definition dictionary and then the global dictionary.
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The previously described definition finding process and rules for establishing known
acronyms are fairly strict and while they do reduce the amount of false classifications,
various acronyms can be missed (e.g iOS, since we don’t consider internal characters of
definition words to be part of the acronym short form). A more flexible acronym detec-
tion process, in which a wider range of abbreviations are extracted from text, should be
considered as a part of future work.

4.5 Lessons Learned
Several functional improvements were considered and implemented to handle specific
failure scenarios during tokenization. Furthermore, a non-functional improvement, namely
better overall performance speed, was investigated.

False text language classification. Language detection is the first step when tokeniz-
ing a course material. Since we handle two different natural languages - Estonian and
English - it is completely plausible that an Estonian based text might be falsely classified
as some other language (not necessarily English) due to mixed language text, too short
text, formulas etc. In that case, an Estonian text will be classified as an English text due
to the fallback mechanism (all non-Estonian languages are classified as English). While
we can’t do much in terms of lemmatization in that event, we can reduce the amount
of non-informative words. Consequently, both English and Estonian stop top words are
combined into a single list. Although this can be an hindrance on performance speed
(we have to check against a bigger list each time), the possible gain is better quality
word corpus.

Post-lemmatization length check. Even though length check is one of the first filters
we apply when processing a sentence token, it should also be done after lemmatization
of a word. For example, if word xss is in uppercase form, it will be identified as an
acronym, however, should it be in lowercase form for what-ever reason, it will be lem-
matized to the character x. In order to avoid such cases (e.g single characters passing
the filtering process), the token length check is also done after lemmatization.

Counting of embedded frequent co-occurring words. Recall, after finding all fre-
quent co-occurring words, we count how many times did each of the them appear in
a document. For this purpose, we build clean sentences and plainly check how many
times each co-occurring word appears in them. However, using a string matching algo-
rithm to achieve that, can have its drawbacks. For example the co-occurring word code
input can appear inside encode input, as a result the counts of both co-occurring words
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will be incremented. This is not a concern during single word counting, since we ap-
ply tokenization and process each token sequentially, but re-tokenizing clean sentences
just to count co-occurring words may seem redundant. As a solution, each sentence
was padded with spaces from both ends and instead of matching co-occurring words
directly, we pad them first with spaces and then count via string matching. E.g instead
of searching how many times ’code input’ appears in a sentence, we instead use ’ code
input ’ as a lookup string. This way we can still make use of the fast string matching
algorithm in our implementation.

Parallelization of tokenization process. Each course material is tokenized indepen-
dently, making the entire process a good candidate for parallelization. Despite the fact
that multiprocessing is used to handle each course material in parallel in the scope of
present work, a potential for further improvement lies in offloading the computation to
GPU. For example the authors of [29] show a significant improvement over CPU-based
algorithms for different text mining operations, including tokenizing text into sentences
and removing stop words.
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5 Text Analysis
The final step of ELT process produces a suitable foundation for performing further text
analysis, more precisely - topic modelling. The first section introduces Latent Dirichlet
Allocation (LDA) as a topic model and provides an overview of LDA from a more the-
oretical aspect. The following section then describes, how LDA is applied at a course
level (i.e by using course level word frequency dictionary) in order to find out which
courses fall under the same topic. Afterwards, we perform topic modelling at a differ-
ent level of granularity - course material level. The final section outlines the various
methods used for resolving titles for topics.

5.1 Latent Dirichlet Allocation
Topic modelling is a method in natural language processing in which the goal is to clas-
sify and summarize a collection of documents by finding a topic (i.e a group of words)
or a set of topics that best describe the textual information that the documents contain.
Several techniques exist for finding the topics, one of them being Latent Dirichlet Al-
location (LDA), first introduced in [12]. LDA is essentially a generative process that
identifies a range of common topics based on given documents. The assumption is that
each document is comprised of a set of limited topics and all the words in the document
can be associated with one of these topics. In general, LDA aims to do the following:

• discover the predefined amount of topics;

• assign words for given topics;

• associate a subset of those topics with documents.

Subsequently, LDA can be used to find and describe similarities in the provided data by
grouping different features under the same set, i.e topic.

The general LDA model for composing a single document starts by sampling a mix-
ture of topic proportions θ, i.e a document-topic distribution for given document from
Dirichlet distribution, parameterized by α (a vector of positive real numbers, which
specifies the nature of Dirichlet prior on θ) [12]. Next, we choose a topic based on θ for
each of the n’th position words ωn in the document [12]. Once we know the topic, we
assign an actual word based on multinomial probability p(ωn|zn, β), where β is a hy-
perparameter for Dirichlet prior on the topic-word distribution sampled from Dirichlet
distribution [12]. The procedure is summarized in Figure 10.

The challenge lies in learning the actual topic-word and document-topic distributions,
as exact inference is difficult to determine. However, various approaches that aim to ap-
proximate those distributions have been proposed. The original LDA paper [12] authors
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For each document d:

1. Pick θd ∼ Dir(α)

2. For each n position word:

(a) Pick a topic zd,n ∼Multinomial(θd)

(b) Pick a word ωd,n from p(ωd,n|zd,n, β), a multinomial probability, con-
ditioned on topic zd,n

Figure 10. General LDA model for generating documents [12].

made use of variational Bayes approximation, but other well known approaches, such
as Gibbs sampling [19], have been put forth.

LDA based topic modelling is used as primary tool for analysis in the scope of present
work. The goal is to find similarities between courses that fall under the same topic. Re-
garding implementation, LDA modelling tool [2], which makes use of collapsed Gibbs
sampling for inference, is utilized throughout the analysis phase.

5.2 Course Topic Modelling
Considering that one of the main objectives is to find relations between different courses,
it is reasonable to first apply topic modelling at a course level, i.e we use course term
frequency dictionary as a unit, not the term frequencies of a singular document. As
such, we use the term frequency dictionary to compose a proper document-term matrix
(DTM), where on one axis we have terms gathered from all the documents in our corpus,
and on the other axis we have documents (in this particular case - courses). The matrix
itself reflects how many times did each term appear in different courses. The DTM is
then supplied to the LDA topic modelling tool for analysis.

In addition to DTM, several other parameters have to be specified, the first one be-
ing topic count. Seeing that the modelling is done in the context of university courses,
we can use that to set an initial topic count. While the material of different courses can
overlap, each course still has its own unique theme or goal in terms of what to teach.
Therefore, in the current context, we can assume that there are as many topics as there
are courses. A particular advantage of using a dynamic parameter such as course count,
is that as new data is loaded, we don’t have to blindly guess the topic count, thus making
the automation of the entire process, from data scraping to visualization, much easier.

34



As a second parameter we have to provide an iteration number for the underlying al-
gorithm. This is due to the fact that the topic modelling tool uses Gibbs sampling for
inference, hence we have to establish how many iterations of Gibbs sampling to run be-
forehand. In order to get a better idea on how to choose the parameter, an example topic
modelling run was executed on two academic years worth of data that was gathered and
cleansed in previous steps. The log likelihood was recorded throughout topic modelling
process.

Figure 11. Log likelihood convergence based on an example topic modelling run on
data gathered from 2015/2016 and 2016/2017 academic years. The first iterations of
Gibbs sampling were excluded from the plot due to naturally high rate of change in log
likelihood during initial iterations.

We can observe the convergence of log likelihood in Figure 11. Basically, the conver-
gence is already achieved in the first 500 Gibbs sampling iterations, thus setting the
general tone for iteration count in future topic modelling runs. As a final step during
topic modelling, we record the top 5 topics (topics with highest course-topic probabil-
ity) for each course and top 10 words (words with highest topic-word probability) for
each topic, based on the fitted LDA model.
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By default the words in each topic are ordered by their respectful topic-word probability
and we only choose the top N words to describe each topic. However, by choosing the
highest probability as our metric, we lean more towards common and frequent words.
In the interest of providing an alternative point of view, we can apply different normal-
ization techniques and hopefully gain a more descriptive summary for each topic. A
simple normalization approach, which uses the resolved topic-word probabilities, was
considered in the scope of present work. The idea is to normalize the probability value
of each word in a topic-word distribution by dividing it with the average probability of
given word over all topic-word distributions. Admittedly the newly normalized value
won’t represent a probability anymore (thus it doesn’t fit our LDA model), but it is still
suitable for re-ordering the words within given topic in order to gain a slightly different
perspective. The objective is to find distinctive words, i.e words that uniquely separate
or describe given topic with regard to all other topics. As such, we give more weight to
words that have high probability within given topic compared with all other topics. Af-
ter normalizing and re-ordering the words in each topic, the top 10 values are persisted
for visualization purposes.

5.3 Material Topic Modelling
In addition to performing topic modelling at course level, a higher level of granularity,
namely course material level, was also considered and implemented. This implies two
different changes with respect to course topic modelling. First of all, instead of using
course term frequency counts, we build a document-term matrix for each material in the
corpus, completely disregarding the bounds of university courses. Consequently, we
should be able to observe similarities between various material or for example describe
which topics are handled in the scope of a single material. The second change affects
the expected topic count provided before topic modelling. Since the number of different
materials range in the thousands, a simple one-to-one matching of material count and
topic count is not feasible. Seeing that different materials can cover the same topic, a
simple formula, which takes the number of materials into account, is applied instead:

topic_count = material_count
10

.

The actual fraction of the material count is a subject for further improvement and was
chosen based on the overall number of materials gathered in a sample data scraping test
run targeting two academic years (i.e 4 semesters).

Its should be noted that an approach in which we model topics over the material of
a single course was also investigated. The goal was to perform topic modelling for each
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course separately and examine similarities between materials in the scope of a single
course, e.g some lectures cover the same topic. However, this approach was later dis-
carded, since the results were not that informative. Similarities in the scope of a single
course are usually readily apparent due to relatively small number of materials and are
already known or even intentional by the course organizer. In some cases two docu-
ments were largely comprised of the same topic when in fact they were duplicates, but
due to various file naming conventions, one of the duplicate materials was not removed
in the data extraction phase. All things considered, the approach to model topics over
the materials of single course was deemed unnecessary, since it did not provide much
value, and was subsequently removed from the entire analysis process.

5.4 Topic Title Resolving
Once the LDA topic model has been fitted and we know all the topics, we can attempt
to resolve a title for each topic, e.g if the topic consists of words such as python, data
structure and class, then the topic title would be Programming. Fortunately, resolving
a topic title is more convenient in the current context, since the course titles themselves
are a representation of what they contain. The question remains, however, which of
the course titles to pick and should we alter it to make it more suitable for our pur-
poses? In response, two different approaches were considered, the first one being more
straightforward, easier to implement and understand, the second one using a little more
sophisticated heuristics, thus having the potential to give better results. Both approaches
make use of the document-topic distributions.

The first approach simply checks the highest document-topic probability for given topic,
if the said probability falls under a certain limit, we assign General as topic title, oth-
erwise we use the document name (i.e in current context - the course name) as title.
The problem lies in choosing the suitable hard limit. In the interest of finding a suitable
limit, an example topic modelling run over two academic years worth of gathered data
was executed and the highest document-topic probabilities for each topic were used to
determine topic titles. The document-topic probabilities were summarized via density
plot in Figure 12.

The ultimate goal of the limit is to resolve minimum amount of General topics, whilst
still keeping the integrity and validity of the resolved topic names. We can observe from
Figure 12 that setting the hardcoded limit to as low as 25% would still mean a fairly
big portion of the topics would be classified as General. Even then, the course would
have to contain only 25% of the topic to be considered as the dominant element and the
course name to be picked as topic title.
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Figure 12. Density plot of the highest document-topic probability for each topic.

The second approach doesn’t just focus on the top document-topic probability, but con-
siders others as well. The goal is to compare the top document-topic probabilities for
given topic with the next highest probability, if the top one is not higher by some factor
we don’t assign the course name as topic title.

Furthermore, instead of just comparing the top two document-topic probabilities, we
aggregate the top probabilities should the course names match and then compare the ag-
gregated value to the next highest probability for given topic. This is especially useful
when more than one semester worth of data is included in the analysis. For example
some courses are given every semester and if the same course is included from two
semesters, then it is reasonable to assume that they would both contain the same topic,
unless the course material has changed significantly. Similarly to first approach, the ob-
jective is to now find a suitable multiplier for comparison. We can observe from Figure
13 how many topics were assigned the General title for different multipliers. Essen-
tially, even with multiplier in the range of 1.5 − 2.0 the General topic count stayed in
the reasonably low range of 4%− 5%.
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Figure 13. Resolved ’General’ topic percentage with regard to total topic count for
different multipliers. After the top highest (course names have to match) document-
topic probabilities are aggregated, their total sum has to be higher than the next highest
probability multiplied by some factor.

However, even if the probability comparison fails, a fallback heuristic in which we look
for matching words in the course names is put to use. Basically, we take the name of
the course with highest document-topic probability for given topic and try to match the
individual course name words with the names of other courses that contain the same
topic. If such matching words are found, we aggregate them and use it as a topic title.

While both approaches were considered, the second one was chosen purely based on
the significantly lower General topic count. A multiplier of 1.5 is used by default.
Nonetheless, both approaches use course names to resolve titles and while this is suit-
able for most cases, the course names still require further processing. As an additional
feature, if a course name was designated as a topic title, we first put the topic name
through a filtering process in order to resolve a more appropriate topic name. The fol-
lowing steps are taken during the filtering process:
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• Blacklisted word removal - various blacklisted words (e.g seminar, introduc-
tion) are removed from course names as they provide no value as a topic title.
For example, a course named ’Introduction to Programming’ is reduced to just
’Programming’.

• Removal of text in parenthesis - some course names contain some specific addi-
tional information in parenthesis. Consequently all parenthesis and the informa-
tion they contain are removed.

• Removal of course level indicators - course names can contain Arabic or Roman
numerals in order to indicate course level (e.g Algebra II). All such indicators are
removed.

• Removal of non-alphabetic characters - in rare cases the course name started
with non-alphabetic characters. Since they serve no purpose in topic titles, they
are filtered out.
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6 Results and Visualization
The final step focuses on the visualization of the results produced by previously defined
process, starting from data collection, up to performing text analysis on cleansed data.
We start by describing the parameters and the overall setup used to perform an example
full execution of the established process, followed by a brief summary of the data that
was collected and used for text analysis. Afterwards, all the results from topic modelling
and otherwise are visualized in various ways. Firstly, we concentrate on presenting the
course topic modelling results via heatmap and descriptive tables. Finally, we provide
the means to examine each course separately, including how its documents fitted into
the material topic model.

6.1 Process Setup and Results
Before running the entire process, starting from data scraping to actual visualization,
certain parameters have to be set, the most important one being target semesters. Two
full academic years were targeted in our example run, with the goal to extract courses
that might not be given every semester or every year, but over year. Considering that
the goal is to gather as much data as possible, factors related to data extraction and
integration have to be taken into account. For example, in this instance, data gathered
from Moodle web page is assumed to be from on-going semester. Thus the last semester
we should include in our example run is the on-going semester (currently 2017 Spring
semester). Consequently, the targeted semesters are as follows: 2015 Fall, 2016 Spring,
2016 Fall, 2017 Spring. Other parameters are more specific in their nature and depend
on the target goals, e.g do we want to include SIS data, gather the names of the faculty
members. Both previously mentioned options were enabled. The process itself is fully
automated and requires only the setting of the initial parameters.

The overall results with regard to the acquired data from the example run can be seen in
Table 3. As expected, the bulk of the data came from Courses web page, with 2016 Fall
semester in particular having the highest number of courses and materials. While the
data extracted from Moodle is mainly associated with the latest semester, there are still
few exceptions in which Courses web page referred to the material in Moodle. Therefore
some Moodle specific materials are associated with other semesters, currently 2016 Fall
and 2016 Spring semesters. The least amount of data was included from SIS database,
with only 11 composed materials. This is due to the fact that a lot of the entries could not
be associated with a particular semester with the currently used semester-URL match-
ing technique. Should there exist a column which directly associates each entry with a
specific semester, the amount of data included would be significantly higher.
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2015 Fall 2016 Spring 2016 Fall 2017 Spring Total
Courses 60 69 95 86 310

Courses materials 883 876 1304 905 3968
Moodle materials 0 3 2 103 108
SIS data materials 3 2 6 0 11

All materials 886 881 1312 1008 4087

Table 3. General descriptive statistics for the data gathered from different sources during
data extraction phase.

After cleaning and normalizing all the textual content, a total of 24421 unique words
were resolved at a corpus level (see Figure 14 for top words at corpus level). From
those, 6325 were frequent co-occurring words. In addition, the acronym extraction fea-
ture determined 150 acronym definitions at a corpus level. Due to acronym conflicts (i.e
an acronym having more than one definition), the actual amount can be even higher.

Figure 14. Word cloud based on unique words and their counts at corpus level.
.
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6.2 Course-Topic Relations
Finding various relations between courses via topic modelling is the primary objective
of text analysis. However, the proper visualization and presentation of topic modelling
results can be challenging, especially when a fairly large amount of data is included into
the analysis process, resulting in a high number of topics. Regarding the example run
done over the academic years of 2015/2016 and 2016/2017, a total of 168 topics were
set and resolved during the topic modelling step. Keeping in mind, that while the idea
is to match the number topics with the number of courses, the number of courses for
topic modelling is still counted based on unique course codes. Since some courses are
given every semester, the number of unique courses codes is naturally lower than the
total course count throughout the entire two academic years, thus the lower topic count.

A general overview of the course-topic distributions can be visualized via heatmap,
where on one axis we have courses, the other axis has topics and the values repre-
sent the course-topic probabilities. The heatmap form of visualization can give a good
overview, but should the number of courses and topics get too big, the relations can get
too difficult to spot and track.

Figure 15. A sample portion of a heatmap visualization of course-topic distributions.
Based on an example run done over 2015/2016 and 2016/2017 academic years. The full
version of the heatmap can be observed at [10].

An alternative way of discovering relations is to look at the course-topic distributions
from the topic angle, i.e which documents contain that topic. For this purpose, we can
use a simple table format, where each row represents a topic and related information
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(e.g top words based on topic-word distribution and courses that contain that topic).
Furthermore, two different word orderings for a topic can be chosen: common words
(i.e top 10 words with highest topic-word probabilities), distinctive words (i.e top 10
words based on the values gained by normalizing the topic-word probabilities over all
topic-word distributions).

Figure 16. A sample portion of a table representing resolved topics and their details (top
10 words with highest probability in topic-word distribution and documents that contain
given topic). Based on an example run done over 2015/2016 and 2016/2017 academic
years. The full visualization of the table can be observed at [10].

Regarding the analysis results, numerous relations can be observed and investigated
based on given example run. The most common relations are naturally between in-
stances of the same course given in different semesters. Additionally, complementary
courses usually fall under the same topic (e.g Data Mining and Data Mining Seminar).
More specific relations and their causes can be further explored based on need and in-
terest.

6.3 Course Overview
The results of the analysis can also be viewed from the perspective of a single course,
including general statistics, top words via word cloud, the outcome of the topic mod-
elling done over the material of all courses etc. For example, a complementary view
(see Figure 17) of the course-topic distribution can be seen from the side of a given
course, i.e which topics does it contain.

The results of the topic modelling performed at a higher level of granularity, i.e ma-
terial level, can be examined from the course point of view. Similarly to course-topic
modelling, the goal is to show which topics each material contains for given course and
do the materials overlap with documents from other courses.
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Figure 17. An example of top 5 topics along with their respective course-topic probabil-
ities for course Databases (2015/Fall), based on the example run done over 2015/2016
and 2016/2017 academic years.

An example visualization of material-topic relations can be seen in Figure 18. As a side
note, even by taking 10% of material count as topic count, the number of topics will still
range in the few hundreds (assuming two academic years worth of data is scraped). In
order to better visualize the results, only document-topic relations with probability over
10% are persisted during analysis phase, all other marginal relations are discarded and
considered in the Other group.

Figure 18. An example stacked bar chart showing the topics each material contains for
course Databases (2015/Fall).
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The purpose of the material topic table (see for example Figure 19) is to examine in
which topics the materials for given course were included. Furthermore, each topic row
displays which materials (from all courses) contain given topic, thus providing the op-
portunity to spot similarities between cross-course materials. The materials of given
course are marked in bold to differentiate them from other materials. The titles for
course material topics are resolved in a similar matter as are titles for course topics,
i.e based on document-topic probabilities and course names. The reason being that the
course material names are often times not informative enough to consider them as topic
titles. As such, we resolve topic titles at course material level based on the course names
that given topic materials are a part of. Finally, it should be noted that we show only the
course material topics relevant for given course.

Figure 19. An example table showing the topics in which the course Databases
(2015/Fall) material were included.
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7 Future work
While the framework proposed in the scope of present work shows great promise in
terms of progressively evaluating and giving an overview of the courses taught and their
relations, it still has a lot of room for improvement in all aspects of the entire process.
Most importantly the data gathering part can be made more effective by incorporat-
ing new sources as different faculties and institutes start using Courses web page. The
scraping process would be significantly more efficient when a uniform format is en-
forced, especially in case of Moodle environment, where each course page has its own
design and structure. Moreover, a lot of the courses in Moodle environment are not
publicly accessible, thus further reducing the amount of potential data to be collected.

The textual content extraction from files can be further improved by adding the sup-
port to extract data from other file types. However, considering that most of the data
comes in the format of a PDF file, making the PDF content extraction more robust by
handling different erroneous cases (e.g properly handling ligatures), should have a pos-
itive impact on the quality of the eventual analysis results.

The data cleaning phase has a significant impact on the analysis results, as better qual-
ity data used for analysis means better and more meaningful results. One of the more
evident areas for improvement is acronym extraction, as the proposed solution is fairly
strict and as a result some acronyms are missed. In addition, the cleaning phase cur-
rently focuses only on two languages - Estonian and English. The initial results, how-
ever, showed that a small, albeit noticeable portion of the content was in Russian, thus
giving the opportunity to incorporate another language in to the mix by establishing an
appropriate stop word list and using an appropriate lemmatizer.

Concerning text analysis, the applied LDA modelling is more inclined towards high-
frequency words, i.e we consider the most common words. However, different metrics
can be used to estimate the correlation between documents and words. For example,
by using LDA model that is based on mutual information, we would consider more se-
mantically important terms, instead of just the most frequent ones. Applying a different
metric could have a profound effect on the quality of the resolved topics.

Finally, visualizing the results of the topic modelling in a comprehensible and a elegant
way is a challenging task. Improving the existing visualization and finding new ways
to represent the topics can go a long way in terms of increasing the usefulness of found
results. Moreover, making the usage of the framework more user friendly is paramount.
This especially entails making the use of the automized process more convenient, start-
ing by making a user interface for setting the initial parameters and running the process,
thereby disregarding the need to intimately know the underlying implementation.
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8 Conclusion
The goal of this thesis was to build an automated mechanism for analysing university
courses and their relations. As a first step we establish a healthy set of cleansed textual
data using ELT process as a cornerstone. The designed ELT process collects raw textual
data and documents from various sources made available for courses that are taught in
the University of Tartu. Once the raw data has been gathered, we continue by extracting
the textual content from all the downloaded files (e.g PDF, TEX, DOCX), thereby con-
structing an initial data warehouse. As a next step, a string of transformations (e.g text
tokenization) and data cleaning operations are applied to the raw data. This includes
removing common and un-informative words (i.e stop words) and word lemmatization
in order to count the same word in its different inflected forms as one. As a result, a
bag-of-words model is fitted for each course and for each individual course material - a
suitable groundwork for further analysis and visualization.

After the proper construction of a data warehouse, we apply topic modelling, more
specifically, attempt to resolve LDA model at two different levels of granularity - course
and course material level. The idea is that similar courses or materials should be com-
prised of the same topics. Since each topic consists of words that describe that topic,
we also get a hint as to the nature of the relation between two entities. The results of
the topic modelling are then visualized via different channels (e.g heatmap, topic tables).

An example test run was performed over the academic years of 2015/2016 and 2016/2017.
The results showed that the same course given in different semesters and complemen-
tary courses mainly contained the same topic, thus validating the process and opening
a door for more interesting and exclusive relations to be mined and explored from the
results. The established framework, based on the publicly available data for courses in
University of Tartu, shows great promise and still has a lot of room for improvement in
all aspects. While integrating new Courses web pages is fairly simple as they become
available for other faculties and institutes, the long term perspective is to make the data
scraping more adaptable and modular, so that similar analysis could be performed for
different universities.
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Appendix

I Glossary
Bag-of-words model - an unordered set of a word-count pairs that represent a document
or sentence.

Document-term matrix (DTM) - a matrix representation of all term occurrences in
given documents, where we have documents on one axis, terms in other and each value
represents how many times did a term occur in a document.

ELT (Extract, Load, Transform) process - similar to ETL process, however, all the
transformations take place after loading the extracted data into the target data ware-
house.

ETL (Extract, Transform, Load) process - the process of extracting data from vari-
ous heterogeneous sources, performing transformations on the extracted data and finally
loading the results to a target data warehouse.

Frequent co-occurring words - a sequence of words that occur often in a document(s).
Classifying co-occurring words as frequent depends highly on the set definition (e.g has
to appear in at least a specified number of different documents).

Inflected word - a modified version of a word, used to articulate a different tense or
aspect (e.g sleeping is an inflected form of the word sleep).

Lemmatization - the process of extracting the lemma of an inflected word. E.g from
word running we would get the root lemma run.

Ligature - a sequence of two or more letters that form a single glyph. For example
the letters f and i are commonly appended together to form a single glyph fi.

N-gram - a sequence of N words in a given sentence or text.

Part-of-speech (POS) tagging - the process of resolving a part of speech (noun, verb
etc.) for a particular word, based on the context (i.e surrounding words) and the defini-
tion of the word itself.

Stemming - normalization of an inflected word by removing its suffix (e.g cars to car).

Stop words - common words (e.g this, that, and) in a language that are usually fil-
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tered out before any further processing.

Tokenization - the process of splitting raw text into sentences and words (i.e tokens) by
considering sentence boundaries, symbols, contractions etc.

Topic modelling - a method for finding a set of topics that describe given documents
and associating each document with a limited subset of the found topics.

Web scraping - an automated process, which extracts data from a websites by crawling
through its content and extracting text and following links, as per its configuration.
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II Framework Implementation Overview and Setup
The entire implementation is split into two parts. The first part is a pure Python based
implementation that covers all the phases starting from data extraction to analysis. The
second part focuses on the visualization of the results, essentially an entire implementa-
tion built around the database file produced in first step. The Python implementation for
the main logic behind the built framework can be obtained from following repository:

https://github.com/ragnarvent/courses_analysis

The project requires Python 2.7 and a range of different dependencies in order to run
the process. All the necessary dependencies are specified in the requirements.txt file,
located in the project root folder. A simple Makefile can be used to perform individual
process steps, clean current results or install the project library dependencies. The fol-
lowing make commands are supported:

• init - uses pip to install dependencies specified in requirements.txt file.

• clean-pyc - deletes all compiled python bytecode files from project folder.

• clean-analysis - deletes previous results, e.g gathered faculty member names,
analysis results. Rebuilds the database or creates it if missing all-together. Note
that in order to fully delete all previous results (e.g raw files and the corresponding
database entries), an additional parameter fc has to be provided with the value of
1.

• clean-stale - deletes all files and database entries not related to target semesters.
The target semesters can be specified via SEMESTERS parameter.

• scrape-courses - performs data scraping over Courses web page. The command
requires the specification of a SEMESTERS parameter. The value is expected to
be a comma delimited list of semesters to scrape. A single semester can be given
as a concatenation of year and the first letter of the semester by season (i.e F
for Fall and S for Spring). For example the following command can be used to
scrape data based on 2015/Spring and 2015/Fall semesters: make scrape-courses
SEMESTERS=2015S,2015F.

• scrape-moodle - scrape data from Moodle, this is a complementary command that
should be run only after scraping Courses web page. As an additional condition,
the target semesters for Courses web crawling had to contain the currently on-
going semester.
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• scrape-teachers - scrape the names of the faculty members and place them in a
file in JSON format. The list of names are used as a filter during data cleaning
phase.

• extract-sis - load data from a CSV file that was extracted from Study Information
System database. The command is complementary and requires the specification
of SEMESTERS parameter.

• extract - extract textual content from downloaded course materials.

• tokenize - perform data cleaning, this includes tokenization, acronym extraction
and finding frequently co-occurring words.

• analyse - perform topic modelling at a course and course material level, this in-
cludes resolving topic titles.

A shell script analyse_courses.sh can be used to perform all the steps in a sequential
order, requiring only the specification of initial parameters.

usage : a n a l y s e _ c o u r s e s [ [ [−s s e m e s t e r s ] [− s i s ] [− t d i r ] [− t ] [−m] [
− f c ] ] | [−h ] ]

−s , −− s e m e s t e r s s e m e s t e r s : comma s e p a r a t e d l i s t o f
s e m e s t e r s t o be s c r a p e d from Courses web page . E . g 2015F
,2016 S

−m, −−moodle : s c r a p e d a t a from Moodle

− t , −− t e a c h e r s : s c r a p e t e a c h e r names t o e x c l u d e them from
a n a l y s i s

− s i s , −− s t u d y i n f o s y s t e m : e x t r a c t s t u d y i n f o r m a t i o n sys tem
d a t a from . csv f i l e

− t d i r , −− t a r g e t d i r e c t o r y : d i r e c t o r y where t h e r e s u l t i n g DB
f i l e w i l l be c o p i e d

− fc , −− f u l l c l e a n : remove a l l e x i s t i n g d a t a i n c l u d i n g
c o r r e s p o n d i n g DB e n t r i e s . Re−download e v e r y t h i n g i n s t e a d
o f j u s t u p d a t i n g t h e m i s s i n g p a r t s

−h , −−h e l p : d i s p l a y h e l p

For example the following command can be used to run the process, targeting 2015/2016
and 2016/2017 academic years:

bash ./analyse_courses.sh -s 2015F,2016S,2016F,2017S -m -sis -t -fc
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The visualization part, however, requires the set up of Apache web server with a fitting
PHP version. The base project for visualization part can be obtained from:

https://github.com/ragnarvent/courses_analysis_web

The project uses PHP for backend integration, HTML, Javascript (for various charts and
graphs) and Bootstrap for frontend. The necessary PHP dependencies (e.g Silex frame-
work) are specified in composer.json file and can be acquired via Composer dependency
manager.

Concerning the integration between part one, where we perform the analysis, and part
two, where we visualize the results, the only necessary action is to copy the database
produced in part one to the db folder in the project of part two. This small step can
be automized by providing the tdir parameter, when running analyse_courses.sh script.
All in all, if the Apache server is already running, then the only thing needed to update
the results is the successful execution of analyise_courses.sh script.

Additionally, it is possible to add new Courses or Moodle web pages as they become
available for different faculties by adding the web scraping start points in the configura-
tion file, i.e utils/config.cfg. A similar URL pattern (e.g language is explicitly specified
in URL) should be used, when adding new starting points.
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